1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47
48 #define DEBUG_TYPE "loop-peel"
49
50 STATISTIC(NumPeeled, "Number of loops peeled");
51
52 static cl::opt<unsigned> UnrollPeelCount(
53 "unroll-peel-count", cl::Hidden,
54 cl::desc("Set the unroll peeling count, for testing purposes"));
55
56 static cl::opt<bool>
57 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
58 cl::desc("Allows loops to be peeled when the dynamic "
59 "trip count is known to be low."));
60
61 static cl::opt<bool>
62 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
63 cl::init(false), cl::Hidden,
64 cl::desc("Allows loop nests to be peeled."));
65
66 static cl::opt<unsigned> UnrollPeelMaxCount(
67 "unroll-peel-max-count", cl::init(7), cl::Hidden,
68 cl::desc("Max average trip count which will cause loop peeling."));
69
70 static cl::opt<unsigned> UnrollForcePeelCount(
71 "unroll-force-peel-count", cl::init(0), cl::Hidden,
72 cl::desc("Force a peel count regardless of profiling information."));
73
74 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
75
76 // Check whether we are capable of peeling this loop.
canPeel(Loop * L)77 bool llvm::canPeel(Loop *L) {
78 // Make sure the loop is in simplified form
79 if (!L->isLoopSimplifyForm())
80 return false;
81
82 // Don't try to peel loops where the latch is not the exiting block.
83 // This can be an indication of two different things:
84 // 1) The loop is not rotated.
85 // 2) The loop contains irreducible control flow that involves the latch.
86 const BasicBlock *Latch = L->getLoopLatch();
87 if (!L->isLoopExiting(Latch))
88 return false;
89
90 // Peeling is only supported if the latch is a branch.
91 if (!isa<BranchInst>(Latch->getTerminator()))
92 return false;
93
94 SmallVector<BasicBlock *, 4> Exits;
95 L->getUniqueNonLatchExitBlocks(Exits);
96 // The latch must either be the only exiting block or all non-latch exit
97 // blocks have either a deopt or unreachable terminator or compose a chain of
98 // blocks where the last one is either deopt or unreachable terminated. Both
99 // deopt and unreachable terminators are a strong indication they are not
100 // taken. Note that this is a profitability check, not a legality check. Also
101 // note that LoopPeeling currently can only update the branch weights of latch
102 // blocks and branch weights to blocks with deopt or unreachable do not need
103 // updating.
104 return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
105 }
106
107 // This function calculates the number of iterations after which the given Phi
108 // becomes an invariant. The pre-calculated values are memorized in the map. The
109 // function (shortcut is I) is calculated according to the following definition:
110 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
111 // If %y is a loop invariant, then I(%x) = 1.
112 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
113 // Otherwise, I(%x) is infinite.
114 // TODO: Actually if %y is an expression that depends only on Phi %z and some
115 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example
116 // looks like:
117 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
118 // %y = phi(0, 5),
119 // %a = %y + 1.
calculateIterationsToInvariance(PHINode * Phi,Loop * L,BasicBlock * BackEdge,SmallDenseMap<PHINode *,Optional<unsigned>> & IterationsToInvariance)120 static Optional<unsigned> calculateIterationsToInvariance(
121 PHINode *Phi, Loop *L, BasicBlock *BackEdge,
122 SmallDenseMap<PHINode *, Optional<unsigned> > &IterationsToInvariance) {
123 assert(Phi->getParent() == L->getHeader() &&
124 "Non-loop Phi should not be checked for turning into invariant.");
125 assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
126 // If we already know the answer, take it from the map.
127 auto I = IterationsToInvariance.find(Phi);
128 if (I != IterationsToInvariance.end())
129 return I->second;
130
131 // Otherwise we need to analyze the input from the back edge.
132 Value *Input = Phi->getIncomingValueForBlock(BackEdge);
133 // Place infinity to map to avoid infinite recursion for cycled Phis. Such
134 // cycles can never stop on an invariant.
135 IterationsToInvariance[Phi] = None;
136 Optional<unsigned> ToInvariance = None;
137
138 if (L->isLoopInvariant(Input))
139 ToInvariance = 1u;
140 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
141 // Only consider Phis in header block.
142 if (IncPhi->getParent() != L->getHeader())
143 return None;
144 // If the input becomes an invariant after X iterations, then our Phi
145 // becomes an invariant after X + 1 iterations.
146 auto InputToInvariance = calculateIterationsToInvariance(
147 IncPhi, L, BackEdge, IterationsToInvariance);
148 if (InputToInvariance)
149 ToInvariance = *InputToInvariance + 1u;
150 }
151
152 // If we found that this Phi lies in an invariant chain, update the map.
153 if (ToInvariance)
154 IterationsToInvariance[Phi] = ToInvariance;
155 return ToInvariance;
156 }
157
158 // Try to find any invariant memory reads that will become dereferenceable in
159 // the remainder loop after peeling. The load must also be used (transitively)
160 // by an exit condition. Returns the number of iterations to peel off (at the
161 // moment either 0 or 1).
peelToTurnInvariantLoadsDerefencebale(Loop & L,DominatorTree & DT)162 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
163 DominatorTree &DT) {
164 // Skip loops with a single exiting block, because there should be no benefit
165 // for the heuristic below.
166 if (L.getExitingBlock())
167 return 0;
168
169 // All non-latch exit blocks must have an UnreachableInst terminator.
170 // Otherwise the heuristic below may not be profitable.
171 SmallVector<BasicBlock *, 4> Exits;
172 L.getUniqueNonLatchExitBlocks(Exits);
173 if (any_of(Exits, [](const BasicBlock *BB) {
174 return !isa<UnreachableInst>(BB->getTerminator());
175 }))
176 return 0;
177
178 // Now look for invariant loads that dominate the latch and are not known to
179 // be dereferenceable. If there are such loads and no writes, they will become
180 // dereferenceable in the loop if the first iteration is peeled off. Also
181 // collect the set of instructions controlled by such loads. Only peel if an
182 // exit condition uses (transitively) such a load.
183 BasicBlock *Header = L.getHeader();
184 BasicBlock *Latch = L.getLoopLatch();
185 SmallPtrSet<Value *, 8> LoadUsers;
186 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
187 for (BasicBlock *BB : L.blocks()) {
188 for (Instruction &I : *BB) {
189 if (I.mayWriteToMemory())
190 return 0;
191
192 auto Iter = LoadUsers.find(&I);
193 if (Iter != LoadUsers.end()) {
194 for (Value *U : I.users())
195 LoadUsers.insert(U);
196 }
197 // Do not look for reads in the header; they can already be hoisted
198 // without peeling.
199 if (BB == Header)
200 continue;
201 if (auto *LI = dyn_cast<LoadInst>(&I)) {
202 Value *Ptr = LI->getPointerOperand();
203 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
204 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT))
205 for (Value *U : I.users())
206 LoadUsers.insert(U);
207 }
208 }
209 }
210 SmallVector<BasicBlock *> ExitingBlocks;
211 L.getExitingBlocks(ExitingBlocks);
212 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
213 return LoadUsers.contains(Exiting->getTerminator());
214 }))
215 return 1;
216 return 0;
217 }
218
219 // Return the number of iterations to peel off that make conditions in the
220 // body true/false. For example, if we peel 2 iterations off the loop below,
221 // the condition i < 2 can be evaluated at compile time.
222 // for (i = 0; i < n; i++)
223 // if (i < 2)
224 // ..
225 // else
226 // ..
227 // }
countToEliminateCompares(Loop & L,unsigned MaxPeelCount,ScalarEvolution & SE)228 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
229 ScalarEvolution &SE) {
230 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
231 unsigned DesiredPeelCount = 0;
232
233 for (auto *BB : L.blocks()) {
234 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
235 if (!BI || BI->isUnconditional())
236 continue;
237
238 // Ignore loop exit condition.
239 if (L.getLoopLatch() == BB)
240 continue;
241
242 Value *Condition = BI->getCondition();
243 Value *LeftVal, *RightVal;
244 CmpInst::Predicate Pred;
245 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
246 continue;
247
248 const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
249 const SCEV *RightSCEV = SE.getSCEV(RightVal);
250
251 // Do not consider predicates that are known to be true or false
252 // independently of the loop iteration.
253 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
254 continue;
255
256 // Check if we have a condition with one AddRec and one non AddRec
257 // expression. Normalize LeftSCEV to be the AddRec.
258 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
259 if (isa<SCEVAddRecExpr>(RightSCEV)) {
260 std::swap(LeftSCEV, RightSCEV);
261 Pred = ICmpInst::getSwappedPredicate(Pred);
262 } else
263 continue;
264 }
265
266 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
267
268 // Avoid huge SCEV computations in the loop below, make sure we only
269 // consider AddRecs of the loop we are trying to peel.
270 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
271 continue;
272 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
273 !SE.getMonotonicPredicateType(LeftAR, Pred))
274 continue;
275
276 // Check if extending the current DesiredPeelCount lets us evaluate Pred
277 // or !Pred in the loop body statically.
278 unsigned NewPeelCount = DesiredPeelCount;
279
280 const SCEV *IterVal = LeftAR->evaluateAtIteration(
281 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
282
283 // If the original condition is not known, get the negated predicate
284 // (which holds on the else branch) and check if it is known. This allows
285 // us to peel of iterations that make the original condition false.
286 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
287 Pred = ICmpInst::getInversePredicate(Pred);
288
289 const SCEV *Step = LeftAR->getStepRecurrence(SE);
290 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
291 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
292 &NewPeelCount]() {
293 IterVal = NextIterVal;
294 NextIterVal = SE.getAddExpr(IterVal, Step);
295 NewPeelCount++;
296 };
297
298 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
299 return NewPeelCount < MaxPeelCount;
300 };
301
302 while (CanPeelOneMoreIteration() &&
303 SE.isKnownPredicate(Pred, IterVal, RightSCEV))
304 PeelOneMoreIteration();
305
306 // With *that* peel count, does the predicate !Pred become known in the
307 // first iteration of the loop body after peeling?
308 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
309 RightSCEV))
310 continue; // If not, give up.
311
312 // However, for equality comparisons, that isn't always sufficient to
313 // eliminate the comparsion in loop body, we may need to peel one more
314 // iteration. See if that makes !Pred become unknown again.
315 if (ICmpInst::isEquality(Pred) &&
316 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
317 RightSCEV) &&
318 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
319 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
320 if (!CanPeelOneMoreIteration())
321 continue; // Need to peel one more iteration, but can't. Give up.
322 PeelOneMoreIteration(); // Great!
323 }
324
325 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
326 }
327
328 return DesiredPeelCount;
329 }
330
331 /// This "heuristic" exactly matches implicit behavior which used to exist
332 /// inside getLoopEstimatedTripCount. It was added here to keep an
333 /// improvement inside that API from causing peeling to become more agressive.
334 /// This should probably be removed.
violatesLegacyMultiExitLoopCheck(Loop * L)335 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
336 BasicBlock *Latch = L->getLoopLatch();
337 if (!Latch)
338 return true;
339
340 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
341 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
342 return true;
343
344 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
345 LatchBR->getSuccessor(1) == L->getHeader()) &&
346 "At least one edge out of the latch must go to the header");
347
348 SmallVector<BasicBlock *, 4> ExitBlocks;
349 L->getUniqueNonLatchExitBlocks(ExitBlocks);
350 return any_of(ExitBlocks, [](const BasicBlock *EB) {
351 return !EB->getTerminatingDeoptimizeCall();
352 });
353 }
354
355
356 // Return the number of iterations we want to peel off.
computePeelCount(Loop * L,unsigned LoopSize,TargetTransformInfo::PeelingPreferences & PP,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,unsigned Threshold)357 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
358 TargetTransformInfo::PeelingPreferences &PP,
359 unsigned TripCount, DominatorTree &DT,
360 ScalarEvolution &SE, unsigned Threshold) {
361 assert(LoopSize > 0 && "Zero loop size is not allowed!");
362 // Save the PP.PeelCount value set by the target in
363 // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
364 unsigned TargetPeelCount = PP.PeelCount;
365 PP.PeelCount = 0;
366 if (!canPeel(L))
367 return;
368
369 // Only try to peel innermost loops by default.
370 // The constraint can be relaxed by the target in TTI.getPeelingPreferences
371 // or by the flag -unroll-allow-loop-nests-peeling.
372 if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
373 return;
374
375 // If the user provided a peel count, use that.
376 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
377 if (UserPeelCount) {
378 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
379 << " iterations.\n");
380 PP.PeelCount = UnrollForcePeelCount;
381 PP.PeelProfiledIterations = true;
382 return;
383 }
384
385 // Skip peeling if it's disabled.
386 if (!PP.AllowPeeling)
387 return;
388
389 // Check that we can peel at least one iteration.
390 if (2 * LoopSize > Threshold)
391 return;
392
393 unsigned AlreadyPeeled = 0;
394 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
395 AlreadyPeeled = *Peeled;
396 // Stop if we already peeled off the maximum number of iterations.
397 if (AlreadyPeeled >= UnrollPeelMaxCount)
398 return;
399
400 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
401 // iterations of the loop. For this we compute the number for iterations after
402 // which every Phi is guaranteed to become an invariant, and try to peel the
403 // maximum number of iterations among these values, thus turning all those
404 // Phis into invariants.
405
406 // Store the pre-calculated values here.
407 SmallDenseMap<PHINode *, Optional<unsigned>> IterationsToInvariance;
408 // Now go through all Phis to calculate their the number of iterations they
409 // need to become invariants.
410 // Start the max computation with the PP.PeelCount value set by the target
411 // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
412 unsigned DesiredPeelCount = TargetPeelCount;
413 BasicBlock *BackEdge = L->getLoopLatch();
414 assert(BackEdge && "Loop is not in simplified form?");
415 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
416 PHINode *Phi = cast<PHINode>(&*BI);
417 auto ToInvariance = calculateIterationsToInvariance(Phi, L, BackEdge,
418 IterationsToInvariance);
419 if (ToInvariance)
420 DesiredPeelCount = std::max(DesiredPeelCount, *ToInvariance);
421 }
422
423 // Pay respect to limitations implied by loop size and the max peel count.
424 unsigned MaxPeelCount = UnrollPeelMaxCount;
425 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
426
427 DesiredPeelCount = std::max(DesiredPeelCount,
428 countToEliminateCompares(*L, MaxPeelCount, SE));
429
430 if (DesiredPeelCount == 0)
431 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT);
432
433 if (DesiredPeelCount > 0) {
434 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
435 // Consider max peel count limitation.
436 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
437 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
438 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
439 << " iteration(s) to turn"
440 << " some Phis into invariants.\n");
441 PP.PeelCount = DesiredPeelCount;
442 PP.PeelProfiledIterations = false;
443 return;
444 }
445 }
446
447 // Bail if we know the statically calculated trip count.
448 // In this case we rather prefer partial unrolling.
449 if (TripCount)
450 return;
451
452 // Do not apply profile base peeling if it is disabled.
453 if (!PP.PeelProfiledIterations)
454 return;
455 // If we don't know the trip count, but have reason to believe the average
456 // trip count is low, peeling should be beneficial, since we will usually
457 // hit the peeled section.
458 // We only do this in the presence of profile information, since otherwise
459 // our estimates of the trip count are not reliable enough.
460 if (L->getHeader()->getParent()->hasProfileData()) {
461 if (violatesLegacyMultiExitLoopCheck(L))
462 return;
463 Optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
464 if (!EstimatedTripCount)
465 return;
466
467 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
468 << *EstimatedTripCount << "\n");
469
470 if (*EstimatedTripCount) {
471 if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
472 unsigned PeelCount = *EstimatedTripCount;
473 LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
474 PP.PeelCount = PeelCount;
475 return;
476 }
477 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
478 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
479 LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
480 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
481 LLVM_DEBUG(dbgs() << "Max peel count by cost: "
482 << (Threshold / LoopSize - 1) << "\n");
483 }
484 }
485 }
486
487 /// Update the branch weights of the latch of a peeled-off loop
488 /// iteration.
489 /// This sets the branch weights for the latch of the recently peeled off loop
490 /// iteration correctly.
491 /// Let F is a weight of the edge from latch to header.
492 /// Let E is a weight of the edge from latch to exit.
493 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
494 /// go to exit.
495 /// Then, Estimated TripCount = F / E.
496 /// For I-th (counting from 0) peeled off iteration we set the the weights for
497 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
498 /// The probability to go to exit 1/(TC-I) increases. At the same time
499 /// the estimated trip count of remaining loop reduces by I.
500 /// To avoid dealing with division rounding we can just multiple both part
501 /// of weights to E and use weight as (F - I * E, E).
502 ///
503 /// \param Header The copy of the header block that belongs to next iteration.
504 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
505 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
506 /// header before peeling (in) and after peeled off one iteration (out).
updateBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t & FallThroughWeight)507 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
508 uint64_t ExitWeight,
509 uint64_t &FallThroughWeight) {
510 // FallThroughWeight is 0 means that there is no branch weights on original
511 // latch block or estimated trip count is zero.
512 if (!FallThroughWeight)
513 return;
514
515 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
516 MDBuilder MDB(LatchBR->getContext());
517 MDNode *WeightNode =
518 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
519 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
520 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
521 FallThroughWeight =
522 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
523 }
524
525 /// Initialize the weights.
526 ///
527 /// \param Header The header block.
528 /// \param LatchBR The latch branch.
529 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
530 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
initBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t & ExitWeight,uint64_t & FallThroughWeight)531 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
532 uint64_t &ExitWeight,
533 uint64_t &FallThroughWeight) {
534 uint64_t TrueWeight, FalseWeight;
535 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
536 return;
537 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
538 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
539 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
540 }
541
542 /// Update the weights of original Latch block after peeling off all iterations.
543 ///
544 /// \param Header The header block.
545 /// \param LatchBR The latch branch.
546 /// \param ExitWeight The weight of the edge from Latch to Exit.
547 /// \param FallThroughWeight The weight of the edge from Latch to Header.
fixupBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t FallThroughWeight)548 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
549 uint64_t ExitWeight,
550 uint64_t FallThroughWeight) {
551 // FallThroughWeight is 0 means that there is no branch weights on original
552 // latch block or estimated trip count is zero.
553 if (!FallThroughWeight)
554 return;
555
556 // Sets the branch weights on the loop exit.
557 MDBuilder MDB(LatchBR->getContext());
558 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
559 MDNode *WeightNode =
560 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
561 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
562 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
563 }
564
565 /// Clones the body of the loop L, putting it between \p InsertTop and \p
566 /// InsertBot.
567 /// \param IterNumber The serial number of the iteration currently being
568 /// peeled off.
569 /// \param ExitEdges The exit edges of the original loop.
570 /// \param[out] NewBlocks A list of the blocks in the newly created clone
571 /// \param[out] VMap The value map between the loop and the new clone.
572 /// \param LoopBlocks A helper for DFS-traversal of the loop.
573 /// \param LVMap A value-map that maps instructions from the original loop to
574 /// instructions in the last peeled-off iteration.
cloneLoopBlocks(Loop * L,unsigned IterNumber,BasicBlock * InsertTop,BasicBlock * InsertBot,SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & ExitEdges,SmallVectorImpl<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,DominatorTree * DT,LoopInfo * LI,ArrayRef<MDNode * > LoopLocalNoAliasDeclScopes,ScalarEvolution & SE)575 static void cloneLoopBlocks(
576 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
577 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
578 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
579 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
580 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
581 ScalarEvolution &SE) {
582 BasicBlock *Header = L->getHeader();
583 BasicBlock *Latch = L->getLoopLatch();
584 BasicBlock *PreHeader = L->getLoopPreheader();
585
586 Function *F = Header->getParent();
587 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
588 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
589 Loop *ParentLoop = L->getParentLoop();
590
591 // For each block in the original loop, create a new copy,
592 // and update the value map with the newly created values.
593 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
594 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
595 NewBlocks.push_back(NewBB);
596
597 // If an original block is an immediate child of the loop L, its copy
598 // is a child of a ParentLoop after peeling. If a block is a child of
599 // a nested loop, it is handled in the cloneLoop() call below.
600 if (ParentLoop && LI->getLoopFor(*BB) == L)
601 ParentLoop->addBasicBlockToLoop(NewBB, *LI);
602
603 VMap[*BB] = NewBB;
604
605 // If dominator tree is available, insert nodes to represent cloned blocks.
606 if (DT) {
607 if (Header == *BB)
608 DT->addNewBlock(NewBB, InsertTop);
609 else {
610 DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
611 // VMap must contain entry for IDom, as the iteration order is RPO.
612 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
613 }
614 }
615 }
616
617 {
618 // Identify what other metadata depends on the cloned version. After
619 // cloning, replace the metadata with the corrected version for both
620 // memory instructions and noalias intrinsics.
621 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
622 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
623 Header->getContext(), Ext);
624 }
625
626 // Recursively create the new Loop objects for nested loops, if any,
627 // to preserve LoopInfo.
628 for (Loop *ChildLoop : *L) {
629 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
630 }
631
632 // Hook-up the control flow for the newly inserted blocks.
633 // The new header is hooked up directly to the "top", which is either
634 // the original loop preheader (for the first iteration) or the previous
635 // iteration's exiting block (for every other iteration)
636 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
637
638 // Similarly, for the latch:
639 // The original exiting edge is still hooked up to the loop exit.
640 // The backedge now goes to the "bottom", which is either the loop's real
641 // header (for the last peeled iteration) or the copied header of the next
642 // iteration (for every other iteration)
643 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
644 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
645 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
646 if (LatchBR->getSuccessor(idx) == Header) {
647 LatchBR->setSuccessor(idx, InsertBot);
648 break;
649 }
650 if (DT)
651 DT->changeImmediateDominator(InsertBot, NewLatch);
652
653 // The new copy of the loop body starts with a bunch of PHI nodes
654 // that pick an incoming value from either the preheader, or the previous
655 // loop iteration. Since this copy is no longer part of the loop, we
656 // resolve this statically:
657 // For the first iteration, we use the value from the preheader directly.
658 // For any other iteration, we replace the phi with the value generated by
659 // the immediately preceding clone of the loop body (which represents
660 // the previous iteration).
661 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
662 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
663 if (IterNumber == 0) {
664 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
665 } else {
666 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
667 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
668 if (LatchInst && L->contains(LatchInst))
669 VMap[&*I] = LVMap[LatchInst];
670 else
671 VMap[&*I] = LatchVal;
672 }
673 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
674 }
675
676 // Fix up the outgoing values - we need to add a value for the iteration
677 // we've just created. Note that this must happen *after* the incoming
678 // values are adjusted, since the value going out of the latch may also be
679 // a value coming into the header.
680 for (auto Edge : ExitEdges)
681 for (PHINode &PHI : Edge.second->phis()) {
682 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
683 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
684 if (LatchInst && L->contains(LatchInst))
685 LatchVal = VMap[LatchVal];
686 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
687 SE.forgetValue(&PHI);
688 }
689
690 // LastValueMap is updated with the values for the current loop
691 // which are used the next time this function is called.
692 for (auto KV : VMap)
693 LVMap[KV.first] = KV.second;
694 }
695
gatherPeelingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,Optional<bool> UserAllowPeeling,Optional<bool> UserAllowProfileBasedPeeling,bool UnrollingSpecficValues)696 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
697 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
698 Optional<bool> UserAllowPeeling,
699 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
700 TargetTransformInfo::PeelingPreferences PP;
701
702 // Set the default values.
703 PP.PeelCount = 0;
704 PP.AllowPeeling = true;
705 PP.AllowLoopNestsPeeling = false;
706 PP.PeelProfiledIterations = true;
707
708 // Get the target specifc values.
709 TTI.getPeelingPreferences(L, SE, PP);
710
711 // User specified values using cl::opt.
712 if (UnrollingSpecficValues) {
713 if (UnrollPeelCount.getNumOccurrences() > 0)
714 PP.PeelCount = UnrollPeelCount;
715 if (UnrollAllowPeeling.getNumOccurrences() > 0)
716 PP.AllowPeeling = UnrollAllowPeeling;
717 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
718 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
719 }
720
721 // User specifed values provided by argument.
722 if (UserAllowPeeling)
723 PP.AllowPeeling = *UserAllowPeeling;
724 if (UserAllowProfileBasedPeeling)
725 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
726
727 return PP;
728 }
729
730 /// Peel off the first \p PeelCount iterations of loop \p L.
731 ///
732 /// Note that this does not peel them off as a single straight-line block.
733 /// Rather, each iteration is peeled off separately, and needs to check the
734 /// exit condition.
735 /// For loops that dynamically execute \p PeelCount iterations or less
736 /// this provides a benefit, since the peeled off iterations, which account
737 /// for the bulk of dynamic execution, can be further simplified by scalar
738 /// optimizations.
peelLoop(Loop * L,unsigned PeelCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree & DT,AssumptionCache * AC,bool PreserveLCSSA)739 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
740 ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
741 bool PreserveLCSSA) {
742 assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
743 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
744
745 LoopBlocksDFS LoopBlocks(L);
746 LoopBlocks.perform(LI);
747
748 BasicBlock *Header = L->getHeader();
749 BasicBlock *PreHeader = L->getLoopPreheader();
750 BasicBlock *Latch = L->getLoopLatch();
751 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
752 L->getExitEdges(ExitEdges);
753
754 // Remember dominators of blocks we might reach through exits to change them
755 // later. Immediate dominator of such block might change, because we add more
756 // routes which can lead to the exit: we can reach it from the peeled
757 // iterations too.
758 DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
759 for (auto *BB : L->blocks()) {
760 auto *BBDomNode = DT.getNode(BB);
761 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
762 for (auto *ChildDomNode : BBDomNode->children()) {
763 auto *ChildBB = ChildDomNode->getBlock();
764 if (!L->contains(ChildBB))
765 ChildrenToUpdate.push_back(ChildBB);
766 }
767 // The new idom of the block will be the nearest common dominator
768 // of all copies of the previous idom. This is equivalent to the
769 // nearest common dominator of the previous idom and the first latch,
770 // which dominates all copies of the previous idom.
771 BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
772 for (auto *ChildBB : ChildrenToUpdate)
773 NonLoopBlocksIDom[ChildBB] = NewIDom;
774 }
775
776 Function *F = Header->getParent();
777
778 // Set up all the necessary basic blocks. It is convenient to split the
779 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
780 // body, and a new preheader for the "real" loop.
781
782 // Peeling the first iteration transforms.
783 //
784 // PreHeader:
785 // ...
786 // Header:
787 // LoopBody
788 // If (cond) goto Header
789 // Exit:
790 //
791 // into
792 //
793 // InsertTop:
794 // LoopBody
795 // If (!cond) goto Exit
796 // InsertBot:
797 // NewPreHeader:
798 // ...
799 // Header:
800 // LoopBody
801 // If (cond) goto Header
802 // Exit:
803 //
804 // Each following iteration will split the current bottom anchor in two,
805 // and put the new copy of the loop body between these two blocks. That is,
806 // after peeling another iteration from the example above, we'll split
807 // InsertBot, and get:
808 //
809 // InsertTop:
810 // LoopBody
811 // If (!cond) goto Exit
812 // InsertBot:
813 // LoopBody
814 // If (!cond) goto Exit
815 // InsertBot.next:
816 // NewPreHeader:
817 // ...
818 // Header:
819 // LoopBody
820 // If (cond) goto Header
821 // Exit:
822
823 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
824 BasicBlock *InsertBot =
825 SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
826 BasicBlock *NewPreHeader =
827 SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
828
829 InsertTop->setName(Header->getName() + ".peel.begin");
830 InsertBot->setName(Header->getName() + ".peel.next");
831 NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
832
833 ValueToValueMapTy LVMap;
834
835 // If we have branch weight information, we'll want to update it for the
836 // newly created branches.
837 BranchInst *LatchBR =
838 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
839 uint64_t ExitWeight = 0, FallThroughWeight = 0;
840 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
841
842 // Identify what noalias metadata is inside the loop: if it is inside the
843 // loop, the associated metadata must be cloned for each iteration.
844 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
845 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
846
847 // For each peeled-off iteration, make a copy of the loop.
848 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
849 SmallVector<BasicBlock *, 8> NewBlocks;
850 ValueToValueMapTy VMap;
851
852 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
853 LoopBlocks, VMap, LVMap, &DT, LI,
854 LoopLocalNoAliasDeclScopes, *SE);
855
856 // Remap to use values from the current iteration instead of the
857 // previous one.
858 remapInstructionsInBlocks(NewBlocks, VMap);
859
860 // Update IDoms of the blocks reachable through exits.
861 if (Iter == 0)
862 for (auto BBIDom : NonLoopBlocksIDom)
863 DT.changeImmediateDominator(BBIDom.first,
864 cast<BasicBlock>(LVMap[BBIDom.second]));
865 #ifdef EXPENSIVE_CHECKS
866 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
867 #endif
868
869 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
870 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
871 // Remove Loop metadata from the latch branch instruction
872 // because it is not the Loop's latch branch anymore.
873 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
874
875 InsertTop = InsertBot;
876 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
877 InsertBot->setName(Header->getName() + ".peel.next");
878
879 F->getBasicBlockList().splice(InsertTop->getIterator(),
880 F->getBasicBlockList(),
881 NewBlocks[0]->getIterator(), F->end());
882 }
883
884 // Now adjust the phi nodes in the loop header to get their initial values
885 // from the last peeled-off iteration instead of the preheader.
886 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
887 PHINode *PHI = cast<PHINode>(I);
888 Value *NewVal = PHI->getIncomingValueForBlock(Latch);
889 Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
890 if (LatchInst && L->contains(LatchInst))
891 NewVal = LVMap[LatchInst];
892
893 PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
894 }
895
896 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
897
898 // Update Metadata for count of peeled off iterations.
899 unsigned AlreadyPeeled = 0;
900 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
901 AlreadyPeeled = *Peeled;
902 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
903
904 if (Loop *ParentLoop = L->getParentLoop())
905 L = ParentLoop;
906
907 // We modified the loop, update SE.
908 SE->forgetTopmostLoop(L);
909
910 #ifdef EXPENSIVE_CHECKS
911 // Finally DomtTree must be correct.
912 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
913 #endif
914
915 // FIXME: Incrementally update loop-simplify
916 simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
917
918 NumPeeled++;
919
920 return true;
921 }
922