1 //===- LoopPeel.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop Peeling Utilities. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/Transforms/Utils/LoopPeel.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/Optional.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/InstrTypes.h" 26 #include "llvm/IR/Instruction.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/LoopSimplify.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/UnrollLoop.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <limits> 46 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "loop-peel" 51 52 STATISTIC(NumPeeled, "Number of loops peeled"); 53 54 static cl::opt<unsigned> UnrollPeelCount( 55 "unroll-peel-count", cl::Hidden, 56 cl::desc("Set the unroll peeling count, for testing purposes")); 57 58 static cl::opt<bool> 59 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 60 cl::desc("Allows loops to be peeled when the dynamic " 61 "trip count is known to be low.")); 62 63 static cl::opt<bool> 64 UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", 65 cl::init(false), cl::Hidden, 66 cl::desc("Allows loop nests to be peeled.")); 67 68 static cl::opt<unsigned> UnrollPeelMaxCount( 69 "unroll-peel-max-count", cl::init(7), cl::Hidden, 70 cl::desc("Max average trip count which will cause loop peeling.")); 71 72 static cl::opt<unsigned> UnrollForcePeelCount( 73 "unroll-force-peel-count", cl::init(0), cl::Hidden, 74 cl::desc("Force a peel count regardless of profiling information.")); 75 76 static cl::opt<bool> UnrollPeelMultiDeoptExit( 77 "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden, 78 cl::desc("Allow peeling of loops with multiple deopt exits.")); 79 80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; 81 82 // Designates that a Phi is estimated to become invariant after an "infinite" 83 // number of loop iterations (i.e. only may become an invariant if the loop is 84 // fully unrolled). 85 static const unsigned InfiniteIterationsToInvariance = 86 std::numeric_limits<unsigned>::max(); 87 88 // Check whether we are capable of peeling this loop. 89 bool llvm::canPeel(Loop *L) { 90 // Make sure the loop is in simplified form 91 if (!L->isLoopSimplifyForm()) 92 return false; 93 94 if (UnrollPeelMultiDeoptExit) { 95 SmallVector<BasicBlock *, 4> Exits; 96 L->getUniqueNonLatchExitBlocks(Exits); 97 98 if (!Exits.empty()) { 99 // Latch's terminator is a conditional branch, Latch is exiting and 100 // all non Latch exits ends up with deoptimize. 101 const BasicBlock *Latch = L->getLoopLatch(); 102 const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); 103 return T && T->isConditional() && L->isLoopExiting(Latch) && 104 all_of(Exits, [](const BasicBlock *BB) { 105 return BB->getTerminatingDeoptimizeCall(); 106 }); 107 } 108 } 109 110 // Only peel loops that contain a single exit 111 if (!L->getExitingBlock() || !L->getUniqueExitBlock()) 112 return false; 113 114 // Don't try to peel loops where the latch is not the exiting block. 115 // This can be an indication of two different things: 116 // 1) The loop is not rotated. 117 // 2) The loop contains irreducible control flow that involves the latch. 118 if (L->getLoopLatch() != L->getExitingBlock()) 119 return false; 120 121 return true; 122 } 123 124 // This function calculates the number of iterations after which the given Phi 125 // becomes an invariant. The pre-calculated values are memorized in the map. The 126 // function (shortcut is I) is calculated according to the following definition: 127 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. 128 // If %y is a loop invariant, then I(%x) = 1. 129 // If %y is a Phi from the loop header, I(%x) = I(%y) + 1. 130 // Otherwise, I(%x) is infinite. 131 // TODO: Actually if %y is an expression that depends only on Phi %z and some 132 // loop invariants, we can estimate I(%x) = I(%z) + 1. The example 133 // looks like: 134 // %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. 135 // %y = phi(0, 5), 136 // %a = %y + 1. 137 static unsigned calculateIterationsToInvariance( 138 PHINode *Phi, Loop *L, BasicBlock *BackEdge, 139 SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { 140 assert(Phi->getParent() == L->getHeader() && 141 "Non-loop Phi should not be checked for turning into invariant."); 142 assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); 143 // If we already know the answer, take it from the map. 144 auto I = IterationsToInvariance.find(Phi); 145 if (I != IterationsToInvariance.end()) 146 return I->second; 147 148 // Otherwise we need to analyze the input from the back edge. 149 Value *Input = Phi->getIncomingValueForBlock(BackEdge); 150 // Place infinity to map to avoid infinite recursion for cycled Phis. Such 151 // cycles can never stop on an invariant. 152 IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; 153 unsigned ToInvariance = InfiniteIterationsToInvariance; 154 155 if (L->isLoopInvariant(Input)) 156 ToInvariance = 1u; 157 else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { 158 // Only consider Phis in header block. 159 if (IncPhi->getParent() != L->getHeader()) 160 return InfiniteIterationsToInvariance; 161 // If the input becomes an invariant after X iterations, then our Phi 162 // becomes an invariant after X + 1 iterations. 163 unsigned InputToInvariance = calculateIterationsToInvariance( 164 IncPhi, L, BackEdge, IterationsToInvariance); 165 if (InputToInvariance != InfiniteIterationsToInvariance) 166 ToInvariance = InputToInvariance + 1u; 167 } 168 169 // If we found that this Phi lies in an invariant chain, update the map. 170 if (ToInvariance != InfiniteIterationsToInvariance) 171 IterationsToInvariance[Phi] = ToInvariance; 172 return ToInvariance; 173 } 174 175 // Return the number of iterations to peel off that make conditions in the 176 // body true/false. For example, if we peel 2 iterations off the loop below, 177 // the condition i < 2 can be evaluated at compile time. 178 // for (i = 0; i < n; i++) 179 // if (i < 2) 180 // .. 181 // else 182 // .. 183 // } 184 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, 185 ScalarEvolution &SE) { 186 assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); 187 unsigned DesiredPeelCount = 0; 188 189 for (auto *BB : L.blocks()) { 190 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 191 if (!BI || BI->isUnconditional()) 192 continue; 193 194 // Ignore loop exit condition. 195 if (L.getLoopLatch() == BB) 196 continue; 197 198 Value *Condition = BI->getCondition(); 199 Value *LeftVal, *RightVal; 200 CmpInst::Predicate Pred; 201 if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) 202 continue; 203 204 const SCEV *LeftSCEV = SE.getSCEV(LeftVal); 205 const SCEV *RightSCEV = SE.getSCEV(RightVal); 206 207 // Do not consider predicates that are known to be true or false 208 // independently of the loop iteration. 209 if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || 210 SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, 211 RightSCEV)) 212 continue; 213 214 // Check if we have a condition with one AddRec and one non AddRec 215 // expression. Normalize LeftSCEV to be the AddRec. 216 if (!isa<SCEVAddRecExpr>(LeftSCEV)) { 217 if (isa<SCEVAddRecExpr>(RightSCEV)) { 218 std::swap(LeftSCEV, RightSCEV); 219 Pred = ICmpInst::getSwappedPredicate(Pred); 220 } else 221 continue; 222 } 223 224 const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); 225 226 // Avoid huge SCEV computations in the loop below, make sure we only 227 // consider AddRecs of the loop we are trying to peel. 228 if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) 229 continue; 230 bool Increasing; 231 if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && 232 !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) 233 continue; 234 (void)Increasing; 235 236 // Check if extending the current DesiredPeelCount lets us evaluate Pred 237 // or !Pred in the loop body statically. 238 unsigned NewPeelCount = DesiredPeelCount; 239 240 const SCEV *IterVal = LeftAR->evaluateAtIteration( 241 SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); 242 243 // If the original condition is not known, get the negated predicate 244 // (which holds on the else branch) and check if it is known. This allows 245 // us to peel of iterations that make the original condition false. 246 if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 247 Pred = ICmpInst::getInversePredicate(Pred); 248 249 const SCEV *Step = LeftAR->getStepRecurrence(SE); 250 const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); 251 auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, 252 &NewPeelCount]() { 253 IterVal = NextIterVal; 254 NextIterVal = SE.getAddExpr(IterVal, Step); 255 NewPeelCount++; 256 }; 257 258 auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { 259 return NewPeelCount < MaxPeelCount; 260 }; 261 262 while (CanPeelOneMoreIteration() && 263 SE.isKnownPredicate(Pred, IterVal, RightSCEV)) 264 PeelOneMoreIteration(); 265 266 // With *that* peel count, does the predicate !Pred become known in the 267 // first iteration of the loop body after peeling? 268 if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, 269 RightSCEV)) 270 continue; // If not, give up. 271 272 // However, for equality comparisons, that isn't always sufficient to 273 // eliminate the comparsion in loop body, we may need to peel one more 274 // iteration. See if that makes !Pred become unknown again. 275 if (ICmpInst::isEquality(Pred) && 276 !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, 277 RightSCEV) && 278 !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && 279 SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { 280 if (!CanPeelOneMoreIteration()) 281 continue; // Need to peel one more iteration, but can't. Give up. 282 PeelOneMoreIteration(); // Great! 283 } 284 285 DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); 286 } 287 288 return DesiredPeelCount; 289 } 290 291 // Return the number of iterations we want to peel off. 292 void llvm::computePeelCount(Loop *L, unsigned LoopSize, 293 TargetTransformInfo::PeelingPreferences &PP, 294 unsigned &TripCount, ScalarEvolution &SE, 295 unsigned Threshold) { 296 assert(LoopSize > 0 && "Zero loop size is not allowed!"); 297 // Save the PP.PeelCount value set by the target in 298 // TTI.getPeelingPreferences or by the flag -unroll-peel-count. 299 unsigned TargetPeelCount = PP.PeelCount; 300 PP.PeelCount = 0; 301 if (!canPeel(L)) 302 return; 303 304 // Only try to peel innermost loops by default. 305 // The constraint can be relaxed by the target in TTI.getUnrollingPreferences 306 // or by the flag -unroll-allow-loop-nests-peeling. 307 if (!PP.AllowLoopNestsPeeling && !L->empty()) 308 return; 309 310 // If the user provided a peel count, use that. 311 bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; 312 if (UserPeelCount) { 313 LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount 314 << " iterations.\n"); 315 PP.PeelCount = UnrollForcePeelCount; 316 PP.PeelProfiledIterations = true; 317 return; 318 } 319 320 // Skip peeling if it's disabled. 321 if (!PP.AllowPeeling) 322 return; 323 324 unsigned AlreadyPeeled = 0; 325 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 326 AlreadyPeeled = *Peeled; 327 // Stop if we already peeled off the maximum number of iterations. 328 if (AlreadyPeeled >= UnrollPeelMaxCount) 329 return; 330 331 // Here we try to get rid of Phis which become invariants after 1, 2, ..., N 332 // iterations of the loop. For this we compute the number for iterations after 333 // which every Phi is guaranteed to become an invariant, and try to peel the 334 // maximum number of iterations among these values, thus turning all those 335 // Phis into invariants. 336 // First, check that we can peel at least one iteration. 337 if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) { 338 // Store the pre-calculated values here. 339 SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; 340 // Now go through all Phis to calculate their the number of iterations they 341 // need to become invariants. 342 // Start the max computation with the UP.PeelCount value set by the target 343 // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. 344 unsigned DesiredPeelCount = TargetPeelCount; 345 BasicBlock *BackEdge = L->getLoopLatch(); 346 assert(BackEdge && "Loop is not in simplified form?"); 347 for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { 348 PHINode *Phi = cast<PHINode>(&*BI); 349 unsigned ToInvariance = calculateIterationsToInvariance( 350 Phi, L, BackEdge, IterationsToInvariance); 351 if (ToInvariance != InfiniteIterationsToInvariance) 352 DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); 353 } 354 355 // Pay respect to limitations implied by loop size and the max peel count. 356 unsigned MaxPeelCount = UnrollPeelMaxCount; 357 MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); 358 359 DesiredPeelCount = std::max(DesiredPeelCount, 360 countToEliminateCompares(*L, MaxPeelCount, SE)); 361 362 if (DesiredPeelCount > 0) { 363 DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); 364 // Consider max peel count limitation. 365 assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); 366 if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { 367 LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount 368 << " iteration(s) to turn" 369 << " some Phis into invariants.\n"); 370 PP.PeelCount = DesiredPeelCount; 371 PP.PeelProfiledIterations = false; 372 return; 373 } 374 } 375 } 376 377 // Bail if we know the statically calculated trip count. 378 // In this case we rather prefer partial unrolling. 379 if (TripCount) 380 return; 381 382 // Do not apply profile base peeling if it is disabled. 383 if (!PP.PeelProfiledIterations) 384 return; 385 // If we don't know the trip count, but have reason to believe the average 386 // trip count is low, peeling should be beneficial, since we will usually 387 // hit the peeled section. 388 // We only do this in the presence of profile information, since otherwise 389 // our estimates of the trip count are not reliable enough. 390 if (L->getHeader()->getParent()->hasProfileData()) { 391 Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); 392 if (!PeelCount) 393 return; 394 395 LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount 396 << "\n"); 397 398 if (*PeelCount) { 399 if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && 400 (LoopSize * (*PeelCount + 1) <= Threshold)) { 401 LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount 402 << " iterations.\n"); 403 PP.PeelCount = *PeelCount; 404 return; 405 } 406 LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); 407 LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); 408 LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); 409 LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) 410 << "\n"); 411 LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); 412 } 413 } 414 } 415 416 /// Update the branch weights of the latch of a peeled-off loop 417 /// iteration. 418 /// This sets the branch weights for the latch of the recently peeled off loop 419 /// iteration correctly. 420 /// Let F is a weight of the edge from latch to header. 421 /// Let E is a weight of the edge from latch to exit. 422 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to 423 /// go to exit. 424 /// Then, Estimated TripCount = F / E. 425 /// For I-th (counting from 0) peeled off iteration we set the the weights for 426 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, 427 /// The probability to go to exit 1/(TC-I) increases. At the same time 428 /// the estimated trip count of remaining loop reduces by I. 429 /// To avoid dealing with division rounding we can just multiple both part 430 /// of weights to E and use weight as (F - I * E, E). 431 /// 432 /// \param Header The copy of the header block that belongs to next iteration. 433 /// \param LatchBR The copy of the latch branch that belongs to this iteration. 434 /// \param[in,out] FallThroughWeight The weight of the edge from latch to 435 /// header before peeling (in) and after peeled off one iteration (out). 436 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 437 uint64_t ExitWeight, 438 uint64_t &FallThroughWeight) { 439 // FallThroughWeight is 0 means that there is no branch weights on original 440 // latch block or estimated trip count is zero. 441 if (!FallThroughWeight) 442 return; 443 444 unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); 445 MDBuilder MDB(LatchBR->getContext()); 446 MDNode *WeightNode = 447 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 448 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 449 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 450 FallThroughWeight = 451 FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; 452 } 453 454 /// Initialize the weights. 455 /// 456 /// \param Header The header block. 457 /// \param LatchBR The latch branch. 458 /// \param[out] ExitWeight The weight of the edge from Latch to Exit. 459 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. 460 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 461 uint64_t &ExitWeight, 462 uint64_t &FallThroughWeight) { 463 uint64_t TrueWeight, FalseWeight; 464 if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) 465 return; 466 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 467 ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; 468 FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; 469 } 470 471 /// Update the weights of original Latch block after peeling off all iterations. 472 /// 473 /// \param Header The header block. 474 /// \param LatchBR The latch branch. 475 /// \param ExitWeight The weight of the edge from Latch to Exit. 476 /// \param FallThroughWeight The weight of the edge from Latch to Header. 477 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, 478 uint64_t ExitWeight, 479 uint64_t FallThroughWeight) { 480 // FallThroughWeight is 0 means that there is no branch weights on original 481 // latch block or estimated trip count is zero. 482 if (!FallThroughWeight) 483 return; 484 485 // Sets the branch weights on the loop exit. 486 MDBuilder MDB(LatchBR->getContext()); 487 unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; 488 MDNode *WeightNode = 489 HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) 490 : MDB.createBranchWeights(FallThroughWeight, ExitWeight); 491 LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); 492 } 493 494 /// Clones the body of the loop L, putting it between \p InsertTop and \p 495 /// InsertBot. 496 /// \param IterNumber The serial number of the iteration currently being 497 /// peeled off. 498 /// \param ExitEdges The exit edges of the original loop. 499 /// \param[out] NewBlocks A list of the blocks in the newly created clone 500 /// \param[out] VMap The value map between the loop and the new clone. 501 /// \param LoopBlocks A helper for DFS-traversal of the loop. 502 /// \param LVMap A value-map that maps instructions from the original loop to 503 /// instructions in the last peeled-off iteration. 504 static void cloneLoopBlocks( 505 Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, 506 SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, 507 SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, 508 ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, 509 LoopInfo *LI) { 510 BasicBlock *Header = L->getHeader(); 511 BasicBlock *Latch = L->getLoopLatch(); 512 BasicBlock *PreHeader = L->getLoopPreheader(); 513 514 Function *F = Header->getParent(); 515 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 516 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 517 Loop *ParentLoop = L->getParentLoop(); 518 519 // For each block in the original loop, create a new copy, 520 // and update the value map with the newly created values. 521 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 522 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); 523 NewBlocks.push_back(NewBB); 524 525 // If an original block is an immediate child of the loop L, its copy 526 // is a child of a ParentLoop after peeling. If a block is a child of 527 // a nested loop, it is handled in the cloneLoop() call below. 528 if (ParentLoop && LI->getLoopFor(*BB) == L) 529 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 530 531 VMap[*BB] = NewBB; 532 533 // If dominator tree is available, insert nodes to represent cloned blocks. 534 if (DT) { 535 if (Header == *BB) 536 DT->addNewBlock(NewBB, InsertTop); 537 else { 538 DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); 539 // VMap must contain entry for IDom, as the iteration order is RPO. 540 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); 541 } 542 } 543 } 544 545 // Recursively create the new Loop objects for nested loops, if any, 546 // to preserve LoopInfo. 547 for (Loop *ChildLoop : *L) { 548 cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); 549 } 550 551 // Hook-up the control flow for the newly inserted blocks. 552 // The new header is hooked up directly to the "top", which is either 553 // the original loop preheader (for the first iteration) or the previous 554 // iteration's exiting block (for every other iteration) 555 InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); 556 557 // Similarly, for the latch: 558 // The original exiting edge is still hooked up to the loop exit. 559 // The backedge now goes to the "bottom", which is either the loop's real 560 // header (for the last peeled iteration) or the copied header of the next 561 // iteration (for every other iteration) 562 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 563 BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); 564 for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) 565 if (LatchBR->getSuccessor(idx) == Header) { 566 LatchBR->setSuccessor(idx, InsertBot); 567 break; 568 } 569 if (DT) 570 DT->changeImmediateDominator(InsertBot, NewLatch); 571 572 // The new copy of the loop body starts with a bunch of PHI nodes 573 // that pick an incoming value from either the preheader, or the previous 574 // loop iteration. Since this copy is no longer part of the loop, we 575 // resolve this statically: 576 // For the first iteration, we use the value from the preheader directly. 577 // For any other iteration, we replace the phi with the value generated by 578 // the immediately preceding clone of the loop body (which represents 579 // the previous iteration). 580 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 581 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 582 if (IterNumber == 0) { 583 VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); 584 } else { 585 Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); 586 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 587 if (LatchInst && L->contains(LatchInst)) 588 VMap[&*I] = LVMap[LatchInst]; 589 else 590 VMap[&*I] = LatchVal; 591 } 592 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 593 } 594 595 // Fix up the outgoing values - we need to add a value for the iteration 596 // we've just created. Note that this must happen *after* the incoming 597 // values are adjusted, since the value going out of the latch may also be 598 // a value coming into the header. 599 for (auto Edge : ExitEdges) 600 for (PHINode &PHI : Edge.second->phis()) { 601 Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); 602 Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); 603 if (LatchInst && L->contains(LatchInst)) 604 LatchVal = VMap[LatchVal]; 605 PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); 606 } 607 608 // LastValueMap is updated with the values for the current loop 609 // which are used the next time this function is called. 610 for (auto KV : VMap) 611 LVMap[KV.first] = KV.second; 612 } 613 614 TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences( 615 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 616 Optional<bool> UserAllowPeeling, 617 Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { 618 TargetTransformInfo::PeelingPreferences PP; 619 620 // Set the default values. 621 PP.PeelCount = 0; 622 PP.AllowPeeling = true; 623 PP.AllowLoopNestsPeeling = false; 624 PP.PeelProfiledIterations = true; 625 626 // Get the target specifc values. 627 TTI.getPeelingPreferences(L, SE, PP); 628 629 // User specified values using cl::opt. 630 if (UnrollingSpecficValues) { 631 if (UnrollPeelCount.getNumOccurrences() > 0) 632 PP.PeelCount = UnrollPeelCount; 633 if (UnrollAllowPeeling.getNumOccurrences() > 0) 634 PP.AllowPeeling = UnrollAllowPeeling; 635 if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) 636 PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; 637 } 638 639 // User specifed values provided by argument. 640 if (UserAllowPeeling.hasValue()) 641 PP.AllowPeeling = *UserAllowPeeling; 642 if (UserAllowProfileBasedPeeling.hasValue()) 643 PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; 644 645 return PP; 646 } 647 648 /// Peel off the first \p PeelCount iterations of loop \p L. 649 /// 650 /// Note that this does not peel them off as a single straight-line block. 651 /// Rather, each iteration is peeled off separately, and needs to check the 652 /// exit condition. 653 /// For loops that dynamically execute \p PeelCount iterations or less 654 /// this provides a benefit, since the peeled off iterations, which account 655 /// for the bulk of dynamic execution, can be further simplified by scalar 656 /// optimizations. 657 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, 658 ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, 659 bool PreserveLCSSA) { 660 assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); 661 assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); 662 663 LoopBlocksDFS LoopBlocks(L); 664 LoopBlocks.perform(LI); 665 666 BasicBlock *Header = L->getHeader(); 667 BasicBlock *PreHeader = L->getLoopPreheader(); 668 BasicBlock *Latch = L->getLoopLatch(); 669 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; 670 L->getExitEdges(ExitEdges); 671 672 DenseMap<BasicBlock *, BasicBlock *> ExitIDom; 673 if (DT) { 674 // We'd like to determine the idom of exit block after peeling one 675 // iteration. 676 // Let Exit is exit block. 677 // Let ExitingSet - is a set of predecessors of Exit block. They are exiting 678 // blocks. 679 // Let Latch' and ExitingSet' are copies after a peeling. 680 // We'd like to find an idom'(Exit) - idom of Exit after peeling. 681 // It is an evident that idom'(Exit) will be the nearest common dominator 682 // of ExitingSet and ExitingSet'. 683 // idom(Exit) is a nearest common dominator of ExitingSet. 684 // idom(Exit)' is a nearest common dominator of ExitingSet'. 685 // Taking into account that we have a single Latch, Latch' will dominate 686 // Header and idom(Exit). 687 // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. 688 // All these basic blocks are in the same loop, so what we find is 689 // (nearest common dominator of idom(Exit) and Latch)'. 690 // In the loop below we remember nearest common dominator of idom(Exit) and 691 // Latch to update idom of Exit later. 692 assert(L->hasDedicatedExits() && "No dedicated exits?"); 693 for (auto Edge : ExitEdges) { 694 if (ExitIDom.count(Edge.second)) 695 continue; 696 BasicBlock *BB = DT->findNearestCommonDominator( 697 DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); 698 assert(L->contains(BB) && "IDom is not in a loop"); 699 ExitIDom[Edge.second] = BB; 700 } 701 } 702 703 Function *F = Header->getParent(); 704 705 // Set up all the necessary basic blocks. It is convenient to split the 706 // preheader into 3 parts - two blocks to anchor the peeled copy of the loop 707 // body, and a new preheader for the "real" loop. 708 709 // Peeling the first iteration transforms. 710 // 711 // PreHeader: 712 // ... 713 // Header: 714 // LoopBody 715 // If (cond) goto Header 716 // Exit: 717 // 718 // into 719 // 720 // InsertTop: 721 // LoopBody 722 // If (!cond) goto Exit 723 // InsertBot: 724 // NewPreHeader: 725 // ... 726 // Header: 727 // LoopBody 728 // If (cond) goto Header 729 // Exit: 730 // 731 // Each following iteration will split the current bottom anchor in two, 732 // and put the new copy of the loop body between these two blocks. That is, 733 // after peeling another iteration from the example above, we'll split 734 // InsertBot, and get: 735 // 736 // InsertTop: 737 // LoopBody 738 // If (!cond) goto Exit 739 // InsertBot: 740 // LoopBody 741 // If (!cond) goto Exit 742 // InsertBot.next: 743 // NewPreHeader: 744 // ... 745 // Header: 746 // LoopBody 747 // If (cond) goto Header 748 // Exit: 749 750 BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); 751 BasicBlock *InsertBot = 752 SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); 753 BasicBlock *NewPreHeader = 754 SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 755 756 InsertTop->setName(Header->getName() + ".peel.begin"); 757 InsertBot->setName(Header->getName() + ".peel.next"); 758 NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); 759 760 ValueToValueMapTy LVMap; 761 762 // If we have branch weight information, we'll want to update it for the 763 // newly created branches. 764 BranchInst *LatchBR = 765 cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); 766 uint64_t ExitWeight = 0, FallThroughWeight = 0; 767 initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 768 769 // For each peeled-off iteration, make a copy of the loop. 770 for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { 771 SmallVector<BasicBlock *, 8> NewBlocks; 772 ValueToValueMapTy VMap; 773 774 cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, 775 LoopBlocks, VMap, LVMap, DT, LI); 776 777 // Remap to use values from the current iteration instead of the 778 // previous one. 779 remapInstructionsInBlocks(NewBlocks, VMap); 780 781 if (DT) { 782 // Latches of the cloned loops dominate over the loop exit, so idom of the 783 // latter is the first cloned loop body, as original PreHeader dominates 784 // the original loop body. 785 if (Iter == 0) 786 for (auto Exit : ExitIDom) 787 DT->changeImmediateDominator(Exit.first, 788 cast<BasicBlock>(LVMap[Exit.second])); 789 #ifdef EXPENSIVE_CHECKS 790 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 791 #endif 792 } 793 794 auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); 795 updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); 796 // Remove Loop metadata from the latch branch instruction 797 // because it is not the Loop's latch branch anymore. 798 LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); 799 800 InsertTop = InsertBot; 801 InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); 802 InsertBot->setName(Header->getName() + ".peel.next"); 803 804 F->getBasicBlockList().splice(InsertTop->getIterator(), 805 F->getBasicBlockList(), 806 NewBlocks[0]->getIterator(), F->end()); 807 } 808 809 // Now adjust the phi nodes in the loop header to get their initial values 810 // from the last peeled-off iteration instead of the preheader. 811 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 812 PHINode *PHI = cast<PHINode>(I); 813 Value *NewVal = PHI->getIncomingValueForBlock(Latch); 814 Instruction *LatchInst = dyn_cast<Instruction>(NewVal); 815 if (LatchInst && L->contains(LatchInst)) 816 NewVal = LVMap[LatchInst]; 817 818 PHI->setIncomingValueForBlock(NewPreHeader, NewVal); 819 } 820 821 fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); 822 823 // Update Metadata for count of peeled off iterations. 824 unsigned AlreadyPeeled = 0; 825 if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) 826 AlreadyPeeled = *Peeled; 827 addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); 828 829 if (Loop *ParentLoop = L->getParentLoop()) 830 L = ParentLoop; 831 832 // We modified the loop, update SE. 833 SE->forgetTopmostLoop(L); 834 835 // Finally DomtTree must be correct. 836 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 837 838 // FIXME: Incrementally update loop-simplify 839 simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); 840 841 NumPeeled++; 842 843 return true; 844 } 845