1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/PseudoProbe.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/SSAUpdater.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
98     cl::init(false),
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
152                       cl::init(10),
153                       cl::desc("Max size of a block which is still considered "
154                                "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps,
165           "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables,
167           "Number of switch instructions turned into lookup tables");
168 STATISTIC(
169     NumLookupTablesHoles,
170     "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors,
173           "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest,
175           "Number of branches folded into predecessor basic block");
176 STATISTIC(
177     NumHoistCommonCode,
178     "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs,
180           "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode,
182           "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs,
184           "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes,
187           "Number of invokes with empty resume blocks simplified into calls");
188 
189 namespace {
190 
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy =
195     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
196 
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
201 
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase {
204   ConstantInt *Value;
205   BasicBlock *Dest;
206 
207   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
208       : Value(Value), Dest(Dest) {}
209 
210   bool operator<(ValueEqualityComparisonCase RHS) const {
211     // Comparing pointers is ok as we only rely on the order for uniquing.
212     return Value < RHS.Value;
213   }
214 
215   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
216 };
217 
218 class SimplifyCFGOpt {
219   const TargetTransformInfo &TTI;
220   DomTreeUpdater *DTU;
221   const DataLayout &DL;
222   ArrayRef<WeakVH> LoopHeaders;
223   const SimplifyCFGOptions &Options;
224   bool Resimplify;
225 
226   Value *isValueEqualityComparison(Instruction *TI);
227   BasicBlock *GetValueEqualityComparisonCases(
228       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
229   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
230                                                      BasicBlock *Pred,
231                                                      IRBuilder<> &Builder);
232   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
233                                                     Instruction *PTI,
234                                                     IRBuilder<> &Builder);
235   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
236                                            IRBuilder<> &Builder);
237 
238   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
239   bool simplifySingleResume(ResumeInst *RI);
240   bool simplifyCommonResume(ResumeInst *RI);
241   bool simplifyCleanupReturn(CleanupReturnInst *RI);
242   bool simplifyUnreachable(UnreachableInst *UI);
243   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
244   bool simplifyIndirectBr(IndirectBrInst *IBI);
245   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
246   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
247   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
248 
249   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
250                                              IRBuilder<> &Builder);
251 
252   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
253                              bool EqTermsOnly);
254   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
255                               const TargetTransformInfo &TTI);
256   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
257                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
258                                   uint32_t TrueWeight, uint32_t FalseWeight);
259   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
260                                  const DataLayout &DL);
261   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
262   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
263   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
264 
265 public:
266   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
267                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
268                  const SimplifyCFGOptions &Opts)
269       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
270     assert((!DTU || !DTU->hasPostDomTree()) &&
271            "SimplifyCFG is not yet capable of maintaining validity of a "
272            "PostDomTree, so don't ask for it.");
273   }
274 
275   bool simplifyOnce(BasicBlock *BB);
276   bool simplifyOnceImpl(BasicBlock *BB);
277   bool run(BasicBlock *BB);
278 
279   // Helper to set Resimplify and return change indication.
280   bool requestResimplify() {
281     Resimplify = true;
282     return true;
283   }
284 };
285 
286 } // end anonymous namespace
287 
288 /// Return true if it is safe to merge these two
289 /// terminator instructions together.
290 static bool
291 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
292                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
293   if (SI1 == SI2)
294     return false; // Can't merge with self!
295 
296   // It is not safe to merge these two switch instructions if they have a common
297   // successor, and if that successor has a PHI node, and if *that* PHI node has
298   // conflicting incoming values from the two switch blocks.
299   BasicBlock *SI1BB = SI1->getParent();
300   BasicBlock *SI2BB = SI2->getParent();
301 
302   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
303   bool Fail = false;
304   for (BasicBlock *Succ : successors(SI2BB))
305     if (SI1Succs.count(Succ))
306       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
307         PHINode *PN = cast<PHINode>(BBI);
308         if (PN->getIncomingValueForBlock(SI1BB) !=
309             PN->getIncomingValueForBlock(SI2BB)) {
310           if (FailBlocks)
311             FailBlocks->insert(Succ);
312           Fail = true;
313         }
314       }
315 
316   return !Fail;
317 }
318 
319 /// Update PHI nodes in Succ to indicate that there will now be entries in it
320 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
321 /// will be the same as those coming in from ExistPred, an existing predecessor
322 /// of Succ.
323 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
324                                   BasicBlock *ExistPred,
325                                   MemorySSAUpdater *MSSAU = nullptr) {
326   for (PHINode &PN : Succ->phis())
327     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
328   if (MSSAU)
329     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
330       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
331 }
332 
333 /// Compute an abstract "cost" of speculating the given instruction,
334 /// which is assumed to be safe to speculate. TCC_Free means cheap,
335 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
336 /// expensive.
337 static InstructionCost computeSpeculationCost(const User *I,
338                                               const TargetTransformInfo &TTI) {
339   assert(isSafeToSpeculativelyExecute(I) &&
340          "Instruction is not safe to speculatively execute!");
341   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
342 }
343 
344 /// If we have a merge point of an "if condition" as accepted above,
345 /// return true if the specified value dominates the block.  We
346 /// don't handle the true generality of domination here, just a special case
347 /// which works well enough for us.
348 ///
349 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
350 /// see if V (which must be an instruction) and its recursive operands
351 /// that do not dominate BB have a combined cost lower than Budget and
352 /// are non-trapping.  If both are true, the instruction is inserted into the
353 /// set and true is returned.
354 ///
355 /// The cost for most non-trapping instructions is defined as 1 except for
356 /// Select whose cost is 2.
357 ///
358 /// After this function returns, Cost is increased by the cost of
359 /// V plus its non-dominating operands.  If that cost is greater than
360 /// Budget, false is returned and Cost is undefined.
361 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
362                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
363                                 InstructionCost &Cost,
364                                 InstructionCost Budget,
365                                 const TargetTransformInfo &TTI,
366                                 unsigned Depth = 0) {
367   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368   // so limit the recursion depth.
369   // TODO: While this recursion limit does prevent pathological behavior, it
370   // would be better to track visited instructions to avoid cycles.
371   if (Depth == MaxSpeculationDepth)
372     return false;
373 
374   Instruction *I = dyn_cast<Instruction>(V);
375   if (!I) {
376     // Non-instructions all dominate instructions, but not all constantexprs
377     // can be executed unconditionally.
378     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
379       if (C->canTrap())
380         return false;
381     return true;
382   }
383   BasicBlock *PBB = I->getParent();
384 
385   // We don't want to allow weird loops that might have the "if condition" in
386   // the bottom of this block.
387   if (PBB == BB)
388     return false;
389 
390   // If this instruction is defined in a block that contains an unconditional
391   // branch to BB, then it must be in the 'conditional' part of the "if
392   // statement".  If not, it definitely dominates the region.
393   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
394   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
395     return true;
396 
397   // If we have seen this instruction before, don't count it again.
398   if (AggressiveInsts.count(I))
399     return true;
400 
401   // Okay, it looks like the instruction IS in the "condition".  Check to
402   // see if it's a cheap instruction to unconditionally compute, and if it
403   // only uses stuff defined outside of the condition.  If so, hoist it out.
404   if (!isSafeToSpeculativelyExecute(I))
405     return false;
406 
407   Cost += computeSpeculationCost(I, TTI);
408 
409   // Allow exactly one instruction to be speculated regardless of its cost
410   // (as long as it is safe to do so).
411   // This is intended to flatten the CFG even if the instruction is a division
412   // or other expensive operation. The speculation of an expensive instruction
413   // is expected to be undone in CodeGenPrepare if the speculation has not
414   // enabled further IR optimizations.
415   if (Cost > Budget &&
416       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
417        !Cost.isValid()))
418     return false;
419 
420   // Okay, we can only really hoist these out if their operands do
421   // not take us over the cost threshold.
422   for (Use &Op : I->operands())
423     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
424                              Depth + 1))
425       return false;
426   // Okay, it's safe to do this!  Remember this instruction.
427   AggressiveInsts.insert(I);
428   return true;
429 }
430 
431 /// Extract ConstantInt from value, looking through IntToPtr
432 /// and PointerNullValue. Return NULL if value is not a constant int.
433 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
434   // Normal constant int.
435   ConstantInt *CI = dyn_cast<ConstantInt>(V);
436   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
437     return CI;
438 
439   // This is some kind of pointer constant. Turn it into a pointer-sized
440   // ConstantInt if possible.
441   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
442 
443   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
444   if (isa<ConstantPointerNull>(V))
445     return ConstantInt::get(PtrTy, 0);
446 
447   // IntToPtr const int.
448   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
449     if (CE->getOpcode() == Instruction::IntToPtr)
450       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
451         // The constant is very likely to have the right type already.
452         if (CI->getType() == PtrTy)
453           return CI;
454         else
455           return cast<ConstantInt>(
456               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
457       }
458   return nullptr;
459 }
460 
461 namespace {
462 
463 /// Given a chain of or (||) or and (&&) comparison of a value against a
464 /// constant, this will try to recover the information required for a switch
465 /// structure.
466 /// It will depth-first traverse the chain of comparison, seeking for patterns
467 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
468 /// representing the different cases for the switch.
469 /// Note that if the chain is composed of '||' it will build the set of elements
470 /// that matches the comparisons (i.e. any of this value validate the chain)
471 /// while for a chain of '&&' it will build the set elements that make the test
472 /// fail.
473 struct ConstantComparesGatherer {
474   const DataLayout &DL;
475 
476   /// Value found for the switch comparison
477   Value *CompValue = nullptr;
478 
479   /// Extra clause to be checked before the switch
480   Value *Extra = nullptr;
481 
482   /// Set of integers to match in switch
483   SmallVector<ConstantInt *, 8> Vals;
484 
485   /// Number of comparisons matched in the and/or chain
486   unsigned UsedICmps = 0;
487 
488   /// Construct and compute the result for the comparison instruction Cond
489   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
490     gather(Cond);
491   }
492 
493   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
494   ConstantComparesGatherer &
495   operator=(const ConstantComparesGatherer &) = delete;
496 
497 private:
498   /// Try to set the current value used for the comparison, it succeeds only if
499   /// it wasn't set before or if the new value is the same as the old one
500   bool setValueOnce(Value *NewVal) {
501     if (CompValue && CompValue != NewVal)
502       return false;
503     CompValue = NewVal;
504     return (CompValue != nullptr);
505   }
506 
507   /// Try to match Instruction "I" as a comparison against a constant and
508   /// populates the array Vals with the set of values that match (or do not
509   /// match depending on isEQ).
510   /// Return false on failure. On success, the Value the comparison matched
511   /// against is placed in CompValue.
512   /// If CompValue is already set, the function is expected to fail if a match
513   /// is found but the value compared to is different.
514   bool matchInstruction(Instruction *I, bool isEQ) {
515     // If this is an icmp against a constant, handle this as one of the cases.
516     ICmpInst *ICI;
517     ConstantInt *C;
518     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
519           (C = GetConstantInt(I->getOperand(1), DL)))) {
520       return false;
521     }
522 
523     Value *RHSVal;
524     const APInt *RHSC;
525 
526     // Pattern match a special case
527     // (x & ~2^z) == y --> x == y || x == y|2^z
528     // This undoes a transformation done by instcombine to fuse 2 compares.
529     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
530       // It's a little bit hard to see why the following transformations are
531       // correct. Here is a CVC3 program to verify them for 64-bit values:
532 
533       /*
534          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
535          x    : BITVECTOR(64);
536          y    : BITVECTOR(64);
537          z    : BITVECTOR(64);
538          mask : BITVECTOR(64) = BVSHL(ONE, z);
539          QUERY( (y & ~mask = y) =>
540                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
541          );
542          QUERY( (y |  mask = y) =>
543                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
544          );
545       */
546 
547       // Please note that each pattern must be a dual implication (<--> or
548       // iff). One directional implication can create spurious matches. If the
549       // implication is only one-way, an unsatisfiable condition on the left
550       // side can imply a satisfiable condition on the right side. Dual
551       // implication ensures that satisfiable conditions are transformed to
552       // other satisfiable conditions and unsatisfiable conditions are
553       // transformed to other unsatisfiable conditions.
554 
555       // Here is a concrete example of a unsatisfiable condition on the left
556       // implying a satisfiable condition on the right:
557       //
558       // mask = (1 << z)
559       // (x & ~mask) == y  --> (x == y || x == (y | mask))
560       //
561       // Substituting y = 3, z = 0 yields:
562       // (x & -2) == 3 --> (x == 3 || x == 2)
563 
564       // Pattern match a special case:
565       /*
566         QUERY( (y & ~mask = y) =>
567                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
568         );
569       */
570       if (match(ICI->getOperand(0),
571                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
572         APInt Mask = ~*RHSC;
573         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
574           // If we already have a value for the switch, it has to match!
575           if (!setValueOnce(RHSVal))
576             return false;
577 
578           Vals.push_back(C);
579           Vals.push_back(
580               ConstantInt::get(C->getContext(),
581                                C->getValue() | Mask));
582           UsedICmps++;
583           return true;
584         }
585       }
586 
587       // Pattern match a special case:
588       /*
589         QUERY( (y |  mask = y) =>
590                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
591         );
592       */
593       if (match(ICI->getOperand(0),
594                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
595         APInt Mask = *RHSC;
596         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
597           // If we already have a value for the switch, it has to match!
598           if (!setValueOnce(RHSVal))
599             return false;
600 
601           Vals.push_back(C);
602           Vals.push_back(ConstantInt::get(C->getContext(),
603                                           C->getValue() & ~Mask));
604           UsedICmps++;
605           return true;
606         }
607       }
608 
609       // If we already have a value for the switch, it has to match!
610       if (!setValueOnce(ICI->getOperand(0)))
611         return false;
612 
613       UsedICmps++;
614       Vals.push_back(C);
615       return ICI->getOperand(0);
616     }
617 
618     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
619     ConstantRange Span =
620         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
621 
622     // Shift the range if the compare is fed by an add. This is the range
623     // compare idiom as emitted by instcombine.
624     Value *CandidateVal = I->getOperand(0);
625     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
626       Span = Span.subtract(*RHSC);
627       CandidateVal = RHSVal;
628     }
629 
630     // If this is an and/!= check, then we are looking to build the set of
631     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
632     // x != 0 && x != 1.
633     if (!isEQ)
634       Span = Span.inverse();
635 
636     // If there are a ton of values, we don't want to make a ginormous switch.
637     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
638       return false;
639     }
640 
641     // If we already have a value for the switch, it has to match!
642     if (!setValueOnce(CandidateVal))
643       return false;
644 
645     // Add all values from the range to the set
646     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
647       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
648 
649     UsedICmps++;
650     return true;
651   }
652 
653   /// Given a potentially 'or'd or 'and'd together collection of icmp
654   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
655   /// the value being compared, and stick the list constants into the Vals
656   /// vector.
657   /// One "Extra" case is allowed to differ from the other.
658   void gather(Value *V) {
659     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
660 
661     // Keep a stack (SmallVector for efficiency) for depth-first traversal
662     SmallVector<Value *, 8> DFT;
663     SmallPtrSet<Value *, 8> Visited;
664 
665     // Initialize
666     Visited.insert(V);
667     DFT.push_back(V);
668 
669     while (!DFT.empty()) {
670       V = DFT.pop_back_val();
671 
672       if (Instruction *I = dyn_cast<Instruction>(V)) {
673         // If it is a || (or && depending on isEQ), process the operands.
674         Value *Op0, *Op1;
675         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
676                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
677           if (Visited.insert(Op1).second)
678             DFT.push_back(Op1);
679           if (Visited.insert(Op0).second)
680             DFT.push_back(Op0);
681 
682           continue;
683         }
684 
685         // Try to match the current instruction
686         if (matchInstruction(I, isEQ))
687           // Match succeed, continue the loop
688           continue;
689       }
690 
691       // One element of the sequence of || (or &&) could not be match as a
692       // comparison against the same value as the others.
693       // We allow only one "Extra" case to be checked before the switch
694       if (!Extra) {
695         Extra = V;
696         continue;
697       }
698       // Failed to parse a proper sequence, abort now
699       CompValue = nullptr;
700       break;
701     }
702   }
703 };
704 
705 } // end anonymous namespace
706 
707 static void EraseTerminatorAndDCECond(Instruction *TI,
708                                       MemorySSAUpdater *MSSAU = nullptr) {
709   Instruction *Cond = nullptr;
710   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
711     Cond = dyn_cast<Instruction>(SI->getCondition());
712   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
713     if (BI->isConditional())
714       Cond = dyn_cast<Instruction>(BI->getCondition());
715   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
716     Cond = dyn_cast<Instruction>(IBI->getAddress());
717   }
718 
719   TI->eraseFromParent();
720   if (Cond)
721     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
722 }
723 
724 /// Return true if the specified terminator checks
725 /// to see if a value is equal to constant integer value.
726 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
727   Value *CV = nullptr;
728   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
729     // Do not permit merging of large switch instructions into their
730     // predecessors unless there is only one predecessor.
731     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
732       CV = SI->getCondition();
733   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
734     if (BI->isConditional() && BI->getCondition()->hasOneUse())
735       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
736         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
737           CV = ICI->getOperand(0);
738       }
739 
740   // Unwrap any lossless ptrtoint cast.
741   if (CV) {
742     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
743       Value *Ptr = PTII->getPointerOperand();
744       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
745         CV = Ptr;
746     }
747   }
748   return CV;
749 }
750 
751 /// Given a value comparison instruction,
752 /// decode all of the 'cases' that it represents and return the 'default' block.
753 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
754     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
755   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
756     Cases.reserve(SI->getNumCases());
757     for (auto Case : SI->cases())
758       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
759                                                   Case.getCaseSuccessor()));
760     return SI->getDefaultDest();
761   }
762 
763   BranchInst *BI = cast<BranchInst>(TI);
764   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
765   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
766   Cases.push_back(ValueEqualityComparisonCase(
767       GetConstantInt(ICI->getOperand(1), DL), Succ));
768   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
769 }
770 
771 /// Given a vector of bb/value pairs, remove any entries
772 /// in the list that match the specified block.
773 static void
774 EliminateBlockCases(BasicBlock *BB,
775                     std::vector<ValueEqualityComparisonCase> &Cases) {
776   llvm::erase_value(Cases, BB);
777 }
778 
779 /// Return true if there are any keys in C1 that exist in C2 as well.
780 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
781                           std::vector<ValueEqualityComparisonCase> &C2) {
782   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
783 
784   // Make V1 be smaller than V2.
785   if (V1->size() > V2->size())
786     std::swap(V1, V2);
787 
788   if (V1->empty())
789     return false;
790   if (V1->size() == 1) {
791     // Just scan V2.
792     ConstantInt *TheVal = (*V1)[0].Value;
793     for (unsigned i = 0, e = V2->size(); i != e; ++i)
794       if (TheVal == (*V2)[i].Value)
795         return true;
796   }
797 
798   // Otherwise, just sort both lists and compare element by element.
799   array_pod_sort(V1->begin(), V1->end());
800   array_pod_sort(V2->begin(), V2->end());
801   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
802   while (i1 != e1 && i2 != e2) {
803     if ((*V1)[i1].Value == (*V2)[i2].Value)
804       return true;
805     if ((*V1)[i1].Value < (*V2)[i2].Value)
806       ++i1;
807     else
808       ++i2;
809   }
810   return false;
811 }
812 
813 // Set branch weights on SwitchInst. This sets the metadata if there is at
814 // least one non-zero weight.
815 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
816   // Check that there is at least one non-zero weight. Otherwise, pass
817   // nullptr to setMetadata which will erase the existing metadata.
818   MDNode *N = nullptr;
819   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
820     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
821   SI->setMetadata(LLVMContext::MD_prof, N);
822 }
823 
824 // Similar to the above, but for branch and select instructions that take
825 // exactly 2 weights.
826 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
827                              uint32_t FalseWeight) {
828   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
829   // Check that there is at least one non-zero weight. Otherwise, pass
830   // nullptr to setMetadata which will erase the existing metadata.
831   MDNode *N = nullptr;
832   if (TrueWeight || FalseWeight)
833     N = MDBuilder(I->getParent()->getContext())
834             .createBranchWeights(TrueWeight, FalseWeight);
835   I->setMetadata(LLVMContext::MD_prof, N);
836 }
837 
838 /// If TI is known to be a terminator instruction and its block is known to
839 /// only have a single predecessor block, check to see if that predecessor is
840 /// also a value comparison with the same value, and if that comparison
841 /// determines the outcome of this comparison. If so, simplify TI. This does a
842 /// very limited form of jump threading.
843 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
844     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
845   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
846   if (!PredVal)
847     return false; // Not a value comparison in predecessor.
848 
849   Value *ThisVal = isValueEqualityComparison(TI);
850   assert(ThisVal && "This isn't a value comparison!!");
851   if (ThisVal != PredVal)
852     return false; // Different predicates.
853 
854   // TODO: Preserve branch weight metadata, similarly to how
855   // FoldValueComparisonIntoPredecessors preserves it.
856 
857   // Find out information about when control will move from Pred to TI's block.
858   std::vector<ValueEqualityComparisonCase> PredCases;
859   BasicBlock *PredDef =
860       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
861   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
862 
863   // Find information about how control leaves this block.
864   std::vector<ValueEqualityComparisonCase> ThisCases;
865   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
866   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
867 
868   // If TI's block is the default block from Pred's comparison, potentially
869   // simplify TI based on this knowledge.
870   if (PredDef == TI->getParent()) {
871     // If we are here, we know that the value is none of those cases listed in
872     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
873     // can simplify TI.
874     if (!ValuesOverlap(PredCases, ThisCases))
875       return false;
876 
877     if (isa<BranchInst>(TI)) {
878       // Okay, one of the successors of this condbr is dead.  Convert it to a
879       // uncond br.
880       assert(ThisCases.size() == 1 && "Branch can only have one case!");
881       // Insert the new branch.
882       Instruction *NI = Builder.CreateBr(ThisDef);
883       (void)NI;
884 
885       // Remove PHI node entries for the dead edge.
886       ThisCases[0].Dest->removePredecessor(PredDef);
887 
888       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
889                         << "Through successor TI: " << *TI << "Leaving: " << *NI
890                         << "\n");
891 
892       EraseTerminatorAndDCECond(TI);
893 
894       if (DTU)
895         DTU->applyUpdates(
896             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
897 
898       return true;
899     }
900 
901     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
902     // Okay, TI has cases that are statically dead, prune them away.
903     SmallPtrSet<Constant *, 16> DeadCases;
904     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
905       DeadCases.insert(PredCases[i].Value);
906 
907     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
908                       << "Through successor TI: " << *TI);
909 
910     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
911     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
912       --i;
913       auto *Successor = i->getCaseSuccessor();
914       if (DTU)
915         ++NumPerSuccessorCases[Successor];
916       if (DeadCases.count(i->getCaseValue())) {
917         Successor->removePredecessor(PredDef);
918         SI.removeCase(i);
919         if (DTU)
920           --NumPerSuccessorCases[Successor];
921       }
922     }
923 
924     if (DTU) {
925       std::vector<DominatorTree::UpdateType> Updates;
926       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
927         if (I.second == 0)
928           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
929       DTU->applyUpdates(Updates);
930     }
931 
932     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
933     return true;
934   }
935 
936   // Otherwise, TI's block must correspond to some matched value.  Find out
937   // which value (or set of values) this is.
938   ConstantInt *TIV = nullptr;
939   BasicBlock *TIBB = TI->getParent();
940   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941     if (PredCases[i].Dest == TIBB) {
942       if (TIV)
943         return false; // Cannot handle multiple values coming to this block.
944       TIV = PredCases[i].Value;
945     }
946   assert(TIV && "No edge from pred to succ?");
947 
948   // Okay, we found the one constant that our value can be if we get into TI's
949   // BB.  Find out which successor will unconditionally be branched to.
950   BasicBlock *TheRealDest = nullptr;
951   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
952     if (ThisCases[i].Value == TIV) {
953       TheRealDest = ThisCases[i].Dest;
954       break;
955     }
956 
957   // If not handled by any explicit cases, it is handled by the default case.
958   if (!TheRealDest)
959     TheRealDest = ThisDef;
960 
961   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
962 
963   // Remove PHI node entries for dead edges.
964   BasicBlock *CheckEdge = TheRealDest;
965   for (BasicBlock *Succ : successors(TIBB))
966     if (Succ != CheckEdge) {
967       if (Succ != TheRealDest)
968         RemovedSuccs.insert(Succ);
969       Succ->removePredecessor(TIBB);
970     } else
971       CheckEdge = nullptr;
972 
973   // Insert the new branch.
974   Instruction *NI = Builder.CreateBr(TheRealDest);
975   (void)NI;
976 
977   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
978                     << "Through successor TI: " << *TI << "Leaving: " << *NI
979                     << "\n");
980 
981   EraseTerminatorAndDCECond(TI);
982   if (DTU) {
983     SmallVector<DominatorTree::UpdateType, 2> Updates;
984     Updates.reserve(RemovedSuccs.size());
985     for (auto *RemovedSucc : RemovedSuccs)
986       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
987     DTU->applyUpdates(Updates);
988   }
989   return true;
990 }
991 
992 namespace {
993 
994 /// This class implements a stable ordering of constant
995 /// integers that does not depend on their address.  This is important for
996 /// applications that sort ConstantInt's to ensure uniqueness.
997 struct ConstantIntOrdering {
998   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
999     return LHS->getValue().ult(RHS->getValue());
1000   }
1001 };
1002 
1003 } // end anonymous namespace
1004 
1005 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1006                                     ConstantInt *const *P2) {
1007   const ConstantInt *LHS = *P1;
1008   const ConstantInt *RHS = *P2;
1009   if (LHS == RHS)
1010     return 0;
1011   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1012 }
1013 
1014 static inline bool HasBranchWeights(const Instruction *I) {
1015   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1016   if (ProfMD && ProfMD->getOperand(0))
1017     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1018       return MDS->getString().equals("branch_weights");
1019 
1020   return false;
1021 }
1022 
1023 /// Get Weights of a given terminator, the default weight is at the front
1024 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1025 /// metadata.
1026 static void GetBranchWeights(Instruction *TI,
1027                              SmallVectorImpl<uint64_t> &Weights) {
1028   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1029   assert(MD);
1030   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1031     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1032     Weights.push_back(CI->getValue().getZExtValue());
1033   }
1034 
1035   // If TI is a conditional eq, the default case is the false case,
1036   // and the corresponding branch-weight data is at index 2. We swap the
1037   // default weight to be the first entry.
1038   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1039     assert(Weights.size() == 2);
1040     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1041     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1042       std::swap(Weights.front(), Weights.back());
1043   }
1044 }
1045 
1046 /// Keep halving the weights until all can fit in uint32_t.
1047 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1048   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1049   if (Max > UINT_MAX) {
1050     unsigned Offset = 32 - countLeadingZeros(Max);
1051     for (uint64_t &I : Weights)
1052       I >>= Offset;
1053   }
1054 }
1055 
1056 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1057     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1058   Instruction *PTI = PredBlock->getTerminator();
1059 
1060   // If we have bonus instructions, clone them into the predecessor block.
1061   // Note that there may be multiple predecessor blocks, so we cannot move
1062   // bonus instructions to a predecessor block.
1063   for (Instruction &BonusInst : *BB) {
1064     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1065       continue;
1066 
1067     Instruction *NewBonusInst = BonusInst.clone();
1068 
1069     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1070       // Unless the instruction has the same !dbg location as the original
1071       // branch, drop it. When we fold the bonus instructions we want to make
1072       // sure we reset their debug locations in order to avoid stepping on
1073       // dead code caused by folding dead branches.
1074       NewBonusInst->setDebugLoc(DebugLoc());
1075     }
1076 
1077     RemapInstruction(NewBonusInst, VMap,
1078                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1079     VMap[&BonusInst] = NewBonusInst;
1080 
1081     // If we moved a load, we cannot any longer claim any knowledge about
1082     // its potential value. The previous information might have been valid
1083     // only given the branch precondition.
1084     // For an analogous reason, we must also drop all the metadata whose
1085     // semantics we don't understand. We *can* preserve !annotation, because
1086     // it is tied to the instruction itself, not the value or position.
1087     // Similarly strip attributes on call parameters that may cause UB in
1088     // location the call is moved to.
1089     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1090         LLVMContext::MD_annotation);
1091 
1092     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1093     NewBonusInst->takeName(&BonusInst);
1094     BonusInst.setName(NewBonusInst->getName() + ".old");
1095 
1096     // Update (liveout) uses of bonus instructions,
1097     // now that the bonus instruction has been cloned into predecessor.
1098     // Note that we expect to be in a block-closed SSA form for this to work!
1099     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1100       auto *UI = cast<Instruction>(U.getUser());
1101       auto *PN = dyn_cast<PHINode>(UI);
1102       if (!PN) {
1103         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1104                "If the user is not a PHI node, then it should be in the same "
1105                "block as, and come after, the original bonus instruction.");
1106         continue; // Keep using the original bonus instruction.
1107       }
1108       // Is this the block-closed SSA form PHI node?
1109       if (PN->getIncomingBlock(U) == BB)
1110         continue; // Great, keep using the original bonus instruction.
1111       // The only other alternative is an "use" when coming from
1112       // the predecessor block - here we should refer to the cloned bonus instr.
1113       assert(PN->getIncomingBlock(U) == PredBlock &&
1114              "Not in block-closed SSA form?");
1115       U.set(NewBonusInst);
1116     }
1117   }
1118 }
1119 
1120 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1121     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1122   BasicBlock *BB = TI->getParent();
1123   BasicBlock *Pred = PTI->getParent();
1124 
1125   SmallVector<DominatorTree::UpdateType, 32> Updates;
1126 
1127   // Figure out which 'cases' to copy from SI to PSI.
1128   std::vector<ValueEqualityComparisonCase> BBCases;
1129   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1130 
1131   std::vector<ValueEqualityComparisonCase> PredCases;
1132   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1133 
1134   // Based on whether the default edge from PTI goes to BB or not, fill in
1135   // PredCases and PredDefault with the new switch cases we would like to
1136   // build.
1137   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1138 
1139   // Update the branch weight metadata along the way
1140   SmallVector<uint64_t, 8> Weights;
1141   bool PredHasWeights = HasBranchWeights(PTI);
1142   bool SuccHasWeights = HasBranchWeights(TI);
1143 
1144   if (PredHasWeights) {
1145     GetBranchWeights(PTI, Weights);
1146     // branch-weight metadata is inconsistent here.
1147     if (Weights.size() != 1 + PredCases.size())
1148       PredHasWeights = SuccHasWeights = false;
1149   } else if (SuccHasWeights)
1150     // If there are no predecessor weights but there are successor weights,
1151     // populate Weights with 1, which will later be scaled to the sum of
1152     // successor's weights
1153     Weights.assign(1 + PredCases.size(), 1);
1154 
1155   SmallVector<uint64_t, 8> SuccWeights;
1156   if (SuccHasWeights) {
1157     GetBranchWeights(TI, SuccWeights);
1158     // branch-weight metadata is inconsistent here.
1159     if (SuccWeights.size() != 1 + BBCases.size())
1160       PredHasWeights = SuccHasWeights = false;
1161   } else if (PredHasWeights)
1162     SuccWeights.assign(1 + BBCases.size(), 1);
1163 
1164   if (PredDefault == BB) {
1165     // If this is the default destination from PTI, only the edges in TI
1166     // that don't occur in PTI, or that branch to BB will be activated.
1167     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1168     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1169       if (PredCases[i].Dest != BB)
1170         PTIHandled.insert(PredCases[i].Value);
1171       else {
1172         // The default destination is BB, we don't need explicit targets.
1173         std::swap(PredCases[i], PredCases.back());
1174 
1175         if (PredHasWeights || SuccHasWeights) {
1176           // Increase weight for the default case.
1177           Weights[0] += Weights[i + 1];
1178           std::swap(Weights[i + 1], Weights.back());
1179           Weights.pop_back();
1180         }
1181 
1182         PredCases.pop_back();
1183         --i;
1184         --e;
1185       }
1186 
1187     // Reconstruct the new switch statement we will be building.
1188     if (PredDefault != BBDefault) {
1189       PredDefault->removePredecessor(Pred);
1190       if (DTU && PredDefault != BB)
1191         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1192       PredDefault = BBDefault;
1193       ++NewSuccessors[BBDefault];
1194     }
1195 
1196     unsigned CasesFromPred = Weights.size();
1197     uint64_t ValidTotalSuccWeight = 0;
1198     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1199       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1200         PredCases.push_back(BBCases[i]);
1201         ++NewSuccessors[BBCases[i].Dest];
1202         if (SuccHasWeights || PredHasWeights) {
1203           // The default weight is at index 0, so weight for the ith case
1204           // should be at index i+1. Scale the cases from successor by
1205           // PredDefaultWeight (Weights[0]).
1206           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1207           ValidTotalSuccWeight += SuccWeights[i + 1];
1208         }
1209       }
1210 
1211     if (SuccHasWeights || PredHasWeights) {
1212       ValidTotalSuccWeight += SuccWeights[0];
1213       // Scale the cases from predecessor by ValidTotalSuccWeight.
1214       for (unsigned i = 1; i < CasesFromPred; ++i)
1215         Weights[i] *= ValidTotalSuccWeight;
1216       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1217       Weights[0] *= SuccWeights[0];
1218     }
1219   } else {
1220     // If this is not the default destination from PSI, only the edges
1221     // in SI that occur in PSI with a destination of BB will be
1222     // activated.
1223     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1224     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1225     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1226       if (PredCases[i].Dest == BB) {
1227         PTIHandled.insert(PredCases[i].Value);
1228 
1229         if (PredHasWeights || SuccHasWeights) {
1230           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1231           std::swap(Weights[i + 1], Weights.back());
1232           Weights.pop_back();
1233         }
1234 
1235         std::swap(PredCases[i], PredCases.back());
1236         PredCases.pop_back();
1237         --i;
1238         --e;
1239       }
1240 
1241     // Okay, now we know which constants were sent to BB from the
1242     // predecessor.  Figure out where they will all go now.
1243     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1244       if (PTIHandled.count(BBCases[i].Value)) {
1245         // If this is one we are capable of getting...
1246         if (PredHasWeights || SuccHasWeights)
1247           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1248         PredCases.push_back(BBCases[i]);
1249         ++NewSuccessors[BBCases[i].Dest];
1250         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1251       }
1252 
1253     // If there are any constants vectored to BB that TI doesn't handle,
1254     // they must go to the default destination of TI.
1255     for (ConstantInt *I : PTIHandled) {
1256       if (PredHasWeights || SuccHasWeights)
1257         Weights.push_back(WeightsForHandled[I]);
1258       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1259       ++NewSuccessors[BBDefault];
1260     }
1261   }
1262 
1263   // Okay, at this point, we know which new successor Pred will get.  Make
1264   // sure we update the number of entries in the PHI nodes for these
1265   // successors.
1266   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1267   if (DTU) {
1268     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1269     Updates.reserve(Updates.size() + NewSuccessors.size());
1270   }
1271   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1272        NewSuccessors) {
1273     for (auto I : seq(0, NewSuccessor.second)) {
1274       (void)I;
1275       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1276     }
1277     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1278       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1279   }
1280 
1281   Builder.SetInsertPoint(PTI);
1282   // Convert pointer to int before we switch.
1283   if (CV->getType()->isPointerTy()) {
1284     CV =
1285         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1286   }
1287 
1288   // Now that the successors are updated, create the new Switch instruction.
1289   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1290   NewSI->setDebugLoc(PTI->getDebugLoc());
1291   for (ValueEqualityComparisonCase &V : PredCases)
1292     NewSI->addCase(V.Value, V.Dest);
1293 
1294   if (PredHasWeights || SuccHasWeights) {
1295     // Halve the weights if any of them cannot fit in an uint32_t
1296     FitWeights(Weights);
1297 
1298     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1299 
1300     setBranchWeights(NewSI, MDWeights);
1301   }
1302 
1303   EraseTerminatorAndDCECond(PTI);
1304 
1305   // Okay, last check.  If BB is still a successor of PSI, then we must
1306   // have an infinite loop case.  If so, add an infinitely looping block
1307   // to handle the case to preserve the behavior of the code.
1308   BasicBlock *InfLoopBlock = nullptr;
1309   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1310     if (NewSI->getSuccessor(i) == BB) {
1311       if (!InfLoopBlock) {
1312         // Insert it at the end of the function, because it's either code,
1313         // or it won't matter if it's hot. :)
1314         InfLoopBlock =
1315             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1316         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1317         if (DTU)
1318           Updates.push_back(
1319               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1320       }
1321       NewSI->setSuccessor(i, InfLoopBlock);
1322     }
1323 
1324   if (DTU) {
1325     if (InfLoopBlock)
1326       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1327 
1328     Updates.push_back({DominatorTree::Delete, Pred, BB});
1329 
1330     DTU->applyUpdates(Updates);
1331   }
1332 
1333   ++NumFoldValueComparisonIntoPredecessors;
1334   return true;
1335 }
1336 
1337 /// The specified terminator is a value equality comparison instruction
1338 /// (either a switch or a branch on "X == c").
1339 /// See if any of the predecessors of the terminator block are value comparisons
1340 /// on the same value.  If so, and if safe to do so, fold them together.
1341 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1342                                                          IRBuilder<> &Builder) {
1343   BasicBlock *BB = TI->getParent();
1344   Value *CV = isValueEqualityComparison(TI); // CondVal
1345   assert(CV && "Not a comparison?");
1346 
1347   bool Changed = false;
1348 
1349   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1350   while (!Preds.empty()) {
1351     BasicBlock *Pred = Preds.pop_back_val();
1352     Instruction *PTI = Pred->getTerminator();
1353 
1354     // Don't try to fold into itself.
1355     if (Pred == BB)
1356       continue;
1357 
1358     // See if the predecessor is a comparison with the same value.
1359     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1360     if (PCV != CV)
1361       continue;
1362 
1363     SmallSetVector<BasicBlock *, 4> FailBlocks;
1364     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1365       for (auto *Succ : FailBlocks) {
1366         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1367           return false;
1368       }
1369     }
1370 
1371     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1372     Changed = true;
1373   }
1374   return Changed;
1375 }
1376 
1377 // If we would need to insert a select that uses the value of this invoke
1378 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1379 // can't hoist the invoke, as there is nowhere to put the select in this case.
1380 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1381                                 Instruction *I1, Instruction *I2) {
1382   for (BasicBlock *Succ : successors(BB1)) {
1383     for (const PHINode &PN : Succ->phis()) {
1384       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1385       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1386       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1387         return false;
1388       }
1389     }
1390   }
1391   return true;
1392 }
1393 
1394 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1395 
1396 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1397 /// in the two blocks up into the branch block. The caller of this function
1398 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1399 /// only perform hoisting in case both blocks only contain a terminator. In that
1400 /// case, only the original BI will be replaced and selects for PHIs are added.
1401 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1402                                            const TargetTransformInfo &TTI,
1403                                            bool EqTermsOnly) {
1404   // This does very trivial matching, with limited scanning, to find identical
1405   // instructions in the two blocks.  In particular, we don't want to get into
1406   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1407   // such, we currently just scan for obviously identical instructions in an
1408   // identical order.
1409   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1410   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1411 
1412   // If either of the blocks has it's address taken, then we can't do this fold,
1413   // because the code we'd hoist would no longer run when we jump into the block
1414   // by it's address.
1415   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1416     return false;
1417 
1418   BasicBlock::iterator BB1_Itr = BB1->begin();
1419   BasicBlock::iterator BB2_Itr = BB2->begin();
1420 
1421   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1422   // Skip debug info if it is not identical.
1423   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1424   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1425   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1426     while (isa<DbgInfoIntrinsic>(I1))
1427       I1 = &*BB1_Itr++;
1428     while (isa<DbgInfoIntrinsic>(I2))
1429       I2 = &*BB2_Itr++;
1430   }
1431   // FIXME: Can we define a safety predicate for CallBr?
1432   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1433       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1434       isa<CallBrInst>(I1))
1435     return false;
1436 
1437   BasicBlock *BIParent = BI->getParent();
1438 
1439   bool Changed = false;
1440 
1441   auto _ = make_scope_exit([&]() {
1442     if (Changed)
1443       ++NumHoistCommonCode;
1444   });
1445 
1446   // Check if only hoisting terminators is allowed. This does not add new
1447   // instructions to the hoist location.
1448   if (EqTermsOnly) {
1449     // Skip any debug intrinsics, as they are free to hoist.
1450     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1451     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1452     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1453       return false;
1454     if (!I1NonDbg->isTerminator())
1455       return false;
1456     // Now we know that we only need to hoist debug instrinsics and the
1457     // terminator. Let the loop below handle those 2 cases.
1458   }
1459 
1460   do {
1461     // If we are hoisting the terminator instruction, don't move one (making a
1462     // broken BB), instead clone it, and remove BI.
1463     if (I1->isTerminator())
1464       goto HoistTerminator;
1465 
1466     // If we're going to hoist a call, make sure that the two instructions we're
1467     // commoning/hoisting are both marked with musttail, or neither of them is
1468     // marked as such. Otherwise, we might end up in a situation where we hoist
1469     // from a block where the terminator is a `ret` to a block where the terminator
1470     // is a `br`, and `musttail` calls expect to be followed by a return.
1471     auto *C1 = dyn_cast<CallInst>(I1);
1472     auto *C2 = dyn_cast<CallInst>(I2);
1473     if (C1 && C2)
1474       if (C1->isMustTailCall() != C2->isMustTailCall())
1475         return Changed;
1476 
1477     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1478       return Changed;
1479 
1480     // If any of the two call sites has nomerge attribute, stop hoisting.
1481     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1482       if (CB1->cannotMerge())
1483         return Changed;
1484     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1485       if (CB2->cannotMerge())
1486         return Changed;
1487 
1488     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1489       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1490       // The debug location is an integral part of a debug info intrinsic
1491       // and can't be separated from it or replaced.  Instead of attempting
1492       // to merge locations, simply hoist both copies of the intrinsic.
1493       BIParent->getInstList().splice(BI->getIterator(),
1494                                      BB1->getInstList(), I1);
1495       BIParent->getInstList().splice(BI->getIterator(),
1496                                      BB2->getInstList(), I2);
1497       Changed = true;
1498     } else {
1499       // For a normal instruction, we just move one to right before the branch,
1500       // then replace all uses of the other with the first.  Finally, we remove
1501       // the now redundant second instruction.
1502       BIParent->getInstList().splice(BI->getIterator(),
1503                                      BB1->getInstList(), I1);
1504       if (!I2->use_empty())
1505         I2->replaceAllUsesWith(I1);
1506       I1->andIRFlags(I2);
1507       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1508                              LLVMContext::MD_range,
1509                              LLVMContext::MD_fpmath,
1510                              LLVMContext::MD_invariant_load,
1511                              LLVMContext::MD_nonnull,
1512                              LLVMContext::MD_invariant_group,
1513                              LLVMContext::MD_align,
1514                              LLVMContext::MD_dereferenceable,
1515                              LLVMContext::MD_dereferenceable_or_null,
1516                              LLVMContext::MD_mem_parallel_loop_access,
1517                              LLVMContext::MD_access_group,
1518                              LLVMContext::MD_preserve_access_index};
1519       combineMetadata(I1, I2, KnownIDs, true);
1520 
1521       // I1 and I2 are being combined into a single instruction.  Its debug
1522       // location is the merged locations of the original instructions.
1523       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1524 
1525       I2->eraseFromParent();
1526       Changed = true;
1527     }
1528     ++NumHoistCommonInstrs;
1529 
1530     I1 = &*BB1_Itr++;
1531     I2 = &*BB2_Itr++;
1532     // Skip debug info if it is not identical.
1533     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1534     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1535     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1536       while (isa<DbgInfoIntrinsic>(I1))
1537         I1 = &*BB1_Itr++;
1538       while (isa<DbgInfoIntrinsic>(I2))
1539         I2 = &*BB2_Itr++;
1540     }
1541   } while (I1->isIdenticalToWhenDefined(I2));
1542 
1543   return true;
1544 
1545 HoistTerminator:
1546   // It may not be possible to hoist an invoke.
1547   // FIXME: Can we define a safety predicate for CallBr?
1548   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1549     return Changed;
1550 
1551   // TODO: callbr hoisting currently disabled pending further study.
1552   if (isa<CallBrInst>(I1))
1553     return Changed;
1554 
1555   for (BasicBlock *Succ : successors(BB1)) {
1556     for (PHINode &PN : Succ->phis()) {
1557       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1558       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1559       if (BB1V == BB2V)
1560         continue;
1561 
1562       // Check for passingValueIsAlwaysUndefined here because we would rather
1563       // eliminate undefined control flow then converting it to a select.
1564       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1565           passingValueIsAlwaysUndefined(BB2V, &PN))
1566         return Changed;
1567 
1568       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1569         return Changed;
1570       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1571         return Changed;
1572     }
1573   }
1574 
1575   // Okay, it is safe to hoist the terminator.
1576   Instruction *NT = I1->clone();
1577   BIParent->getInstList().insert(BI->getIterator(), NT);
1578   if (!NT->getType()->isVoidTy()) {
1579     I1->replaceAllUsesWith(NT);
1580     I2->replaceAllUsesWith(NT);
1581     NT->takeName(I1);
1582   }
1583   Changed = true;
1584   ++NumHoistCommonInstrs;
1585 
1586   // Ensure terminator gets a debug location, even an unknown one, in case
1587   // it involves inlinable calls.
1588   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1589 
1590   // PHIs created below will adopt NT's merged DebugLoc.
1591   IRBuilder<NoFolder> Builder(NT);
1592 
1593   // Hoisting one of the terminators from our successor is a great thing.
1594   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1595   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1596   // nodes, so we insert select instruction to compute the final result.
1597   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1598   for (BasicBlock *Succ : successors(BB1)) {
1599     for (PHINode &PN : Succ->phis()) {
1600       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1601       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1602       if (BB1V == BB2V)
1603         continue;
1604 
1605       // These values do not agree.  Insert a select instruction before NT
1606       // that determines the right value.
1607       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1608       if (!SI) {
1609         // Propagate fast-math-flags from phi node to its replacement select.
1610         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1611         if (isa<FPMathOperator>(PN))
1612           Builder.setFastMathFlags(PN.getFastMathFlags());
1613 
1614         SI = cast<SelectInst>(
1615             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1616                                  BB1V->getName() + "." + BB2V->getName(), BI));
1617       }
1618 
1619       // Make the PHI node use the select for all incoming values for BB1/BB2
1620       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1621         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1622           PN.setIncomingValue(i, SI);
1623     }
1624   }
1625 
1626   SmallVector<DominatorTree::UpdateType, 4> Updates;
1627 
1628   // Update any PHI nodes in our new successors.
1629   for (BasicBlock *Succ : successors(BB1)) {
1630     AddPredecessorToBlock(Succ, BIParent, BB1);
1631     if (DTU)
1632       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1633   }
1634 
1635   if (DTU)
1636     for (BasicBlock *Succ : successors(BI))
1637       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1638 
1639   EraseTerminatorAndDCECond(BI);
1640   if (DTU)
1641     DTU->applyUpdates(Updates);
1642   return Changed;
1643 }
1644 
1645 // Check lifetime markers.
1646 static bool isLifeTimeMarker(const Instruction *I) {
1647   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1648     switch (II->getIntrinsicID()) {
1649     default:
1650       break;
1651     case Intrinsic::lifetime_start:
1652     case Intrinsic::lifetime_end:
1653       return true;
1654     }
1655   }
1656   return false;
1657 }
1658 
1659 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1660 // into variables.
1661 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1662                                                 int OpIdx) {
1663   return !isa<IntrinsicInst>(I);
1664 }
1665 
1666 // All instructions in Insts belong to different blocks that all unconditionally
1667 // branch to a common successor. Analyze each instruction and return true if it
1668 // would be possible to sink them into their successor, creating one common
1669 // instruction instead. For every value that would be required to be provided by
1670 // PHI node (because an operand varies in each input block), add to PHIOperands.
1671 static bool canSinkInstructions(
1672     ArrayRef<Instruction *> Insts,
1673     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1674   // Prune out obviously bad instructions to move. Each instruction must have
1675   // exactly zero or one use, and we check later that use is by a single, common
1676   // PHI instruction in the successor.
1677   bool HasUse = !Insts.front()->user_empty();
1678   for (auto *I : Insts) {
1679     // These instructions may change or break semantics if moved.
1680     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1681         I->getType()->isTokenTy())
1682       return false;
1683 
1684     // Do not try to sink an instruction in an infinite loop - it can cause
1685     // this algorithm to infinite loop.
1686     if (I->getParent()->getSingleSuccessor() == I->getParent())
1687       return false;
1688 
1689     // Conservatively return false if I is an inline-asm instruction. Sinking
1690     // and merging inline-asm instructions can potentially create arguments
1691     // that cannot satisfy the inline-asm constraints.
1692     // If the instruction has nomerge attribute, return false.
1693     if (const auto *C = dyn_cast<CallBase>(I))
1694       if (C->isInlineAsm() || C->cannotMerge())
1695         return false;
1696 
1697     // Each instruction must have zero or one use.
1698     if (HasUse && !I->hasOneUse())
1699       return false;
1700     if (!HasUse && !I->user_empty())
1701       return false;
1702   }
1703 
1704   const Instruction *I0 = Insts.front();
1705   for (auto *I : Insts)
1706     if (!I->isSameOperationAs(I0))
1707       return false;
1708 
1709   // All instructions in Insts are known to be the same opcode. If they have a
1710   // use, check that the only user is a PHI or in the same block as the
1711   // instruction, because if a user is in the same block as an instruction we're
1712   // contemplating sinking, it must already be determined to be sinkable.
1713   if (HasUse) {
1714     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1715     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1716     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1717           auto *U = cast<Instruction>(*I->user_begin());
1718           return (PNUse &&
1719                   PNUse->getParent() == Succ &&
1720                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1721                  U->getParent() == I->getParent();
1722         }))
1723       return false;
1724   }
1725 
1726   // Because SROA can't handle speculating stores of selects, try not to sink
1727   // loads, stores or lifetime markers of allocas when we'd have to create a
1728   // PHI for the address operand. Also, because it is likely that loads or
1729   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1730   // them.
1731   // This can cause code churn which can have unintended consequences down
1732   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1733   // FIXME: This is a workaround for a deficiency in SROA - see
1734   // https://llvm.org/bugs/show_bug.cgi?id=30188
1735   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1736         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1737       }))
1738     return false;
1739   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1740         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1741       }))
1742     return false;
1743   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1744         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1745       }))
1746     return false;
1747 
1748   // For calls to be sinkable, they must all be indirect, or have same callee.
1749   // I.e. if we have two direct calls to different callees, we don't want to
1750   // turn that into an indirect call. Likewise, if we have an indirect call,
1751   // and a direct call, we don't actually want to have a single indirect call.
1752   if (isa<CallBase>(I0)) {
1753     auto IsIndirectCall = [](const Instruction *I) {
1754       return cast<CallBase>(I)->isIndirectCall();
1755     };
1756     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1757     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1758     if (HaveIndirectCalls) {
1759       if (!AllCallsAreIndirect)
1760         return false;
1761     } else {
1762       // All callees must be identical.
1763       Value *Callee = nullptr;
1764       for (const Instruction *I : Insts) {
1765         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1766         if (!Callee)
1767           Callee = CurrCallee;
1768         else if (Callee != CurrCallee)
1769           return false;
1770       }
1771     }
1772   }
1773 
1774   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1775     Value *Op = I0->getOperand(OI);
1776     if (Op->getType()->isTokenTy())
1777       // Don't touch any operand of token type.
1778       return false;
1779 
1780     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1781       assert(I->getNumOperands() == I0->getNumOperands());
1782       return I->getOperand(OI) == I0->getOperand(OI);
1783     };
1784     if (!all_of(Insts, SameAsI0)) {
1785       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1786           !canReplaceOperandWithVariable(I0, OI))
1787         // We can't create a PHI from this GEP.
1788         return false;
1789       for (auto *I : Insts)
1790         PHIOperands[I].push_back(I->getOperand(OI));
1791     }
1792   }
1793   return true;
1794 }
1795 
1796 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1797 // instruction of every block in Blocks to their common successor, commoning
1798 // into one instruction.
1799 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1800   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1801 
1802   // canSinkInstructions returning true guarantees that every block has at
1803   // least one non-terminator instruction.
1804   SmallVector<Instruction*,4> Insts;
1805   for (auto *BB : Blocks) {
1806     Instruction *I = BB->getTerminator();
1807     do {
1808       I = I->getPrevNode();
1809     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1810     if (!isa<DbgInfoIntrinsic>(I))
1811       Insts.push_back(I);
1812   }
1813 
1814   // The only checking we need to do now is that all users of all instructions
1815   // are the same PHI node. canSinkInstructions should have checked this but
1816   // it is slightly over-aggressive - it gets confused by commutative
1817   // instructions so double-check it here.
1818   Instruction *I0 = Insts.front();
1819   if (!I0->user_empty()) {
1820     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1821     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1822           auto *U = cast<Instruction>(*I->user_begin());
1823           return U == PNUse;
1824         }))
1825       return false;
1826   }
1827 
1828   // We don't need to do any more checking here; canSinkInstructions should
1829   // have done it all for us.
1830   SmallVector<Value*, 4> NewOperands;
1831   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1832     // This check is different to that in canSinkInstructions. There, we
1833     // cared about the global view once simplifycfg (and instcombine) have
1834     // completed - it takes into account PHIs that become trivially
1835     // simplifiable.  However here we need a more local view; if an operand
1836     // differs we create a PHI and rely on instcombine to clean up the very
1837     // small mess we may make.
1838     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1839       return I->getOperand(O) != I0->getOperand(O);
1840     });
1841     if (!NeedPHI) {
1842       NewOperands.push_back(I0->getOperand(O));
1843       continue;
1844     }
1845 
1846     // Create a new PHI in the successor block and populate it.
1847     auto *Op = I0->getOperand(O);
1848     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1849     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1850                                Op->getName() + ".sink", &BBEnd->front());
1851     for (auto *I : Insts)
1852       PN->addIncoming(I->getOperand(O), I->getParent());
1853     NewOperands.push_back(PN);
1854   }
1855 
1856   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1857   // and move it to the start of the successor block.
1858   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1859     I0->getOperandUse(O).set(NewOperands[O]);
1860   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1861 
1862   // Update metadata and IR flags, and merge debug locations.
1863   for (auto *I : Insts)
1864     if (I != I0) {
1865       // The debug location for the "common" instruction is the merged locations
1866       // of all the commoned instructions.  We start with the original location
1867       // of the "common" instruction and iteratively merge each location in the
1868       // loop below.
1869       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1870       // However, as N-way merge for CallInst is rare, so we use simplified API
1871       // instead of using complex API for N-way merge.
1872       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1873       combineMetadataForCSE(I0, I, true);
1874       I0->andIRFlags(I);
1875     }
1876 
1877   if (!I0->user_empty()) {
1878     // canSinkLastInstruction checked that all instructions were used by
1879     // one and only one PHI node. Find that now, RAUW it to our common
1880     // instruction and nuke it.
1881     auto *PN = cast<PHINode>(*I0->user_begin());
1882     PN->replaceAllUsesWith(I0);
1883     PN->eraseFromParent();
1884   }
1885 
1886   // Finally nuke all instructions apart from the common instruction.
1887   for (auto *I : Insts)
1888     if (I != I0)
1889       I->eraseFromParent();
1890 
1891   return true;
1892 }
1893 
1894 namespace {
1895 
1896   // LockstepReverseIterator - Iterates through instructions
1897   // in a set of blocks in reverse order from the first non-terminator.
1898   // For example (assume all blocks have size n):
1899   //   LockstepReverseIterator I([B1, B2, B3]);
1900   //   *I-- = [B1[n], B2[n], B3[n]];
1901   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1902   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1903   //   ...
1904   class LockstepReverseIterator {
1905     ArrayRef<BasicBlock*> Blocks;
1906     SmallVector<Instruction*,4> Insts;
1907     bool Fail;
1908 
1909   public:
1910     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1911       reset();
1912     }
1913 
1914     void reset() {
1915       Fail = false;
1916       Insts.clear();
1917       for (auto *BB : Blocks) {
1918         Instruction *Inst = BB->getTerminator();
1919         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1920           Inst = Inst->getPrevNode();
1921         if (!Inst) {
1922           // Block wasn't big enough.
1923           Fail = true;
1924           return;
1925         }
1926         Insts.push_back(Inst);
1927       }
1928     }
1929 
1930     bool isValid() const {
1931       return !Fail;
1932     }
1933 
1934     void operator--() {
1935       if (Fail)
1936         return;
1937       for (auto *&Inst : Insts) {
1938         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1939           Inst = Inst->getPrevNode();
1940         // Already at beginning of block.
1941         if (!Inst) {
1942           Fail = true;
1943           return;
1944         }
1945       }
1946     }
1947 
1948     void operator++() {
1949       if (Fail)
1950         return;
1951       for (auto *&Inst : Insts) {
1952         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1953           Inst = Inst->getNextNode();
1954         // Already at end of block.
1955         if (!Inst) {
1956           Fail = true;
1957           return;
1958         }
1959       }
1960     }
1961 
1962     ArrayRef<Instruction*> operator * () const {
1963       return Insts;
1964     }
1965   };
1966 
1967 } // end anonymous namespace
1968 
1969 /// Check whether BB's predecessors end with unconditional branches. If it is
1970 /// true, sink any common code from the predecessors to BB.
1971 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1972                                            DomTreeUpdater *DTU) {
1973   // We support two situations:
1974   //   (1) all incoming arcs are unconditional
1975   //   (2) there are non-unconditional incoming arcs
1976   //
1977   // (2) is very common in switch defaults and
1978   // else-if patterns;
1979   //
1980   //   if (a) f(1);
1981   //   else if (b) f(2);
1982   //
1983   // produces:
1984   //
1985   //       [if]
1986   //      /    \
1987   //    [f(1)] [if]
1988   //      |     | \
1989   //      |     |  |
1990   //      |  [f(2)]|
1991   //       \    | /
1992   //        [ end ]
1993   //
1994   // [end] has two unconditional predecessor arcs and one conditional. The
1995   // conditional refers to the implicit empty 'else' arc. This conditional
1996   // arc can also be caused by an empty default block in a switch.
1997   //
1998   // In this case, we attempt to sink code from all *unconditional* arcs.
1999   // If we can sink instructions from these arcs (determined during the scan
2000   // phase below) we insert a common successor for all unconditional arcs and
2001   // connect that to [end], to enable sinking:
2002   //
2003   //       [if]
2004   //      /    \
2005   //    [x(1)] [if]
2006   //      |     | \
2007   //      |     |  \
2008   //      |  [x(2)] |
2009   //       \   /    |
2010   //   [sink.split] |
2011   //         \     /
2012   //         [ end ]
2013   //
2014   SmallVector<BasicBlock*,4> UnconditionalPreds;
2015   bool HaveNonUnconditionalPredecessors = false;
2016   for (auto *PredBB : predecessors(BB)) {
2017     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2018     if (PredBr && PredBr->isUnconditional())
2019       UnconditionalPreds.push_back(PredBB);
2020     else
2021       HaveNonUnconditionalPredecessors = true;
2022   }
2023   if (UnconditionalPreds.size() < 2)
2024     return false;
2025 
2026   // We take a two-step approach to tail sinking. First we scan from the end of
2027   // each block upwards in lockstep. If the n'th instruction from the end of each
2028   // block can be sunk, those instructions are added to ValuesToSink and we
2029   // carry on. If we can sink an instruction but need to PHI-merge some operands
2030   // (because they're not identical in each instruction) we add these to
2031   // PHIOperands.
2032   int ScanIdx = 0;
2033   SmallPtrSet<Value*,4> InstructionsToSink;
2034   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2035   LockstepReverseIterator LRI(UnconditionalPreds);
2036   while (LRI.isValid() &&
2037          canSinkInstructions(*LRI, PHIOperands)) {
2038     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2039                       << "\n");
2040     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2041     ++ScanIdx;
2042     --LRI;
2043   }
2044 
2045   // If no instructions can be sunk, early-return.
2046   if (ScanIdx == 0)
2047     return false;
2048 
2049   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2050   // actually sink before encountering instruction that is unprofitable to sink?
2051   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2052     unsigned NumPHIdValues = 0;
2053     for (auto *I : *LRI)
2054       for (auto *V : PHIOperands[I]) {
2055         if (InstructionsToSink.count(V) == 0)
2056           ++NumPHIdValues;
2057         // FIXME: this check is overly optimistic. We may end up not sinking
2058         // said instruction, due to the very same profitability check.
2059         // See @creating_too_many_phis in sink-common-code.ll.
2060       }
2061     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2062     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2063     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2064         NumPHIInsts++;
2065 
2066     return NumPHIInsts <= 1;
2067   };
2068 
2069   // We've determined that we are going to sink last ScanIdx instructions,
2070   // and recorded them in InstructionsToSink. Now, some instructions may be
2071   // unprofitable to sink. But that determination depends on the instructions
2072   // that we are going to sink.
2073 
2074   // First, forward scan: find the first instruction unprofitable to sink,
2075   // recording all the ones that are profitable to sink.
2076   // FIXME: would it be better, after we detect that not all are profitable.
2077   // to either record the profitable ones, or erase the unprofitable ones?
2078   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2079   LRI.reset();
2080   int Idx = 0;
2081   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2082   while (Idx < ScanIdx) {
2083     if (!ProfitableToSinkInstruction(LRI)) {
2084       // Too many PHIs would be created.
2085       LLVM_DEBUG(
2086           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2087       break;
2088     }
2089     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2090     --LRI;
2091     ++Idx;
2092   }
2093 
2094   // If no instructions can be sunk, early-return.
2095   if (Idx == 0)
2096     return false;
2097 
2098   // Did we determine that (only) some instructions are unprofitable to sink?
2099   if (Idx < ScanIdx) {
2100     // Okay, some instructions are unprofitable.
2101     ScanIdx = Idx;
2102     InstructionsToSink = InstructionsProfitableToSink;
2103 
2104     // But, that may make other instructions unprofitable, too.
2105     // So, do a backward scan, do any earlier instructions become unprofitable?
2106     assert(!ProfitableToSinkInstruction(LRI) &&
2107            "We already know that the last instruction is unprofitable to sink");
2108     ++LRI;
2109     --Idx;
2110     while (Idx >= 0) {
2111       // If we detect that an instruction becomes unprofitable to sink,
2112       // all earlier instructions won't be sunk either,
2113       // so preemptively keep InstructionsProfitableToSink in sync.
2114       // FIXME: is this the most performant approach?
2115       for (auto *I : *LRI)
2116         InstructionsProfitableToSink.erase(I);
2117       if (!ProfitableToSinkInstruction(LRI)) {
2118         // Everything starting with this instruction won't be sunk.
2119         ScanIdx = Idx;
2120         InstructionsToSink = InstructionsProfitableToSink;
2121       }
2122       ++LRI;
2123       --Idx;
2124     }
2125   }
2126 
2127   // If no instructions can be sunk, early-return.
2128   if (ScanIdx == 0)
2129     return false;
2130 
2131   bool Changed = false;
2132 
2133   if (HaveNonUnconditionalPredecessors) {
2134     // It is always legal to sink common instructions from unconditional
2135     // predecessors. However, if not all predecessors are unconditional,
2136     // this transformation might be pessimizing. So as a rule of thumb,
2137     // don't do it unless we'd sink at least one non-speculatable instruction.
2138     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2139     LRI.reset();
2140     int Idx = 0;
2141     bool Profitable = false;
2142     while (Idx < ScanIdx) {
2143       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2144         Profitable = true;
2145         break;
2146       }
2147       --LRI;
2148       ++Idx;
2149     }
2150     if (!Profitable)
2151       return false;
2152 
2153     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2154     // We have a conditional edge and we're going to sink some instructions.
2155     // Insert a new block postdominating all blocks we're going to sink from.
2156     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2157       // Edges couldn't be split.
2158       return false;
2159     Changed = true;
2160   }
2161 
2162   // Now that we've analyzed all potential sinking candidates, perform the
2163   // actual sink. We iteratively sink the last non-terminator of the source
2164   // blocks into their common successor unless doing so would require too
2165   // many PHI instructions to be generated (currently only one PHI is allowed
2166   // per sunk instruction).
2167   //
2168   // We can use InstructionsToSink to discount values needing PHI-merging that will
2169   // actually be sunk in a later iteration. This allows us to be more
2170   // aggressive in what we sink. This does allow a false positive where we
2171   // sink presuming a later value will also be sunk, but stop half way through
2172   // and never actually sink it which means we produce more PHIs than intended.
2173   // This is unlikely in practice though.
2174   int SinkIdx = 0;
2175   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2176     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2177                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2178                       << "\n");
2179 
2180     // Because we've sunk every instruction in turn, the current instruction to
2181     // sink is always at index 0.
2182     LRI.reset();
2183 
2184     if (!sinkLastInstruction(UnconditionalPreds)) {
2185       LLVM_DEBUG(
2186           dbgs()
2187           << "SINK: stopping here, failed to actually sink instruction!\n");
2188       break;
2189     }
2190 
2191     NumSinkCommonInstrs++;
2192     Changed = true;
2193   }
2194   if (SinkIdx != 0)
2195     ++NumSinkCommonCode;
2196   return Changed;
2197 }
2198 
2199 /// Determine if we can hoist sink a sole store instruction out of a
2200 /// conditional block.
2201 ///
2202 /// We are looking for code like the following:
2203 ///   BrBB:
2204 ///     store i32 %add, i32* %arrayidx2
2205 ///     ... // No other stores or function calls (we could be calling a memory
2206 ///     ... // function).
2207 ///     %cmp = icmp ult %x, %y
2208 ///     br i1 %cmp, label %EndBB, label %ThenBB
2209 ///   ThenBB:
2210 ///     store i32 %add5, i32* %arrayidx2
2211 ///     br label EndBB
2212 ///   EndBB:
2213 ///     ...
2214 ///   We are going to transform this into:
2215 ///   BrBB:
2216 ///     store i32 %add, i32* %arrayidx2
2217 ///     ... //
2218 ///     %cmp = icmp ult %x, %y
2219 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2220 ///     store i32 %add.add5, i32* %arrayidx2
2221 ///     ...
2222 ///
2223 /// \return The pointer to the value of the previous store if the store can be
2224 ///         hoisted into the predecessor block. 0 otherwise.
2225 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2226                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2227   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2228   if (!StoreToHoist)
2229     return nullptr;
2230 
2231   // Volatile or atomic.
2232   if (!StoreToHoist->isSimple())
2233     return nullptr;
2234 
2235   Value *StorePtr = StoreToHoist->getPointerOperand();
2236   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2237 
2238   // Look for a store to the same pointer in BrBB.
2239   unsigned MaxNumInstToLookAt = 9;
2240   // Skip pseudo probe intrinsic calls which are not really killing any memory
2241   // accesses.
2242   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2243     if (!MaxNumInstToLookAt)
2244       break;
2245     --MaxNumInstToLookAt;
2246 
2247     // Could be calling an instruction that affects memory like free().
2248     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2249       return nullptr;
2250 
2251     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2252       // Found the previous store to same location and type. Make sure it is
2253       // simple, to avoid introducing a spurious non-atomic write after an
2254       // atomic write.
2255       if (SI->getPointerOperand() == StorePtr &&
2256           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2257         // Found the previous store, return its value operand.
2258         return SI->getValueOperand();
2259       return nullptr; // Unknown store.
2260     }
2261 
2262     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2263       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2264           LI->isSimple()) {
2265         // Local objects (created by an `alloca` instruction) are always
2266         // writable, so once we are past a read from a location it is valid to
2267         // also write to that same location.
2268         // If the address of the local object never escapes the function, that
2269         // means it's never concurrently read or written, hence moving the store
2270         // from under the condition will not introduce a data race.
2271         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2272         if (AI && !PointerMayBeCaptured(AI, false, true))
2273           // Found a previous load, return it.
2274           return LI;
2275       }
2276       // The load didn't work out, but we may still find a store.
2277     }
2278   }
2279 
2280   return nullptr;
2281 }
2282 
2283 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2284 /// converted to selects.
2285 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2286                                            BasicBlock *EndBB,
2287                                            unsigned &SpeculatedInstructions,
2288                                            InstructionCost &Cost,
2289                                            const TargetTransformInfo &TTI) {
2290   TargetTransformInfo::TargetCostKind CostKind =
2291     BB->getParent()->hasMinSize()
2292     ? TargetTransformInfo::TCK_CodeSize
2293     : TargetTransformInfo::TCK_SizeAndLatency;
2294 
2295   bool HaveRewritablePHIs = false;
2296   for (PHINode &PN : EndBB->phis()) {
2297     Value *OrigV = PN.getIncomingValueForBlock(BB);
2298     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2299 
2300     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2301     // Skip PHIs which are trivial.
2302     if (ThenV == OrigV)
2303       continue;
2304 
2305     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2306                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2307 
2308     // Don't convert to selects if we could remove undefined behavior instead.
2309     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2310         passingValueIsAlwaysUndefined(ThenV, &PN))
2311       return false;
2312 
2313     HaveRewritablePHIs = true;
2314     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2315     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2316     if (!OrigCE && !ThenCE)
2317       continue; // Known safe and cheap.
2318 
2319     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2320         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2321       return false;
2322     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2323     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2324     InstructionCost MaxCost =
2325         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2326     if (OrigCost + ThenCost > MaxCost)
2327       return false;
2328 
2329     // Account for the cost of an unfolded ConstantExpr which could end up
2330     // getting expanded into Instructions.
2331     // FIXME: This doesn't account for how many operations are combined in the
2332     // constant expression.
2333     ++SpeculatedInstructions;
2334     if (SpeculatedInstructions > 1)
2335       return false;
2336   }
2337 
2338   return HaveRewritablePHIs;
2339 }
2340 
2341 /// Speculate a conditional basic block flattening the CFG.
2342 ///
2343 /// Note that this is a very risky transform currently. Speculating
2344 /// instructions like this is most often not desirable. Instead, there is an MI
2345 /// pass which can do it with full awareness of the resource constraints.
2346 /// However, some cases are "obvious" and we should do directly. An example of
2347 /// this is speculating a single, reasonably cheap instruction.
2348 ///
2349 /// There is only one distinct advantage to flattening the CFG at the IR level:
2350 /// it makes very common but simplistic optimizations such as are common in
2351 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2352 /// modeling their effects with easier to reason about SSA value graphs.
2353 ///
2354 ///
2355 /// An illustration of this transform is turning this IR:
2356 /// \code
2357 ///   BB:
2358 ///     %cmp = icmp ult %x, %y
2359 ///     br i1 %cmp, label %EndBB, label %ThenBB
2360 ///   ThenBB:
2361 ///     %sub = sub %x, %y
2362 ///     br label BB2
2363 ///   EndBB:
2364 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2365 ///     ...
2366 /// \endcode
2367 ///
2368 /// Into this IR:
2369 /// \code
2370 ///   BB:
2371 ///     %cmp = icmp ult %x, %y
2372 ///     %sub = sub %x, %y
2373 ///     %cond = select i1 %cmp, 0, %sub
2374 ///     ...
2375 /// \endcode
2376 ///
2377 /// \returns true if the conditional block is removed.
2378 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2379                                             const TargetTransformInfo &TTI) {
2380   // Be conservative for now. FP select instruction can often be expensive.
2381   Value *BrCond = BI->getCondition();
2382   if (isa<FCmpInst>(BrCond))
2383     return false;
2384 
2385   BasicBlock *BB = BI->getParent();
2386   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2387   InstructionCost Budget =
2388       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2389 
2390   // If ThenBB is actually on the false edge of the conditional branch, remember
2391   // to swap the select operands later.
2392   bool Invert = false;
2393   if (ThenBB != BI->getSuccessor(0)) {
2394     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2395     Invert = true;
2396   }
2397   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2398 
2399   // If the branch is non-unpredictable, and is predicted to *not* branch to
2400   // the `then` block, then avoid speculating it.
2401   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2402     uint64_t TWeight, FWeight;
2403     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2404       uint64_t EndWeight = Invert ? TWeight : FWeight;
2405       BranchProbability BIEndProb =
2406           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2407       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2408       if (BIEndProb >= Likely)
2409         return false;
2410     }
2411   }
2412 
2413   // Keep a count of how many times instructions are used within ThenBB when
2414   // they are candidates for sinking into ThenBB. Specifically:
2415   // - They are defined in BB, and
2416   // - They have no side effects, and
2417   // - All of their uses are in ThenBB.
2418   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2419 
2420   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2421 
2422   unsigned SpeculatedInstructions = 0;
2423   Value *SpeculatedStoreValue = nullptr;
2424   StoreInst *SpeculatedStore = nullptr;
2425   for (BasicBlock::iterator BBI = ThenBB->begin(),
2426                             BBE = std::prev(ThenBB->end());
2427        BBI != BBE; ++BBI) {
2428     Instruction *I = &*BBI;
2429     // Skip debug info.
2430     if (isa<DbgInfoIntrinsic>(I)) {
2431       SpeculatedDbgIntrinsics.push_back(I);
2432       continue;
2433     }
2434 
2435     // Skip pseudo probes. The consequence is we lose track of the branch
2436     // probability for ThenBB, which is fine since the optimization here takes
2437     // place regardless of the branch probability.
2438     if (isa<PseudoProbeInst>(I)) {
2439       // The probe should be deleted so that it will not be over-counted when
2440       // the samples collected on the non-conditional path are counted towards
2441       // the conditional path. We leave it for the counts inference algorithm to
2442       // figure out a proper count for an unknown probe.
2443       SpeculatedDbgIntrinsics.push_back(I);
2444       continue;
2445     }
2446 
2447     // Only speculatively execute a single instruction (not counting the
2448     // terminator) for now.
2449     ++SpeculatedInstructions;
2450     if (SpeculatedInstructions > 1)
2451       return false;
2452 
2453     // Don't hoist the instruction if it's unsafe or expensive.
2454     if (!isSafeToSpeculativelyExecute(I) &&
2455         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2456                                   I, BB, ThenBB, EndBB))))
2457       return false;
2458     if (!SpeculatedStoreValue &&
2459         computeSpeculationCost(I, TTI) >
2460             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2461       return false;
2462 
2463     // Store the store speculation candidate.
2464     if (SpeculatedStoreValue)
2465       SpeculatedStore = cast<StoreInst>(I);
2466 
2467     // Do not hoist the instruction if any of its operands are defined but not
2468     // used in BB. The transformation will prevent the operand from
2469     // being sunk into the use block.
2470     for (Use &Op : I->operands()) {
2471       Instruction *OpI = dyn_cast<Instruction>(Op);
2472       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2473         continue; // Not a candidate for sinking.
2474 
2475       ++SinkCandidateUseCounts[OpI];
2476     }
2477   }
2478 
2479   // Consider any sink candidates which are only used in ThenBB as costs for
2480   // speculation. Note, while we iterate over a DenseMap here, we are summing
2481   // and so iteration order isn't significant.
2482   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2483            I = SinkCandidateUseCounts.begin(),
2484            E = SinkCandidateUseCounts.end();
2485        I != E; ++I)
2486     if (I->first->hasNUses(I->second)) {
2487       ++SpeculatedInstructions;
2488       if (SpeculatedInstructions > 1)
2489         return false;
2490     }
2491 
2492   // Check that we can insert the selects and that it's not too expensive to do
2493   // so.
2494   bool Convert = SpeculatedStore != nullptr;
2495   InstructionCost Cost = 0;
2496   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2497                                             SpeculatedInstructions,
2498                                             Cost, TTI);
2499   if (!Convert || Cost > Budget)
2500     return false;
2501 
2502   // If we get here, we can hoist the instruction and if-convert.
2503   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2504 
2505   // Insert a select of the value of the speculated store.
2506   if (SpeculatedStoreValue) {
2507     IRBuilder<NoFolder> Builder(BI);
2508     Value *TrueV = SpeculatedStore->getValueOperand();
2509     Value *FalseV = SpeculatedStoreValue;
2510     if (Invert)
2511       std::swap(TrueV, FalseV);
2512     Value *S = Builder.CreateSelect(
2513         BrCond, TrueV, FalseV, "spec.store.select", BI);
2514     SpeculatedStore->setOperand(0, S);
2515     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2516                                          SpeculatedStore->getDebugLoc());
2517   }
2518 
2519   // Metadata can be dependent on the condition we are hoisting above.
2520   // Conservatively strip all metadata on the instruction. Drop the debug loc
2521   // to avoid making it appear as if the condition is a constant, which would
2522   // be misleading while debugging.
2523   // Similarly strip attributes that maybe dependent on condition we are
2524   // hoisting above.
2525   for (auto &I : *ThenBB) {
2526     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2527       I.setDebugLoc(DebugLoc());
2528     I.dropUndefImplyingAttrsAndUnknownMetadata();
2529   }
2530 
2531   // Hoist the instructions.
2532   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2533                            ThenBB->begin(), std::prev(ThenBB->end()));
2534 
2535   // Insert selects and rewrite the PHI operands.
2536   IRBuilder<NoFolder> Builder(BI);
2537   for (PHINode &PN : EndBB->phis()) {
2538     unsigned OrigI = PN.getBasicBlockIndex(BB);
2539     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2540     Value *OrigV = PN.getIncomingValue(OrigI);
2541     Value *ThenV = PN.getIncomingValue(ThenI);
2542 
2543     // Skip PHIs which are trivial.
2544     if (OrigV == ThenV)
2545       continue;
2546 
2547     // Create a select whose true value is the speculatively executed value and
2548     // false value is the pre-existing value. Swap them if the branch
2549     // destinations were inverted.
2550     Value *TrueV = ThenV, *FalseV = OrigV;
2551     if (Invert)
2552       std::swap(TrueV, FalseV);
2553     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2554     PN.setIncomingValue(OrigI, V);
2555     PN.setIncomingValue(ThenI, V);
2556   }
2557 
2558   // Remove speculated dbg intrinsics.
2559   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2560   // dbg value for the different flows and inserting it after the select.
2561   for (Instruction *I : SpeculatedDbgIntrinsics)
2562     I->eraseFromParent();
2563 
2564   ++NumSpeculations;
2565   return true;
2566 }
2567 
2568 /// Return true if we can thread a branch across this block.
2569 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2570   int Size = 0;
2571 
2572   SmallPtrSet<const Value *, 32> EphValues;
2573   auto IsEphemeral = [&](const Value *V) {
2574     if (isa<AssumeInst>(V))
2575       return true;
2576     return isSafeToSpeculativelyExecute(V) &&
2577            all_of(V->users(),
2578                   [&](const User *U) { return EphValues.count(U); });
2579   };
2580 
2581   // Walk the loop in reverse so that we can identify ephemeral values properly
2582   // (values only feeding assumes).
2583   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2584     // Can't fold blocks that contain noduplicate or convergent calls.
2585     if (CallInst *CI = dyn_cast<CallInst>(&I))
2586       if (CI->cannotDuplicate() || CI->isConvergent())
2587         return false;
2588 
2589     // Ignore ephemeral values which are deleted during codegen.
2590     if (IsEphemeral(&I))
2591       EphValues.insert(&I);
2592     // We will delete Phis while threading, so Phis should not be accounted in
2593     // block's size.
2594     else if (!isa<PHINode>(I)) {
2595       if (Size++ > MaxSmallBlockSize)
2596         return false; // Don't clone large BB's.
2597     }
2598 
2599     // We can only support instructions that do not define values that are
2600     // live outside of the current basic block.
2601     for (User *U : I.users()) {
2602       Instruction *UI = cast<Instruction>(U);
2603       if (UI->getParent() != BB || isa<PHINode>(UI))
2604         return false;
2605     }
2606 
2607     // Looks ok, continue checking.
2608   }
2609 
2610   return true;
2611 }
2612 
2613 /// If we have a conditional branch on a PHI node value that is defined in the
2614 /// same block as the branch and if any PHI entries are constants, thread edges
2615 /// corresponding to that entry to be branches to their ultimate destination.
2616 static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
2617                                               DomTreeUpdater *DTU,
2618                                               const DataLayout &DL,
2619                                               AssumptionCache *AC) {
2620   BasicBlock *BB = BI->getParent();
2621   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2622   // NOTE: we currently cannot transform this case if the PHI node is used
2623   // outside of the block.
2624   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2625     return false;
2626 
2627   // Degenerate case of a single entry PHI.
2628   if (PN->getNumIncomingValues() == 1) {
2629     FoldSingleEntryPHINodes(PN->getParent());
2630     return true;
2631   }
2632 
2633   // Now we know that this block has multiple preds and two succs.
2634   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2635     return false;
2636 
2637   // Okay, this is a simple enough basic block.  See if any phi values are
2638   // constants.
2639   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2640     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2641     if (!CB || !CB->getType()->isIntegerTy(1))
2642       continue;
2643 
2644     // Okay, we now know that all edges from PredBB should be revectored to
2645     // branch to RealDest.
2646     BasicBlock *PredBB = PN->getIncomingBlock(i);
2647     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2648 
2649     if (RealDest == BB)
2650       continue; // Skip self loops.
2651     // Skip if the predecessor's terminator is an indirect branch.
2652     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2653       continue;
2654 
2655     SmallVector<DominatorTree::UpdateType, 3> Updates;
2656 
2657     // The dest block might have PHI nodes, other predecessors and other
2658     // difficult cases.  Instead of being smart about this, just insert a new
2659     // block that jumps to the destination block, effectively splitting
2660     // the edge we are about to create.
2661     BasicBlock *EdgeBB =
2662         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2663                            RealDest->getParent(), RealDest);
2664     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2665     if (DTU)
2666       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2667     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2668 
2669     // Update PHI nodes.
2670     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2671 
2672     // BB may have instructions that are being threaded over.  Clone these
2673     // instructions into EdgeBB.  We know that there will be no uses of the
2674     // cloned instructions outside of EdgeBB.
2675     BasicBlock::iterator InsertPt = EdgeBB->begin();
2676     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2677     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2678       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2679         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2680         continue;
2681       }
2682       // Clone the instruction.
2683       Instruction *N = BBI->clone();
2684       if (BBI->hasName())
2685         N->setName(BBI->getName() + ".c");
2686 
2687       // Update operands due to translation.
2688       for (Use &Op : N->operands()) {
2689         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2690         if (PI != TranslateMap.end())
2691           Op = PI->second;
2692       }
2693 
2694       // Check for trivial simplification.
2695       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2696         if (!BBI->use_empty())
2697           TranslateMap[&*BBI] = V;
2698         if (!N->mayHaveSideEffects()) {
2699           N->deleteValue(); // Instruction folded away, don't need actual inst
2700           N = nullptr;
2701         }
2702       } else {
2703         if (!BBI->use_empty())
2704           TranslateMap[&*BBI] = N;
2705       }
2706       if (N) {
2707         // Insert the new instruction into its new home.
2708         EdgeBB->getInstList().insert(InsertPt, N);
2709 
2710         // Register the new instruction with the assumption cache if necessary.
2711         if (auto *Assume = dyn_cast<AssumeInst>(N))
2712           if (AC)
2713             AC->registerAssumption(Assume);
2714       }
2715     }
2716 
2717     // Loop over all of the edges from PredBB to BB, changing them to branch
2718     // to EdgeBB instead.
2719     Instruction *PredBBTI = PredBB->getTerminator();
2720     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2721       if (PredBBTI->getSuccessor(i) == BB) {
2722         BB->removePredecessor(PredBB);
2723         PredBBTI->setSuccessor(i, EdgeBB);
2724       }
2725 
2726     if (DTU) {
2727       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2728       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2729 
2730       DTU->applyUpdates(Updates);
2731     }
2732 
2733     // Signal repeat, simplifying any other constants.
2734     return None;
2735   }
2736 
2737   return false;
2738 }
2739 
2740 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2741                                 const DataLayout &DL, AssumptionCache *AC) {
2742   Optional<bool> Result;
2743   bool EverChanged = false;
2744   do {
2745     // Note that None means "we changed things, but recurse further."
2746     Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
2747     EverChanged |= Result == None || *Result;
2748   } while (Result == None);
2749   return EverChanged;
2750 }
2751 
2752 /// Given a BB that starts with the specified two-entry PHI node,
2753 /// see if we can eliminate it.
2754 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2755                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2756   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2757   // statement", which has a very simple dominance structure.  Basically, we
2758   // are trying to find the condition that is being branched on, which
2759   // subsequently causes this merge to happen.  We really want control
2760   // dependence information for this check, but simplifycfg can't keep it up
2761   // to date, and this catches most of the cases we care about anyway.
2762   BasicBlock *BB = PN->getParent();
2763 
2764   BasicBlock *IfTrue, *IfFalse;
2765   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
2766   if (!DomBI)
2767     return false;
2768   Value *IfCond = DomBI->getCondition();
2769   // Don't bother if the branch will be constant folded trivially.
2770   if (isa<ConstantInt>(IfCond))
2771     return false;
2772 
2773   BasicBlock *DomBlock = DomBI->getParent();
2774   SmallVector<BasicBlock *, 2> IfBlocks;
2775   llvm::copy_if(
2776       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
2777         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
2778       });
2779   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
2780          "Will have either one or two blocks to speculate.");
2781 
2782   // If the branch is non-unpredictable, see if we either predictably jump to
2783   // the merge bb (if we have only a single 'then' block), or if we predictably
2784   // jump to one specific 'then' block (if we have two of them).
2785   // It isn't beneficial to speculatively execute the code
2786   // from the block that we know is predictably not entered.
2787   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
2788     uint64_t TWeight, FWeight;
2789     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
2790         (TWeight + FWeight) != 0) {
2791       BranchProbability BITrueProb =
2792           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
2793       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2794       BranchProbability BIFalseProb = BITrueProb.getCompl();
2795       if (IfBlocks.size() == 1) {
2796         BranchProbability BIBBProb =
2797             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
2798         if (BIBBProb >= Likely)
2799           return false;
2800       } else {
2801         if (BITrueProb >= Likely || BIFalseProb >= Likely)
2802           return false;
2803       }
2804     }
2805   }
2806 
2807   // Don't try to fold an unreachable block. For example, the phi node itself
2808   // can't be the candidate if-condition for a select that we want to form.
2809   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
2810     if (IfCondPhiInst->getParent() == BB)
2811       return false;
2812 
2813   // Okay, we found that we can merge this two-entry phi node into a select.
2814   // Doing so would require us to fold *all* two entry phi nodes in this block.
2815   // At some point this becomes non-profitable (particularly if the target
2816   // doesn't support cmov's).  Only do this transformation if there are two or
2817   // fewer PHI nodes in this block.
2818   unsigned NumPhis = 0;
2819   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2820     if (NumPhis > 2)
2821       return false;
2822 
2823   // Loop over the PHI's seeing if we can promote them all to select
2824   // instructions.  While we are at it, keep track of the instructions
2825   // that need to be moved to the dominating block.
2826   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2827   InstructionCost Cost = 0;
2828   InstructionCost Budget =
2829       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2830 
2831   bool Changed = false;
2832   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2833     PHINode *PN = cast<PHINode>(II++);
2834     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2835       PN->replaceAllUsesWith(V);
2836       PN->eraseFromParent();
2837       Changed = true;
2838       continue;
2839     }
2840 
2841     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2842                              Cost, Budget, TTI) ||
2843         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2844                              Cost, Budget, TTI))
2845       return Changed;
2846   }
2847 
2848   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2849   // we ran out of PHIs then we simplified them all.
2850   PN = dyn_cast<PHINode>(BB->begin());
2851   if (!PN)
2852     return true;
2853 
2854   // Return true if at least one of these is a 'not', and another is either
2855   // a 'not' too, or a constant.
2856   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2857     if (!match(V0, m_Not(m_Value())))
2858       std::swap(V0, V1);
2859     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2860     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2861   };
2862 
2863   // Don't fold i1 branches on PHIs which contain binary operators or
2864   // (possibly inverted) select form of or/ands,  unless one of
2865   // the incoming values is an 'not' and another one is freely invertible.
2866   // These can often be turned into switches and other things.
2867   auto IsBinOpOrAnd = [](Value *V) {
2868     return match(
2869         V, m_CombineOr(
2870                m_BinOp(),
2871                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
2872                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
2873   };
2874   if (PN->getType()->isIntegerTy(1) &&
2875       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2876        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2877       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2878                                  PN->getIncomingValue(1)))
2879     return Changed;
2880 
2881   // If all PHI nodes are promotable, check to make sure that all instructions
2882   // in the predecessor blocks can be promoted as well. If not, we won't be able
2883   // to get rid of the control flow, so it's not worth promoting to select
2884   // instructions.
2885   for (BasicBlock *IfBlock : IfBlocks)
2886     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
2887       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2888           !isa<PseudoProbeInst>(I)) {
2889         // This is not an aggressive instruction that we can promote.
2890         // Because of this, we won't be able to get rid of the control flow, so
2891         // the xform is not worth it.
2892         return Changed;
2893       }
2894 
2895   // If either of the blocks has it's address taken, we can't do this fold.
2896   if (any_of(IfBlocks,
2897              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
2898     return Changed;
2899 
2900   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2901                     << "  T: " << IfTrue->getName()
2902                     << "  F: " << IfFalse->getName() << "\n");
2903 
2904   // If we can still promote the PHI nodes after this gauntlet of tests,
2905   // do all of the PHI's now.
2906 
2907   // Move all 'aggressive' instructions, which are defined in the
2908   // conditional parts of the if's up to the dominating block.
2909   for (BasicBlock *IfBlock : IfBlocks)
2910       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
2911 
2912   IRBuilder<NoFolder> Builder(DomBI);
2913   // Propagate fast-math-flags from phi nodes to replacement selects.
2914   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2915   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2916     if (isa<FPMathOperator>(PN))
2917       Builder.setFastMathFlags(PN->getFastMathFlags());
2918 
2919     // Change the PHI node into a select instruction.
2920     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
2921     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
2922 
2923     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
2924     PN->replaceAllUsesWith(Sel);
2925     Sel->takeName(PN);
2926     PN->eraseFromParent();
2927   }
2928 
2929   // At this point, all IfBlocks are empty, so our if statement
2930   // has been flattened.  Change DomBlock to jump directly to our new block to
2931   // avoid other simplifycfg's kicking in on the diamond.
2932   Builder.CreateBr(BB);
2933 
2934   SmallVector<DominatorTree::UpdateType, 3> Updates;
2935   if (DTU) {
2936     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2937     for (auto *Successor : successors(DomBlock))
2938       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2939   }
2940 
2941   DomBI->eraseFromParent();
2942   if (DTU)
2943     DTU->applyUpdates(Updates);
2944 
2945   return true;
2946 }
2947 
2948 static Value *createLogicalOp(IRBuilderBase &Builder,
2949                               Instruction::BinaryOps Opc, Value *LHS,
2950                               Value *RHS, const Twine &Name = "") {
2951   // Try to relax logical op to binary op.
2952   if (impliesPoison(RHS, LHS))
2953     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2954   if (Opc == Instruction::And)
2955     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2956   if (Opc == Instruction::Or)
2957     return Builder.CreateLogicalOr(LHS, RHS, Name);
2958   llvm_unreachable("Invalid logical opcode");
2959 }
2960 
2961 /// Return true if either PBI or BI has branch weight available, and store
2962 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2963 /// not have branch weight, use 1:1 as its weight.
2964 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2965                                    uint64_t &PredTrueWeight,
2966                                    uint64_t &PredFalseWeight,
2967                                    uint64_t &SuccTrueWeight,
2968                                    uint64_t &SuccFalseWeight) {
2969   bool PredHasWeights =
2970       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2971   bool SuccHasWeights =
2972       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2973   if (PredHasWeights || SuccHasWeights) {
2974     if (!PredHasWeights)
2975       PredTrueWeight = PredFalseWeight = 1;
2976     if (!SuccHasWeights)
2977       SuccTrueWeight = SuccFalseWeight = 1;
2978     return true;
2979   } else {
2980     return false;
2981   }
2982 }
2983 
2984 /// Determine if the two branches share a common destination and deduce a glue
2985 /// that joins the branches' conditions to arrive at the common destination if
2986 /// that would be profitable.
2987 static Optional<std::pair<Instruction::BinaryOps, bool>>
2988 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2989                                           const TargetTransformInfo *TTI) {
2990   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2991          "Both blocks must end with a conditional branches.");
2992   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2993          "PredBB must be a predecessor of BB.");
2994 
2995   // We have the potential to fold the conditions together, but if the
2996   // predecessor branch is predictable, we may not want to merge them.
2997   uint64_t PTWeight, PFWeight;
2998   BranchProbability PBITrueProb, Likely;
2999   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3000       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3001       (PTWeight + PFWeight) != 0) {
3002     PBITrueProb =
3003         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3004     Likely = TTI->getPredictableBranchThreshold();
3005   }
3006 
3007   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3008     // Speculate the 2nd condition unless the 1st is probably true.
3009     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3010       return {{Instruction::Or, false}};
3011   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3012     // Speculate the 2nd condition unless the 1st is probably false.
3013     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3014       return {{Instruction::And, false}};
3015   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3016     // Speculate the 2nd condition unless the 1st is probably true.
3017     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3018       return {{Instruction::And, true}};
3019   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3020     // Speculate the 2nd condition unless the 1st is probably false.
3021     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3022       return {{Instruction::Or, true}};
3023   }
3024   return None;
3025 }
3026 
3027 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3028                                              DomTreeUpdater *DTU,
3029                                              MemorySSAUpdater *MSSAU,
3030                                              const TargetTransformInfo *TTI) {
3031   BasicBlock *BB = BI->getParent();
3032   BasicBlock *PredBlock = PBI->getParent();
3033 
3034   // Determine if the two branches share a common destination.
3035   Instruction::BinaryOps Opc;
3036   bool InvertPredCond;
3037   std::tie(Opc, InvertPredCond) =
3038       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3039 
3040   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3041 
3042   IRBuilder<> Builder(PBI);
3043   // The builder is used to create instructions to eliminate the branch in BB.
3044   // If BB's terminator has !annotation metadata, add it to the new
3045   // instructions.
3046   Builder.CollectMetadataToCopy(BB->getTerminator(),
3047                                 {LLVMContext::MD_annotation});
3048 
3049   // If we need to invert the condition in the pred block to match, do so now.
3050   if (InvertPredCond) {
3051     Value *NewCond = PBI->getCondition();
3052     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3053       CmpInst *CI = cast<CmpInst>(NewCond);
3054       CI->setPredicate(CI->getInversePredicate());
3055     } else {
3056       NewCond =
3057           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3058     }
3059 
3060     PBI->setCondition(NewCond);
3061     PBI->swapSuccessors();
3062   }
3063 
3064   BasicBlock *UniqueSucc =
3065       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3066 
3067   // Before cloning instructions, notify the successor basic block that it
3068   // is about to have a new predecessor. This will update PHI nodes,
3069   // which will allow us to update live-out uses of bonus instructions.
3070   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3071 
3072   // Try to update branch weights.
3073   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3074   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3075                              SuccTrueWeight, SuccFalseWeight)) {
3076     SmallVector<uint64_t, 8> NewWeights;
3077 
3078     if (PBI->getSuccessor(0) == BB) {
3079       // PBI: br i1 %x, BB, FalseDest
3080       // BI:  br i1 %y, UniqueSucc, FalseDest
3081       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3082       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3083       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3084       //               TrueWeight for PBI * FalseWeight for BI.
3085       // We assume that total weights of a BranchInst can fit into 32 bits.
3086       // Therefore, we will not have overflow using 64-bit arithmetic.
3087       NewWeights.push_back(PredFalseWeight *
3088                                (SuccFalseWeight + SuccTrueWeight) +
3089                            PredTrueWeight * SuccFalseWeight);
3090     } else {
3091       // PBI: br i1 %x, TrueDest, BB
3092       // BI:  br i1 %y, TrueDest, UniqueSucc
3093       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3094       //              FalseWeight for PBI * TrueWeight for BI.
3095       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3096                            PredFalseWeight * SuccTrueWeight);
3097       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3098       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3099     }
3100 
3101     // Halve the weights if any of them cannot fit in an uint32_t
3102     FitWeights(NewWeights);
3103 
3104     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3105     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3106 
3107     // TODO: If BB is reachable from all paths through PredBlock, then we
3108     // could replace PBI's branch probabilities with BI's.
3109   } else
3110     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3111 
3112   // Now, update the CFG.
3113   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3114 
3115   if (DTU)
3116     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3117                        {DominatorTree::Delete, PredBlock, BB}});
3118 
3119   // If BI was a loop latch, it may have had associated loop metadata.
3120   // We need to copy it to the new latch, that is, PBI.
3121   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3122     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3123 
3124   ValueToValueMapTy VMap; // maps original values to cloned values
3125   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3126 
3127   // Now that the Cond was cloned into the predecessor basic block,
3128   // or/and the two conditions together.
3129   Value *BICond = VMap[BI->getCondition()];
3130   PBI->setCondition(
3131       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3132 
3133   // Copy any debug value intrinsics into the end of PredBlock.
3134   for (Instruction &I : *BB) {
3135     if (isa<DbgInfoIntrinsic>(I)) {
3136       Instruction *NewI = I.clone();
3137       RemapInstruction(NewI, VMap,
3138                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3139       NewI->insertBefore(PBI);
3140     }
3141   }
3142 
3143   ++NumFoldBranchToCommonDest;
3144   return true;
3145 }
3146 
3147 /// If this basic block is simple enough, and if a predecessor branches to us
3148 /// and one of our successors, fold the block into the predecessor and use
3149 /// logical operations to pick the right destination.
3150 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3151                                   MemorySSAUpdater *MSSAU,
3152                                   const TargetTransformInfo *TTI,
3153                                   unsigned BonusInstThreshold) {
3154   // If this block ends with an unconditional branch,
3155   // let SpeculativelyExecuteBB() deal with it.
3156   if (!BI->isConditional())
3157     return false;
3158 
3159   BasicBlock *BB = BI->getParent();
3160   TargetTransformInfo::TargetCostKind CostKind =
3161     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3162                                   : TargetTransformInfo::TCK_SizeAndLatency;
3163 
3164   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3165 
3166   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3167       Cond->getParent() != BB || !Cond->hasOneUse())
3168     return false;
3169 
3170   // Cond is known to be a compare or binary operator.  Check to make sure that
3171   // neither operand is a potentially-trapping constant expression.
3172   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3173     if (CE->canTrap())
3174       return false;
3175   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3176     if (CE->canTrap())
3177       return false;
3178 
3179   // Finally, don't infinitely unroll conditional loops.
3180   if (is_contained(successors(BB), BB))
3181     return false;
3182 
3183   // With which predecessors will we want to deal with?
3184   SmallVector<BasicBlock *, 8> Preds;
3185   for (BasicBlock *PredBlock : predecessors(BB)) {
3186     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3187 
3188     // Check that we have two conditional branches.  If there is a PHI node in
3189     // the common successor, verify that the same value flows in from both
3190     // blocks.
3191     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3192       continue;
3193 
3194     // Determine if the two branches share a common destination.
3195     Instruction::BinaryOps Opc;
3196     bool InvertPredCond;
3197     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3198       std::tie(Opc, InvertPredCond) = *Recipe;
3199     else
3200       continue;
3201 
3202     // Check the cost of inserting the necessary logic before performing the
3203     // transformation.
3204     if (TTI) {
3205       Type *Ty = BI->getCondition()->getType();
3206       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3207       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3208           !isa<CmpInst>(PBI->getCondition())))
3209         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3210 
3211       if (Cost > BranchFoldThreshold)
3212         continue;
3213     }
3214 
3215     // Ok, we do want to deal with this predecessor. Record it.
3216     Preds.emplace_back(PredBlock);
3217   }
3218 
3219   // If there aren't any predecessors into which we can fold,
3220   // don't bother checking the cost.
3221   if (Preds.empty())
3222     return false;
3223 
3224   // Only allow this transformation if computing the condition doesn't involve
3225   // too many instructions and these involved instructions can be executed
3226   // unconditionally. We denote all involved instructions except the condition
3227   // as "bonus instructions", and only allow this transformation when the
3228   // number of the bonus instructions we'll need to create when cloning into
3229   // each predecessor does not exceed a certain threshold.
3230   unsigned NumBonusInsts = 0;
3231   const unsigned PredCount = Preds.size();
3232   for (Instruction &I : *BB) {
3233     // Don't check the branch condition comparison itself.
3234     if (&I == Cond)
3235       continue;
3236     // Ignore dbg intrinsics, and the terminator.
3237     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3238       continue;
3239     // I must be safe to execute unconditionally.
3240     if (!isSafeToSpeculativelyExecute(&I))
3241       return false;
3242 
3243     // Account for the cost of duplicating this instruction into each
3244     // predecessor.
3245     NumBonusInsts += PredCount;
3246     // Early exits once we reach the limit.
3247     if (NumBonusInsts > BonusInstThreshold)
3248       return false;
3249 
3250     auto IsBCSSAUse = [BB, &I](Use &U) {
3251       auto *UI = cast<Instruction>(U.getUser());
3252       if (auto *PN = dyn_cast<PHINode>(UI))
3253         return PN->getIncomingBlock(U) == BB;
3254       return UI->getParent() == BB && I.comesBefore(UI);
3255     };
3256 
3257     // Does this instruction require rewriting of uses?
3258     if (!all_of(I.uses(), IsBCSSAUse))
3259       return false;
3260   }
3261 
3262   // Ok, we have the budget. Perform the transformation.
3263   for (BasicBlock *PredBlock : Preds) {
3264     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3265     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3266   }
3267   return false;
3268 }
3269 
3270 // If there is only one store in BB1 and BB2, return it, otherwise return
3271 // nullptr.
3272 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3273   StoreInst *S = nullptr;
3274   for (auto *BB : {BB1, BB2}) {
3275     if (!BB)
3276       continue;
3277     for (auto &I : *BB)
3278       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3279         if (S)
3280           // Multiple stores seen.
3281           return nullptr;
3282         else
3283           S = SI;
3284       }
3285   }
3286   return S;
3287 }
3288 
3289 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3290                                               Value *AlternativeV = nullptr) {
3291   // PHI is going to be a PHI node that allows the value V that is defined in
3292   // BB to be referenced in BB's only successor.
3293   //
3294   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3295   // doesn't matter to us what the other operand is (it'll never get used). We
3296   // could just create a new PHI with an undef incoming value, but that could
3297   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3298   // other PHI. So here we directly look for some PHI in BB's successor with V
3299   // as an incoming operand. If we find one, we use it, else we create a new
3300   // one.
3301   //
3302   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3303   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3304   // where OtherBB is the single other predecessor of BB's only successor.
3305   PHINode *PHI = nullptr;
3306   BasicBlock *Succ = BB->getSingleSuccessor();
3307 
3308   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3309     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3310       PHI = cast<PHINode>(I);
3311       if (!AlternativeV)
3312         break;
3313 
3314       assert(Succ->hasNPredecessors(2));
3315       auto PredI = pred_begin(Succ);
3316       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3317       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3318         break;
3319       PHI = nullptr;
3320     }
3321   if (PHI)
3322     return PHI;
3323 
3324   // If V is not an instruction defined in BB, just return it.
3325   if (!AlternativeV &&
3326       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3327     return V;
3328 
3329   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3330   PHI->addIncoming(V, BB);
3331   for (BasicBlock *PredBB : predecessors(Succ))
3332     if (PredBB != BB)
3333       PHI->addIncoming(
3334           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3335   return PHI;
3336 }
3337 
3338 static bool mergeConditionalStoreToAddress(
3339     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3340     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3341     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3342   // For every pointer, there must be exactly two stores, one coming from
3343   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3344   // store (to any address) in PTB,PFB or QTB,QFB.
3345   // FIXME: We could relax this restriction with a bit more work and performance
3346   // testing.
3347   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3348   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3349   if (!PStore || !QStore)
3350     return false;
3351 
3352   // Now check the stores are compatible.
3353   if (!QStore->isUnordered() || !PStore->isUnordered())
3354     return false;
3355 
3356   // Check that sinking the store won't cause program behavior changes. Sinking
3357   // the store out of the Q blocks won't change any behavior as we're sinking
3358   // from a block to its unconditional successor. But we're moving a store from
3359   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3360   // So we need to check that there are no aliasing loads or stores in
3361   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3362   // operations between PStore and the end of its parent block.
3363   //
3364   // The ideal way to do this is to query AliasAnalysis, but we don't
3365   // preserve AA currently so that is dangerous. Be super safe and just
3366   // check there are no other memory operations at all.
3367   for (auto &I : *QFB->getSinglePredecessor())
3368     if (I.mayReadOrWriteMemory())
3369       return false;
3370   for (auto &I : *QFB)
3371     if (&I != QStore && I.mayReadOrWriteMemory())
3372       return false;
3373   if (QTB)
3374     for (auto &I : *QTB)
3375       if (&I != QStore && I.mayReadOrWriteMemory())
3376         return false;
3377   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3378        I != E; ++I)
3379     if (&*I != PStore && I->mayReadOrWriteMemory())
3380       return false;
3381 
3382   // If we're not in aggressive mode, we only optimize if we have some
3383   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3384   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3385     if (!BB)
3386       return true;
3387     // Heuristic: if the block can be if-converted/phi-folded and the
3388     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3389     // thread this store.
3390     InstructionCost Cost = 0;
3391     InstructionCost Budget =
3392         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3393     for (auto &I : BB->instructionsWithoutDebug()) {
3394       // Consider terminator instruction to be free.
3395       if (I.isTerminator())
3396         continue;
3397       // If this is one the stores that we want to speculate out of this BB,
3398       // then don't count it's cost, consider it to be free.
3399       if (auto *S = dyn_cast<StoreInst>(&I))
3400         if (llvm::find(FreeStores, S))
3401           continue;
3402       // Else, we have a white-list of instructions that we are ak speculating.
3403       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3404         return false; // Not in white-list - not worthwhile folding.
3405       // And finally, if this is a non-free instruction that we are okay
3406       // speculating, ensure that we consider the speculation budget.
3407       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3408       if (Cost > Budget)
3409         return false; // Eagerly refuse to fold as soon as we're out of budget.
3410     }
3411     assert(Cost <= Budget &&
3412            "When we run out of budget we will eagerly return from within the "
3413            "per-instruction loop.");
3414     return true;
3415   };
3416 
3417   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3418   if (!MergeCondStoresAggressively &&
3419       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3420        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3421     return false;
3422 
3423   // If PostBB has more than two predecessors, we need to split it so we can
3424   // sink the store.
3425   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3426     // We know that QFB's only successor is PostBB. And QFB has a single
3427     // predecessor. If QTB exists, then its only successor is also PostBB.
3428     // If QTB does not exist, then QFB's only predecessor has a conditional
3429     // branch to QFB and PostBB.
3430     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3431     BasicBlock *NewBB =
3432         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3433     if (!NewBB)
3434       return false;
3435     PostBB = NewBB;
3436   }
3437 
3438   // OK, we're going to sink the stores to PostBB. The store has to be
3439   // conditional though, so first create the predicate.
3440   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3441                      ->getCondition();
3442   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3443                      ->getCondition();
3444 
3445   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3446                                                 PStore->getParent());
3447   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3448                                                 QStore->getParent(), PPHI);
3449 
3450   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3451 
3452   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3453   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3454 
3455   if (InvertPCond)
3456     PPred = QB.CreateNot(PPred);
3457   if (InvertQCond)
3458     QPred = QB.CreateNot(QPred);
3459   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3460 
3461   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3462                                       /*Unreachable=*/false,
3463                                       /*BranchWeights=*/nullptr, DTU);
3464   QB.SetInsertPoint(T);
3465   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3466   AAMDNodes AAMD;
3467   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3468   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3469   SI->setAAMetadata(AAMD);
3470   // Choose the minimum alignment. If we could prove both stores execute, we
3471   // could use biggest one.  In this case, though, we only know that one of the
3472   // stores executes.  And we don't know it's safe to take the alignment from a
3473   // store that doesn't execute.
3474   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3475 
3476   QStore->eraseFromParent();
3477   PStore->eraseFromParent();
3478 
3479   return true;
3480 }
3481 
3482 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3483                                    DomTreeUpdater *DTU, const DataLayout &DL,
3484                                    const TargetTransformInfo &TTI) {
3485   // The intention here is to find diamonds or triangles (see below) where each
3486   // conditional block contains a store to the same address. Both of these
3487   // stores are conditional, so they can't be unconditionally sunk. But it may
3488   // be profitable to speculatively sink the stores into one merged store at the
3489   // end, and predicate the merged store on the union of the two conditions of
3490   // PBI and QBI.
3491   //
3492   // This can reduce the number of stores executed if both of the conditions are
3493   // true, and can allow the blocks to become small enough to be if-converted.
3494   // This optimization will also chain, so that ladders of test-and-set
3495   // sequences can be if-converted away.
3496   //
3497   // We only deal with simple diamonds or triangles:
3498   //
3499   //     PBI       or      PBI        or a combination of the two
3500   //    /   \               | \
3501   //   PTB  PFB             |  PFB
3502   //    \   /               | /
3503   //     QBI                QBI
3504   //    /  \                | \
3505   //   QTB  QFB             |  QFB
3506   //    \  /                | /
3507   //    PostBB            PostBB
3508   //
3509   // We model triangles as a type of diamond with a nullptr "true" block.
3510   // Triangles are canonicalized so that the fallthrough edge is represented by
3511   // a true condition, as in the diagram above.
3512   BasicBlock *PTB = PBI->getSuccessor(0);
3513   BasicBlock *PFB = PBI->getSuccessor(1);
3514   BasicBlock *QTB = QBI->getSuccessor(0);
3515   BasicBlock *QFB = QBI->getSuccessor(1);
3516   BasicBlock *PostBB = QFB->getSingleSuccessor();
3517 
3518   // Make sure we have a good guess for PostBB. If QTB's only successor is
3519   // QFB, then QFB is a better PostBB.
3520   if (QTB->getSingleSuccessor() == QFB)
3521     PostBB = QFB;
3522 
3523   // If we couldn't find a good PostBB, stop.
3524   if (!PostBB)
3525     return false;
3526 
3527   bool InvertPCond = false, InvertQCond = false;
3528   // Canonicalize fallthroughs to the true branches.
3529   if (PFB == QBI->getParent()) {
3530     std::swap(PFB, PTB);
3531     InvertPCond = true;
3532   }
3533   if (QFB == PostBB) {
3534     std::swap(QFB, QTB);
3535     InvertQCond = true;
3536   }
3537 
3538   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3539   // and QFB may not. Model fallthroughs as a nullptr block.
3540   if (PTB == QBI->getParent())
3541     PTB = nullptr;
3542   if (QTB == PostBB)
3543     QTB = nullptr;
3544 
3545   // Legality bailouts. We must have at least the non-fallthrough blocks and
3546   // the post-dominating block, and the non-fallthroughs must only have one
3547   // predecessor.
3548   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3549     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3550   };
3551   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3552       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3553     return false;
3554   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3555       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3556     return false;
3557   if (!QBI->getParent()->hasNUses(2))
3558     return false;
3559 
3560   // OK, this is a sequence of two diamonds or triangles.
3561   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3562   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3563   for (auto *BB : {PTB, PFB}) {
3564     if (!BB)
3565       continue;
3566     for (auto &I : *BB)
3567       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3568         PStoreAddresses.insert(SI->getPointerOperand());
3569   }
3570   for (auto *BB : {QTB, QFB}) {
3571     if (!BB)
3572       continue;
3573     for (auto &I : *BB)
3574       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3575         QStoreAddresses.insert(SI->getPointerOperand());
3576   }
3577 
3578   set_intersect(PStoreAddresses, QStoreAddresses);
3579   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3580   // clear what it contains.
3581   auto &CommonAddresses = PStoreAddresses;
3582 
3583   bool Changed = false;
3584   for (auto *Address : CommonAddresses)
3585     Changed |=
3586         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3587                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3588   return Changed;
3589 }
3590 
3591 /// If the previous block ended with a widenable branch, determine if reusing
3592 /// the target block is profitable and legal.  This will have the effect of
3593 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3594 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3595                                            DomTreeUpdater *DTU) {
3596   // TODO: This can be generalized in two important ways:
3597   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3598   //    values from the PBI edge.
3599   // 2) We can sink side effecting instructions into BI's fallthrough
3600   //    successor provided they doesn't contribute to computation of
3601   //    BI's condition.
3602   Value *CondWB, *WC;
3603   BasicBlock *IfTrueBB, *IfFalseBB;
3604   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3605       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3606     return false;
3607   if (!IfFalseBB->phis().empty())
3608     return false; // TODO
3609   // Use lambda to lazily compute expensive condition after cheap ones.
3610   auto NoSideEffects = [](BasicBlock &BB) {
3611     return !llvm::any_of(BB, [](const Instruction &I) {
3612         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3613       });
3614   };
3615   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3616       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3617       NoSideEffects(*BI->getParent())) {
3618     auto *OldSuccessor = BI->getSuccessor(1);
3619     OldSuccessor->removePredecessor(BI->getParent());
3620     BI->setSuccessor(1, IfFalseBB);
3621     if (DTU)
3622       DTU->applyUpdates(
3623           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3624            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3625     return true;
3626   }
3627   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3628       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3629       NoSideEffects(*BI->getParent())) {
3630     auto *OldSuccessor = BI->getSuccessor(0);
3631     OldSuccessor->removePredecessor(BI->getParent());
3632     BI->setSuccessor(0, IfFalseBB);
3633     if (DTU)
3634       DTU->applyUpdates(
3635           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3636            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3637     return true;
3638   }
3639   return false;
3640 }
3641 
3642 /// If we have a conditional branch as a predecessor of another block,
3643 /// this function tries to simplify it.  We know
3644 /// that PBI and BI are both conditional branches, and BI is in one of the
3645 /// successor blocks of PBI - PBI branches to BI.
3646 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3647                                            DomTreeUpdater *DTU,
3648                                            const DataLayout &DL,
3649                                            const TargetTransformInfo &TTI) {
3650   assert(PBI->isConditional() && BI->isConditional());
3651   BasicBlock *BB = BI->getParent();
3652 
3653   // If this block ends with a branch instruction, and if there is a
3654   // predecessor that ends on a branch of the same condition, make
3655   // this conditional branch redundant.
3656   if (PBI->getCondition() == BI->getCondition() &&
3657       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3658     // Okay, the outcome of this conditional branch is statically
3659     // knowable.  If this block had a single pred, handle specially.
3660     if (BB->getSinglePredecessor()) {
3661       // Turn this into a branch on constant.
3662       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3663       BI->setCondition(
3664           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3665       return true; // Nuke the branch on constant.
3666     }
3667 
3668     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3669     // in the constant and simplify the block result.  Subsequent passes of
3670     // simplifycfg will thread the block.
3671     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3672       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3673       PHINode *NewPN = PHINode::Create(
3674           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3675           BI->getCondition()->getName() + ".pr", &BB->front());
3676       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3677       // predecessor, compute the PHI'd conditional value for all of the preds.
3678       // Any predecessor where the condition is not computable we keep symbolic.
3679       for (pred_iterator PI = PB; PI != PE; ++PI) {
3680         BasicBlock *P = *PI;
3681         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3682             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3683             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3684           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3685           NewPN->addIncoming(
3686               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3687               P);
3688         } else {
3689           NewPN->addIncoming(BI->getCondition(), P);
3690         }
3691       }
3692 
3693       BI->setCondition(NewPN);
3694       return true;
3695     }
3696   }
3697 
3698   // If the previous block ended with a widenable branch, determine if reusing
3699   // the target block is profitable and legal.  This will have the effect of
3700   // "widening" PBI, but doesn't require us to reason about hosting safety.
3701   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3702     return true;
3703 
3704   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3705     if (CE->canTrap())
3706       return false;
3707 
3708   // If both branches are conditional and both contain stores to the same
3709   // address, remove the stores from the conditionals and create a conditional
3710   // merged store at the end.
3711   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3712     return true;
3713 
3714   // If this is a conditional branch in an empty block, and if any
3715   // predecessors are a conditional branch to one of our destinations,
3716   // fold the conditions into logical ops and one cond br.
3717 
3718   // Ignore dbg intrinsics.
3719   if (&*BB->instructionsWithoutDebug().begin() != BI)
3720     return false;
3721 
3722   int PBIOp, BIOp;
3723   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3724     PBIOp = 0;
3725     BIOp = 0;
3726   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3727     PBIOp = 0;
3728     BIOp = 1;
3729   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3730     PBIOp = 1;
3731     BIOp = 0;
3732   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3733     PBIOp = 1;
3734     BIOp = 1;
3735   } else {
3736     return false;
3737   }
3738 
3739   // Check to make sure that the other destination of this branch
3740   // isn't BB itself.  If so, this is an infinite loop that will
3741   // keep getting unwound.
3742   if (PBI->getSuccessor(PBIOp) == BB)
3743     return false;
3744 
3745   // Do not perform this transformation if it would require
3746   // insertion of a large number of select instructions. For targets
3747   // without predication/cmovs, this is a big pessimization.
3748 
3749   // Also do not perform this transformation if any phi node in the common
3750   // destination block can trap when reached by BB or PBB (PR17073). In that
3751   // case, it would be unsafe to hoist the operation into a select instruction.
3752 
3753   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3754   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3755   unsigned NumPhis = 0;
3756   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3757        ++II, ++NumPhis) {
3758     if (NumPhis > 2) // Disable this xform.
3759       return false;
3760 
3761     PHINode *PN = cast<PHINode>(II);
3762     Value *BIV = PN->getIncomingValueForBlock(BB);
3763     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3764       if (CE->canTrap())
3765         return false;
3766 
3767     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3768     Value *PBIV = PN->getIncomingValue(PBBIdx);
3769     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3770       if (CE->canTrap())
3771         return false;
3772   }
3773 
3774   // Finally, if everything is ok, fold the branches to logical ops.
3775   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3776 
3777   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3778                     << "AND: " << *BI->getParent());
3779 
3780   SmallVector<DominatorTree::UpdateType, 5> Updates;
3781 
3782   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3783   // branch in it, where one edge (OtherDest) goes back to itself but the other
3784   // exits.  We don't *know* that the program avoids the infinite loop
3785   // (even though that seems likely).  If we do this xform naively, we'll end up
3786   // recursively unpeeling the loop.  Since we know that (after the xform is
3787   // done) that the block *is* infinite if reached, we just make it an obviously
3788   // infinite loop with no cond branch.
3789   if (OtherDest == BB) {
3790     // Insert it at the end of the function, because it's either code,
3791     // or it won't matter if it's hot. :)
3792     BasicBlock *InfLoopBlock =
3793         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3794     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3795     if (DTU)
3796       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3797     OtherDest = InfLoopBlock;
3798   }
3799 
3800   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3801 
3802   // BI may have other predecessors.  Because of this, we leave
3803   // it alone, but modify PBI.
3804 
3805   // Make sure we get to CommonDest on True&True directions.
3806   Value *PBICond = PBI->getCondition();
3807   IRBuilder<NoFolder> Builder(PBI);
3808   if (PBIOp)
3809     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3810 
3811   Value *BICond = BI->getCondition();
3812   if (BIOp)
3813     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3814 
3815   // Merge the conditions.
3816   Value *Cond =
3817       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3818 
3819   // Modify PBI to branch on the new condition to the new dests.
3820   PBI->setCondition(Cond);
3821   PBI->setSuccessor(0, CommonDest);
3822   PBI->setSuccessor(1, OtherDest);
3823 
3824   if (DTU) {
3825     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3826     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3827 
3828     DTU->applyUpdates(Updates);
3829   }
3830 
3831   // Update branch weight for PBI.
3832   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3833   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3834   bool HasWeights =
3835       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3836                              SuccTrueWeight, SuccFalseWeight);
3837   if (HasWeights) {
3838     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3839     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3840     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3841     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3842     // The weight to CommonDest should be PredCommon * SuccTotal +
3843     //                                    PredOther * SuccCommon.
3844     // The weight to OtherDest should be PredOther * SuccOther.
3845     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3846                                   PredOther * SuccCommon,
3847                               PredOther * SuccOther};
3848     // Halve the weights if any of them cannot fit in an uint32_t
3849     FitWeights(NewWeights);
3850 
3851     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3852   }
3853 
3854   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3855   // block that are identical to the entries for BI's block.
3856   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3857 
3858   // We know that the CommonDest already had an edge from PBI to
3859   // it.  If it has PHIs though, the PHIs may have different
3860   // entries for BB and PBI's BB.  If so, insert a select to make
3861   // them agree.
3862   for (PHINode &PN : CommonDest->phis()) {
3863     Value *BIV = PN.getIncomingValueForBlock(BB);
3864     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3865     Value *PBIV = PN.getIncomingValue(PBBIdx);
3866     if (BIV != PBIV) {
3867       // Insert a select in PBI to pick the right value.
3868       SelectInst *NV = cast<SelectInst>(
3869           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3870       PN.setIncomingValue(PBBIdx, NV);
3871       // Although the select has the same condition as PBI, the original branch
3872       // weights for PBI do not apply to the new select because the select's
3873       // 'logical' edges are incoming edges of the phi that is eliminated, not
3874       // the outgoing edges of PBI.
3875       if (HasWeights) {
3876         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3877         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3878         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3879         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3880         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3881         // The weight to PredOtherDest should be PredOther * SuccCommon.
3882         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3883                                   PredOther * SuccCommon};
3884 
3885         FitWeights(NewWeights);
3886 
3887         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3888       }
3889     }
3890   }
3891 
3892   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3893   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3894 
3895   // This basic block is probably dead.  We know it has at least
3896   // one fewer predecessor.
3897   return true;
3898 }
3899 
3900 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3901 // true or to FalseBB if Cond is false.
3902 // Takes care of updating the successors and removing the old terminator.
3903 // Also makes sure not to introduce new successors by assuming that edges to
3904 // non-successor TrueBBs and FalseBBs aren't reachable.
3905 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3906                                                 Value *Cond, BasicBlock *TrueBB,
3907                                                 BasicBlock *FalseBB,
3908                                                 uint32_t TrueWeight,
3909                                                 uint32_t FalseWeight) {
3910   auto *BB = OldTerm->getParent();
3911   // Remove any superfluous successor edges from the CFG.
3912   // First, figure out which successors to preserve.
3913   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3914   // successor.
3915   BasicBlock *KeepEdge1 = TrueBB;
3916   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3917 
3918   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3919 
3920   // Then remove the rest.
3921   for (BasicBlock *Succ : successors(OldTerm)) {
3922     // Make sure only to keep exactly one copy of each edge.
3923     if (Succ == KeepEdge1)
3924       KeepEdge1 = nullptr;
3925     else if (Succ == KeepEdge2)
3926       KeepEdge2 = nullptr;
3927     else {
3928       Succ->removePredecessor(BB,
3929                               /*KeepOneInputPHIs=*/true);
3930 
3931       if (Succ != TrueBB && Succ != FalseBB)
3932         RemovedSuccessors.insert(Succ);
3933     }
3934   }
3935 
3936   IRBuilder<> Builder(OldTerm);
3937   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3938 
3939   // Insert an appropriate new terminator.
3940   if (!KeepEdge1 && !KeepEdge2) {
3941     if (TrueBB == FalseBB) {
3942       // We were only looking for one successor, and it was present.
3943       // Create an unconditional branch to it.
3944       Builder.CreateBr(TrueBB);
3945     } else {
3946       // We found both of the successors we were looking for.
3947       // Create a conditional branch sharing the condition of the select.
3948       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3949       if (TrueWeight != FalseWeight)
3950         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3951     }
3952   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3953     // Neither of the selected blocks were successors, so this
3954     // terminator must be unreachable.
3955     new UnreachableInst(OldTerm->getContext(), OldTerm);
3956   } else {
3957     // One of the selected values was a successor, but the other wasn't.
3958     // Insert an unconditional branch to the one that was found;
3959     // the edge to the one that wasn't must be unreachable.
3960     if (!KeepEdge1) {
3961       // Only TrueBB was found.
3962       Builder.CreateBr(TrueBB);
3963     } else {
3964       // Only FalseBB was found.
3965       Builder.CreateBr(FalseBB);
3966     }
3967   }
3968 
3969   EraseTerminatorAndDCECond(OldTerm);
3970 
3971   if (DTU) {
3972     SmallVector<DominatorTree::UpdateType, 2> Updates;
3973     Updates.reserve(RemovedSuccessors.size());
3974     for (auto *RemovedSuccessor : RemovedSuccessors)
3975       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3976     DTU->applyUpdates(Updates);
3977   }
3978 
3979   return true;
3980 }
3981 
3982 // Replaces
3983 //   (switch (select cond, X, Y)) on constant X, Y
3984 // with a branch - conditional if X and Y lead to distinct BBs,
3985 // unconditional otherwise.
3986 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3987                                             SelectInst *Select) {
3988   // Check for constant integer values in the select.
3989   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3990   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3991   if (!TrueVal || !FalseVal)
3992     return false;
3993 
3994   // Find the relevant condition and destinations.
3995   Value *Condition = Select->getCondition();
3996   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3997   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3998 
3999   // Get weight for TrueBB and FalseBB.
4000   uint32_t TrueWeight = 0, FalseWeight = 0;
4001   SmallVector<uint64_t, 8> Weights;
4002   bool HasWeights = HasBranchWeights(SI);
4003   if (HasWeights) {
4004     GetBranchWeights(SI, Weights);
4005     if (Weights.size() == 1 + SI->getNumCases()) {
4006       TrueWeight =
4007           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4008       FalseWeight =
4009           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4010     }
4011   }
4012 
4013   // Perform the actual simplification.
4014   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4015                                     FalseWeight);
4016 }
4017 
4018 // Replaces
4019 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4020 //                             blockaddress(@fn, BlockB)))
4021 // with
4022 //   (br cond, BlockA, BlockB).
4023 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4024                                                 SelectInst *SI) {
4025   // Check that both operands of the select are block addresses.
4026   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4027   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4028   if (!TBA || !FBA)
4029     return false;
4030 
4031   // Extract the actual blocks.
4032   BasicBlock *TrueBB = TBA->getBasicBlock();
4033   BasicBlock *FalseBB = FBA->getBasicBlock();
4034 
4035   // Perform the actual simplification.
4036   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4037                                     0);
4038 }
4039 
4040 /// This is called when we find an icmp instruction
4041 /// (a seteq/setne with a constant) as the only instruction in a
4042 /// block that ends with an uncond branch.  We are looking for a very specific
4043 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4044 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4045 /// default value goes to an uncond block with a seteq in it, we get something
4046 /// like:
4047 ///
4048 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4049 /// DEFAULT:
4050 ///   %tmp = icmp eq i8 %A, 92
4051 ///   br label %end
4052 /// end:
4053 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4054 ///
4055 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4056 /// the PHI, merging the third icmp into the switch.
4057 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4058     ICmpInst *ICI, IRBuilder<> &Builder) {
4059   BasicBlock *BB = ICI->getParent();
4060 
4061   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4062   // complex.
4063   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4064     return false;
4065 
4066   Value *V = ICI->getOperand(0);
4067   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4068 
4069   // The pattern we're looking for is where our only predecessor is a switch on
4070   // 'V' and this block is the default case for the switch.  In this case we can
4071   // fold the compared value into the switch to simplify things.
4072   BasicBlock *Pred = BB->getSinglePredecessor();
4073   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4074     return false;
4075 
4076   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4077   if (SI->getCondition() != V)
4078     return false;
4079 
4080   // If BB is reachable on a non-default case, then we simply know the value of
4081   // V in this block.  Substitute it and constant fold the icmp instruction
4082   // away.
4083   if (SI->getDefaultDest() != BB) {
4084     ConstantInt *VVal = SI->findCaseDest(BB);
4085     assert(VVal && "Should have a unique destination value");
4086     ICI->setOperand(0, VVal);
4087 
4088     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4089       ICI->replaceAllUsesWith(V);
4090       ICI->eraseFromParent();
4091     }
4092     // BB is now empty, so it is likely to simplify away.
4093     return requestResimplify();
4094   }
4095 
4096   // Ok, the block is reachable from the default dest.  If the constant we're
4097   // comparing exists in one of the other edges, then we can constant fold ICI
4098   // and zap it.
4099   if (SI->findCaseValue(Cst) != SI->case_default()) {
4100     Value *V;
4101     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4102       V = ConstantInt::getFalse(BB->getContext());
4103     else
4104       V = ConstantInt::getTrue(BB->getContext());
4105 
4106     ICI->replaceAllUsesWith(V);
4107     ICI->eraseFromParent();
4108     // BB is now empty, so it is likely to simplify away.
4109     return requestResimplify();
4110   }
4111 
4112   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4113   // the block.
4114   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4115   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4116   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4117       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4118     return false;
4119 
4120   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4121   // true in the PHI.
4122   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4123   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4124 
4125   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4126     std::swap(DefaultCst, NewCst);
4127 
4128   // Replace ICI (which is used by the PHI for the default value) with true or
4129   // false depending on if it is EQ or NE.
4130   ICI->replaceAllUsesWith(DefaultCst);
4131   ICI->eraseFromParent();
4132 
4133   SmallVector<DominatorTree::UpdateType, 2> Updates;
4134 
4135   // Okay, the switch goes to this block on a default value.  Add an edge from
4136   // the switch to the merge point on the compared value.
4137   BasicBlock *NewBB =
4138       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4139   {
4140     SwitchInstProfUpdateWrapper SIW(*SI);
4141     auto W0 = SIW.getSuccessorWeight(0);
4142     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4143     if (W0) {
4144       NewW = ((uint64_t(*W0) + 1) >> 1);
4145       SIW.setSuccessorWeight(0, *NewW);
4146     }
4147     SIW.addCase(Cst, NewBB, NewW);
4148     if (DTU)
4149       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4150   }
4151 
4152   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4153   Builder.SetInsertPoint(NewBB);
4154   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4155   Builder.CreateBr(SuccBlock);
4156   PHIUse->addIncoming(NewCst, NewBB);
4157   if (DTU) {
4158     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4159     DTU->applyUpdates(Updates);
4160   }
4161   return true;
4162 }
4163 
4164 /// The specified branch is a conditional branch.
4165 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4166 /// fold it into a switch instruction if so.
4167 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4168                                                IRBuilder<> &Builder,
4169                                                const DataLayout &DL) {
4170   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4171   if (!Cond)
4172     return false;
4173 
4174   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4175   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4176   // 'setne's and'ed together, collect them.
4177 
4178   // Try to gather values from a chain of and/or to be turned into a switch
4179   ConstantComparesGatherer ConstantCompare(Cond, DL);
4180   // Unpack the result
4181   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4182   Value *CompVal = ConstantCompare.CompValue;
4183   unsigned UsedICmps = ConstantCompare.UsedICmps;
4184   Value *ExtraCase = ConstantCompare.Extra;
4185 
4186   // If we didn't have a multiply compared value, fail.
4187   if (!CompVal)
4188     return false;
4189 
4190   // Avoid turning single icmps into a switch.
4191   if (UsedICmps <= 1)
4192     return false;
4193 
4194   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4195 
4196   // There might be duplicate constants in the list, which the switch
4197   // instruction can't handle, remove them now.
4198   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4199   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4200 
4201   // If Extra was used, we require at least two switch values to do the
4202   // transformation.  A switch with one value is just a conditional branch.
4203   if (ExtraCase && Values.size() < 2)
4204     return false;
4205 
4206   // TODO: Preserve branch weight metadata, similarly to how
4207   // FoldValueComparisonIntoPredecessors preserves it.
4208 
4209   // Figure out which block is which destination.
4210   BasicBlock *DefaultBB = BI->getSuccessor(1);
4211   BasicBlock *EdgeBB = BI->getSuccessor(0);
4212   if (!TrueWhenEqual)
4213     std::swap(DefaultBB, EdgeBB);
4214 
4215   BasicBlock *BB = BI->getParent();
4216 
4217   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4218                     << " cases into SWITCH.  BB is:\n"
4219                     << *BB);
4220 
4221   SmallVector<DominatorTree::UpdateType, 2> Updates;
4222 
4223   // If there are any extra values that couldn't be folded into the switch
4224   // then we evaluate them with an explicit branch first. Split the block
4225   // right before the condbr to handle it.
4226   if (ExtraCase) {
4227     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4228                                    /*MSSAU=*/nullptr, "switch.early.test");
4229 
4230     // Remove the uncond branch added to the old block.
4231     Instruction *OldTI = BB->getTerminator();
4232     Builder.SetInsertPoint(OldTI);
4233 
4234     // There can be an unintended UB if extra values are Poison. Before the
4235     // transformation, extra values may not be evaluated according to the
4236     // condition, and it will not raise UB. But after transformation, we are
4237     // evaluating extra values before checking the condition, and it will raise
4238     // UB. It can be solved by adding freeze instruction to extra values.
4239     AssumptionCache *AC = Options.AC;
4240 
4241     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4242       ExtraCase = Builder.CreateFreeze(ExtraCase);
4243 
4244     if (TrueWhenEqual)
4245       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4246     else
4247       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4248 
4249     OldTI->eraseFromParent();
4250 
4251     if (DTU)
4252       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4253 
4254     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4255     // for the edge we just added.
4256     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4257 
4258     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4259                       << "\nEXTRABB = " << *BB);
4260     BB = NewBB;
4261   }
4262 
4263   Builder.SetInsertPoint(BI);
4264   // Convert pointer to int before we switch.
4265   if (CompVal->getType()->isPointerTy()) {
4266     CompVal = Builder.CreatePtrToInt(
4267         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4268   }
4269 
4270   // Create the new switch instruction now.
4271   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4272 
4273   // Add all of the 'cases' to the switch instruction.
4274   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4275     New->addCase(Values[i], EdgeBB);
4276 
4277   // We added edges from PI to the EdgeBB.  As such, if there were any
4278   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4279   // the number of edges added.
4280   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4281     PHINode *PN = cast<PHINode>(BBI);
4282     Value *InVal = PN->getIncomingValueForBlock(BB);
4283     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4284       PN->addIncoming(InVal, BB);
4285   }
4286 
4287   // Erase the old branch instruction.
4288   EraseTerminatorAndDCECond(BI);
4289   if (DTU)
4290     DTU->applyUpdates(Updates);
4291 
4292   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4293   return true;
4294 }
4295 
4296 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4297   if (isa<PHINode>(RI->getValue()))
4298     return simplifyCommonResume(RI);
4299   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4300            RI->getValue() == RI->getParent()->getFirstNonPHI())
4301     // The resume must unwind the exception that caused control to branch here.
4302     return simplifySingleResume(RI);
4303 
4304   return false;
4305 }
4306 
4307 // Check if cleanup block is empty
4308 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4309   for (Instruction &I : R) {
4310     auto *II = dyn_cast<IntrinsicInst>(&I);
4311     if (!II)
4312       return false;
4313 
4314     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4315     switch (IntrinsicID) {
4316     case Intrinsic::dbg_declare:
4317     case Intrinsic::dbg_value:
4318     case Intrinsic::dbg_label:
4319     case Intrinsic::lifetime_end:
4320       break;
4321     default:
4322       return false;
4323     }
4324   }
4325   return true;
4326 }
4327 
4328 // Simplify resume that is shared by several landing pads (phi of landing pad).
4329 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4330   BasicBlock *BB = RI->getParent();
4331 
4332   // Check that there are no other instructions except for debug and lifetime
4333   // intrinsics between the phi's and resume instruction.
4334   if (!isCleanupBlockEmpty(
4335           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4336     return false;
4337 
4338   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4339   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4340 
4341   // Check incoming blocks to see if any of them are trivial.
4342   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4343        Idx++) {
4344     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4345     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4346 
4347     // If the block has other successors, we can not delete it because
4348     // it has other dependents.
4349     if (IncomingBB->getUniqueSuccessor() != BB)
4350       continue;
4351 
4352     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4353     // Not the landing pad that caused the control to branch here.
4354     if (IncomingValue != LandingPad)
4355       continue;
4356 
4357     if (isCleanupBlockEmpty(
4358             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4359       TrivialUnwindBlocks.insert(IncomingBB);
4360   }
4361 
4362   // If no trivial unwind blocks, don't do any simplifications.
4363   if (TrivialUnwindBlocks.empty())
4364     return false;
4365 
4366   // Turn all invokes that unwind here into calls.
4367   for (auto *TrivialBB : TrivialUnwindBlocks) {
4368     // Blocks that will be simplified should be removed from the phi node.
4369     // Note there could be multiple edges to the resume block, and we need
4370     // to remove them all.
4371     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4372       BB->removePredecessor(TrivialBB, true);
4373 
4374     for (BasicBlock *Pred :
4375          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4376       removeUnwindEdge(Pred, DTU);
4377       ++NumInvokes;
4378     }
4379 
4380     // In each SimplifyCFG run, only the current processed block can be erased.
4381     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4382     // of erasing TrivialBB, we only remove the branch to the common resume
4383     // block so that we can later erase the resume block since it has no
4384     // predecessors.
4385     TrivialBB->getTerminator()->eraseFromParent();
4386     new UnreachableInst(RI->getContext(), TrivialBB);
4387     if (DTU)
4388       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4389   }
4390 
4391   // Delete the resume block if all its predecessors have been removed.
4392   if (pred_empty(BB))
4393     DeleteDeadBlock(BB, DTU);
4394 
4395   return !TrivialUnwindBlocks.empty();
4396 }
4397 
4398 // Simplify resume that is only used by a single (non-phi) landing pad.
4399 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4400   BasicBlock *BB = RI->getParent();
4401   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4402   assert(RI->getValue() == LPInst &&
4403          "Resume must unwind the exception that caused control to here");
4404 
4405   // Check that there are no other instructions except for debug intrinsics.
4406   if (!isCleanupBlockEmpty(
4407           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4408     return false;
4409 
4410   // Turn all invokes that unwind here into calls and delete the basic block.
4411   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4412     removeUnwindEdge(Pred, DTU);
4413     ++NumInvokes;
4414   }
4415 
4416   // The landingpad is now unreachable.  Zap it.
4417   DeleteDeadBlock(BB, DTU);
4418   return true;
4419 }
4420 
4421 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4422   // If this is a trivial cleanup pad that executes no instructions, it can be
4423   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4424   // that is an EH pad will be updated to continue to the caller and any
4425   // predecessor that terminates with an invoke instruction will have its invoke
4426   // instruction converted to a call instruction.  If the cleanup pad being
4427   // simplified does not continue to the caller, each predecessor will be
4428   // updated to continue to the unwind destination of the cleanup pad being
4429   // simplified.
4430   BasicBlock *BB = RI->getParent();
4431   CleanupPadInst *CPInst = RI->getCleanupPad();
4432   if (CPInst->getParent() != BB)
4433     // This isn't an empty cleanup.
4434     return false;
4435 
4436   // We cannot kill the pad if it has multiple uses.  This typically arises
4437   // from unreachable basic blocks.
4438   if (!CPInst->hasOneUse())
4439     return false;
4440 
4441   // Check that there are no other instructions except for benign intrinsics.
4442   if (!isCleanupBlockEmpty(
4443           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4444     return false;
4445 
4446   // If the cleanup return we are simplifying unwinds to the caller, this will
4447   // set UnwindDest to nullptr.
4448   BasicBlock *UnwindDest = RI->getUnwindDest();
4449   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4450 
4451   // We're about to remove BB from the control flow.  Before we do, sink any
4452   // PHINodes into the unwind destination.  Doing this before changing the
4453   // control flow avoids some potentially slow checks, since we can currently
4454   // be certain that UnwindDest and BB have no common predecessors (since they
4455   // are both EH pads).
4456   if (UnwindDest) {
4457     // First, go through the PHI nodes in UnwindDest and update any nodes that
4458     // reference the block we are removing
4459     for (PHINode &DestPN : UnwindDest->phis()) {
4460       int Idx = DestPN.getBasicBlockIndex(BB);
4461       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4462       assert(Idx != -1);
4463       // This PHI node has an incoming value that corresponds to a control
4464       // path through the cleanup pad we are removing.  If the incoming
4465       // value is in the cleanup pad, it must be a PHINode (because we
4466       // verified above that the block is otherwise empty).  Otherwise, the
4467       // value is either a constant or a value that dominates the cleanup
4468       // pad being removed.
4469       //
4470       // Because BB and UnwindDest are both EH pads, all of their
4471       // predecessors must unwind to these blocks, and since no instruction
4472       // can have multiple unwind destinations, there will be no overlap in
4473       // incoming blocks between SrcPN and DestPN.
4474       Value *SrcVal = DestPN.getIncomingValue(Idx);
4475       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4476 
4477       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4478       for (auto *Pred : predecessors(BB)) {
4479         Value *Incoming =
4480             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4481         DestPN.addIncoming(Incoming, Pred);
4482       }
4483     }
4484 
4485     // Sink any remaining PHI nodes directly into UnwindDest.
4486     Instruction *InsertPt = DestEHPad;
4487     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4488       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4489         // If the PHI node has no uses or all of its uses are in this basic
4490         // block (meaning they are debug or lifetime intrinsics), just leave
4491         // it.  It will be erased when we erase BB below.
4492         continue;
4493 
4494       // Otherwise, sink this PHI node into UnwindDest.
4495       // Any predecessors to UnwindDest which are not already represented
4496       // must be back edges which inherit the value from the path through
4497       // BB.  In this case, the PHI value must reference itself.
4498       for (auto *pred : predecessors(UnwindDest))
4499         if (pred != BB)
4500           PN.addIncoming(&PN, pred);
4501       PN.moveBefore(InsertPt);
4502       // Also, add a dummy incoming value for the original BB itself,
4503       // so that the PHI is well-formed until we drop said predecessor.
4504       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4505     }
4506   }
4507 
4508   std::vector<DominatorTree::UpdateType> Updates;
4509 
4510   // We use make_early_inc_range here because we will remove all predecessors.
4511   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4512     if (UnwindDest == nullptr) {
4513       if (DTU) {
4514         DTU->applyUpdates(Updates);
4515         Updates.clear();
4516       }
4517       removeUnwindEdge(PredBB, DTU);
4518       ++NumInvokes;
4519     } else {
4520       BB->removePredecessor(PredBB);
4521       Instruction *TI = PredBB->getTerminator();
4522       TI->replaceUsesOfWith(BB, UnwindDest);
4523       if (DTU) {
4524         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4525         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4526       }
4527     }
4528   }
4529 
4530   if (DTU)
4531     DTU->applyUpdates(Updates);
4532 
4533   DeleteDeadBlock(BB, DTU);
4534 
4535   return true;
4536 }
4537 
4538 // Try to merge two cleanuppads together.
4539 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4540   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4541   // with.
4542   BasicBlock *UnwindDest = RI->getUnwindDest();
4543   if (!UnwindDest)
4544     return false;
4545 
4546   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4547   // be safe to merge without code duplication.
4548   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4549     return false;
4550 
4551   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4552   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4553   if (!SuccessorCleanupPad)
4554     return false;
4555 
4556   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4557   // Replace any uses of the successor cleanupad with the predecessor pad
4558   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4559   // funclet bundle operands.
4560   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4561   // Remove the old cleanuppad.
4562   SuccessorCleanupPad->eraseFromParent();
4563   // Now, we simply replace the cleanupret with a branch to the unwind
4564   // destination.
4565   BranchInst::Create(UnwindDest, RI->getParent());
4566   RI->eraseFromParent();
4567 
4568   return true;
4569 }
4570 
4571 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4572   // It is possible to transiantly have an undef cleanuppad operand because we
4573   // have deleted some, but not all, dead blocks.
4574   // Eventually, this block will be deleted.
4575   if (isa<UndefValue>(RI->getOperand(0)))
4576     return false;
4577 
4578   if (mergeCleanupPad(RI))
4579     return true;
4580 
4581   if (removeEmptyCleanup(RI, DTU))
4582     return true;
4583 
4584   return false;
4585 }
4586 
4587 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4588 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4589   BasicBlock *BB = UI->getParent();
4590 
4591   bool Changed = false;
4592 
4593   // If there are any instructions immediately before the unreachable that can
4594   // be removed, do so.
4595   while (UI->getIterator() != BB->begin()) {
4596     BasicBlock::iterator BBI = UI->getIterator();
4597     --BBI;
4598 
4599     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4600       break; // Can not drop any more instructions. We're done here.
4601     // Otherwise, this instruction can be freely erased,
4602     // even if it is not side-effect free.
4603 
4604     // Note that deleting EH's here is in fact okay, although it involves a bit
4605     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4606     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4607     // and we can therefore guarantee this block will be erased.
4608 
4609     // Delete this instruction (any uses are guaranteed to be dead)
4610     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4611     BBI->eraseFromParent();
4612     Changed = true;
4613   }
4614 
4615   // If the unreachable instruction is the first in the block, take a gander
4616   // at all of the predecessors of this instruction, and simplify them.
4617   if (&BB->front() != UI)
4618     return Changed;
4619 
4620   std::vector<DominatorTree::UpdateType> Updates;
4621 
4622   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4623   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4624     auto *Predecessor = Preds[i];
4625     Instruction *TI = Predecessor->getTerminator();
4626     IRBuilder<> Builder(TI);
4627     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4628       // We could either have a proper unconditional branch,
4629       // or a degenerate conditional branch with matching destinations.
4630       if (all_of(BI->successors(),
4631                  [BB](auto *Successor) { return Successor == BB; })) {
4632         new UnreachableInst(TI->getContext(), TI);
4633         TI->eraseFromParent();
4634         Changed = true;
4635       } else {
4636         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4637         Value* Cond = BI->getCondition();
4638         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4639                "The destinations are guaranteed to be different here.");
4640         if (BI->getSuccessor(0) == BB) {
4641           Builder.CreateAssumption(Builder.CreateNot(Cond));
4642           Builder.CreateBr(BI->getSuccessor(1));
4643         } else {
4644           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4645           Builder.CreateAssumption(Cond);
4646           Builder.CreateBr(BI->getSuccessor(0));
4647         }
4648         EraseTerminatorAndDCECond(BI);
4649         Changed = true;
4650       }
4651       if (DTU)
4652         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4653     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4654       SwitchInstProfUpdateWrapper SU(*SI);
4655       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4656         if (i->getCaseSuccessor() != BB) {
4657           ++i;
4658           continue;
4659         }
4660         BB->removePredecessor(SU->getParent());
4661         i = SU.removeCase(i);
4662         e = SU->case_end();
4663         Changed = true;
4664       }
4665       // Note that the default destination can't be removed!
4666       if (DTU && SI->getDefaultDest() != BB)
4667         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4668     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4669       if (II->getUnwindDest() == BB) {
4670         if (DTU) {
4671           DTU->applyUpdates(Updates);
4672           Updates.clear();
4673         }
4674         removeUnwindEdge(TI->getParent(), DTU);
4675         Changed = true;
4676       }
4677     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4678       if (CSI->getUnwindDest() == BB) {
4679         if (DTU) {
4680           DTU->applyUpdates(Updates);
4681           Updates.clear();
4682         }
4683         removeUnwindEdge(TI->getParent(), DTU);
4684         Changed = true;
4685         continue;
4686       }
4687 
4688       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4689                                              E = CSI->handler_end();
4690            I != E; ++I) {
4691         if (*I == BB) {
4692           CSI->removeHandler(I);
4693           --I;
4694           --E;
4695           Changed = true;
4696         }
4697       }
4698       if (DTU)
4699         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4700       if (CSI->getNumHandlers() == 0) {
4701         if (CSI->hasUnwindDest()) {
4702           // Redirect all predecessors of the block containing CatchSwitchInst
4703           // to instead branch to the CatchSwitchInst's unwind destination.
4704           if (DTU) {
4705             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4706               Updates.push_back({DominatorTree::Insert,
4707                                  PredecessorOfPredecessor,
4708                                  CSI->getUnwindDest()});
4709               Updates.push_back({DominatorTree::Delete,
4710                                  PredecessorOfPredecessor, Predecessor});
4711             }
4712           }
4713           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4714         } else {
4715           // Rewrite all preds to unwind to caller (or from invoke to call).
4716           if (DTU) {
4717             DTU->applyUpdates(Updates);
4718             Updates.clear();
4719           }
4720           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4721           for (BasicBlock *EHPred : EHPreds)
4722             removeUnwindEdge(EHPred, DTU);
4723         }
4724         // The catchswitch is no longer reachable.
4725         new UnreachableInst(CSI->getContext(), CSI);
4726         CSI->eraseFromParent();
4727         Changed = true;
4728       }
4729     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4730       (void)CRI;
4731       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4732              "Expected to always have an unwind to BB.");
4733       if (DTU)
4734         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4735       new UnreachableInst(TI->getContext(), TI);
4736       TI->eraseFromParent();
4737       Changed = true;
4738     }
4739   }
4740 
4741   if (DTU)
4742     DTU->applyUpdates(Updates);
4743 
4744   // If this block is now dead, remove it.
4745   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4746     DeleteDeadBlock(BB, DTU);
4747     return true;
4748   }
4749 
4750   return Changed;
4751 }
4752 
4753 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4754   assert(Cases.size() >= 1);
4755 
4756   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4757   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4758     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4759       return false;
4760   }
4761   return true;
4762 }
4763 
4764 /// Turn a switch with two reachable destinations into an integer range
4765 /// comparison and branch.
4766 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4767                                              IRBuilder<> &Builder) {
4768   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4769 
4770   bool HasDefault =
4771       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4772 
4773   auto *BB = SI->getParent();
4774 
4775   // Partition the cases into two sets with different destinations.
4776   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4777   BasicBlock *DestB = nullptr;
4778   SmallVector<ConstantInt *, 16> CasesA;
4779   SmallVector<ConstantInt *, 16> CasesB;
4780 
4781   for (auto Case : SI->cases()) {
4782     BasicBlock *Dest = Case.getCaseSuccessor();
4783     if (!DestA)
4784       DestA = Dest;
4785     if (Dest == DestA) {
4786       CasesA.push_back(Case.getCaseValue());
4787       continue;
4788     }
4789     if (!DestB)
4790       DestB = Dest;
4791     if (Dest == DestB) {
4792       CasesB.push_back(Case.getCaseValue());
4793       continue;
4794     }
4795     return false; // More than two destinations.
4796   }
4797 
4798   assert(DestA && DestB &&
4799          "Single-destination switch should have been folded.");
4800   assert(DestA != DestB);
4801   assert(DestB != SI->getDefaultDest());
4802   assert(!CasesB.empty() && "There must be non-default cases.");
4803   assert(!CasesA.empty() || HasDefault);
4804 
4805   // Figure out if one of the sets of cases form a contiguous range.
4806   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4807   BasicBlock *ContiguousDest = nullptr;
4808   BasicBlock *OtherDest = nullptr;
4809   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4810     ContiguousCases = &CasesA;
4811     ContiguousDest = DestA;
4812     OtherDest = DestB;
4813   } else if (CasesAreContiguous(CasesB)) {
4814     ContiguousCases = &CasesB;
4815     ContiguousDest = DestB;
4816     OtherDest = DestA;
4817   } else
4818     return false;
4819 
4820   // Start building the compare and branch.
4821 
4822   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4823   Constant *NumCases =
4824       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4825 
4826   Value *Sub = SI->getCondition();
4827   if (!Offset->isNullValue())
4828     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4829 
4830   Value *Cmp;
4831   // If NumCases overflowed, then all possible values jump to the successor.
4832   if (NumCases->isNullValue() && !ContiguousCases->empty())
4833     Cmp = ConstantInt::getTrue(SI->getContext());
4834   else
4835     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4836   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4837 
4838   // Update weight for the newly-created conditional branch.
4839   if (HasBranchWeights(SI)) {
4840     SmallVector<uint64_t, 8> Weights;
4841     GetBranchWeights(SI, Weights);
4842     if (Weights.size() == 1 + SI->getNumCases()) {
4843       uint64_t TrueWeight = 0;
4844       uint64_t FalseWeight = 0;
4845       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4846         if (SI->getSuccessor(I) == ContiguousDest)
4847           TrueWeight += Weights[I];
4848         else
4849           FalseWeight += Weights[I];
4850       }
4851       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4852         TrueWeight /= 2;
4853         FalseWeight /= 2;
4854       }
4855       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4856     }
4857   }
4858 
4859   // Prune obsolete incoming values off the successors' PHI nodes.
4860   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4861     unsigned PreviousEdges = ContiguousCases->size();
4862     if (ContiguousDest == SI->getDefaultDest())
4863       ++PreviousEdges;
4864     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4865       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4866   }
4867   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4868     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4869     if (OtherDest == SI->getDefaultDest())
4870       ++PreviousEdges;
4871     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4872       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4873   }
4874 
4875   // Clean up the default block - it may have phis or other instructions before
4876   // the unreachable terminator.
4877   if (!HasDefault)
4878     createUnreachableSwitchDefault(SI, DTU);
4879 
4880   auto *UnreachableDefault = SI->getDefaultDest();
4881 
4882   // Drop the switch.
4883   SI->eraseFromParent();
4884 
4885   if (!HasDefault && DTU)
4886     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4887 
4888   return true;
4889 }
4890 
4891 /// Compute masked bits for the condition of a switch
4892 /// and use it to remove dead cases.
4893 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4894                                      AssumptionCache *AC,
4895                                      const DataLayout &DL) {
4896   Value *Cond = SI->getCondition();
4897   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4898   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4899 
4900   // We can also eliminate cases by determining that their values are outside of
4901   // the limited range of the condition based on how many significant (non-sign)
4902   // bits are in the condition value.
4903   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4904   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4905 
4906   // Gather dead cases.
4907   SmallVector<ConstantInt *, 8> DeadCases;
4908   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4909   for (auto &Case : SI->cases()) {
4910     auto *Successor = Case.getCaseSuccessor();
4911     if (DTU)
4912       ++NumPerSuccessorCases[Successor];
4913     const APInt &CaseVal = Case.getCaseValue()->getValue();
4914     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4915         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4916       DeadCases.push_back(Case.getCaseValue());
4917       if (DTU)
4918         --NumPerSuccessorCases[Successor];
4919       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4920                         << " is dead.\n");
4921     }
4922   }
4923 
4924   // If we can prove that the cases must cover all possible values, the
4925   // default destination becomes dead and we can remove it.  If we know some
4926   // of the bits in the value, we can use that to more precisely compute the
4927   // number of possible unique case values.
4928   bool HasDefault =
4929       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4930   const unsigned NumUnknownBits =
4931       Bits - (Known.Zero | Known.One).countPopulation();
4932   assert(NumUnknownBits <= Bits);
4933   if (HasDefault && DeadCases.empty() &&
4934       NumUnknownBits < 64 /* avoid overflow */ &&
4935       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4936     createUnreachableSwitchDefault(SI, DTU);
4937     return true;
4938   }
4939 
4940   if (DeadCases.empty())
4941     return false;
4942 
4943   SwitchInstProfUpdateWrapper SIW(*SI);
4944   for (ConstantInt *DeadCase : DeadCases) {
4945     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4946     assert(CaseI != SI->case_default() &&
4947            "Case was not found. Probably mistake in DeadCases forming.");
4948     // Prune unused values from PHI nodes.
4949     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4950     SIW.removeCase(CaseI);
4951   }
4952 
4953   if (DTU) {
4954     std::vector<DominatorTree::UpdateType> Updates;
4955     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4956       if (I.second == 0)
4957         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4958     DTU->applyUpdates(Updates);
4959   }
4960 
4961   return true;
4962 }
4963 
4964 /// If BB would be eligible for simplification by
4965 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4966 /// by an unconditional branch), look at the phi node for BB in the successor
4967 /// block and see if the incoming value is equal to CaseValue. If so, return
4968 /// the phi node, and set PhiIndex to BB's index in the phi node.
4969 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4970                                               BasicBlock *BB, int *PhiIndex) {
4971   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4972     return nullptr; // BB must be empty to be a candidate for simplification.
4973   if (!BB->getSinglePredecessor())
4974     return nullptr; // BB must be dominated by the switch.
4975 
4976   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4977   if (!Branch || !Branch->isUnconditional())
4978     return nullptr; // Terminator must be unconditional branch.
4979 
4980   BasicBlock *Succ = Branch->getSuccessor(0);
4981 
4982   for (PHINode &PHI : Succ->phis()) {
4983     int Idx = PHI.getBasicBlockIndex(BB);
4984     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4985 
4986     Value *InValue = PHI.getIncomingValue(Idx);
4987     if (InValue != CaseValue)
4988       continue;
4989 
4990     *PhiIndex = Idx;
4991     return &PHI;
4992   }
4993 
4994   return nullptr;
4995 }
4996 
4997 /// Try to forward the condition of a switch instruction to a phi node
4998 /// dominated by the switch, if that would mean that some of the destination
4999 /// blocks of the switch can be folded away. Return true if a change is made.
5000 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5001   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5002 
5003   ForwardingNodesMap ForwardingNodes;
5004   BasicBlock *SwitchBlock = SI->getParent();
5005   bool Changed = false;
5006   for (auto &Case : SI->cases()) {
5007     ConstantInt *CaseValue = Case.getCaseValue();
5008     BasicBlock *CaseDest = Case.getCaseSuccessor();
5009 
5010     // Replace phi operands in successor blocks that are using the constant case
5011     // value rather than the switch condition variable:
5012     //   switchbb:
5013     //   switch i32 %x, label %default [
5014     //     i32 17, label %succ
5015     //   ...
5016     //   succ:
5017     //     %r = phi i32 ... [ 17, %switchbb ] ...
5018     // -->
5019     //     %r = phi i32 ... [ %x, %switchbb ] ...
5020 
5021     for (PHINode &Phi : CaseDest->phis()) {
5022       // This only works if there is exactly 1 incoming edge from the switch to
5023       // a phi. If there is >1, that means multiple cases of the switch map to 1
5024       // value in the phi, and that phi value is not the switch condition. Thus,
5025       // this transform would not make sense (the phi would be invalid because
5026       // a phi can't have different incoming values from the same block).
5027       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5028       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5029           count(Phi.blocks(), SwitchBlock) == 1) {
5030         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5031         Changed = true;
5032       }
5033     }
5034 
5035     // Collect phi nodes that are indirectly using this switch's case constants.
5036     int PhiIdx;
5037     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5038       ForwardingNodes[Phi].push_back(PhiIdx);
5039   }
5040 
5041   for (auto &ForwardingNode : ForwardingNodes) {
5042     PHINode *Phi = ForwardingNode.first;
5043     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5044     if (Indexes.size() < 2)
5045       continue;
5046 
5047     for (int Index : Indexes)
5048       Phi->setIncomingValue(Index, SI->getCondition());
5049     Changed = true;
5050   }
5051 
5052   return Changed;
5053 }
5054 
5055 /// Return true if the backend will be able to handle
5056 /// initializing an array of constants like C.
5057 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5058   if (C->isThreadDependent())
5059     return false;
5060   if (C->isDLLImportDependent())
5061     return false;
5062 
5063   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5064       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5065       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5066     return false;
5067 
5068   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5069     if (!CE->isGEPWithNoNotionalOverIndexing())
5070       return false;
5071     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5072       return false;
5073   }
5074 
5075   if (!TTI.shouldBuildLookupTablesForConstant(C))
5076     return false;
5077 
5078   return true;
5079 }
5080 
5081 /// If V is a Constant, return it. Otherwise, try to look up
5082 /// its constant value in ConstantPool, returning 0 if it's not there.
5083 static Constant *
5084 LookupConstant(Value *V,
5085                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5086   if (Constant *C = dyn_cast<Constant>(V))
5087     return C;
5088   return ConstantPool.lookup(V);
5089 }
5090 
5091 /// Try to fold instruction I into a constant. This works for
5092 /// simple instructions such as binary operations where both operands are
5093 /// constant or can be replaced by constants from the ConstantPool. Returns the
5094 /// resulting constant on success, 0 otherwise.
5095 static Constant *
5096 ConstantFold(Instruction *I, const DataLayout &DL,
5097              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5098   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5099     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5100     if (!A)
5101       return nullptr;
5102     if (A->isAllOnesValue())
5103       return LookupConstant(Select->getTrueValue(), ConstantPool);
5104     if (A->isNullValue())
5105       return LookupConstant(Select->getFalseValue(), ConstantPool);
5106     return nullptr;
5107   }
5108 
5109   SmallVector<Constant *, 4> COps;
5110   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5111     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5112       COps.push_back(A);
5113     else
5114       return nullptr;
5115   }
5116 
5117   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5118     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5119                                            COps[1], DL);
5120   }
5121 
5122   return ConstantFoldInstOperands(I, COps, DL);
5123 }
5124 
5125 /// Try to determine the resulting constant values in phi nodes
5126 /// at the common destination basic block, *CommonDest, for one of the case
5127 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5128 /// case), of a switch instruction SI.
5129 static bool
5130 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5131                BasicBlock **CommonDest,
5132                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5133                const DataLayout &DL, const TargetTransformInfo &TTI) {
5134   // The block from which we enter the common destination.
5135   BasicBlock *Pred = SI->getParent();
5136 
5137   // If CaseDest is empty except for some side-effect free instructions through
5138   // which we can constant-propagate the CaseVal, continue to its successor.
5139   SmallDenseMap<Value *, Constant *> ConstantPool;
5140   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5141   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5142     if (I.isTerminator()) {
5143       // If the terminator is a simple branch, continue to the next block.
5144       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5145         return false;
5146       Pred = CaseDest;
5147       CaseDest = I.getSuccessor(0);
5148     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5149       // Instruction is side-effect free and constant.
5150 
5151       // If the instruction has uses outside this block or a phi node slot for
5152       // the block, it is not safe to bypass the instruction since it would then
5153       // no longer dominate all its uses.
5154       for (auto &Use : I.uses()) {
5155         User *User = Use.getUser();
5156         if (Instruction *I = dyn_cast<Instruction>(User))
5157           if (I->getParent() == CaseDest)
5158             continue;
5159         if (PHINode *Phi = dyn_cast<PHINode>(User))
5160           if (Phi->getIncomingBlock(Use) == CaseDest)
5161             continue;
5162         return false;
5163       }
5164 
5165       ConstantPool.insert(std::make_pair(&I, C));
5166     } else {
5167       break;
5168     }
5169   }
5170 
5171   // If we did not have a CommonDest before, use the current one.
5172   if (!*CommonDest)
5173     *CommonDest = CaseDest;
5174   // If the destination isn't the common one, abort.
5175   if (CaseDest != *CommonDest)
5176     return false;
5177 
5178   // Get the values for this case from phi nodes in the destination block.
5179   for (PHINode &PHI : (*CommonDest)->phis()) {
5180     int Idx = PHI.getBasicBlockIndex(Pred);
5181     if (Idx == -1)
5182       continue;
5183 
5184     Constant *ConstVal =
5185         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5186     if (!ConstVal)
5187       return false;
5188 
5189     // Be conservative about which kinds of constants we support.
5190     if (!ValidLookupTableConstant(ConstVal, TTI))
5191       return false;
5192 
5193     Res.push_back(std::make_pair(&PHI, ConstVal));
5194   }
5195 
5196   return Res.size() > 0;
5197 }
5198 
5199 // Helper function used to add CaseVal to the list of cases that generate
5200 // Result. Returns the updated number of cases that generate this result.
5201 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5202                                  SwitchCaseResultVectorTy &UniqueResults,
5203                                  Constant *Result) {
5204   for (auto &I : UniqueResults) {
5205     if (I.first == Result) {
5206       I.second.push_back(CaseVal);
5207       return I.second.size();
5208     }
5209   }
5210   UniqueResults.push_back(
5211       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5212   return 1;
5213 }
5214 
5215 // Helper function that initializes a map containing
5216 // results for the PHI node of the common destination block for a switch
5217 // instruction. Returns false if multiple PHI nodes have been found or if
5218 // there is not a common destination block for the switch.
5219 static bool
5220 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5221                       SwitchCaseResultVectorTy &UniqueResults,
5222                       Constant *&DefaultResult, const DataLayout &DL,
5223                       const TargetTransformInfo &TTI,
5224                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5225   for (auto &I : SI->cases()) {
5226     ConstantInt *CaseVal = I.getCaseValue();
5227 
5228     // Resulting value at phi nodes for this case value.
5229     SwitchCaseResultsTy Results;
5230     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5231                         DL, TTI))
5232       return false;
5233 
5234     // Only one value per case is permitted.
5235     if (Results.size() > 1)
5236       return false;
5237 
5238     // Add the case->result mapping to UniqueResults.
5239     const uintptr_t NumCasesForResult =
5240         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5241 
5242     // Early out if there are too many cases for this result.
5243     if (NumCasesForResult > MaxCasesPerResult)
5244       return false;
5245 
5246     // Early out if there are too many unique results.
5247     if (UniqueResults.size() > MaxUniqueResults)
5248       return false;
5249 
5250     // Check the PHI consistency.
5251     if (!PHI)
5252       PHI = Results[0].first;
5253     else if (PHI != Results[0].first)
5254       return false;
5255   }
5256   // Find the default result value.
5257   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5258   BasicBlock *DefaultDest = SI->getDefaultDest();
5259   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5260                  DL, TTI);
5261   // If the default value is not found abort unless the default destination
5262   // is unreachable.
5263   DefaultResult =
5264       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5265   if ((!DefaultResult &&
5266        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5267     return false;
5268 
5269   return true;
5270 }
5271 
5272 // Helper function that checks if it is possible to transform a switch with only
5273 // two cases (or two cases + default) that produces a result into a select.
5274 // Example:
5275 // switch (a) {
5276 //   case 10:                %0 = icmp eq i32 %a, 10
5277 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5278 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5279 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5280 //   default:
5281 //     return 4;
5282 // }
5283 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5284                                    Constant *DefaultResult, Value *Condition,
5285                                    IRBuilder<> &Builder) {
5286   // If we are selecting between only two cases transform into a simple
5287   // select or a two-way select if default is possible.
5288   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5289       ResultVector[1].second.size() == 1) {
5290     ConstantInt *const FirstCase = ResultVector[0].second[0];
5291     ConstantInt *const SecondCase = ResultVector[1].second[0];
5292 
5293     bool DefaultCanTrigger = DefaultResult;
5294     Value *SelectValue = ResultVector[1].first;
5295     if (DefaultCanTrigger) {
5296       Value *const ValueCompare =
5297           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5298       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5299                                          DefaultResult, "switch.select");
5300     }
5301     Value *const ValueCompare =
5302         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5303     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5304                                 SelectValue, "switch.select");
5305   }
5306 
5307   // Handle the degenerate case where two cases have the same value.
5308   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5309       DefaultResult) {
5310     Value *Cmp1 = Builder.CreateICmpEQ(
5311         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5312     Value *Cmp2 = Builder.CreateICmpEQ(
5313         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5314     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5315     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5316   }
5317 
5318   return nullptr;
5319 }
5320 
5321 // Helper function to cleanup a switch instruction that has been converted into
5322 // a select, fixing up PHI nodes and basic blocks.
5323 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5324                                               Value *SelectValue,
5325                                               IRBuilder<> &Builder,
5326                                               DomTreeUpdater *DTU) {
5327   std::vector<DominatorTree::UpdateType> Updates;
5328 
5329   BasicBlock *SelectBB = SI->getParent();
5330   BasicBlock *DestBB = PHI->getParent();
5331 
5332   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5333     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5334   Builder.CreateBr(DestBB);
5335 
5336   // Remove the switch.
5337 
5338   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5339     PHI->removeIncomingValue(SelectBB);
5340   PHI->addIncoming(SelectValue, SelectBB);
5341 
5342   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5343   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5344     BasicBlock *Succ = SI->getSuccessor(i);
5345 
5346     if (Succ == DestBB)
5347       continue;
5348     Succ->removePredecessor(SelectBB);
5349     if (DTU && RemovedSuccessors.insert(Succ).second)
5350       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5351   }
5352   SI->eraseFromParent();
5353   if (DTU)
5354     DTU->applyUpdates(Updates);
5355 }
5356 
5357 /// If the switch is only used to initialize one or more
5358 /// phi nodes in a common successor block with only two different
5359 /// constant values, replace the switch with select.
5360 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5361                            DomTreeUpdater *DTU, const DataLayout &DL,
5362                            const TargetTransformInfo &TTI) {
5363   Value *const Cond = SI->getCondition();
5364   PHINode *PHI = nullptr;
5365   BasicBlock *CommonDest = nullptr;
5366   Constant *DefaultResult;
5367   SwitchCaseResultVectorTy UniqueResults;
5368   // Collect all the cases that will deliver the same value from the switch.
5369   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5370                              DL, TTI, /*MaxUniqueResults*/2,
5371                              /*MaxCasesPerResult*/2))
5372     return false;
5373   assert(PHI != nullptr && "PHI for value select not found");
5374 
5375   Builder.SetInsertPoint(SI);
5376   Value *SelectValue =
5377       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5378   if (SelectValue) {
5379     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5380     return true;
5381   }
5382   // The switch couldn't be converted into a select.
5383   return false;
5384 }
5385 
5386 namespace {
5387 
5388 /// This class represents a lookup table that can be used to replace a switch.
5389 class SwitchLookupTable {
5390 public:
5391   /// Create a lookup table to use as a switch replacement with the contents
5392   /// of Values, using DefaultValue to fill any holes in the table.
5393   SwitchLookupTable(
5394       Module &M, uint64_t TableSize, ConstantInt *Offset,
5395       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5396       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5397 
5398   /// Build instructions with Builder to retrieve the value at
5399   /// the position given by Index in the lookup table.
5400   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5401 
5402   /// Return true if a table with TableSize elements of
5403   /// type ElementType would fit in a target-legal register.
5404   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5405                                  Type *ElementType);
5406 
5407 private:
5408   // Depending on the contents of the table, it can be represented in
5409   // different ways.
5410   enum {
5411     // For tables where each element contains the same value, we just have to
5412     // store that single value and return it for each lookup.
5413     SingleValueKind,
5414 
5415     // For tables where there is a linear relationship between table index
5416     // and values. We calculate the result with a simple multiplication
5417     // and addition instead of a table lookup.
5418     LinearMapKind,
5419 
5420     // For small tables with integer elements, we can pack them into a bitmap
5421     // that fits into a target-legal register. Values are retrieved by
5422     // shift and mask operations.
5423     BitMapKind,
5424 
5425     // The table is stored as an array of values. Values are retrieved by load
5426     // instructions from the table.
5427     ArrayKind
5428   } Kind;
5429 
5430   // For SingleValueKind, this is the single value.
5431   Constant *SingleValue = nullptr;
5432 
5433   // For BitMapKind, this is the bitmap.
5434   ConstantInt *BitMap = nullptr;
5435   IntegerType *BitMapElementTy = nullptr;
5436 
5437   // For LinearMapKind, these are the constants used to derive the value.
5438   ConstantInt *LinearOffset = nullptr;
5439   ConstantInt *LinearMultiplier = nullptr;
5440 
5441   // For ArrayKind, this is the array.
5442   GlobalVariable *Array = nullptr;
5443 };
5444 
5445 } // end anonymous namespace
5446 
5447 SwitchLookupTable::SwitchLookupTable(
5448     Module &M, uint64_t TableSize, ConstantInt *Offset,
5449     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5450     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5451   assert(Values.size() && "Can't build lookup table without values!");
5452   assert(TableSize >= Values.size() && "Can't fit values in table!");
5453 
5454   // If all values in the table are equal, this is that value.
5455   SingleValue = Values.begin()->second;
5456 
5457   Type *ValueType = Values.begin()->second->getType();
5458 
5459   // Build up the table contents.
5460   SmallVector<Constant *, 64> TableContents(TableSize);
5461   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5462     ConstantInt *CaseVal = Values[I].first;
5463     Constant *CaseRes = Values[I].second;
5464     assert(CaseRes->getType() == ValueType);
5465 
5466     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5467     TableContents[Idx] = CaseRes;
5468 
5469     if (CaseRes != SingleValue)
5470       SingleValue = nullptr;
5471   }
5472 
5473   // Fill in any holes in the table with the default result.
5474   if (Values.size() < TableSize) {
5475     assert(DefaultValue &&
5476            "Need a default value to fill the lookup table holes.");
5477     assert(DefaultValue->getType() == ValueType);
5478     for (uint64_t I = 0; I < TableSize; ++I) {
5479       if (!TableContents[I])
5480         TableContents[I] = DefaultValue;
5481     }
5482 
5483     if (DefaultValue != SingleValue)
5484       SingleValue = nullptr;
5485   }
5486 
5487   // If each element in the table contains the same value, we only need to store
5488   // that single value.
5489   if (SingleValue) {
5490     Kind = SingleValueKind;
5491     return;
5492   }
5493 
5494   // Check if we can derive the value with a linear transformation from the
5495   // table index.
5496   if (isa<IntegerType>(ValueType)) {
5497     bool LinearMappingPossible = true;
5498     APInt PrevVal;
5499     APInt DistToPrev;
5500     assert(TableSize >= 2 && "Should be a SingleValue table.");
5501     // Check if there is the same distance between two consecutive values.
5502     for (uint64_t I = 0; I < TableSize; ++I) {
5503       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5504       if (!ConstVal) {
5505         // This is an undef. We could deal with it, but undefs in lookup tables
5506         // are very seldom. It's probably not worth the additional complexity.
5507         LinearMappingPossible = false;
5508         break;
5509       }
5510       const APInt &Val = ConstVal->getValue();
5511       if (I != 0) {
5512         APInt Dist = Val - PrevVal;
5513         if (I == 1) {
5514           DistToPrev = Dist;
5515         } else if (Dist != DistToPrev) {
5516           LinearMappingPossible = false;
5517           break;
5518         }
5519       }
5520       PrevVal = Val;
5521     }
5522     if (LinearMappingPossible) {
5523       LinearOffset = cast<ConstantInt>(TableContents[0]);
5524       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5525       Kind = LinearMapKind;
5526       ++NumLinearMaps;
5527       return;
5528     }
5529   }
5530 
5531   // If the type is integer and the table fits in a register, build a bitmap.
5532   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5533     IntegerType *IT = cast<IntegerType>(ValueType);
5534     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5535     for (uint64_t I = TableSize; I > 0; --I) {
5536       TableInt <<= IT->getBitWidth();
5537       // Insert values into the bitmap. Undef values are set to zero.
5538       if (!isa<UndefValue>(TableContents[I - 1])) {
5539         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5540         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5541       }
5542     }
5543     BitMap = ConstantInt::get(M.getContext(), TableInt);
5544     BitMapElementTy = IT;
5545     Kind = BitMapKind;
5546     ++NumBitMaps;
5547     return;
5548   }
5549 
5550   // Store the table in an array.
5551   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5552   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5553 
5554   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5555                              GlobalVariable::PrivateLinkage, Initializer,
5556                              "switch.table." + FuncName);
5557   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5558   // Set the alignment to that of an array items. We will be only loading one
5559   // value out of it.
5560   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5561   Kind = ArrayKind;
5562 }
5563 
5564 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5565   switch (Kind) {
5566   case SingleValueKind:
5567     return SingleValue;
5568   case LinearMapKind: {
5569     // Derive the result value from the input value.
5570     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5571                                           false, "switch.idx.cast");
5572     if (!LinearMultiplier->isOne())
5573       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5574     if (!LinearOffset->isZero())
5575       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5576     return Result;
5577   }
5578   case BitMapKind: {
5579     // Type of the bitmap (e.g. i59).
5580     IntegerType *MapTy = BitMap->getType();
5581 
5582     // Cast Index to the same type as the bitmap.
5583     // Note: The Index is <= the number of elements in the table, so
5584     // truncating it to the width of the bitmask is safe.
5585     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5586 
5587     // Multiply the shift amount by the element width.
5588     ShiftAmt = Builder.CreateMul(
5589         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5590         "switch.shiftamt");
5591 
5592     // Shift down.
5593     Value *DownShifted =
5594         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5595     // Mask off.
5596     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5597   }
5598   case ArrayKind: {
5599     // Make sure the table index will not overflow when treated as signed.
5600     IntegerType *IT = cast<IntegerType>(Index->getType());
5601     uint64_t TableSize =
5602         Array->getInitializer()->getType()->getArrayNumElements();
5603     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5604       Index = Builder.CreateZExt(
5605           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5606           "switch.tableidx.zext");
5607 
5608     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5609     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5610                                            GEPIndices, "switch.gep");
5611     return Builder.CreateLoad(
5612         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5613         "switch.load");
5614   }
5615   }
5616   llvm_unreachable("Unknown lookup table kind!");
5617 }
5618 
5619 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5620                                            uint64_t TableSize,
5621                                            Type *ElementType) {
5622   auto *IT = dyn_cast<IntegerType>(ElementType);
5623   if (!IT)
5624     return false;
5625   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5626   // are <= 15, we could try to narrow the type.
5627 
5628   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5629   if (TableSize >= UINT_MAX / IT->getBitWidth())
5630     return false;
5631   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5632 }
5633 
5634 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
5635                                       const DataLayout &DL) {
5636   // Allow any legal type.
5637   if (TTI.isTypeLegal(Ty))
5638     return true;
5639 
5640   auto *IT = dyn_cast<IntegerType>(Ty);
5641   if (!IT)
5642     return false;
5643 
5644   // Also allow power of 2 integer types that have at least 8 bits and fit in
5645   // a register. These types are common in frontend languages and targets
5646   // usually support loads of these types.
5647   // TODO: We could relax this to any integer that fits in a register and rely
5648   // on ABI alignment and padding in the table to allow the load to be widened.
5649   // Or we could widen the constants and truncate the load.
5650   unsigned BitWidth = IT->getBitWidth();
5651   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
5652          DL.fitsInLegalInteger(IT->getBitWidth());
5653 }
5654 
5655 /// Determine whether a lookup table should be built for this switch, based on
5656 /// the number of cases, size of the table, and the types of the results.
5657 // TODO: We could support larger than legal types by limiting based on the
5658 // number of loads required and/or table size. If the constants are small we
5659 // could use smaller table entries and extend after the load.
5660 static bool
5661 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5662                        const TargetTransformInfo &TTI, const DataLayout &DL,
5663                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5664   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5665     return false; // TableSize overflowed, or mul below might overflow.
5666 
5667   bool AllTablesFitInRegister = true;
5668   bool HasIllegalType = false;
5669   for (const auto &I : ResultTypes) {
5670     Type *Ty = I.second;
5671 
5672     // Saturate this flag to true.
5673     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
5674 
5675     // Saturate this flag to false.
5676     AllTablesFitInRegister =
5677         AllTablesFitInRegister &&
5678         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5679 
5680     // If both flags saturate, we're done. NOTE: This *only* works with
5681     // saturating flags, and all flags have to saturate first due to the
5682     // non-deterministic behavior of iterating over a dense map.
5683     if (HasIllegalType && !AllTablesFitInRegister)
5684       break;
5685   }
5686 
5687   // If each table would fit in a register, we should build it anyway.
5688   if (AllTablesFitInRegister)
5689     return true;
5690 
5691   // Don't build a table that doesn't fit in-register if it has illegal types.
5692   if (HasIllegalType)
5693     return false;
5694 
5695   // The table density should be at least 40%. This is the same criterion as for
5696   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5697   // FIXME: Find the best cut-off.
5698   return SI->getNumCases() * 10 >= TableSize * 4;
5699 }
5700 
5701 /// Try to reuse the switch table index compare. Following pattern:
5702 /// \code
5703 ///     if (idx < tablesize)
5704 ///        r = table[idx]; // table does not contain default_value
5705 ///     else
5706 ///        r = default_value;
5707 ///     if (r != default_value)
5708 ///        ...
5709 /// \endcode
5710 /// Is optimized to:
5711 /// \code
5712 ///     cond = idx < tablesize;
5713 ///     if (cond)
5714 ///        r = table[idx];
5715 ///     else
5716 ///        r = default_value;
5717 ///     if (cond)
5718 ///        ...
5719 /// \endcode
5720 /// Jump threading will then eliminate the second if(cond).
5721 static void reuseTableCompare(
5722     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5723     Constant *DefaultValue,
5724     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5725   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5726   if (!CmpInst)
5727     return;
5728 
5729   // We require that the compare is in the same block as the phi so that jump
5730   // threading can do its work afterwards.
5731   if (CmpInst->getParent() != PhiBlock)
5732     return;
5733 
5734   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5735   if (!CmpOp1)
5736     return;
5737 
5738   Value *RangeCmp = RangeCheckBranch->getCondition();
5739   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5740   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5741 
5742   // Check if the compare with the default value is constant true or false.
5743   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5744                                                  DefaultValue, CmpOp1, true);
5745   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5746     return;
5747 
5748   // Check if the compare with the case values is distinct from the default
5749   // compare result.
5750   for (auto ValuePair : Values) {
5751     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5752                                                 ValuePair.second, CmpOp1, true);
5753     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5754       return;
5755     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5756            "Expect true or false as compare result.");
5757   }
5758 
5759   // Check if the branch instruction dominates the phi node. It's a simple
5760   // dominance check, but sufficient for our needs.
5761   // Although this check is invariant in the calling loops, it's better to do it
5762   // at this late stage. Practically we do it at most once for a switch.
5763   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5764   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5765     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5766       return;
5767   }
5768 
5769   if (DefaultConst == FalseConst) {
5770     // The compare yields the same result. We can replace it.
5771     CmpInst->replaceAllUsesWith(RangeCmp);
5772     ++NumTableCmpReuses;
5773   } else {
5774     // The compare yields the same result, just inverted. We can replace it.
5775     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5776         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5777         RangeCheckBranch);
5778     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5779     ++NumTableCmpReuses;
5780   }
5781 }
5782 
5783 /// If the switch is only used to initialize one or more phi nodes in a common
5784 /// successor block with different constant values, replace the switch with
5785 /// lookup tables.
5786 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5787                                 DomTreeUpdater *DTU, const DataLayout &DL,
5788                                 const TargetTransformInfo &TTI) {
5789   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5790 
5791   BasicBlock *BB = SI->getParent();
5792   Function *Fn = BB->getParent();
5793   // Only build lookup table when we have a target that supports it or the
5794   // attribute is not set.
5795   if (!TTI.shouldBuildLookupTables() ||
5796       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5797     return false;
5798 
5799   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5800   // split off a dense part and build a lookup table for that.
5801 
5802   // FIXME: This creates arrays of GEPs to constant strings, which means each
5803   // GEP needs a runtime relocation in PIC code. We should just build one big
5804   // string and lookup indices into that.
5805 
5806   // Ignore switches with less than three cases. Lookup tables will not make
5807   // them faster, so we don't analyze them.
5808   if (SI->getNumCases() < 3)
5809     return false;
5810 
5811   // Figure out the corresponding result for each case value and phi node in the
5812   // common destination, as well as the min and max case values.
5813   assert(!SI->cases().empty());
5814   SwitchInst::CaseIt CI = SI->case_begin();
5815   ConstantInt *MinCaseVal = CI->getCaseValue();
5816   ConstantInt *MaxCaseVal = CI->getCaseValue();
5817 
5818   BasicBlock *CommonDest = nullptr;
5819 
5820   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5821   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5822 
5823   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5824   SmallDenseMap<PHINode *, Type *> ResultTypes;
5825   SmallVector<PHINode *, 4> PHIs;
5826 
5827   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5828     ConstantInt *CaseVal = CI->getCaseValue();
5829     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5830       MinCaseVal = CaseVal;
5831     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5832       MaxCaseVal = CaseVal;
5833 
5834     // Resulting value at phi nodes for this case value.
5835     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5836     ResultsTy Results;
5837     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5838                         Results, DL, TTI))
5839       return false;
5840 
5841     // Append the result from this case to the list for each phi.
5842     for (const auto &I : Results) {
5843       PHINode *PHI = I.first;
5844       Constant *Value = I.second;
5845       if (!ResultLists.count(PHI))
5846         PHIs.push_back(PHI);
5847       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5848     }
5849   }
5850 
5851   // Keep track of the result types.
5852   for (PHINode *PHI : PHIs) {
5853     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5854   }
5855 
5856   uint64_t NumResults = ResultLists[PHIs[0]].size();
5857   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5858   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5859   bool TableHasHoles = (NumResults < TableSize);
5860 
5861   // If the table has holes, we need a constant result for the default case
5862   // or a bitmask that fits in a register.
5863   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5864   bool HasDefaultResults =
5865       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5866                      DefaultResultsList, DL, TTI);
5867 
5868   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5869   if (NeedMask) {
5870     // As an extra penalty for the validity test we require more cases.
5871     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5872       return false;
5873     if (!DL.fitsInLegalInteger(TableSize))
5874       return false;
5875   }
5876 
5877   for (const auto &I : DefaultResultsList) {
5878     PHINode *PHI = I.first;
5879     Constant *Result = I.second;
5880     DefaultResults[PHI] = Result;
5881   }
5882 
5883   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5884     return false;
5885 
5886   std::vector<DominatorTree::UpdateType> Updates;
5887 
5888   // Create the BB that does the lookups.
5889   Module &Mod = *CommonDest->getParent()->getParent();
5890   BasicBlock *LookupBB = BasicBlock::Create(
5891       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5892 
5893   // Compute the table index value.
5894   Builder.SetInsertPoint(SI);
5895   Value *TableIndex;
5896   if (MinCaseVal->isNullValue())
5897     TableIndex = SI->getCondition();
5898   else
5899     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5900                                    "switch.tableidx");
5901 
5902   // Compute the maximum table size representable by the integer type we are
5903   // switching upon.
5904   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5905   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5906   assert(MaxTableSize >= TableSize &&
5907          "It is impossible for a switch to have more entries than the max "
5908          "representable value of its input integer type's size.");
5909 
5910   // If the default destination is unreachable, or if the lookup table covers
5911   // all values of the conditional variable, branch directly to the lookup table
5912   // BB. Otherwise, check that the condition is within the case range.
5913   const bool DefaultIsReachable =
5914       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5915   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5916   BranchInst *RangeCheckBranch = nullptr;
5917 
5918   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5919     Builder.CreateBr(LookupBB);
5920     if (DTU)
5921       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5922     // Note: We call removeProdecessor later since we need to be able to get the
5923     // PHI value for the default case in case we're using a bit mask.
5924   } else {
5925     Value *Cmp = Builder.CreateICmpULT(
5926         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5927     RangeCheckBranch =
5928         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5929     if (DTU)
5930       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5931   }
5932 
5933   // Populate the BB that does the lookups.
5934   Builder.SetInsertPoint(LookupBB);
5935 
5936   if (NeedMask) {
5937     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5938     // re-purposed to do the hole check, and we create a new LookupBB.
5939     BasicBlock *MaskBB = LookupBB;
5940     MaskBB->setName("switch.hole_check");
5941     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5942                                   CommonDest->getParent(), CommonDest);
5943 
5944     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5945     // unnecessary illegal types.
5946     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5947     APInt MaskInt(TableSizePowOf2, 0);
5948     APInt One(TableSizePowOf2, 1);
5949     // Build bitmask; fill in a 1 bit for every case.
5950     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5951     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5952       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5953                          .getLimitedValue();
5954       MaskInt |= One << Idx;
5955     }
5956     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5957 
5958     // Get the TableIndex'th bit of the bitmask.
5959     // If this bit is 0 (meaning hole) jump to the default destination,
5960     // else continue with table lookup.
5961     IntegerType *MapTy = TableMask->getType();
5962     Value *MaskIndex =
5963         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5964     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5965     Value *LoBit = Builder.CreateTrunc(
5966         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5967     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5968     if (DTU) {
5969       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5970       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5971     }
5972     Builder.SetInsertPoint(LookupBB);
5973     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5974   }
5975 
5976   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5977     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5978     // do not delete PHINodes here.
5979     SI->getDefaultDest()->removePredecessor(BB,
5980                                             /*KeepOneInputPHIs=*/true);
5981     if (DTU)
5982       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5983   }
5984 
5985   for (PHINode *PHI : PHIs) {
5986     const ResultListTy &ResultList = ResultLists[PHI];
5987 
5988     // If using a bitmask, use any value to fill the lookup table holes.
5989     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5990     StringRef FuncName = Fn->getName();
5991     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5992                             FuncName);
5993 
5994     Value *Result = Table.BuildLookup(TableIndex, Builder);
5995 
5996     // Do a small peephole optimization: re-use the switch table compare if
5997     // possible.
5998     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5999       BasicBlock *PhiBlock = PHI->getParent();
6000       // Search for compare instructions which use the phi.
6001       for (auto *User : PHI->users()) {
6002         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6003       }
6004     }
6005 
6006     PHI->addIncoming(Result, LookupBB);
6007   }
6008 
6009   Builder.CreateBr(CommonDest);
6010   if (DTU)
6011     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6012 
6013   // Remove the switch.
6014   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6015   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6016     BasicBlock *Succ = SI->getSuccessor(i);
6017 
6018     if (Succ == SI->getDefaultDest())
6019       continue;
6020     Succ->removePredecessor(BB);
6021     RemovedSuccessors.insert(Succ);
6022   }
6023   SI->eraseFromParent();
6024 
6025   if (DTU) {
6026     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6027       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6028     DTU->applyUpdates(Updates);
6029   }
6030 
6031   ++NumLookupTables;
6032   if (NeedMask)
6033     ++NumLookupTablesHoles;
6034   return true;
6035 }
6036 
6037 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6038   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6039   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6040   uint64_t Range = Diff + 1;
6041   uint64_t NumCases = Values.size();
6042   // 40% is the default density for building a jump table in optsize/minsize mode.
6043   uint64_t MinDensity = 40;
6044 
6045   return NumCases * 100 >= Range * MinDensity;
6046 }
6047 
6048 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6049 /// of cases.
6050 ///
6051 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6052 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6053 ///
6054 /// This converts a sparse switch into a dense switch which allows better
6055 /// lowering and could also allow transforming into a lookup table.
6056 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6057                               const DataLayout &DL,
6058                               const TargetTransformInfo &TTI) {
6059   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6060   if (CondTy->getIntegerBitWidth() > 64 ||
6061       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6062     return false;
6063   // Only bother with this optimization if there are more than 3 switch cases;
6064   // SDAG will only bother creating jump tables for 4 or more cases.
6065   if (SI->getNumCases() < 4)
6066     return false;
6067 
6068   // This transform is agnostic to the signedness of the input or case values. We
6069   // can treat the case values as signed or unsigned. We can optimize more common
6070   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6071   // as signed.
6072   SmallVector<int64_t,4> Values;
6073   for (auto &C : SI->cases())
6074     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6075   llvm::sort(Values);
6076 
6077   // If the switch is already dense, there's nothing useful to do here.
6078   if (isSwitchDense(Values))
6079     return false;
6080 
6081   // First, transform the values such that they start at zero and ascend.
6082   int64_t Base = Values[0];
6083   for (auto &V : Values)
6084     V -= (uint64_t)(Base);
6085 
6086   // Now we have signed numbers that have been shifted so that, given enough
6087   // precision, there are no negative values. Since the rest of the transform
6088   // is bitwise only, we switch now to an unsigned representation.
6089 
6090   // This transform can be done speculatively because it is so cheap - it
6091   // results in a single rotate operation being inserted.
6092   // FIXME: It's possible that optimizing a switch on powers of two might also
6093   // be beneficial - flag values are often powers of two and we could use a CLZ
6094   // as the key function.
6095 
6096   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6097   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6098   // less than 64.
6099   unsigned Shift = 64;
6100   for (auto &V : Values)
6101     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6102   assert(Shift < 64);
6103   if (Shift > 0)
6104     for (auto &V : Values)
6105       V = (int64_t)((uint64_t)V >> Shift);
6106 
6107   if (!isSwitchDense(Values))
6108     // Transform didn't create a dense switch.
6109     return false;
6110 
6111   // The obvious transform is to shift the switch condition right and emit a
6112   // check that the condition actually cleanly divided by GCD, i.e.
6113   //   C & (1 << Shift - 1) == 0
6114   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6115   //
6116   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6117   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6118   // are nonzero then the switch condition will be very large and will hit the
6119   // default case.
6120 
6121   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6122   Builder.SetInsertPoint(SI);
6123   auto *ShiftC = ConstantInt::get(Ty, Shift);
6124   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6125   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6126   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6127   auto *Rot = Builder.CreateOr(LShr, Shl);
6128   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6129 
6130   for (auto Case : SI->cases()) {
6131     auto *Orig = Case.getCaseValue();
6132     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6133     Case.setValue(
6134         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6135   }
6136   return true;
6137 }
6138 
6139 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6140   BasicBlock *BB = SI->getParent();
6141 
6142   if (isValueEqualityComparison(SI)) {
6143     // If we only have one predecessor, and if it is a branch on this value,
6144     // see if that predecessor totally determines the outcome of this switch.
6145     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6146       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6147         return requestResimplify();
6148 
6149     Value *Cond = SI->getCondition();
6150     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6151       if (SimplifySwitchOnSelect(SI, Select))
6152         return requestResimplify();
6153 
6154     // If the block only contains the switch, see if we can fold the block
6155     // away into any preds.
6156     if (SI == &*BB->instructionsWithoutDebug().begin())
6157       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6158         return requestResimplify();
6159   }
6160 
6161   // Try to transform the switch into an icmp and a branch.
6162   if (TurnSwitchRangeIntoICmp(SI, Builder))
6163     return requestResimplify();
6164 
6165   // Remove unreachable cases.
6166   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6167     return requestResimplify();
6168 
6169   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6170     return requestResimplify();
6171 
6172   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6173     return requestResimplify();
6174 
6175   // The conversion from switch to lookup tables results in difficult-to-analyze
6176   // code and makes pruning branches much harder. This is a problem if the
6177   // switch expression itself can still be restricted as a result of inlining or
6178   // CVP. Therefore, only apply this transformation during late stages of the
6179   // optimisation pipeline.
6180   if (Options.ConvertSwitchToLookupTable &&
6181       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6182     return requestResimplify();
6183 
6184   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6185     return requestResimplify();
6186 
6187   return false;
6188 }
6189 
6190 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6191   BasicBlock *BB = IBI->getParent();
6192   bool Changed = false;
6193 
6194   // Eliminate redundant destinations.
6195   SmallPtrSet<Value *, 8> Succs;
6196   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6197   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6198     BasicBlock *Dest = IBI->getDestination(i);
6199     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6200       if (!Dest->hasAddressTaken())
6201         RemovedSuccs.insert(Dest);
6202       Dest->removePredecessor(BB);
6203       IBI->removeDestination(i);
6204       --i;
6205       --e;
6206       Changed = true;
6207     }
6208   }
6209 
6210   if (DTU) {
6211     std::vector<DominatorTree::UpdateType> Updates;
6212     Updates.reserve(RemovedSuccs.size());
6213     for (auto *RemovedSucc : RemovedSuccs)
6214       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6215     DTU->applyUpdates(Updates);
6216   }
6217 
6218   if (IBI->getNumDestinations() == 0) {
6219     // If the indirectbr has no successors, change it to unreachable.
6220     new UnreachableInst(IBI->getContext(), IBI);
6221     EraseTerminatorAndDCECond(IBI);
6222     return true;
6223   }
6224 
6225   if (IBI->getNumDestinations() == 1) {
6226     // If the indirectbr has one successor, change it to a direct branch.
6227     BranchInst::Create(IBI->getDestination(0), IBI);
6228     EraseTerminatorAndDCECond(IBI);
6229     return true;
6230   }
6231 
6232   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6233     if (SimplifyIndirectBrOnSelect(IBI, SI))
6234       return requestResimplify();
6235   }
6236   return Changed;
6237 }
6238 
6239 /// Given an block with only a single landing pad and a unconditional branch
6240 /// try to find another basic block which this one can be merged with.  This
6241 /// handles cases where we have multiple invokes with unique landing pads, but
6242 /// a shared handler.
6243 ///
6244 /// We specifically choose to not worry about merging non-empty blocks
6245 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6246 /// practice, the optimizer produces empty landing pad blocks quite frequently
6247 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6248 /// sinking in this file)
6249 ///
6250 /// This is primarily a code size optimization.  We need to avoid performing
6251 /// any transform which might inhibit optimization (such as our ability to
6252 /// specialize a particular handler via tail commoning).  We do this by not
6253 /// merging any blocks which require us to introduce a phi.  Since the same
6254 /// values are flowing through both blocks, we don't lose any ability to
6255 /// specialize.  If anything, we make such specialization more likely.
6256 ///
6257 /// TODO - This transformation could remove entries from a phi in the target
6258 /// block when the inputs in the phi are the same for the two blocks being
6259 /// merged.  In some cases, this could result in removal of the PHI entirely.
6260 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6261                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6262   auto Succ = BB->getUniqueSuccessor();
6263   assert(Succ);
6264   // If there's a phi in the successor block, we'd likely have to introduce
6265   // a phi into the merged landing pad block.
6266   if (isa<PHINode>(*Succ->begin()))
6267     return false;
6268 
6269   for (BasicBlock *OtherPred : predecessors(Succ)) {
6270     if (BB == OtherPred)
6271       continue;
6272     BasicBlock::iterator I = OtherPred->begin();
6273     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6274     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6275       continue;
6276     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6277       ;
6278     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6279     if (!BI2 || !BI2->isIdenticalTo(BI))
6280       continue;
6281 
6282     std::vector<DominatorTree::UpdateType> Updates;
6283 
6284     // We've found an identical block.  Update our predecessors to take that
6285     // path instead and make ourselves dead.
6286     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6287     for (BasicBlock *Pred : Preds) {
6288       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6289       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6290              "unexpected successor");
6291       II->setUnwindDest(OtherPred);
6292       if (DTU) {
6293         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6294         Updates.push_back({DominatorTree::Delete, Pred, BB});
6295       }
6296     }
6297 
6298     // The debug info in OtherPred doesn't cover the merged control flow that
6299     // used to go through BB.  We need to delete it or update it.
6300     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6301       Instruction &Inst = *I;
6302       I++;
6303       if (isa<DbgInfoIntrinsic>(Inst))
6304         Inst.eraseFromParent();
6305     }
6306 
6307     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6308     for (BasicBlock *Succ : Succs) {
6309       Succ->removePredecessor(BB);
6310       if (DTU)
6311         Updates.push_back({DominatorTree::Delete, BB, Succ});
6312     }
6313 
6314     IRBuilder<> Builder(BI);
6315     Builder.CreateUnreachable();
6316     BI->eraseFromParent();
6317     if (DTU)
6318       DTU->applyUpdates(Updates);
6319     return true;
6320   }
6321   return false;
6322 }
6323 
6324 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6325   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6326                                    : simplifyCondBranch(Branch, Builder);
6327 }
6328 
6329 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6330                                           IRBuilder<> &Builder) {
6331   BasicBlock *BB = BI->getParent();
6332   BasicBlock *Succ = BI->getSuccessor(0);
6333 
6334   // If the Terminator is the only non-phi instruction, simplify the block.
6335   // If LoopHeader is provided, check if the block or its successor is a loop
6336   // header. (This is for early invocations before loop simplify and
6337   // vectorization to keep canonical loop forms for nested loops. These blocks
6338   // can be eliminated when the pass is invoked later in the back-end.)
6339   // Note that if BB has only one predecessor then we do not introduce new
6340   // backedge, so we can eliminate BB.
6341   bool NeedCanonicalLoop =
6342       Options.NeedCanonicalLoop &&
6343       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6344        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6345   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6346   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6347       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6348     return true;
6349 
6350   // If the only instruction in the block is a seteq/setne comparison against a
6351   // constant, try to simplify the block.
6352   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6353     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6354       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6355         ;
6356       if (I->isTerminator() &&
6357           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6358         return true;
6359     }
6360 
6361   // See if we can merge an empty landing pad block with another which is
6362   // equivalent.
6363   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6364     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6365       ;
6366     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6367       return true;
6368   }
6369 
6370   // If this basic block is ONLY a compare and a branch, and if a predecessor
6371   // branches to us and our successor, fold the comparison into the
6372   // predecessor and use logical operations to update the incoming value
6373   // for PHI nodes in common successor.
6374   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6375                              Options.BonusInstThreshold))
6376     return requestResimplify();
6377   return false;
6378 }
6379 
6380 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6381   BasicBlock *PredPred = nullptr;
6382   for (auto *P : predecessors(BB)) {
6383     BasicBlock *PPred = P->getSinglePredecessor();
6384     if (!PPred || (PredPred && PredPred != PPred))
6385       return nullptr;
6386     PredPred = PPred;
6387   }
6388   return PredPred;
6389 }
6390 
6391 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6392   assert(
6393       !isa<ConstantInt>(BI->getCondition()) &&
6394       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6395       "Tautological conditional branch should have been eliminated already.");
6396 
6397   BasicBlock *BB = BI->getParent();
6398   if (!Options.SimplifyCondBranch)
6399     return false;
6400 
6401   // Conditional branch
6402   if (isValueEqualityComparison(BI)) {
6403     // If we only have one predecessor, and if it is a branch on this value,
6404     // see if that predecessor totally determines the outcome of this
6405     // switch.
6406     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6407       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6408         return requestResimplify();
6409 
6410     // This block must be empty, except for the setcond inst, if it exists.
6411     // Ignore dbg and pseudo intrinsics.
6412     auto I = BB->instructionsWithoutDebug(true).begin();
6413     if (&*I == BI) {
6414       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6415         return requestResimplify();
6416     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6417       ++I;
6418       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6419         return requestResimplify();
6420     }
6421   }
6422 
6423   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6424   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6425     return true;
6426 
6427   // If this basic block has dominating predecessor blocks and the dominating
6428   // blocks' conditions imply BI's condition, we know the direction of BI.
6429   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6430   if (Imp) {
6431     // Turn this into a branch on constant.
6432     auto *OldCond = BI->getCondition();
6433     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6434                              : ConstantInt::getFalse(BB->getContext());
6435     BI->setCondition(TorF);
6436     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6437     return requestResimplify();
6438   }
6439 
6440   // If this basic block is ONLY a compare and a branch, and if a predecessor
6441   // branches to us and one of our successors, fold the comparison into the
6442   // predecessor and use logical operations to pick the right destination.
6443   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6444                              Options.BonusInstThreshold))
6445     return requestResimplify();
6446 
6447   // We have a conditional branch to two blocks that are only reachable
6448   // from BI.  We know that the condbr dominates the two blocks, so see if
6449   // there is any identical code in the "then" and "else" blocks.  If so, we
6450   // can hoist it up to the branching block.
6451   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6452     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6453       if (HoistCommon &&
6454           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6455         return requestResimplify();
6456     } else {
6457       // If Successor #1 has multiple preds, we may be able to conditionally
6458       // execute Successor #0 if it branches to Successor #1.
6459       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6460       if (Succ0TI->getNumSuccessors() == 1 &&
6461           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6462         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6463           return requestResimplify();
6464     }
6465   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6466     // If Successor #0 has multiple preds, we may be able to conditionally
6467     // execute Successor #1 if it branches to Successor #0.
6468     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6469     if (Succ1TI->getNumSuccessors() == 1 &&
6470         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6471       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6472         return requestResimplify();
6473   }
6474 
6475   // If this is a branch on a phi node in the current block, thread control
6476   // through this block if any PHI node entries are constants.
6477   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6478     if (PN->getParent() == BI->getParent())
6479       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6480         return requestResimplify();
6481 
6482   // Scan predecessor blocks for conditional branches.
6483   for (BasicBlock *Pred : predecessors(BB))
6484     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6485       if (PBI != BI && PBI->isConditional())
6486         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6487           return requestResimplify();
6488 
6489   // Look for diamond patterns.
6490   if (MergeCondStores)
6491     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6492       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6493         if (PBI != BI && PBI->isConditional())
6494           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6495             return requestResimplify();
6496 
6497   return false;
6498 }
6499 
6500 /// Check if passing a value to an instruction will cause undefined behavior.
6501 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6502   Constant *C = dyn_cast<Constant>(V);
6503   if (!C)
6504     return false;
6505 
6506   if (I->use_empty())
6507     return false;
6508 
6509   if (C->isNullValue() || isa<UndefValue>(C)) {
6510     // Only look at the first use, avoid hurting compile time with long uselists
6511     User *Use = *I->user_begin();
6512 
6513     // Now make sure that there are no instructions in between that can alter
6514     // control flow (eg. calls)
6515     for (BasicBlock::iterator
6516              i = ++BasicBlock::iterator(I),
6517              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6518          i != UI; ++i) {
6519       if (i == I->getParent()->end())
6520         return false;
6521       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6522         return false;
6523     }
6524 
6525     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6526     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6527       if (GEP->getPointerOperand() == I) {
6528         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6529           PtrValueMayBeModified = true;
6530         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6531       }
6532 
6533     // Look through bitcasts.
6534     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6535       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6536 
6537     // Load from null is undefined.
6538     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6539       if (!LI->isVolatile())
6540         return !NullPointerIsDefined(LI->getFunction(),
6541                                      LI->getPointerAddressSpace());
6542 
6543     // Store to null is undefined.
6544     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6545       if (!SI->isVolatile())
6546         return (!NullPointerIsDefined(SI->getFunction(),
6547                                       SI->getPointerAddressSpace())) &&
6548                SI->getPointerOperand() == I;
6549 
6550     if (auto *CB = dyn_cast<CallBase>(Use)) {
6551       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6552         return false;
6553       // A call to null is undefined.
6554       if (CB->getCalledOperand() == I)
6555         return true;
6556 
6557       if (C->isNullValue()) {
6558         for (const llvm::Use &Arg : CB->args())
6559           if (Arg == I) {
6560             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6561             if (CB->isPassingUndefUB(ArgIdx) &&
6562                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6563               // Passing null to a nonnnull+noundef argument is undefined.
6564               return !PtrValueMayBeModified;
6565             }
6566           }
6567       } else if (isa<UndefValue>(C)) {
6568         // Passing undef to a noundef argument is undefined.
6569         for (const llvm::Use &Arg : CB->args())
6570           if (Arg == I) {
6571             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6572             if (CB->isPassingUndefUB(ArgIdx)) {
6573               // Passing undef to a noundef argument is undefined.
6574               return true;
6575             }
6576           }
6577       }
6578     }
6579   }
6580   return false;
6581 }
6582 
6583 /// If BB has an incoming value that will always trigger undefined behavior
6584 /// (eg. null pointer dereference), remove the branch leading here.
6585 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6586                                               DomTreeUpdater *DTU) {
6587   for (PHINode &PHI : BB->phis())
6588     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6589       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6590         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6591         Instruction *T = Predecessor->getTerminator();
6592         IRBuilder<> Builder(T);
6593         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6594           BB->removePredecessor(Predecessor);
6595           // Turn uncoditional branches into unreachables and remove the dead
6596           // destination from conditional branches.
6597           if (BI->isUnconditional())
6598             Builder.CreateUnreachable();
6599           else {
6600             // Preserve guarding condition in assume, because it might not be
6601             // inferrable from any dominating condition.
6602             Value *Cond = BI->getCondition();
6603             if (BI->getSuccessor(0) == BB)
6604               Builder.CreateAssumption(Builder.CreateNot(Cond));
6605             else
6606               Builder.CreateAssumption(Cond);
6607             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6608                                                        : BI->getSuccessor(0));
6609           }
6610           BI->eraseFromParent();
6611           if (DTU)
6612             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6613           return true;
6614         }
6615         // TODO: SwitchInst.
6616       }
6617 
6618   return false;
6619 }
6620 
6621 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6622   bool Changed = false;
6623 
6624   assert(BB && BB->getParent() && "Block not embedded in function!");
6625   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6626 
6627   // Remove basic blocks that have no predecessors (except the entry block)...
6628   // or that just have themself as a predecessor.  These are unreachable.
6629   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6630       BB->getSinglePredecessor() == BB) {
6631     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6632     DeleteDeadBlock(BB, DTU);
6633     return true;
6634   }
6635 
6636   // Check to see if we can constant propagate this terminator instruction
6637   // away...
6638   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6639                                     /*TLI=*/nullptr, DTU);
6640 
6641   // Check for and eliminate duplicate PHI nodes in this block.
6642   Changed |= EliminateDuplicatePHINodes(BB);
6643 
6644   // Check for and remove branches that will always cause undefined behavior.
6645   if (removeUndefIntroducingPredecessor(BB, DTU))
6646     return requestResimplify();
6647 
6648   // Merge basic blocks into their predecessor if there is only one distinct
6649   // pred, and if there is only one distinct successor of the predecessor, and
6650   // if there are no PHI nodes.
6651   if (MergeBlockIntoPredecessor(BB, DTU))
6652     return true;
6653 
6654   if (SinkCommon && Options.SinkCommonInsts)
6655     if (SinkCommonCodeFromPredecessors(BB, DTU)) {
6656       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
6657       // so we may now how duplicate PHI's.
6658       // Let's rerun EliminateDuplicatePHINodes() first,
6659       // before FoldTwoEntryPHINode() potentially converts them into select's,
6660       // after which we'd need a whole EarlyCSE pass run to cleanup them.
6661       return true;
6662     }
6663 
6664   IRBuilder<> Builder(BB);
6665 
6666   if (Options.FoldTwoEntryPHINode) {
6667     // If there is a trivial two-entry PHI node in this basic block, and we can
6668     // eliminate it, do so now.
6669     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6670       if (PN->getNumIncomingValues() == 2)
6671         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
6672           return true;
6673   }
6674 
6675   Instruction *Terminator = BB->getTerminator();
6676   Builder.SetInsertPoint(Terminator);
6677   switch (Terminator->getOpcode()) {
6678   case Instruction::Br:
6679     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6680     break;
6681   case Instruction::Resume:
6682     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6683     break;
6684   case Instruction::CleanupRet:
6685     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6686     break;
6687   case Instruction::Switch:
6688     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6689     break;
6690   case Instruction::Unreachable:
6691     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6692     break;
6693   case Instruction::IndirectBr:
6694     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6695     break;
6696   }
6697 
6698   return Changed;
6699 }
6700 
6701 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6702   bool Changed = simplifyOnceImpl(BB);
6703 
6704   return Changed;
6705 }
6706 
6707 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6708   bool Changed = false;
6709 
6710   // Repeated simplify BB as long as resimplification is requested.
6711   do {
6712     Resimplify = false;
6713 
6714     // Perform one round of simplifcation. Resimplify flag will be set if
6715     // another iteration is requested.
6716     Changed |= simplifyOnce(BB);
6717   } while (Resimplify);
6718 
6719   return Changed;
6720 }
6721 
6722 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6723                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6724                        ArrayRef<WeakVH> LoopHeaders) {
6725   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6726                         Options)
6727       .run(BB);
6728 }
6729