1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "loop-peel"
51 
52 STATISTIC(NumPeeled, "Number of loops peeled");
53 
54 static cl::opt<unsigned> UnrollPeelCount(
55     "unroll-peel-count", cl::Hidden,
56     cl::desc("Set the unroll peeling count, for testing purposes"));
57 
58 static cl::opt<bool>
59     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
60                        cl::desc("Allows loops to be peeled when the dynamic "
61                                 "trip count is known to be low."));
62 
63 static cl::opt<bool>
64     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
65                                 cl::init(false), cl::Hidden,
66                                 cl::desc("Allows loop nests to be peeled."));
67 
68 static cl::opt<unsigned> UnrollPeelMaxCount(
69     "unroll-peel-max-count", cl::init(7), cl::Hidden,
70     cl::desc("Max average trip count which will cause loop peeling."));
71 
72 static cl::opt<unsigned> UnrollForcePeelCount(
73     "unroll-force-peel-count", cl::init(0), cl::Hidden,
74     cl::desc("Force a peel count regardless of profiling information."));
75 
76 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
77 
78 // Designates that a Phi is estimated to become invariant after an "infinite"
79 // number of loop iterations (i.e. only may become an invariant if the loop is
80 // fully unrolled).
81 static const unsigned InfiniteIterationsToInvariance =
82     std::numeric_limits<unsigned>::max();
83 
84 // Check whether we are capable of peeling this loop.
85 bool llvm::canPeel(Loop *L) {
86   // Make sure the loop is in simplified form
87   if (!L->isLoopSimplifyForm())
88     return false;
89 
90   // Don't try to peel loops where the latch is not the exiting block.
91   // This can be an indication of two different things:
92   // 1) The loop is not rotated.
93   // 2) The loop contains irreducible control flow that involves the latch.
94   const BasicBlock *Latch = L->getLoopLatch();
95   if (!L->isLoopExiting(Latch))
96     return false;
97 
98   // Peeling is only supported if the latch is a branch.
99   if (!isa<BranchInst>(Latch->getTerminator()))
100     return false;
101 
102   SmallVector<BasicBlock *, 4> Exits;
103   L->getUniqueNonLatchExitBlocks(Exits);
104   // The latch must either be the only exiting block or all non-latch exit
105   // blocks have either a deopt or unreachable terminator. Both deopt and
106   // unreachable terminators are a strong indication they are not taken. Note
107   // that this is a profitability check, not a legality check. Also note that
108   // LoopPeeling currently can only update the branch weights of latch blocks
109   // and branch weights to blocks with deopt or unreachable do not need
110   // updating.
111   return all_of(Exits, [](const BasicBlock *BB) {
112     return BB->getTerminatingDeoptimizeCall() ||
113            isa<UnreachableInst>(BB->getTerminator());
114   });
115 }
116 
117 // This function calculates the number of iterations after which the given Phi
118 // becomes an invariant. The pre-calculated values are memorized in the map. The
119 // function (shortcut is I) is calculated according to the following definition:
120 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
121 //   If %y is a loop invariant, then I(%x) = 1.
122 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
123 //   Otherwise, I(%x) is infinite.
124 // TODO: Actually if %y is an expression that depends only on Phi %z and some
125 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
126 //       looks like:
127 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
128 //         %y = phi(0, 5),
129 //         %a = %y + 1.
130 static unsigned calculateIterationsToInvariance(
131     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
132     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
133   assert(Phi->getParent() == L->getHeader() &&
134          "Non-loop Phi should not be checked for turning into invariant.");
135   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
136   // If we already know the answer, take it from the map.
137   auto I = IterationsToInvariance.find(Phi);
138   if (I != IterationsToInvariance.end())
139     return I->second;
140 
141   // Otherwise we need to analyze the input from the back edge.
142   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
143   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
144   // cycles can never stop on an invariant.
145   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
146   unsigned ToInvariance = InfiniteIterationsToInvariance;
147 
148   if (L->isLoopInvariant(Input))
149     ToInvariance = 1u;
150   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
151     // Only consider Phis in header block.
152     if (IncPhi->getParent() != L->getHeader())
153       return InfiniteIterationsToInvariance;
154     // If the input becomes an invariant after X iterations, then our Phi
155     // becomes an invariant after X + 1 iterations.
156     unsigned InputToInvariance = calculateIterationsToInvariance(
157         IncPhi, L, BackEdge, IterationsToInvariance);
158     if (InputToInvariance != InfiniteIterationsToInvariance)
159       ToInvariance = InputToInvariance + 1u;
160   }
161 
162   // If we found that this Phi lies in an invariant chain, update the map.
163   if (ToInvariance != InfiniteIterationsToInvariance)
164     IterationsToInvariance[Phi] = ToInvariance;
165   return ToInvariance;
166 }
167 
168 // Return the number of iterations to peel off that make conditions in the
169 // body true/false. For example, if we peel 2 iterations off the loop below,
170 // the condition i < 2 can be evaluated at compile time.
171 //  for (i = 0; i < n; i++)
172 //    if (i < 2)
173 //      ..
174 //    else
175 //      ..
176 //   }
177 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
178                                          ScalarEvolution &SE) {
179   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
180   unsigned DesiredPeelCount = 0;
181 
182   for (auto *BB : L.blocks()) {
183     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
184     if (!BI || BI->isUnconditional())
185       continue;
186 
187     // Ignore loop exit condition.
188     if (L.getLoopLatch() == BB)
189       continue;
190 
191     Value *Condition = BI->getCondition();
192     Value *LeftVal, *RightVal;
193     CmpInst::Predicate Pred;
194     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
195       continue;
196 
197     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
198     const SCEV *RightSCEV = SE.getSCEV(RightVal);
199 
200     // Do not consider predicates that are known to be true or false
201     // independently of the loop iteration.
202     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
203       continue;
204 
205     // Check if we have a condition with one AddRec and one non AddRec
206     // expression. Normalize LeftSCEV to be the AddRec.
207     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
208       if (isa<SCEVAddRecExpr>(RightSCEV)) {
209         std::swap(LeftSCEV, RightSCEV);
210         Pred = ICmpInst::getSwappedPredicate(Pred);
211       } else
212         continue;
213     }
214 
215     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
216 
217     // Avoid huge SCEV computations in the loop below, make sure we only
218     // consider AddRecs of the loop we are trying to peel.
219     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
220       continue;
221     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
222         !SE.getMonotonicPredicateType(LeftAR, Pred))
223       continue;
224 
225     // Check if extending the current DesiredPeelCount lets us evaluate Pred
226     // or !Pred in the loop body statically.
227     unsigned NewPeelCount = DesiredPeelCount;
228 
229     const SCEV *IterVal = LeftAR->evaluateAtIteration(
230         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
231 
232     // If the original condition is not known, get the negated predicate
233     // (which holds on the else branch) and check if it is known. This allows
234     // us to peel of iterations that make the original condition false.
235     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
236       Pred = ICmpInst::getInversePredicate(Pred);
237 
238     const SCEV *Step = LeftAR->getStepRecurrence(SE);
239     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
240     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
241                                  &NewPeelCount]() {
242       IterVal = NextIterVal;
243       NextIterVal = SE.getAddExpr(IterVal, Step);
244       NewPeelCount++;
245     };
246 
247     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
248       return NewPeelCount < MaxPeelCount;
249     };
250 
251     while (CanPeelOneMoreIteration() &&
252            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
253       PeelOneMoreIteration();
254 
255     // With *that* peel count, does the predicate !Pred become known in the
256     // first iteration of the loop body after peeling?
257     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
258                              RightSCEV))
259       continue; // If not, give up.
260 
261     // However, for equality comparisons, that isn't always sufficient to
262     // eliminate the comparsion in loop body, we may need to peel one more
263     // iteration. See if that makes !Pred become unknown again.
264     if (ICmpInst::isEquality(Pred) &&
265         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
266                              RightSCEV) &&
267         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
268         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
269       if (!CanPeelOneMoreIteration())
270         continue; // Need to peel one more iteration, but can't. Give up.
271       PeelOneMoreIteration(); // Great!
272     }
273 
274     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
275   }
276 
277   return DesiredPeelCount;
278 }
279 
280 // Return the number of iterations we want to peel off.
281 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
282                             TargetTransformInfo::PeelingPreferences &PP,
283                             unsigned &TripCount, ScalarEvolution &SE,
284                             unsigned Threshold) {
285   assert(LoopSize > 0 && "Zero loop size is not allowed!");
286   // Save the PP.PeelCount value set by the target in
287   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
288   unsigned TargetPeelCount = PP.PeelCount;
289   PP.PeelCount = 0;
290   if (!canPeel(L))
291     return;
292 
293   // Only try to peel innermost loops by default.
294   // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
295   // or by the flag -unroll-allow-loop-nests-peeling.
296   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
297     return;
298 
299   // If the user provided a peel count, use that.
300   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
301   if (UserPeelCount) {
302     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
303                       << " iterations.\n");
304     PP.PeelCount = UnrollForcePeelCount;
305     PP.PeelProfiledIterations = true;
306     return;
307   }
308 
309   // Skip peeling if it's disabled.
310   if (!PP.AllowPeeling)
311     return;
312 
313   unsigned AlreadyPeeled = 0;
314   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
315     AlreadyPeeled = *Peeled;
316   // Stop if we already peeled off the maximum number of iterations.
317   if (AlreadyPeeled >= UnrollPeelMaxCount)
318     return;
319 
320   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
321   // iterations of the loop. For this we compute the number for iterations after
322   // which every Phi is guaranteed to become an invariant, and try to peel the
323   // maximum number of iterations among these values, thus turning all those
324   // Phis into invariants.
325   // First, check that we can peel at least one iteration.
326   if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
327     // Store the pre-calculated values here.
328     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
329     // Now go through all Phis to calculate their the number of iterations they
330     // need to become invariants.
331     // Start the max computation with the UP.PeelCount value set by the target
332     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
333     unsigned DesiredPeelCount = TargetPeelCount;
334     BasicBlock *BackEdge = L->getLoopLatch();
335     assert(BackEdge && "Loop is not in simplified form?");
336     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
337       PHINode *Phi = cast<PHINode>(&*BI);
338       unsigned ToInvariance = calculateIterationsToInvariance(
339           Phi, L, BackEdge, IterationsToInvariance);
340       if (ToInvariance != InfiniteIterationsToInvariance)
341         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
342     }
343 
344     // Pay respect to limitations implied by loop size and the max peel count.
345     unsigned MaxPeelCount = UnrollPeelMaxCount;
346     MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
347 
348     DesiredPeelCount = std::max(DesiredPeelCount,
349                                 countToEliminateCompares(*L, MaxPeelCount, SE));
350 
351     if (DesiredPeelCount > 0) {
352       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
353       // Consider max peel count limitation.
354       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
355       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
356         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
357                           << " iteration(s) to turn"
358                           << " some Phis into invariants.\n");
359         PP.PeelCount = DesiredPeelCount;
360         PP.PeelProfiledIterations = false;
361         return;
362       }
363     }
364   }
365 
366   // Bail if we know the statically calculated trip count.
367   // In this case we rather prefer partial unrolling.
368   if (TripCount)
369     return;
370 
371   // Do not apply profile base peeling if it is disabled.
372   if (!PP.PeelProfiledIterations)
373     return;
374   // If we don't know the trip count, but have reason to believe the average
375   // trip count is low, peeling should be beneficial, since we will usually
376   // hit the peeled section.
377   // We only do this in the presence of profile information, since otherwise
378   // our estimates of the trip count are not reliable enough.
379   if (L->getHeader()->getParent()->hasProfileData()) {
380     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
381     if (!PeelCount)
382       return;
383 
384     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
385                       << "\n");
386 
387     if (*PeelCount) {
388       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
389           (LoopSize * (*PeelCount + 1) <= Threshold)) {
390         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
391                           << " iterations.\n");
392         PP.PeelCount = *PeelCount;
393         return;
394       }
395       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
396       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
397       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
398       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
399                         << "\n");
400       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
401     }
402   }
403 }
404 
405 /// Update the branch weights of the latch of a peeled-off loop
406 /// iteration.
407 /// This sets the branch weights for the latch of the recently peeled off loop
408 /// iteration correctly.
409 /// Let F is a weight of the edge from latch to header.
410 /// Let E is a weight of the edge from latch to exit.
411 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
412 /// go to exit.
413 /// Then, Estimated TripCount = F / E.
414 /// For I-th (counting from 0) peeled off iteration we set the the weights for
415 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
416 /// The probability to go to exit 1/(TC-I) increases. At the same time
417 /// the estimated trip count of remaining loop reduces by I.
418 /// To avoid dealing with division rounding we can just multiple both part
419 /// of weights to E and use weight as (F - I * E, E).
420 ///
421 /// \param Header The copy of the header block that belongs to next iteration.
422 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
423 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
424 /// header before peeling (in) and after peeled off one iteration (out).
425 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
426                                 uint64_t ExitWeight,
427                                 uint64_t &FallThroughWeight) {
428   // FallThroughWeight is 0 means that there is no branch weights on original
429   // latch block or estimated trip count is zero.
430   if (!FallThroughWeight)
431     return;
432 
433   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
434   MDBuilder MDB(LatchBR->getContext());
435   MDNode *WeightNode =
436       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
437                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
438   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
439   FallThroughWeight =
440       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
441 }
442 
443 /// Initialize the weights.
444 ///
445 /// \param Header The header block.
446 /// \param LatchBR The latch branch.
447 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
448 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
449 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
450                               uint64_t &ExitWeight,
451                               uint64_t &FallThroughWeight) {
452   uint64_t TrueWeight, FalseWeight;
453   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
454     return;
455   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
456   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
457   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
458 }
459 
460 /// Update the weights of original Latch block after peeling off all iterations.
461 ///
462 /// \param Header The header block.
463 /// \param LatchBR The latch branch.
464 /// \param ExitWeight The weight of the edge from Latch to Exit.
465 /// \param FallThroughWeight The weight of the edge from Latch to Header.
466 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
467                                uint64_t ExitWeight,
468                                uint64_t FallThroughWeight) {
469   // FallThroughWeight is 0 means that there is no branch weights on original
470   // latch block or estimated trip count is zero.
471   if (!FallThroughWeight)
472     return;
473 
474   // Sets the branch weights on the loop exit.
475   MDBuilder MDB(LatchBR->getContext());
476   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
477   MDNode *WeightNode =
478       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
479                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
480   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
481 }
482 
483 /// Clones the body of the loop L, putting it between \p InsertTop and \p
484 /// InsertBot.
485 /// \param IterNumber The serial number of the iteration currently being
486 /// peeled off.
487 /// \param ExitEdges The exit edges of the original loop.
488 /// \param[out] NewBlocks A list of the blocks in the newly created clone
489 /// \param[out] VMap The value map between the loop and the new clone.
490 /// \param LoopBlocks A helper for DFS-traversal of the loop.
491 /// \param LVMap A value-map that maps instructions from the original loop to
492 /// instructions in the last peeled-off iteration.
493 static void cloneLoopBlocks(
494     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
495     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
496     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
497     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
498     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
499   BasicBlock *Header = L->getHeader();
500   BasicBlock *Latch = L->getLoopLatch();
501   BasicBlock *PreHeader = L->getLoopPreheader();
502 
503   Function *F = Header->getParent();
504   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
505   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
506   Loop *ParentLoop = L->getParentLoop();
507 
508   // For each block in the original loop, create a new copy,
509   // and update the value map with the newly created values.
510   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
511     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
512     NewBlocks.push_back(NewBB);
513 
514     // If an original block is an immediate child of the loop L, its copy
515     // is a child of a ParentLoop after peeling. If a block is a child of
516     // a nested loop, it is handled in the cloneLoop() call below.
517     if (ParentLoop && LI->getLoopFor(*BB) == L)
518       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
519 
520     VMap[*BB] = NewBB;
521 
522     // If dominator tree is available, insert nodes to represent cloned blocks.
523     if (DT) {
524       if (Header == *BB)
525         DT->addNewBlock(NewBB, InsertTop);
526       else {
527         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
528         // VMap must contain entry for IDom, as the iteration order is RPO.
529         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
530       }
531     }
532   }
533 
534   {
535     // Identify what other metadata depends on the cloned version. After
536     // cloning, replace the metadata with the corrected version for both
537     // memory instructions and noalias intrinsics.
538     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
539     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
540                                Header->getContext(), Ext);
541   }
542 
543   // Recursively create the new Loop objects for nested loops, if any,
544   // to preserve LoopInfo.
545   for (Loop *ChildLoop : *L) {
546     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
547   }
548 
549   // Hook-up the control flow for the newly inserted blocks.
550   // The new header is hooked up directly to the "top", which is either
551   // the original loop preheader (for the first iteration) or the previous
552   // iteration's exiting block (for every other iteration)
553   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
554 
555   // Similarly, for the latch:
556   // The original exiting edge is still hooked up to the loop exit.
557   // The backedge now goes to the "bottom", which is either the loop's real
558   // header (for the last peeled iteration) or the copied header of the next
559   // iteration (for every other iteration)
560   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
561   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
562   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
563     if (LatchBR->getSuccessor(idx) == Header) {
564       LatchBR->setSuccessor(idx, InsertBot);
565       break;
566     }
567   if (DT)
568     DT->changeImmediateDominator(InsertBot, NewLatch);
569 
570   // The new copy of the loop body starts with a bunch of PHI nodes
571   // that pick an incoming value from either the preheader, or the previous
572   // loop iteration. Since this copy is no longer part of the loop, we
573   // resolve this statically:
574   // For the first iteration, we use the value from the preheader directly.
575   // For any other iteration, we replace the phi with the value generated by
576   // the immediately preceding clone of the loop body (which represents
577   // the previous iteration).
578   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
579     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
580     if (IterNumber == 0) {
581       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
582     } else {
583       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
584       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
585       if (LatchInst && L->contains(LatchInst))
586         VMap[&*I] = LVMap[LatchInst];
587       else
588         VMap[&*I] = LatchVal;
589     }
590     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
591   }
592 
593   // Fix up the outgoing values - we need to add a value for the iteration
594   // we've just created. Note that this must happen *after* the incoming
595   // values are adjusted, since the value going out of the latch may also be
596   // a value coming into the header.
597   for (auto Edge : ExitEdges)
598     for (PHINode &PHI : Edge.second->phis()) {
599       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
600       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
601       if (LatchInst && L->contains(LatchInst))
602         LatchVal = VMap[LatchVal];
603       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
604     }
605 
606   // LastValueMap is updated with the values for the current loop
607   // which are used the next time this function is called.
608   for (auto KV : VMap)
609     LVMap[KV.first] = KV.second;
610 }
611 
612 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
613     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
614     Optional<bool> UserAllowPeeling,
615     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
616   TargetTransformInfo::PeelingPreferences PP;
617 
618   // Set the default values.
619   PP.PeelCount = 0;
620   PP.AllowPeeling = true;
621   PP.AllowLoopNestsPeeling = false;
622   PP.PeelProfiledIterations = true;
623 
624   // Get the target specifc values.
625   TTI.getPeelingPreferences(L, SE, PP);
626 
627   // User specified values using cl::opt.
628   if (UnrollingSpecficValues) {
629     if (UnrollPeelCount.getNumOccurrences() > 0)
630       PP.PeelCount = UnrollPeelCount;
631     if (UnrollAllowPeeling.getNumOccurrences() > 0)
632       PP.AllowPeeling = UnrollAllowPeeling;
633     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
634       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
635   }
636 
637   // User specifed values provided by argument.
638   if (UserAllowPeeling.hasValue())
639     PP.AllowPeeling = *UserAllowPeeling;
640   if (UserAllowProfileBasedPeeling.hasValue())
641     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
642 
643   return PP;
644 }
645 
646 /// Peel off the first \p PeelCount iterations of loop \p L.
647 ///
648 /// Note that this does not peel them off as a single straight-line block.
649 /// Rather, each iteration is peeled off separately, and needs to check the
650 /// exit condition.
651 /// For loops that dynamically execute \p PeelCount iterations or less
652 /// this provides a benefit, since the peeled off iterations, which account
653 /// for the bulk of dynamic execution, can be further simplified by scalar
654 /// optimizations.
655 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
656                     ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
657                     bool PreserveLCSSA) {
658   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
659   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
660 
661   LoopBlocksDFS LoopBlocks(L);
662   LoopBlocks.perform(LI);
663 
664   BasicBlock *Header = L->getHeader();
665   BasicBlock *PreHeader = L->getLoopPreheader();
666   BasicBlock *Latch = L->getLoopLatch();
667   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
668   L->getExitEdges(ExitEdges);
669 
670   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
671   if (DT) {
672     // We'd like to determine the idom of exit block after peeling one
673     // iteration.
674     // Let Exit is exit block.
675     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
676     // blocks.
677     // Let Latch' and ExitingSet' are copies after a peeling.
678     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
679     // It is an evident that idom'(Exit) will be the nearest common dominator
680     // of ExitingSet and ExitingSet'.
681     // idom(Exit) is a nearest common dominator of ExitingSet.
682     // idom(Exit)' is a nearest common dominator of ExitingSet'.
683     // Taking into account that we have a single Latch, Latch' will dominate
684     // Header and idom(Exit).
685     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
686     // All these basic blocks are in the same loop, so what we find is
687     // (nearest common dominator of idom(Exit) and Latch)'.
688     // In the loop below we remember nearest common dominator of idom(Exit) and
689     // Latch to update idom of Exit later.
690     assert(L->hasDedicatedExits() && "No dedicated exits?");
691     for (auto Edge : ExitEdges) {
692       if (ExitIDom.count(Edge.second))
693         continue;
694       BasicBlock *BB = DT->findNearestCommonDominator(
695           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
696       assert(L->contains(BB) && "IDom is not in a loop");
697       ExitIDom[Edge.second] = BB;
698     }
699   }
700 
701   Function *F = Header->getParent();
702 
703   // Set up all the necessary basic blocks. It is convenient to split the
704   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
705   // body, and a new preheader for the "real" loop.
706 
707   // Peeling the first iteration transforms.
708   //
709   // PreHeader:
710   // ...
711   // Header:
712   //   LoopBody
713   //   If (cond) goto Header
714   // Exit:
715   //
716   // into
717   //
718   // InsertTop:
719   //   LoopBody
720   //   If (!cond) goto Exit
721   // InsertBot:
722   // NewPreHeader:
723   // ...
724   // Header:
725   //  LoopBody
726   //  If (cond) goto Header
727   // Exit:
728   //
729   // Each following iteration will split the current bottom anchor in two,
730   // and put the new copy of the loop body between these two blocks. That is,
731   // after peeling another iteration from the example above, we'll split
732   // InsertBot, and get:
733   //
734   // InsertTop:
735   //   LoopBody
736   //   If (!cond) goto Exit
737   // InsertBot:
738   //   LoopBody
739   //   If (!cond) goto Exit
740   // InsertBot.next:
741   // NewPreHeader:
742   // ...
743   // Header:
744   //  LoopBody
745   //  If (cond) goto Header
746   // Exit:
747 
748   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
749   BasicBlock *InsertBot =
750       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
751   BasicBlock *NewPreHeader =
752       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
753 
754   InsertTop->setName(Header->getName() + ".peel.begin");
755   InsertBot->setName(Header->getName() + ".peel.next");
756   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
757 
758   ValueToValueMapTy LVMap;
759 
760   // If we have branch weight information, we'll want to update it for the
761   // newly created branches.
762   BranchInst *LatchBR =
763       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
764   uint64_t ExitWeight = 0, FallThroughWeight = 0;
765   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
766 
767   // Identify what noalias metadata is inside the loop: if it is inside the
768   // loop, the associated metadata must be cloned for each iteration.
769   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
770   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
771 
772   // For each peeled-off iteration, make a copy of the loop.
773   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
774     SmallVector<BasicBlock *, 8> NewBlocks;
775     ValueToValueMapTy VMap;
776 
777     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
778                     LoopBlocks, VMap, LVMap, DT, LI,
779                     LoopLocalNoAliasDeclScopes);
780 
781     // Remap to use values from the current iteration instead of the
782     // previous one.
783     remapInstructionsInBlocks(NewBlocks, VMap);
784 
785     if (DT) {
786       // Latches of the cloned loops dominate over the loop exit, so idom of the
787       // latter is the first cloned loop body, as original PreHeader dominates
788       // the original loop body.
789       if (Iter == 0)
790         for (auto Exit : ExitIDom)
791           DT->changeImmediateDominator(Exit.first,
792                                        cast<BasicBlock>(LVMap[Exit.second]));
793 #ifdef EXPENSIVE_CHECKS
794       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
795 #endif
796     }
797 
798     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
799     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
800     // Remove Loop metadata from the latch branch instruction
801     // because it is not the Loop's latch branch anymore.
802     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
803 
804     InsertTop = InsertBot;
805     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
806     InsertBot->setName(Header->getName() + ".peel.next");
807 
808     F->getBasicBlockList().splice(InsertTop->getIterator(),
809                                   F->getBasicBlockList(),
810                                   NewBlocks[0]->getIterator(), F->end());
811   }
812 
813   // Now adjust the phi nodes in the loop header to get their initial values
814   // from the last peeled-off iteration instead of the preheader.
815   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
816     PHINode *PHI = cast<PHINode>(I);
817     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
818     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
819     if (LatchInst && L->contains(LatchInst))
820       NewVal = LVMap[LatchInst];
821 
822     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
823   }
824 
825   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
826 
827   // Update Metadata for count of peeled off iterations.
828   unsigned AlreadyPeeled = 0;
829   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
830     AlreadyPeeled = *Peeled;
831   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
832 
833   if (Loop *ParentLoop = L->getParentLoop())
834     L = ParentLoop;
835 
836   // We modified the loop, update SE.
837   SE->forgetTopmostLoop(L);
838 
839   // Finally DomtTree must be correct.
840   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
841 
842   // FIXME: Incrementally update loop-simplify
843   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
844 
845   NumPeeled++;
846 
847   return true;
848 }
849