1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/DenseSet.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/DomTreeUpdater.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/LoopSimplify.h" 42 #include "llvm/Transforms/Utils/LoopUtils.h" 43 #include "llvm/Transforms/Utils/UnrollLoop.h" 44 #include "llvm/Transforms/Utils/ValueMapper.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <limits> 49 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "loop-peel" 54 55 STATISTIC(NumPeeled, "Number of loops peeled"); 56 57 static cl::opt<unsigned> UnrollPeelCount( 58 "unroll-peel-count", cl::Hidden, 59 cl::desc("Set the unroll peeling count, for testing purposes")); 60 61 static cl::opt<bool> 62 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 63 cl::desc("Allows loops to be peeled when the dynamic " 64 "trip count is known to be low.")); 65 66 static cl::opt<bool> 67 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 68 cl::init(false), cl::Hidden, 69 cl::desc("Allows loop nests to be peeled.")); 70 71 static cl::opt<unsigned> UnrollPeelMaxCount( 72 "unroll-peel-max-count", cl::init(7), cl::Hidden, 73 cl::desc("Max average trip count which will cause loop peeling.")); 74 75 static cl::opt<unsigned> UnrollForcePeelCount( 76 "unroll-force-peel-count", cl::init(0), cl::Hidden, 77 cl::desc("Force a peel count regardless of profiling information.")); 78 79 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 80 81 // Designates that a Phi is estimated to become invariant after an "infinite" 82 // number of loop iterations (i.e. only may become an invariant if the loop is 83 // fully unrolled). 84 static const unsigned InfiniteIterationsToInvariance = 85 std::numeric_limits<unsigned>::max(); 86 87 // Check whether we are capable of peeling this loop. 88 bool llvm::canPeel(Loop *L) { 89 // Make sure the loop is in simplified form 90 if (!L->isLoopSimplifyForm()) 91 return false; 92 93 // Don't try to peel loops where the latch is not the exiting block. 94 // This can be an indication of two different things: 95 // 1) The loop is not rotated. 96 // 2) The loop contains irreducible control flow that involves the latch. 97 const BasicBlock *Latch = L->getLoopLatch(); 98 if (!L->isLoopExiting(Latch)) 99 return false; 100 101 // Peeling is only supported if the latch is a branch. 102 if (!isa<BranchInst>(Latch->getTerminator())) 103 return false; 104 105 SmallVector<BasicBlock *, 4> Exits; 106 L->getUniqueNonLatchExitBlocks(Exits); 107 // The latch must either be the only exiting block or all non-latch exit 108 // blocks have either a deopt or unreachable terminator. Both deopt and 109 // unreachable terminators are a strong indication they are not taken. Note 110 // that this is a profitability check, not a legality check. Also note that 111 // LoopPeeling currently can only update the branch weights of latch blocks 112 // and branch weights to blocks with deopt or unreachable do not need 113 // updating. 114 return all_of(Exits, [](const BasicBlock *BB) { 115 return BB->getTerminatingDeoptimizeCall() || 116 isa<UnreachableInst>(BB->getTerminator()); 117 }); 118 } 119 120 // This function calculates the number of iterations after which the given Phi 121 // becomes an invariant. The pre-calculated values are memorized in the map. The 122 // function (shortcut is I) is calculated according to the following definition: 123 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 124 // If %y is a loop invariant, then I(%x) = 1. 125 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 126 // Otherwise, I(%x) is infinite. 127 // TODO: Actually if %y is an expression that depends only on Phi %z and some 128 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 129 // looks like: 130 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 131 // %y = phi(0, 5), 132 // %a = %y + 1. 133 static unsigned calculateIterationsToInvariance( 134 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 135 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 136 assert(Phi->getParent() == L->getHeader() && 137 "Non-loop Phi should not be checked for turning into invariant."); 138 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 139 // If we already know the answer, take it from the map. 140 auto I = IterationsToInvariance.find(Phi); 141 if (I != IterationsToInvariance.end()) 142 return I->second; 143 144 // Otherwise we need to analyze the input from the back edge. 145 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 146 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 147 // cycles can never stop on an invariant. 148 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 149 unsigned ToInvariance = InfiniteIterationsToInvariance; 150 151 if (L->isLoopInvariant(Input)) 152 ToInvariance = 1u; 153 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 154 // Only consider Phis in header block. 155 if (IncPhi->getParent() != L->getHeader()) 156 return InfiniteIterationsToInvariance; 157 // If the input becomes an invariant after X iterations, then our Phi 158 // becomes an invariant after X + 1 iterations. 159 unsigned InputToInvariance = calculateIterationsToInvariance( 160 IncPhi, L, BackEdge, IterationsToInvariance); 161 if (InputToInvariance != InfiniteIterationsToInvariance) 162 ToInvariance = InputToInvariance + 1u; 163 } 164 165 // If we found that this Phi lies in an invariant chain, update the map. 166 if (ToInvariance != InfiniteIterationsToInvariance) 167 IterationsToInvariance[Phi] = ToInvariance; 168 return ToInvariance; 169 } 170 171 // Try to find any invariant memory reads that will become dereferenceable in 172 // the remainder loop after peeling. The load must also be used (transitively) 173 // by an exit condition. Returns the number of iterations to peel off (at the 174 // moment either 0 or 1). 175 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 176 DominatorTree &DT) { 177 // Skip loops with a single exiting block, because there should be no benefit 178 // for the heuristic below. 179 if (L.getExitingBlock()) 180 return 0; 181 182 // All non-latch exit blocks must have an UnreachableInst terminator. 183 // Otherwise the heuristic below may not be profitable. 184 SmallVector<BasicBlock *, 4> Exits; 185 L.getUniqueNonLatchExitBlocks(Exits); 186 if (any_of(Exits, [](const BasicBlock *BB) { 187 return !isa<UnreachableInst>(BB->getTerminator()); 188 })) 189 return 0; 190 191 // Now look for invariant loads that dominate the latch and are not known to 192 // be dereferenceable. If there are such loads and no writes, they will become 193 // dereferenceable in the loop if the first iteration is peeled off. Also 194 // collect the set of instructions controlled by such loads. Only peel if an 195 // exit condition uses (transitively) such a load. 196 BasicBlock *Header = L.getHeader(); 197 BasicBlock *Latch = L.getLoopLatch(); 198 SmallPtrSet<Value *, 8> LoadUsers; 199 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 200 for (BasicBlock *BB : L.blocks()) { 201 for (Instruction &I : *BB) { 202 if (I.mayWriteToMemory()) 203 return 0; 204 205 auto Iter = LoadUsers.find(&I); 206 if (Iter != LoadUsers.end()) { 207 for (Value *U : I.users()) 208 LoadUsers.insert(U); 209 } 210 // Do not look for reads in the header; they can already be hoisted 211 // without peeling. 212 if (BB == Header) 213 continue; 214 if (auto *LI = dyn_cast<LoadInst>(&I)) { 215 Value *Ptr = LI->getPointerOperand(); 216 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 217 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT)) 218 for (Value *U : I.users()) 219 LoadUsers.insert(U); 220 } 221 } 222 } 223 SmallVector<BasicBlock *> ExitingBlocks; 224 L.getExitingBlocks(ExitingBlocks); 225 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 226 return LoadUsers.contains(Exiting->getTerminator()); 227 })) 228 return 1; 229 return 0; 230 } 231 232 // Return the number of iterations to peel off that make conditions in the 233 // body true/false. For example, if we peel 2 iterations off the loop below, 234 // the condition i < 2 can be evaluated at compile time. 235 // for (i = 0; i < n; i++) 236 // if (i < 2) 237 // .. 238 // else 239 // .. 240 // } 241 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 242 ScalarEvolution &SE) { 243 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 244 unsigned DesiredPeelCount = 0; 245 246 for (auto *BB : L.blocks()) { 247 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 248 if (!BI || BI->isUnconditional()) 249 continue; 250 251 // Ignore loop exit condition. 252 if (L.getLoopLatch() == BB) 253 continue; 254 255 Value *Condition = BI->getCondition(); 256 Value *LeftVal, *RightVal; 257 CmpInst::Predicate Pred; 258 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 259 continue; 260 261 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 262 const SCEV *RightSCEV = SE.getSCEV(RightVal); 263 264 // Do not consider predicates that are known to be true or false 265 // independently of the loop iteration. 266 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 267 continue; 268 269 // Check if we have a condition with one AddRec and one non AddRec 270 // expression. Normalize LeftSCEV to be the AddRec. 271 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 272 if (isa<SCEVAddRecExpr>(RightSCEV)) { 273 std::swap(LeftSCEV, RightSCEV); 274 Pred = ICmpInst::getSwappedPredicate(Pred); 275 } else 276 continue; 277 } 278 279 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 280 281 // Avoid huge SCEV computations in the loop below, make sure we only 282 // consider AddRecs of the loop we are trying to peel. 283 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 284 continue; 285 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 286 !SE.getMonotonicPredicateType(LeftAR, Pred)) 287 continue; 288 289 // Check if extending the current DesiredPeelCount lets us evaluate Pred 290 // or !Pred in the loop body statically. 291 unsigned NewPeelCount = DesiredPeelCount; 292 293 const SCEV *IterVal = LeftAR->evaluateAtIteration( 294 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 295 296 // If the original condition is not known, get the negated predicate 297 // (which holds on the else branch) and check if it is known. This allows 298 // us to peel of iterations that make the original condition false. 299 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 300 Pred = ICmpInst::getInversePredicate(Pred); 301 302 const SCEV *Step = LeftAR->getStepRecurrence(SE); 303 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 304 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 305 &NewPeelCount]() { 306 IterVal = NextIterVal; 307 NextIterVal = SE.getAddExpr(IterVal, Step); 308 NewPeelCount++; 309 }; 310 311 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 312 return NewPeelCount < MaxPeelCount; 313 }; 314 315 while (CanPeelOneMoreIteration() && 316 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 317 PeelOneMoreIteration(); 318 319 // With *that* peel count, does the predicate !Pred become known in the 320 // first iteration of the loop body after peeling? 321 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 322 RightSCEV)) 323 continue; // If not, give up. 324 325 // However, for equality comparisons, that isn't always sufficient to 326 // eliminate the comparsion in loop body, we may need to peel one more 327 // iteration. See if that makes !Pred become unknown again. 328 if (ICmpInst::isEquality(Pred) && 329 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 330 RightSCEV) && 331 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 332 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 333 if (!CanPeelOneMoreIteration()) 334 continue; // Need to peel one more iteration, but can't. Give up. 335 PeelOneMoreIteration(); // Great! 336 } 337 338 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 339 } 340 341 return DesiredPeelCount; 342 } 343 344 // Return the number of iterations we want to peel off. 345 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 346 TargetTransformInfo::PeelingPreferences &PP, 347 unsigned &TripCount, DominatorTree &DT, 348 ScalarEvolution &SE, unsigned Threshold) { 349 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 350 // Save the PP.PeelCount value set by the target in 351 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 352 unsigned TargetPeelCount = PP.PeelCount; 353 PP.PeelCount = 0; 354 if (!canPeel(L)) 355 return; 356 357 // Only try to peel innermost loops by default. 358 // The constraint can be relaxed by the target in TTI.getUnrollingPreferences 359 // or by the flag -unroll-allow-loop-nests-peeling. 360 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 361 return; 362 363 // If the user provided a peel count, use that. 364 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 365 if (UserPeelCount) { 366 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 367 << " iterations.\n"); 368 PP.PeelCount = UnrollForcePeelCount; 369 PP.PeelProfiledIterations = true; 370 return; 371 } 372 373 // Skip peeling if it's disabled. 374 if (!PP.AllowPeeling) 375 return; 376 377 unsigned AlreadyPeeled = 0; 378 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 379 AlreadyPeeled = *Peeled; 380 // Stop if we already peeled off the maximum number of iterations. 381 if (AlreadyPeeled >= UnrollPeelMaxCount) 382 return; 383 384 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 385 // iterations of the loop. For this we compute the number for iterations after 386 // which every Phi is guaranteed to become an invariant, and try to peel the 387 // maximum number of iterations among these values, thus turning all those 388 // Phis into invariants. 389 // First, check that we can peel at least one iteration. 390 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 391 // Store the pre-calculated values here. 392 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 393 // Now go through all Phis to calculate their the number of iterations they 394 // need to become invariants. 395 // Start the max computation with the UP.PeelCount value set by the target 396 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 397 unsigned DesiredPeelCount = TargetPeelCount; 398 BasicBlock *BackEdge = L->getLoopLatch(); 399 assert(BackEdge && "Loop is not in simplified form?"); 400 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 401 PHINode *Phi = cast<PHINode>(&*BI); 402 unsigned ToInvariance = calculateIterationsToInvariance( 403 Phi, L, BackEdge, IterationsToInvariance); 404 if (ToInvariance != InfiniteIterationsToInvariance) 405 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 406 } 407 408 // Pay respect to limitations implied by loop size and the max peel count. 409 unsigned MaxPeelCount = UnrollPeelMaxCount; 410 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 411 412 DesiredPeelCount = std::max(DesiredPeelCount, 413 countToEliminateCompares(*L, MaxPeelCount, SE)); 414 415 if (DesiredPeelCount == 0) 416 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT); 417 418 if (DesiredPeelCount > 0) { 419 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 420 // Consider max peel count limitation. 421 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 422 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 423 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 424 << " iteration(s) to turn" 425 << " some Phis into invariants.\n"); 426 PP.PeelCount = DesiredPeelCount; 427 PP.PeelProfiledIterations = false; 428 return; 429 } 430 } 431 } 432 433 // Bail if we know the statically calculated trip count. 434 // In this case we rather prefer partial unrolling. 435 if (TripCount) 436 return; 437 438 // Do not apply profile base peeling if it is disabled. 439 if (!PP.PeelProfiledIterations) 440 return; 441 // If we don't know the trip count, but have reason to believe the average 442 // trip count is low, peeling should be beneficial, since we will usually 443 // hit the peeled section. 444 // We only do this in the presence of profile information, since otherwise 445 // our estimates of the trip count are not reliable enough. 446 if (L->getHeader()->getParent()->hasProfileData()) { 447 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 448 if (!PeelCount) 449 return; 450 451 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 452 << "\n"); 453 454 if (*PeelCount) { 455 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 456 (LoopSize * (*PeelCount + 1) <= Threshold)) { 457 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 458 << " iterations.\n"); 459 PP.PeelCount = *PeelCount; 460 return; 461 } 462 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 463 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 464 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 465 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 466 << "\n"); 467 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 468 } 469 } 470 } 471 472 /// Update the branch weights of the latch of a peeled-off loop 473 /// iteration. 474 /// This sets the branch weights for the latch of the recently peeled off loop 475 /// iteration correctly. 476 /// Let F is a weight of the edge from latch to header. 477 /// Let E is a weight of the edge from latch to exit. 478 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 479 /// go to exit. 480 /// Then, Estimated TripCount = F / E. 481 /// For I-th (counting from 0) peeled off iteration we set the the weights for 482 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 483 /// The probability to go to exit 1/(TC-I) increases. At the same time 484 /// the estimated trip count of remaining loop reduces by I. 485 /// To avoid dealing with division rounding we can just multiple both part 486 /// of weights to E and use weight as (F - I * E, E). 487 /// 488 /// \param Header The copy of the header block that belongs to next iteration. 489 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 490 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 491 /// header before peeling (in) and after peeled off one iteration (out). 492 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 493 uint64_t ExitWeight, 494 uint64_t &FallThroughWeight) { 495 // FallThroughWeight is 0 means that there is no branch weights on original 496 // latch block or estimated trip count is zero. 497 if (!FallThroughWeight) 498 return; 499 500 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 501 MDBuilder MDB(LatchBR->getContext()); 502 MDNode *WeightNode = 503 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 504 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 505 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 506 FallThroughWeight = 507 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 508 } 509 510 /// Initialize the weights. 511 /// 512 /// \param Header The header block. 513 /// \param LatchBR The latch branch. 514 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 515 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 516 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 517 uint64_t &ExitWeight, 518 uint64_t &FallThroughWeight) { 519 uint64_t TrueWeight, FalseWeight; 520 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 521 return; 522 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 523 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 524 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 525 } 526 527 /// Update the weights of original Latch block after peeling off all iterations. 528 /// 529 /// \param Header The header block. 530 /// \param LatchBR The latch branch. 531 /// \param ExitWeight The weight of the edge from Latch to Exit. 532 /// \param FallThroughWeight The weight of the edge from Latch to Header. 533 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 534 uint64_t ExitWeight, 535 uint64_t FallThroughWeight) { 536 // FallThroughWeight is 0 means that there is no branch weights on original 537 // latch block or estimated trip count is zero. 538 if (!FallThroughWeight) 539 return; 540 541 // Sets the branch weights on the loop exit. 542 MDBuilder MDB(LatchBR->getContext()); 543 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 544 MDNode *WeightNode = 545 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 546 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 547 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 548 } 549 550 /// Clones the body of the loop L, putting it between \p InsertTop and \p 551 /// InsertBot. 552 /// \param IterNumber The serial number of the iteration currently being 553 /// peeled off. 554 /// \param ExitEdges The exit edges of the original loop. 555 /// \param[out] NewBlocks A list of the blocks in the newly created clone 556 /// \param[out] VMap The value map between the loop and the new clone. 557 /// \param LoopBlocks A helper for DFS-traversal of the loop. 558 /// \param LVMap A value-map that maps instructions from the original loop to 559 /// instructions in the last peeled-off iteration. 560 /// \param LoopBlocksIDoms Immediate dominators of the original loop blocks. 561 static void cloneLoopBlocks( 562 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 563 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 564 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 565 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DomTreeUpdater &DTU, 566 const SmallDenseMap<BasicBlock *, BasicBlock *> &LoopBlocksIDoms, 567 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) { 568 BasicBlock *Header = L->getHeader(); 569 BasicBlock *Latch = L->getLoopLatch(); 570 BasicBlock *PreHeader = L->getLoopPreheader(); 571 572 Function *F = Header->getParent(); 573 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 574 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 575 Loop *ParentLoop = L->getParentLoop(); 576 577 // For each block in the original loop, create a new copy, 578 // and update the value map with the newly created values. 579 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 580 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 581 NewBlocks.push_back(NewBB); 582 583 // If an original block is an immediate child of the loop L, its copy 584 // is a child of a ParentLoop after peeling. If a block is a child of 585 // a nested loop, it is handled in the cloneLoop() call below. 586 if (ParentLoop && LI->getLoopFor(*BB) == L) 587 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 588 589 VMap[*BB] = NewBB; 590 591 // If dominator tree is available, insert nodes to represent cloned blocks. 592 if (Header == *BB) 593 DTU.applyUpdates({{DominatorTree::Insert, InsertTop, NewBB}}); 594 else { 595 BasicBlock *IDom = LoopBlocksIDoms.lookup(*BB); 596 // VMap must contain entry for IDom, as the iteration order is RPO. 597 DTU.applyUpdates( 598 {{DominatorTree::Insert, cast<BasicBlock>(VMap[IDom]), NewBB}}); 599 } 600 } 601 602 { 603 // Identify what other metadata depends on the cloned version. After 604 // cloning, replace the metadata with the corrected version for both 605 // memory instructions and noalias intrinsics. 606 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 607 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 608 Header->getContext(), Ext); 609 } 610 611 // Recursively create the new Loop objects for nested loops, if any, 612 // to preserve LoopInfo. 613 for (Loop *ChildLoop : *L) { 614 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 615 } 616 617 // Hook-up the control flow for the newly inserted blocks. 618 // The new header is hooked up directly to the "top", which is either 619 // the original loop preheader (for the first iteration) or the previous 620 // iteration's exiting block (for every other iteration) 621 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 622 623 // Similarly, for the latch: 624 // The original exiting edge is still hooked up to the loop exit. 625 // The backedge now goes to the "bottom", which is either the loop's real 626 // header (for the last peeled iteration) or the copied header of the next 627 // iteration (for every other iteration) 628 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 629 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 630 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 631 if (LatchBR->getSuccessor(idx) == Header) { 632 LatchBR->setSuccessor(idx, InsertBot); 633 break; 634 } 635 DTU.applyUpdates({{DominatorTree::Insert, NewLatch, InsertBot}, 636 {DominatorTree::Delete, InsertTop, InsertBot}}); 637 638 // The new copy of the loop body starts with a bunch of PHI nodes 639 // that pick an incoming value from either the preheader, or the previous 640 // loop iteration. Since this copy is no longer part of the loop, we 641 // resolve this statically: 642 // For the first iteration, we use the value from the preheader directly. 643 // For any other iteration, we replace the phi with the value generated by 644 // the immediately preceding clone of the loop body (which represents 645 // the previous iteration). 646 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 647 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 648 if (IterNumber == 0) { 649 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 650 } else { 651 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 652 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 653 if (LatchInst && L->contains(LatchInst)) 654 VMap[&*I] = LVMap[LatchInst]; 655 else 656 VMap[&*I] = LatchVal; 657 } 658 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 659 } 660 661 // Fix up the outgoing values - we need to add a value for the iteration 662 // we've just created. Note that this must happen *after* the incoming 663 // values are adjusted, since the value going out of the latch may also be 664 // a value coming into the header. 665 for (auto Edge : ExitEdges) 666 for (PHINode &PHI : Edge.second->phis()) { 667 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 668 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 669 if (LatchInst && L->contains(LatchInst)) 670 LatchVal = VMap[LatchVal]; 671 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 672 } 673 674 // LastValueMap is updated with the values for the current loop 675 // which are used the next time this function is called. 676 for (auto KV : VMap) 677 LVMap[KV.first] = KV.second; 678 } 679 680 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 681 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 682 Optional<bool> UserAllowPeeling, 683 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 684 TargetTransformInfo::PeelingPreferences PP; 685 686 // Set the default values. 687 PP.PeelCount = 0; 688 PP.AllowPeeling = true; 689 PP.AllowLoopNestsPeeling = false; 690 PP.PeelProfiledIterations = true; 691 692 // Get the target specifc values. 693 TTI.getPeelingPreferences(L, SE, PP); 694 695 // User specified values using cl::opt. 696 if (UnrollingSpecficValues) { 697 if (UnrollPeelCount.getNumOccurrences() > 0) 698 PP.PeelCount = UnrollPeelCount; 699 if (UnrollAllowPeeling.getNumOccurrences() > 0) 700 PP.AllowPeeling = UnrollAllowPeeling; 701 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 702 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 703 } 704 705 // User specifed values provided by argument. 706 if (UserAllowPeeling.hasValue()) 707 PP.AllowPeeling = *UserAllowPeeling; 708 if (UserAllowProfileBasedPeeling.hasValue()) 709 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 710 711 return PP; 712 } 713 714 /// Peel off the first \p PeelCount iterations of loop \p L. 715 /// 716 /// Note that this does not peel them off as a single straight-line block. 717 /// Rather, each iteration is peeled off separately, and needs to check the 718 /// exit condition. 719 /// For loops that dynamically execute \p PeelCount iterations or less 720 /// this provides a benefit, since the peeled off iterations, which account 721 /// for the bulk of dynamic execution, can be further simplified by scalar 722 /// optimizations. 723 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 724 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 725 bool PreserveLCSSA) { 726 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 727 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 728 729 LoopBlocksDFS LoopBlocks(L); 730 LoopBlocks.perform(LI); 731 732 BasicBlock *Header = L->getHeader(); 733 BasicBlock *PreHeader = L->getLoopPreheader(); 734 BasicBlock *Latch = L->getLoopLatch(); 735 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 736 L->getExitEdges(ExitEdges); 737 738 SmallDenseSet<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdgesSet( 739 ExitEdges.begin(), ExitEdges.end()); 740 741 Function *F = Header->getParent(); 742 743 // Set up all the necessary basic blocks. It is convenient to split the 744 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 745 // body, and a new preheader for the "real" loop. 746 747 // Peeling the first iteration transforms. 748 // 749 // PreHeader: 750 // ... 751 // Header: 752 // LoopBody 753 // If (cond) goto Header 754 // Exit: 755 // 756 // into 757 // 758 // InsertTop: 759 // LoopBody 760 // If (!cond) goto Exit 761 // InsertBot: 762 // NewPreHeader: 763 // ... 764 // Header: 765 // LoopBody 766 // If (cond) goto Header 767 // Exit: 768 // 769 // Each following iteration will split the current bottom anchor in two, 770 // and put the new copy of the loop body between these two blocks. That is, 771 // after peeling another iteration from the example above, we'll split 772 // InsertBot, and get: 773 // 774 // InsertTop: 775 // LoopBody 776 // If (!cond) goto Exit 777 // InsertBot: 778 // LoopBody 779 // If (!cond) goto Exit 780 // InsertBot.next: 781 // NewPreHeader: 782 // ... 783 // Header: 784 // LoopBody 785 // If (cond) goto Header 786 // Exit: 787 788 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 789 BasicBlock *InsertBot = 790 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 791 BasicBlock *NewPreHeader = 792 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 793 794 InsertTop->setName(Header->getName() + ".peel.begin"); 795 InsertBot->setName(Header->getName() + ".peel.next"); 796 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 797 798 ValueToValueMapTy LVMap; 799 800 // If we have branch weight information, we'll want to update it for the 801 // newly created branches. 802 BranchInst *LatchBR = 803 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 804 uint64_t ExitWeight = 0, FallThroughWeight = 0; 805 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 806 807 // Identify what noalias metadata is inside the loop: if it is inside the 808 // loop, the associated metadata must be cloned for each iteration. 809 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 810 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 811 812 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 813 814 // Fill map with the loop blocks IDoms to later update the DT when cloning the 815 // loop blocks. 816 SmallDenseMap<BasicBlock *, BasicBlock *> LoopBlocksIDoms; 817 for (auto *BB : L->blocks()) 818 LoopBlocksIDoms[BB] = DT->getNode(BB)->getIDom()->getBlock(); 819 820 // For each peeled-off iteration, make a copy of the loop. 821 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 822 SmallVector<BasicBlock *, 8> NewBlocks; 823 ValueToValueMapTy VMap; 824 825 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 826 LoopBlocks, VMap, LVMap, DTU, LoopBlocksIDoms, LI, 827 LoopLocalNoAliasDeclScopes); 828 829 // Remap to use values from the current iteration instead of the 830 // previous one. 831 remapInstructionsInBlocks(NewBlocks, VMap); 832 833 // If DT is available, insert edges from cloned exiting blocks to the exits 834 for (auto Exit : ExitEdgesSet) 835 DTU.applyUpdates({{DominatorTree::Insert, 836 cast<BasicBlock>(LVMap[Exit.first]), Exit.second}}); 837 838 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 839 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 840 // Remove Loop metadata from the latch branch instruction 841 // because it is not the Loop's latch branch anymore. 842 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 843 844 InsertTop = InsertBot; 845 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DTU, LI); 846 InsertBot->setName(Header->getName() + ".peel.next"); 847 848 F->getBasicBlockList().splice(InsertTop->getIterator(), 849 F->getBasicBlockList(), 850 NewBlocks[0]->getIterator(), F->end()); 851 } 852 853 // Now adjust the phi nodes in the loop header to get their initial values 854 // from the last peeled-off iteration instead of the preheader. 855 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 856 PHINode *PHI = cast<PHINode>(I); 857 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 858 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 859 if (LatchInst && L->contains(LatchInst)) 860 NewVal = LVMap[LatchInst]; 861 862 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 863 } 864 865 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 866 867 // Update Metadata for count of peeled off iterations. 868 unsigned AlreadyPeeled = 0; 869 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 870 AlreadyPeeled = *Peeled; 871 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 872 873 if (Loop *ParentLoop = L->getParentLoop()) 874 L = ParentLoop; 875 876 // We modified the loop, update SE. 877 SE->forgetTopmostLoop(L); 878 879 // Finally DomtTree must be correct. 880 if (DTU.hasDomTree()) { 881 DTU.flush(); 882 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 883 } 884 885 // FIXME: Incrementally update loop-simplify 886 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); 887 888 NumPeeled++; 889 890 return true; 891 } 892