1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/LoopIterator.h" 20 #include "llvm/Analysis/ScalarEvolution.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/InstrTypes.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Cloning.h" 39 #include "llvm/Transforms/Utils/LoopSimplify.h" 40 #include "llvm/Transforms/Utils/LoopUtils.h" 41 #include "llvm/Transforms/Utils/UnrollLoop.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstdint> 46 #include <limits> 47 48 using namespace llvm; 49 using namespace llvm::PatternMatch; 50 51 #define DEBUG_TYPE "loop-peel" 52 53 STATISTIC(NumPeeled, "Number of loops peeled"); 54 55 static cl::opt<unsigned> UnrollPeelCount( 56 "unroll-peel-count", cl::Hidden, 57 cl::desc("Set the unroll peeling count, for testing purposes")); 58 59 static cl::opt<bool> 60 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 61 cl::desc("Allows loops to be peeled when the dynamic " 62 "trip count is known to be low.")); 63 64 static cl::opt<bool> 65 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 66 cl::init(false), cl::Hidden, 67 cl::desc("Allows loop nests to be peeled.")); 68 69 static cl::opt<unsigned> UnrollPeelMaxCount( 70 "unroll-peel-max-count", cl::init(7), cl::Hidden, 71 cl::desc("Max average trip count which will cause loop peeling.")); 72 73 static cl::opt<unsigned> UnrollForcePeelCount( 74 "unroll-force-peel-count", cl::init(0), cl::Hidden, 75 cl::desc("Force a peel count regardless of profiling information.")); 76 77 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 78 79 // Designates that a Phi is estimated to become invariant after an "infinite" 80 // number of loop iterations (i.e. only may become an invariant if the loop is 81 // fully unrolled). 82 static const unsigned InfiniteIterationsToInvariance = 83 std::numeric_limits<unsigned>::max(); 84 85 // Check whether we are capable of peeling this loop. 86 bool llvm::canPeel(Loop *L) { 87 // Make sure the loop is in simplified form 88 if (!L->isLoopSimplifyForm()) 89 return false; 90 91 // Don't try to peel loops where the latch is not the exiting block. 92 // This can be an indication of two different things: 93 // 1) The loop is not rotated. 94 // 2) The loop contains irreducible control flow that involves the latch. 95 const BasicBlock *Latch = L->getLoopLatch(); 96 if (!L->isLoopExiting(Latch)) 97 return false; 98 99 // Peeling is only supported if the latch is a branch. 100 if (!isa<BranchInst>(Latch->getTerminator())) 101 return false; 102 103 SmallVector<BasicBlock *, 4> Exits; 104 L->getUniqueNonLatchExitBlocks(Exits); 105 // The latch must either be the only exiting block or all non-latch exit 106 // blocks have either a deopt or unreachable terminator. Both deopt and 107 // unreachable terminators are a strong indication they are not taken. Note 108 // that this is a profitability check, not a legality check. Also note that 109 // LoopPeeling currently can only update the branch weights of latch blocks 110 // and branch weights to blocks with deopt or unreachable do not need 111 // updating. 112 return all_of(Exits, [](const BasicBlock *BB) { 113 return BB->getTerminatingDeoptimizeCall() || 114 isa<UnreachableInst>(BB->getTerminator()); 115 }); 116 } 117 118 // This function calculates the number of iterations after which the given Phi 119 // becomes an invariant. The pre-calculated values are memorized in the map. The 120 // function (shortcut is I) is calculated according to the following definition: 121 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 122 // If %y is a loop invariant, then I(%x) = 1. 123 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 124 // Otherwise, I(%x) is infinite. 125 // TODO: Actually if %y is an expression that depends only on Phi %z and some 126 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 127 // looks like: 128 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 129 // %y = phi(0, 5), 130 // %a = %y + 1. 131 static unsigned calculateIterationsToInvariance( 132 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 133 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 134 assert(Phi->getParent() == L->getHeader() && 135 "Non-loop Phi should not be checked for turning into invariant."); 136 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 137 // If we already know the answer, take it from the map. 138 auto I = IterationsToInvariance.find(Phi); 139 if (I != IterationsToInvariance.end()) 140 return I->second; 141 142 // Otherwise we need to analyze the input from the back edge. 143 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 144 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 145 // cycles can never stop on an invariant. 146 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 147 unsigned ToInvariance = InfiniteIterationsToInvariance; 148 149 if (L->isLoopInvariant(Input)) 150 ToInvariance = 1u; 151 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 152 // Only consider Phis in header block. 153 if (IncPhi->getParent() != L->getHeader()) 154 return InfiniteIterationsToInvariance; 155 // If the input becomes an invariant after X iterations, then our Phi 156 // becomes an invariant after X + 1 iterations. 157 unsigned InputToInvariance = calculateIterationsToInvariance( 158 IncPhi, L, BackEdge, IterationsToInvariance); 159 if (InputToInvariance != InfiniteIterationsToInvariance) 160 ToInvariance = InputToInvariance + 1u; 161 } 162 163 // If we found that this Phi lies in an invariant chain, update the map. 164 if (ToInvariance != InfiniteIterationsToInvariance) 165 IterationsToInvariance[Phi] = ToInvariance; 166 return ToInvariance; 167 } 168 169 // Try to find any invariant memory reads that will become dereferenceable in 170 // the remainder loop after peeling. The load must also be used (transitively) 171 // by an exit condition. Returns the number of iterations to peel off (at the 172 // moment either 0 or 1). 173 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, 174 DominatorTree &DT) { 175 // Skip loops with a single exiting block, because there should be no benefit 176 // for the heuristic below. 177 if (L.getExitingBlock()) 178 return 0; 179 180 // All non-latch exit blocks must have an UnreachableInst terminator. 181 // Otherwise the heuristic below may not be profitable. 182 SmallVector<BasicBlock *, 4> Exits; 183 L.getUniqueNonLatchExitBlocks(Exits); 184 if (any_of(Exits, [](const BasicBlock *BB) { 185 return !isa<UnreachableInst>(BB->getTerminator()); 186 })) 187 return 0; 188 189 // Now look for invariant loads that dominate the latch and are not known to 190 // be dereferenceable. If there are such loads and no writes, they will become 191 // dereferenceable in the loop if the first iteration is peeled off. Also 192 // collect the set of instructions controlled by such loads. Only peel if an 193 // exit condition uses (transitively) such a load. 194 BasicBlock *Header = L.getHeader(); 195 BasicBlock *Latch = L.getLoopLatch(); 196 SmallPtrSet<Value *, 8> LoadUsers; 197 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 198 for (BasicBlock *BB : L.blocks()) { 199 for (Instruction &I : *BB) { 200 if (I.mayWriteToMemory()) 201 return 0; 202 203 auto Iter = LoadUsers.find(&I); 204 if (Iter != LoadUsers.end()) { 205 for (Value *U : I.users()) 206 LoadUsers.insert(U); 207 } 208 // Do not look for reads in the header; they can already be hoisted 209 // without peeling. 210 if (BB == Header) 211 continue; 212 if (auto *LI = dyn_cast<LoadInst>(&I)) { 213 Value *Ptr = LI->getPointerOperand(); 214 if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && 215 !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, &DT)) 216 for (Value *U : I.users()) 217 LoadUsers.insert(U); 218 } 219 } 220 } 221 SmallVector<BasicBlock *> ExitingBlocks; 222 L.getExitingBlocks(ExitingBlocks); 223 if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { 224 return LoadUsers.contains(Exiting->getTerminator()); 225 })) 226 return 1; 227 return 0; 228 } 229 230 // Return the number of iterations to peel off that make conditions in the 231 // body true/false. For example, if we peel 2 iterations off the loop below, 232 // the condition i < 2 can be evaluated at compile time. 233 // for (i = 0; i < n; i++) 234 // if (i < 2) 235 // .. 236 // else 237 // .. 238 // } 239 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 240 ScalarEvolution &SE) { 241 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 242 unsigned DesiredPeelCount = 0; 243 244 for (auto *BB : L.blocks()) { 245 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 246 if (!BI || BI->isUnconditional()) 247 continue; 248 249 // Ignore loop exit condition. 250 if (L.getLoopLatch() == BB) 251 continue; 252 253 Value *Condition = BI->getCondition(); 254 Value *LeftVal, *RightVal; 255 CmpInst::Predicate Pred; 256 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 257 continue; 258 259 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 260 const SCEV *RightSCEV = SE.getSCEV(RightVal); 261 262 // Do not consider predicates that are known to be true or false 263 // independently of the loop iteration. 264 if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) 265 continue; 266 267 // Check if we have a condition with one AddRec and one non AddRec 268 // expression. Normalize LeftSCEV to be the AddRec. 269 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 270 if (isa<SCEVAddRecExpr>(RightSCEV)) { 271 std::swap(LeftSCEV, RightSCEV); 272 Pred = ICmpInst::getSwappedPredicate(Pred); 273 } else 274 continue; 275 } 276 277 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 278 279 // Avoid huge SCEV computations in the loop below, make sure we only 280 // consider AddRecs of the loop we are trying to peel. 281 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 282 continue; 283 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 284 !SE.getMonotonicPredicateType(LeftAR, Pred)) 285 continue; 286 287 // Check if extending the current DesiredPeelCount lets us evaluate Pred 288 // or !Pred in the loop body statically. 289 unsigned NewPeelCount = DesiredPeelCount; 290 291 const SCEV *IterVal = LeftAR->evaluateAtIteration( 292 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 293 294 // If the original condition is not known, get the negated predicate 295 // (which holds on the else branch) and check if it is known. This allows 296 // us to peel of iterations that make the original condition false. 297 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 298 Pred = ICmpInst::getInversePredicate(Pred); 299 300 const SCEV *Step = LeftAR->getStepRecurrence(SE); 301 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 302 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 303 &NewPeelCount]() { 304 IterVal = NextIterVal; 305 NextIterVal = SE.getAddExpr(IterVal, Step); 306 NewPeelCount++; 307 }; 308 309 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 310 return NewPeelCount < MaxPeelCount; 311 }; 312 313 while (CanPeelOneMoreIteration() && 314 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 315 PeelOneMoreIteration(); 316 317 // With *that* peel count, does the predicate !Pred become known in the 318 // first iteration of the loop body after peeling? 319 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 320 RightSCEV)) 321 continue; // If not, give up. 322 323 // However, for equality comparisons, that isn't always sufficient to 324 // eliminate the comparsion in loop body, we may need to peel one more 325 // iteration. See if that makes !Pred become unknown again. 326 if (ICmpInst::isEquality(Pred) && 327 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 328 RightSCEV) && 329 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 330 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 331 if (!CanPeelOneMoreIteration()) 332 continue; // Need to peel one more iteration, but can't. Give up. 333 PeelOneMoreIteration(); // Great! 334 } 335 336 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 337 } 338 339 return DesiredPeelCount; 340 } 341 342 // Return the number of iterations we want to peel off. 343 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 344 TargetTransformInfo::PeelingPreferences &PP, 345 unsigned &TripCount, DominatorTree &DT, 346 ScalarEvolution &SE, unsigned Threshold) { 347 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 348 // Save the PP.PeelCount value set by the target in 349 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 350 unsigned TargetPeelCount = PP.PeelCount; 351 PP.PeelCount = 0; 352 if (!canPeel(L)) 353 return; 354 355 // Only try to peel innermost loops by default. 356 // The constraint can be relaxed by the target in TTI.getUnrollingPreferences 357 // or by the flag -unroll-allow-loop-nests-peeling. 358 if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) 359 return; 360 361 // If the user provided a peel count, use that. 362 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 363 if (UserPeelCount) { 364 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 365 << " iterations.\n"); 366 PP.PeelCount = UnrollForcePeelCount; 367 PP.PeelProfiledIterations = true; 368 return; 369 } 370 371 // Skip peeling if it's disabled. 372 if (!PP.AllowPeeling) 373 return; 374 375 unsigned AlreadyPeeled = 0; 376 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 377 AlreadyPeeled = *Peeled; 378 // Stop if we already peeled off the maximum number of iterations. 379 if (AlreadyPeeled >= UnrollPeelMaxCount) 380 return; 381 382 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 383 // iterations of the loop. For this we compute the number for iterations after 384 // which every Phi is guaranteed to become an invariant, and try to peel the 385 // maximum number of iterations among these values, thus turning all those 386 // Phis into invariants. 387 // First, check that we can peel at least one iteration. 388 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 389 // Store the pre-calculated values here. 390 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 391 // Now go through all Phis to calculate their the number of iterations they 392 // need to become invariants. 393 // Start the max computation with the UP.PeelCount value set by the target 394 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 395 unsigned DesiredPeelCount = TargetPeelCount; 396 BasicBlock *BackEdge = L->getLoopLatch(); 397 assert(BackEdge && "Loop is not in simplified form?"); 398 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 399 PHINode *Phi = cast<PHINode>(&*BI); 400 unsigned ToInvariance = calculateIterationsToInvariance( 401 Phi, L, BackEdge, IterationsToInvariance); 402 if (ToInvariance != InfiniteIterationsToInvariance) 403 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 404 } 405 406 // Pay respect to limitations implied by loop size and the max peel count. 407 unsigned MaxPeelCount = UnrollPeelMaxCount; 408 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 409 410 DesiredPeelCount = std::max(DesiredPeelCount, 411 countToEliminateCompares(*L, MaxPeelCount, SE)); 412 413 if (DesiredPeelCount == 0) 414 DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT); 415 416 if (DesiredPeelCount > 0) { 417 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 418 // Consider max peel count limitation. 419 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 420 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 421 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 422 << " iteration(s) to turn" 423 << " some Phis into invariants.\n"); 424 PP.PeelCount = DesiredPeelCount; 425 PP.PeelProfiledIterations = false; 426 return; 427 } 428 } 429 } 430 431 // Bail if we know the statically calculated trip count. 432 // In this case we rather prefer partial unrolling. 433 if (TripCount) 434 return; 435 436 // Do not apply profile base peeling if it is disabled. 437 if (!PP.PeelProfiledIterations) 438 return; 439 // If we don't know the trip count, but have reason to believe the average 440 // trip count is low, peeling should be beneficial, since we will usually 441 // hit the peeled section. 442 // We only do this in the presence of profile information, since otherwise 443 // our estimates of the trip count are not reliable enough. 444 if (L->getHeader()->getParent()->hasProfileData()) { 445 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 446 if (!PeelCount) 447 return; 448 449 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 450 << "\n"); 451 452 if (*PeelCount) { 453 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 454 (LoopSize * (*PeelCount + 1) <= Threshold)) { 455 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 456 << " iterations.\n"); 457 PP.PeelCount = *PeelCount; 458 return; 459 } 460 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 461 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 462 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 463 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 464 << "\n"); 465 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 466 } 467 } 468 } 469 470 /// Update the branch weights of the latch of a peeled-off loop 471 /// iteration. 472 /// This sets the branch weights for the latch of the recently peeled off loop 473 /// iteration correctly. 474 /// Let F is a weight of the edge from latch to header. 475 /// Let E is a weight of the edge from latch to exit. 476 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 477 /// go to exit. 478 /// Then, Estimated TripCount = F / E. 479 /// For I-th (counting from 0) peeled off iteration we set the the weights for 480 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 481 /// The probability to go to exit 1/(TC-I) increases. At the same time 482 /// the estimated trip count of remaining loop reduces by I. 483 /// To avoid dealing with division rounding we can just multiple both part 484 /// of weights to E and use weight as (F - I * E, E). 485 /// 486 /// \param Header The copy of the header block that belongs to next iteration. 487 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 488 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 489 /// header before peeling (in) and after peeled off one iteration (out). 490 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 491 uint64_t ExitWeight, 492 uint64_t &FallThroughWeight) { 493 // FallThroughWeight is 0 means that there is no branch weights on original 494 // latch block or estimated trip count is zero. 495 if (!FallThroughWeight) 496 return; 497 498 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 499 MDBuilder MDB(LatchBR->getContext()); 500 MDNode *WeightNode = 501 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 502 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 503 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 504 FallThroughWeight = 505 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 506 } 507 508 /// Initialize the weights. 509 /// 510 /// \param Header The header block. 511 /// \param LatchBR The latch branch. 512 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 513 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 514 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 515 uint64_t &ExitWeight, 516 uint64_t &FallThroughWeight) { 517 uint64_t TrueWeight, FalseWeight; 518 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 519 return; 520 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 521 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 522 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 523 } 524 525 /// Update the weights of original Latch block after peeling off all iterations. 526 /// 527 /// \param Header The header block. 528 /// \param LatchBR The latch branch. 529 /// \param ExitWeight The weight of the edge from Latch to Exit. 530 /// \param FallThroughWeight The weight of the edge from Latch to Header. 531 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 532 uint64_t ExitWeight, 533 uint64_t FallThroughWeight) { 534 // FallThroughWeight is 0 means that there is no branch weights on original 535 // latch block or estimated trip count is zero. 536 if (!FallThroughWeight) 537 return; 538 539 // Sets the branch weights on the loop exit. 540 MDBuilder MDB(LatchBR->getContext()); 541 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 542 MDNode *WeightNode = 543 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 544 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 545 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 546 } 547 548 /// Clones the body of the loop L, putting it between \p InsertTop and \p 549 /// InsertBot. 550 /// \param IterNumber The serial number of the iteration currently being 551 /// peeled off. 552 /// \param ExitEdges The exit edges of the original loop. 553 /// \param[out] NewBlocks A list of the blocks in the newly created clone 554 /// \param[out] VMap The value map between the loop and the new clone. 555 /// \param LoopBlocks A helper for DFS-traversal of the loop. 556 /// \param LVMap A value-map that maps instructions from the original loop to 557 /// instructions in the last peeled-off iteration. 558 static void cloneLoopBlocks( 559 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 560 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 561 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 562 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 563 LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) { 564 BasicBlock *Header = L->getHeader(); 565 BasicBlock *Latch = L->getLoopLatch(); 566 BasicBlock *PreHeader = L->getLoopPreheader(); 567 568 Function *F = Header->getParent(); 569 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 570 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 571 Loop *ParentLoop = L->getParentLoop(); 572 573 // For each block in the original loop, create a new copy, 574 // and update the value map with the newly created values. 575 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 576 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 577 NewBlocks.push_back(NewBB); 578 579 // If an original block is an immediate child of the loop L, its copy 580 // is a child of a ParentLoop after peeling. If a block is a child of 581 // a nested loop, it is handled in the cloneLoop() call below. 582 if (ParentLoop && LI->getLoopFor(*BB) == L) 583 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 584 585 VMap[*BB] = NewBB; 586 587 // If dominator tree is available, insert nodes to represent cloned blocks. 588 if (DT) { 589 if (Header == *BB) 590 DT->addNewBlock(NewBB, InsertTop); 591 else { 592 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 593 // VMap must contain entry for IDom, as the iteration order is RPO. 594 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 595 } 596 } 597 } 598 599 { 600 // Identify what other metadata depends on the cloned version. After 601 // cloning, replace the metadata with the corrected version for both 602 // memory instructions and noalias intrinsics. 603 std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); 604 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 605 Header->getContext(), Ext); 606 } 607 608 // Recursively create the new Loop objects for nested loops, if any, 609 // to preserve LoopInfo. 610 for (Loop *ChildLoop : *L) { 611 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 612 } 613 614 // Hook-up the control flow for the newly inserted blocks. 615 // The new header is hooked up directly to the "top", which is either 616 // the original loop preheader (for the first iteration) or the previous 617 // iteration's exiting block (for every other iteration) 618 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 619 620 // Similarly, for the latch: 621 // The original exiting edge is still hooked up to the loop exit. 622 // The backedge now goes to the "bottom", which is either the loop's real 623 // header (for the last peeled iteration) or the copied header of the next 624 // iteration (for every other iteration) 625 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 626 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 627 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 628 if (LatchBR->getSuccessor(idx) == Header) { 629 LatchBR->setSuccessor(idx, InsertBot); 630 break; 631 } 632 if (DT) 633 DT->changeImmediateDominator(InsertBot, NewLatch); 634 635 // The new copy of the loop body starts with a bunch of PHI nodes 636 // that pick an incoming value from either the preheader, or the previous 637 // loop iteration. Since this copy is no longer part of the loop, we 638 // resolve this statically: 639 // For the first iteration, we use the value from the preheader directly. 640 // For any other iteration, we replace the phi with the value generated by 641 // the immediately preceding clone of the loop body (which represents 642 // the previous iteration). 643 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 644 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 645 if (IterNumber == 0) { 646 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 647 } else { 648 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 649 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 650 if (LatchInst && L->contains(LatchInst)) 651 VMap[&*I] = LVMap[LatchInst]; 652 else 653 VMap[&*I] = LatchVal; 654 } 655 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 656 } 657 658 // Fix up the outgoing values - we need to add a value for the iteration 659 // we've just created. Note that this must happen *after* the incoming 660 // values are adjusted, since the value going out of the latch may also be 661 // a value coming into the header. 662 for (auto Edge : ExitEdges) 663 for (PHINode &PHI : Edge.second->phis()) { 664 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 665 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 666 if (LatchInst && L->contains(LatchInst)) 667 LatchVal = VMap[LatchVal]; 668 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 669 } 670 671 // LastValueMap is updated with the values for the current loop 672 // which are used the next time this function is called. 673 for (auto KV : VMap) 674 LVMap[KV.first] = KV.second; 675 } 676 677 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 678 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 679 Optional<bool> UserAllowPeeling, 680 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 681 TargetTransformInfo::PeelingPreferences PP; 682 683 // Set the default values. 684 PP.PeelCount = 0; 685 PP.AllowPeeling = true; 686 PP.AllowLoopNestsPeeling = false; 687 PP.PeelProfiledIterations = true; 688 689 // Get the target specifc values. 690 TTI.getPeelingPreferences(L, SE, PP); 691 692 // User specified values using cl::opt. 693 if (UnrollingSpecficValues) { 694 if (UnrollPeelCount.getNumOccurrences() > 0) 695 PP.PeelCount = UnrollPeelCount; 696 if (UnrollAllowPeeling.getNumOccurrences() > 0) 697 PP.AllowPeeling = UnrollAllowPeeling; 698 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 699 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 700 } 701 702 // User specifed values provided by argument. 703 if (UserAllowPeeling.hasValue()) 704 PP.AllowPeeling = *UserAllowPeeling; 705 if (UserAllowProfileBasedPeeling.hasValue()) 706 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 707 708 return PP; 709 } 710 711 /// Peel off the first \p PeelCount iterations of loop \p L. 712 /// 713 /// Note that this does not peel them off as a single straight-line block. 714 /// Rather, each iteration is peeled off separately, and needs to check the 715 /// exit condition. 716 /// For loops that dynamically execute \p PeelCount iterations or less 717 /// this provides a benefit, since the peeled off iterations, which account 718 /// for the bulk of dynamic execution, can be further simplified by scalar 719 /// optimizations. 720 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 721 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 722 bool PreserveLCSSA) { 723 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 724 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 725 726 LoopBlocksDFS LoopBlocks(L); 727 LoopBlocks.perform(LI); 728 729 BasicBlock *Header = L->getHeader(); 730 BasicBlock *PreHeader = L->getLoopPreheader(); 731 BasicBlock *Latch = L->getLoopLatch(); 732 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 733 L->getExitEdges(ExitEdges); 734 735 DenseMap<BasicBlock *, BasicBlock *> ExitIDom; 736 if (DT) { 737 // We'd like to determine the idom of exit block after peeling one 738 // iteration. 739 // Let Exit is exit block. 740 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting 741 // blocks. 742 // Let Latch' and ExitingSet' are copies after a peeling. 743 // We'd like to find an idom'(Exit) - idom of Exit after peeling. 744 // It is an evident that idom'(Exit) will be the nearest common dominator 745 // of ExitingSet and ExitingSet'. 746 // idom(Exit) is a nearest common dominator of ExitingSet. 747 // idom(Exit)' is a nearest common dominator of ExitingSet'. 748 // Taking into account that we have a single Latch, Latch' will dominate 749 // Header and idom(Exit). 750 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. 751 // All these basic blocks are in the same loop, so what we find is 752 // (nearest common dominator of idom(Exit) and Latch)'. 753 // In the loop below we remember nearest common dominator of idom(Exit) and 754 // Latch to update idom of Exit later. 755 assert(L->hasDedicatedExits() && "No dedicated exits?"); 756 for (auto Edge : ExitEdges) { 757 if (ExitIDom.count(Edge.second)) 758 continue; 759 BasicBlock *BB = DT->findNearestCommonDominator( 760 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); 761 assert(L->contains(BB) && "IDom is not in a loop"); 762 ExitIDom[Edge.second] = BB; 763 } 764 } 765 766 Function *F = Header->getParent(); 767 768 // Set up all the necessary basic blocks. It is convenient to split the 769 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 770 // body, and a new preheader for the "real" loop. 771 772 // Peeling the first iteration transforms. 773 // 774 // PreHeader: 775 // ... 776 // Header: 777 // LoopBody 778 // If (cond) goto Header 779 // Exit: 780 // 781 // into 782 // 783 // InsertTop: 784 // LoopBody 785 // If (!cond) goto Exit 786 // InsertBot: 787 // NewPreHeader: 788 // ... 789 // Header: 790 // LoopBody 791 // If (cond) goto Header 792 // Exit: 793 // 794 // Each following iteration will split the current bottom anchor in two, 795 // and put the new copy of the loop body between these two blocks. That is, 796 // after peeling another iteration from the example above, we'll split 797 // InsertBot, and get: 798 // 799 // InsertTop: 800 // LoopBody 801 // If (!cond) goto Exit 802 // InsertBot: 803 // LoopBody 804 // If (!cond) goto Exit 805 // InsertBot.next: 806 // NewPreHeader: 807 // ... 808 // Header: 809 // LoopBody 810 // If (cond) goto Header 811 // Exit: 812 813 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 814 BasicBlock *InsertBot = 815 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 816 BasicBlock *NewPreHeader = 817 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 818 819 InsertTop->setName(Header->getName() + ".peel.begin"); 820 InsertBot->setName(Header->getName() + ".peel.next"); 821 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 822 823 ValueToValueMapTy LVMap; 824 825 // If we have branch weight information, we'll want to update it for the 826 // newly created branches. 827 BranchInst *LatchBR = 828 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 829 uint64_t ExitWeight = 0, FallThroughWeight = 0; 830 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 831 832 // Identify what noalias metadata is inside the loop: if it is inside the 833 // loop, the associated metadata must be cloned for each iteration. 834 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 835 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 836 837 // For each peeled-off iteration, make a copy of the loop. 838 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 839 SmallVector<BasicBlock *, 8> NewBlocks; 840 ValueToValueMapTy VMap; 841 842 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 843 LoopBlocks, VMap, LVMap, DT, LI, 844 LoopLocalNoAliasDeclScopes); 845 846 // Remap to use values from the current iteration instead of the 847 // previous one. 848 remapInstructionsInBlocks(NewBlocks, VMap); 849 850 if (DT) { 851 // Latches of the cloned loops dominate over the loop exit, so idom of the 852 // latter is the first cloned loop body, as original PreHeader dominates 853 // the original loop body. 854 if (Iter == 0) 855 for (auto Exit : ExitIDom) 856 DT->changeImmediateDominator(Exit.first, 857 cast<BasicBlock>(LVMap[Exit.second])); 858 #ifdef EXPENSIVE_CHECKS 859 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 860 #endif 861 } 862 863 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 864 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 865 // Remove Loop metadata from the latch branch instruction 866 // because it is not the Loop's latch branch anymore. 867 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 868 869 InsertTop = InsertBot; 870 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 871 InsertBot->setName(Header->getName() + ".peel.next"); 872 873 F->getBasicBlockList().splice(InsertTop->getIterator(), 874 F->getBasicBlockList(), 875 NewBlocks[0]->getIterator(), F->end()); 876 } 877 878 // Now adjust the phi nodes in the loop header to get their initial values 879 // from the last peeled-off iteration instead of the preheader. 880 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 881 PHINode *PHI = cast<PHINode>(I); 882 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 883 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 884 if (LatchInst && L->contains(LatchInst)) 885 NewVal = LVMap[LatchInst]; 886 887 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 888 } 889 890 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 891 892 // Update Metadata for count of peeled off iterations. 893 unsigned AlreadyPeeled = 0; 894 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 895 AlreadyPeeled = *Peeled; 896 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 897 898 if (Loop *ParentLoop = L->getParentLoop()) 899 L = ParentLoop; 900 901 // We modified the loop, update SE. 902 SE->forgetTopmostLoop(L); 903 904 // Finally DomtTree must be correct. 905 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 906 907 // FIXME: Incrementally update loop-simplify 908 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); 909 910 NumPeeled++; 911 912 return true; 913 } 914