1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms. 115 static const unsigned BitPartRecursionMaxDepth = 48; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 406 const TargetLibraryInfo *TLI) { 407 if (I->isTerminator()) 408 return false; 409 410 // We don't want the landingpad-like instructions removed by anything this 411 // general. 412 if (I->isEHPad()) 413 return false; 414 415 // We don't want debug info removed by anything this general, unless 416 // debug info is empty. 417 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 418 if (DDI->getAddress()) 419 return false; 420 return true; 421 } 422 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 423 if (DVI->hasArgList() || DVI->getValue(0)) 424 return false; 425 return true; 426 } 427 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 428 if (DLI->getLabel()) 429 return false; 430 return true; 431 } 432 433 if (!I->willReturn()) 434 return false; 435 436 if (!I->mayHaveSideEffects()) 437 return true; 438 439 // Special case intrinsics that "may have side effects" but can be deleted 440 // when dead. 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 442 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 443 if (II->getIntrinsicID() == Intrinsic::stacksave || 444 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 445 return true; 446 447 if (II->isLifetimeStartOrEnd()) { 448 auto *Arg = II->getArgOperand(1); 449 // Lifetime intrinsics are dead when their right-hand is undef. 450 if (isa<UndefValue>(Arg)) 451 return true; 452 // If the right-hand is an alloc, global, or argument and the only uses 453 // are lifetime intrinsics then the intrinsics are dead. 454 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 455 return llvm::all_of(Arg->uses(), [](Use &Use) { 456 if (IntrinsicInst *IntrinsicUse = 457 dyn_cast<IntrinsicInst>(Use.getUser())) 458 return IntrinsicUse->isLifetimeStartOrEnd(); 459 return false; 460 }); 461 return false; 462 } 463 464 // Assumptions are dead if their condition is trivially true. Guards on 465 // true are operationally no-ops. In the future we can consider more 466 // sophisticated tradeoffs for guards considering potential for check 467 // widening, but for now we keep things simple. 468 if ((II->getIntrinsicID() == Intrinsic::assume && 469 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 470 II->getIntrinsicID() == Intrinsic::experimental_guard) { 471 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 472 return !Cond->isZero(); 473 474 return false; 475 } 476 477 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 478 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 479 return ExBehavior.getValue() != fp::ebStrict; 480 } 481 } 482 483 if (isAllocLikeFn(I, TLI)) 484 return true; 485 486 if (CallInst *CI = isFreeCall(I, TLI)) 487 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 488 return C->isNullValue() || isa<UndefValue>(C); 489 490 if (auto *Call = dyn_cast<CallBase>(I)) 491 if (isMathLibCallNoop(Call, TLI)) 492 return true; 493 494 // To express possible interaction with floating point environment constrained 495 // intrinsics are described as if they access memory. So they look like having 496 // side effect but actually do not have it unless they raise floating point 497 // exception. If FP exceptions are ignored, the intrinsic may be deleted. 498 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 499 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 500 if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) 501 return true; 502 } 503 504 return false; 505 } 506 507 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 508 /// trivially dead instruction, delete it. If that makes any of its operands 509 /// trivially dead, delete them too, recursively. Return true if any 510 /// instructions were deleted. 511 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 512 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 513 std::function<void(Value *)> AboutToDeleteCallback) { 514 Instruction *I = dyn_cast<Instruction>(V); 515 if (!I || !isInstructionTriviallyDead(I, TLI)) 516 return false; 517 518 SmallVector<WeakTrackingVH, 16> DeadInsts; 519 DeadInsts.push_back(I); 520 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 521 AboutToDeleteCallback); 522 523 return true; 524 } 525 526 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 527 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 528 MemorySSAUpdater *MSSAU, 529 std::function<void(Value *)> AboutToDeleteCallback) { 530 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 531 for (; S != E; ++S) { 532 auto *I = cast<Instruction>(DeadInsts[S]); 533 if (!isInstructionTriviallyDead(I)) { 534 DeadInsts[S] = nullptr; 535 ++Alive; 536 } 537 } 538 if (Alive == E) 539 return false; 540 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 541 AboutToDeleteCallback); 542 return true; 543 } 544 545 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 546 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 547 MemorySSAUpdater *MSSAU, 548 std::function<void(Value *)> AboutToDeleteCallback) { 549 // Process the dead instruction list until empty. 550 while (!DeadInsts.empty()) { 551 Value *V = DeadInsts.pop_back_val(); 552 Instruction *I = cast_or_null<Instruction>(V); 553 if (!I) 554 continue; 555 assert(isInstructionTriviallyDead(I, TLI) && 556 "Live instruction found in dead worklist!"); 557 assert(I->use_empty() && "Instructions with uses are not dead."); 558 559 // Don't lose the debug info while deleting the instructions. 560 salvageDebugInfo(*I); 561 562 if (AboutToDeleteCallback) 563 AboutToDeleteCallback(I); 564 565 // Null out all of the instruction's operands to see if any operand becomes 566 // dead as we go. 567 for (Use &OpU : I->operands()) { 568 Value *OpV = OpU.get(); 569 OpU.set(nullptr); 570 571 if (!OpV->use_empty()) 572 continue; 573 574 // If the operand is an instruction that became dead as we nulled out the 575 // operand, and if it is 'trivially' dead, delete it in a future loop 576 // iteration. 577 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 578 if (isInstructionTriviallyDead(OpI, TLI)) 579 DeadInsts.push_back(OpI); 580 } 581 if (MSSAU) 582 MSSAU->removeMemoryAccess(I); 583 584 I->eraseFromParent(); 585 } 586 } 587 588 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 589 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 590 findDbgUsers(DbgUsers, I); 591 for (auto *DII : DbgUsers) { 592 Value *Undef = UndefValue::get(I->getType()); 593 DII->replaceVariableLocationOp(I, Undef); 594 } 595 return !DbgUsers.empty(); 596 } 597 598 /// areAllUsesEqual - Check whether the uses of a value are all the same. 599 /// This is similar to Instruction::hasOneUse() except this will also return 600 /// true when there are no uses or multiple uses that all refer to the same 601 /// value. 602 static bool areAllUsesEqual(Instruction *I) { 603 Value::user_iterator UI = I->user_begin(); 604 Value::user_iterator UE = I->user_end(); 605 if (UI == UE) 606 return true; 607 608 User *TheUse = *UI; 609 for (++UI; UI != UE; ++UI) { 610 if (*UI != TheUse) 611 return false; 612 } 613 return true; 614 } 615 616 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 617 /// dead PHI node, due to being a def-use chain of single-use nodes that 618 /// either forms a cycle or is terminated by a trivially dead instruction, 619 /// delete it. If that makes any of its operands trivially dead, delete them 620 /// too, recursively. Return true if a change was made. 621 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 622 const TargetLibraryInfo *TLI, 623 llvm::MemorySSAUpdater *MSSAU) { 624 SmallPtrSet<Instruction*, 4> Visited; 625 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 626 I = cast<Instruction>(*I->user_begin())) { 627 if (I->use_empty()) 628 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 629 630 // If we find an instruction more than once, we're on a cycle that 631 // won't prove fruitful. 632 if (!Visited.insert(I).second) { 633 // Break the cycle and delete the instruction and its operands. 634 I->replaceAllUsesWith(UndefValue::get(I->getType())); 635 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 636 return true; 637 } 638 } 639 return false; 640 } 641 642 static bool 643 simplifyAndDCEInstruction(Instruction *I, 644 SmallSetVector<Instruction *, 16> &WorkList, 645 const DataLayout &DL, 646 const TargetLibraryInfo *TLI) { 647 if (isInstructionTriviallyDead(I, TLI)) { 648 salvageDebugInfo(*I); 649 650 // Null out all of the instruction's operands to see if any operand becomes 651 // dead as we go. 652 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 653 Value *OpV = I->getOperand(i); 654 I->setOperand(i, nullptr); 655 656 if (!OpV->use_empty() || I == OpV) 657 continue; 658 659 // If the operand is an instruction that became dead as we nulled out the 660 // operand, and if it is 'trivially' dead, delete it in a future loop 661 // iteration. 662 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 663 if (isInstructionTriviallyDead(OpI, TLI)) 664 WorkList.insert(OpI); 665 } 666 667 I->eraseFromParent(); 668 669 return true; 670 } 671 672 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 673 // Add the users to the worklist. CAREFUL: an instruction can use itself, 674 // in the case of a phi node. 675 for (User *U : I->users()) { 676 if (U != I) { 677 WorkList.insert(cast<Instruction>(U)); 678 } 679 } 680 681 // Replace the instruction with its simplified value. 682 bool Changed = false; 683 if (!I->use_empty()) { 684 I->replaceAllUsesWith(SimpleV); 685 Changed = true; 686 } 687 if (isInstructionTriviallyDead(I, TLI)) { 688 I->eraseFromParent(); 689 Changed = true; 690 } 691 return Changed; 692 } 693 return false; 694 } 695 696 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 697 /// simplify any instructions in it and recursively delete dead instructions. 698 /// 699 /// This returns true if it changed the code, note that it can delete 700 /// instructions in other blocks as well in this block. 701 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 702 const TargetLibraryInfo *TLI) { 703 bool MadeChange = false; 704 const DataLayout &DL = BB->getModule()->getDataLayout(); 705 706 #ifndef NDEBUG 707 // In debug builds, ensure that the terminator of the block is never replaced 708 // or deleted by these simplifications. The idea of simplification is that it 709 // cannot introduce new instructions, and there is no way to replace the 710 // terminator of a block without introducing a new instruction. 711 AssertingVH<Instruction> TerminatorVH(&BB->back()); 712 #endif 713 714 SmallSetVector<Instruction *, 16> WorkList; 715 // Iterate over the original function, only adding insts to the worklist 716 // if they actually need to be revisited. This avoids having to pre-init 717 // the worklist with the entire function's worth of instructions. 718 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 719 BI != E;) { 720 assert(!BI->isTerminator()); 721 Instruction *I = &*BI; 722 ++BI; 723 724 // We're visiting this instruction now, so make sure it's not in the 725 // worklist from an earlier visit. 726 if (!WorkList.count(I)) 727 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 728 } 729 730 while (!WorkList.empty()) { 731 Instruction *I = WorkList.pop_back_val(); 732 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 733 } 734 return MadeChange; 735 } 736 737 //===----------------------------------------------------------------------===// 738 // Control Flow Graph Restructuring. 739 // 740 741 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 742 DomTreeUpdater *DTU) { 743 744 // If BB has single-entry PHI nodes, fold them. 745 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 746 Value *NewVal = PN->getIncomingValue(0); 747 // Replace self referencing PHI with undef, it must be dead. 748 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 749 PN->replaceAllUsesWith(NewVal); 750 PN->eraseFromParent(); 751 } 752 753 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 754 assert(PredBB && "Block doesn't have a single predecessor!"); 755 756 bool ReplaceEntryBB = PredBB->isEntryBlock(); 757 758 // DTU updates: Collect all the edges that enter 759 // PredBB. These dominator edges will be redirected to DestBB. 760 SmallVector<DominatorTree::UpdateType, 32> Updates; 761 762 if (DTU) { 763 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 764 pred_end(PredBB)); 765 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 766 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 767 // This predecessor of PredBB may already have DestBB as a successor. 768 if (PredOfPredBB != PredBB) 769 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 770 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 771 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 772 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 773 } 774 775 // Zap anything that took the address of DestBB. Not doing this will give the 776 // address an invalid value. 777 if (DestBB->hasAddressTaken()) { 778 BlockAddress *BA = BlockAddress::get(DestBB); 779 Constant *Replacement = 780 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 781 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 782 BA->getType())); 783 BA->destroyConstant(); 784 } 785 786 // Anything that branched to PredBB now branches to DestBB. 787 PredBB->replaceAllUsesWith(DestBB); 788 789 // Splice all the instructions from PredBB to DestBB. 790 PredBB->getTerminator()->eraseFromParent(); 791 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 792 new UnreachableInst(PredBB->getContext(), PredBB); 793 794 // If the PredBB is the entry block of the function, move DestBB up to 795 // become the entry block after we erase PredBB. 796 if (ReplaceEntryBB) 797 DestBB->moveAfter(PredBB); 798 799 if (DTU) { 800 assert(PredBB->getInstList().size() == 1 && 801 isa<UnreachableInst>(PredBB->getTerminator()) && 802 "The successor list of PredBB isn't empty before " 803 "applying corresponding DTU updates."); 804 DTU->applyUpdatesPermissive(Updates); 805 DTU->deleteBB(PredBB); 806 // Recalculation of DomTree is needed when updating a forward DomTree and 807 // the Entry BB is replaced. 808 if (ReplaceEntryBB && DTU->hasDomTree()) { 809 // The entry block was removed and there is no external interface for 810 // the dominator tree to be notified of this change. In this corner-case 811 // we recalculate the entire tree. 812 DTU->recalculate(*(DestBB->getParent())); 813 } 814 } 815 816 else { 817 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 818 } 819 } 820 821 /// Return true if we can choose one of these values to use in place of the 822 /// other. Note that we will always choose the non-undef value to keep. 823 static bool CanMergeValues(Value *First, Value *Second) { 824 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 825 } 826 827 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 828 /// branch to Succ, into Succ. 829 /// 830 /// Assumption: Succ is the single successor for BB. 831 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 832 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 833 834 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 835 << Succ->getName() << "\n"); 836 // Shortcut, if there is only a single predecessor it must be BB and merging 837 // is always safe 838 if (Succ->getSinglePredecessor()) return true; 839 840 // Make a list of the predecessors of BB 841 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 842 843 // Look at all the phi nodes in Succ, to see if they present a conflict when 844 // merging these blocks 845 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 846 PHINode *PN = cast<PHINode>(I); 847 848 // If the incoming value from BB is again a PHINode in 849 // BB which has the same incoming value for *PI as PN does, we can 850 // merge the phi nodes and then the blocks can still be merged 851 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 852 if (BBPN && BBPN->getParent() == BB) { 853 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 854 BasicBlock *IBB = PN->getIncomingBlock(PI); 855 if (BBPreds.count(IBB) && 856 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 857 PN->getIncomingValue(PI))) { 858 LLVM_DEBUG(dbgs() 859 << "Can't fold, phi node " << PN->getName() << " in " 860 << Succ->getName() << " is conflicting with " 861 << BBPN->getName() << " with regard to common predecessor " 862 << IBB->getName() << "\n"); 863 return false; 864 } 865 } 866 } else { 867 Value* Val = PN->getIncomingValueForBlock(BB); 868 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 869 // See if the incoming value for the common predecessor is equal to the 870 // one for BB, in which case this phi node will not prevent the merging 871 // of the block. 872 BasicBlock *IBB = PN->getIncomingBlock(PI); 873 if (BBPreds.count(IBB) && 874 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 875 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 876 << " in " << Succ->getName() 877 << " is conflicting with regard to common " 878 << "predecessor " << IBB->getName() << "\n"); 879 return false; 880 } 881 } 882 } 883 } 884 885 return true; 886 } 887 888 using PredBlockVector = SmallVector<BasicBlock *, 16>; 889 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 890 891 /// Determines the value to use as the phi node input for a block. 892 /// 893 /// Select between \p OldVal any value that we know flows from \p BB 894 /// to a particular phi on the basis of which one (if either) is not 895 /// undef. Update IncomingValues based on the selected value. 896 /// 897 /// \param OldVal The value we are considering selecting. 898 /// \param BB The block that the value flows in from. 899 /// \param IncomingValues A map from block-to-value for other phi inputs 900 /// that we have examined. 901 /// 902 /// \returns the selected value. 903 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 904 IncomingValueMap &IncomingValues) { 905 if (!isa<UndefValue>(OldVal)) { 906 assert((!IncomingValues.count(BB) || 907 IncomingValues.find(BB)->second == OldVal) && 908 "Expected OldVal to match incoming value from BB!"); 909 910 IncomingValues.insert(std::make_pair(BB, OldVal)); 911 return OldVal; 912 } 913 914 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 915 if (It != IncomingValues.end()) return It->second; 916 917 return OldVal; 918 } 919 920 /// Create a map from block to value for the operands of a 921 /// given phi. 922 /// 923 /// Create a map from block to value for each non-undef value flowing 924 /// into \p PN. 925 /// 926 /// \param PN The phi we are collecting the map for. 927 /// \param IncomingValues [out] The map from block to value for this phi. 928 static void gatherIncomingValuesToPhi(PHINode *PN, 929 IncomingValueMap &IncomingValues) { 930 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 931 BasicBlock *BB = PN->getIncomingBlock(i); 932 Value *V = PN->getIncomingValue(i); 933 934 if (!isa<UndefValue>(V)) 935 IncomingValues.insert(std::make_pair(BB, V)); 936 } 937 } 938 939 /// Replace the incoming undef values to a phi with the values 940 /// from a block-to-value map. 941 /// 942 /// \param PN The phi we are replacing the undefs in. 943 /// \param IncomingValues A map from block to value. 944 static void replaceUndefValuesInPhi(PHINode *PN, 945 const IncomingValueMap &IncomingValues) { 946 SmallVector<unsigned> TrueUndefOps; 947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 948 Value *V = PN->getIncomingValue(i); 949 950 if (!isa<UndefValue>(V)) continue; 951 952 BasicBlock *BB = PN->getIncomingBlock(i); 953 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 954 955 // Keep track of undef/poison incoming values. Those must match, so we fix 956 // them up below if needed. 957 // Note: this is conservatively correct, but we could try harder and group 958 // the undef values per incoming basic block. 959 if (It == IncomingValues.end()) { 960 TrueUndefOps.push_back(i); 961 continue; 962 } 963 964 // There is a defined value for this incoming block, so map this undef 965 // incoming value to the defined value. 966 PN->setIncomingValue(i, It->second); 967 } 968 969 // If there are both undef and poison values incoming, then convert those 970 // values to undef. It is invalid to have different values for the same 971 // incoming block. 972 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 973 return isa<PoisonValue>(PN->getIncomingValue(i)); 974 }); 975 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 976 for (unsigned i : TrueUndefOps) 977 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 978 } 979 } 980 981 /// Replace a value flowing from a block to a phi with 982 /// potentially multiple instances of that value flowing from the 983 /// block's predecessors to the phi. 984 /// 985 /// \param BB The block with the value flowing into the phi. 986 /// \param BBPreds The predecessors of BB. 987 /// \param PN The phi that we are updating. 988 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 989 const PredBlockVector &BBPreds, 990 PHINode *PN) { 991 Value *OldVal = PN->removeIncomingValue(BB, false); 992 assert(OldVal && "No entry in PHI for Pred BB!"); 993 994 IncomingValueMap IncomingValues; 995 996 // We are merging two blocks - BB, and the block containing PN - and 997 // as a result we need to redirect edges from the predecessors of BB 998 // to go to the block containing PN, and update PN 999 // accordingly. Since we allow merging blocks in the case where the 1000 // predecessor and successor blocks both share some predecessors, 1001 // and where some of those common predecessors might have undef 1002 // values flowing into PN, we want to rewrite those values to be 1003 // consistent with the non-undef values. 1004 1005 gatherIncomingValuesToPhi(PN, IncomingValues); 1006 1007 // If this incoming value is one of the PHI nodes in BB, the new entries 1008 // in the PHI node are the entries from the old PHI. 1009 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1010 PHINode *OldValPN = cast<PHINode>(OldVal); 1011 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1012 // Note that, since we are merging phi nodes and BB and Succ might 1013 // have common predecessors, we could end up with a phi node with 1014 // identical incoming branches. This will be cleaned up later (and 1015 // will trigger asserts if we try to clean it up now, without also 1016 // simplifying the corresponding conditional branch). 1017 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1018 Value *PredVal = OldValPN->getIncomingValue(i); 1019 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1020 IncomingValues); 1021 1022 // And add a new incoming value for this predecessor for the 1023 // newly retargeted branch. 1024 PN->addIncoming(Selected, PredBB); 1025 } 1026 } else { 1027 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1028 // Update existing incoming values in PN for this 1029 // predecessor of BB. 1030 BasicBlock *PredBB = BBPreds[i]; 1031 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1032 IncomingValues); 1033 1034 // And add a new incoming value for this predecessor for the 1035 // newly retargeted branch. 1036 PN->addIncoming(Selected, PredBB); 1037 } 1038 } 1039 1040 replaceUndefValuesInPhi(PN, IncomingValues); 1041 } 1042 1043 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1044 DomTreeUpdater *DTU) { 1045 assert(BB != &BB->getParent()->getEntryBlock() && 1046 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1047 1048 // We can't eliminate infinite loops. 1049 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1050 if (BB == Succ) return false; 1051 1052 // Check to see if merging these blocks would cause conflicts for any of the 1053 // phi nodes in BB or Succ. If not, we can safely merge. 1054 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1055 1056 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1057 // has uses which will not disappear when the PHI nodes are merged. It is 1058 // possible to handle such cases, but difficult: it requires checking whether 1059 // BB dominates Succ, which is non-trivial to calculate in the case where 1060 // Succ has multiple predecessors. Also, it requires checking whether 1061 // constructing the necessary self-referential PHI node doesn't introduce any 1062 // conflicts; this isn't too difficult, but the previous code for doing this 1063 // was incorrect. 1064 // 1065 // Note that if this check finds a live use, BB dominates Succ, so BB is 1066 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1067 // folding the branch isn't profitable in that case anyway. 1068 if (!Succ->getSinglePredecessor()) { 1069 BasicBlock::iterator BBI = BB->begin(); 1070 while (isa<PHINode>(*BBI)) { 1071 for (Use &U : BBI->uses()) { 1072 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1073 if (PN->getIncomingBlock(U) != BB) 1074 return false; 1075 } else { 1076 return false; 1077 } 1078 } 1079 ++BBI; 1080 } 1081 } 1082 1083 // We cannot fold the block if it's a branch to an already present callbr 1084 // successor because that creates duplicate successors. 1085 for (BasicBlock *PredBB : predecessors(BB)) { 1086 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1087 if (Succ == CBI->getDefaultDest()) 1088 return false; 1089 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1090 if (Succ == CBI->getIndirectDest(i)) 1091 return false; 1092 } 1093 } 1094 1095 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1096 1097 SmallVector<DominatorTree::UpdateType, 32> Updates; 1098 if (DTU) { 1099 // All predecessors of BB will be moved to Succ. 1100 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1101 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1102 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1103 for (auto *PredOfBB : PredsOfBB) 1104 // This predecessor of BB may already have Succ as a successor. 1105 if (!PredsOfSucc.contains(PredOfBB)) 1106 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1107 for (auto *PredOfBB : PredsOfBB) 1108 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1109 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1110 } 1111 1112 if (isa<PHINode>(Succ->begin())) { 1113 // If there is more than one pred of succ, and there are PHI nodes in 1114 // the successor, then we need to add incoming edges for the PHI nodes 1115 // 1116 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1117 1118 // Loop over all of the PHI nodes in the successor of BB. 1119 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1120 PHINode *PN = cast<PHINode>(I); 1121 1122 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1123 } 1124 } 1125 1126 if (Succ->getSinglePredecessor()) { 1127 // BB is the only predecessor of Succ, so Succ will end up with exactly 1128 // the same predecessors BB had. 1129 1130 // Copy over any phi, debug or lifetime instruction. 1131 BB->getTerminator()->eraseFromParent(); 1132 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1133 BB->getInstList()); 1134 } else { 1135 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1136 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1137 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1138 PN->eraseFromParent(); 1139 } 1140 } 1141 1142 // If the unconditional branch we replaced contains llvm.loop metadata, we 1143 // add the metadata to the branch instructions in the predecessors. 1144 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1145 Instruction *TI = BB->getTerminator(); 1146 if (TI) 1147 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1148 for (BasicBlock *Pred : predecessors(BB)) 1149 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1150 1151 // Everything that jumped to BB now goes to Succ. 1152 BB->replaceAllUsesWith(Succ); 1153 if (!Succ->hasName()) Succ->takeName(BB); 1154 1155 // Clear the successor list of BB to match updates applying to DTU later. 1156 if (BB->getTerminator()) 1157 BB->getInstList().pop_back(); 1158 new UnreachableInst(BB->getContext(), BB); 1159 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1160 "applying corresponding DTU updates."); 1161 1162 if (DTU) 1163 DTU->applyUpdates(Updates); 1164 1165 DeleteDeadBlock(BB, DTU); 1166 1167 return true; 1168 } 1169 1170 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1171 // This implementation doesn't currently consider undef operands 1172 // specially. Theoretically, two phis which are identical except for 1173 // one having an undef where the other doesn't could be collapsed. 1174 1175 bool Changed = false; 1176 1177 // Examine each PHI. 1178 // Note that increment of I must *NOT* be in the iteration_expression, since 1179 // we don't want to immediately advance when we restart from the beginning. 1180 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1181 ++I; 1182 // Is there an identical PHI node in this basic block? 1183 // Note that we only look in the upper square's triangle, 1184 // we already checked that the lower triangle PHI's aren't identical. 1185 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1186 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1187 continue; 1188 // A duplicate. Replace this PHI with the base PHI. 1189 ++NumPHICSEs; 1190 DuplicatePN->replaceAllUsesWith(PN); 1191 DuplicatePN->eraseFromParent(); 1192 Changed = true; 1193 1194 // The RAUW can change PHIs that we already visited. 1195 I = BB->begin(); 1196 break; // Start over from the beginning. 1197 } 1198 } 1199 return Changed; 1200 } 1201 1202 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1203 // This implementation doesn't currently consider undef operands 1204 // specially. Theoretically, two phis which are identical except for 1205 // one having an undef where the other doesn't could be collapsed. 1206 1207 struct PHIDenseMapInfo { 1208 static PHINode *getEmptyKey() { 1209 return DenseMapInfo<PHINode *>::getEmptyKey(); 1210 } 1211 1212 static PHINode *getTombstoneKey() { 1213 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1214 } 1215 1216 static bool isSentinel(PHINode *PN) { 1217 return PN == getEmptyKey() || PN == getTombstoneKey(); 1218 } 1219 1220 // WARNING: this logic must be kept in sync with 1221 // Instruction::isIdenticalToWhenDefined()! 1222 static unsigned getHashValueImpl(PHINode *PN) { 1223 // Compute a hash value on the operands. Instcombine will likely have 1224 // sorted them, which helps expose duplicates, but we have to check all 1225 // the operands to be safe in case instcombine hasn't run. 1226 return static_cast<unsigned>(hash_combine( 1227 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1228 hash_combine_range(PN->block_begin(), PN->block_end()))); 1229 } 1230 1231 static unsigned getHashValue(PHINode *PN) { 1232 #ifndef NDEBUG 1233 // If -phicse-debug-hash was specified, return a constant -- this 1234 // will force all hashing to collide, so we'll exhaustively search 1235 // the table for a match, and the assertion in isEqual will fire if 1236 // there's a bug causing equal keys to hash differently. 1237 if (PHICSEDebugHash) 1238 return 0; 1239 #endif 1240 return getHashValueImpl(PN); 1241 } 1242 1243 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1244 if (isSentinel(LHS) || isSentinel(RHS)) 1245 return LHS == RHS; 1246 return LHS->isIdenticalTo(RHS); 1247 } 1248 1249 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1250 // These comparisons are nontrivial, so assert that equality implies 1251 // hash equality (DenseMap demands this as an invariant). 1252 bool Result = isEqualImpl(LHS, RHS); 1253 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1254 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1255 return Result; 1256 } 1257 }; 1258 1259 // Set of unique PHINodes. 1260 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1261 PHISet.reserve(4 * PHICSENumPHISmallSize); 1262 1263 // Examine each PHI. 1264 bool Changed = false; 1265 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1266 auto Inserted = PHISet.insert(PN); 1267 if (!Inserted.second) { 1268 // A duplicate. Replace this PHI with its duplicate. 1269 ++NumPHICSEs; 1270 PN->replaceAllUsesWith(*Inserted.first); 1271 PN->eraseFromParent(); 1272 Changed = true; 1273 1274 // The RAUW can change PHIs that we already visited. Start over from the 1275 // beginning. 1276 PHISet.clear(); 1277 I = BB->begin(); 1278 } 1279 } 1280 1281 return Changed; 1282 } 1283 1284 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1285 if ( 1286 #ifndef NDEBUG 1287 !PHICSEDebugHash && 1288 #endif 1289 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1290 return EliminateDuplicatePHINodesNaiveImpl(BB); 1291 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1292 } 1293 1294 /// If the specified pointer points to an object that we control, try to modify 1295 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1296 /// the value after the operation, which may be lower than PrefAlign. 1297 /// 1298 /// Increating value alignment isn't often possible though. If alignment is 1299 /// important, a more reliable approach is to simply align all global variables 1300 /// and allocation instructions to their preferred alignment from the beginning. 1301 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1302 const DataLayout &DL) { 1303 V = V->stripPointerCasts(); 1304 1305 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1306 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1307 // than the current alignment, as the known bits calculation should have 1308 // already taken it into account. However, this is not always the case, 1309 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1310 // doesn't. 1311 Align CurrentAlign = AI->getAlign(); 1312 if (PrefAlign <= CurrentAlign) 1313 return CurrentAlign; 1314 1315 // If the preferred alignment is greater than the natural stack alignment 1316 // then don't round up. This avoids dynamic stack realignment. 1317 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1318 return CurrentAlign; 1319 AI->setAlignment(PrefAlign); 1320 return PrefAlign; 1321 } 1322 1323 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1324 // TODO: as above, this shouldn't be necessary. 1325 Align CurrentAlign = GO->getPointerAlignment(DL); 1326 if (PrefAlign <= CurrentAlign) 1327 return CurrentAlign; 1328 1329 // If there is a large requested alignment and we can, bump up the alignment 1330 // of the global. If the memory we set aside for the global may not be the 1331 // memory used by the final program then it is impossible for us to reliably 1332 // enforce the preferred alignment. 1333 if (!GO->canIncreaseAlignment()) 1334 return CurrentAlign; 1335 1336 GO->setAlignment(PrefAlign); 1337 return PrefAlign; 1338 } 1339 1340 return Align(1); 1341 } 1342 1343 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1344 const DataLayout &DL, 1345 const Instruction *CxtI, 1346 AssumptionCache *AC, 1347 const DominatorTree *DT) { 1348 assert(V->getType()->isPointerTy() && 1349 "getOrEnforceKnownAlignment expects a pointer!"); 1350 1351 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1352 unsigned TrailZ = Known.countMinTrailingZeros(); 1353 1354 // Avoid trouble with ridiculously large TrailZ values, such as 1355 // those computed from a null pointer. 1356 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1357 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1358 1359 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1360 1361 if (PrefAlign && *PrefAlign > Alignment) 1362 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1363 1364 // We don't need to make any adjustment. 1365 return Alignment; 1366 } 1367 1368 ///===---------------------------------------------------------------------===// 1369 /// Dbg Intrinsic utilities 1370 /// 1371 1372 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1373 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1374 DIExpression *DIExpr, 1375 PHINode *APN) { 1376 // Since we can't guarantee that the original dbg.declare instrinsic 1377 // is removed by LowerDbgDeclare(), we need to make sure that we are 1378 // not inserting the same dbg.value intrinsic over and over. 1379 SmallVector<DbgValueInst *, 1> DbgValues; 1380 findDbgValues(DbgValues, APN); 1381 for (auto *DVI : DbgValues) { 1382 assert(is_contained(DVI->getValues(), APN)); 1383 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1384 return true; 1385 } 1386 return false; 1387 } 1388 1389 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1390 /// (or fragment of the variable) described by \p DII. 1391 /// 1392 /// This is primarily intended as a helper for the different 1393 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1394 /// converted describes an alloca'd variable, so we need to use the 1395 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1396 /// identified as covering an n-bit fragment, if the store size of i1 is at 1397 /// least n bits. 1398 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1399 const DataLayout &DL = DII->getModule()->getDataLayout(); 1400 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1401 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1402 assert(!ValueSize.isScalable() && 1403 "Fragments don't work on scalable types."); 1404 return ValueSize.getFixedSize() >= *FragmentSize; 1405 } 1406 // We can't always calculate the size of the DI variable (e.g. if it is a 1407 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1408 // intead. 1409 if (DII->isAddressOfVariable()) { 1410 // DII should have exactly 1 location when it is an address. 1411 assert(DII->getNumVariableLocationOps() == 1 && 1412 "address of variable must have exactly 1 location operand."); 1413 if (auto *AI = 1414 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1415 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1416 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1417 "Both sizes should agree on the scalable flag."); 1418 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1419 } 1420 } 1421 } 1422 // Could not determine size of variable. Conservatively return false. 1423 return false; 1424 } 1425 1426 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1427 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1428 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1429 /// case this DebugLoc leaks into any adjacent instructions. 1430 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1431 // Original dbg.declare must have a location. 1432 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1433 MDNode *Scope = DeclareLoc.getScope(); 1434 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1435 // Produce an unknown location with the correct scope / inlinedAt fields. 1436 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1437 } 1438 1439 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1440 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1441 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1442 StoreInst *SI, DIBuilder &Builder) { 1443 assert(DII->isAddressOfVariable()); 1444 auto *DIVar = DII->getVariable(); 1445 assert(DIVar && "Missing variable"); 1446 auto *DIExpr = DII->getExpression(); 1447 Value *DV = SI->getValueOperand(); 1448 1449 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1450 1451 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1452 // FIXME: If storing to a part of the variable described by the dbg.declare, 1453 // then we want to insert a dbg.value for the corresponding fragment. 1454 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1455 << *DII << '\n'); 1456 // For now, when there is a store to parts of the variable (but we do not 1457 // know which part) we insert an dbg.value instrinsic to indicate that we 1458 // know nothing about the variable's content. 1459 DV = UndefValue::get(DV->getType()); 1460 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1461 return; 1462 } 1463 1464 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1465 } 1466 1467 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1468 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1469 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1470 LoadInst *LI, DIBuilder &Builder) { 1471 auto *DIVar = DII->getVariable(); 1472 auto *DIExpr = DII->getExpression(); 1473 assert(DIVar && "Missing variable"); 1474 1475 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1476 // FIXME: If only referring to a part of the variable described by the 1477 // dbg.declare, then we want to insert a dbg.value for the corresponding 1478 // fragment. 1479 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1480 << *DII << '\n'); 1481 return; 1482 } 1483 1484 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1485 1486 // We are now tracking the loaded value instead of the address. In the 1487 // future if multi-location support is added to the IR, it might be 1488 // preferable to keep tracking both the loaded value and the original 1489 // address in case the alloca can not be elided. 1490 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1491 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1492 DbgValue->insertAfter(LI); 1493 } 1494 1495 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1496 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1497 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1498 PHINode *APN, DIBuilder &Builder) { 1499 auto *DIVar = DII->getVariable(); 1500 auto *DIExpr = DII->getExpression(); 1501 assert(DIVar && "Missing variable"); 1502 1503 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1504 return; 1505 1506 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1507 // FIXME: If only referring to a part of the variable described by the 1508 // dbg.declare, then we want to insert a dbg.value for the corresponding 1509 // fragment. 1510 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1511 << *DII << '\n'); 1512 return; 1513 } 1514 1515 BasicBlock *BB = APN->getParent(); 1516 auto InsertionPt = BB->getFirstInsertionPt(); 1517 1518 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1519 1520 // The block may be a catchswitch block, which does not have a valid 1521 // insertion point. 1522 // FIXME: Insert dbg.value markers in the successors when appropriate. 1523 if (InsertionPt != BB->end()) 1524 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1525 } 1526 1527 /// Determine whether this alloca is either a VLA or an array. 1528 static bool isArray(AllocaInst *AI) { 1529 return AI->isArrayAllocation() || 1530 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1531 } 1532 1533 /// Determine whether this alloca is a structure. 1534 static bool isStructure(AllocaInst *AI) { 1535 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1536 } 1537 1538 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1539 /// of llvm.dbg.value intrinsics. 1540 bool llvm::LowerDbgDeclare(Function &F) { 1541 bool Changed = false; 1542 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1543 SmallVector<DbgDeclareInst *, 4> Dbgs; 1544 for (auto &FI : F) 1545 for (Instruction &BI : FI) 1546 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1547 Dbgs.push_back(DDI); 1548 1549 if (Dbgs.empty()) 1550 return Changed; 1551 1552 for (auto &I : Dbgs) { 1553 DbgDeclareInst *DDI = I; 1554 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1555 // If this is an alloca for a scalar variable, insert a dbg.value 1556 // at each load and store to the alloca and erase the dbg.declare. 1557 // The dbg.values allow tracking a variable even if it is not 1558 // stored on the stack, while the dbg.declare can only describe 1559 // the stack slot (and at a lexical-scope granularity). Later 1560 // passes will attempt to elide the stack slot. 1561 if (!AI || isArray(AI) || isStructure(AI)) 1562 continue; 1563 1564 // A volatile load/store means that the alloca can't be elided anyway. 1565 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1566 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1567 return LI->isVolatile(); 1568 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1569 return SI->isVolatile(); 1570 return false; 1571 })) 1572 continue; 1573 1574 SmallVector<const Value *, 8> WorkList; 1575 WorkList.push_back(AI); 1576 while (!WorkList.empty()) { 1577 const Value *V = WorkList.pop_back_val(); 1578 for (auto &AIUse : V->uses()) { 1579 User *U = AIUse.getUser(); 1580 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1581 if (AIUse.getOperandNo() == 1) 1582 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1583 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1584 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1585 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1586 // This is a call by-value or some other instruction that takes a 1587 // pointer to the variable. Insert a *value* intrinsic that describes 1588 // the variable by dereferencing the alloca. 1589 if (!CI->isLifetimeStartOrEnd()) { 1590 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1591 auto *DerefExpr = 1592 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1593 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1594 NewLoc, CI); 1595 } 1596 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1597 if (BI->getType()->isPointerTy()) 1598 WorkList.push_back(BI); 1599 } 1600 } 1601 } 1602 DDI->eraseFromParent(); 1603 Changed = true; 1604 } 1605 1606 if (Changed) 1607 for (BasicBlock &BB : F) 1608 RemoveRedundantDbgInstrs(&BB); 1609 1610 return Changed; 1611 } 1612 1613 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1614 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1615 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1616 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1617 if (InsertedPHIs.size() == 0) 1618 return; 1619 1620 // Map existing PHI nodes to their dbg.values. 1621 ValueToValueMapTy DbgValueMap; 1622 for (auto &I : *BB) { 1623 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1624 for (Value *V : DbgII->location_ops()) 1625 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1626 DbgValueMap.insert({Loc, DbgII}); 1627 } 1628 } 1629 if (DbgValueMap.size() == 0) 1630 return; 1631 1632 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1633 // so that if a dbg.value is being rewritten to use more than one of the 1634 // inserted PHIs in the same destination BB, we can update the same dbg.value 1635 // with all the new PHIs instead of creating one copy for each. 1636 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1637 DbgVariableIntrinsic *> 1638 NewDbgValueMap; 1639 // Then iterate through the new PHIs and look to see if they use one of the 1640 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1641 // propagate the info through the new PHI. If we use more than one new PHI in 1642 // a single destination BB with the same old dbg.value, merge the updates so 1643 // that we get a single new dbg.value with all the new PHIs. 1644 for (auto PHI : InsertedPHIs) { 1645 BasicBlock *Parent = PHI->getParent(); 1646 // Avoid inserting an intrinsic into an EH block. 1647 if (Parent->getFirstNonPHI()->isEHPad()) 1648 continue; 1649 for (auto VI : PHI->operand_values()) { 1650 auto V = DbgValueMap.find(VI); 1651 if (V != DbgValueMap.end()) { 1652 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1653 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1654 if (NewDI == NewDbgValueMap.end()) { 1655 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1656 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1657 } 1658 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1659 // If PHI contains VI as an operand more than once, we may 1660 // replaced it in NewDbgII; confirm that it is present. 1661 if (is_contained(NewDbgII->location_ops(), VI)) 1662 NewDbgII->replaceVariableLocationOp(VI, PHI); 1663 } 1664 } 1665 } 1666 // Insert thew new dbg.values into their destination blocks. 1667 for (auto DI : NewDbgValueMap) { 1668 BasicBlock *Parent = DI.first.first; 1669 auto *NewDbgII = DI.second; 1670 auto InsertionPt = Parent->getFirstInsertionPt(); 1671 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1672 NewDbgII->insertBefore(&*InsertionPt); 1673 } 1674 } 1675 1676 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1677 DIBuilder &Builder, uint8_t DIExprFlags, 1678 int Offset) { 1679 auto DbgAddrs = FindDbgAddrUses(Address); 1680 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1681 const DebugLoc &Loc = DII->getDebugLoc(); 1682 auto *DIVar = DII->getVariable(); 1683 auto *DIExpr = DII->getExpression(); 1684 assert(DIVar && "Missing variable"); 1685 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1686 // Insert llvm.dbg.declare immediately before DII, and remove old 1687 // llvm.dbg.declare. 1688 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1689 DII->eraseFromParent(); 1690 } 1691 return !DbgAddrs.empty(); 1692 } 1693 1694 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1695 DIBuilder &Builder, int Offset) { 1696 const DebugLoc &Loc = DVI->getDebugLoc(); 1697 auto *DIVar = DVI->getVariable(); 1698 auto *DIExpr = DVI->getExpression(); 1699 assert(DIVar && "Missing variable"); 1700 1701 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1702 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1703 // it and give up. 1704 if (!DIExpr || DIExpr->getNumElements() < 1 || 1705 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1706 return; 1707 1708 // Insert the offset before the first deref. 1709 // We could just change the offset argument of dbg.value, but it's unsigned... 1710 if (Offset) 1711 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1712 1713 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1714 DVI->eraseFromParent(); 1715 } 1716 1717 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1718 DIBuilder &Builder, int Offset) { 1719 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1720 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1721 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1722 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1723 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1724 } 1725 1726 /// Where possible to salvage debug information for \p I do so 1727 /// and return True. If not possible mark undef and return False. 1728 void llvm::salvageDebugInfo(Instruction &I) { 1729 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1730 findDbgUsers(DbgUsers, &I); 1731 salvageDebugInfoForDbgValues(I, DbgUsers); 1732 } 1733 1734 void llvm::salvageDebugInfoForDbgValues( 1735 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1736 // This is an arbitrary chosen limit on the maximum number of values we can 1737 // salvage up to in a DIArgList, used for performance reasons. 1738 const unsigned MaxDebugArgs = 16; 1739 bool Salvaged = false; 1740 1741 for (auto *DII : DbgUsers) { 1742 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1743 // are implicitly pointing out the value as a DWARF memory location 1744 // description. 1745 bool StackValue = isa<DbgValueInst>(DII); 1746 auto DIILocation = DII->location_ops(); 1747 assert( 1748 is_contained(DIILocation, &I) && 1749 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1750 SmallVector<Value *, 4> AdditionalValues; 1751 // `I` may appear more than once in DII's location ops, and each use of `I` 1752 // must be updated in the DIExpression and potentially have additional 1753 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1754 // DIILocation. 1755 DIExpression *SalvagedExpr = DII->getExpression(); 1756 auto LocItr = find(DIILocation, &I); 1757 while (SalvagedExpr && LocItr != DIILocation.end()) { 1758 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1759 SalvagedExpr = salvageDebugInfoImpl(I, SalvagedExpr, StackValue, LocNo, 1760 AdditionalValues); 1761 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1762 } 1763 // salvageDebugInfoImpl should fail on examining the first element of 1764 // DbgUsers, or none of them. 1765 if (!SalvagedExpr) 1766 break; 1767 1768 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1769 if (AdditionalValues.empty()) { 1770 DII->setExpression(SalvagedExpr); 1771 } else if (isa<DbgValueInst>(DII) && 1772 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1773 MaxDebugArgs) { 1774 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1775 } else { 1776 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1777 // currently only valid for stack value expressions. 1778 // Also do not salvage if the resulting DIArgList would contain an 1779 // unreasonably large number of values. 1780 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1781 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1782 } 1783 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1784 Salvaged = true; 1785 } 1786 1787 if (Salvaged) 1788 return; 1789 1790 for (auto *DII : DbgUsers) { 1791 Value *Undef = UndefValue::get(I.getType()); 1792 DII->replaceVariableLocationOp(&I, Undef); 1793 } 1794 } 1795 1796 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1797 uint64_t CurrentLocOps, 1798 SmallVectorImpl<uint64_t> &Opcodes, 1799 SmallVectorImpl<Value *> &AdditionalValues) { 1800 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1801 // Rewrite a GEP into a DIExpression. 1802 MapVector<Value *, APInt> VariableOffsets; 1803 APInt ConstantOffset(BitWidth, 0); 1804 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1805 return false; 1806 if (!VariableOffsets.empty() && !CurrentLocOps) { 1807 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1808 CurrentLocOps = 1; 1809 } 1810 for (auto Offset : VariableOffsets) { 1811 AdditionalValues.push_back(Offset.first); 1812 assert(Offset.second.isStrictlyPositive() && 1813 "Expected strictly positive multiplier for offset."); 1814 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1815 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1816 dwarf::DW_OP_plus}); 1817 } 1818 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1819 return true; 1820 } 1821 1822 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1823 switch (Opcode) { 1824 case Instruction::Add: 1825 return dwarf::DW_OP_plus; 1826 case Instruction::Sub: 1827 return dwarf::DW_OP_minus; 1828 case Instruction::Mul: 1829 return dwarf::DW_OP_mul; 1830 case Instruction::SDiv: 1831 return dwarf::DW_OP_div; 1832 case Instruction::SRem: 1833 return dwarf::DW_OP_mod; 1834 case Instruction::Or: 1835 return dwarf::DW_OP_or; 1836 case Instruction::And: 1837 return dwarf::DW_OP_and; 1838 case Instruction::Xor: 1839 return dwarf::DW_OP_xor; 1840 case Instruction::Shl: 1841 return dwarf::DW_OP_shl; 1842 case Instruction::LShr: 1843 return dwarf::DW_OP_shr; 1844 case Instruction::AShr: 1845 return dwarf::DW_OP_shra; 1846 default: 1847 // TODO: Salvage from each kind of binop we know about. 1848 return 0; 1849 } 1850 } 1851 1852 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1853 SmallVectorImpl<uint64_t> &Opcodes, 1854 SmallVectorImpl<Value *> &AdditionalValues) { 1855 // Handle binary operations with constant integer operands as a special case. 1856 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1857 // Values wider than 64 bits cannot be represented within a DIExpression. 1858 if (ConstInt && ConstInt->getBitWidth() > 64) 1859 return false; 1860 1861 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1862 // Push any Constant Int operand onto the expression stack. 1863 if (ConstInt) { 1864 uint64_t Val = ConstInt->getSExtValue(); 1865 // Add or Sub Instructions with a constant operand can potentially be 1866 // simplified. 1867 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1868 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1869 DIExpression::appendOffset(Opcodes, Offset); 1870 return true; 1871 } 1872 Opcodes.append({dwarf::DW_OP_constu, Val}); 1873 } else { 1874 if (!CurrentLocOps) { 1875 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1876 CurrentLocOps = 1; 1877 } 1878 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1879 AdditionalValues.push_back(BI->getOperand(1)); 1880 } 1881 1882 // Add salvaged binary operator to expression stack, if it has a valid 1883 // representation in a DIExpression. 1884 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1885 if (!DwarfBinOp) 1886 return false; 1887 Opcodes.push_back(DwarfBinOp); 1888 1889 return true; 1890 } 1891 1892 DIExpression * 1893 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr, 1894 bool WithStackValue, unsigned LocNo, 1895 SmallVectorImpl<Value *> &AdditionalValues) { 1896 uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands(); 1897 auto &M = *I.getModule(); 1898 auto &DL = M.getDataLayout(); 1899 1900 // Apply a vector of opcodes to the source DIExpression. 1901 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1902 DIExpression *DIExpr = SrcDIExpr; 1903 if (!Ops.empty()) { 1904 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1905 } 1906 return DIExpr; 1907 }; 1908 1909 // initializer-list helper for applying operators to the source DIExpression. 1910 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) { 1911 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1912 return doSalvage(Ops); 1913 }; 1914 1915 if (auto *CI = dyn_cast<CastInst>(&I)) { 1916 // No-op casts are irrelevant for debug info. 1917 if (CI->isNoopCast(DL)) 1918 return SrcDIExpr; 1919 1920 Type *Type = CI->getType(); 1921 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1922 if (Type->isVectorTy() || 1923 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1924 return nullptr; 1925 1926 Value *FromValue = CI->getOperand(0); 1927 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1928 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1929 1930 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1931 isa<SExtInst>(&I))); 1932 } 1933 1934 SmallVector<uint64_t, 8> Ops; 1935 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1936 if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues)) 1937 return doSalvage(Ops); 1938 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1939 if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues)) 1940 return doSalvage(Ops); 1941 } 1942 // *Not* to do: we should not attempt to salvage load instructions, 1943 // because the validity and lifetime of a dbg.value containing 1944 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1945 return nullptr; 1946 } 1947 1948 /// A replacement for a dbg.value expression. 1949 using DbgValReplacement = Optional<DIExpression *>; 1950 1951 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1952 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1953 /// changes are made. 1954 static bool rewriteDebugUsers( 1955 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1956 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1957 // Find debug users of From. 1958 SmallVector<DbgVariableIntrinsic *, 1> Users; 1959 findDbgUsers(Users, &From); 1960 if (Users.empty()) 1961 return false; 1962 1963 // Prevent use-before-def of To. 1964 bool Changed = false; 1965 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1966 if (isa<Instruction>(&To)) { 1967 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1968 1969 for (auto *DII : Users) { 1970 // It's common to see a debug user between From and DomPoint. Move it 1971 // after DomPoint to preserve the variable update without any reordering. 1972 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1973 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1974 DII->moveAfter(&DomPoint); 1975 Changed = true; 1976 1977 // Users which otherwise aren't dominated by the replacement value must 1978 // be salvaged or deleted. 1979 } else if (!DT.dominates(&DomPoint, DII)) { 1980 UndefOrSalvage.insert(DII); 1981 } 1982 } 1983 } 1984 1985 // Update debug users without use-before-def risk. 1986 for (auto *DII : Users) { 1987 if (UndefOrSalvage.count(DII)) 1988 continue; 1989 1990 DbgValReplacement DVR = RewriteExpr(*DII); 1991 if (!DVR) 1992 continue; 1993 1994 DII->replaceVariableLocationOp(&From, &To); 1995 DII->setExpression(*DVR); 1996 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1997 Changed = true; 1998 } 1999 2000 if (!UndefOrSalvage.empty()) { 2001 // Try to salvage the remaining debug users. 2002 salvageDebugInfo(From); 2003 Changed = true; 2004 } 2005 2006 return Changed; 2007 } 2008 2009 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2010 /// losslessly preserve the bits and semantics of the value. This predicate is 2011 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2012 /// 2013 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2014 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2015 /// and also does not allow lossless pointer <-> integer conversions. 2016 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2017 Type *ToTy) { 2018 // Trivially compatible types. 2019 if (FromTy == ToTy) 2020 return true; 2021 2022 // Handle compatible pointer <-> integer conversions. 2023 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2024 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2025 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2026 !DL.isNonIntegralPointerType(ToTy); 2027 return SameSize && LosslessConversion; 2028 } 2029 2030 // TODO: This is not exhaustive. 2031 return false; 2032 } 2033 2034 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2035 Instruction &DomPoint, DominatorTree &DT) { 2036 // Exit early if From has no debug users. 2037 if (!From.isUsedByMetadata()) 2038 return false; 2039 2040 assert(&From != &To && "Can't replace something with itself"); 2041 2042 Type *FromTy = From.getType(); 2043 Type *ToTy = To.getType(); 2044 2045 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2046 return DII.getExpression(); 2047 }; 2048 2049 // Handle no-op conversions. 2050 Module &M = *From.getModule(); 2051 const DataLayout &DL = M.getDataLayout(); 2052 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2053 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2054 2055 // Handle integer-to-integer widening and narrowing. 2056 // FIXME: Use DW_OP_convert when it's available everywhere. 2057 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2058 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2059 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2060 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2061 2062 // When the width of the result grows, assume that a debugger will only 2063 // access the low `FromBits` bits when inspecting the source variable. 2064 if (FromBits < ToBits) 2065 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2066 2067 // The width of the result has shrunk. Use sign/zero extension to describe 2068 // the source variable's high bits. 2069 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2070 DILocalVariable *Var = DII.getVariable(); 2071 2072 // Without knowing signedness, sign/zero extension isn't possible. 2073 auto Signedness = Var->getSignedness(); 2074 if (!Signedness) 2075 return None; 2076 2077 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2078 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2079 Signed); 2080 }; 2081 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2082 } 2083 2084 // TODO: Floating-point conversions, vectors. 2085 return false; 2086 } 2087 2088 std::pair<unsigned, unsigned> 2089 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2090 unsigned NumDeadInst = 0; 2091 unsigned NumDeadDbgInst = 0; 2092 // Delete the instructions backwards, as it has a reduced likelihood of 2093 // having to update as many def-use and use-def chains. 2094 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2095 while (EndInst != &BB->front()) { 2096 // Delete the next to last instruction. 2097 Instruction *Inst = &*--EndInst->getIterator(); 2098 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2099 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2100 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2101 EndInst = Inst; 2102 continue; 2103 } 2104 if (isa<DbgInfoIntrinsic>(Inst)) 2105 ++NumDeadDbgInst; 2106 else 2107 ++NumDeadInst; 2108 Inst->eraseFromParent(); 2109 } 2110 return {NumDeadInst, NumDeadDbgInst}; 2111 } 2112 2113 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2114 bool PreserveLCSSA, DomTreeUpdater *DTU, 2115 MemorySSAUpdater *MSSAU) { 2116 BasicBlock *BB = I->getParent(); 2117 2118 if (MSSAU) 2119 MSSAU->changeToUnreachable(I); 2120 2121 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2122 2123 // Loop over all of the successors, removing BB's entry from any PHI 2124 // nodes. 2125 for (BasicBlock *Successor : successors(BB)) { 2126 Successor->removePredecessor(BB, PreserveLCSSA); 2127 if (DTU) 2128 UniqueSuccessors.insert(Successor); 2129 } 2130 // Insert a call to llvm.trap right before this. This turns the undefined 2131 // behavior into a hard fail instead of falling through into random code. 2132 if (UseLLVMTrap) { 2133 Function *TrapFn = 2134 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2135 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2136 CallTrap->setDebugLoc(I->getDebugLoc()); 2137 } 2138 auto *UI = new UnreachableInst(I->getContext(), I); 2139 UI->setDebugLoc(I->getDebugLoc()); 2140 2141 // All instructions after this are dead. 2142 unsigned NumInstrsRemoved = 0; 2143 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2144 while (BBI != BBE) { 2145 if (!BBI->use_empty()) 2146 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2147 BB->getInstList().erase(BBI++); 2148 ++NumInstrsRemoved; 2149 } 2150 if (DTU) { 2151 SmallVector<DominatorTree::UpdateType, 8> Updates; 2152 Updates.reserve(UniqueSuccessors.size()); 2153 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2154 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2155 DTU->applyUpdates(Updates); 2156 } 2157 return NumInstrsRemoved; 2158 } 2159 2160 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2161 SmallVector<Value *, 8> Args(II->args()); 2162 SmallVector<OperandBundleDef, 1> OpBundles; 2163 II->getOperandBundlesAsDefs(OpBundles); 2164 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2165 II->getCalledOperand(), Args, OpBundles); 2166 NewCall->setCallingConv(II->getCallingConv()); 2167 NewCall->setAttributes(II->getAttributes()); 2168 NewCall->setDebugLoc(II->getDebugLoc()); 2169 NewCall->copyMetadata(*II); 2170 2171 // If the invoke had profile metadata, try converting them for CallInst. 2172 uint64_t TotalWeight; 2173 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2174 // Set the total weight if it fits into i32, otherwise reset. 2175 MDBuilder MDB(NewCall->getContext()); 2176 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2177 ? nullptr 2178 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2179 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2180 } 2181 2182 return NewCall; 2183 } 2184 2185 /// changeToCall - Convert the specified invoke into a normal call. 2186 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2187 CallInst *NewCall = createCallMatchingInvoke(II); 2188 NewCall->takeName(II); 2189 NewCall->insertBefore(II); 2190 II->replaceAllUsesWith(NewCall); 2191 2192 // Follow the call by a branch to the normal destination. 2193 BasicBlock *NormalDestBB = II->getNormalDest(); 2194 BranchInst::Create(NormalDestBB, II); 2195 2196 // Update PHI nodes in the unwind destination 2197 BasicBlock *BB = II->getParent(); 2198 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2199 UnwindDestBB->removePredecessor(BB); 2200 II->eraseFromParent(); 2201 if (DTU) 2202 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2203 } 2204 2205 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2206 BasicBlock *UnwindEdge, 2207 DomTreeUpdater *DTU) { 2208 BasicBlock *BB = CI->getParent(); 2209 2210 // Convert this function call into an invoke instruction. First, split the 2211 // basic block. 2212 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2213 CI->getName() + ".noexc"); 2214 2215 // Delete the unconditional branch inserted by SplitBlock 2216 BB->getInstList().pop_back(); 2217 2218 // Create the new invoke instruction. 2219 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2220 SmallVector<OperandBundleDef, 1> OpBundles; 2221 2222 CI->getOperandBundlesAsDefs(OpBundles); 2223 2224 // Note: we're round tripping operand bundles through memory here, and that 2225 // can potentially be avoided with a cleverer API design that we do not have 2226 // as of this time. 2227 2228 InvokeInst *II = 2229 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2230 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2231 II->setDebugLoc(CI->getDebugLoc()); 2232 II->setCallingConv(CI->getCallingConv()); 2233 II->setAttributes(CI->getAttributes()); 2234 2235 if (DTU) 2236 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2237 2238 // Make sure that anything using the call now uses the invoke! This also 2239 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2240 CI->replaceAllUsesWith(II); 2241 2242 // Delete the original call 2243 Split->getInstList().pop_front(); 2244 return Split; 2245 } 2246 2247 static bool markAliveBlocks(Function &F, 2248 SmallPtrSetImpl<BasicBlock *> &Reachable, 2249 DomTreeUpdater *DTU = nullptr) { 2250 SmallVector<BasicBlock*, 128> Worklist; 2251 BasicBlock *BB = &F.front(); 2252 Worklist.push_back(BB); 2253 Reachable.insert(BB); 2254 bool Changed = false; 2255 do { 2256 BB = Worklist.pop_back_val(); 2257 2258 // Do a quick scan of the basic block, turning any obviously unreachable 2259 // instructions into LLVM unreachable insts. The instruction combining pass 2260 // canonicalizes unreachable insts into stores to null or undef. 2261 for (Instruction &I : *BB) { 2262 if (auto *CI = dyn_cast<CallInst>(&I)) { 2263 Value *Callee = CI->getCalledOperand(); 2264 // Handle intrinsic calls. 2265 if (Function *F = dyn_cast<Function>(Callee)) { 2266 auto IntrinsicID = F->getIntrinsicID(); 2267 // Assumptions that are known to be false are equivalent to 2268 // unreachable. Also, if the condition is undefined, then we make the 2269 // choice most beneficial to the optimizer, and choose that to also be 2270 // unreachable. 2271 if (IntrinsicID == Intrinsic::assume) { 2272 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2273 // Don't insert a call to llvm.trap right before the unreachable. 2274 changeToUnreachable(CI, false, false, DTU); 2275 Changed = true; 2276 break; 2277 } 2278 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2279 // A call to the guard intrinsic bails out of the current 2280 // compilation unit if the predicate passed to it is false. If the 2281 // predicate is a constant false, then we know the guard will bail 2282 // out of the current compile unconditionally, so all code following 2283 // it is dead. 2284 // 2285 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2286 // guards to treat `undef` as `false` since a guard on `undef` can 2287 // still be useful for widening. 2288 if (match(CI->getArgOperand(0), m_Zero())) 2289 if (!isa<UnreachableInst>(CI->getNextNode())) { 2290 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2291 false, DTU); 2292 Changed = true; 2293 break; 2294 } 2295 } 2296 } else if ((isa<ConstantPointerNull>(Callee) && 2297 !NullPointerIsDefined(CI->getFunction())) || 2298 isa<UndefValue>(Callee)) { 2299 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2300 Changed = true; 2301 break; 2302 } 2303 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2304 // If we found a call to a no-return function, insert an unreachable 2305 // instruction after it. Make sure there isn't *already* one there 2306 // though. 2307 if (!isa<UnreachableInst>(CI->getNextNode())) { 2308 // Don't insert a call to llvm.trap right before the unreachable. 2309 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2310 Changed = true; 2311 } 2312 break; 2313 } 2314 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2315 // Store to undef and store to null are undefined and used to signal 2316 // that they should be changed to unreachable by passes that can't 2317 // modify the CFG. 2318 2319 // Don't touch volatile stores. 2320 if (SI->isVolatile()) continue; 2321 2322 Value *Ptr = SI->getOperand(1); 2323 2324 if (isa<UndefValue>(Ptr) || 2325 (isa<ConstantPointerNull>(Ptr) && 2326 !NullPointerIsDefined(SI->getFunction(), 2327 SI->getPointerAddressSpace()))) { 2328 changeToUnreachable(SI, true, false, DTU); 2329 Changed = true; 2330 break; 2331 } 2332 } 2333 } 2334 2335 Instruction *Terminator = BB->getTerminator(); 2336 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2337 // Turn invokes that call 'nounwind' functions into ordinary calls. 2338 Value *Callee = II->getCalledOperand(); 2339 if ((isa<ConstantPointerNull>(Callee) && 2340 !NullPointerIsDefined(BB->getParent())) || 2341 isa<UndefValue>(Callee)) { 2342 changeToUnreachable(II, true, false, DTU); 2343 Changed = true; 2344 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2345 if (II->use_empty() && II->onlyReadsMemory()) { 2346 // jump to the normal destination branch. 2347 BasicBlock *NormalDestBB = II->getNormalDest(); 2348 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2349 BranchInst::Create(NormalDestBB, II); 2350 UnwindDestBB->removePredecessor(II->getParent()); 2351 II->eraseFromParent(); 2352 if (DTU) 2353 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2354 } else 2355 changeToCall(II, DTU); 2356 Changed = true; 2357 } 2358 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2359 // Remove catchpads which cannot be reached. 2360 struct CatchPadDenseMapInfo { 2361 static CatchPadInst *getEmptyKey() { 2362 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2363 } 2364 2365 static CatchPadInst *getTombstoneKey() { 2366 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2367 } 2368 2369 static unsigned getHashValue(CatchPadInst *CatchPad) { 2370 return static_cast<unsigned>(hash_combine_range( 2371 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2372 } 2373 2374 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2375 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2376 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2377 return LHS == RHS; 2378 return LHS->isIdenticalTo(RHS); 2379 } 2380 }; 2381 2382 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2383 // Set of unique CatchPads. 2384 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2385 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2386 HandlerSet; 2387 detail::DenseSetEmpty Empty; 2388 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2389 E = CatchSwitch->handler_end(); 2390 I != E; ++I) { 2391 BasicBlock *HandlerBB = *I; 2392 if (DTU) 2393 ++NumPerSuccessorCases[HandlerBB]; 2394 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2395 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2396 if (DTU) 2397 --NumPerSuccessorCases[HandlerBB]; 2398 CatchSwitch->removeHandler(I); 2399 --I; 2400 --E; 2401 Changed = true; 2402 } 2403 } 2404 if (DTU) { 2405 std::vector<DominatorTree::UpdateType> Updates; 2406 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2407 if (I.second == 0) 2408 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2409 DTU->applyUpdates(Updates); 2410 } 2411 } 2412 2413 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2414 for (BasicBlock *Successor : successors(BB)) 2415 if (Reachable.insert(Successor).second) 2416 Worklist.push_back(Successor); 2417 } while (!Worklist.empty()); 2418 return Changed; 2419 } 2420 2421 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2422 Instruction *TI = BB->getTerminator(); 2423 2424 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2425 changeToCall(II, DTU); 2426 return; 2427 } 2428 2429 Instruction *NewTI; 2430 BasicBlock *UnwindDest; 2431 2432 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2433 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2434 UnwindDest = CRI->getUnwindDest(); 2435 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2436 auto *NewCatchSwitch = CatchSwitchInst::Create( 2437 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2438 CatchSwitch->getName(), CatchSwitch); 2439 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2440 NewCatchSwitch->addHandler(PadBB); 2441 2442 NewTI = NewCatchSwitch; 2443 UnwindDest = CatchSwitch->getUnwindDest(); 2444 } else { 2445 llvm_unreachable("Could not find unwind successor"); 2446 } 2447 2448 NewTI->takeName(TI); 2449 NewTI->setDebugLoc(TI->getDebugLoc()); 2450 UnwindDest->removePredecessor(BB); 2451 TI->replaceAllUsesWith(NewTI); 2452 TI->eraseFromParent(); 2453 if (DTU) 2454 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2455 } 2456 2457 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2458 /// if they are in a dead cycle. Return true if a change was made, false 2459 /// otherwise. 2460 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2461 MemorySSAUpdater *MSSAU) { 2462 SmallPtrSet<BasicBlock *, 16> Reachable; 2463 bool Changed = markAliveBlocks(F, Reachable, DTU); 2464 2465 // If there are unreachable blocks in the CFG... 2466 if (Reachable.size() == F.size()) 2467 return Changed; 2468 2469 assert(Reachable.size() < F.size()); 2470 2471 // Are there any blocks left to actually delete? 2472 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2473 for (BasicBlock &BB : F) { 2474 // Skip reachable basic blocks 2475 if (Reachable.count(&BB)) 2476 continue; 2477 // Skip already-deleted blocks 2478 if (DTU && DTU->isBBPendingDeletion(&BB)) 2479 continue; 2480 BlocksToRemove.insert(&BB); 2481 } 2482 2483 if (BlocksToRemove.empty()) 2484 return Changed; 2485 2486 Changed = true; 2487 NumRemoved += BlocksToRemove.size(); 2488 2489 if (MSSAU) 2490 MSSAU->removeBlocks(BlocksToRemove); 2491 2492 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2493 2494 return Changed; 2495 } 2496 2497 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2498 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2499 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2500 K->dropUnknownNonDebugMetadata(KnownIDs); 2501 K->getAllMetadataOtherThanDebugLoc(Metadata); 2502 for (const auto &MD : Metadata) { 2503 unsigned Kind = MD.first; 2504 MDNode *JMD = J->getMetadata(Kind); 2505 MDNode *KMD = MD.second; 2506 2507 switch (Kind) { 2508 default: 2509 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2510 break; 2511 case LLVMContext::MD_dbg: 2512 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2513 case LLVMContext::MD_tbaa: 2514 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2515 break; 2516 case LLVMContext::MD_alias_scope: 2517 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2518 break; 2519 case LLVMContext::MD_noalias: 2520 case LLVMContext::MD_mem_parallel_loop_access: 2521 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2522 break; 2523 case LLVMContext::MD_access_group: 2524 K->setMetadata(LLVMContext::MD_access_group, 2525 intersectAccessGroups(K, J)); 2526 break; 2527 case LLVMContext::MD_range: 2528 2529 // If K does move, use most generic range. Otherwise keep the range of 2530 // K. 2531 if (DoesKMove) 2532 // FIXME: If K does move, we should drop the range info and nonnull. 2533 // Currently this function is used with DoesKMove in passes 2534 // doing hoisting/sinking and the current behavior of using the 2535 // most generic range is correct in those cases. 2536 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2537 break; 2538 case LLVMContext::MD_fpmath: 2539 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2540 break; 2541 case LLVMContext::MD_invariant_load: 2542 // Only set the !invariant.load if it is present in both instructions. 2543 K->setMetadata(Kind, JMD); 2544 break; 2545 case LLVMContext::MD_nonnull: 2546 // If K does move, keep nonull if it is present in both instructions. 2547 if (DoesKMove) 2548 K->setMetadata(Kind, JMD); 2549 break; 2550 case LLVMContext::MD_invariant_group: 2551 // Preserve !invariant.group in K. 2552 break; 2553 case LLVMContext::MD_align: 2554 K->setMetadata(Kind, 2555 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2556 break; 2557 case LLVMContext::MD_dereferenceable: 2558 case LLVMContext::MD_dereferenceable_or_null: 2559 K->setMetadata(Kind, 2560 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2561 break; 2562 case LLVMContext::MD_preserve_access_index: 2563 // Preserve !preserve.access.index in K. 2564 break; 2565 } 2566 } 2567 // Set !invariant.group from J if J has it. If both instructions have it 2568 // then we will just pick it from J - even when they are different. 2569 // Also make sure that K is load or store - f.e. combining bitcast with load 2570 // could produce bitcast with invariant.group metadata, which is invalid. 2571 // FIXME: we should try to preserve both invariant.group md if they are 2572 // different, but right now instruction can only have one invariant.group. 2573 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2574 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2575 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2576 } 2577 2578 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2579 bool KDominatesJ) { 2580 unsigned KnownIDs[] = { 2581 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2582 LLVMContext::MD_noalias, LLVMContext::MD_range, 2583 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2584 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2585 LLVMContext::MD_dereferenceable, 2586 LLVMContext::MD_dereferenceable_or_null, 2587 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2588 combineMetadata(K, J, KnownIDs, KDominatesJ); 2589 } 2590 2591 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2592 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2593 Source.getAllMetadata(MD); 2594 MDBuilder MDB(Dest.getContext()); 2595 Type *NewType = Dest.getType(); 2596 const DataLayout &DL = Source.getModule()->getDataLayout(); 2597 for (const auto &MDPair : MD) { 2598 unsigned ID = MDPair.first; 2599 MDNode *N = MDPair.second; 2600 // Note, essentially every kind of metadata should be preserved here! This 2601 // routine is supposed to clone a load instruction changing *only its type*. 2602 // The only metadata it makes sense to drop is metadata which is invalidated 2603 // when the pointer type changes. This should essentially never be the case 2604 // in LLVM, but we explicitly switch over only known metadata to be 2605 // conservatively correct. If you are adding metadata to LLVM which pertains 2606 // to loads, you almost certainly want to add it here. 2607 switch (ID) { 2608 case LLVMContext::MD_dbg: 2609 case LLVMContext::MD_tbaa: 2610 case LLVMContext::MD_prof: 2611 case LLVMContext::MD_fpmath: 2612 case LLVMContext::MD_tbaa_struct: 2613 case LLVMContext::MD_invariant_load: 2614 case LLVMContext::MD_alias_scope: 2615 case LLVMContext::MD_noalias: 2616 case LLVMContext::MD_nontemporal: 2617 case LLVMContext::MD_mem_parallel_loop_access: 2618 case LLVMContext::MD_access_group: 2619 // All of these directly apply. 2620 Dest.setMetadata(ID, N); 2621 break; 2622 2623 case LLVMContext::MD_nonnull: 2624 copyNonnullMetadata(Source, N, Dest); 2625 break; 2626 2627 case LLVMContext::MD_align: 2628 case LLVMContext::MD_dereferenceable: 2629 case LLVMContext::MD_dereferenceable_or_null: 2630 // These only directly apply if the new type is also a pointer. 2631 if (NewType->isPointerTy()) 2632 Dest.setMetadata(ID, N); 2633 break; 2634 2635 case LLVMContext::MD_range: 2636 copyRangeMetadata(DL, Source, N, Dest); 2637 break; 2638 } 2639 } 2640 } 2641 2642 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2643 auto *ReplInst = dyn_cast<Instruction>(Repl); 2644 if (!ReplInst) 2645 return; 2646 2647 // Patch the replacement so that it is not more restrictive than the value 2648 // being replaced. 2649 // Note that if 'I' is a load being replaced by some operation, 2650 // for example, by an arithmetic operation, then andIRFlags() 2651 // would just erase all math flags from the original arithmetic 2652 // operation, which is clearly not wanted and not needed. 2653 if (!isa<LoadInst>(I)) 2654 ReplInst->andIRFlags(I); 2655 2656 // FIXME: If both the original and replacement value are part of the 2657 // same control-flow region (meaning that the execution of one 2658 // guarantees the execution of the other), then we can combine the 2659 // noalias scopes here and do better than the general conservative 2660 // answer used in combineMetadata(). 2661 2662 // In general, GVN unifies expressions over different control-flow 2663 // regions, and so we need a conservative combination of the noalias 2664 // scopes. 2665 static const unsigned KnownIDs[] = { 2666 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2667 LLVMContext::MD_noalias, LLVMContext::MD_range, 2668 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2669 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2670 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2671 combineMetadata(ReplInst, I, KnownIDs, false); 2672 } 2673 2674 template <typename RootType, typename DominatesFn> 2675 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2676 const RootType &Root, 2677 const DominatesFn &Dominates) { 2678 assert(From->getType() == To->getType()); 2679 2680 unsigned Count = 0; 2681 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2682 UI != UE;) { 2683 Use &U = *UI++; 2684 if (!Dominates(Root, U)) 2685 continue; 2686 U.set(To); 2687 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2688 << "' as " << *To << " in " << *U << "\n"); 2689 ++Count; 2690 } 2691 return Count; 2692 } 2693 2694 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2695 assert(From->getType() == To->getType()); 2696 auto *BB = From->getParent(); 2697 unsigned Count = 0; 2698 2699 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2700 UI != UE;) { 2701 Use &U = *UI++; 2702 auto *I = cast<Instruction>(U.getUser()); 2703 if (I->getParent() == BB) 2704 continue; 2705 U.set(To); 2706 ++Count; 2707 } 2708 return Count; 2709 } 2710 2711 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2712 DominatorTree &DT, 2713 const BasicBlockEdge &Root) { 2714 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2715 return DT.dominates(Root, U); 2716 }; 2717 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2718 } 2719 2720 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2721 DominatorTree &DT, 2722 const BasicBlock *BB) { 2723 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2724 return DT.dominates(BB, U); 2725 }; 2726 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2727 } 2728 2729 bool llvm::callsGCLeafFunction(const CallBase *Call, 2730 const TargetLibraryInfo &TLI) { 2731 // Check if the function is specifically marked as a gc leaf function. 2732 if (Call->hasFnAttr("gc-leaf-function")) 2733 return true; 2734 if (const Function *F = Call->getCalledFunction()) { 2735 if (F->hasFnAttribute("gc-leaf-function")) 2736 return true; 2737 2738 if (auto IID = F->getIntrinsicID()) { 2739 // Most LLVM intrinsics do not take safepoints. 2740 return IID != Intrinsic::experimental_gc_statepoint && 2741 IID != Intrinsic::experimental_deoptimize && 2742 IID != Intrinsic::memcpy_element_unordered_atomic && 2743 IID != Intrinsic::memmove_element_unordered_atomic; 2744 } 2745 } 2746 2747 // Lib calls can be materialized by some passes, and won't be 2748 // marked as 'gc-leaf-function.' All available Libcalls are 2749 // GC-leaf. 2750 LibFunc LF; 2751 if (TLI.getLibFunc(*Call, LF)) { 2752 return TLI.has(LF); 2753 } 2754 2755 return false; 2756 } 2757 2758 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2759 LoadInst &NewLI) { 2760 auto *NewTy = NewLI.getType(); 2761 2762 // This only directly applies if the new type is also a pointer. 2763 if (NewTy->isPointerTy()) { 2764 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2765 return; 2766 } 2767 2768 // The only other translation we can do is to integral loads with !range 2769 // metadata. 2770 if (!NewTy->isIntegerTy()) 2771 return; 2772 2773 MDBuilder MDB(NewLI.getContext()); 2774 const Value *Ptr = OldLI.getPointerOperand(); 2775 auto *ITy = cast<IntegerType>(NewTy); 2776 auto *NullInt = ConstantExpr::getPtrToInt( 2777 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2778 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2779 NewLI.setMetadata(LLVMContext::MD_range, 2780 MDB.createRange(NonNullInt, NullInt)); 2781 } 2782 2783 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2784 MDNode *N, LoadInst &NewLI) { 2785 auto *NewTy = NewLI.getType(); 2786 2787 // Give up unless it is converted to a pointer where there is a single very 2788 // valuable mapping we can do reliably. 2789 // FIXME: It would be nice to propagate this in more ways, but the type 2790 // conversions make it hard. 2791 if (!NewTy->isPointerTy()) 2792 return; 2793 2794 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2795 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2796 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2797 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2798 } 2799 } 2800 2801 void llvm::dropDebugUsers(Instruction &I) { 2802 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2803 findDbgUsers(DbgUsers, &I); 2804 for (auto *DII : DbgUsers) 2805 DII->eraseFromParent(); 2806 } 2807 2808 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2809 BasicBlock *BB) { 2810 // Since we are moving the instructions out of its basic block, we do not 2811 // retain their original debug locations (DILocations) and debug intrinsic 2812 // instructions. 2813 // 2814 // Doing so would degrade the debugging experience and adversely affect the 2815 // accuracy of profiling information. 2816 // 2817 // Currently, when hoisting the instructions, we take the following actions: 2818 // - Remove their debug intrinsic instructions. 2819 // - Set their debug locations to the values from the insertion point. 2820 // 2821 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2822 // need to be deleted, is because there will not be any instructions with a 2823 // DILocation in either branch left after performing the transformation. We 2824 // can only insert a dbg.value after the two branches are joined again. 2825 // 2826 // See PR38762, PR39243 for more details. 2827 // 2828 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2829 // encode predicated DIExpressions that yield different results on different 2830 // code paths. 2831 2832 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2833 Instruction *I = &*II; 2834 I->dropUnknownNonDebugMetadata(); 2835 if (I->isUsedByMetadata()) 2836 dropDebugUsers(*I); 2837 if (I->isDebugOrPseudoInst()) { 2838 // Remove DbgInfo and pseudo probe Intrinsics. 2839 II = I->eraseFromParent(); 2840 continue; 2841 } 2842 I->setDebugLoc(InsertPt->getDebugLoc()); 2843 ++II; 2844 } 2845 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2846 BB->begin(), 2847 BB->getTerminator()->getIterator()); 2848 } 2849 2850 namespace { 2851 2852 /// A potential constituent of a bitreverse or bswap expression. See 2853 /// collectBitParts for a fuller explanation. 2854 struct BitPart { 2855 BitPart(Value *P, unsigned BW) : Provider(P) { 2856 Provenance.resize(BW); 2857 } 2858 2859 /// The Value that this is a bitreverse/bswap of. 2860 Value *Provider; 2861 2862 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2863 /// in Provider becomes bit B in the result of this expression. 2864 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2865 2866 enum { Unset = -1 }; 2867 }; 2868 2869 } // end anonymous namespace 2870 2871 /// Analyze the specified subexpression and see if it is capable of providing 2872 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2873 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2874 /// the output of the expression came from a corresponding bit in some other 2875 /// value. This function is recursive, and the end result is a mapping of 2876 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2877 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2878 /// 2879 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2880 /// that the expression deposits the low byte of %X into the high byte of the 2881 /// result and that all other bits are zero. This expression is accepted and a 2882 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2883 /// [0-7]. 2884 /// 2885 /// For vector types, all analysis is performed at the per-element level. No 2886 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2887 /// constant masks must be splatted across all elements. 2888 /// 2889 /// To avoid revisiting values, the BitPart results are memoized into the 2890 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2891 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2892 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2893 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2894 /// type instead to provide the same functionality. 2895 /// 2896 /// Because we pass around references into \c BPS, we must use a container that 2897 /// does not invalidate internal references (std::map instead of DenseMap). 2898 static const Optional<BitPart> & 2899 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2900 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2901 bool &FoundRoot) { 2902 auto I = BPS.find(V); 2903 if (I != BPS.end()) 2904 return I->second; 2905 2906 auto &Result = BPS[V] = None; 2907 auto BitWidth = V->getType()->getScalarSizeInBits(); 2908 2909 // Can't do integer/elements > 128 bits. 2910 if (BitWidth > 128) 2911 return Result; 2912 2913 // Prevent stack overflow by limiting the recursion depth 2914 if (Depth == BitPartRecursionMaxDepth) { 2915 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2916 return Result; 2917 } 2918 2919 if (auto *I = dyn_cast<Instruction>(V)) { 2920 Value *X, *Y; 2921 const APInt *C; 2922 2923 // If this is an or instruction, it may be an inner node of the bswap. 2924 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2925 // Check we have both sources and they are from the same provider. 2926 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2927 Depth + 1, FoundRoot); 2928 if (!A || !A->Provider) 2929 return Result; 2930 2931 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2932 Depth + 1, FoundRoot); 2933 if (!B || A->Provider != B->Provider) 2934 return Result; 2935 2936 // Try and merge the two together. 2937 Result = BitPart(A->Provider, BitWidth); 2938 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2939 if (A->Provenance[BitIdx] != BitPart::Unset && 2940 B->Provenance[BitIdx] != BitPart::Unset && 2941 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2942 return Result = None; 2943 2944 if (A->Provenance[BitIdx] == BitPart::Unset) 2945 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2946 else 2947 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2948 } 2949 2950 return Result; 2951 } 2952 2953 // If this is a logical shift by a constant, recurse then shift the result. 2954 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2955 const APInt &BitShift = *C; 2956 2957 // Ensure the shift amount is defined. 2958 if (BitShift.uge(BitWidth)) 2959 return Result; 2960 2961 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2962 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2963 return Result; 2964 2965 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2966 Depth + 1, FoundRoot); 2967 if (!Res) 2968 return Result; 2969 Result = Res; 2970 2971 // Perform the "shift" on BitProvenance. 2972 auto &P = Result->Provenance; 2973 if (I->getOpcode() == Instruction::Shl) { 2974 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2975 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2976 } else { 2977 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2978 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2979 } 2980 2981 return Result; 2982 } 2983 2984 // If this is a logical 'and' with a mask that clears bits, recurse then 2985 // unset the appropriate bits. 2986 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2987 const APInt &AndMask = *C; 2988 2989 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2990 // early exit. 2991 unsigned NumMaskedBits = AndMask.countPopulation(); 2992 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2993 return Result; 2994 2995 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2996 Depth + 1, FoundRoot); 2997 if (!Res) 2998 return Result; 2999 Result = Res; 3000 3001 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3002 // If the AndMask is zero for this bit, clear the bit. 3003 if (AndMask[BitIdx] == 0) 3004 Result->Provenance[BitIdx] = BitPart::Unset; 3005 return Result; 3006 } 3007 3008 // If this is a zext instruction zero extend the result. 3009 if (match(V, m_ZExt(m_Value(X)))) { 3010 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3011 Depth + 1, FoundRoot); 3012 if (!Res) 3013 return Result; 3014 3015 Result = BitPart(Res->Provider, BitWidth); 3016 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3017 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3018 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3019 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3020 Result->Provenance[BitIdx] = BitPart::Unset; 3021 return Result; 3022 } 3023 3024 // If this is a truncate instruction, extract the lower bits. 3025 if (match(V, m_Trunc(m_Value(X)))) { 3026 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3027 Depth + 1, FoundRoot); 3028 if (!Res) 3029 return Result; 3030 3031 Result = BitPart(Res->Provider, BitWidth); 3032 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3033 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3034 return Result; 3035 } 3036 3037 // BITREVERSE - most likely due to us previous matching a partial 3038 // bitreverse. 3039 if (match(V, m_BitReverse(m_Value(X)))) { 3040 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3041 Depth + 1, FoundRoot); 3042 if (!Res) 3043 return Result; 3044 3045 Result = BitPart(Res->Provider, BitWidth); 3046 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3047 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3048 return Result; 3049 } 3050 3051 // BSWAP - most likely due to us previous matching a partial bswap. 3052 if (match(V, m_BSwap(m_Value(X)))) { 3053 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3054 Depth + 1, FoundRoot); 3055 if (!Res) 3056 return Result; 3057 3058 unsigned ByteWidth = BitWidth / 8; 3059 Result = BitPart(Res->Provider, BitWidth); 3060 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3061 unsigned ByteBitOfs = ByteIdx * 8; 3062 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3063 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3064 Res->Provenance[ByteBitOfs + BitIdx]; 3065 } 3066 return Result; 3067 } 3068 3069 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3070 // amount (modulo). 3071 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3072 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3073 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3074 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3075 // We can treat fshr as a fshl by flipping the modulo amount. 3076 unsigned ModAmt = C->urem(BitWidth); 3077 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3078 ModAmt = BitWidth - ModAmt; 3079 3080 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3081 if (!MatchBitReversals && (ModAmt % 8) != 0) 3082 return Result; 3083 3084 // Check we have both sources and they are from the same provider. 3085 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3086 Depth + 1, FoundRoot); 3087 if (!LHS || !LHS->Provider) 3088 return Result; 3089 3090 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3091 Depth + 1, FoundRoot); 3092 if (!RHS || LHS->Provider != RHS->Provider) 3093 return Result; 3094 3095 unsigned StartBitRHS = BitWidth - ModAmt; 3096 Result = BitPart(LHS->Provider, BitWidth); 3097 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3098 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3099 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3100 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3101 return Result; 3102 } 3103 } 3104 3105 // If we've already found a root input value then we're never going to merge 3106 // these back together. 3107 if (FoundRoot) 3108 return Result; 3109 3110 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3111 // be the root input value to the bswap/bitreverse. 3112 FoundRoot = true; 3113 Result = BitPart(V, BitWidth); 3114 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3115 Result->Provenance[BitIdx] = BitIdx; 3116 return Result; 3117 } 3118 3119 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3120 unsigned BitWidth) { 3121 if (From % 8 != To % 8) 3122 return false; 3123 // Convert from bit indices to byte indices and check for a byte reversal. 3124 From >>= 3; 3125 To >>= 3; 3126 BitWidth >>= 3; 3127 return From == BitWidth - To - 1; 3128 } 3129 3130 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3131 unsigned BitWidth) { 3132 return From == BitWidth - To - 1; 3133 } 3134 3135 bool llvm::recognizeBSwapOrBitReverseIdiom( 3136 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3137 SmallVectorImpl<Instruction *> &InsertedInsts) { 3138 if (!match(I, m_Or(m_Value(), m_Value())) && 3139 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3140 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3141 return false; 3142 if (!MatchBSwaps && !MatchBitReversals) 3143 return false; 3144 Type *ITy = I->getType(); 3145 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3146 return false; // Can't do integer/elements > 128 bits. 3147 3148 Type *DemandedTy = ITy; 3149 if (I->hasOneUse()) 3150 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3151 DemandedTy = Trunc->getType(); 3152 3153 // Try to find all the pieces corresponding to the bswap. 3154 bool FoundRoot = false; 3155 std::map<Value *, Optional<BitPart>> BPS; 3156 const auto &Res = 3157 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3158 if (!Res) 3159 return false; 3160 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3161 assert(all_of(BitProvenance, 3162 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3163 "Illegal bit provenance index"); 3164 3165 // If the upper bits are zero, then attempt to perform as a truncated op. 3166 if (BitProvenance.back() == BitPart::Unset) { 3167 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3168 BitProvenance = BitProvenance.drop_back(); 3169 if (BitProvenance.empty()) 3170 return false; // TODO - handle null value? 3171 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3172 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3173 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3174 } 3175 3176 // Check BitProvenance hasn't found a source larger than the result type. 3177 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3178 if (DemandedBW > ITy->getScalarSizeInBits()) 3179 return false; 3180 3181 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3182 // only byteswap values with an even number of bytes. 3183 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3184 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3185 bool OKForBitReverse = MatchBitReversals; 3186 for (unsigned BitIdx = 0; 3187 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3188 if (BitProvenance[BitIdx] == BitPart::Unset) { 3189 DemandedMask.clearBit(BitIdx); 3190 continue; 3191 } 3192 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3193 DemandedBW); 3194 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3195 BitIdx, DemandedBW); 3196 } 3197 3198 Intrinsic::ID Intrin; 3199 if (OKForBSwap) 3200 Intrin = Intrinsic::bswap; 3201 else if (OKForBitReverse) 3202 Intrin = Intrinsic::bitreverse; 3203 else 3204 return false; 3205 3206 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3207 Value *Provider = Res->Provider; 3208 3209 // We may need to truncate the provider. 3210 if (DemandedTy != Provider->getType()) { 3211 auto *Trunc = 3212 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3213 InsertedInsts.push_back(Trunc); 3214 Provider = Trunc; 3215 } 3216 3217 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3218 InsertedInsts.push_back(Result); 3219 3220 if (!DemandedMask.isAllOnesValue()) { 3221 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3222 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3223 InsertedInsts.push_back(Result); 3224 } 3225 3226 // We may need to zeroextend back to the result type. 3227 if (ITy != Result->getType()) { 3228 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3229 InsertedInsts.push_back(ExtInst); 3230 } 3231 3232 return true; 3233 } 3234 3235 // CodeGen has special handling for some string functions that may replace 3236 // them with target-specific intrinsics. Since that'd skip our interceptors 3237 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3238 // we mark affected calls as NoBuiltin, which will disable optimization 3239 // in CodeGen. 3240 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3241 CallInst *CI, const TargetLibraryInfo *TLI) { 3242 Function *F = CI->getCalledFunction(); 3243 LibFunc Func; 3244 if (F && !F->hasLocalLinkage() && F->hasName() && 3245 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3246 !F->doesNotAccessMemory()) 3247 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3248 } 3249 3250 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3251 // We can't have a PHI with a metadata type. 3252 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3253 return false; 3254 3255 // Early exit. 3256 if (!isa<Constant>(I->getOperand(OpIdx))) 3257 return true; 3258 3259 switch (I->getOpcode()) { 3260 default: 3261 return true; 3262 case Instruction::Call: 3263 case Instruction::Invoke: { 3264 const auto &CB = cast<CallBase>(*I); 3265 3266 // Can't handle inline asm. Skip it. 3267 if (CB.isInlineAsm()) 3268 return false; 3269 3270 // Constant bundle operands may need to retain their constant-ness for 3271 // correctness. 3272 if (CB.isBundleOperand(OpIdx)) 3273 return false; 3274 3275 if (OpIdx < CB.getNumArgOperands()) { 3276 // Some variadic intrinsics require constants in the variadic arguments, 3277 // which currently aren't markable as immarg. 3278 if (isa<IntrinsicInst>(CB) && 3279 OpIdx >= CB.getFunctionType()->getNumParams()) { 3280 // This is known to be OK for stackmap. 3281 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3282 } 3283 3284 // gcroot is a special case, since it requires a constant argument which 3285 // isn't also required to be a simple ConstantInt. 3286 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3287 return false; 3288 3289 // Some intrinsic operands are required to be immediates. 3290 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3291 } 3292 3293 // It is never allowed to replace the call argument to an intrinsic, but it 3294 // may be possible for a call. 3295 return !isa<IntrinsicInst>(CB); 3296 } 3297 case Instruction::ShuffleVector: 3298 // Shufflevector masks are constant. 3299 return OpIdx != 2; 3300 case Instruction::Switch: 3301 case Instruction::ExtractValue: 3302 // All operands apart from the first are constant. 3303 return OpIdx == 0; 3304 case Instruction::InsertValue: 3305 // All operands apart from the first and the second are constant. 3306 return OpIdx < 2; 3307 case Instruction::Alloca: 3308 // Static allocas (constant size in the entry block) are handled by 3309 // prologue/epilogue insertion so they're free anyway. We definitely don't 3310 // want to make them non-constant. 3311 return !cast<AllocaInst>(I)->isStaticAlloca(); 3312 case Instruction::GetElementPtr: 3313 if (OpIdx == 0) 3314 return true; 3315 gep_type_iterator It = gep_type_begin(I); 3316 for (auto E = std::next(It, OpIdx); It != E; ++It) 3317 if (It.isStruct()) 3318 return false; 3319 return true; 3320 } 3321 } 3322 3323 Value *llvm::invertCondition(Value *Condition) { 3324 // First: Check if it's a constant 3325 if (Constant *C = dyn_cast<Constant>(Condition)) 3326 return ConstantExpr::getNot(C); 3327 3328 // Second: If the condition is already inverted, return the original value 3329 Value *NotCondition; 3330 if (match(Condition, m_Not(m_Value(NotCondition)))) 3331 return NotCondition; 3332 3333 BasicBlock *Parent = nullptr; 3334 Instruction *Inst = dyn_cast<Instruction>(Condition); 3335 if (Inst) 3336 Parent = Inst->getParent(); 3337 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3338 Parent = &Arg->getParent()->getEntryBlock(); 3339 assert(Parent && "Unsupported condition to invert"); 3340 3341 // Third: Check all the users for an invert 3342 for (User *U : Condition->users()) 3343 if (Instruction *I = dyn_cast<Instruction>(U)) 3344 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3345 return I; 3346 3347 // Last option: Create a new instruction 3348 auto *Inverted = 3349 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3350 if (Inst && !isa<PHINode>(Inst)) 3351 Inverted->insertAfter(Inst); 3352 else 3353 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3354 return Inverted; 3355 } 3356 3357 bool llvm::inferAttributesFromOthers(Function &F) { 3358 // Note: We explicitly check for attributes rather than using cover functions 3359 // because some of the cover functions include the logic being implemented. 3360 3361 bool Changed = false; 3362 // readnone + not convergent implies nosync 3363 if (!F.hasFnAttribute(Attribute::NoSync) && 3364 F.doesNotAccessMemory() && !F.isConvergent()) { 3365 F.setNoSync(); 3366 Changed = true; 3367 } 3368 3369 // readonly implies nofree 3370 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3371 F.setDoesNotFreeMemory(); 3372 Changed = true; 3373 } 3374 3375 // willreturn implies mustprogress 3376 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3377 F.setMustProgress(); 3378 Changed = true; 3379 } 3380 3381 // TODO: There are a bunch of cases of restrictive memory effects we 3382 // can infer by inspecting arguments of argmemonly-ish functions. 3383 3384 return Changed; 3385 } 3386