1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "loop-peel" 51 52 STATISTIC(NumPeeled, "Number of loops peeled"); 53 54 static cl::opt<unsigned> UnrollPeelCount( 55 "unroll-peel-count", cl::Hidden, 56 cl::desc("Set the unroll peeling count, for testing purposes")); 57 58 static cl::opt<bool> 59 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 60 cl::desc("Allows loops to be peeled when the dynamic " 61 "trip count is known to be low.")); 62 63 static cl::opt<bool> 64 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 65 cl::init(false), cl::Hidden, 66 cl::desc("Allows loop nests to be peeled.")); 67 68 static cl::opt<unsigned> UnrollPeelMaxCount( 69 "unroll-peel-max-count", cl::init(7), cl::Hidden, 70 cl::desc("Max average trip count which will cause loop peeling.")); 71 72 static cl::opt<unsigned> UnrollForcePeelCount( 73 "unroll-force-peel-count", cl::init(0), cl::Hidden, 74 cl::desc("Force a peel count regardless of profiling information.")); 75 76 static cl::opt<bool> UnrollPeelMultiDeoptExit( 77 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden, 78 cl::desc("Allow peeling of loops with multiple deopt exits.")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Designates that a Phi is estimated to become invariant after an "infinite" 83 // number of loop iterations (i.e. only may become an invariant if the loop is 84 // fully unrolled). 85 static const unsigned InfiniteIterationsToInvariance = 86 std::numeric_limits<unsigned>::max(); 87 88 // Check whether we are capable of peeling this loop. 89 bool llvm::canPeel(Loop *L) { 90 // Make sure the loop is in simplified form 91 if (!L->isLoopSimplifyForm()) 92 return false; 93 94 if (UnrollPeelMultiDeoptExit) { 95 SmallVector<BasicBlock *, 4> Exits; 96 L->getUniqueNonLatchExitBlocks(Exits); 97 98 if (!Exits.empty()) { 99 // Latch's terminator is a conditional branch, Latch is exiting and 100 // all non Latch exits ends up with deoptimize. 101 const BasicBlock *Latch = L->getLoopLatch(); 102 const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); 103 return T && T->isConditional() && L->isLoopExiting(Latch) && 104 all_of(Exits, [](const BasicBlock *BB) { 105 return BB->getTerminatingDeoptimizeCall(); 106 }); 107 } 108 } 109 110 // Only peel loops that contain a single exit 111 if (!L->getExitingBlock() || !L->getUniqueExitBlock()) 112 return false; 113 114 // Don't try to peel loops where the latch is not the exiting block. 115 // This can be an indication of two different things: 116 // 1) The loop is not rotated. 117 // 2) The loop contains irreducible control flow that involves the latch. 118 if (L->getLoopLatch() != L->getExitingBlock()) 119 return false; 120 121 return true; 122 } 123 124 // This function calculates the number of iterations after which the given Phi 125 // becomes an invariant. The pre-calculated values are memorized in the map. The 126 // function (shortcut is I) is calculated according to the following definition: 127 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 128 // If %y is a loop invariant, then I(%x) = 1. 129 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 130 // Otherwise, I(%x) is infinite. 131 // TODO: Actually if %y is an expression that depends only on Phi %z and some 132 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 133 // looks like: 134 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 135 // %y = phi(0, 5), 136 // %a = %y + 1. 137 static unsigned calculateIterationsToInvariance( 138 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 139 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 140 assert(Phi->getParent() == L->getHeader() && 141 "Non-loop Phi should not be checked for turning into invariant."); 142 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 143 // If we already know the answer, take it from the map. 144 auto I = IterationsToInvariance.find(Phi); 145 if (I != IterationsToInvariance.end()) 146 return I->second; 147 148 // Otherwise we need to analyze the input from the back edge. 149 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 150 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 151 // cycles can never stop on an invariant. 152 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 153 unsigned ToInvariance = InfiniteIterationsToInvariance; 154 155 if (L->isLoopInvariant(Input)) 156 ToInvariance = 1u; 157 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 158 // Only consider Phis in header block. 159 if (IncPhi->getParent() != L->getHeader()) 160 return InfiniteIterationsToInvariance; 161 // If the input becomes an invariant after X iterations, then our Phi 162 // becomes an invariant after X + 1 iterations. 163 unsigned InputToInvariance = calculateIterationsToInvariance( 164 IncPhi, L, BackEdge, IterationsToInvariance); 165 if (InputToInvariance != InfiniteIterationsToInvariance) 166 ToInvariance = InputToInvariance + 1u; 167 } 168 169 // If we found that this Phi lies in an invariant chain, update the map. 170 if (ToInvariance != InfiniteIterationsToInvariance) 171 IterationsToInvariance[Phi] = ToInvariance; 172 return ToInvariance; 173 } 174 175 // Return the number of iterations to peel off that make conditions in the 176 // body true/false. For example, if we peel 2 iterations off the loop below, 177 // the condition i < 2 can be evaluated at compile time. 178 // for (i = 0; i < n; i++) 179 // if (i < 2) 180 // .. 181 // else 182 // .. 183 // } 184 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 185 ScalarEvolution &SE) { 186 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 187 unsigned DesiredPeelCount = 0; 188 189 for (auto *BB : L.blocks()) { 190 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 191 if (!BI || BI->isUnconditional()) 192 continue; 193 194 // Ignore loop exit condition. 195 if (L.getLoopLatch() == BB) 196 continue; 197 198 Value *Condition = BI->getCondition(); 199 Value *LeftVal, *RightVal; 200 CmpInst::Predicate Pred; 201 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 202 continue; 203 204 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 205 const SCEV *RightSCEV = SE.getSCEV(RightVal); 206 207 // Do not consider predicates that are known to be true or false 208 // independently of the loop iteration. 209 if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || 210 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, 211 RightSCEV)) 212 continue; 213 214 // Check if we have a condition with one AddRec and one non AddRec 215 // expression. Normalize LeftSCEV to be the AddRec. 216 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 217 if (isa<SCEVAddRecExpr>(RightSCEV)) { 218 std::swap(LeftSCEV, RightSCEV); 219 Pred = ICmpInst::getSwappedPredicate(Pred); 220 } else 221 continue; 222 } 223 224 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 225 226 // Avoid huge SCEV computations in the loop below, make sure we only 227 // consider AddRecs of the loop we are trying to peel. 228 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 229 continue; 230 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 231 !SE.getMonotonicPredicateType(LeftAR, Pred)) 232 continue; 233 234 // Check if extending the current DesiredPeelCount lets us evaluate Pred 235 // or !Pred in the loop body statically. 236 unsigned NewPeelCount = DesiredPeelCount; 237 238 const SCEV *IterVal = LeftAR->evaluateAtIteration( 239 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 240 241 // If the original condition is not known, get the negated predicate 242 // (which holds on the else branch) and check if it is known. This allows 243 // us to peel of iterations that make the original condition false. 244 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 245 Pred = ICmpInst::getInversePredicate(Pred); 246 247 const SCEV *Step = LeftAR->getStepRecurrence(SE); 248 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 249 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 250 &NewPeelCount]() { 251 IterVal = NextIterVal; 252 NextIterVal = SE.getAddExpr(IterVal, Step); 253 NewPeelCount++; 254 }; 255 256 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 257 return NewPeelCount < MaxPeelCount; 258 }; 259 260 while (CanPeelOneMoreIteration() && 261 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 262 PeelOneMoreIteration(); 263 264 // With *that* peel count, does the predicate !Pred become known in the 265 // first iteration of the loop body after peeling? 266 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 267 RightSCEV)) 268 continue; // If not, give up. 269 270 // However, for equality comparisons, that isn't always sufficient to 271 // eliminate the comparsion in loop body, we may need to peel one more 272 // iteration. See if that makes !Pred become unknown again. 273 if (ICmpInst::isEquality(Pred) && 274 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 275 RightSCEV) && 276 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 277 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 278 if (!CanPeelOneMoreIteration()) 279 continue; // Need to peel one more iteration, but can't. Give up. 280 PeelOneMoreIteration(); // Great! 281 } 282 283 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 284 } 285 286 return DesiredPeelCount; 287 } 288 289 // Return the number of iterations we want to peel off. 290 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 291 TargetTransformInfo::PeelingPreferences &PP, 292 unsigned &TripCount, ScalarEvolution &SE, 293 unsigned Threshold) { 294 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 295 // Save the PP.PeelCount value set by the target in 296 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 297 unsigned TargetPeelCount = PP.PeelCount; 298 PP.PeelCount = 0; 299 if (!canPeel(L)) 300 return; 301 302 // Only try to peel innermost loops by default. 303 // The constraint can be relaxed by the target in TTI.getUnrollingPreferences 304 // or by the flag -unroll-allow-loop-nests-peeling. 305 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 306 return; 307 308 // If the user provided a peel count, use that. 309 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 310 if (UserPeelCount) { 311 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 312 << " iterations.\n"); 313 PP.PeelCount = UnrollForcePeelCount; 314 PP.PeelProfiledIterations = true; 315 return; 316 } 317 318 // Skip peeling if it's disabled. 319 if (!PP.AllowPeeling) 320 return; 321 322 unsigned AlreadyPeeled = 0; 323 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 324 AlreadyPeeled = *Peeled; 325 // Stop if we already peeled off the maximum number of iterations. 326 if (AlreadyPeeled >= UnrollPeelMaxCount) 327 return; 328 329 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 330 // iterations of the loop. For this we compute the number for iterations after 331 // which every Phi is guaranteed to become an invariant, and try to peel the 332 // maximum number of iterations among these values, thus turning all those 333 // Phis into invariants. 334 // First, check that we can peel at least one iteration. 335 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 336 // Store the pre-calculated values here. 337 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 338 // Now go through all Phis to calculate their the number of iterations they 339 // need to become invariants. 340 // Start the max computation with the UP.PeelCount value set by the target 341 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 342 unsigned DesiredPeelCount = TargetPeelCount; 343 BasicBlock *BackEdge = L->getLoopLatch(); 344 assert(BackEdge && "Loop is not in simplified form?"); 345 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 346 PHINode *Phi = cast<PHINode>(&*BI); 347 unsigned ToInvariance = calculateIterationsToInvariance( 348 Phi, L, BackEdge, IterationsToInvariance); 349 if (ToInvariance != InfiniteIterationsToInvariance) 350 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 351 } 352 353 // Pay respect to limitations implied by loop size and the max peel count. 354 unsigned MaxPeelCount = UnrollPeelMaxCount; 355 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 356 357 DesiredPeelCount = std::max(DesiredPeelCount, 358 countToEliminateCompares(*L, MaxPeelCount, SE)); 359 360 if (DesiredPeelCount > 0) { 361 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 362 // Consider max peel count limitation. 363 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 364 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 365 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 366 << " iteration(s) to turn" 367 << " some Phis into invariants.\n"); 368 PP.PeelCount = DesiredPeelCount; 369 PP.PeelProfiledIterations = false; 370 return; 371 } 372 } 373 } 374 375 // Bail if we know the statically calculated trip count. 376 // In this case we rather prefer partial unrolling. 377 if (TripCount) 378 return; 379 380 // Do not apply profile base peeling if it is disabled. 381 if (!PP.PeelProfiledIterations) 382 return; 383 // If we don't know the trip count, but have reason to believe the average 384 // trip count is low, peeling should be beneficial, since we will usually 385 // hit the peeled section. 386 // We only do this in the presence of profile information, since otherwise 387 // our estimates of the trip count are not reliable enough. 388 if (L->getHeader()->getParent()->hasProfileData()) { 389 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 390 if (!PeelCount) 391 return; 392 393 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 394 << "\n"); 395 396 if (*PeelCount) { 397 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 398 (LoopSize * (*PeelCount + 1) <= Threshold)) { 399 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 400 << " iterations.\n"); 401 PP.PeelCount = *PeelCount; 402 return; 403 } 404 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 405 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 406 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 407 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 408 << "\n"); 409 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 410 } 411 } 412 } 413 414 /// Update the branch weights of the latch of a peeled-off loop 415 /// iteration. 416 /// This sets the branch weights for the latch of the recently peeled off loop 417 /// iteration correctly. 418 /// Let F is a weight of the edge from latch to header. 419 /// Let E is a weight of the edge from latch to exit. 420 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 421 /// go to exit. 422 /// Then, Estimated TripCount = F / E. 423 /// For I-th (counting from 0) peeled off iteration we set the the weights for 424 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 425 /// The probability to go to exit 1/(TC-I) increases. At the same time 426 /// the estimated trip count of remaining loop reduces by I. 427 /// To avoid dealing with division rounding we can just multiple both part 428 /// of weights to E and use weight as (F - I * E, E). 429 /// 430 /// \param Header The copy of the header block that belongs to next iteration. 431 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 432 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 433 /// header before peeling (in) and after peeled off one iteration (out). 434 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 435 uint64_t ExitWeight, 436 uint64_t &FallThroughWeight) { 437 // FallThroughWeight is 0 means that there is no branch weights on original 438 // latch block or estimated trip count is zero. 439 if (!FallThroughWeight) 440 return; 441 442 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 443 MDBuilder MDB(LatchBR->getContext()); 444 MDNode *WeightNode = 445 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 446 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 447 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 448 FallThroughWeight = 449 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 450 } 451 452 /// Initialize the weights. 453 /// 454 /// \param Header The header block. 455 /// \param LatchBR The latch branch. 456 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 457 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 458 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 459 uint64_t &ExitWeight, 460 uint64_t &FallThroughWeight) { 461 uint64_t TrueWeight, FalseWeight; 462 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 463 return; 464 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 465 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 466 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 467 } 468 469 /// Update the weights of original Latch block after peeling off all iterations. 470 /// 471 /// \param Header The header block. 472 /// \param LatchBR The latch branch. 473 /// \param ExitWeight The weight of the edge from Latch to Exit. 474 /// \param FallThroughWeight The weight of the edge from Latch to Header. 475 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 476 uint64_t ExitWeight, 477 uint64_t FallThroughWeight) { 478 // FallThroughWeight is 0 means that there is no branch weights on original 479 // latch block or estimated trip count is zero. 480 if (!FallThroughWeight) 481 return; 482 483 // Sets the branch weights on the loop exit. 484 MDBuilder MDB(LatchBR->getContext()); 485 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 486 MDNode *WeightNode = 487 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 488 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 489 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 490 } 491 492 /// Clones the body of the loop L, putting it between \p InsertTop and \p 493 /// InsertBot. 494 /// \param IterNumber The serial number of the iteration currently being 495 /// peeled off. 496 /// \param ExitEdges The exit edges of the original loop. 497 /// \param[out] NewBlocks A list of the blocks in the newly created clone 498 /// \param[out] VMap The value map between the loop and the new clone. 499 /// \param LoopBlocks A helper for DFS-traversal of the loop. 500 /// \param LVMap A value-map that maps instructions from the original loop to 501 /// instructions in the last peeled-off iteration. 502 static void cloneLoopBlocks( 503 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 504 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 505 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 506 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 507 LoopInfo *LI) { 508 BasicBlock *Header = L->getHeader(); 509 BasicBlock *Latch = L->getLoopLatch(); 510 BasicBlock *PreHeader = L->getLoopPreheader(); 511 512 Function *F = Header->getParent(); 513 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 514 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 515 Loop *ParentLoop = L->getParentLoop(); 516 517 // For each block in the original loop, create a new copy, 518 // and update the value map with the newly created values. 519 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 520 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 521 NewBlocks.push_back(NewBB); 522 523 // If an original block is an immediate child of the loop L, its copy 524 // is a child of a ParentLoop after peeling. If a block is a child of 525 // a nested loop, it is handled in the cloneLoop() call below. 526 if (ParentLoop && LI->getLoopFor(*BB) == L) 527 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 528 529 VMap[*BB] = NewBB; 530 531 // If dominator tree is available, insert nodes to represent cloned blocks. 532 if (DT) { 533 if (Header == *BB) 534 DT->addNewBlock(NewBB, InsertTop); 535 else { 536 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 537 // VMap must contain entry for IDom, as the iteration order is RPO. 538 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 539 } 540 } 541 } 542 543 // Recursively create the new Loop objects for nested loops, if any, 544 // to preserve LoopInfo. 545 for (Loop *ChildLoop : *L) { 546 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 547 } 548 549 // Hook-up the control flow for the newly inserted blocks. 550 // The new header is hooked up directly to the "top", which is either 551 // the original loop preheader (for the first iteration) or the previous 552 // iteration's exiting block (for every other iteration) 553 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 554 555 // Similarly, for the latch: 556 // The original exiting edge is still hooked up to the loop exit. 557 // The backedge now goes to the "bottom", which is either the loop's real 558 // header (for the last peeled iteration) or the copied header of the next 559 // iteration (for every other iteration) 560 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 561 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 562 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 563 if (LatchBR->getSuccessor(idx) == Header) { 564 LatchBR->setSuccessor(idx, InsertBot); 565 break; 566 } 567 if (DT) 568 DT->changeImmediateDominator(InsertBot, NewLatch); 569 570 // The new copy of the loop body starts with a bunch of PHI nodes 571 // that pick an incoming value from either the preheader, or the previous 572 // loop iteration. Since this copy is no longer part of the loop, we 573 // resolve this statically: 574 // For the first iteration, we use the value from the preheader directly. 575 // For any other iteration, we replace the phi with the value generated by 576 // the immediately preceding clone of the loop body (which represents 577 // the previous iteration). 578 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 579 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 580 if (IterNumber == 0) { 581 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 582 } else { 583 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 584 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 585 if (LatchInst && L->contains(LatchInst)) 586 VMap[&*I] = LVMap[LatchInst]; 587 else 588 VMap[&*I] = LatchVal; 589 } 590 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 591 } 592 593 // Fix up the outgoing values - we need to add a value for the iteration 594 // we've just created. Note that this must happen *after* the incoming 595 // values are adjusted, since the value going out of the latch may also be 596 // a value coming into the header. 597 for (auto Edge : ExitEdges) 598 for (PHINode &PHI : Edge.second->phis()) { 599 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 600 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 601 if (LatchInst && L->contains(LatchInst)) 602 LatchVal = VMap[LatchVal]; 603 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 604 } 605 606 // LastValueMap is updated with the values for the current loop 607 // which are used the next time this function is called. 608 for (auto KV : VMap) 609 LVMap[KV.first] = KV.second; 610 } 611 612 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 613 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 614 Optional<bool> UserAllowPeeling, 615 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 616 TargetTransformInfo::PeelingPreferences PP; 617 618 // Set the default values. 619 PP.PeelCount = 0; 620 PP.AllowPeeling = true; 621 PP.AllowLoopNestsPeeling = false; 622 PP.PeelProfiledIterations = true; 623 624 // Get the target specifc values. 625 TTI.getPeelingPreferences(L, SE, PP); 626 627 // User specified values using cl::opt. 628 if (UnrollingSpecficValues) { 629 if (UnrollPeelCount.getNumOccurrences() > 0) 630 PP.PeelCount = UnrollPeelCount; 631 if (UnrollAllowPeeling.getNumOccurrences() > 0) 632 PP.AllowPeeling = UnrollAllowPeeling; 633 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 634 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 635 } 636 637 // User specifed values provided by argument. 638 if (UserAllowPeeling.hasValue()) 639 PP.AllowPeeling = *UserAllowPeeling; 640 if (UserAllowProfileBasedPeeling.hasValue()) 641 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 642 643 return PP; 644 } 645 646 /// Peel off the first \p PeelCount iterations of loop \p L. 647 /// 648 /// Note that this does not peel them off as a single straight-line block. 649 /// Rather, each iteration is peeled off separately, and needs to check the 650 /// exit condition. 651 /// For loops that dynamically execute \p PeelCount iterations or less 652 /// this provides a benefit, since the peeled off iterations, which account 653 /// for the bulk of dynamic execution, can be further simplified by scalar 654 /// optimizations. 655 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 656 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 657 bool PreserveLCSSA) { 658 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 659 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 660 661 LoopBlocksDFS LoopBlocks(L); 662 LoopBlocks.perform(LI); 663 664 BasicBlock *Header = L->getHeader(); 665 BasicBlock *PreHeader = L->getLoopPreheader(); 666 BasicBlock *Latch = L->getLoopLatch(); 667 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 668 L->getExitEdges(ExitEdges); 669 670 DenseMap<BasicBlock *, BasicBlock *> ExitIDom; 671 if (DT) { 672 // We'd like to determine the idom of exit block after peeling one 673 // iteration. 674 // Let Exit is exit block. 675 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting 676 // blocks. 677 // Let Latch' and ExitingSet' are copies after a peeling. 678 // We'd like to find an idom'(Exit) - idom of Exit after peeling. 679 // It is an evident that idom'(Exit) will be the nearest common dominator 680 // of ExitingSet and ExitingSet'. 681 // idom(Exit) is a nearest common dominator of ExitingSet. 682 // idom(Exit)' is a nearest common dominator of ExitingSet'. 683 // Taking into account that we have a single Latch, Latch' will dominate 684 // Header and idom(Exit). 685 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. 686 // All these basic blocks are in the same loop, so what we find is 687 // (nearest common dominator of idom(Exit) and Latch)'. 688 // In the loop below we remember nearest common dominator of idom(Exit) and 689 // Latch to update idom of Exit later. 690 assert(L->hasDedicatedExits() && "No dedicated exits?"); 691 for (auto Edge : ExitEdges) { 692 if (ExitIDom.count(Edge.second)) 693 continue; 694 BasicBlock *BB = DT->findNearestCommonDominator( 695 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); 696 assert(L->contains(BB) && "IDom is not in a loop"); 697 ExitIDom[Edge.second] = BB; 698 } 699 } 700 701 Function *F = Header->getParent(); 702 703 // Set up all the necessary basic blocks. It is convenient to split the 704 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 705 // body, and a new preheader for the "real" loop. 706 707 // Peeling the first iteration transforms. 708 // 709 // PreHeader: 710 // ... 711 // Header: 712 // LoopBody 713 // If (cond) goto Header 714 // Exit: 715 // 716 // into 717 // 718 // InsertTop: 719 // LoopBody 720 // If (!cond) goto Exit 721 // InsertBot: 722 // NewPreHeader: 723 // ... 724 // Header: 725 // LoopBody 726 // If (cond) goto Header 727 // Exit: 728 // 729 // Each following iteration will split the current bottom anchor in two, 730 // and put the new copy of the loop body between these two blocks. That is, 731 // after peeling another iteration from the example above, we'll split 732 // InsertBot, and get: 733 // 734 // InsertTop: 735 // LoopBody 736 // If (!cond) goto Exit 737 // InsertBot: 738 // LoopBody 739 // If (!cond) goto Exit 740 // InsertBot.next: 741 // NewPreHeader: 742 // ... 743 // Header: 744 // LoopBody 745 // If (cond) goto Header 746 // Exit: 747 748 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 749 BasicBlock *InsertBot = 750 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 751 BasicBlock *NewPreHeader = 752 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 753 754 InsertTop->setName(Header->getName() + ".peel.begin"); 755 InsertBot->setName(Header->getName() + ".peel.next"); 756 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 757 758 ValueToValueMapTy LVMap; 759 760 // If we have branch weight information, we'll want to update it for the 761 // newly created branches. 762 BranchInst *LatchBR = 763 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 764 uint64_t ExitWeight = 0, FallThroughWeight = 0; 765 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 766 767 // For each peeled-off iteration, make a copy of the loop. 768 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 769 SmallVector<BasicBlock *, 8> NewBlocks; 770 ValueToValueMapTy VMap; 771 772 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 773 LoopBlocks, VMap, LVMap, DT, LI); 774 775 // Remap to use values from the current iteration instead of the 776 // previous one. 777 remapInstructionsInBlocks(NewBlocks, VMap); 778 779 if (DT) { 780 // Latches of the cloned loops dominate over the loop exit, so idom of the 781 // latter is the first cloned loop body, as original PreHeader dominates 782 // the original loop body. 783 if (Iter == 0) 784 for (auto Exit : ExitIDom) 785 DT->changeImmediateDominator(Exit.first, 786 cast<BasicBlock>(LVMap[Exit.second])); 787 #ifdef EXPENSIVE_CHECKS 788 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 789 #endif 790 } 791 792 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 793 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 794 // Remove Loop metadata from the latch branch instruction 795 // because it is not the Loop's latch branch anymore. 796 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 797 798 InsertTop = InsertBot; 799 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 800 InsertBot->setName(Header->getName() + ".peel.next"); 801 802 F->getBasicBlockList().splice(InsertTop->getIterator(), 803 F->getBasicBlockList(), 804 NewBlocks[0]->getIterator(), F->end()); 805 } 806 807 // Now adjust the phi nodes in the loop header to get their initial values 808 // from the last peeled-off iteration instead of the preheader. 809 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 810 PHINode *PHI = cast<PHINode>(I); 811 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 812 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 813 if (LatchInst && L->contains(LatchInst)) 814 NewVal = LVMap[LatchInst]; 815 816 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 817 } 818 819 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 820 821 // Update Metadata for count of peeled off iterations. 822 unsigned AlreadyPeeled = 0; 823 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 824 AlreadyPeeled = *Peeled; 825 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 826 827 if (Loop *ParentLoop = L->getParentLoop()) 828 L = ParentLoop; 829 830 // We modified the loop, update SE. 831 SE->forgetTopmostLoop(L); 832 833 // Finally DomtTree must be correct. 834 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 835 836 // FIXME: Incrementally update loop-simplify 837 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); 838 839 NumPeeled++; 840 841 return true; 842 } 843