1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/PseudoProbe.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms.
115 static const unsigned BitPartRecursionMaxDepth = 48;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       BranchInst *NewBI = Builder.CreateBr(Dest1);
152 
153       // Transfer the metadata to the new branch instruction.
154       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
155                                 LLVMContext::MD_annotation});
156 
157       Value *Cond = BI->getCondition();
158       BI->eraseFromParent();
159       if (DeleteDeadConditions)
160         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
161       return true;
162     }
163 
164     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
165       // Are we branching on constant?
166       // YES.  Change to unconditional branch...
167       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
168       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
169 
170       // Let the basic block know that we are letting go of it.  Based on this,
171       // it will adjust it's PHI nodes.
172       OldDest->removePredecessor(BB);
173 
174       // Replace the conditional branch with an unconditional one.
175       BranchInst *NewBI = Builder.CreateBr(Destination);
176 
177       // Transfer the metadata to the new branch instruction.
178       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
179                                 LLVMContext::MD_annotation});
180 
181       BI->eraseFromParent();
182       if (DTU)
183         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
184       return true;
185     }
186 
187     return false;
188   }
189 
190   if (auto *SI = dyn_cast<SwitchInst>(T)) {
191     // If we are switching on a constant, we can convert the switch to an
192     // unconditional branch.
193     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
194     BasicBlock *DefaultDest = SI->getDefaultDest();
195     BasicBlock *TheOnlyDest = DefaultDest;
196 
197     // If the default is unreachable, ignore it when searching for TheOnlyDest.
198     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
199         SI->getNumCases() > 0) {
200       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
201     }
202 
203     bool Changed = false;
204 
205     // Figure out which case it goes to.
206     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
207       // Found case matching a constant operand?
208       if (i->getCaseValue() == CI) {
209         TheOnlyDest = i->getCaseSuccessor();
210         break;
211       }
212 
213       // Check to see if this branch is going to the same place as the default
214       // dest.  If so, eliminate it as an explicit compare.
215       if (i->getCaseSuccessor() == DefaultDest) {
216         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
217         unsigned NCases = SI->getNumCases();
218         // Fold the case metadata into the default if there will be any branches
219         // left, unless the metadata doesn't match the switch.
220         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
221           // Collect branch weights into a vector.
222           SmallVector<uint32_t, 8> Weights;
223           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
224                ++MD_i) {
225             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
226             Weights.push_back(CI->getValue().getZExtValue());
227           }
228           // Merge weight of this case to the default weight.
229           unsigned idx = i->getCaseIndex();
230           Weights[0] += Weights[idx+1];
231           // Remove weight for this case.
232           std::swap(Weights[idx+1], Weights.back());
233           Weights.pop_back();
234           SI->setMetadata(LLVMContext::MD_prof,
235                           MDBuilder(BB->getContext()).
236                           createBranchWeights(Weights));
237         }
238         // Remove this entry.
239         BasicBlock *ParentBB = SI->getParent();
240         DefaultDest->removePredecessor(ParentBB);
241         i = SI->removeCase(i);
242         e = SI->case_end();
243         Changed = true;
244         continue;
245       }
246 
247       // Otherwise, check to see if the switch only branches to one destination.
248       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
249       // destinations.
250       if (i->getCaseSuccessor() != TheOnlyDest)
251         TheOnlyDest = nullptr;
252 
253       // Increment this iterator as we haven't removed the case.
254       ++i;
255     }
256 
257     if (CI && !TheOnlyDest) {
258       // Branching on a constant, but not any of the cases, go to the default
259       // successor.
260       TheOnlyDest = SI->getDefaultDest();
261     }
262 
263     // If we found a single destination that we can fold the switch into, do so
264     // now.
265     if (TheOnlyDest) {
266       // Insert the new branch.
267       Builder.CreateBr(TheOnlyDest);
268       BasicBlock *BB = SI->getParent();
269 
270       SmallSet<BasicBlock *, 8> RemovedSuccessors;
271 
272       // Remove entries from PHI nodes which we no longer branch to...
273       BasicBlock *SuccToKeep = TheOnlyDest;
274       for (BasicBlock *Succ : successors(SI)) {
275         if (DTU && Succ != TheOnlyDest)
276           RemovedSuccessors.insert(Succ);
277         // Found case matching a constant operand?
278         if (Succ == SuccToKeep) {
279           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
280         } else {
281           Succ->removePredecessor(BB);
282         }
283       }
284 
285       // Delete the old switch.
286       Value *Cond = SI->getCondition();
287       SI->eraseFromParent();
288       if (DeleteDeadConditions)
289         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
290       if (DTU) {
291         std::vector<DominatorTree::UpdateType> Updates;
292         Updates.reserve(RemovedSuccessors.size());
293         for (auto *RemovedSuccessor : RemovedSuccessors)
294           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
295         DTU->applyUpdates(Updates);
296       }
297       return true;
298     }
299 
300     if (SI->getNumCases() == 1) {
301       // Otherwise, we can fold this switch into a conditional branch
302       // instruction if it has only one non-default destination.
303       auto FirstCase = *SI->case_begin();
304       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
305           FirstCase.getCaseValue(), "cond");
306 
307       // Insert the new branch.
308       BranchInst *NewBr = Builder.CreateCondBr(Cond,
309                                                FirstCase.getCaseSuccessor(),
310                                                SI->getDefaultDest());
311       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
312       if (MD && MD->getNumOperands() == 3) {
313         ConstantInt *SICase =
314             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
315         ConstantInt *SIDef =
316             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
317         assert(SICase && SIDef);
318         // The TrueWeight should be the weight for the single case of SI.
319         NewBr->setMetadata(LLVMContext::MD_prof,
320                         MDBuilder(BB->getContext()).
321                         createBranchWeights(SICase->getValue().getZExtValue(),
322                                             SIDef->getValue().getZExtValue()));
323       }
324 
325       // Update make.implicit metadata to the newly-created conditional branch.
326       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
327       if (MakeImplicitMD)
328         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
329 
330       // Delete the old switch.
331       SI->eraseFromParent();
332       return true;
333     }
334     return Changed;
335   }
336 
337   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
338     // indirectbr blockaddress(@F, @BB) -> br label @BB
339     if (auto *BA =
340           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
341       BasicBlock *TheOnlyDest = BA->getBasicBlock();
342       SmallSet<BasicBlock *, 8> RemovedSuccessors;
343 
344       // Insert the new branch.
345       Builder.CreateBr(TheOnlyDest);
346 
347       BasicBlock *SuccToKeep = TheOnlyDest;
348       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
349         BasicBlock *DestBB = IBI->getDestination(i);
350         if (DTU && DestBB != TheOnlyDest)
351           RemovedSuccessors.insert(DestBB);
352         if (IBI->getDestination(i) == SuccToKeep) {
353           SuccToKeep = nullptr;
354         } else {
355           DestBB->removePredecessor(BB);
356         }
357       }
358       Value *Address = IBI->getAddress();
359       IBI->eraseFromParent();
360       if (DeleteDeadConditions)
361         // Delete pointer cast instructions.
362         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
363 
364       // Also zap the blockaddress constant if there are no users remaining,
365       // otherwise the destination is still marked as having its address taken.
366       if (BA->use_empty())
367         BA->destroyConstant();
368 
369       // If we didn't find our destination in the IBI successor list, then we
370       // have undefined behavior.  Replace the unconditional branch with an
371       // 'unreachable' instruction.
372       if (SuccToKeep) {
373         BB->getTerminator()->eraseFromParent();
374         new UnreachableInst(BB->getContext(), BB);
375       }
376 
377       if (DTU) {
378         std::vector<DominatorTree::UpdateType> Updates;
379         Updates.reserve(RemovedSuccessors.size());
380         for (auto *RemovedSuccessor : RemovedSuccessors)
381           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
382         DTU->applyUpdates(Updates);
383       }
384       return true;
385     }
386   }
387 
388   return false;
389 }
390 
391 //===----------------------------------------------------------------------===//
392 //  Local dead code elimination.
393 //
394 
395 /// isInstructionTriviallyDead - Return true if the result produced by the
396 /// instruction is not used, and the instruction has no side effects.
397 ///
398 bool llvm::isInstructionTriviallyDead(Instruction *I,
399                                       const TargetLibraryInfo *TLI) {
400   if (!I->use_empty())
401     return false;
402   return wouldInstructionBeTriviallyDead(I, TLI);
403 }
404 
405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
406                                            const TargetLibraryInfo *TLI) {
407   if (I->isTerminator())
408     return false;
409 
410   // We don't want the landingpad-like instructions removed by anything this
411   // general.
412   if (I->isEHPad())
413     return false;
414 
415   // We don't want debug info removed by anything this general, unless
416   // debug info is empty.
417   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
418     if (DDI->getAddress())
419       return false;
420     return true;
421   }
422   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
423     if (DVI->hasArgList() || DVI->getValue(0))
424       return false;
425     return true;
426   }
427   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
428     if (DLI->getLabel())
429       return false;
430     return true;
431   }
432 
433   if (!I->willReturn())
434     return false;
435 
436   if (!I->mayHaveSideEffects())
437     return true;
438 
439   // Special case intrinsics that "may have side effects" but can be deleted
440   // when dead.
441   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
442     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
443     if (II->getIntrinsicID() == Intrinsic::stacksave ||
444         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
445       return true;
446 
447     if (II->isLifetimeStartOrEnd()) {
448       auto *Arg = II->getArgOperand(1);
449       // Lifetime intrinsics are dead when their right-hand is undef.
450       if (isa<UndefValue>(Arg))
451         return true;
452       // If the right-hand is an alloc, global, or argument and the only uses
453       // are lifetime intrinsics then the intrinsics are dead.
454       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
455         return llvm::all_of(Arg->uses(), [](Use &Use) {
456           if (IntrinsicInst *IntrinsicUse =
457                   dyn_cast<IntrinsicInst>(Use.getUser()))
458             return IntrinsicUse->isLifetimeStartOrEnd();
459           return false;
460         });
461       return false;
462     }
463 
464     // Assumptions are dead if their condition is trivially true.  Guards on
465     // true are operationally no-ops.  In the future we can consider more
466     // sophisticated tradeoffs for guards considering potential for check
467     // widening, but for now we keep things simple.
468     if ((II->getIntrinsicID() == Intrinsic::assume &&
469          isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
470         II->getIntrinsicID() == Intrinsic::experimental_guard) {
471       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
472         return !Cond->isZero();
473 
474       return false;
475     }
476 
477     if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
478       Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior();
479       return ExBehavior.getValue() != fp::ebStrict;
480     }
481   }
482 
483   if (isAllocLikeFn(I, TLI))
484     return true;
485 
486   if (CallInst *CI = isFreeCall(I, TLI))
487     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
488       return C->isNullValue() || isa<UndefValue>(C);
489 
490   if (auto *Call = dyn_cast<CallBase>(I))
491     if (isMathLibCallNoop(Call, TLI))
492       return true;
493 
494   // To express possible interaction with floating point environment constrained
495   // intrinsics are described as if they access memory. So they look like having
496   // side effect but actually do not have it unless they raise floating point
497   // exception. If FP exceptions are ignored, the intrinsic may be deleted.
498   if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
499     Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
500     if (!EB || *EB == fp::ExceptionBehavior::ebIgnore)
501       return true;
502   }
503 
504   return false;
505 }
506 
507 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
508 /// trivially dead instruction, delete it.  If that makes any of its operands
509 /// trivially dead, delete them too, recursively.  Return true if any
510 /// instructions were deleted.
511 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
512     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
513     std::function<void(Value *)> AboutToDeleteCallback) {
514   Instruction *I = dyn_cast<Instruction>(V);
515   if (!I || !isInstructionTriviallyDead(I, TLI))
516     return false;
517 
518   SmallVector<WeakTrackingVH, 16> DeadInsts;
519   DeadInsts.push_back(I);
520   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
521                                              AboutToDeleteCallback);
522 
523   return true;
524 }
525 
526 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
527     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
528     MemorySSAUpdater *MSSAU,
529     std::function<void(Value *)> AboutToDeleteCallback) {
530   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
531   for (; S != E; ++S) {
532     auto *I = cast<Instruction>(DeadInsts[S]);
533     if (!isInstructionTriviallyDead(I)) {
534       DeadInsts[S] = nullptr;
535       ++Alive;
536     }
537   }
538   if (Alive == E)
539     return false;
540   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
541                                              AboutToDeleteCallback);
542   return true;
543 }
544 
545 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
546     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
547     MemorySSAUpdater *MSSAU,
548     std::function<void(Value *)> AboutToDeleteCallback) {
549   // Process the dead instruction list until empty.
550   while (!DeadInsts.empty()) {
551     Value *V = DeadInsts.pop_back_val();
552     Instruction *I = cast_or_null<Instruction>(V);
553     if (!I)
554       continue;
555     assert(isInstructionTriviallyDead(I, TLI) &&
556            "Live instruction found in dead worklist!");
557     assert(I->use_empty() && "Instructions with uses are not dead.");
558 
559     // Don't lose the debug info while deleting the instructions.
560     salvageDebugInfo(*I);
561 
562     if (AboutToDeleteCallback)
563       AboutToDeleteCallback(I);
564 
565     // Null out all of the instruction's operands to see if any operand becomes
566     // dead as we go.
567     for (Use &OpU : I->operands()) {
568       Value *OpV = OpU.get();
569       OpU.set(nullptr);
570 
571       if (!OpV->use_empty())
572         continue;
573 
574       // If the operand is an instruction that became dead as we nulled out the
575       // operand, and if it is 'trivially' dead, delete it in a future loop
576       // iteration.
577       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
578         if (isInstructionTriviallyDead(OpI, TLI))
579           DeadInsts.push_back(OpI);
580     }
581     if (MSSAU)
582       MSSAU->removeMemoryAccess(I);
583 
584     I->eraseFromParent();
585   }
586 }
587 
588 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
589   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
590   findDbgUsers(DbgUsers, I);
591   for (auto *DII : DbgUsers) {
592     Value *Undef = UndefValue::get(I->getType());
593     DII->replaceVariableLocationOp(I, Undef);
594   }
595   return !DbgUsers.empty();
596 }
597 
598 /// areAllUsesEqual - Check whether the uses of a value are all the same.
599 /// This is similar to Instruction::hasOneUse() except this will also return
600 /// true when there are no uses or multiple uses that all refer to the same
601 /// value.
602 static bool areAllUsesEqual(Instruction *I) {
603   Value::user_iterator UI = I->user_begin();
604   Value::user_iterator UE = I->user_end();
605   if (UI == UE)
606     return true;
607 
608   User *TheUse = *UI;
609   for (++UI; UI != UE; ++UI) {
610     if (*UI != TheUse)
611       return false;
612   }
613   return true;
614 }
615 
616 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
617 /// dead PHI node, due to being a def-use chain of single-use nodes that
618 /// either forms a cycle or is terminated by a trivially dead instruction,
619 /// delete it.  If that makes any of its operands trivially dead, delete them
620 /// too, recursively.  Return true if a change was made.
621 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
622                                         const TargetLibraryInfo *TLI,
623                                         llvm::MemorySSAUpdater *MSSAU) {
624   SmallPtrSet<Instruction*, 4> Visited;
625   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
626        I = cast<Instruction>(*I->user_begin())) {
627     if (I->use_empty())
628       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
629 
630     // If we find an instruction more than once, we're on a cycle that
631     // won't prove fruitful.
632     if (!Visited.insert(I).second) {
633       // Break the cycle and delete the instruction and its operands.
634       I->replaceAllUsesWith(UndefValue::get(I->getType()));
635       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
636       return true;
637     }
638   }
639   return false;
640 }
641 
642 static bool
643 simplifyAndDCEInstruction(Instruction *I,
644                           SmallSetVector<Instruction *, 16> &WorkList,
645                           const DataLayout &DL,
646                           const TargetLibraryInfo *TLI) {
647   if (isInstructionTriviallyDead(I, TLI)) {
648     salvageDebugInfo(*I);
649 
650     // Null out all of the instruction's operands to see if any operand becomes
651     // dead as we go.
652     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
653       Value *OpV = I->getOperand(i);
654       I->setOperand(i, nullptr);
655 
656       if (!OpV->use_empty() || I == OpV)
657         continue;
658 
659       // If the operand is an instruction that became dead as we nulled out the
660       // operand, and if it is 'trivially' dead, delete it in a future loop
661       // iteration.
662       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
663         if (isInstructionTriviallyDead(OpI, TLI))
664           WorkList.insert(OpI);
665     }
666 
667     I->eraseFromParent();
668 
669     return true;
670   }
671 
672   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
673     // Add the users to the worklist. CAREFUL: an instruction can use itself,
674     // in the case of a phi node.
675     for (User *U : I->users()) {
676       if (U != I) {
677         WorkList.insert(cast<Instruction>(U));
678       }
679     }
680 
681     // Replace the instruction with its simplified value.
682     bool Changed = false;
683     if (!I->use_empty()) {
684       I->replaceAllUsesWith(SimpleV);
685       Changed = true;
686     }
687     if (isInstructionTriviallyDead(I, TLI)) {
688       I->eraseFromParent();
689       Changed = true;
690     }
691     return Changed;
692   }
693   return false;
694 }
695 
696 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
697 /// simplify any instructions in it and recursively delete dead instructions.
698 ///
699 /// This returns true if it changed the code, note that it can delete
700 /// instructions in other blocks as well in this block.
701 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
702                                        const TargetLibraryInfo *TLI) {
703   bool MadeChange = false;
704   const DataLayout &DL = BB->getModule()->getDataLayout();
705 
706 #ifndef NDEBUG
707   // In debug builds, ensure that the terminator of the block is never replaced
708   // or deleted by these simplifications. The idea of simplification is that it
709   // cannot introduce new instructions, and there is no way to replace the
710   // terminator of a block without introducing a new instruction.
711   AssertingVH<Instruction> TerminatorVH(&BB->back());
712 #endif
713 
714   SmallSetVector<Instruction *, 16> WorkList;
715   // Iterate over the original function, only adding insts to the worklist
716   // if they actually need to be revisited. This avoids having to pre-init
717   // the worklist with the entire function's worth of instructions.
718   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
719        BI != E;) {
720     assert(!BI->isTerminator());
721     Instruction *I = &*BI;
722     ++BI;
723 
724     // We're visiting this instruction now, so make sure it's not in the
725     // worklist from an earlier visit.
726     if (!WorkList.count(I))
727       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
728   }
729 
730   while (!WorkList.empty()) {
731     Instruction *I = WorkList.pop_back_val();
732     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
733   }
734   return MadeChange;
735 }
736 
737 //===----------------------------------------------------------------------===//
738 //  Control Flow Graph Restructuring.
739 //
740 
741 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
742                                        DomTreeUpdater *DTU) {
743 
744   // If BB has single-entry PHI nodes, fold them.
745   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
746     Value *NewVal = PN->getIncomingValue(0);
747     // Replace self referencing PHI with undef, it must be dead.
748     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
749     PN->replaceAllUsesWith(NewVal);
750     PN->eraseFromParent();
751   }
752 
753   BasicBlock *PredBB = DestBB->getSinglePredecessor();
754   assert(PredBB && "Block doesn't have a single predecessor!");
755 
756   bool ReplaceEntryBB = PredBB->isEntryBlock();
757 
758   // DTU updates: Collect all the edges that enter
759   // PredBB. These dominator edges will be redirected to DestBB.
760   SmallVector<DominatorTree::UpdateType, 32> Updates;
761 
762   if (DTU) {
763     SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB),
764                                                pred_end(PredBB));
765     Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1);
766     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
767       // This predecessor of PredBB may already have DestBB as a successor.
768       if (PredOfPredBB != PredBB)
769         Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
770     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
771       Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
772     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
773   }
774 
775   // Zap anything that took the address of DestBB.  Not doing this will give the
776   // address an invalid value.
777   if (DestBB->hasAddressTaken()) {
778     BlockAddress *BA = BlockAddress::get(DestBB);
779     Constant *Replacement =
780       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
781     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
782                                                      BA->getType()));
783     BA->destroyConstant();
784   }
785 
786   // Anything that branched to PredBB now branches to DestBB.
787   PredBB->replaceAllUsesWith(DestBB);
788 
789   // Splice all the instructions from PredBB to DestBB.
790   PredBB->getTerminator()->eraseFromParent();
791   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
792   new UnreachableInst(PredBB->getContext(), PredBB);
793 
794   // If the PredBB is the entry block of the function, move DestBB up to
795   // become the entry block after we erase PredBB.
796   if (ReplaceEntryBB)
797     DestBB->moveAfter(PredBB);
798 
799   if (DTU) {
800     assert(PredBB->getInstList().size() == 1 &&
801            isa<UnreachableInst>(PredBB->getTerminator()) &&
802            "The successor list of PredBB isn't empty before "
803            "applying corresponding DTU updates.");
804     DTU->applyUpdatesPermissive(Updates);
805     DTU->deleteBB(PredBB);
806     // Recalculation of DomTree is needed when updating a forward DomTree and
807     // the Entry BB is replaced.
808     if (ReplaceEntryBB && DTU->hasDomTree()) {
809       // The entry block was removed and there is no external interface for
810       // the dominator tree to be notified of this change. In this corner-case
811       // we recalculate the entire tree.
812       DTU->recalculate(*(DestBB->getParent()));
813     }
814   }
815 
816   else {
817     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
818   }
819 }
820 
821 /// Return true if we can choose one of these values to use in place of the
822 /// other. Note that we will always choose the non-undef value to keep.
823 static bool CanMergeValues(Value *First, Value *Second) {
824   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
825 }
826 
827 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
828 /// branch to Succ, into Succ.
829 ///
830 /// Assumption: Succ is the single successor for BB.
831 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
832   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
833 
834   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
835                     << Succ->getName() << "\n");
836   // Shortcut, if there is only a single predecessor it must be BB and merging
837   // is always safe
838   if (Succ->getSinglePredecessor()) return true;
839 
840   // Make a list of the predecessors of BB
841   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
842 
843   // Look at all the phi nodes in Succ, to see if they present a conflict when
844   // merging these blocks
845   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
846     PHINode *PN = cast<PHINode>(I);
847 
848     // If the incoming value from BB is again a PHINode in
849     // BB which has the same incoming value for *PI as PN does, we can
850     // merge the phi nodes and then the blocks can still be merged
851     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
852     if (BBPN && BBPN->getParent() == BB) {
853       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
854         BasicBlock *IBB = PN->getIncomingBlock(PI);
855         if (BBPreds.count(IBB) &&
856             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
857                             PN->getIncomingValue(PI))) {
858           LLVM_DEBUG(dbgs()
859                      << "Can't fold, phi node " << PN->getName() << " in "
860                      << Succ->getName() << " is conflicting with "
861                      << BBPN->getName() << " with regard to common predecessor "
862                      << IBB->getName() << "\n");
863           return false;
864         }
865       }
866     } else {
867       Value* Val = PN->getIncomingValueForBlock(BB);
868       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
869         // See if the incoming value for the common predecessor is equal to the
870         // one for BB, in which case this phi node will not prevent the merging
871         // of the block.
872         BasicBlock *IBB = PN->getIncomingBlock(PI);
873         if (BBPreds.count(IBB) &&
874             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
875           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
876                             << " in " << Succ->getName()
877                             << " is conflicting with regard to common "
878                             << "predecessor " << IBB->getName() << "\n");
879           return false;
880         }
881       }
882     }
883   }
884 
885   return true;
886 }
887 
888 using PredBlockVector = SmallVector<BasicBlock *, 16>;
889 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
890 
891 /// Determines the value to use as the phi node input for a block.
892 ///
893 /// Select between \p OldVal any value that we know flows from \p BB
894 /// to a particular phi on the basis of which one (if either) is not
895 /// undef. Update IncomingValues based on the selected value.
896 ///
897 /// \param OldVal The value we are considering selecting.
898 /// \param BB The block that the value flows in from.
899 /// \param IncomingValues A map from block-to-value for other phi inputs
900 /// that we have examined.
901 ///
902 /// \returns the selected value.
903 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
904                                           IncomingValueMap &IncomingValues) {
905   if (!isa<UndefValue>(OldVal)) {
906     assert((!IncomingValues.count(BB) ||
907             IncomingValues.find(BB)->second == OldVal) &&
908            "Expected OldVal to match incoming value from BB!");
909 
910     IncomingValues.insert(std::make_pair(BB, OldVal));
911     return OldVal;
912   }
913 
914   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
915   if (It != IncomingValues.end()) return It->second;
916 
917   return OldVal;
918 }
919 
920 /// Create a map from block to value for the operands of a
921 /// given phi.
922 ///
923 /// Create a map from block to value for each non-undef value flowing
924 /// into \p PN.
925 ///
926 /// \param PN The phi we are collecting the map for.
927 /// \param IncomingValues [out] The map from block to value for this phi.
928 static void gatherIncomingValuesToPhi(PHINode *PN,
929                                       IncomingValueMap &IncomingValues) {
930   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
931     BasicBlock *BB = PN->getIncomingBlock(i);
932     Value *V = PN->getIncomingValue(i);
933 
934     if (!isa<UndefValue>(V))
935       IncomingValues.insert(std::make_pair(BB, V));
936   }
937 }
938 
939 /// Replace the incoming undef values to a phi with the values
940 /// from a block-to-value map.
941 ///
942 /// \param PN The phi we are replacing the undefs in.
943 /// \param IncomingValues A map from block to value.
944 static void replaceUndefValuesInPhi(PHINode *PN,
945                                     const IncomingValueMap &IncomingValues) {
946   SmallVector<unsigned> TrueUndefOps;
947   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
948     Value *V = PN->getIncomingValue(i);
949 
950     if (!isa<UndefValue>(V)) continue;
951 
952     BasicBlock *BB = PN->getIncomingBlock(i);
953     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
954 
955     // Keep track of undef/poison incoming values. Those must match, so we fix
956     // them up below if needed.
957     // Note: this is conservatively correct, but we could try harder and group
958     // the undef values per incoming basic block.
959     if (It == IncomingValues.end()) {
960       TrueUndefOps.push_back(i);
961       continue;
962     }
963 
964     // There is a defined value for this incoming block, so map this undef
965     // incoming value to the defined value.
966     PN->setIncomingValue(i, It->second);
967   }
968 
969   // If there are both undef and poison values incoming, then convert those
970   // values to undef. It is invalid to have different values for the same
971   // incoming block.
972   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
973     return isa<PoisonValue>(PN->getIncomingValue(i));
974   });
975   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
976     for (unsigned i : TrueUndefOps)
977       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
978   }
979 }
980 
981 /// Replace a value flowing from a block to a phi with
982 /// potentially multiple instances of that value flowing from the
983 /// block's predecessors to the phi.
984 ///
985 /// \param BB The block with the value flowing into the phi.
986 /// \param BBPreds The predecessors of BB.
987 /// \param PN The phi that we are updating.
988 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
989                                                 const PredBlockVector &BBPreds,
990                                                 PHINode *PN) {
991   Value *OldVal = PN->removeIncomingValue(BB, false);
992   assert(OldVal && "No entry in PHI for Pred BB!");
993 
994   IncomingValueMap IncomingValues;
995 
996   // We are merging two blocks - BB, and the block containing PN - and
997   // as a result we need to redirect edges from the predecessors of BB
998   // to go to the block containing PN, and update PN
999   // accordingly. Since we allow merging blocks in the case where the
1000   // predecessor and successor blocks both share some predecessors,
1001   // and where some of those common predecessors might have undef
1002   // values flowing into PN, we want to rewrite those values to be
1003   // consistent with the non-undef values.
1004 
1005   gatherIncomingValuesToPhi(PN, IncomingValues);
1006 
1007   // If this incoming value is one of the PHI nodes in BB, the new entries
1008   // in the PHI node are the entries from the old PHI.
1009   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1010     PHINode *OldValPN = cast<PHINode>(OldVal);
1011     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1012       // Note that, since we are merging phi nodes and BB and Succ might
1013       // have common predecessors, we could end up with a phi node with
1014       // identical incoming branches. This will be cleaned up later (and
1015       // will trigger asserts if we try to clean it up now, without also
1016       // simplifying the corresponding conditional branch).
1017       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1018       Value *PredVal = OldValPN->getIncomingValue(i);
1019       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1020                                                     IncomingValues);
1021 
1022       // And add a new incoming value for this predecessor for the
1023       // newly retargeted branch.
1024       PN->addIncoming(Selected, PredBB);
1025     }
1026   } else {
1027     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1028       // Update existing incoming values in PN for this
1029       // predecessor of BB.
1030       BasicBlock *PredBB = BBPreds[i];
1031       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1032                                                     IncomingValues);
1033 
1034       // And add a new incoming value for this predecessor for the
1035       // newly retargeted branch.
1036       PN->addIncoming(Selected, PredBB);
1037     }
1038   }
1039 
1040   replaceUndefValuesInPhi(PN, IncomingValues);
1041 }
1042 
1043 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1044                                                    DomTreeUpdater *DTU) {
1045   assert(BB != &BB->getParent()->getEntryBlock() &&
1046          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1047 
1048   // We can't eliminate infinite loops.
1049   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1050   if (BB == Succ) return false;
1051 
1052   // Check to see if merging these blocks would cause conflicts for any of the
1053   // phi nodes in BB or Succ. If not, we can safely merge.
1054   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1055 
1056   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1057   // has uses which will not disappear when the PHI nodes are merged.  It is
1058   // possible to handle such cases, but difficult: it requires checking whether
1059   // BB dominates Succ, which is non-trivial to calculate in the case where
1060   // Succ has multiple predecessors.  Also, it requires checking whether
1061   // constructing the necessary self-referential PHI node doesn't introduce any
1062   // conflicts; this isn't too difficult, but the previous code for doing this
1063   // was incorrect.
1064   //
1065   // Note that if this check finds a live use, BB dominates Succ, so BB is
1066   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1067   // folding the branch isn't profitable in that case anyway.
1068   if (!Succ->getSinglePredecessor()) {
1069     BasicBlock::iterator BBI = BB->begin();
1070     while (isa<PHINode>(*BBI)) {
1071       for (Use &U : BBI->uses()) {
1072         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1073           if (PN->getIncomingBlock(U) != BB)
1074             return false;
1075         } else {
1076           return false;
1077         }
1078       }
1079       ++BBI;
1080     }
1081   }
1082 
1083   // We cannot fold the block if it's a branch to an already present callbr
1084   // successor because that creates duplicate successors.
1085   for (BasicBlock *PredBB : predecessors(BB)) {
1086     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1087       if (Succ == CBI->getDefaultDest())
1088         return false;
1089       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1090         if (Succ == CBI->getIndirectDest(i))
1091           return false;
1092     }
1093   }
1094 
1095   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1096 
1097   SmallVector<DominatorTree::UpdateType, 32> Updates;
1098   if (DTU) {
1099     // All predecessors of BB will be moved to Succ.
1100     SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB));
1101     SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1102     Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1);
1103     for (auto *PredOfBB : PredsOfBB)
1104       // This predecessor of BB may already have Succ as a successor.
1105       if (!PredsOfSucc.contains(PredOfBB))
1106         Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1107     for (auto *PredOfBB : PredsOfBB)
1108       Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1109     Updates.push_back({DominatorTree::Delete, BB, Succ});
1110   }
1111 
1112   if (isa<PHINode>(Succ->begin())) {
1113     // If there is more than one pred of succ, and there are PHI nodes in
1114     // the successor, then we need to add incoming edges for the PHI nodes
1115     //
1116     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1117 
1118     // Loop over all of the PHI nodes in the successor of BB.
1119     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1120       PHINode *PN = cast<PHINode>(I);
1121 
1122       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1123     }
1124   }
1125 
1126   if (Succ->getSinglePredecessor()) {
1127     // BB is the only predecessor of Succ, so Succ will end up with exactly
1128     // the same predecessors BB had.
1129 
1130     // Copy over any phi, debug or lifetime instruction.
1131     BB->getTerminator()->eraseFromParent();
1132     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1133                                BB->getInstList());
1134   } else {
1135     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1136       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1137       assert(PN->use_empty() && "There shouldn't be any uses here!");
1138       PN->eraseFromParent();
1139     }
1140   }
1141 
1142   // If the unconditional branch we replaced contains llvm.loop metadata, we
1143   // add the metadata to the branch instructions in the predecessors.
1144   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1145   Instruction *TI = BB->getTerminator();
1146   if (TI)
1147     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1148       for (BasicBlock *Pred : predecessors(BB))
1149         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1150 
1151   // Everything that jumped to BB now goes to Succ.
1152   BB->replaceAllUsesWith(Succ);
1153   if (!Succ->hasName()) Succ->takeName(BB);
1154 
1155   // Clear the successor list of BB to match updates applying to DTU later.
1156   if (BB->getTerminator())
1157     BB->getInstList().pop_back();
1158   new UnreachableInst(BB->getContext(), BB);
1159   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1160                            "applying corresponding DTU updates.");
1161 
1162   if (DTU)
1163     DTU->applyUpdates(Updates);
1164 
1165   DeleteDeadBlock(BB, DTU);
1166 
1167   return true;
1168 }
1169 
1170 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1171   // This implementation doesn't currently consider undef operands
1172   // specially. Theoretically, two phis which are identical except for
1173   // one having an undef where the other doesn't could be collapsed.
1174 
1175   bool Changed = false;
1176 
1177   // Examine each PHI.
1178   // Note that increment of I must *NOT* be in the iteration_expression, since
1179   // we don't want to immediately advance when we restart from the beginning.
1180   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1181     ++I;
1182     // Is there an identical PHI node in this basic block?
1183     // Note that we only look in the upper square's triangle,
1184     // we already checked that the lower triangle PHI's aren't identical.
1185     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1186       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1187         continue;
1188       // A duplicate. Replace this PHI with the base PHI.
1189       ++NumPHICSEs;
1190       DuplicatePN->replaceAllUsesWith(PN);
1191       DuplicatePN->eraseFromParent();
1192       Changed = true;
1193 
1194       // The RAUW can change PHIs that we already visited.
1195       I = BB->begin();
1196       break; // Start over from the beginning.
1197     }
1198   }
1199   return Changed;
1200 }
1201 
1202 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1203   // This implementation doesn't currently consider undef operands
1204   // specially. Theoretically, two phis which are identical except for
1205   // one having an undef where the other doesn't could be collapsed.
1206 
1207   struct PHIDenseMapInfo {
1208     static PHINode *getEmptyKey() {
1209       return DenseMapInfo<PHINode *>::getEmptyKey();
1210     }
1211 
1212     static PHINode *getTombstoneKey() {
1213       return DenseMapInfo<PHINode *>::getTombstoneKey();
1214     }
1215 
1216     static bool isSentinel(PHINode *PN) {
1217       return PN == getEmptyKey() || PN == getTombstoneKey();
1218     }
1219 
1220     // WARNING: this logic must be kept in sync with
1221     //          Instruction::isIdenticalToWhenDefined()!
1222     static unsigned getHashValueImpl(PHINode *PN) {
1223       // Compute a hash value on the operands. Instcombine will likely have
1224       // sorted them, which helps expose duplicates, but we have to check all
1225       // the operands to be safe in case instcombine hasn't run.
1226       return static_cast<unsigned>(hash_combine(
1227           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1228           hash_combine_range(PN->block_begin(), PN->block_end())));
1229     }
1230 
1231     static unsigned getHashValue(PHINode *PN) {
1232 #ifndef NDEBUG
1233       // If -phicse-debug-hash was specified, return a constant -- this
1234       // will force all hashing to collide, so we'll exhaustively search
1235       // the table for a match, and the assertion in isEqual will fire if
1236       // there's a bug causing equal keys to hash differently.
1237       if (PHICSEDebugHash)
1238         return 0;
1239 #endif
1240       return getHashValueImpl(PN);
1241     }
1242 
1243     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1244       if (isSentinel(LHS) || isSentinel(RHS))
1245         return LHS == RHS;
1246       return LHS->isIdenticalTo(RHS);
1247     }
1248 
1249     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1250       // These comparisons are nontrivial, so assert that equality implies
1251       // hash equality (DenseMap demands this as an invariant).
1252       bool Result = isEqualImpl(LHS, RHS);
1253       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1254              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1255       return Result;
1256     }
1257   };
1258 
1259   // Set of unique PHINodes.
1260   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1261   PHISet.reserve(4 * PHICSENumPHISmallSize);
1262 
1263   // Examine each PHI.
1264   bool Changed = false;
1265   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1266     auto Inserted = PHISet.insert(PN);
1267     if (!Inserted.second) {
1268       // A duplicate. Replace this PHI with its duplicate.
1269       ++NumPHICSEs;
1270       PN->replaceAllUsesWith(*Inserted.first);
1271       PN->eraseFromParent();
1272       Changed = true;
1273 
1274       // The RAUW can change PHIs that we already visited. Start over from the
1275       // beginning.
1276       PHISet.clear();
1277       I = BB->begin();
1278     }
1279   }
1280 
1281   return Changed;
1282 }
1283 
1284 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1285   if (
1286 #ifndef NDEBUG
1287       !PHICSEDebugHash &&
1288 #endif
1289       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1290     return EliminateDuplicatePHINodesNaiveImpl(BB);
1291   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1292 }
1293 
1294 /// If the specified pointer points to an object that we control, try to modify
1295 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1296 /// the value after the operation, which may be lower than PrefAlign.
1297 ///
1298 /// Increating value alignment isn't often possible though. If alignment is
1299 /// important, a more reliable approach is to simply align all global variables
1300 /// and allocation instructions to their preferred alignment from the beginning.
1301 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1302                                  const DataLayout &DL) {
1303   V = V->stripPointerCasts();
1304 
1305   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1306     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1307     // than the current alignment, as the known bits calculation should have
1308     // already taken it into account. However, this is not always the case,
1309     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1310     // doesn't.
1311     Align CurrentAlign = AI->getAlign();
1312     if (PrefAlign <= CurrentAlign)
1313       return CurrentAlign;
1314 
1315     // If the preferred alignment is greater than the natural stack alignment
1316     // then don't round up. This avoids dynamic stack realignment.
1317     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1318       return CurrentAlign;
1319     AI->setAlignment(PrefAlign);
1320     return PrefAlign;
1321   }
1322 
1323   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1324     // TODO: as above, this shouldn't be necessary.
1325     Align CurrentAlign = GO->getPointerAlignment(DL);
1326     if (PrefAlign <= CurrentAlign)
1327       return CurrentAlign;
1328 
1329     // If there is a large requested alignment and we can, bump up the alignment
1330     // of the global.  If the memory we set aside for the global may not be the
1331     // memory used by the final program then it is impossible for us to reliably
1332     // enforce the preferred alignment.
1333     if (!GO->canIncreaseAlignment())
1334       return CurrentAlign;
1335 
1336     GO->setAlignment(PrefAlign);
1337     return PrefAlign;
1338   }
1339 
1340   return Align(1);
1341 }
1342 
1343 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1344                                        const DataLayout &DL,
1345                                        const Instruction *CxtI,
1346                                        AssumptionCache *AC,
1347                                        const DominatorTree *DT) {
1348   assert(V->getType()->isPointerTy() &&
1349          "getOrEnforceKnownAlignment expects a pointer!");
1350 
1351   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1352   unsigned TrailZ = Known.countMinTrailingZeros();
1353 
1354   // Avoid trouble with ridiculously large TrailZ values, such as
1355   // those computed from a null pointer.
1356   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1357   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1358 
1359   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1360 
1361   if (PrefAlign && *PrefAlign > Alignment)
1362     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1363 
1364   // We don't need to make any adjustment.
1365   return Alignment;
1366 }
1367 
1368 ///===---------------------------------------------------------------------===//
1369 ///  Dbg Intrinsic utilities
1370 ///
1371 
1372 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1373 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1374                              DIExpression *DIExpr,
1375                              PHINode *APN) {
1376   // Since we can't guarantee that the original dbg.declare instrinsic
1377   // is removed by LowerDbgDeclare(), we need to make sure that we are
1378   // not inserting the same dbg.value intrinsic over and over.
1379   SmallVector<DbgValueInst *, 1> DbgValues;
1380   findDbgValues(DbgValues, APN);
1381   for (auto *DVI : DbgValues) {
1382     assert(is_contained(DVI->getValues(), APN));
1383     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1384       return true;
1385   }
1386   return false;
1387 }
1388 
1389 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1390 /// (or fragment of the variable) described by \p DII.
1391 ///
1392 /// This is primarily intended as a helper for the different
1393 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1394 /// converted describes an alloca'd variable, so we need to use the
1395 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1396 /// identified as covering an n-bit fragment, if the store size of i1 is at
1397 /// least n bits.
1398 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1399   const DataLayout &DL = DII->getModule()->getDataLayout();
1400   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1401   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1402     assert(!ValueSize.isScalable() &&
1403            "Fragments don't work on scalable types.");
1404     return ValueSize.getFixedSize() >= *FragmentSize;
1405   }
1406   // We can't always calculate the size of the DI variable (e.g. if it is a
1407   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1408   // intead.
1409   if (DII->isAddressOfVariable()) {
1410     // DII should have exactly 1 location when it is an address.
1411     assert(DII->getNumVariableLocationOps() == 1 &&
1412            "address of variable must have exactly 1 location operand.");
1413     if (auto *AI =
1414             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1415       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1416         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1417                "Both sizes should agree on the scalable flag.");
1418         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1419       }
1420     }
1421   }
1422   // Could not determine size of variable. Conservatively return false.
1423   return false;
1424 }
1425 
1426 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1427 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1428 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1429 /// case this DebugLoc leaks into any adjacent instructions.
1430 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1431   // Original dbg.declare must have a location.
1432   const DebugLoc &DeclareLoc = DII->getDebugLoc();
1433   MDNode *Scope = DeclareLoc.getScope();
1434   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1435   // Produce an unknown location with the correct scope / inlinedAt fields.
1436   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1437 }
1438 
1439 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1440 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1441 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1442                                            StoreInst *SI, DIBuilder &Builder) {
1443   assert(DII->isAddressOfVariable());
1444   auto *DIVar = DII->getVariable();
1445   assert(DIVar && "Missing variable");
1446   auto *DIExpr = DII->getExpression();
1447   Value *DV = SI->getValueOperand();
1448 
1449   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1450 
1451   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1452     // FIXME: If storing to a part of the variable described by the dbg.declare,
1453     // then we want to insert a dbg.value for the corresponding fragment.
1454     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1455                       << *DII << '\n');
1456     // For now, when there is a store to parts of the variable (but we do not
1457     // know which part) we insert an dbg.value instrinsic to indicate that we
1458     // know nothing about the variable's content.
1459     DV = UndefValue::get(DV->getType());
1460     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1461     return;
1462   }
1463 
1464   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1465 }
1466 
1467 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1468 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1469 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1470                                            LoadInst *LI, DIBuilder &Builder) {
1471   auto *DIVar = DII->getVariable();
1472   auto *DIExpr = DII->getExpression();
1473   assert(DIVar && "Missing variable");
1474 
1475   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1476     // FIXME: If only referring to a part of the variable described by the
1477     // dbg.declare, then we want to insert a dbg.value for the corresponding
1478     // fragment.
1479     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1480                       << *DII << '\n');
1481     return;
1482   }
1483 
1484   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1485 
1486   // We are now tracking the loaded value instead of the address. In the
1487   // future if multi-location support is added to the IR, it might be
1488   // preferable to keep tracking both the loaded value and the original
1489   // address in case the alloca can not be elided.
1490   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1491       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1492   DbgValue->insertAfter(LI);
1493 }
1494 
1495 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1496 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1497 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1498                                            PHINode *APN, DIBuilder &Builder) {
1499   auto *DIVar = DII->getVariable();
1500   auto *DIExpr = DII->getExpression();
1501   assert(DIVar && "Missing variable");
1502 
1503   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1504     return;
1505 
1506   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1507     // FIXME: If only referring to a part of the variable described by the
1508     // dbg.declare, then we want to insert a dbg.value for the corresponding
1509     // fragment.
1510     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1511                       << *DII << '\n');
1512     return;
1513   }
1514 
1515   BasicBlock *BB = APN->getParent();
1516   auto InsertionPt = BB->getFirstInsertionPt();
1517 
1518   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1519 
1520   // The block may be a catchswitch block, which does not have a valid
1521   // insertion point.
1522   // FIXME: Insert dbg.value markers in the successors when appropriate.
1523   if (InsertionPt != BB->end())
1524     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1525 }
1526 
1527 /// Determine whether this alloca is either a VLA or an array.
1528 static bool isArray(AllocaInst *AI) {
1529   return AI->isArrayAllocation() ||
1530          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1531 }
1532 
1533 /// Determine whether this alloca is a structure.
1534 static bool isStructure(AllocaInst *AI) {
1535   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1536 }
1537 
1538 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1539 /// of llvm.dbg.value intrinsics.
1540 bool llvm::LowerDbgDeclare(Function &F) {
1541   bool Changed = false;
1542   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1543   SmallVector<DbgDeclareInst *, 4> Dbgs;
1544   for (auto &FI : F)
1545     for (Instruction &BI : FI)
1546       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1547         Dbgs.push_back(DDI);
1548 
1549   if (Dbgs.empty())
1550     return Changed;
1551 
1552   for (auto &I : Dbgs) {
1553     DbgDeclareInst *DDI = I;
1554     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1555     // If this is an alloca for a scalar variable, insert a dbg.value
1556     // at each load and store to the alloca and erase the dbg.declare.
1557     // The dbg.values allow tracking a variable even if it is not
1558     // stored on the stack, while the dbg.declare can only describe
1559     // the stack slot (and at a lexical-scope granularity). Later
1560     // passes will attempt to elide the stack slot.
1561     if (!AI || isArray(AI) || isStructure(AI))
1562       continue;
1563 
1564     // A volatile load/store means that the alloca can't be elided anyway.
1565     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1566           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1567             return LI->isVolatile();
1568           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1569             return SI->isVolatile();
1570           return false;
1571         }))
1572       continue;
1573 
1574     SmallVector<const Value *, 8> WorkList;
1575     WorkList.push_back(AI);
1576     while (!WorkList.empty()) {
1577       const Value *V = WorkList.pop_back_val();
1578       for (auto &AIUse : V->uses()) {
1579         User *U = AIUse.getUser();
1580         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1581           if (AIUse.getOperandNo() == 1)
1582             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1583         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1584           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1585         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1586           // This is a call by-value or some other instruction that takes a
1587           // pointer to the variable. Insert a *value* intrinsic that describes
1588           // the variable by dereferencing the alloca.
1589           if (!CI->isLifetimeStartOrEnd()) {
1590             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1591             auto *DerefExpr =
1592                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1593             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1594                                         NewLoc, CI);
1595           }
1596         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1597           if (BI->getType()->isPointerTy())
1598             WorkList.push_back(BI);
1599         }
1600       }
1601     }
1602     DDI->eraseFromParent();
1603     Changed = true;
1604   }
1605 
1606   if (Changed)
1607   for (BasicBlock &BB : F)
1608     RemoveRedundantDbgInstrs(&BB);
1609 
1610   return Changed;
1611 }
1612 
1613 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1614 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1615                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1616   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1617   if (InsertedPHIs.size() == 0)
1618     return;
1619 
1620   // Map existing PHI nodes to their dbg.values.
1621   ValueToValueMapTy DbgValueMap;
1622   for (auto &I : *BB) {
1623     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1624       for (Value *V : DbgII->location_ops())
1625         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1626           DbgValueMap.insert({Loc, DbgII});
1627     }
1628   }
1629   if (DbgValueMap.size() == 0)
1630     return;
1631 
1632   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1633   // so that if a dbg.value is being rewritten to use more than one of the
1634   // inserted PHIs in the same destination BB, we can update the same dbg.value
1635   // with all the new PHIs instead of creating one copy for each.
1636   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1637             DbgVariableIntrinsic *>
1638       NewDbgValueMap;
1639   // Then iterate through the new PHIs and look to see if they use one of the
1640   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1641   // propagate the info through the new PHI. If we use more than one new PHI in
1642   // a single destination BB with the same old dbg.value, merge the updates so
1643   // that we get a single new dbg.value with all the new PHIs.
1644   for (auto PHI : InsertedPHIs) {
1645     BasicBlock *Parent = PHI->getParent();
1646     // Avoid inserting an intrinsic into an EH block.
1647     if (Parent->getFirstNonPHI()->isEHPad())
1648       continue;
1649     for (auto VI : PHI->operand_values()) {
1650       auto V = DbgValueMap.find(VI);
1651       if (V != DbgValueMap.end()) {
1652         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1653         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1654         if (NewDI == NewDbgValueMap.end()) {
1655           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1656           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1657         }
1658         DbgVariableIntrinsic *NewDbgII = NewDI->second;
1659         // If PHI contains VI as an operand more than once, we may
1660         // replaced it in NewDbgII; confirm that it is present.
1661         if (is_contained(NewDbgII->location_ops(), VI))
1662           NewDbgII->replaceVariableLocationOp(VI, PHI);
1663       }
1664     }
1665   }
1666   // Insert thew new dbg.values into their destination blocks.
1667   for (auto DI : NewDbgValueMap) {
1668     BasicBlock *Parent = DI.first.first;
1669     auto *NewDbgII = DI.second;
1670     auto InsertionPt = Parent->getFirstInsertionPt();
1671     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1672     NewDbgII->insertBefore(&*InsertionPt);
1673   }
1674 }
1675 
1676 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1677                              DIBuilder &Builder, uint8_t DIExprFlags,
1678                              int Offset) {
1679   auto DbgAddrs = FindDbgAddrUses(Address);
1680   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1681     const DebugLoc &Loc = DII->getDebugLoc();
1682     auto *DIVar = DII->getVariable();
1683     auto *DIExpr = DII->getExpression();
1684     assert(DIVar && "Missing variable");
1685     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1686     // Insert llvm.dbg.declare immediately before DII, and remove old
1687     // llvm.dbg.declare.
1688     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1689     DII->eraseFromParent();
1690   }
1691   return !DbgAddrs.empty();
1692 }
1693 
1694 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1695                                         DIBuilder &Builder, int Offset) {
1696   const DebugLoc &Loc = DVI->getDebugLoc();
1697   auto *DIVar = DVI->getVariable();
1698   auto *DIExpr = DVI->getExpression();
1699   assert(DIVar && "Missing variable");
1700 
1701   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1702   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1703   // it and give up.
1704   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1705       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1706     return;
1707 
1708   // Insert the offset before the first deref.
1709   // We could just change the offset argument of dbg.value, but it's unsigned...
1710   if (Offset)
1711     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1712 
1713   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1714   DVI->eraseFromParent();
1715 }
1716 
1717 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1718                                     DIBuilder &Builder, int Offset) {
1719   if (auto *L = LocalAsMetadata::getIfExists(AI))
1720     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1721       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1722         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1723           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1724 }
1725 
1726 /// Where possible to salvage debug information for \p I do so
1727 /// and return True. If not possible mark undef and return False.
1728 void llvm::salvageDebugInfo(Instruction &I) {
1729   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1730   findDbgUsers(DbgUsers, &I);
1731   salvageDebugInfoForDbgValues(I, DbgUsers);
1732 }
1733 
1734 void llvm::salvageDebugInfoForDbgValues(
1735     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1736   // This is an arbitrary chosen limit on the maximum number of values we can
1737   // salvage up to in a DIArgList, used for performance reasons.
1738   const unsigned MaxDebugArgs = 16;
1739   bool Salvaged = false;
1740 
1741   for (auto *DII : DbgUsers) {
1742     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1743     // are implicitly pointing out the value as a DWARF memory location
1744     // description.
1745     bool StackValue = isa<DbgValueInst>(DII);
1746     auto DIILocation = DII->location_ops();
1747     assert(
1748         is_contained(DIILocation, &I) &&
1749         "DbgVariableIntrinsic must use salvaged instruction as its location");
1750     SmallVector<Value *, 4> AdditionalValues;
1751     // `I` may appear more than once in DII's location ops, and each use of `I`
1752     // must be updated in the DIExpression and potentially have additional
1753     // values added; thus we call salvageDebugInfoImpl for each `I` instance in
1754     // DIILocation.
1755     DIExpression *SalvagedExpr = DII->getExpression();
1756     auto LocItr = find(DIILocation, &I);
1757     while (SalvagedExpr && LocItr != DIILocation.end()) {
1758       unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
1759       SalvagedExpr = salvageDebugInfoImpl(I, SalvagedExpr, StackValue, LocNo,
1760                                           AdditionalValues);
1761       LocItr = std::find(++LocItr, DIILocation.end(), &I);
1762     }
1763     // salvageDebugInfoImpl should fail on examining the first element of
1764     // DbgUsers, or none of them.
1765     if (!SalvagedExpr)
1766       break;
1767 
1768     DII->replaceVariableLocationOp(&I, I.getOperand(0));
1769     if (AdditionalValues.empty()) {
1770       DII->setExpression(SalvagedExpr);
1771     } else if (isa<DbgValueInst>(DII) &&
1772                DII->getNumVariableLocationOps() + AdditionalValues.size() <=
1773                    MaxDebugArgs) {
1774       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1775     } else {
1776       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1777       // currently only valid for stack value expressions.
1778       // Also do not salvage if the resulting DIArgList would contain an
1779       // unreasonably large number of values.
1780       Value *Undef = UndefValue::get(I.getOperand(0)->getType());
1781       DII->replaceVariableLocationOp(I.getOperand(0), Undef);
1782     }
1783     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1784     Salvaged = true;
1785   }
1786 
1787   if (Salvaged)
1788     return;
1789 
1790   for (auto *DII : DbgUsers) {
1791     Value *Undef = UndefValue::get(I.getType());
1792     DII->replaceVariableLocationOp(&I, Undef);
1793   }
1794 }
1795 
1796 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1797                          uint64_t CurrentLocOps,
1798                          SmallVectorImpl<uint64_t> &Opcodes,
1799                          SmallVectorImpl<Value *> &AdditionalValues) {
1800   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1801   // Rewrite a GEP into a DIExpression.
1802   MapVector<Value *, APInt> VariableOffsets;
1803   APInt ConstantOffset(BitWidth, 0);
1804   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1805     return false;
1806   if (!VariableOffsets.empty() && !CurrentLocOps) {
1807     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1808     CurrentLocOps = 1;
1809   }
1810   for (auto Offset : VariableOffsets) {
1811     AdditionalValues.push_back(Offset.first);
1812     assert(Offset.second.isStrictlyPositive() &&
1813            "Expected strictly positive multiplier for offset.");
1814     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1815                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1816                     dwarf::DW_OP_plus});
1817   }
1818   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1819   return true;
1820 }
1821 
1822 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1823   switch (Opcode) {
1824   case Instruction::Add:
1825     return dwarf::DW_OP_plus;
1826   case Instruction::Sub:
1827     return dwarf::DW_OP_minus;
1828   case Instruction::Mul:
1829     return dwarf::DW_OP_mul;
1830   case Instruction::SDiv:
1831     return dwarf::DW_OP_div;
1832   case Instruction::SRem:
1833     return dwarf::DW_OP_mod;
1834   case Instruction::Or:
1835     return dwarf::DW_OP_or;
1836   case Instruction::And:
1837     return dwarf::DW_OP_and;
1838   case Instruction::Xor:
1839     return dwarf::DW_OP_xor;
1840   case Instruction::Shl:
1841     return dwarf::DW_OP_shl;
1842   case Instruction::LShr:
1843     return dwarf::DW_OP_shr;
1844   case Instruction::AShr:
1845     return dwarf::DW_OP_shra;
1846   default:
1847     // TODO: Salvage from each kind of binop we know about.
1848     return 0;
1849   }
1850 }
1851 
1852 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1853                            SmallVectorImpl<uint64_t> &Opcodes,
1854                            SmallVectorImpl<Value *> &AdditionalValues) {
1855   // Handle binary operations with constant integer operands as a special case.
1856   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1857   // Values wider than 64 bits cannot be represented within a DIExpression.
1858   if (ConstInt && ConstInt->getBitWidth() > 64)
1859     return false;
1860 
1861   Instruction::BinaryOps BinOpcode = BI->getOpcode();
1862   // Push any Constant Int operand onto the expression stack.
1863   if (ConstInt) {
1864     uint64_t Val = ConstInt->getSExtValue();
1865     // Add or Sub Instructions with a constant operand can potentially be
1866     // simplified.
1867     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1868       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1869       DIExpression::appendOffset(Opcodes, Offset);
1870       return true;
1871     }
1872     Opcodes.append({dwarf::DW_OP_constu, Val});
1873   } else {
1874     if (!CurrentLocOps) {
1875       Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
1876       CurrentLocOps = 1;
1877     }
1878     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
1879     AdditionalValues.push_back(BI->getOperand(1));
1880   }
1881 
1882   // Add salvaged binary operator to expression stack, if it has a valid
1883   // representation in a DIExpression.
1884   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1885   if (!DwarfBinOp)
1886     return false;
1887   Opcodes.push_back(DwarfBinOp);
1888 
1889   return true;
1890 }
1891 
1892 DIExpression *
1893 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr,
1894                            bool WithStackValue, unsigned LocNo,
1895                            SmallVectorImpl<Value *> &AdditionalValues) {
1896   uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands();
1897   auto &M = *I.getModule();
1898   auto &DL = M.getDataLayout();
1899 
1900   // Apply a vector of opcodes to the source DIExpression.
1901   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1902     DIExpression *DIExpr = SrcDIExpr;
1903     if (!Ops.empty()) {
1904       DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue);
1905     }
1906     return DIExpr;
1907   };
1908 
1909   // initializer-list helper for applying operators to the source DIExpression.
1910   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) {
1911     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1912     return doSalvage(Ops);
1913   };
1914 
1915   if (auto *CI = dyn_cast<CastInst>(&I)) {
1916     // No-op casts are irrelevant for debug info.
1917     if (CI->isNoopCast(DL))
1918       return SrcDIExpr;
1919 
1920     Type *Type = CI->getType();
1921     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1922     if (Type->isVectorTy() ||
1923         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1924       return nullptr;
1925 
1926     Value *FromValue = CI->getOperand(0);
1927     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1928     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1929 
1930     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1931                                             isa<SExtInst>(&I)));
1932   }
1933 
1934   SmallVector<uint64_t, 8> Ops;
1935   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1936     if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues))
1937       return doSalvage(Ops);
1938   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1939     if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues))
1940       return doSalvage(Ops);
1941   }
1942   // *Not* to do: we should not attempt to salvage load instructions,
1943   // because the validity and lifetime of a dbg.value containing
1944   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1945   return nullptr;
1946 }
1947 
1948 /// A replacement for a dbg.value expression.
1949 using DbgValReplacement = Optional<DIExpression *>;
1950 
1951 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1952 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1953 /// changes are made.
1954 static bool rewriteDebugUsers(
1955     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1956     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1957   // Find debug users of From.
1958   SmallVector<DbgVariableIntrinsic *, 1> Users;
1959   findDbgUsers(Users, &From);
1960   if (Users.empty())
1961     return false;
1962 
1963   // Prevent use-before-def of To.
1964   bool Changed = false;
1965   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1966   if (isa<Instruction>(&To)) {
1967     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1968 
1969     for (auto *DII : Users) {
1970       // It's common to see a debug user between From and DomPoint. Move it
1971       // after DomPoint to preserve the variable update without any reordering.
1972       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1973         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1974         DII->moveAfter(&DomPoint);
1975         Changed = true;
1976 
1977       // Users which otherwise aren't dominated by the replacement value must
1978       // be salvaged or deleted.
1979       } else if (!DT.dominates(&DomPoint, DII)) {
1980         UndefOrSalvage.insert(DII);
1981       }
1982     }
1983   }
1984 
1985   // Update debug users without use-before-def risk.
1986   for (auto *DII : Users) {
1987     if (UndefOrSalvage.count(DII))
1988       continue;
1989 
1990     DbgValReplacement DVR = RewriteExpr(*DII);
1991     if (!DVR)
1992       continue;
1993 
1994     DII->replaceVariableLocationOp(&From, &To);
1995     DII->setExpression(*DVR);
1996     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1997     Changed = true;
1998   }
1999 
2000   if (!UndefOrSalvage.empty()) {
2001     // Try to salvage the remaining debug users.
2002     salvageDebugInfo(From);
2003     Changed = true;
2004   }
2005 
2006   return Changed;
2007 }
2008 
2009 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2010 /// losslessly preserve the bits and semantics of the value. This predicate is
2011 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2012 ///
2013 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2014 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2015 /// and also does not allow lossless pointer <-> integer conversions.
2016 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2017                                          Type *ToTy) {
2018   // Trivially compatible types.
2019   if (FromTy == ToTy)
2020     return true;
2021 
2022   // Handle compatible pointer <-> integer conversions.
2023   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2024     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2025     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2026                               !DL.isNonIntegralPointerType(ToTy);
2027     return SameSize && LosslessConversion;
2028   }
2029 
2030   // TODO: This is not exhaustive.
2031   return false;
2032 }
2033 
2034 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2035                                  Instruction &DomPoint, DominatorTree &DT) {
2036   // Exit early if From has no debug users.
2037   if (!From.isUsedByMetadata())
2038     return false;
2039 
2040   assert(&From != &To && "Can't replace something with itself");
2041 
2042   Type *FromTy = From.getType();
2043   Type *ToTy = To.getType();
2044 
2045   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2046     return DII.getExpression();
2047   };
2048 
2049   // Handle no-op conversions.
2050   Module &M = *From.getModule();
2051   const DataLayout &DL = M.getDataLayout();
2052   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2053     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2054 
2055   // Handle integer-to-integer widening and narrowing.
2056   // FIXME: Use DW_OP_convert when it's available everywhere.
2057   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2058     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2059     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2060     assert(FromBits != ToBits && "Unexpected no-op conversion");
2061 
2062     // When the width of the result grows, assume that a debugger will only
2063     // access the low `FromBits` bits when inspecting the source variable.
2064     if (FromBits < ToBits)
2065       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2066 
2067     // The width of the result has shrunk. Use sign/zero extension to describe
2068     // the source variable's high bits.
2069     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2070       DILocalVariable *Var = DII.getVariable();
2071 
2072       // Without knowing signedness, sign/zero extension isn't possible.
2073       auto Signedness = Var->getSignedness();
2074       if (!Signedness)
2075         return None;
2076 
2077       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2078       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2079                                      Signed);
2080     };
2081     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2082   }
2083 
2084   // TODO: Floating-point conversions, vectors.
2085   return false;
2086 }
2087 
2088 std::pair<unsigned, unsigned>
2089 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2090   unsigned NumDeadInst = 0;
2091   unsigned NumDeadDbgInst = 0;
2092   // Delete the instructions backwards, as it has a reduced likelihood of
2093   // having to update as many def-use and use-def chains.
2094   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2095   while (EndInst != &BB->front()) {
2096     // Delete the next to last instruction.
2097     Instruction *Inst = &*--EndInst->getIterator();
2098     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2099       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2100     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2101       EndInst = Inst;
2102       continue;
2103     }
2104     if (isa<DbgInfoIntrinsic>(Inst))
2105       ++NumDeadDbgInst;
2106     else
2107       ++NumDeadInst;
2108     Inst->eraseFromParent();
2109   }
2110   return {NumDeadInst, NumDeadDbgInst};
2111 }
2112 
2113 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2114                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2115                                    MemorySSAUpdater *MSSAU) {
2116   BasicBlock *BB = I->getParent();
2117 
2118   if (MSSAU)
2119     MSSAU->changeToUnreachable(I);
2120 
2121   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2122 
2123   // Loop over all of the successors, removing BB's entry from any PHI
2124   // nodes.
2125   for (BasicBlock *Successor : successors(BB)) {
2126     Successor->removePredecessor(BB, PreserveLCSSA);
2127     if (DTU)
2128       UniqueSuccessors.insert(Successor);
2129   }
2130   // Insert a call to llvm.trap right before this.  This turns the undefined
2131   // behavior into a hard fail instead of falling through into random code.
2132   if (UseLLVMTrap) {
2133     Function *TrapFn =
2134       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2135     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2136     CallTrap->setDebugLoc(I->getDebugLoc());
2137   }
2138   auto *UI = new UnreachableInst(I->getContext(), I);
2139   UI->setDebugLoc(I->getDebugLoc());
2140 
2141   // All instructions after this are dead.
2142   unsigned NumInstrsRemoved = 0;
2143   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2144   while (BBI != BBE) {
2145     if (!BBI->use_empty())
2146       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2147     BB->getInstList().erase(BBI++);
2148     ++NumInstrsRemoved;
2149   }
2150   if (DTU) {
2151     SmallVector<DominatorTree::UpdateType, 8> Updates;
2152     Updates.reserve(UniqueSuccessors.size());
2153     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2154       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2155     DTU->applyUpdates(Updates);
2156   }
2157   return NumInstrsRemoved;
2158 }
2159 
2160 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2161   SmallVector<Value *, 8> Args(II->args());
2162   SmallVector<OperandBundleDef, 1> OpBundles;
2163   II->getOperandBundlesAsDefs(OpBundles);
2164   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2165                                        II->getCalledOperand(), Args, OpBundles);
2166   NewCall->setCallingConv(II->getCallingConv());
2167   NewCall->setAttributes(II->getAttributes());
2168   NewCall->setDebugLoc(II->getDebugLoc());
2169   NewCall->copyMetadata(*II);
2170 
2171   // If the invoke had profile metadata, try converting them for CallInst.
2172   uint64_t TotalWeight;
2173   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2174     // Set the total weight if it fits into i32, otherwise reset.
2175     MDBuilder MDB(NewCall->getContext());
2176     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2177                           ? nullptr
2178                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2179     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2180   }
2181 
2182   return NewCall;
2183 }
2184 
2185 /// changeToCall - Convert the specified invoke into a normal call.
2186 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2187   CallInst *NewCall = createCallMatchingInvoke(II);
2188   NewCall->takeName(II);
2189   NewCall->insertBefore(II);
2190   II->replaceAllUsesWith(NewCall);
2191 
2192   // Follow the call by a branch to the normal destination.
2193   BasicBlock *NormalDestBB = II->getNormalDest();
2194   BranchInst::Create(NormalDestBB, II);
2195 
2196   // Update PHI nodes in the unwind destination
2197   BasicBlock *BB = II->getParent();
2198   BasicBlock *UnwindDestBB = II->getUnwindDest();
2199   UnwindDestBB->removePredecessor(BB);
2200   II->eraseFromParent();
2201   if (DTU)
2202     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2203 }
2204 
2205 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2206                                                    BasicBlock *UnwindEdge,
2207                                                    DomTreeUpdater *DTU) {
2208   BasicBlock *BB = CI->getParent();
2209 
2210   // Convert this function call into an invoke instruction.  First, split the
2211   // basic block.
2212   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2213                                  CI->getName() + ".noexc");
2214 
2215   // Delete the unconditional branch inserted by SplitBlock
2216   BB->getInstList().pop_back();
2217 
2218   // Create the new invoke instruction.
2219   SmallVector<Value *, 8> InvokeArgs(CI->args());
2220   SmallVector<OperandBundleDef, 1> OpBundles;
2221 
2222   CI->getOperandBundlesAsDefs(OpBundles);
2223 
2224   // Note: we're round tripping operand bundles through memory here, and that
2225   // can potentially be avoided with a cleverer API design that we do not have
2226   // as of this time.
2227 
2228   InvokeInst *II =
2229       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2230                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2231   II->setDebugLoc(CI->getDebugLoc());
2232   II->setCallingConv(CI->getCallingConv());
2233   II->setAttributes(CI->getAttributes());
2234 
2235   if (DTU)
2236     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2237 
2238   // Make sure that anything using the call now uses the invoke!  This also
2239   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2240   CI->replaceAllUsesWith(II);
2241 
2242   // Delete the original call
2243   Split->getInstList().pop_front();
2244   return Split;
2245 }
2246 
2247 static bool markAliveBlocks(Function &F,
2248                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2249                             DomTreeUpdater *DTU = nullptr) {
2250   SmallVector<BasicBlock*, 128> Worklist;
2251   BasicBlock *BB = &F.front();
2252   Worklist.push_back(BB);
2253   Reachable.insert(BB);
2254   bool Changed = false;
2255   do {
2256     BB = Worklist.pop_back_val();
2257 
2258     // Do a quick scan of the basic block, turning any obviously unreachable
2259     // instructions into LLVM unreachable insts.  The instruction combining pass
2260     // canonicalizes unreachable insts into stores to null or undef.
2261     for (Instruction &I : *BB) {
2262       if (auto *CI = dyn_cast<CallInst>(&I)) {
2263         Value *Callee = CI->getCalledOperand();
2264         // Handle intrinsic calls.
2265         if (Function *F = dyn_cast<Function>(Callee)) {
2266           auto IntrinsicID = F->getIntrinsicID();
2267           // Assumptions that are known to be false are equivalent to
2268           // unreachable. Also, if the condition is undefined, then we make the
2269           // choice most beneficial to the optimizer, and choose that to also be
2270           // unreachable.
2271           if (IntrinsicID == Intrinsic::assume) {
2272             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2273               // Don't insert a call to llvm.trap right before the unreachable.
2274               changeToUnreachable(CI, false, false, DTU);
2275               Changed = true;
2276               break;
2277             }
2278           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2279             // A call to the guard intrinsic bails out of the current
2280             // compilation unit if the predicate passed to it is false. If the
2281             // predicate is a constant false, then we know the guard will bail
2282             // out of the current compile unconditionally, so all code following
2283             // it is dead.
2284             //
2285             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2286             // guards to treat `undef` as `false` since a guard on `undef` can
2287             // still be useful for widening.
2288             if (match(CI->getArgOperand(0), m_Zero()))
2289               if (!isa<UnreachableInst>(CI->getNextNode())) {
2290                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2291                                     false, DTU);
2292                 Changed = true;
2293                 break;
2294               }
2295           }
2296         } else if ((isa<ConstantPointerNull>(Callee) &&
2297                     !NullPointerIsDefined(CI->getFunction())) ||
2298                    isa<UndefValue>(Callee)) {
2299           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2300           Changed = true;
2301           break;
2302         }
2303         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2304           // If we found a call to a no-return function, insert an unreachable
2305           // instruction after it.  Make sure there isn't *already* one there
2306           // though.
2307           if (!isa<UnreachableInst>(CI->getNextNode())) {
2308             // Don't insert a call to llvm.trap right before the unreachable.
2309             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2310             Changed = true;
2311           }
2312           break;
2313         }
2314       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2315         // Store to undef and store to null are undefined and used to signal
2316         // that they should be changed to unreachable by passes that can't
2317         // modify the CFG.
2318 
2319         // Don't touch volatile stores.
2320         if (SI->isVolatile()) continue;
2321 
2322         Value *Ptr = SI->getOperand(1);
2323 
2324         if (isa<UndefValue>(Ptr) ||
2325             (isa<ConstantPointerNull>(Ptr) &&
2326              !NullPointerIsDefined(SI->getFunction(),
2327                                    SI->getPointerAddressSpace()))) {
2328           changeToUnreachable(SI, true, false, DTU);
2329           Changed = true;
2330           break;
2331         }
2332       }
2333     }
2334 
2335     Instruction *Terminator = BB->getTerminator();
2336     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2337       // Turn invokes that call 'nounwind' functions into ordinary calls.
2338       Value *Callee = II->getCalledOperand();
2339       if ((isa<ConstantPointerNull>(Callee) &&
2340            !NullPointerIsDefined(BB->getParent())) ||
2341           isa<UndefValue>(Callee)) {
2342         changeToUnreachable(II, true, false, DTU);
2343         Changed = true;
2344       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2345         if (II->use_empty() && II->onlyReadsMemory()) {
2346           // jump to the normal destination branch.
2347           BasicBlock *NormalDestBB = II->getNormalDest();
2348           BasicBlock *UnwindDestBB = II->getUnwindDest();
2349           BranchInst::Create(NormalDestBB, II);
2350           UnwindDestBB->removePredecessor(II->getParent());
2351           II->eraseFromParent();
2352           if (DTU)
2353             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2354         } else
2355           changeToCall(II, DTU);
2356         Changed = true;
2357       }
2358     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2359       // Remove catchpads which cannot be reached.
2360       struct CatchPadDenseMapInfo {
2361         static CatchPadInst *getEmptyKey() {
2362           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2363         }
2364 
2365         static CatchPadInst *getTombstoneKey() {
2366           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2367         }
2368 
2369         static unsigned getHashValue(CatchPadInst *CatchPad) {
2370           return static_cast<unsigned>(hash_combine_range(
2371               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2372         }
2373 
2374         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2375           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2376               RHS == getEmptyKey() || RHS == getTombstoneKey())
2377             return LHS == RHS;
2378           return LHS->isIdenticalTo(RHS);
2379         }
2380       };
2381 
2382       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2383       // Set of unique CatchPads.
2384       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2385                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2386           HandlerSet;
2387       detail::DenseSetEmpty Empty;
2388       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2389                                              E = CatchSwitch->handler_end();
2390            I != E; ++I) {
2391         BasicBlock *HandlerBB = *I;
2392         if (DTU)
2393           ++NumPerSuccessorCases[HandlerBB];
2394         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2395         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2396           if (DTU)
2397             --NumPerSuccessorCases[HandlerBB];
2398           CatchSwitch->removeHandler(I);
2399           --I;
2400           --E;
2401           Changed = true;
2402         }
2403       }
2404       if (DTU) {
2405         std::vector<DominatorTree::UpdateType> Updates;
2406         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2407           if (I.second == 0)
2408             Updates.push_back({DominatorTree::Delete, BB, I.first});
2409         DTU->applyUpdates(Updates);
2410       }
2411     }
2412 
2413     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2414     for (BasicBlock *Successor : successors(BB))
2415       if (Reachable.insert(Successor).second)
2416         Worklist.push_back(Successor);
2417   } while (!Worklist.empty());
2418   return Changed;
2419 }
2420 
2421 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2422   Instruction *TI = BB->getTerminator();
2423 
2424   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2425     changeToCall(II, DTU);
2426     return;
2427   }
2428 
2429   Instruction *NewTI;
2430   BasicBlock *UnwindDest;
2431 
2432   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2433     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2434     UnwindDest = CRI->getUnwindDest();
2435   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2436     auto *NewCatchSwitch = CatchSwitchInst::Create(
2437         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2438         CatchSwitch->getName(), CatchSwitch);
2439     for (BasicBlock *PadBB : CatchSwitch->handlers())
2440       NewCatchSwitch->addHandler(PadBB);
2441 
2442     NewTI = NewCatchSwitch;
2443     UnwindDest = CatchSwitch->getUnwindDest();
2444   } else {
2445     llvm_unreachable("Could not find unwind successor");
2446   }
2447 
2448   NewTI->takeName(TI);
2449   NewTI->setDebugLoc(TI->getDebugLoc());
2450   UnwindDest->removePredecessor(BB);
2451   TI->replaceAllUsesWith(NewTI);
2452   TI->eraseFromParent();
2453   if (DTU)
2454     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2455 }
2456 
2457 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2458 /// if they are in a dead cycle.  Return true if a change was made, false
2459 /// otherwise.
2460 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2461                                    MemorySSAUpdater *MSSAU) {
2462   SmallPtrSet<BasicBlock *, 16> Reachable;
2463   bool Changed = markAliveBlocks(F, Reachable, DTU);
2464 
2465   // If there are unreachable blocks in the CFG...
2466   if (Reachable.size() == F.size())
2467     return Changed;
2468 
2469   assert(Reachable.size() < F.size());
2470 
2471   // Are there any blocks left to actually delete?
2472   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2473   for (BasicBlock &BB : F) {
2474     // Skip reachable basic blocks
2475     if (Reachable.count(&BB))
2476       continue;
2477     // Skip already-deleted blocks
2478     if (DTU && DTU->isBBPendingDeletion(&BB))
2479       continue;
2480     BlocksToRemove.insert(&BB);
2481   }
2482 
2483   if (BlocksToRemove.empty())
2484     return Changed;
2485 
2486   Changed = true;
2487   NumRemoved += BlocksToRemove.size();
2488 
2489   if (MSSAU)
2490     MSSAU->removeBlocks(BlocksToRemove);
2491 
2492   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2493 
2494   return Changed;
2495 }
2496 
2497 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2498                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2499   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2500   K->dropUnknownNonDebugMetadata(KnownIDs);
2501   K->getAllMetadataOtherThanDebugLoc(Metadata);
2502   for (const auto &MD : Metadata) {
2503     unsigned Kind = MD.first;
2504     MDNode *JMD = J->getMetadata(Kind);
2505     MDNode *KMD = MD.second;
2506 
2507     switch (Kind) {
2508       default:
2509         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2510         break;
2511       case LLVMContext::MD_dbg:
2512         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2513       case LLVMContext::MD_tbaa:
2514         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2515         break;
2516       case LLVMContext::MD_alias_scope:
2517         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2518         break;
2519       case LLVMContext::MD_noalias:
2520       case LLVMContext::MD_mem_parallel_loop_access:
2521         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2522         break;
2523       case LLVMContext::MD_access_group:
2524         K->setMetadata(LLVMContext::MD_access_group,
2525                        intersectAccessGroups(K, J));
2526         break;
2527       case LLVMContext::MD_range:
2528 
2529         // If K does move, use most generic range. Otherwise keep the range of
2530         // K.
2531         if (DoesKMove)
2532           // FIXME: If K does move, we should drop the range info and nonnull.
2533           //        Currently this function is used with DoesKMove in passes
2534           //        doing hoisting/sinking and the current behavior of using the
2535           //        most generic range is correct in those cases.
2536           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2537         break;
2538       case LLVMContext::MD_fpmath:
2539         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2540         break;
2541       case LLVMContext::MD_invariant_load:
2542         // Only set the !invariant.load if it is present in both instructions.
2543         K->setMetadata(Kind, JMD);
2544         break;
2545       case LLVMContext::MD_nonnull:
2546         // If K does move, keep nonull if it is present in both instructions.
2547         if (DoesKMove)
2548           K->setMetadata(Kind, JMD);
2549         break;
2550       case LLVMContext::MD_invariant_group:
2551         // Preserve !invariant.group in K.
2552         break;
2553       case LLVMContext::MD_align:
2554         K->setMetadata(Kind,
2555           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2556         break;
2557       case LLVMContext::MD_dereferenceable:
2558       case LLVMContext::MD_dereferenceable_or_null:
2559         K->setMetadata(Kind,
2560           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2561         break;
2562       case LLVMContext::MD_preserve_access_index:
2563         // Preserve !preserve.access.index in K.
2564         break;
2565     }
2566   }
2567   // Set !invariant.group from J if J has it. If both instructions have it
2568   // then we will just pick it from J - even when they are different.
2569   // Also make sure that K is load or store - f.e. combining bitcast with load
2570   // could produce bitcast with invariant.group metadata, which is invalid.
2571   // FIXME: we should try to preserve both invariant.group md if they are
2572   // different, but right now instruction can only have one invariant.group.
2573   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2574     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2575       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2576 }
2577 
2578 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2579                                  bool KDominatesJ) {
2580   unsigned KnownIDs[] = {
2581       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2582       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2583       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2584       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2585       LLVMContext::MD_dereferenceable,
2586       LLVMContext::MD_dereferenceable_or_null,
2587       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2588   combineMetadata(K, J, KnownIDs, KDominatesJ);
2589 }
2590 
2591 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2592   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2593   Source.getAllMetadata(MD);
2594   MDBuilder MDB(Dest.getContext());
2595   Type *NewType = Dest.getType();
2596   const DataLayout &DL = Source.getModule()->getDataLayout();
2597   for (const auto &MDPair : MD) {
2598     unsigned ID = MDPair.first;
2599     MDNode *N = MDPair.second;
2600     // Note, essentially every kind of metadata should be preserved here! This
2601     // routine is supposed to clone a load instruction changing *only its type*.
2602     // The only metadata it makes sense to drop is metadata which is invalidated
2603     // when the pointer type changes. This should essentially never be the case
2604     // in LLVM, but we explicitly switch over only known metadata to be
2605     // conservatively correct. If you are adding metadata to LLVM which pertains
2606     // to loads, you almost certainly want to add it here.
2607     switch (ID) {
2608     case LLVMContext::MD_dbg:
2609     case LLVMContext::MD_tbaa:
2610     case LLVMContext::MD_prof:
2611     case LLVMContext::MD_fpmath:
2612     case LLVMContext::MD_tbaa_struct:
2613     case LLVMContext::MD_invariant_load:
2614     case LLVMContext::MD_alias_scope:
2615     case LLVMContext::MD_noalias:
2616     case LLVMContext::MD_nontemporal:
2617     case LLVMContext::MD_mem_parallel_loop_access:
2618     case LLVMContext::MD_access_group:
2619       // All of these directly apply.
2620       Dest.setMetadata(ID, N);
2621       break;
2622 
2623     case LLVMContext::MD_nonnull:
2624       copyNonnullMetadata(Source, N, Dest);
2625       break;
2626 
2627     case LLVMContext::MD_align:
2628     case LLVMContext::MD_dereferenceable:
2629     case LLVMContext::MD_dereferenceable_or_null:
2630       // These only directly apply if the new type is also a pointer.
2631       if (NewType->isPointerTy())
2632         Dest.setMetadata(ID, N);
2633       break;
2634 
2635     case LLVMContext::MD_range:
2636       copyRangeMetadata(DL, Source, N, Dest);
2637       break;
2638     }
2639   }
2640 }
2641 
2642 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2643   auto *ReplInst = dyn_cast<Instruction>(Repl);
2644   if (!ReplInst)
2645     return;
2646 
2647   // Patch the replacement so that it is not more restrictive than the value
2648   // being replaced.
2649   // Note that if 'I' is a load being replaced by some operation,
2650   // for example, by an arithmetic operation, then andIRFlags()
2651   // would just erase all math flags from the original arithmetic
2652   // operation, which is clearly not wanted and not needed.
2653   if (!isa<LoadInst>(I))
2654     ReplInst->andIRFlags(I);
2655 
2656   // FIXME: If both the original and replacement value are part of the
2657   // same control-flow region (meaning that the execution of one
2658   // guarantees the execution of the other), then we can combine the
2659   // noalias scopes here and do better than the general conservative
2660   // answer used in combineMetadata().
2661 
2662   // In general, GVN unifies expressions over different control-flow
2663   // regions, and so we need a conservative combination of the noalias
2664   // scopes.
2665   static const unsigned KnownIDs[] = {
2666       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2667       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2668       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2669       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2670       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2671   combineMetadata(ReplInst, I, KnownIDs, false);
2672 }
2673 
2674 template <typename RootType, typename DominatesFn>
2675 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2676                                          const RootType &Root,
2677                                          const DominatesFn &Dominates) {
2678   assert(From->getType() == To->getType());
2679 
2680   unsigned Count = 0;
2681   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2682        UI != UE;) {
2683     Use &U = *UI++;
2684     if (!Dominates(Root, U))
2685       continue;
2686     U.set(To);
2687     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2688                       << "' as " << *To << " in " << *U << "\n");
2689     ++Count;
2690   }
2691   return Count;
2692 }
2693 
2694 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2695    assert(From->getType() == To->getType());
2696    auto *BB = From->getParent();
2697    unsigned Count = 0;
2698 
2699   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2700        UI != UE;) {
2701     Use &U = *UI++;
2702     auto *I = cast<Instruction>(U.getUser());
2703     if (I->getParent() == BB)
2704       continue;
2705     U.set(To);
2706     ++Count;
2707   }
2708   return Count;
2709 }
2710 
2711 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2712                                         DominatorTree &DT,
2713                                         const BasicBlockEdge &Root) {
2714   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2715     return DT.dominates(Root, U);
2716   };
2717   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2718 }
2719 
2720 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2721                                         DominatorTree &DT,
2722                                         const BasicBlock *BB) {
2723   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2724     return DT.dominates(BB, U);
2725   };
2726   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2727 }
2728 
2729 bool llvm::callsGCLeafFunction(const CallBase *Call,
2730                                const TargetLibraryInfo &TLI) {
2731   // Check if the function is specifically marked as a gc leaf function.
2732   if (Call->hasFnAttr("gc-leaf-function"))
2733     return true;
2734   if (const Function *F = Call->getCalledFunction()) {
2735     if (F->hasFnAttribute("gc-leaf-function"))
2736       return true;
2737 
2738     if (auto IID = F->getIntrinsicID()) {
2739       // Most LLVM intrinsics do not take safepoints.
2740       return IID != Intrinsic::experimental_gc_statepoint &&
2741              IID != Intrinsic::experimental_deoptimize &&
2742              IID != Intrinsic::memcpy_element_unordered_atomic &&
2743              IID != Intrinsic::memmove_element_unordered_atomic;
2744     }
2745   }
2746 
2747   // Lib calls can be materialized by some passes, and won't be
2748   // marked as 'gc-leaf-function.' All available Libcalls are
2749   // GC-leaf.
2750   LibFunc LF;
2751   if (TLI.getLibFunc(*Call, LF)) {
2752     return TLI.has(LF);
2753   }
2754 
2755   return false;
2756 }
2757 
2758 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2759                                LoadInst &NewLI) {
2760   auto *NewTy = NewLI.getType();
2761 
2762   // This only directly applies if the new type is also a pointer.
2763   if (NewTy->isPointerTy()) {
2764     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2765     return;
2766   }
2767 
2768   // The only other translation we can do is to integral loads with !range
2769   // metadata.
2770   if (!NewTy->isIntegerTy())
2771     return;
2772 
2773   MDBuilder MDB(NewLI.getContext());
2774   const Value *Ptr = OldLI.getPointerOperand();
2775   auto *ITy = cast<IntegerType>(NewTy);
2776   auto *NullInt = ConstantExpr::getPtrToInt(
2777       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2778   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2779   NewLI.setMetadata(LLVMContext::MD_range,
2780                     MDB.createRange(NonNullInt, NullInt));
2781 }
2782 
2783 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2784                              MDNode *N, LoadInst &NewLI) {
2785   auto *NewTy = NewLI.getType();
2786 
2787   // Give up unless it is converted to a pointer where there is a single very
2788   // valuable mapping we can do reliably.
2789   // FIXME: It would be nice to propagate this in more ways, but the type
2790   // conversions make it hard.
2791   if (!NewTy->isPointerTy())
2792     return;
2793 
2794   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2795   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2796     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2797     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2798   }
2799 }
2800 
2801 void llvm::dropDebugUsers(Instruction &I) {
2802   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2803   findDbgUsers(DbgUsers, &I);
2804   for (auto *DII : DbgUsers)
2805     DII->eraseFromParent();
2806 }
2807 
2808 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2809                                     BasicBlock *BB) {
2810   // Since we are moving the instructions out of its basic block, we do not
2811   // retain their original debug locations (DILocations) and debug intrinsic
2812   // instructions.
2813   //
2814   // Doing so would degrade the debugging experience and adversely affect the
2815   // accuracy of profiling information.
2816   //
2817   // Currently, when hoisting the instructions, we take the following actions:
2818   // - Remove their debug intrinsic instructions.
2819   // - Set their debug locations to the values from the insertion point.
2820   //
2821   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2822   // need to be deleted, is because there will not be any instructions with a
2823   // DILocation in either branch left after performing the transformation. We
2824   // can only insert a dbg.value after the two branches are joined again.
2825   //
2826   // See PR38762, PR39243 for more details.
2827   //
2828   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2829   // encode predicated DIExpressions that yield different results on different
2830   // code paths.
2831 
2832   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2833     Instruction *I = &*II;
2834     I->dropUnknownNonDebugMetadata();
2835     if (I->isUsedByMetadata())
2836       dropDebugUsers(*I);
2837     if (I->isDebugOrPseudoInst()) {
2838       // Remove DbgInfo and pseudo probe Intrinsics.
2839       II = I->eraseFromParent();
2840       continue;
2841     }
2842     I->setDebugLoc(InsertPt->getDebugLoc());
2843     ++II;
2844   }
2845   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2846                                  BB->begin(),
2847                                  BB->getTerminator()->getIterator());
2848 }
2849 
2850 namespace {
2851 
2852 /// A potential constituent of a bitreverse or bswap expression. See
2853 /// collectBitParts for a fuller explanation.
2854 struct BitPart {
2855   BitPart(Value *P, unsigned BW) : Provider(P) {
2856     Provenance.resize(BW);
2857   }
2858 
2859   /// The Value that this is a bitreverse/bswap of.
2860   Value *Provider;
2861 
2862   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2863   /// in Provider becomes bit B in the result of this expression.
2864   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2865 
2866   enum { Unset = -1 };
2867 };
2868 
2869 } // end anonymous namespace
2870 
2871 /// Analyze the specified subexpression and see if it is capable of providing
2872 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2873 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2874 /// the output of the expression came from a corresponding bit in some other
2875 /// value. This function is recursive, and the end result is a mapping of
2876 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2877 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2878 ///
2879 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2880 /// that the expression deposits the low byte of %X into the high byte of the
2881 /// result and that all other bits are zero. This expression is accepted and a
2882 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2883 /// [0-7].
2884 ///
2885 /// For vector types, all analysis is performed at the per-element level. No
2886 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2887 /// constant masks must be splatted across all elements.
2888 ///
2889 /// To avoid revisiting values, the BitPart results are memoized into the
2890 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2891 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2892 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2893 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2894 /// type instead to provide the same functionality.
2895 ///
2896 /// Because we pass around references into \c BPS, we must use a container that
2897 /// does not invalidate internal references (std::map instead of DenseMap).
2898 static const Optional<BitPart> &
2899 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2900                 std::map<Value *, Optional<BitPart>> &BPS, int Depth,
2901                 bool &FoundRoot) {
2902   auto I = BPS.find(V);
2903   if (I != BPS.end())
2904     return I->second;
2905 
2906   auto &Result = BPS[V] = None;
2907   auto BitWidth = V->getType()->getScalarSizeInBits();
2908 
2909   // Can't do integer/elements > 128 bits.
2910   if (BitWidth > 128)
2911     return Result;
2912 
2913   // Prevent stack overflow by limiting the recursion depth
2914   if (Depth == BitPartRecursionMaxDepth) {
2915     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2916     return Result;
2917   }
2918 
2919   if (auto *I = dyn_cast<Instruction>(V)) {
2920     Value *X, *Y;
2921     const APInt *C;
2922 
2923     // If this is an or instruction, it may be an inner node of the bswap.
2924     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2925       // Check we have both sources and they are from the same provider.
2926       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2927                                       Depth + 1, FoundRoot);
2928       if (!A || !A->Provider)
2929         return Result;
2930 
2931       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
2932                                       Depth + 1, FoundRoot);
2933       if (!B || A->Provider != B->Provider)
2934         return Result;
2935 
2936       // Try and merge the two together.
2937       Result = BitPart(A->Provider, BitWidth);
2938       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2939         if (A->Provenance[BitIdx] != BitPart::Unset &&
2940             B->Provenance[BitIdx] != BitPart::Unset &&
2941             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2942           return Result = None;
2943 
2944         if (A->Provenance[BitIdx] == BitPart::Unset)
2945           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2946         else
2947           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2948       }
2949 
2950       return Result;
2951     }
2952 
2953     // If this is a logical shift by a constant, recurse then shift the result.
2954     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2955       const APInt &BitShift = *C;
2956 
2957       // Ensure the shift amount is defined.
2958       if (BitShift.uge(BitWidth))
2959         return Result;
2960 
2961       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
2962       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
2963         return Result;
2964 
2965       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2966                                         Depth + 1, FoundRoot);
2967       if (!Res)
2968         return Result;
2969       Result = Res;
2970 
2971       // Perform the "shift" on BitProvenance.
2972       auto &P = Result->Provenance;
2973       if (I->getOpcode() == Instruction::Shl) {
2974         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2975         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2976       } else {
2977         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2978         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2979       }
2980 
2981       return Result;
2982     }
2983 
2984     // If this is a logical 'and' with a mask that clears bits, recurse then
2985     // unset the appropriate bits.
2986     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2987       const APInt &AndMask = *C;
2988 
2989       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2990       // early exit.
2991       unsigned NumMaskedBits = AndMask.countPopulation();
2992       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2993         return Result;
2994 
2995       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2996                                         Depth + 1, FoundRoot);
2997       if (!Res)
2998         return Result;
2999       Result = Res;
3000 
3001       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3002         // If the AndMask is zero for this bit, clear the bit.
3003         if (AndMask[BitIdx] == 0)
3004           Result->Provenance[BitIdx] = BitPart::Unset;
3005       return Result;
3006     }
3007 
3008     // If this is a zext instruction zero extend the result.
3009     if (match(V, m_ZExt(m_Value(X)))) {
3010       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3011                                         Depth + 1, FoundRoot);
3012       if (!Res)
3013         return Result;
3014 
3015       Result = BitPart(Res->Provider, BitWidth);
3016       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3017       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3018         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3019       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3020         Result->Provenance[BitIdx] = BitPart::Unset;
3021       return Result;
3022     }
3023 
3024     // If this is a truncate instruction, extract the lower bits.
3025     if (match(V, m_Trunc(m_Value(X)))) {
3026       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3027                                         Depth + 1, FoundRoot);
3028       if (!Res)
3029         return Result;
3030 
3031       Result = BitPart(Res->Provider, BitWidth);
3032       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3033         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3034       return Result;
3035     }
3036 
3037     // BITREVERSE - most likely due to us previous matching a partial
3038     // bitreverse.
3039     if (match(V, m_BitReverse(m_Value(X)))) {
3040       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3041                                         Depth + 1, FoundRoot);
3042       if (!Res)
3043         return Result;
3044 
3045       Result = BitPart(Res->Provider, BitWidth);
3046       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3047         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3048       return Result;
3049     }
3050 
3051     // BSWAP - most likely due to us previous matching a partial bswap.
3052     if (match(V, m_BSwap(m_Value(X)))) {
3053       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3054                                         Depth + 1, FoundRoot);
3055       if (!Res)
3056         return Result;
3057 
3058       unsigned ByteWidth = BitWidth / 8;
3059       Result = BitPart(Res->Provider, BitWidth);
3060       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3061         unsigned ByteBitOfs = ByteIdx * 8;
3062         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3063           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3064               Res->Provenance[ByteBitOfs + BitIdx];
3065       }
3066       return Result;
3067     }
3068 
3069     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3070     // amount (modulo).
3071     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3072     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3073     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3074         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3075       // We can treat fshr as a fshl by flipping the modulo amount.
3076       unsigned ModAmt = C->urem(BitWidth);
3077       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3078         ModAmt = BitWidth - ModAmt;
3079 
3080       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3081       if (!MatchBitReversals && (ModAmt % 8) != 0)
3082         return Result;
3083 
3084       // Check we have both sources and they are from the same provider.
3085       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3086                                         Depth + 1, FoundRoot);
3087       if (!LHS || !LHS->Provider)
3088         return Result;
3089 
3090       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3091                                         Depth + 1, FoundRoot);
3092       if (!RHS || LHS->Provider != RHS->Provider)
3093         return Result;
3094 
3095       unsigned StartBitRHS = BitWidth - ModAmt;
3096       Result = BitPart(LHS->Provider, BitWidth);
3097       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3098         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3099       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3100         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3101       return Result;
3102     }
3103   }
3104 
3105   // If we've already found a root input value then we're never going to merge
3106   // these back together.
3107   if (FoundRoot)
3108     return Result;
3109 
3110   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3111   // be the root input value to the bswap/bitreverse.
3112   FoundRoot = true;
3113   Result = BitPart(V, BitWidth);
3114   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3115     Result->Provenance[BitIdx] = BitIdx;
3116   return Result;
3117 }
3118 
3119 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3120                                           unsigned BitWidth) {
3121   if (From % 8 != To % 8)
3122     return false;
3123   // Convert from bit indices to byte indices and check for a byte reversal.
3124   From >>= 3;
3125   To >>= 3;
3126   BitWidth >>= 3;
3127   return From == BitWidth - To - 1;
3128 }
3129 
3130 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3131                                                unsigned BitWidth) {
3132   return From == BitWidth - To - 1;
3133 }
3134 
3135 bool llvm::recognizeBSwapOrBitReverseIdiom(
3136     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3137     SmallVectorImpl<Instruction *> &InsertedInsts) {
3138   if (!match(I, m_Or(m_Value(), m_Value())) &&
3139       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3140       !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3141     return false;
3142   if (!MatchBSwaps && !MatchBitReversals)
3143     return false;
3144   Type *ITy = I->getType();
3145   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3146     return false;  // Can't do integer/elements > 128 bits.
3147 
3148   Type *DemandedTy = ITy;
3149   if (I->hasOneUse())
3150     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3151       DemandedTy = Trunc->getType();
3152 
3153   // Try to find all the pieces corresponding to the bswap.
3154   bool FoundRoot = false;
3155   std::map<Value *, Optional<BitPart>> BPS;
3156   const auto &Res =
3157       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3158   if (!Res)
3159     return false;
3160   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3161   assert(all_of(BitProvenance,
3162                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3163          "Illegal bit provenance index");
3164 
3165   // If the upper bits are zero, then attempt to perform as a truncated op.
3166   if (BitProvenance.back() == BitPart::Unset) {
3167     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3168       BitProvenance = BitProvenance.drop_back();
3169     if (BitProvenance.empty())
3170       return false; // TODO - handle null value?
3171     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3172     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3173       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3174   }
3175 
3176   // Check BitProvenance hasn't found a source larger than the result type.
3177   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3178   if (DemandedBW > ITy->getScalarSizeInBits())
3179     return false;
3180 
3181   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3182   // only byteswap values with an even number of bytes.
3183   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3184   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3185   bool OKForBitReverse = MatchBitReversals;
3186   for (unsigned BitIdx = 0;
3187        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3188     if (BitProvenance[BitIdx] == BitPart::Unset) {
3189       DemandedMask.clearBit(BitIdx);
3190       continue;
3191     }
3192     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3193                                                 DemandedBW);
3194     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3195                                                           BitIdx, DemandedBW);
3196   }
3197 
3198   Intrinsic::ID Intrin;
3199   if (OKForBSwap)
3200     Intrin = Intrinsic::bswap;
3201   else if (OKForBitReverse)
3202     Intrin = Intrinsic::bitreverse;
3203   else
3204     return false;
3205 
3206   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3207   Value *Provider = Res->Provider;
3208 
3209   // We may need to truncate the provider.
3210   if (DemandedTy != Provider->getType()) {
3211     auto *Trunc =
3212         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3213     InsertedInsts.push_back(Trunc);
3214     Provider = Trunc;
3215   }
3216 
3217   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3218   InsertedInsts.push_back(Result);
3219 
3220   if (!DemandedMask.isAllOnesValue()) {
3221     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3222     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3223     InsertedInsts.push_back(Result);
3224   }
3225 
3226   // We may need to zeroextend back to the result type.
3227   if (ITy != Result->getType()) {
3228     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3229     InsertedInsts.push_back(ExtInst);
3230   }
3231 
3232   return true;
3233 }
3234 
3235 // CodeGen has special handling for some string functions that may replace
3236 // them with target-specific intrinsics.  Since that'd skip our interceptors
3237 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3238 // we mark affected calls as NoBuiltin, which will disable optimization
3239 // in CodeGen.
3240 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3241     CallInst *CI, const TargetLibraryInfo *TLI) {
3242   Function *F = CI->getCalledFunction();
3243   LibFunc Func;
3244   if (F && !F->hasLocalLinkage() && F->hasName() &&
3245       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3246       !F->doesNotAccessMemory())
3247     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3248 }
3249 
3250 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3251   // We can't have a PHI with a metadata type.
3252   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3253     return false;
3254 
3255   // Early exit.
3256   if (!isa<Constant>(I->getOperand(OpIdx)))
3257     return true;
3258 
3259   switch (I->getOpcode()) {
3260   default:
3261     return true;
3262   case Instruction::Call:
3263   case Instruction::Invoke: {
3264     const auto &CB = cast<CallBase>(*I);
3265 
3266     // Can't handle inline asm. Skip it.
3267     if (CB.isInlineAsm())
3268       return false;
3269 
3270     // Constant bundle operands may need to retain their constant-ness for
3271     // correctness.
3272     if (CB.isBundleOperand(OpIdx))
3273       return false;
3274 
3275     if (OpIdx < CB.getNumArgOperands()) {
3276       // Some variadic intrinsics require constants in the variadic arguments,
3277       // which currently aren't markable as immarg.
3278       if (isa<IntrinsicInst>(CB) &&
3279           OpIdx >= CB.getFunctionType()->getNumParams()) {
3280         // This is known to be OK for stackmap.
3281         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3282       }
3283 
3284       // gcroot is a special case, since it requires a constant argument which
3285       // isn't also required to be a simple ConstantInt.
3286       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3287         return false;
3288 
3289       // Some intrinsic operands are required to be immediates.
3290       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3291     }
3292 
3293     // It is never allowed to replace the call argument to an intrinsic, but it
3294     // may be possible for a call.
3295     return !isa<IntrinsicInst>(CB);
3296   }
3297   case Instruction::ShuffleVector:
3298     // Shufflevector masks are constant.
3299     return OpIdx != 2;
3300   case Instruction::Switch:
3301   case Instruction::ExtractValue:
3302     // All operands apart from the first are constant.
3303     return OpIdx == 0;
3304   case Instruction::InsertValue:
3305     // All operands apart from the first and the second are constant.
3306     return OpIdx < 2;
3307   case Instruction::Alloca:
3308     // Static allocas (constant size in the entry block) are handled by
3309     // prologue/epilogue insertion so they're free anyway. We definitely don't
3310     // want to make them non-constant.
3311     return !cast<AllocaInst>(I)->isStaticAlloca();
3312   case Instruction::GetElementPtr:
3313     if (OpIdx == 0)
3314       return true;
3315     gep_type_iterator It = gep_type_begin(I);
3316     for (auto E = std::next(It, OpIdx); It != E; ++It)
3317       if (It.isStruct())
3318         return false;
3319     return true;
3320   }
3321 }
3322 
3323 Value *llvm::invertCondition(Value *Condition) {
3324   // First: Check if it's a constant
3325   if (Constant *C = dyn_cast<Constant>(Condition))
3326     return ConstantExpr::getNot(C);
3327 
3328   // Second: If the condition is already inverted, return the original value
3329   Value *NotCondition;
3330   if (match(Condition, m_Not(m_Value(NotCondition))))
3331     return NotCondition;
3332 
3333   BasicBlock *Parent = nullptr;
3334   Instruction *Inst = dyn_cast<Instruction>(Condition);
3335   if (Inst)
3336     Parent = Inst->getParent();
3337   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3338     Parent = &Arg->getParent()->getEntryBlock();
3339   assert(Parent && "Unsupported condition to invert");
3340 
3341   // Third: Check all the users for an invert
3342   for (User *U : Condition->users())
3343     if (Instruction *I = dyn_cast<Instruction>(U))
3344       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3345         return I;
3346 
3347   // Last option: Create a new instruction
3348   auto *Inverted =
3349       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3350   if (Inst && !isa<PHINode>(Inst))
3351     Inverted->insertAfter(Inst);
3352   else
3353     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3354   return Inverted;
3355 }
3356 
3357 bool llvm::inferAttributesFromOthers(Function &F) {
3358   // Note: We explicitly check for attributes rather than using cover functions
3359   // because some of the cover functions include the logic being implemented.
3360 
3361   bool Changed = false;
3362   // readnone + not convergent implies nosync
3363   if (!F.hasFnAttribute(Attribute::NoSync) &&
3364       F.doesNotAccessMemory() && !F.isConvergent()) {
3365     F.setNoSync();
3366     Changed = true;
3367   }
3368 
3369   // readonly implies nofree
3370   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3371     F.setDoesNotFreeMemory();
3372     Changed = true;
3373   }
3374 
3375   // willreturn implies mustprogress
3376   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3377     F.setMustProgress();
3378     Changed = true;
3379   }
3380 
3381   // TODO: There are a bunch of cases of restrictive memory effects we
3382   // can infer by inspecting arguments of argmemonly-ish functions.
3383 
3384   return Changed;
3385 }
3386