1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopIterator.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/LoopSimplify.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/UnrollLoop.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <limits>
47 
48 using namespace llvm;
49 using namespace llvm::PatternMatch;
50 
51 #define DEBUG_TYPE "loop-peel"
52 
53 STATISTIC(NumPeeled, "Number of loops peeled");
54 
55 static cl::opt<unsigned> UnrollPeelCount(
56     "unroll-peel-count", cl::Hidden,
57     cl::desc("Set the unroll peeling count, for testing purposes"));
58 
59 static cl::opt<bool>
60     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
61                        cl::desc("Allows loops to be peeled when the dynamic "
62                                 "trip count is known to be low."));
63 
64 static cl::opt<bool>
65     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
66                                 cl::init(false), cl::Hidden,
67                                 cl::desc("Allows loop nests to be peeled."));
68 
69 static cl::opt<unsigned> UnrollPeelMaxCount(
70     "unroll-peel-max-count", cl::init(7), cl::Hidden,
71     cl::desc("Max average trip count which will cause loop peeling."));
72 
73 static cl::opt<unsigned> UnrollForcePeelCount(
74     "unroll-force-peel-count", cl::init(0), cl::Hidden,
75     cl::desc("Force a peel count regardless of profiling information."));
76 
77 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
78 
79 // Designates that a Phi is estimated to become invariant after an "infinite"
80 // number of loop iterations (i.e. only may become an invariant if the loop is
81 // fully unrolled).
82 static const unsigned InfiniteIterationsToInvariance =
83     std::numeric_limits<unsigned>::max();
84 
85 // Check whether we are capable of peeling this loop.
86 bool llvm::canPeel(Loop *L) {
87   // Make sure the loop is in simplified form
88   if (!L->isLoopSimplifyForm())
89     return false;
90 
91   // Don't try to peel loops where the latch is not the exiting block.
92   // This can be an indication of two different things:
93   // 1) The loop is not rotated.
94   // 2) The loop contains irreducible control flow that involves the latch.
95   const BasicBlock *Latch = L->getLoopLatch();
96   if (!L->isLoopExiting(Latch))
97     return false;
98 
99   // Peeling is only supported if the latch is a branch.
100   if (!isa<BranchInst>(Latch->getTerminator()))
101     return false;
102 
103   SmallVector<BasicBlock *, 4> Exits;
104   L->getUniqueNonLatchExitBlocks(Exits);
105   // The latch must either be the only exiting block or all non-latch exit
106   // blocks have either a deopt or unreachable terminator. Both deopt and
107   // unreachable terminators are a strong indication they are not taken. Note
108   // that this is a profitability check, not a legality check. Also note that
109   // LoopPeeling currently can only update the branch weights of latch blocks
110   // and branch weights to blocks with deopt or unreachable do not need
111   // updating.
112   return all_of(Exits, [](const BasicBlock *BB) {
113     return BB->getTerminatingDeoptimizeCall() ||
114            isa<UnreachableInst>(BB->getTerminator());
115   });
116 }
117 
118 // This function calculates the number of iterations after which the given Phi
119 // becomes an invariant. The pre-calculated values are memorized in the map. The
120 // function (shortcut is I) is calculated according to the following definition:
121 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
122 //   If %y is a loop invariant, then I(%x) = 1.
123 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
124 //   Otherwise, I(%x) is infinite.
125 // TODO: Actually if %y is an expression that depends only on Phi %z and some
126 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
127 //       looks like:
128 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
129 //         %y = phi(0, 5),
130 //         %a = %y + 1.
131 static unsigned calculateIterationsToInvariance(
132     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
133     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
134   assert(Phi->getParent() == L->getHeader() &&
135          "Non-loop Phi should not be checked for turning into invariant.");
136   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
137   // If we already know the answer, take it from the map.
138   auto I = IterationsToInvariance.find(Phi);
139   if (I != IterationsToInvariance.end())
140     return I->second;
141 
142   // Otherwise we need to analyze the input from the back edge.
143   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
144   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
145   // cycles can never stop on an invariant.
146   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
147   unsigned ToInvariance = InfiniteIterationsToInvariance;
148 
149   if (L->isLoopInvariant(Input))
150     ToInvariance = 1u;
151   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
152     // Only consider Phis in header block.
153     if (IncPhi->getParent() != L->getHeader())
154       return InfiniteIterationsToInvariance;
155     // If the input becomes an invariant after X iterations, then our Phi
156     // becomes an invariant after X + 1 iterations.
157     unsigned InputToInvariance = calculateIterationsToInvariance(
158         IncPhi, L, BackEdge, IterationsToInvariance);
159     if (InputToInvariance != InfiniteIterationsToInvariance)
160       ToInvariance = InputToInvariance + 1u;
161   }
162 
163   // If we found that this Phi lies in an invariant chain, update the map.
164   if (ToInvariance != InfiniteIterationsToInvariance)
165     IterationsToInvariance[Phi] = ToInvariance;
166   return ToInvariance;
167 }
168 
169 // Try to find any invariant memory reads that will become dereferenceable in
170 // the remainder loop after peeling. The load must also be used (transitively)
171 // by an exit condition. Returns the number of iterations to peel off (at the
172 // moment either 0 or 1).
173 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
174                                                       DominatorTree &DT) {
175   // Skip loops with a single exiting block, because there should be no benefit
176   // for the heuristic below.
177   if (L.getExitingBlock())
178     return 0;
179 
180   // All non-latch exit blocks must have an UnreachableInst terminator.
181   // Otherwise the heuristic below may not be profitable.
182   SmallVector<BasicBlock *, 4> Exits;
183   L.getUniqueNonLatchExitBlocks(Exits);
184   if (any_of(Exits, [](const BasicBlock *BB) {
185         return !isa<UnreachableInst>(BB->getTerminator());
186       }))
187     return 0;
188 
189   // Now look for invariant loads that dominate the latch and are not known to
190   // be dereferenceable. If there are such loads and no writes, they will become
191   // dereferenceable in the loop if the first iteration is peeled off. Also
192   // collect the set of instructions controlled by such loads. Only peel if an
193   // exit condition uses (transitively) such a load.
194   BasicBlock *Header = L.getHeader();
195   BasicBlock *Latch = L.getLoopLatch();
196   SmallPtrSet<Value *, 8> LoadUsers;
197   const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
198   for (BasicBlock *BB : L.blocks()) {
199     for (Instruction &I : *BB) {
200       if (I.mayWriteToMemory())
201         return 0;
202 
203       auto Iter = LoadUsers.find(&I);
204       if (Iter != LoadUsers.end()) {
205         for (Value *U : I.users())
206           LoadUsers.insert(U);
207       }
208       // Do not look for reads in the header; they can already be hoisted
209       // without peeling.
210       if (BB == Header)
211         continue;
212       if (auto *LI = dyn_cast<LoadInst>(&I)) {
213         Value *Ptr = LI->getPointerOperand();
214         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
215             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT))
216           for (Value *U : I.users())
217             LoadUsers.insert(U);
218       }
219     }
220   }
221   SmallVector<BasicBlock *> ExitingBlocks;
222   L.getExitingBlocks(ExitingBlocks);
223   for (BasicBlock *Exiting : ExitingBlocks)
224     if (LoadUsers.find(Exiting->getTerminator()) != LoadUsers.end())
225       return 1;
226   return 0;
227 }
228 
229 // Return the number of iterations to peel off that make conditions in the
230 // body true/false. For example, if we peel 2 iterations off the loop below,
231 // the condition i < 2 can be evaluated at compile time.
232 //  for (i = 0; i < n; i++)
233 //    if (i < 2)
234 //      ..
235 //    else
236 //      ..
237 //   }
238 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
239                                          ScalarEvolution &SE) {
240   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
241   unsigned DesiredPeelCount = 0;
242 
243   for (auto *BB : L.blocks()) {
244     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
245     if (!BI || BI->isUnconditional())
246       continue;
247 
248     // Ignore loop exit condition.
249     if (L.getLoopLatch() == BB)
250       continue;
251 
252     Value *Condition = BI->getCondition();
253     Value *LeftVal, *RightVal;
254     CmpInst::Predicate Pred;
255     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
256       continue;
257 
258     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
259     const SCEV *RightSCEV = SE.getSCEV(RightVal);
260 
261     // Do not consider predicates that are known to be true or false
262     // independently of the loop iteration.
263     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
264       continue;
265 
266     // Check if we have a condition with one AddRec and one non AddRec
267     // expression. Normalize LeftSCEV to be the AddRec.
268     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
269       if (isa<SCEVAddRecExpr>(RightSCEV)) {
270         std::swap(LeftSCEV, RightSCEV);
271         Pred = ICmpInst::getSwappedPredicate(Pred);
272       } else
273         continue;
274     }
275 
276     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
277 
278     // Avoid huge SCEV computations in the loop below, make sure we only
279     // consider AddRecs of the loop we are trying to peel.
280     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
281       continue;
282     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
283         !SE.getMonotonicPredicateType(LeftAR, Pred))
284       continue;
285 
286     // Check if extending the current DesiredPeelCount lets us evaluate Pred
287     // or !Pred in the loop body statically.
288     unsigned NewPeelCount = DesiredPeelCount;
289 
290     const SCEV *IterVal = LeftAR->evaluateAtIteration(
291         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
292 
293     // If the original condition is not known, get the negated predicate
294     // (which holds on the else branch) and check if it is known. This allows
295     // us to peel of iterations that make the original condition false.
296     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
297       Pred = ICmpInst::getInversePredicate(Pred);
298 
299     const SCEV *Step = LeftAR->getStepRecurrence(SE);
300     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
301     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
302                                  &NewPeelCount]() {
303       IterVal = NextIterVal;
304       NextIterVal = SE.getAddExpr(IterVal, Step);
305       NewPeelCount++;
306     };
307 
308     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
309       return NewPeelCount < MaxPeelCount;
310     };
311 
312     while (CanPeelOneMoreIteration() &&
313            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
314       PeelOneMoreIteration();
315 
316     // With *that* peel count, does the predicate !Pred become known in the
317     // first iteration of the loop body after peeling?
318     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
319                              RightSCEV))
320       continue; // If not, give up.
321 
322     // However, for equality comparisons, that isn't always sufficient to
323     // eliminate the comparsion in loop body, we may need to peel one more
324     // iteration. See if that makes !Pred become unknown again.
325     if (ICmpInst::isEquality(Pred) &&
326         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
327                              RightSCEV) &&
328         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
329         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
330       if (!CanPeelOneMoreIteration())
331         continue; // Need to peel one more iteration, but can't. Give up.
332       PeelOneMoreIteration(); // Great!
333     }
334 
335     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
336   }
337 
338   return DesiredPeelCount;
339 }
340 
341 // Return the number of iterations we want to peel off.
342 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
343                             TargetTransformInfo::PeelingPreferences &PP,
344                             unsigned &TripCount, DominatorTree &DT,
345                             ScalarEvolution &SE, unsigned Threshold) {
346   assert(LoopSize > 0 && "Zero loop size is not allowed!");
347   // Save the PP.PeelCount value set by the target in
348   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
349   unsigned TargetPeelCount = PP.PeelCount;
350   PP.PeelCount = 0;
351   if (!canPeel(L))
352     return;
353 
354   // Only try to peel innermost loops by default.
355   // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
356   // or by the flag -unroll-allow-loop-nests-peeling.
357   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
358     return;
359 
360   // If the user provided a peel count, use that.
361   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
362   if (UserPeelCount) {
363     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
364                       << " iterations.\n");
365     PP.PeelCount = UnrollForcePeelCount;
366     PP.PeelProfiledIterations = true;
367     return;
368   }
369 
370   // Skip peeling if it's disabled.
371   if (!PP.AllowPeeling)
372     return;
373 
374   unsigned AlreadyPeeled = 0;
375   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
376     AlreadyPeeled = *Peeled;
377   // Stop if we already peeled off the maximum number of iterations.
378   if (AlreadyPeeled >= UnrollPeelMaxCount)
379     return;
380 
381   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
382   // iterations of the loop. For this we compute the number for iterations after
383   // which every Phi is guaranteed to become an invariant, and try to peel the
384   // maximum number of iterations among these values, thus turning all those
385   // Phis into invariants.
386   // First, check that we can peel at least one iteration.
387   if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
388     // Store the pre-calculated values here.
389     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
390     // Now go through all Phis to calculate their the number of iterations they
391     // need to become invariants.
392     // Start the max computation with the UP.PeelCount value set by the target
393     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
394     unsigned DesiredPeelCount = TargetPeelCount;
395     BasicBlock *BackEdge = L->getLoopLatch();
396     assert(BackEdge && "Loop is not in simplified form?");
397     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
398       PHINode *Phi = cast<PHINode>(&*BI);
399       unsigned ToInvariance = calculateIterationsToInvariance(
400           Phi, L, BackEdge, IterationsToInvariance);
401       if (ToInvariance != InfiniteIterationsToInvariance)
402         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
403     }
404 
405     // Pay respect to limitations implied by loop size and the max peel count.
406     unsigned MaxPeelCount = UnrollPeelMaxCount;
407     MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
408 
409     DesiredPeelCount = std::max(DesiredPeelCount,
410                                 countToEliminateCompares(*L, MaxPeelCount, SE));
411 
412     if (DesiredPeelCount == 0)
413       DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT);
414 
415     if (DesiredPeelCount > 0) {
416       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
417       // Consider max peel count limitation.
418       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
419       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
420         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
421                           << " iteration(s) to turn"
422                           << " some Phis into invariants.\n");
423         PP.PeelCount = DesiredPeelCount;
424         PP.PeelProfiledIterations = false;
425         return;
426       }
427     }
428   }
429 
430   // Bail if we know the statically calculated trip count.
431   // In this case we rather prefer partial unrolling.
432   if (TripCount)
433     return;
434 
435   // Do not apply profile base peeling if it is disabled.
436   if (!PP.PeelProfiledIterations)
437     return;
438   // If we don't know the trip count, but have reason to believe the average
439   // trip count is low, peeling should be beneficial, since we will usually
440   // hit the peeled section.
441   // We only do this in the presence of profile information, since otherwise
442   // our estimates of the trip count are not reliable enough.
443   if (L->getHeader()->getParent()->hasProfileData()) {
444     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
445     if (!PeelCount)
446       return;
447 
448     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
449                       << "\n");
450 
451     if (*PeelCount) {
452       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
453           (LoopSize * (*PeelCount + 1) <= Threshold)) {
454         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
455                           << " iterations.\n");
456         PP.PeelCount = *PeelCount;
457         return;
458       }
459       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
460       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
461       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
462       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
463                         << "\n");
464       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
465     }
466   }
467 }
468 
469 /// Update the branch weights of the latch of a peeled-off loop
470 /// iteration.
471 /// This sets the branch weights for the latch of the recently peeled off loop
472 /// iteration correctly.
473 /// Let F is a weight of the edge from latch to header.
474 /// Let E is a weight of the edge from latch to exit.
475 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
476 /// go to exit.
477 /// Then, Estimated TripCount = F / E.
478 /// For I-th (counting from 0) peeled off iteration we set the the weights for
479 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
480 /// The probability to go to exit 1/(TC-I) increases. At the same time
481 /// the estimated trip count of remaining loop reduces by I.
482 /// To avoid dealing with division rounding we can just multiple both part
483 /// of weights to E and use weight as (F - I * E, E).
484 ///
485 /// \param Header The copy of the header block that belongs to next iteration.
486 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
487 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
488 /// header before peeling (in) and after peeled off one iteration (out).
489 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
490                                 uint64_t ExitWeight,
491                                 uint64_t &FallThroughWeight) {
492   // FallThroughWeight is 0 means that there is no branch weights on original
493   // latch block or estimated trip count is zero.
494   if (!FallThroughWeight)
495     return;
496 
497   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
498   MDBuilder MDB(LatchBR->getContext());
499   MDNode *WeightNode =
500       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
501                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
502   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
503   FallThroughWeight =
504       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
505 }
506 
507 /// Initialize the weights.
508 ///
509 /// \param Header The header block.
510 /// \param LatchBR The latch branch.
511 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
512 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
513 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
514                               uint64_t &ExitWeight,
515                               uint64_t &FallThroughWeight) {
516   uint64_t TrueWeight, FalseWeight;
517   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
518     return;
519   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
520   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
521   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
522 }
523 
524 /// Update the weights of original Latch block after peeling off all iterations.
525 ///
526 /// \param Header The header block.
527 /// \param LatchBR The latch branch.
528 /// \param ExitWeight The weight of the edge from Latch to Exit.
529 /// \param FallThroughWeight The weight of the edge from Latch to Header.
530 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
531                                uint64_t ExitWeight,
532                                uint64_t FallThroughWeight) {
533   // FallThroughWeight is 0 means that there is no branch weights on original
534   // latch block or estimated trip count is zero.
535   if (!FallThroughWeight)
536     return;
537 
538   // Sets the branch weights on the loop exit.
539   MDBuilder MDB(LatchBR->getContext());
540   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
541   MDNode *WeightNode =
542       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
543                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
544   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
545 }
546 
547 /// Clones the body of the loop L, putting it between \p InsertTop and \p
548 /// InsertBot.
549 /// \param IterNumber The serial number of the iteration currently being
550 /// peeled off.
551 /// \param ExitEdges The exit edges of the original loop.
552 /// \param[out] NewBlocks A list of the blocks in the newly created clone
553 /// \param[out] VMap The value map between the loop and the new clone.
554 /// \param LoopBlocks A helper for DFS-traversal of the loop.
555 /// \param LVMap A value-map that maps instructions from the original loop to
556 /// instructions in the last peeled-off iteration.
557 static void cloneLoopBlocks(
558     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
559     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
560     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
561     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
562     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
563   BasicBlock *Header = L->getHeader();
564   BasicBlock *Latch = L->getLoopLatch();
565   BasicBlock *PreHeader = L->getLoopPreheader();
566 
567   Function *F = Header->getParent();
568   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
569   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
570   Loop *ParentLoop = L->getParentLoop();
571 
572   // For each block in the original loop, create a new copy,
573   // and update the value map with the newly created values.
574   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
575     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
576     NewBlocks.push_back(NewBB);
577 
578     // If an original block is an immediate child of the loop L, its copy
579     // is a child of a ParentLoop after peeling. If a block is a child of
580     // a nested loop, it is handled in the cloneLoop() call below.
581     if (ParentLoop && LI->getLoopFor(*BB) == L)
582       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
583 
584     VMap[*BB] = NewBB;
585 
586     // If dominator tree is available, insert nodes to represent cloned blocks.
587     if (DT) {
588       if (Header == *BB)
589         DT->addNewBlock(NewBB, InsertTop);
590       else {
591         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
592         // VMap must contain entry for IDom, as the iteration order is RPO.
593         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
594       }
595     }
596   }
597 
598   {
599     // Identify what other metadata depends on the cloned version. After
600     // cloning, replace the metadata with the corrected version for both
601     // memory instructions and noalias intrinsics.
602     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
603     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
604                                Header->getContext(), Ext);
605   }
606 
607   // Recursively create the new Loop objects for nested loops, if any,
608   // to preserve LoopInfo.
609   for (Loop *ChildLoop : *L) {
610     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
611   }
612 
613   // Hook-up the control flow for the newly inserted blocks.
614   // The new header is hooked up directly to the "top", which is either
615   // the original loop preheader (for the first iteration) or the previous
616   // iteration's exiting block (for every other iteration)
617   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
618 
619   // Similarly, for the latch:
620   // The original exiting edge is still hooked up to the loop exit.
621   // The backedge now goes to the "bottom", which is either the loop's real
622   // header (for the last peeled iteration) or the copied header of the next
623   // iteration (for every other iteration)
624   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
625   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
626   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
627     if (LatchBR->getSuccessor(idx) == Header) {
628       LatchBR->setSuccessor(idx, InsertBot);
629       break;
630     }
631   if (DT)
632     DT->changeImmediateDominator(InsertBot, NewLatch);
633 
634   // The new copy of the loop body starts with a bunch of PHI nodes
635   // that pick an incoming value from either the preheader, or the previous
636   // loop iteration. Since this copy is no longer part of the loop, we
637   // resolve this statically:
638   // For the first iteration, we use the value from the preheader directly.
639   // For any other iteration, we replace the phi with the value generated by
640   // the immediately preceding clone of the loop body (which represents
641   // the previous iteration).
642   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
643     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
644     if (IterNumber == 0) {
645       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
646     } else {
647       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
648       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
649       if (LatchInst && L->contains(LatchInst))
650         VMap[&*I] = LVMap[LatchInst];
651       else
652         VMap[&*I] = LatchVal;
653     }
654     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
655   }
656 
657   // Fix up the outgoing values - we need to add a value for the iteration
658   // we've just created. Note that this must happen *after* the incoming
659   // values are adjusted, since the value going out of the latch may also be
660   // a value coming into the header.
661   for (auto Edge : ExitEdges)
662     for (PHINode &PHI : Edge.second->phis()) {
663       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
664       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
665       if (LatchInst && L->contains(LatchInst))
666         LatchVal = VMap[LatchVal];
667       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
668     }
669 
670   // LastValueMap is updated with the values for the current loop
671   // which are used the next time this function is called.
672   for (auto KV : VMap)
673     LVMap[KV.first] = KV.second;
674 }
675 
676 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
677     Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
678     Optional<bool> UserAllowPeeling,
679     Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
680   TargetTransformInfo::PeelingPreferences PP;
681 
682   // Set the default values.
683   PP.PeelCount = 0;
684   PP.AllowPeeling = true;
685   PP.AllowLoopNestsPeeling = false;
686   PP.PeelProfiledIterations = true;
687 
688   // Get the target specifc values.
689   TTI.getPeelingPreferences(L, SE, PP);
690 
691   // User specified values using cl::opt.
692   if (UnrollingSpecficValues) {
693     if (UnrollPeelCount.getNumOccurrences() > 0)
694       PP.PeelCount = UnrollPeelCount;
695     if (UnrollAllowPeeling.getNumOccurrences() > 0)
696       PP.AllowPeeling = UnrollAllowPeeling;
697     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
698       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
699   }
700 
701   // User specifed values provided by argument.
702   if (UserAllowPeeling.hasValue())
703     PP.AllowPeeling = *UserAllowPeeling;
704   if (UserAllowProfileBasedPeeling.hasValue())
705     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
706 
707   return PP;
708 }
709 
710 /// Peel off the first \p PeelCount iterations of loop \p L.
711 ///
712 /// Note that this does not peel them off as a single straight-line block.
713 /// Rather, each iteration is peeled off separately, and needs to check the
714 /// exit condition.
715 /// For loops that dynamically execute \p PeelCount iterations or less
716 /// this provides a benefit, since the peeled off iterations, which account
717 /// for the bulk of dynamic execution, can be further simplified by scalar
718 /// optimizations.
719 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
720                     ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
721                     bool PreserveLCSSA) {
722   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
723   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
724 
725   LoopBlocksDFS LoopBlocks(L);
726   LoopBlocks.perform(LI);
727 
728   BasicBlock *Header = L->getHeader();
729   BasicBlock *PreHeader = L->getLoopPreheader();
730   BasicBlock *Latch = L->getLoopLatch();
731   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
732   L->getExitEdges(ExitEdges);
733 
734   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
735   if (DT) {
736     // We'd like to determine the idom of exit block after peeling one
737     // iteration.
738     // Let Exit is exit block.
739     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
740     // blocks.
741     // Let Latch' and ExitingSet' are copies after a peeling.
742     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
743     // It is an evident that idom'(Exit) will be the nearest common dominator
744     // of ExitingSet and ExitingSet'.
745     // idom(Exit) is a nearest common dominator of ExitingSet.
746     // idom(Exit)' is a nearest common dominator of ExitingSet'.
747     // Taking into account that we have a single Latch, Latch' will dominate
748     // Header and idom(Exit).
749     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
750     // All these basic blocks are in the same loop, so what we find is
751     // (nearest common dominator of idom(Exit) and Latch)'.
752     // In the loop below we remember nearest common dominator of idom(Exit) and
753     // Latch to update idom of Exit later.
754     assert(L->hasDedicatedExits() && "No dedicated exits?");
755     for (auto Edge : ExitEdges) {
756       if (ExitIDom.count(Edge.second))
757         continue;
758       BasicBlock *BB = DT->findNearestCommonDominator(
759           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
760       assert(L->contains(BB) && "IDom is not in a loop");
761       ExitIDom[Edge.second] = BB;
762     }
763   }
764 
765   Function *F = Header->getParent();
766 
767   // Set up all the necessary basic blocks. It is convenient to split the
768   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
769   // body, and a new preheader for the "real" loop.
770 
771   // Peeling the first iteration transforms.
772   //
773   // PreHeader:
774   // ...
775   // Header:
776   //   LoopBody
777   //   If (cond) goto Header
778   // Exit:
779   //
780   // into
781   //
782   // InsertTop:
783   //   LoopBody
784   //   If (!cond) goto Exit
785   // InsertBot:
786   // NewPreHeader:
787   // ...
788   // Header:
789   //  LoopBody
790   //  If (cond) goto Header
791   // Exit:
792   //
793   // Each following iteration will split the current bottom anchor in two,
794   // and put the new copy of the loop body between these two blocks. That is,
795   // after peeling another iteration from the example above, we'll split
796   // InsertBot, and get:
797   //
798   // InsertTop:
799   //   LoopBody
800   //   If (!cond) goto Exit
801   // InsertBot:
802   //   LoopBody
803   //   If (!cond) goto Exit
804   // InsertBot.next:
805   // NewPreHeader:
806   // ...
807   // Header:
808   //  LoopBody
809   //  If (cond) goto Header
810   // Exit:
811 
812   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
813   BasicBlock *InsertBot =
814       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
815   BasicBlock *NewPreHeader =
816       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
817 
818   InsertTop->setName(Header->getName() + ".peel.begin");
819   InsertBot->setName(Header->getName() + ".peel.next");
820   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
821 
822   ValueToValueMapTy LVMap;
823 
824   // If we have branch weight information, we'll want to update it for the
825   // newly created branches.
826   BranchInst *LatchBR =
827       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
828   uint64_t ExitWeight = 0, FallThroughWeight = 0;
829   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
830 
831   // Identify what noalias metadata is inside the loop: if it is inside the
832   // loop, the associated metadata must be cloned for each iteration.
833   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
834   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
835 
836   // For each peeled-off iteration, make a copy of the loop.
837   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
838     SmallVector<BasicBlock *, 8> NewBlocks;
839     ValueToValueMapTy VMap;
840 
841     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
842                     LoopBlocks, VMap, LVMap, DT, LI,
843                     LoopLocalNoAliasDeclScopes);
844 
845     // Remap to use values from the current iteration instead of the
846     // previous one.
847     remapInstructionsInBlocks(NewBlocks, VMap);
848 
849     if (DT) {
850       // Latches of the cloned loops dominate over the loop exit, so idom of the
851       // latter is the first cloned loop body, as original PreHeader dominates
852       // the original loop body.
853       if (Iter == 0)
854         for (auto Exit : ExitIDom)
855           DT->changeImmediateDominator(Exit.first,
856                                        cast<BasicBlock>(LVMap[Exit.second]));
857 #ifdef EXPENSIVE_CHECKS
858       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
859 #endif
860     }
861 
862     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
863     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
864     // Remove Loop metadata from the latch branch instruction
865     // because it is not the Loop's latch branch anymore.
866     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
867 
868     InsertTop = InsertBot;
869     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
870     InsertBot->setName(Header->getName() + ".peel.next");
871 
872     F->getBasicBlockList().splice(InsertTop->getIterator(),
873                                   F->getBasicBlockList(),
874                                   NewBlocks[0]->getIterator(), F->end());
875   }
876 
877   // Now adjust the phi nodes in the loop header to get their initial values
878   // from the last peeled-off iteration instead of the preheader.
879   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
880     PHINode *PHI = cast<PHINode>(I);
881     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
882     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
883     if (LatchInst && L->contains(LatchInst))
884       NewVal = LVMap[LatchInst];
885 
886     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
887   }
888 
889   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
890 
891   // Update Metadata for count of peeled off iterations.
892   unsigned AlreadyPeeled = 0;
893   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
894     AlreadyPeeled = *Peeled;
895   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
896 
897   if (Loop *ParentLoop = L->getParentLoop())
898     L = ParentLoop;
899 
900   // We modified the loop, update SE.
901   SE->forgetTopmostLoop(L);
902 
903   // Finally DomtTree must be correct.
904   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
905 
906   // FIXME: Incrementally update loop-simplify
907   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
908 
909   NumPeeled++;
910 
911   return true;
912 }
913