1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87
88 #define DEBUG_TYPE "local"
89
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
92
93 static cl::opt<bool> PHICSEDebugHash(
94 "phicse-debug-hash",
95 #ifdef EXPENSIVE_CHECKS
96 cl::init(true),
97 #else
98 cl::init(false),
99 #endif
100 cl::Hidden,
101 cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
102 "function is well-behaved w.r.t. its isEqual predicate"));
103
104 static cl::opt<unsigned> PHICSENumPHISmallSize(
105 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
106 cl::desc(
107 "When the basic block contains not more than this number of PHI nodes, "
108 "perform a (faster!) exhaustive search instead of set-driven one."));
109
110 // Max recursion depth for collectBitParts used when detecting bswap and
111 // bitreverse idioms.
112 static const unsigned BitPartRecursionMaxDepth = 48;
113
114 //===----------------------------------------------------------------------===//
115 // Local constant propagation.
116 //
117
118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
119 /// constant value, convert it into an unconditional branch to the constant
120 /// destination. This is a nontrivial operation because the successors of this
121 /// basic block must have their PHI nodes updated.
122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
123 /// conditions and indirectbr addresses this might make dead if
124 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI,DomTreeUpdater * DTU)125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
126 const TargetLibraryInfo *TLI,
127 DomTreeUpdater *DTU) {
128 Instruction *T = BB->getTerminator();
129 IRBuilder<> Builder(T);
130
131 // Branch - See if we are conditional jumping on constant
132 if (auto *BI = dyn_cast<BranchInst>(T)) {
133 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
134
135 BasicBlock *Dest1 = BI->getSuccessor(0);
136 BasicBlock *Dest2 = BI->getSuccessor(1);
137
138 if (Dest2 == Dest1) { // Conditional branch to same location?
139 // This branch matches something like this:
140 // br bool %cond, label %Dest, label %Dest
141 // and changes it into: br label %Dest
142
143 // Let the basic block know that we are letting go of one copy of it.
144 assert(BI->getParent() && "Terminator not inserted in block!");
145 Dest1->removePredecessor(BI->getParent());
146
147 // Replace the conditional branch with an unconditional one.
148 BranchInst *NewBI = Builder.CreateBr(Dest1);
149
150 // Transfer the metadata to the new branch instruction.
151 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
152 LLVMContext::MD_annotation});
153
154 Value *Cond = BI->getCondition();
155 BI->eraseFromParent();
156 if (DeleteDeadConditions)
157 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
158 return true;
159 }
160
161 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
162 // Are we branching on constant?
163 // YES. Change to unconditional branch...
164 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
165 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
166
167 // Let the basic block know that we are letting go of it. Based on this,
168 // it will adjust it's PHI nodes.
169 OldDest->removePredecessor(BB);
170
171 // Replace the conditional branch with an unconditional one.
172 BranchInst *NewBI = Builder.CreateBr(Destination);
173
174 // Transfer the metadata to the new branch instruction.
175 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
176 LLVMContext::MD_annotation});
177
178 BI->eraseFromParent();
179 if (DTU)
180 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
181 return true;
182 }
183
184 return false;
185 }
186
187 if (auto *SI = dyn_cast<SwitchInst>(T)) {
188 // If we are switching on a constant, we can convert the switch to an
189 // unconditional branch.
190 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
191 BasicBlock *DefaultDest = SI->getDefaultDest();
192 BasicBlock *TheOnlyDest = DefaultDest;
193
194 // If the default is unreachable, ignore it when searching for TheOnlyDest.
195 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
196 SI->getNumCases() > 0) {
197 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
198 }
199
200 bool Changed = false;
201
202 // Figure out which case it goes to.
203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
204 // Found case matching a constant operand?
205 if (i->getCaseValue() == CI) {
206 TheOnlyDest = i->getCaseSuccessor();
207 break;
208 }
209
210 // Check to see if this branch is going to the same place as the default
211 // dest. If so, eliminate it as an explicit compare.
212 if (i->getCaseSuccessor() == DefaultDest) {
213 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
214 unsigned NCases = SI->getNumCases();
215 // Fold the case metadata into the default if there will be any branches
216 // left, unless the metadata doesn't match the switch.
217 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
218 // Collect branch weights into a vector.
219 SmallVector<uint32_t, 8> Weights;
220 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
221 ++MD_i) {
222 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
223 Weights.push_back(CI->getValue().getZExtValue());
224 }
225 // Merge weight of this case to the default weight.
226 unsigned idx = i->getCaseIndex();
227 Weights[0] += Weights[idx+1];
228 // Remove weight for this case.
229 std::swap(Weights[idx+1], Weights.back());
230 Weights.pop_back();
231 SI->setMetadata(LLVMContext::MD_prof,
232 MDBuilder(BB->getContext()).
233 createBranchWeights(Weights));
234 }
235 // Remove this entry.
236 BasicBlock *ParentBB = SI->getParent();
237 DefaultDest->removePredecessor(ParentBB);
238 i = SI->removeCase(i);
239 e = SI->case_end();
240 Changed = true;
241 continue;
242 }
243
244 // Otherwise, check to see if the switch only branches to one destination.
245 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
246 // destinations.
247 if (i->getCaseSuccessor() != TheOnlyDest)
248 TheOnlyDest = nullptr;
249
250 // Increment this iterator as we haven't removed the case.
251 ++i;
252 }
253
254 if (CI && !TheOnlyDest) {
255 // Branching on a constant, but not any of the cases, go to the default
256 // successor.
257 TheOnlyDest = SI->getDefaultDest();
258 }
259
260 // If we found a single destination that we can fold the switch into, do so
261 // now.
262 if (TheOnlyDest) {
263 // Insert the new branch.
264 Builder.CreateBr(TheOnlyDest);
265 BasicBlock *BB = SI->getParent();
266
267 SmallSet<BasicBlock *, 8> RemovedSuccessors;
268
269 // Remove entries from PHI nodes which we no longer branch to...
270 BasicBlock *SuccToKeep = TheOnlyDest;
271 for (BasicBlock *Succ : successors(SI)) {
272 if (DTU && Succ != TheOnlyDest)
273 RemovedSuccessors.insert(Succ);
274 // Found case matching a constant operand?
275 if (Succ == SuccToKeep) {
276 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
277 } else {
278 Succ->removePredecessor(BB);
279 }
280 }
281
282 // Delete the old switch.
283 Value *Cond = SI->getCondition();
284 SI->eraseFromParent();
285 if (DeleteDeadConditions)
286 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
287 if (DTU) {
288 std::vector<DominatorTree::UpdateType> Updates;
289 Updates.reserve(RemovedSuccessors.size());
290 for (auto *RemovedSuccessor : RemovedSuccessors)
291 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
292 DTU->applyUpdates(Updates);
293 }
294 return true;
295 }
296
297 if (SI->getNumCases() == 1) {
298 // Otherwise, we can fold this switch into a conditional branch
299 // instruction if it has only one non-default destination.
300 auto FirstCase = *SI->case_begin();
301 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
302 FirstCase.getCaseValue(), "cond");
303
304 // Insert the new branch.
305 BranchInst *NewBr = Builder.CreateCondBr(Cond,
306 FirstCase.getCaseSuccessor(),
307 SI->getDefaultDest());
308 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
309 if (MD && MD->getNumOperands() == 3) {
310 ConstantInt *SICase =
311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
312 ConstantInt *SIDef =
313 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
314 assert(SICase && SIDef);
315 // The TrueWeight should be the weight for the single case of SI.
316 NewBr->setMetadata(LLVMContext::MD_prof,
317 MDBuilder(BB->getContext()).
318 createBranchWeights(SICase->getValue().getZExtValue(),
319 SIDef->getValue().getZExtValue()));
320 }
321
322 // Update make.implicit metadata to the newly-created conditional branch.
323 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
324 if (MakeImplicitMD)
325 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
326
327 // Delete the old switch.
328 SI->eraseFromParent();
329 return true;
330 }
331 return Changed;
332 }
333
334 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
335 // indirectbr blockaddress(@F, @BB) -> br label @BB
336 if (auto *BA =
337 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
338 BasicBlock *TheOnlyDest = BA->getBasicBlock();
339 SmallSet<BasicBlock *, 8> RemovedSuccessors;
340
341 // Insert the new branch.
342 Builder.CreateBr(TheOnlyDest);
343
344 BasicBlock *SuccToKeep = TheOnlyDest;
345 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
346 BasicBlock *DestBB = IBI->getDestination(i);
347 if (DTU && DestBB != TheOnlyDest)
348 RemovedSuccessors.insert(DestBB);
349 if (IBI->getDestination(i) == SuccToKeep) {
350 SuccToKeep = nullptr;
351 } else {
352 DestBB->removePredecessor(BB);
353 }
354 }
355 Value *Address = IBI->getAddress();
356 IBI->eraseFromParent();
357 if (DeleteDeadConditions)
358 // Delete pointer cast instructions.
359 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
360
361 // Also zap the blockaddress constant if there are no users remaining,
362 // otherwise the destination is still marked as having its address taken.
363 if (BA->use_empty())
364 BA->destroyConstant();
365
366 // If we didn't find our destination in the IBI successor list, then we
367 // have undefined behavior. Replace the unconditional branch with an
368 // 'unreachable' instruction.
369 if (SuccToKeep) {
370 BB->getTerminator()->eraseFromParent();
371 new UnreachableInst(BB->getContext(), BB);
372 }
373
374 if (DTU) {
375 std::vector<DominatorTree::UpdateType> Updates;
376 Updates.reserve(RemovedSuccessors.size());
377 for (auto *RemovedSuccessor : RemovedSuccessors)
378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
379 DTU->applyUpdates(Updates);
380 }
381 return true;
382 }
383 }
384
385 return false;
386 }
387
388 //===----------------------------------------------------------------------===//
389 // Local dead code elimination.
390 //
391
392 /// isInstructionTriviallyDead - Return true if the result produced by the
393 /// instruction is not used, and the instruction has no side effects.
394 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)395 bool llvm::isInstructionTriviallyDead(Instruction *I,
396 const TargetLibraryInfo *TLI) {
397 if (!I->use_empty())
398 return false;
399 return wouldInstructionBeTriviallyDead(I, TLI);
400 }
401
wouldInstructionBeTriviallyDeadOnUnusedPaths(Instruction * I,const TargetLibraryInfo * TLI)402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
403 Instruction *I, const TargetLibraryInfo *TLI) {
404 // Instructions that are "markers" and have implied meaning on code around
405 // them (without explicit uses), are not dead on unused paths.
406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
407 if (II->getIntrinsicID() == Intrinsic::stacksave ||
408 II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
409 II->isLifetimeStartOrEnd())
410 return false;
411 return wouldInstructionBeTriviallyDead(I, TLI);
412 }
413
wouldInstructionBeTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
415 const TargetLibraryInfo *TLI) {
416 if (I->isTerminator())
417 return false;
418
419 // We don't want the landingpad-like instructions removed by anything this
420 // general.
421 if (I->isEHPad())
422 return false;
423
424 // We don't want debug info removed by anything this general, unless
425 // debug info is empty.
426 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
427 if (DDI->getAddress())
428 return false;
429 return true;
430 }
431 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
432 if (DVI->hasArgList() || DVI->getValue(0))
433 return false;
434 return true;
435 }
436 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
437 if (DLI->getLabel())
438 return false;
439 return true;
440 }
441
442 if (auto *CB = dyn_cast<CallBase>(I))
443 if (isRemovableAlloc(CB, TLI))
444 return true;
445
446 if (!I->willReturn())
447 return false;
448
449 if (!I->mayHaveSideEffects())
450 return true;
451
452 // Special case intrinsics that "may have side effects" but can be deleted
453 // when dead.
454 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
455 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
456 if (II->getIntrinsicID() == Intrinsic::stacksave ||
457 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
458 return true;
459
460 if (II->isLifetimeStartOrEnd()) {
461 auto *Arg = II->getArgOperand(1);
462 // Lifetime intrinsics are dead when their right-hand is undef.
463 if (isa<UndefValue>(Arg))
464 return true;
465 // If the right-hand is an alloc, global, or argument and the only uses
466 // are lifetime intrinsics then the intrinsics are dead.
467 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
468 return llvm::all_of(Arg->uses(), [](Use &Use) {
469 if (IntrinsicInst *IntrinsicUse =
470 dyn_cast<IntrinsicInst>(Use.getUser()))
471 return IntrinsicUse->isLifetimeStartOrEnd();
472 return false;
473 });
474 return false;
475 }
476
477 // Assumptions are dead if their condition is trivially true. Guards on
478 // true are operationally no-ops. In the future we can consider more
479 // sophisticated tradeoffs for guards considering potential for check
480 // widening, but for now we keep things simple.
481 if ((II->getIntrinsicID() == Intrinsic::assume &&
482 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
483 II->getIntrinsicID() == Intrinsic::experimental_guard) {
484 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
485 return !Cond->isZero();
486
487 return false;
488 }
489
490 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
491 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior();
492 return *ExBehavior != fp::ebStrict;
493 }
494 }
495
496 if (auto *Call = dyn_cast<CallBase>(I)) {
497 if (Value *FreedOp = getFreedOperand(Call, TLI))
498 if (Constant *C = dyn_cast<Constant>(FreedOp))
499 return C->isNullValue() || isa<UndefValue>(C);
500 if (isMathLibCallNoop(Call, TLI))
501 return true;
502 }
503
504 // Non-volatile atomic loads from constants can be removed.
505 if (auto *LI = dyn_cast<LoadInst>(I))
506 if (auto *GV = dyn_cast<GlobalVariable>(
507 LI->getPointerOperand()->stripPointerCasts()))
508 if (!LI->isVolatile() && GV->isConstant())
509 return true;
510
511 return false;
512 }
513
514 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
515 /// trivially dead instruction, delete it. If that makes any of its operands
516 /// trivially dead, delete them too, recursively. Return true if any
517 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)518 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
519 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
520 std::function<void(Value *)> AboutToDeleteCallback) {
521 Instruction *I = dyn_cast<Instruction>(V);
522 if (!I || !isInstructionTriviallyDead(I, TLI))
523 return false;
524
525 SmallVector<WeakTrackingVH, 16> DeadInsts;
526 DeadInsts.push_back(I);
527 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
528 AboutToDeleteCallback);
529
530 return true;
531 }
532
RecursivelyDeleteTriviallyDeadInstructionsPermissive(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)533 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
534 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
535 MemorySSAUpdater *MSSAU,
536 std::function<void(Value *)> AboutToDeleteCallback) {
537 unsigned S = 0, E = DeadInsts.size(), Alive = 0;
538 for (; S != E; ++S) {
539 auto *I = dyn_cast<Instruction>(DeadInsts[S]);
540 if (!I || !isInstructionTriviallyDead(I)) {
541 DeadInsts[S] = nullptr;
542 ++Alive;
543 }
544 }
545 if (Alive == E)
546 return false;
547 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
548 AboutToDeleteCallback);
549 return true;
550 }
551
RecursivelyDeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)552 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
553 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
554 MemorySSAUpdater *MSSAU,
555 std::function<void(Value *)> AboutToDeleteCallback) {
556 // Process the dead instruction list until empty.
557 while (!DeadInsts.empty()) {
558 Value *V = DeadInsts.pop_back_val();
559 Instruction *I = cast_or_null<Instruction>(V);
560 if (!I)
561 continue;
562 assert(isInstructionTriviallyDead(I, TLI) &&
563 "Live instruction found in dead worklist!");
564 assert(I->use_empty() && "Instructions with uses are not dead.");
565
566 // Don't lose the debug info while deleting the instructions.
567 salvageDebugInfo(*I);
568
569 if (AboutToDeleteCallback)
570 AboutToDeleteCallback(I);
571
572 // Null out all of the instruction's operands to see if any operand becomes
573 // dead as we go.
574 for (Use &OpU : I->operands()) {
575 Value *OpV = OpU.get();
576 OpU.set(nullptr);
577
578 if (!OpV->use_empty())
579 continue;
580
581 // If the operand is an instruction that became dead as we nulled out the
582 // operand, and if it is 'trivially' dead, delete it in a future loop
583 // iteration.
584 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
585 if (isInstructionTriviallyDead(OpI, TLI))
586 DeadInsts.push_back(OpI);
587 }
588 if (MSSAU)
589 MSSAU->removeMemoryAccess(I);
590
591 I->eraseFromParent();
592 }
593 }
594
replaceDbgUsesWithUndef(Instruction * I)595 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
596 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
597 findDbgUsers(DbgUsers, I);
598 for (auto *DII : DbgUsers) {
599 Value *Undef = UndefValue::get(I->getType());
600 DII->replaceVariableLocationOp(I, Undef);
601 }
602 return !DbgUsers.empty();
603 }
604
605 /// areAllUsesEqual - Check whether the uses of a value are all the same.
606 /// This is similar to Instruction::hasOneUse() except this will also return
607 /// true when there are no uses or multiple uses that all refer to the same
608 /// value.
areAllUsesEqual(Instruction * I)609 static bool areAllUsesEqual(Instruction *I) {
610 Value::user_iterator UI = I->user_begin();
611 Value::user_iterator UE = I->user_end();
612 if (UI == UE)
613 return true;
614
615 User *TheUse = *UI;
616 for (++UI; UI != UE; ++UI) {
617 if (*UI != TheUse)
618 return false;
619 }
620 return true;
621 }
622
623 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
624 /// dead PHI node, due to being a def-use chain of single-use nodes that
625 /// either forms a cycle or is terminated by a trivially dead instruction,
626 /// delete it. If that makes any of its operands trivially dead, delete them
627 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI,llvm::MemorySSAUpdater * MSSAU)628 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
629 const TargetLibraryInfo *TLI,
630 llvm::MemorySSAUpdater *MSSAU) {
631 SmallPtrSet<Instruction*, 4> Visited;
632 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
633 I = cast<Instruction>(*I->user_begin())) {
634 if (I->use_empty())
635 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
636
637 // If we find an instruction more than once, we're on a cycle that
638 // won't prove fruitful.
639 if (!Visited.insert(I).second) {
640 // Break the cycle and delete the instruction and its operands.
641 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
642 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
643 return true;
644 }
645 }
646 return false;
647 }
648
649 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)650 simplifyAndDCEInstruction(Instruction *I,
651 SmallSetVector<Instruction *, 16> &WorkList,
652 const DataLayout &DL,
653 const TargetLibraryInfo *TLI) {
654 if (isInstructionTriviallyDead(I, TLI)) {
655 salvageDebugInfo(*I);
656
657 // Null out all of the instruction's operands to see if any operand becomes
658 // dead as we go.
659 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
660 Value *OpV = I->getOperand(i);
661 I->setOperand(i, nullptr);
662
663 if (!OpV->use_empty() || I == OpV)
664 continue;
665
666 // If the operand is an instruction that became dead as we nulled out the
667 // operand, and if it is 'trivially' dead, delete it in a future loop
668 // iteration.
669 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
670 if (isInstructionTriviallyDead(OpI, TLI))
671 WorkList.insert(OpI);
672 }
673
674 I->eraseFromParent();
675
676 return true;
677 }
678
679 if (Value *SimpleV = simplifyInstruction(I, DL)) {
680 // Add the users to the worklist. CAREFUL: an instruction can use itself,
681 // in the case of a phi node.
682 for (User *U : I->users()) {
683 if (U != I) {
684 WorkList.insert(cast<Instruction>(U));
685 }
686 }
687
688 // Replace the instruction with its simplified value.
689 bool Changed = false;
690 if (!I->use_empty()) {
691 I->replaceAllUsesWith(SimpleV);
692 Changed = true;
693 }
694 if (isInstructionTriviallyDead(I, TLI)) {
695 I->eraseFromParent();
696 Changed = true;
697 }
698 return Changed;
699 }
700 return false;
701 }
702
703 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
704 /// simplify any instructions in it and recursively delete dead instructions.
705 ///
706 /// This returns true if it changed the code, note that it can delete
707 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)708 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
709 const TargetLibraryInfo *TLI) {
710 bool MadeChange = false;
711 const DataLayout &DL = BB->getModule()->getDataLayout();
712
713 #ifndef NDEBUG
714 // In debug builds, ensure that the terminator of the block is never replaced
715 // or deleted by these simplifications. The idea of simplification is that it
716 // cannot introduce new instructions, and there is no way to replace the
717 // terminator of a block without introducing a new instruction.
718 AssertingVH<Instruction> TerminatorVH(&BB->back());
719 #endif
720
721 SmallSetVector<Instruction *, 16> WorkList;
722 // Iterate over the original function, only adding insts to the worklist
723 // if they actually need to be revisited. This avoids having to pre-init
724 // the worklist with the entire function's worth of instructions.
725 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
726 BI != E;) {
727 assert(!BI->isTerminator());
728 Instruction *I = &*BI;
729 ++BI;
730
731 // We're visiting this instruction now, so make sure it's not in the
732 // worklist from an earlier visit.
733 if (!WorkList.count(I))
734 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
735 }
736
737 while (!WorkList.empty()) {
738 Instruction *I = WorkList.pop_back_val();
739 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
740 }
741 return MadeChange;
742 }
743
744 //===----------------------------------------------------------------------===//
745 // Control Flow Graph Restructuring.
746 //
747
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DomTreeUpdater * DTU)748 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
749 DomTreeUpdater *DTU) {
750
751 // If BB has single-entry PHI nodes, fold them.
752 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
753 Value *NewVal = PN->getIncomingValue(0);
754 // Replace self referencing PHI with poison, it must be dead.
755 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
756 PN->replaceAllUsesWith(NewVal);
757 PN->eraseFromParent();
758 }
759
760 BasicBlock *PredBB = DestBB->getSinglePredecessor();
761 assert(PredBB && "Block doesn't have a single predecessor!");
762
763 bool ReplaceEntryBB = PredBB->isEntryBlock();
764
765 // DTU updates: Collect all the edges that enter
766 // PredBB. These dominator edges will be redirected to DestBB.
767 SmallVector<DominatorTree::UpdateType, 32> Updates;
768
769 if (DTU) {
770 // To avoid processing the same predecessor more than once.
771 SmallPtrSet<BasicBlock *, 2> SeenPreds;
772 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
773 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
774 // This predecessor of PredBB may already have DestBB as a successor.
775 if (PredOfPredBB != PredBB)
776 if (SeenPreds.insert(PredOfPredBB).second)
777 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
778 SeenPreds.clear();
779 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
780 if (SeenPreds.insert(PredOfPredBB).second)
781 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
782 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
783 }
784
785 // Zap anything that took the address of DestBB. Not doing this will give the
786 // address an invalid value.
787 if (DestBB->hasAddressTaken()) {
788 BlockAddress *BA = BlockAddress::get(DestBB);
789 Constant *Replacement =
790 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
791 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
792 BA->getType()));
793 BA->destroyConstant();
794 }
795
796 // Anything that branched to PredBB now branches to DestBB.
797 PredBB->replaceAllUsesWith(DestBB);
798
799 // Splice all the instructions from PredBB to DestBB.
800 PredBB->getTerminator()->eraseFromParent();
801 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
802 new UnreachableInst(PredBB->getContext(), PredBB);
803
804 // If the PredBB is the entry block of the function, move DestBB up to
805 // become the entry block after we erase PredBB.
806 if (ReplaceEntryBB)
807 DestBB->moveAfter(PredBB);
808
809 if (DTU) {
810 assert(PredBB->getInstList().size() == 1 &&
811 isa<UnreachableInst>(PredBB->getTerminator()) &&
812 "The successor list of PredBB isn't empty before "
813 "applying corresponding DTU updates.");
814 DTU->applyUpdatesPermissive(Updates);
815 DTU->deleteBB(PredBB);
816 // Recalculation of DomTree is needed when updating a forward DomTree and
817 // the Entry BB is replaced.
818 if (ReplaceEntryBB && DTU->hasDomTree()) {
819 // The entry block was removed and there is no external interface for
820 // the dominator tree to be notified of this change. In this corner-case
821 // we recalculate the entire tree.
822 DTU->recalculate(*(DestBB->getParent()));
823 }
824 }
825
826 else {
827 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
828 }
829 }
830
831 /// Return true if we can choose one of these values to use in place of the
832 /// other. Note that we will always choose the non-undef value to keep.
CanMergeValues(Value * First,Value * Second)833 static bool CanMergeValues(Value *First, Value *Second) {
834 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
835 }
836
837 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
838 /// branch to Succ, into Succ.
839 ///
840 /// Assumption: Succ is the single successor for BB.
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)841 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
842 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
843
844 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
845 << Succ->getName() << "\n");
846 // Shortcut, if there is only a single predecessor it must be BB and merging
847 // is always safe
848 if (Succ->getSinglePredecessor()) return true;
849
850 // Make a list of the predecessors of BB
851 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
852
853 // Look at all the phi nodes in Succ, to see if they present a conflict when
854 // merging these blocks
855 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
856 PHINode *PN = cast<PHINode>(I);
857
858 // If the incoming value from BB is again a PHINode in
859 // BB which has the same incoming value for *PI as PN does, we can
860 // merge the phi nodes and then the blocks can still be merged
861 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
862 if (BBPN && BBPN->getParent() == BB) {
863 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
864 BasicBlock *IBB = PN->getIncomingBlock(PI);
865 if (BBPreds.count(IBB) &&
866 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
867 PN->getIncomingValue(PI))) {
868 LLVM_DEBUG(dbgs()
869 << "Can't fold, phi node " << PN->getName() << " in "
870 << Succ->getName() << " is conflicting with "
871 << BBPN->getName() << " with regard to common predecessor "
872 << IBB->getName() << "\n");
873 return false;
874 }
875 }
876 } else {
877 Value* Val = PN->getIncomingValueForBlock(BB);
878 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
879 // See if the incoming value for the common predecessor is equal to the
880 // one for BB, in which case this phi node will not prevent the merging
881 // of the block.
882 BasicBlock *IBB = PN->getIncomingBlock(PI);
883 if (BBPreds.count(IBB) &&
884 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
885 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
886 << " in " << Succ->getName()
887 << " is conflicting with regard to common "
888 << "predecessor " << IBB->getName() << "\n");
889 return false;
890 }
891 }
892 }
893 }
894
895 return true;
896 }
897
898 using PredBlockVector = SmallVector<BasicBlock *, 16>;
899 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
900
901 /// Determines the value to use as the phi node input for a block.
902 ///
903 /// Select between \p OldVal any value that we know flows from \p BB
904 /// to a particular phi on the basis of which one (if either) is not
905 /// undef. Update IncomingValues based on the selected value.
906 ///
907 /// \param OldVal The value we are considering selecting.
908 /// \param BB The block that the value flows in from.
909 /// \param IncomingValues A map from block-to-value for other phi inputs
910 /// that we have examined.
911 ///
912 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)913 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
914 IncomingValueMap &IncomingValues) {
915 if (!isa<UndefValue>(OldVal)) {
916 assert((!IncomingValues.count(BB) ||
917 IncomingValues.find(BB)->second == OldVal) &&
918 "Expected OldVal to match incoming value from BB!");
919
920 IncomingValues.insert(std::make_pair(BB, OldVal));
921 return OldVal;
922 }
923
924 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
925 if (It != IncomingValues.end()) return It->second;
926
927 return OldVal;
928 }
929
930 /// Create a map from block to value for the operands of a
931 /// given phi.
932 ///
933 /// Create a map from block to value for each non-undef value flowing
934 /// into \p PN.
935 ///
936 /// \param PN The phi we are collecting the map for.
937 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)938 static void gatherIncomingValuesToPhi(PHINode *PN,
939 IncomingValueMap &IncomingValues) {
940 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
941 BasicBlock *BB = PN->getIncomingBlock(i);
942 Value *V = PN->getIncomingValue(i);
943
944 if (!isa<UndefValue>(V))
945 IncomingValues.insert(std::make_pair(BB, V));
946 }
947 }
948
949 /// Replace the incoming undef values to a phi with the values
950 /// from a block-to-value map.
951 ///
952 /// \param PN The phi we are replacing the undefs in.
953 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)954 static void replaceUndefValuesInPhi(PHINode *PN,
955 const IncomingValueMap &IncomingValues) {
956 SmallVector<unsigned> TrueUndefOps;
957 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
958 Value *V = PN->getIncomingValue(i);
959
960 if (!isa<UndefValue>(V)) continue;
961
962 BasicBlock *BB = PN->getIncomingBlock(i);
963 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
964
965 // Keep track of undef/poison incoming values. Those must match, so we fix
966 // them up below if needed.
967 // Note: this is conservatively correct, but we could try harder and group
968 // the undef values per incoming basic block.
969 if (It == IncomingValues.end()) {
970 TrueUndefOps.push_back(i);
971 continue;
972 }
973
974 // There is a defined value for this incoming block, so map this undef
975 // incoming value to the defined value.
976 PN->setIncomingValue(i, It->second);
977 }
978
979 // If there are both undef and poison values incoming, then convert those
980 // values to undef. It is invalid to have different values for the same
981 // incoming block.
982 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
983 return isa<PoisonValue>(PN->getIncomingValue(i));
984 });
985 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
986 for (unsigned i : TrueUndefOps)
987 PN->setIncomingValue(i, UndefValue::get(PN->getType()));
988 }
989 }
990
991 /// Replace a value flowing from a block to a phi with
992 /// potentially multiple instances of that value flowing from the
993 /// block's predecessors to the phi.
994 ///
995 /// \param BB The block with the value flowing into the phi.
996 /// \param BBPreds The predecessors of BB.
997 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)998 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
999 const PredBlockVector &BBPreds,
1000 PHINode *PN) {
1001 Value *OldVal = PN->removeIncomingValue(BB, false);
1002 assert(OldVal && "No entry in PHI for Pred BB!");
1003
1004 IncomingValueMap IncomingValues;
1005
1006 // We are merging two blocks - BB, and the block containing PN - and
1007 // as a result we need to redirect edges from the predecessors of BB
1008 // to go to the block containing PN, and update PN
1009 // accordingly. Since we allow merging blocks in the case where the
1010 // predecessor and successor blocks both share some predecessors,
1011 // and where some of those common predecessors might have undef
1012 // values flowing into PN, we want to rewrite those values to be
1013 // consistent with the non-undef values.
1014
1015 gatherIncomingValuesToPhi(PN, IncomingValues);
1016
1017 // If this incoming value is one of the PHI nodes in BB, the new entries
1018 // in the PHI node are the entries from the old PHI.
1019 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1020 PHINode *OldValPN = cast<PHINode>(OldVal);
1021 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1022 // Note that, since we are merging phi nodes and BB and Succ might
1023 // have common predecessors, we could end up with a phi node with
1024 // identical incoming branches. This will be cleaned up later (and
1025 // will trigger asserts if we try to clean it up now, without also
1026 // simplifying the corresponding conditional branch).
1027 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1028 Value *PredVal = OldValPN->getIncomingValue(i);
1029 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1030 IncomingValues);
1031
1032 // And add a new incoming value for this predecessor for the
1033 // newly retargeted branch.
1034 PN->addIncoming(Selected, PredBB);
1035 }
1036 } else {
1037 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1038 // Update existing incoming values in PN for this
1039 // predecessor of BB.
1040 BasicBlock *PredBB = BBPreds[i];
1041 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1042 IncomingValues);
1043
1044 // And add a new incoming value for this predecessor for the
1045 // newly retargeted branch.
1046 PN->addIncoming(Selected, PredBB);
1047 }
1048 }
1049
1050 replaceUndefValuesInPhi(PN, IncomingValues);
1051 }
1052
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB,DomTreeUpdater * DTU)1053 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1054 DomTreeUpdater *DTU) {
1055 assert(BB != &BB->getParent()->getEntryBlock() &&
1056 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1057
1058 // We can't eliminate infinite loops.
1059 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1060 if (BB == Succ) return false;
1061
1062 // Check to see if merging these blocks would cause conflicts for any of the
1063 // phi nodes in BB or Succ. If not, we can safely merge.
1064 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1065
1066 // Check for cases where Succ has multiple predecessors and a PHI node in BB
1067 // has uses which will not disappear when the PHI nodes are merged. It is
1068 // possible to handle such cases, but difficult: it requires checking whether
1069 // BB dominates Succ, which is non-trivial to calculate in the case where
1070 // Succ has multiple predecessors. Also, it requires checking whether
1071 // constructing the necessary self-referential PHI node doesn't introduce any
1072 // conflicts; this isn't too difficult, but the previous code for doing this
1073 // was incorrect.
1074 //
1075 // Note that if this check finds a live use, BB dominates Succ, so BB is
1076 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1077 // folding the branch isn't profitable in that case anyway.
1078 if (!Succ->getSinglePredecessor()) {
1079 BasicBlock::iterator BBI = BB->begin();
1080 while (isa<PHINode>(*BBI)) {
1081 for (Use &U : BBI->uses()) {
1082 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1083 if (PN->getIncomingBlock(U) != BB)
1084 return false;
1085 } else {
1086 return false;
1087 }
1088 }
1089 ++BBI;
1090 }
1091 }
1092
1093 // We cannot fold the block if it's a branch to an already present callbr
1094 // successor because that creates duplicate successors.
1095 for (BasicBlock *PredBB : predecessors(BB)) {
1096 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1097 if (Succ == CBI->getDefaultDest())
1098 return false;
1099 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1100 if (Succ == CBI->getIndirectDest(i))
1101 return false;
1102 }
1103 }
1104
1105 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1106
1107 SmallVector<DominatorTree::UpdateType, 32> Updates;
1108 if (DTU) {
1109 // To avoid processing the same predecessor more than once.
1110 SmallPtrSet<BasicBlock *, 8> SeenPreds;
1111 // All predecessors of BB will be moved to Succ.
1112 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1113 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1114 for (auto *PredOfBB : predecessors(BB))
1115 // This predecessor of BB may already have Succ as a successor.
1116 if (!PredsOfSucc.contains(PredOfBB))
1117 if (SeenPreds.insert(PredOfBB).second)
1118 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1119 SeenPreds.clear();
1120 for (auto *PredOfBB : predecessors(BB))
1121 if (SeenPreds.insert(PredOfBB).second)
1122 Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1123 Updates.push_back({DominatorTree::Delete, BB, Succ});
1124 }
1125
1126 if (isa<PHINode>(Succ->begin())) {
1127 // If there is more than one pred of succ, and there are PHI nodes in
1128 // the successor, then we need to add incoming edges for the PHI nodes
1129 //
1130 const PredBlockVector BBPreds(predecessors(BB));
1131
1132 // Loop over all of the PHI nodes in the successor of BB.
1133 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1134 PHINode *PN = cast<PHINode>(I);
1135
1136 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1137 }
1138 }
1139
1140 if (Succ->getSinglePredecessor()) {
1141 // BB is the only predecessor of Succ, so Succ will end up with exactly
1142 // the same predecessors BB had.
1143
1144 // Copy over any phi, debug or lifetime instruction.
1145 BB->getTerminator()->eraseFromParent();
1146 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1147 BB->getInstList());
1148 } else {
1149 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1150 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1151 assert(PN->use_empty() && "There shouldn't be any uses here!");
1152 PN->eraseFromParent();
1153 }
1154 }
1155
1156 // If the unconditional branch we replaced contains llvm.loop metadata, we
1157 // add the metadata to the branch instructions in the predecessors.
1158 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1159 Instruction *TI = BB->getTerminator();
1160 if (TI)
1161 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1162 for (BasicBlock *Pred : predecessors(BB))
1163 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1164
1165 // Everything that jumped to BB now goes to Succ.
1166 BB->replaceAllUsesWith(Succ);
1167 if (!Succ->hasName()) Succ->takeName(BB);
1168
1169 // Clear the successor list of BB to match updates applying to DTU later.
1170 if (BB->getTerminator())
1171 BB->getInstList().pop_back();
1172 new UnreachableInst(BB->getContext(), BB);
1173 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1174 "applying corresponding DTU updates.");
1175
1176 if (DTU)
1177 DTU->applyUpdates(Updates);
1178
1179 DeleteDeadBlock(BB, DTU);
1180
1181 return true;
1182 }
1183
EliminateDuplicatePHINodesNaiveImpl(BasicBlock * BB)1184 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1185 // This implementation doesn't currently consider undef operands
1186 // specially. Theoretically, two phis which are identical except for
1187 // one having an undef where the other doesn't could be collapsed.
1188
1189 bool Changed = false;
1190
1191 // Examine each PHI.
1192 // Note that increment of I must *NOT* be in the iteration_expression, since
1193 // we don't want to immediately advance when we restart from the beginning.
1194 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1195 ++I;
1196 // Is there an identical PHI node in this basic block?
1197 // Note that we only look in the upper square's triangle,
1198 // we already checked that the lower triangle PHI's aren't identical.
1199 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1200 if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1201 continue;
1202 // A duplicate. Replace this PHI with the base PHI.
1203 ++NumPHICSEs;
1204 DuplicatePN->replaceAllUsesWith(PN);
1205 DuplicatePN->eraseFromParent();
1206 Changed = true;
1207
1208 // The RAUW can change PHIs that we already visited.
1209 I = BB->begin();
1210 break; // Start over from the beginning.
1211 }
1212 }
1213 return Changed;
1214 }
1215
EliminateDuplicatePHINodesSetBasedImpl(BasicBlock * BB)1216 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1217 // This implementation doesn't currently consider undef operands
1218 // specially. Theoretically, two phis which are identical except for
1219 // one having an undef where the other doesn't could be collapsed.
1220
1221 struct PHIDenseMapInfo {
1222 static PHINode *getEmptyKey() {
1223 return DenseMapInfo<PHINode *>::getEmptyKey();
1224 }
1225
1226 static PHINode *getTombstoneKey() {
1227 return DenseMapInfo<PHINode *>::getTombstoneKey();
1228 }
1229
1230 static bool isSentinel(PHINode *PN) {
1231 return PN == getEmptyKey() || PN == getTombstoneKey();
1232 }
1233
1234 // WARNING: this logic must be kept in sync with
1235 // Instruction::isIdenticalToWhenDefined()!
1236 static unsigned getHashValueImpl(PHINode *PN) {
1237 // Compute a hash value on the operands. Instcombine will likely have
1238 // sorted them, which helps expose duplicates, but we have to check all
1239 // the operands to be safe in case instcombine hasn't run.
1240 return static_cast<unsigned>(hash_combine(
1241 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1242 hash_combine_range(PN->block_begin(), PN->block_end())));
1243 }
1244
1245 static unsigned getHashValue(PHINode *PN) {
1246 #ifndef NDEBUG
1247 // If -phicse-debug-hash was specified, return a constant -- this
1248 // will force all hashing to collide, so we'll exhaustively search
1249 // the table for a match, and the assertion in isEqual will fire if
1250 // there's a bug causing equal keys to hash differently.
1251 if (PHICSEDebugHash)
1252 return 0;
1253 #endif
1254 return getHashValueImpl(PN);
1255 }
1256
1257 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1258 if (isSentinel(LHS) || isSentinel(RHS))
1259 return LHS == RHS;
1260 return LHS->isIdenticalTo(RHS);
1261 }
1262
1263 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1264 // These comparisons are nontrivial, so assert that equality implies
1265 // hash equality (DenseMap demands this as an invariant).
1266 bool Result = isEqualImpl(LHS, RHS);
1267 assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1268 getHashValueImpl(LHS) == getHashValueImpl(RHS));
1269 return Result;
1270 }
1271 };
1272
1273 // Set of unique PHINodes.
1274 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1275 PHISet.reserve(4 * PHICSENumPHISmallSize);
1276
1277 // Examine each PHI.
1278 bool Changed = false;
1279 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1280 auto Inserted = PHISet.insert(PN);
1281 if (!Inserted.second) {
1282 // A duplicate. Replace this PHI with its duplicate.
1283 ++NumPHICSEs;
1284 PN->replaceAllUsesWith(*Inserted.first);
1285 PN->eraseFromParent();
1286 Changed = true;
1287
1288 // The RAUW can change PHIs that we already visited. Start over from the
1289 // beginning.
1290 PHISet.clear();
1291 I = BB->begin();
1292 }
1293 }
1294
1295 return Changed;
1296 }
1297
EliminateDuplicatePHINodes(BasicBlock * BB)1298 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1299 if (
1300 #ifndef NDEBUG
1301 !PHICSEDebugHash &&
1302 #endif
1303 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1304 return EliminateDuplicatePHINodesNaiveImpl(BB);
1305 return EliminateDuplicatePHINodesSetBasedImpl(BB);
1306 }
1307
1308 /// If the specified pointer points to an object that we control, try to modify
1309 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1310 /// the value after the operation, which may be lower than PrefAlign.
1311 ///
1312 /// Increating value alignment isn't often possible though. If alignment is
1313 /// important, a more reliable approach is to simply align all global variables
1314 /// and allocation instructions to their preferred alignment from the beginning.
tryEnforceAlignment(Value * V,Align PrefAlign,const DataLayout & DL)1315 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1316 const DataLayout &DL) {
1317 V = V->stripPointerCasts();
1318
1319 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1320 // TODO: Ideally, this function would not be called if PrefAlign is smaller
1321 // than the current alignment, as the known bits calculation should have
1322 // already taken it into account. However, this is not always the case,
1323 // as computeKnownBits() has a depth limit, while stripPointerCasts()
1324 // doesn't.
1325 Align CurrentAlign = AI->getAlign();
1326 if (PrefAlign <= CurrentAlign)
1327 return CurrentAlign;
1328
1329 // If the preferred alignment is greater than the natural stack alignment
1330 // then don't round up. This avoids dynamic stack realignment.
1331 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1332 return CurrentAlign;
1333 AI->setAlignment(PrefAlign);
1334 return PrefAlign;
1335 }
1336
1337 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1338 // TODO: as above, this shouldn't be necessary.
1339 Align CurrentAlign = GO->getPointerAlignment(DL);
1340 if (PrefAlign <= CurrentAlign)
1341 return CurrentAlign;
1342
1343 // If there is a large requested alignment and we can, bump up the alignment
1344 // of the global. If the memory we set aside for the global may not be the
1345 // memory used by the final program then it is impossible for us to reliably
1346 // enforce the preferred alignment.
1347 if (!GO->canIncreaseAlignment())
1348 return CurrentAlign;
1349
1350 GO->setAlignment(PrefAlign);
1351 return PrefAlign;
1352 }
1353
1354 return Align(1);
1355 }
1356
getOrEnforceKnownAlignment(Value * V,MaybeAlign PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)1357 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1358 const DataLayout &DL,
1359 const Instruction *CxtI,
1360 AssumptionCache *AC,
1361 const DominatorTree *DT) {
1362 assert(V->getType()->isPointerTy() &&
1363 "getOrEnforceKnownAlignment expects a pointer!");
1364
1365 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1366 unsigned TrailZ = Known.countMinTrailingZeros();
1367
1368 // Avoid trouble with ridiculously large TrailZ values, such as
1369 // those computed from a null pointer.
1370 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1371 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1372
1373 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1374
1375 if (PrefAlign && *PrefAlign > Alignment)
1376 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1377
1378 // We don't need to make any adjustment.
1379 return Alignment;
1380 }
1381
1382 ///===---------------------------------------------------------------------===//
1383 /// Dbg Intrinsic utilities
1384 ///
1385
1386 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
PhiHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,PHINode * APN)1387 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1388 DIExpression *DIExpr,
1389 PHINode *APN) {
1390 // Since we can't guarantee that the original dbg.declare intrinsic
1391 // is removed by LowerDbgDeclare(), we need to make sure that we are
1392 // not inserting the same dbg.value intrinsic over and over.
1393 SmallVector<DbgValueInst *, 1> DbgValues;
1394 findDbgValues(DbgValues, APN);
1395 for (auto *DVI : DbgValues) {
1396 assert(is_contained(DVI->getValues(), APN));
1397 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1398 return true;
1399 }
1400 return false;
1401 }
1402
1403 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1404 /// (or fragment of the variable) described by \p DII.
1405 ///
1406 /// This is primarily intended as a helper for the different
1407 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1408 /// converted describes an alloca'd variable, so we need to use the
1409 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1410 /// identified as covering an n-bit fragment, if the store size of i1 is at
1411 /// least n bits.
valueCoversEntireFragment(Type * ValTy,DbgVariableIntrinsic * DII)1412 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1413 const DataLayout &DL = DII->getModule()->getDataLayout();
1414 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1415 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1416 assert(!ValueSize.isScalable() &&
1417 "Fragments don't work on scalable types.");
1418 return ValueSize.getFixedSize() >= *FragmentSize;
1419 }
1420 // We can't always calculate the size of the DI variable (e.g. if it is a
1421 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1422 // intead.
1423 if (DII->isAddressOfVariable()) {
1424 // DII should have exactly 1 location when it is an address.
1425 assert(DII->getNumVariableLocationOps() == 1 &&
1426 "address of variable must have exactly 1 location operand.");
1427 if (auto *AI =
1428 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1429 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1430 return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1431 }
1432 }
1433 }
1434 // Could not determine size of variable. Conservatively return false.
1435 return false;
1436 }
1437
1438 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1439 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1440 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1441 /// case this DebugLoc leaks into any adjacent instructions.
getDebugValueLoc(DbgVariableIntrinsic * DII,Instruction * Src)1442 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1443 // Original dbg.declare must have a location.
1444 const DebugLoc &DeclareLoc = DII->getDebugLoc();
1445 MDNode *Scope = DeclareLoc.getScope();
1446 DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1447 // Produce an unknown location with the correct scope / inlinedAt fields.
1448 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1449 }
1450
1451 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1452 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,StoreInst * SI,DIBuilder & Builder)1453 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1454 StoreInst *SI, DIBuilder &Builder) {
1455 assert(DII->isAddressOfVariable());
1456 auto *DIVar = DII->getVariable();
1457 assert(DIVar && "Missing variable");
1458 auto *DIExpr = DII->getExpression();
1459 Value *DV = SI->getValueOperand();
1460
1461 DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1462
1463 if (!valueCoversEntireFragment(DV->getType(), DII)) {
1464 // FIXME: If storing to a part of the variable described by the dbg.declare,
1465 // then we want to insert a dbg.value for the corresponding fragment.
1466 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1467 << *DII << '\n');
1468 // For now, when there is a store to parts of the variable (but we do not
1469 // know which part) we insert an dbg.value intrinsic to indicate that we
1470 // know nothing about the variable's content.
1471 DV = UndefValue::get(DV->getType());
1472 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1473 return;
1474 }
1475
1476 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1477 }
1478
1479 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1480 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,LoadInst * LI,DIBuilder & Builder)1481 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1482 LoadInst *LI, DIBuilder &Builder) {
1483 auto *DIVar = DII->getVariable();
1484 auto *DIExpr = DII->getExpression();
1485 assert(DIVar && "Missing variable");
1486
1487 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1488 // FIXME: If only referring to a part of the variable described by the
1489 // dbg.declare, then we want to insert a dbg.value for the corresponding
1490 // fragment.
1491 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1492 << *DII << '\n');
1493 return;
1494 }
1495
1496 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1497
1498 // We are now tracking the loaded value instead of the address. In the
1499 // future if multi-location support is added to the IR, it might be
1500 // preferable to keep tracking both the loaded value and the original
1501 // address in case the alloca can not be elided.
1502 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1503 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1504 DbgValue->insertAfter(LI);
1505 }
1506
1507 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1508 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,PHINode * APN,DIBuilder & Builder)1509 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1510 PHINode *APN, DIBuilder &Builder) {
1511 auto *DIVar = DII->getVariable();
1512 auto *DIExpr = DII->getExpression();
1513 assert(DIVar && "Missing variable");
1514
1515 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1516 return;
1517
1518 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1519 // FIXME: If only referring to a part of the variable described by the
1520 // dbg.declare, then we want to insert a dbg.value for the corresponding
1521 // fragment.
1522 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1523 << *DII << '\n');
1524 return;
1525 }
1526
1527 BasicBlock *BB = APN->getParent();
1528 auto InsertionPt = BB->getFirstInsertionPt();
1529
1530 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1531
1532 // The block may be a catchswitch block, which does not have a valid
1533 // insertion point.
1534 // FIXME: Insert dbg.value markers in the successors when appropriate.
1535 if (InsertionPt != BB->end())
1536 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1537 }
1538
1539 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1540 static bool isArray(AllocaInst *AI) {
1541 return AI->isArrayAllocation() ||
1542 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1543 }
1544
1545 /// Determine whether this alloca is a structure.
isStructure(AllocaInst * AI)1546 static bool isStructure(AllocaInst *AI) {
1547 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1548 }
1549
1550 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1551 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1552 bool llvm::LowerDbgDeclare(Function &F) {
1553 bool Changed = false;
1554 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1555 SmallVector<DbgDeclareInst *, 4> Dbgs;
1556 for (auto &FI : F)
1557 for (Instruction &BI : FI)
1558 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1559 Dbgs.push_back(DDI);
1560
1561 if (Dbgs.empty())
1562 return Changed;
1563
1564 for (auto &I : Dbgs) {
1565 DbgDeclareInst *DDI = I;
1566 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1567 // If this is an alloca for a scalar variable, insert a dbg.value
1568 // at each load and store to the alloca and erase the dbg.declare.
1569 // The dbg.values allow tracking a variable even if it is not
1570 // stored on the stack, while the dbg.declare can only describe
1571 // the stack slot (and at a lexical-scope granularity). Later
1572 // passes will attempt to elide the stack slot.
1573 if (!AI || isArray(AI) || isStructure(AI))
1574 continue;
1575
1576 // A volatile load/store means that the alloca can't be elided anyway.
1577 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1578 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1579 return LI->isVolatile();
1580 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1581 return SI->isVolatile();
1582 return false;
1583 }))
1584 continue;
1585
1586 SmallVector<const Value *, 8> WorkList;
1587 WorkList.push_back(AI);
1588 while (!WorkList.empty()) {
1589 const Value *V = WorkList.pop_back_val();
1590 for (auto &AIUse : V->uses()) {
1591 User *U = AIUse.getUser();
1592 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1593 if (AIUse.getOperandNo() == 1)
1594 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1595 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1596 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1597 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1598 // This is a call by-value or some other instruction that takes a
1599 // pointer to the variable. Insert a *value* intrinsic that describes
1600 // the variable by dereferencing the alloca.
1601 if (!CI->isLifetimeStartOrEnd()) {
1602 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1603 auto *DerefExpr =
1604 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1605 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1606 NewLoc, CI);
1607 }
1608 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1609 if (BI->getType()->isPointerTy())
1610 WorkList.push_back(BI);
1611 }
1612 }
1613 }
1614 DDI->eraseFromParent();
1615 Changed = true;
1616 }
1617
1618 if (Changed)
1619 for (BasicBlock &BB : F)
1620 RemoveRedundantDbgInstrs(&BB);
1621
1622 return Changed;
1623 }
1624
1625 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
insertDebugValuesForPHIs(BasicBlock * BB,SmallVectorImpl<PHINode * > & InsertedPHIs)1626 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1627 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1628 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1629 if (InsertedPHIs.size() == 0)
1630 return;
1631
1632 // Map existing PHI nodes to their dbg.values.
1633 ValueToValueMapTy DbgValueMap;
1634 for (auto &I : *BB) {
1635 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1636 for (Value *V : DbgII->location_ops())
1637 if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1638 DbgValueMap.insert({Loc, DbgII});
1639 }
1640 }
1641 if (DbgValueMap.size() == 0)
1642 return;
1643
1644 // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1645 // so that if a dbg.value is being rewritten to use more than one of the
1646 // inserted PHIs in the same destination BB, we can update the same dbg.value
1647 // with all the new PHIs instead of creating one copy for each.
1648 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1649 DbgVariableIntrinsic *>
1650 NewDbgValueMap;
1651 // Then iterate through the new PHIs and look to see if they use one of the
1652 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1653 // propagate the info through the new PHI. If we use more than one new PHI in
1654 // a single destination BB with the same old dbg.value, merge the updates so
1655 // that we get a single new dbg.value with all the new PHIs.
1656 for (auto PHI : InsertedPHIs) {
1657 BasicBlock *Parent = PHI->getParent();
1658 // Avoid inserting an intrinsic into an EH block.
1659 if (Parent->getFirstNonPHI()->isEHPad())
1660 continue;
1661 for (auto VI : PHI->operand_values()) {
1662 auto V = DbgValueMap.find(VI);
1663 if (V != DbgValueMap.end()) {
1664 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1665 auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1666 if (NewDI == NewDbgValueMap.end()) {
1667 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1668 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1669 }
1670 DbgVariableIntrinsic *NewDbgII = NewDI->second;
1671 // If PHI contains VI as an operand more than once, we may
1672 // replaced it in NewDbgII; confirm that it is present.
1673 if (is_contained(NewDbgII->location_ops(), VI))
1674 NewDbgII->replaceVariableLocationOp(VI, PHI);
1675 }
1676 }
1677 }
1678 // Insert thew new dbg.values into their destination blocks.
1679 for (auto DI : NewDbgValueMap) {
1680 BasicBlock *Parent = DI.first.first;
1681 auto *NewDbgII = DI.second;
1682 auto InsertionPt = Parent->getFirstInsertionPt();
1683 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1684 NewDbgII->insertBefore(&*InsertionPt);
1685 }
1686 }
1687
replaceDbgDeclare(Value * Address,Value * NewAddress,DIBuilder & Builder,uint8_t DIExprFlags,int Offset)1688 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1689 DIBuilder &Builder, uint8_t DIExprFlags,
1690 int Offset) {
1691 auto DbgAddrs = FindDbgAddrUses(Address);
1692 for (DbgVariableIntrinsic *DII : DbgAddrs) {
1693 const DebugLoc &Loc = DII->getDebugLoc();
1694 auto *DIVar = DII->getVariable();
1695 auto *DIExpr = DII->getExpression();
1696 assert(DIVar && "Missing variable");
1697 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1698 // Insert llvm.dbg.declare immediately before DII, and remove old
1699 // llvm.dbg.declare.
1700 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1701 DII->eraseFromParent();
1702 }
1703 return !DbgAddrs.empty();
1704 }
1705
replaceOneDbgValueForAlloca(DbgValueInst * DVI,Value * NewAddress,DIBuilder & Builder,int Offset)1706 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1707 DIBuilder &Builder, int Offset) {
1708 const DebugLoc &Loc = DVI->getDebugLoc();
1709 auto *DIVar = DVI->getVariable();
1710 auto *DIExpr = DVI->getExpression();
1711 assert(DIVar && "Missing variable");
1712
1713 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1714 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1715 // it and give up.
1716 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1717 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1718 return;
1719
1720 // Insert the offset before the first deref.
1721 // We could just change the offset argument of dbg.value, but it's unsigned...
1722 if (Offset)
1723 DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1724
1725 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1726 DVI->eraseFromParent();
1727 }
1728
replaceDbgValueForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,int Offset)1729 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1730 DIBuilder &Builder, int Offset) {
1731 if (auto *L = LocalAsMetadata::getIfExists(AI))
1732 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1733 for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1734 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1735 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1736 }
1737
1738 /// Where possible to salvage debug information for \p I do so
1739 /// and return True. If not possible mark undef and return False.
salvageDebugInfo(Instruction & I)1740 void llvm::salvageDebugInfo(Instruction &I) {
1741 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1742 findDbgUsers(DbgUsers, &I);
1743 salvageDebugInfoForDbgValues(I, DbgUsers);
1744 }
1745
salvageDebugInfoForDbgValues(Instruction & I,ArrayRef<DbgVariableIntrinsic * > DbgUsers)1746 void llvm::salvageDebugInfoForDbgValues(
1747 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1748 // These are arbitrary chosen limits on the maximum number of values and the
1749 // maximum size of a debug expression we can salvage up to, used for
1750 // performance reasons.
1751 const unsigned MaxDebugArgs = 16;
1752 const unsigned MaxExpressionSize = 128;
1753 bool Salvaged = false;
1754
1755 for (auto *DII : DbgUsers) {
1756 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1757 // are implicitly pointing out the value as a DWARF memory location
1758 // description.
1759 bool StackValue = isa<DbgValueInst>(DII);
1760 auto DIILocation = DII->location_ops();
1761 assert(
1762 is_contained(DIILocation, &I) &&
1763 "DbgVariableIntrinsic must use salvaged instruction as its location");
1764 SmallVector<Value *, 4> AdditionalValues;
1765 // `I` may appear more than once in DII's location ops, and each use of `I`
1766 // must be updated in the DIExpression and potentially have additional
1767 // values added; thus we call salvageDebugInfoImpl for each `I` instance in
1768 // DIILocation.
1769 Value *Op0 = nullptr;
1770 DIExpression *SalvagedExpr = DII->getExpression();
1771 auto LocItr = find(DIILocation, &I);
1772 while (SalvagedExpr && LocItr != DIILocation.end()) {
1773 SmallVector<uint64_t, 16> Ops;
1774 unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
1775 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
1776 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
1777 if (!Op0)
1778 break;
1779 SalvagedExpr =
1780 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
1781 LocItr = std::find(++LocItr, DIILocation.end(), &I);
1782 }
1783 // salvageDebugInfoImpl should fail on examining the first element of
1784 // DbgUsers, or none of them.
1785 if (!Op0)
1786 break;
1787
1788 DII->replaceVariableLocationOp(&I, Op0);
1789 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
1790 if (AdditionalValues.empty() && IsValidSalvageExpr) {
1791 DII->setExpression(SalvagedExpr);
1792 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
1793 DII->getNumVariableLocationOps() + AdditionalValues.size() <=
1794 MaxDebugArgs) {
1795 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1796 } else {
1797 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1798 // currently only valid for stack value expressions.
1799 // Also do not salvage if the resulting DIArgList would contain an
1800 // unreasonably large number of values.
1801 Value *Undef = UndefValue::get(I.getOperand(0)->getType());
1802 DII->replaceVariableLocationOp(I.getOperand(0), Undef);
1803 }
1804 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1805 Salvaged = true;
1806 }
1807
1808 if (Salvaged)
1809 return;
1810
1811 for (auto *DII : DbgUsers) {
1812 Value *Undef = UndefValue::get(I.getType());
1813 DII->replaceVariableLocationOp(&I, Undef);
1814 }
1815 }
1816
getSalvageOpsForGEP(GetElementPtrInst * GEP,const DataLayout & DL,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Opcodes,SmallVectorImpl<Value * > & AdditionalValues)1817 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1818 uint64_t CurrentLocOps,
1819 SmallVectorImpl<uint64_t> &Opcodes,
1820 SmallVectorImpl<Value *> &AdditionalValues) {
1821 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1822 // Rewrite a GEP into a DIExpression.
1823 MapVector<Value *, APInt> VariableOffsets;
1824 APInt ConstantOffset(BitWidth, 0);
1825 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1826 return nullptr;
1827 if (!VariableOffsets.empty() && !CurrentLocOps) {
1828 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1829 CurrentLocOps = 1;
1830 }
1831 for (auto Offset : VariableOffsets) {
1832 AdditionalValues.push_back(Offset.first);
1833 assert(Offset.second.isStrictlyPositive() &&
1834 "Expected strictly positive multiplier for offset.");
1835 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1836 Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1837 dwarf::DW_OP_plus});
1838 }
1839 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1840 return GEP->getOperand(0);
1841 }
1842
getDwarfOpForBinOp(Instruction::BinaryOps Opcode)1843 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1844 switch (Opcode) {
1845 case Instruction::Add:
1846 return dwarf::DW_OP_plus;
1847 case Instruction::Sub:
1848 return dwarf::DW_OP_minus;
1849 case Instruction::Mul:
1850 return dwarf::DW_OP_mul;
1851 case Instruction::SDiv:
1852 return dwarf::DW_OP_div;
1853 case Instruction::SRem:
1854 return dwarf::DW_OP_mod;
1855 case Instruction::Or:
1856 return dwarf::DW_OP_or;
1857 case Instruction::And:
1858 return dwarf::DW_OP_and;
1859 case Instruction::Xor:
1860 return dwarf::DW_OP_xor;
1861 case Instruction::Shl:
1862 return dwarf::DW_OP_shl;
1863 case Instruction::LShr:
1864 return dwarf::DW_OP_shr;
1865 case Instruction::AShr:
1866 return dwarf::DW_OP_shra;
1867 default:
1868 // TODO: Salvage from each kind of binop we know about.
1869 return 0;
1870 }
1871 }
1872
getSalvageOpsForBinOp(BinaryOperator * BI,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Opcodes,SmallVectorImpl<Value * > & AdditionalValues)1873 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1874 SmallVectorImpl<uint64_t> &Opcodes,
1875 SmallVectorImpl<Value *> &AdditionalValues) {
1876 // Handle binary operations with constant integer operands as a special case.
1877 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1878 // Values wider than 64 bits cannot be represented within a DIExpression.
1879 if (ConstInt && ConstInt->getBitWidth() > 64)
1880 return nullptr;
1881
1882 Instruction::BinaryOps BinOpcode = BI->getOpcode();
1883 // Push any Constant Int operand onto the expression stack.
1884 if (ConstInt) {
1885 uint64_t Val = ConstInt->getSExtValue();
1886 // Add or Sub Instructions with a constant operand can potentially be
1887 // simplified.
1888 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1889 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1890 DIExpression::appendOffset(Opcodes, Offset);
1891 return BI->getOperand(0);
1892 }
1893 Opcodes.append({dwarf::DW_OP_constu, Val});
1894 } else {
1895 if (!CurrentLocOps) {
1896 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
1897 CurrentLocOps = 1;
1898 }
1899 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
1900 AdditionalValues.push_back(BI->getOperand(1));
1901 }
1902
1903 // Add salvaged binary operator to expression stack, if it has a valid
1904 // representation in a DIExpression.
1905 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1906 if (!DwarfBinOp)
1907 return nullptr;
1908 Opcodes.push_back(DwarfBinOp);
1909 return BI->getOperand(0);
1910 }
1911
salvageDebugInfoImpl(Instruction & I,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Ops,SmallVectorImpl<Value * > & AdditionalValues)1912 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
1913 SmallVectorImpl<uint64_t> &Ops,
1914 SmallVectorImpl<Value *> &AdditionalValues) {
1915 auto &M = *I.getModule();
1916 auto &DL = M.getDataLayout();
1917
1918 if (auto *CI = dyn_cast<CastInst>(&I)) {
1919 Value *FromValue = CI->getOperand(0);
1920 // No-op casts are irrelevant for debug info.
1921 if (CI->isNoopCast(DL)) {
1922 return FromValue;
1923 }
1924
1925 Type *Type = CI->getType();
1926 if (Type->isPointerTy())
1927 Type = DL.getIntPtrType(Type);
1928 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1929 if (Type->isVectorTy() ||
1930 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
1931 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
1932 return nullptr;
1933
1934 llvm::Type *FromType = FromValue->getType();
1935 if (FromType->isPointerTy())
1936 FromType = DL.getIntPtrType(FromType);
1937
1938 unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
1939 unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1940
1941 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1942 isa<SExtInst>(&I));
1943 Ops.append(ExtOps.begin(), ExtOps.end());
1944 return FromValue;
1945 }
1946
1947 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
1948 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
1949 if (auto *BI = dyn_cast<BinaryOperator>(&I))
1950 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
1951
1952 // *Not* to do: we should not attempt to salvage load instructions,
1953 // because the validity and lifetime of a dbg.value containing
1954 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1955 return nullptr;
1956 }
1957
1958 /// A replacement for a dbg.value expression.
1959 using DbgValReplacement = Optional<DIExpression *>;
1960
1961 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1962 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1963 /// changes are made.
rewriteDebugUsers(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT,function_ref<DbgValReplacement (DbgVariableIntrinsic & DII)> RewriteExpr)1964 static bool rewriteDebugUsers(
1965 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1966 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1967 // Find debug users of From.
1968 SmallVector<DbgVariableIntrinsic *, 1> Users;
1969 findDbgUsers(Users, &From);
1970 if (Users.empty())
1971 return false;
1972
1973 // Prevent use-before-def of To.
1974 bool Changed = false;
1975 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1976 if (isa<Instruction>(&To)) {
1977 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1978
1979 for (auto *DII : Users) {
1980 // It's common to see a debug user between From and DomPoint. Move it
1981 // after DomPoint to preserve the variable update without any reordering.
1982 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1983 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
1984 DII->moveAfter(&DomPoint);
1985 Changed = true;
1986
1987 // Users which otherwise aren't dominated by the replacement value must
1988 // be salvaged or deleted.
1989 } else if (!DT.dominates(&DomPoint, DII)) {
1990 UndefOrSalvage.insert(DII);
1991 }
1992 }
1993 }
1994
1995 // Update debug users without use-before-def risk.
1996 for (auto *DII : Users) {
1997 if (UndefOrSalvage.count(DII))
1998 continue;
1999
2000 DbgValReplacement DVR = RewriteExpr(*DII);
2001 if (!DVR)
2002 continue;
2003
2004 DII->replaceVariableLocationOp(&From, &To);
2005 DII->setExpression(*DVR);
2006 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
2007 Changed = true;
2008 }
2009
2010 if (!UndefOrSalvage.empty()) {
2011 // Try to salvage the remaining debug users.
2012 salvageDebugInfo(From);
2013 Changed = true;
2014 }
2015
2016 return Changed;
2017 }
2018
2019 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2020 /// losslessly preserve the bits and semantics of the value. This predicate is
2021 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2022 ///
2023 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2024 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2025 /// and also does not allow lossless pointer <-> integer conversions.
isBitCastSemanticsPreserving(const DataLayout & DL,Type * FromTy,Type * ToTy)2026 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2027 Type *ToTy) {
2028 // Trivially compatible types.
2029 if (FromTy == ToTy)
2030 return true;
2031
2032 // Handle compatible pointer <-> integer conversions.
2033 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2034 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2035 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2036 !DL.isNonIntegralPointerType(ToTy);
2037 return SameSize && LosslessConversion;
2038 }
2039
2040 // TODO: This is not exhaustive.
2041 return false;
2042 }
2043
replaceAllDbgUsesWith(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT)2044 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2045 Instruction &DomPoint, DominatorTree &DT) {
2046 // Exit early if From has no debug users.
2047 if (!From.isUsedByMetadata())
2048 return false;
2049
2050 assert(&From != &To && "Can't replace something with itself");
2051
2052 Type *FromTy = From.getType();
2053 Type *ToTy = To.getType();
2054
2055 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2056 return DII.getExpression();
2057 };
2058
2059 // Handle no-op conversions.
2060 Module &M = *From.getModule();
2061 const DataLayout &DL = M.getDataLayout();
2062 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2063 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2064
2065 // Handle integer-to-integer widening and narrowing.
2066 // FIXME: Use DW_OP_convert when it's available everywhere.
2067 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2068 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2069 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2070 assert(FromBits != ToBits && "Unexpected no-op conversion");
2071
2072 // When the width of the result grows, assume that a debugger will only
2073 // access the low `FromBits` bits when inspecting the source variable.
2074 if (FromBits < ToBits)
2075 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2076
2077 // The width of the result has shrunk. Use sign/zero extension to describe
2078 // the source variable's high bits.
2079 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2080 DILocalVariable *Var = DII.getVariable();
2081
2082 // Without knowing signedness, sign/zero extension isn't possible.
2083 auto Signedness = Var->getSignedness();
2084 if (!Signedness)
2085 return None;
2086
2087 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2088 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2089 Signed);
2090 };
2091 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2092 }
2093
2094 // TODO: Floating-point conversions, vectors.
2095 return false;
2096 }
2097
2098 std::pair<unsigned, unsigned>
removeAllNonTerminatorAndEHPadInstructions(BasicBlock * BB)2099 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2100 unsigned NumDeadInst = 0;
2101 unsigned NumDeadDbgInst = 0;
2102 // Delete the instructions backwards, as it has a reduced likelihood of
2103 // having to update as many def-use and use-def chains.
2104 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2105 while (EndInst != &BB->front()) {
2106 // Delete the next to last instruction.
2107 Instruction *Inst = &*--EndInst->getIterator();
2108 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2109 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2110 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2111 EndInst = Inst;
2112 continue;
2113 }
2114 if (isa<DbgInfoIntrinsic>(Inst))
2115 ++NumDeadDbgInst;
2116 else
2117 ++NumDeadInst;
2118 Inst->eraseFromParent();
2119 }
2120 return {NumDeadInst, NumDeadDbgInst};
2121 }
2122
changeToUnreachable(Instruction * I,bool PreserveLCSSA,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2123 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2124 DomTreeUpdater *DTU,
2125 MemorySSAUpdater *MSSAU) {
2126 BasicBlock *BB = I->getParent();
2127
2128 if (MSSAU)
2129 MSSAU->changeToUnreachable(I);
2130
2131 SmallSet<BasicBlock *, 8> UniqueSuccessors;
2132
2133 // Loop over all of the successors, removing BB's entry from any PHI
2134 // nodes.
2135 for (BasicBlock *Successor : successors(BB)) {
2136 Successor->removePredecessor(BB, PreserveLCSSA);
2137 if (DTU)
2138 UniqueSuccessors.insert(Successor);
2139 }
2140 auto *UI = new UnreachableInst(I->getContext(), I);
2141 UI->setDebugLoc(I->getDebugLoc());
2142
2143 // All instructions after this are dead.
2144 unsigned NumInstrsRemoved = 0;
2145 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2146 while (BBI != BBE) {
2147 if (!BBI->use_empty())
2148 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2149 BB->getInstList().erase(BBI++);
2150 ++NumInstrsRemoved;
2151 }
2152 if (DTU) {
2153 SmallVector<DominatorTree::UpdateType, 8> Updates;
2154 Updates.reserve(UniqueSuccessors.size());
2155 for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2156 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2157 DTU->applyUpdates(Updates);
2158 }
2159 return NumInstrsRemoved;
2160 }
2161
createCallMatchingInvoke(InvokeInst * II)2162 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2163 SmallVector<Value *, 8> Args(II->args());
2164 SmallVector<OperandBundleDef, 1> OpBundles;
2165 II->getOperandBundlesAsDefs(OpBundles);
2166 CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2167 II->getCalledOperand(), Args, OpBundles);
2168 NewCall->setCallingConv(II->getCallingConv());
2169 NewCall->setAttributes(II->getAttributes());
2170 NewCall->setDebugLoc(II->getDebugLoc());
2171 NewCall->copyMetadata(*II);
2172
2173 // If the invoke had profile metadata, try converting them for CallInst.
2174 uint64_t TotalWeight;
2175 if (NewCall->extractProfTotalWeight(TotalWeight)) {
2176 // Set the total weight if it fits into i32, otherwise reset.
2177 MDBuilder MDB(NewCall->getContext());
2178 auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2179 ? nullptr
2180 : MDB.createBranchWeights({uint32_t(TotalWeight)});
2181 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2182 }
2183
2184 return NewCall;
2185 }
2186
2187 // changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II,DomTreeUpdater * DTU)2188 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2189 CallInst *NewCall = createCallMatchingInvoke(II);
2190 NewCall->takeName(II);
2191 NewCall->insertBefore(II);
2192 II->replaceAllUsesWith(NewCall);
2193
2194 // Follow the call by a branch to the normal destination.
2195 BasicBlock *NormalDestBB = II->getNormalDest();
2196 BranchInst::Create(NormalDestBB, II);
2197
2198 // Update PHI nodes in the unwind destination
2199 BasicBlock *BB = II->getParent();
2200 BasicBlock *UnwindDestBB = II->getUnwindDest();
2201 UnwindDestBB->removePredecessor(BB);
2202 II->eraseFromParent();
2203 if (DTU)
2204 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2205 return NewCall;
2206 }
2207
changeToInvokeAndSplitBasicBlock(CallInst * CI,BasicBlock * UnwindEdge,DomTreeUpdater * DTU)2208 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2209 BasicBlock *UnwindEdge,
2210 DomTreeUpdater *DTU) {
2211 BasicBlock *BB = CI->getParent();
2212
2213 // Convert this function call into an invoke instruction. First, split the
2214 // basic block.
2215 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2216 CI->getName() + ".noexc");
2217
2218 // Delete the unconditional branch inserted by SplitBlock
2219 BB->getInstList().pop_back();
2220
2221 // Create the new invoke instruction.
2222 SmallVector<Value *, 8> InvokeArgs(CI->args());
2223 SmallVector<OperandBundleDef, 1> OpBundles;
2224
2225 CI->getOperandBundlesAsDefs(OpBundles);
2226
2227 // Note: we're round tripping operand bundles through memory here, and that
2228 // can potentially be avoided with a cleverer API design that we do not have
2229 // as of this time.
2230
2231 InvokeInst *II =
2232 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2233 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2234 II->setDebugLoc(CI->getDebugLoc());
2235 II->setCallingConv(CI->getCallingConv());
2236 II->setAttributes(CI->getAttributes());
2237 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2238
2239 if (DTU)
2240 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2241
2242 // Make sure that anything using the call now uses the invoke! This also
2243 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2244 CI->replaceAllUsesWith(II);
2245
2246 // Delete the original call
2247 Split->getInstList().pop_front();
2248 return Split;
2249 }
2250
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable,DomTreeUpdater * DTU=nullptr)2251 static bool markAliveBlocks(Function &F,
2252 SmallPtrSetImpl<BasicBlock *> &Reachable,
2253 DomTreeUpdater *DTU = nullptr) {
2254 SmallVector<BasicBlock*, 128> Worklist;
2255 BasicBlock *BB = &F.front();
2256 Worklist.push_back(BB);
2257 Reachable.insert(BB);
2258 bool Changed = false;
2259 do {
2260 BB = Worklist.pop_back_val();
2261
2262 // Do a quick scan of the basic block, turning any obviously unreachable
2263 // instructions into LLVM unreachable insts. The instruction combining pass
2264 // canonicalizes unreachable insts into stores to null or undef.
2265 for (Instruction &I : *BB) {
2266 if (auto *CI = dyn_cast<CallInst>(&I)) {
2267 Value *Callee = CI->getCalledOperand();
2268 // Handle intrinsic calls.
2269 if (Function *F = dyn_cast<Function>(Callee)) {
2270 auto IntrinsicID = F->getIntrinsicID();
2271 // Assumptions that are known to be false are equivalent to
2272 // unreachable. Also, if the condition is undefined, then we make the
2273 // choice most beneficial to the optimizer, and choose that to also be
2274 // unreachable.
2275 if (IntrinsicID == Intrinsic::assume) {
2276 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2277 // Don't insert a call to llvm.trap right before the unreachable.
2278 changeToUnreachable(CI, false, DTU);
2279 Changed = true;
2280 break;
2281 }
2282 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2283 // A call to the guard intrinsic bails out of the current
2284 // compilation unit if the predicate passed to it is false. If the
2285 // predicate is a constant false, then we know the guard will bail
2286 // out of the current compile unconditionally, so all code following
2287 // it is dead.
2288 //
2289 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2290 // guards to treat `undef` as `false` since a guard on `undef` can
2291 // still be useful for widening.
2292 if (match(CI->getArgOperand(0), m_Zero()))
2293 if (!isa<UnreachableInst>(CI->getNextNode())) {
2294 changeToUnreachable(CI->getNextNode(), false, DTU);
2295 Changed = true;
2296 break;
2297 }
2298 }
2299 } else if ((isa<ConstantPointerNull>(Callee) &&
2300 !NullPointerIsDefined(CI->getFunction())) ||
2301 isa<UndefValue>(Callee)) {
2302 changeToUnreachable(CI, false, DTU);
2303 Changed = true;
2304 break;
2305 }
2306 if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2307 // If we found a call to a no-return function, insert an unreachable
2308 // instruction after it. Make sure there isn't *already* one there
2309 // though.
2310 if (!isa<UnreachableInst>(CI->getNextNode())) {
2311 // Don't insert a call to llvm.trap right before the unreachable.
2312 changeToUnreachable(CI->getNextNode(), false, DTU);
2313 Changed = true;
2314 }
2315 break;
2316 }
2317 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2318 // Store to undef and store to null are undefined and used to signal
2319 // that they should be changed to unreachable by passes that can't
2320 // modify the CFG.
2321
2322 // Don't touch volatile stores.
2323 if (SI->isVolatile()) continue;
2324
2325 Value *Ptr = SI->getOperand(1);
2326
2327 if (isa<UndefValue>(Ptr) ||
2328 (isa<ConstantPointerNull>(Ptr) &&
2329 !NullPointerIsDefined(SI->getFunction(),
2330 SI->getPointerAddressSpace()))) {
2331 changeToUnreachable(SI, false, DTU);
2332 Changed = true;
2333 break;
2334 }
2335 }
2336 }
2337
2338 Instruction *Terminator = BB->getTerminator();
2339 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2340 // Turn invokes that call 'nounwind' functions into ordinary calls.
2341 Value *Callee = II->getCalledOperand();
2342 if ((isa<ConstantPointerNull>(Callee) &&
2343 !NullPointerIsDefined(BB->getParent())) ||
2344 isa<UndefValue>(Callee)) {
2345 changeToUnreachable(II, false, DTU);
2346 Changed = true;
2347 } else {
2348 if (II->doesNotReturn() &&
2349 !isa<UnreachableInst>(II->getNormalDest()->front())) {
2350 // If we found an invoke of a no-return function,
2351 // create a new empty basic block with an `unreachable` terminator,
2352 // and set it as the normal destination for the invoke,
2353 // unless that is already the case.
2354 // Note that the original normal destination could have other uses.
2355 BasicBlock *OrigNormalDest = II->getNormalDest();
2356 OrigNormalDest->removePredecessor(II->getParent());
2357 LLVMContext &Ctx = II->getContext();
2358 BasicBlock *UnreachableNormalDest = BasicBlock::Create(
2359 Ctx, OrigNormalDest->getName() + ".unreachable",
2360 II->getFunction(), OrigNormalDest);
2361 new UnreachableInst(Ctx, UnreachableNormalDest);
2362 II->setNormalDest(UnreachableNormalDest);
2363 if (DTU)
2364 DTU->applyUpdates(
2365 {{DominatorTree::Delete, BB, OrigNormalDest},
2366 {DominatorTree::Insert, BB, UnreachableNormalDest}});
2367 Changed = true;
2368 }
2369 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2370 if (II->use_empty() && !II->mayHaveSideEffects()) {
2371 // jump to the normal destination branch.
2372 BasicBlock *NormalDestBB = II->getNormalDest();
2373 BasicBlock *UnwindDestBB = II->getUnwindDest();
2374 BranchInst::Create(NormalDestBB, II);
2375 UnwindDestBB->removePredecessor(II->getParent());
2376 II->eraseFromParent();
2377 if (DTU)
2378 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2379 } else
2380 changeToCall(II, DTU);
2381 Changed = true;
2382 }
2383 }
2384 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2385 // Remove catchpads which cannot be reached.
2386 struct CatchPadDenseMapInfo {
2387 static CatchPadInst *getEmptyKey() {
2388 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2389 }
2390
2391 static CatchPadInst *getTombstoneKey() {
2392 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2393 }
2394
2395 static unsigned getHashValue(CatchPadInst *CatchPad) {
2396 return static_cast<unsigned>(hash_combine_range(
2397 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2398 }
2399
2400 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2401 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2402 RHS == getEmptyKey() || RHS == getTombstoneKey())
2403 return LHS == RHS;
2404 return LHS->isIdenticalTo(RHS);
2405 }
2406 };
2407
2408 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2409 // Set of unique CatchPads.
2410 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2411 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2412 HandlerSet;
2413 detail::DenseSetEmpty Empty;
2414 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2415 E = CatchSwitch->handler_end();
2416 I != E; ++I) {
2417 BasicBlock *HandlerBB = *I;
2418 if (DTU)
2419 ++NumPerSuccessorCases[HandlerBB];
2420 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2421 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2422 if (DTU)
2423 --NumPerSuccessorCases[HandlerBB];
2424 CatchSwitch->removeHandler(I);
2425 --I;
2426 --E;
2427 Changed = true;
2428 }
2429 }
2430 if (DTU) {
2431 std::vector<DominatorTree::UpdateType> Updates;
2432 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2433 if (I.second == 0)
2434 Updates.push_back({DominatorTree::Delete, BB, I.first});
2435 DTU->applyUpdates(Updates);
2436 }
2437 }
2438
2439 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2440 for (BasicBlock *Successor : successors(BB))
2441 if (Reachable.insert(Successor).second)
2442 Worklist.push_back(Successor);
2443 } while (!Worklist.empty());
2444 return Changed;
2445 }
2446
removeUnwindEdge(BasicBlock * BB,DomTreeUpdater * DTU)2447 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2448 Instruction *TI = BB->getTerminator();
2449
2450 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2451 changeToCall(II, DTU);
2452 return;
2453 }
2454
2455 Instruction *NewTI;
2456 BasicBlock *UnwindDest;
2457
2458 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2459 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2460 UnwindDest = CRI->getUnwindDest();
2461 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2462 auto *NewCatchSwitch = CatchSwitchInst::Create(
2463 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2464 CatchSwitch->getName(), CatchSwitch);
2465 for (BasicBlock *PadBB : CatchSwitch->handlers())
2466 NewCatchSwitch->addHandler(PadBB);
2467
2468 NewTI = NewCatchSwitch;
2469 UnwindDest = CatchSwitch->getUnwindDest();
2470 } else {
2471 llvm_unreachable("Could not find unwind successor");
2472 }
2473
2474 NewTI->takeName(TI);
2475 NewTI->setDebugLoc(TI->getDebugLoc());
2476 UnwindDest->removePredecessor(BB);
2477 TI->replaceAllUsesWith(NewTI);
2478 TI->eraseFromParent();
2479 if (DTU)
2480 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2481 }
2482
2483 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2484 /// if they are in a dead cycle. Return true if a change was made, false
2485 /// otherwise.
removeUnreachableBlocks(Function & F,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2486 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2487 MemorySSAUpdater *MSSAU) {
2488 SmallPtrSet<BasicBlock *, 16> Reachable;
2489 bool Changed = markAliveBlocks(F, Reachable, DTU);
2490
2491 // If there are unreachable blocks in the CFG...
2492 if (Reachable.size() == F.size())
2493 return Changed;
2494
2495 assert(Reachable.size() < F.size());
2496
2497 // Are there any blocks left to actually delete?
2498 SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2499 for (BasicBlock &BB : F) {
2500 // Skip reachable basic blocks
2501 if (Reachable.count(&BB))
2502 continue;
2503 // Skip already-deleted blocks
2504 if (DTU && DTU->isBBPendingDeletion(&BB))
2505 continue;
2506 BlocksToRemove.insert(&BB);
2507 }
2508
2509 if (BlocksToRemove.empty())
2510 return Changed;
2511
2512 Changed = true;
2513 NumRemoved += BlocksToRemove.size();
2514
2515 if (MSSAU)
2516 MSSAU->removeBlocks(BlocksToRemove);
2517
2518 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2519
2520 return Changed;
2521 }
2522
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs,bool DoesKMove)2523 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2524 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2525 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2526 K->dropUnknownNonDebugMetadata(KnownIDs);
2527 K->getAllMetadataOtherThanDebugLoc(Metadata);
2528 for (const auto &MD : Metadata) {
2529 unsigned Kind = MD.first;
2530 MDNode *JMD = J->getMetadata(Kind);
2531 MDNode *KMD = MD.second;
2532
2533 switch (Kind) {
2534 default:
2535 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2536 break;
2537 case LLVMContext::MD_dbg:
2538 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2539 case LLVMContext::MD_tbaa:
2540 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2541 break;
2542 case LLVMContext::MD_alias_scope:
2543 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2544 break;
2545 case LLVMContext::MD_noalias:
2546 case LLVMContext::MD_mem_parallel_loop_access:
2547 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2548 break;
2549 case LLVMContext::MD_access_group:
2550 K->setMetadata(LLVMContext::MD_access_group,
2551 intersectAccessGroups(K, J));
2552 break;
2553 case LLVMContext::MD_range:
2554
2555 // If K does move, use most generic range. Otherwise keep the range of
2556 // K.
2557 if (DoesKMove)
2558 // FIXME: If K does move, we should drop the range info and nonnull.
2559 // Currently this function is used with DoesKMove in passes
2560 // doing hoisting/sinking and the current behavior of using the
2561 // most generic range is correct in those cases.
2562 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2563 break;
2564 case LLVMContext::MD_fpmath:
2565 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2566 break;
2567 case LLVMContext::MD_invariant_load:
2568 // Only set the !invariant.load if it is present in both instructions.
2569 K->setMetadata(Kind, JMD);
2570 break;
2571 case LLVMContext::MD_nonnull:
2572 // If K does move, keep nonull if it is present in both instructions.
2573 if (DoesKMove)
2574 K->setMetadata(Kind, JMD);
2575 break;
2576 case LLVMContext::MD_invariant_group:
2577 // Preserve !invariant.group in K.
2578 break;
2579 case LLVMContext::MD_align:
2580 K->setMetadata(Kind,
2581 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2582 break;
2583 case LLVMContext::MD_dereferenceable:
2584 case LLVMContext::MD_dereferenceable_or_null:
2585 K->setMetadata(Kind,
2586 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2587 break;
2588 case LLVMContext::MD_preserve_access_index:
2589 // Preserve !preserve.access.index in K.
2590 break;
2591 }
2592 }
2593 // Set !invariant.group from J if J has it. If both instructions have it
2594 // then we will just pick it from J - even when they are different.
2595 // Also make sure that K is load or store - f.e. combining bitcast with load
2596 // could produce bitcast with invariant.group metadata, which is invalid.
2597 // FIXME: we should try to preserve both invariant.group md if they are
2598 // different, but right now instruction can only have one invariant.group.
2599 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2600 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2601 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2602 }
2603
combineMetadataForCSE(Instruction * K,const Instruction * J,bool KDominatesJ)2604 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2605 bool KDominatesJ) {
2606 unsigned KnownIDs[] = {
2607 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2608 LLVMContext::MD_noalias, LLVMContext::MD_range,
2609 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2610 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2611 LLVMContext::MD_dereferenceable,
2612 LLVMContext::MD_dereferenceable_or_null,
2613 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2614 combineMetadata(K, J, KnownIDs, KDominatesJ);
2615 }
2616
copyMetadataForLoad(LoadInst & Dest,const LoadInst & Source)2617 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2618 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2619 Source.getAllMetadata(MD);
2620 MDBuilder MDB(Dest.getContext());
2621 Type *NewType = Dest.getType();
2622 const DataLayout &DL = Source.getModule()->getDataLayout();
2623 for (const auto &MDPair : MD) {
2624 unsigned ID = MDPair.first;
2625 MDNode *N = MDPair.second;
2626 // Note, essentially every kind of metadata should be preserved here! This
2627 // routine is supposed to clone a load instruction changing *only its type*.
2628 // The only metadata it makes sense to drop is metadata which is invalidated
2629 // when the pointer type changes. This should essentially never be the case
2630 // in LLVM, but we explicitly switch over only known metadata to be
2631 // conservatively correct. If you are adding metadata to LLVM which pertains
2632 // to loads, you almost certainly want to add it here.
2633 switch (ID) {
2634 case LLVMContext::MD_dbg:
2635 case LLVMContext::MD_tbaa:
2636 case LLVMContext::MD_prof:
2637 case LLVMContext::MD_fpmath:
2638 case LLVMContext::MD_tbaa_struct:
2639 case LLVMContext::MD_invariant_load:
2640 case LLVMContext::MD_alias_scope:
2641 case LLVMContext::MD_noalias:
2642 case LLVMContext::MD_nontemporal:
2643 case LLVMContext::MD_mem_parallel_loop_access:
2644 case LLVMContext::MD_access_group:
2645 // All of these directly apply.
2646 Dest.setMetadata(ID, N);
2647 break;
2648
2649 case LLVMContext::MD_nonnull:
2650 copyNonnullMetadata(Source, N, Dest);
2651 break;
2652
2653 case LLVMContext::MD_align:
2654 case LLVMContext::MD_dereferenceable:
2655 case LLVMContext::MD_dereferenceable_or_null:
2656 // These only directly apply if the new type is also a pointer.
2657 if (NewType->isPointerTy())
2658 Dest.setMetadata(ID, N);
2659 break;
2660
2661 case LLVMContext::MD_range:
2662 copyRangeMetadata(DL, Source, N, Dest);
2663 break;
2664 }
2665 }
2666 }
2667
patchReplacementInstruction(Instruction * I,Value * Repl)2668 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2669 auto *ReplInst = dyn_cast<Instruction>(Repl);
2670 if (!ReplInst)
2671 return;
2672
2673 // Patch the replacement so that it is not more restrictive than the value
2674 // being replaced.
2675 // Note that if 'I' is a load being replaced by some operation,
2676 // for example, by an arithmetic operation, then andIRFlags()
2677 // would just erase all math flags from the original arithmetic
2678 // operation, which is clearly not wanted and not needed.
2679 if (!isa<LoadInst>(I))
2680 ReplInst->andIRFlags(I);
2681
2682 // FIXME: If both the original and replacement value are part of the
2683 // same control-flow region (meaning that the execution of one
2684 // guarantees the execution of the other), then we can combine the
2685 // noalias scopes here and do better than the general conservative
2686 // answer used in combineMetadata().
2687
2688 // In general, GVN unifies expressions over different control-flow
2689 // regions, and so we need a conservative combination of the noalias
2690 // scopes.
2691 static const unsigned KnownIDs[] = {
2692 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2693 LLVMContext::MD_noalias, LLVMContext::MD_range,
2694 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2695 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2696 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2697 combineMetadata(ReplInst, I, KnownIDs, false);
2698 }
2699
2700 template <typename RootType, typename DominatesFn>
replaceDominatedUsesWith(Value * From,Value * To,const RootType & Root,const DominatesFn & Dominates)2701 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2702 const RootType &Root,
2703 const DominatesFn &Dominates) {
2704 assert(From->getType() == To->getType());
2705
2706 unsigned Count = 0;
2707 for (Use &U : llvm::make_early_inc_range(From->uses())) {
2708 if (!Dominates(Root, U))
2709 continue;
2710 U.set(To);
2711 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2712 << "' as " << *To << " in " << *U << "\n");
2713 ++Count;
2714 }
2715 return Count;
2716 }
2717
replaceNonLocalUsesWith(Instruction * From,Value * To)2718 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2719 assert(From->getType() == To->getType());
2720 auto *BB = From->getParent();
2721 unsigned Count = 0;
2722
2723 for (Use &U : llvm::make_early_inc_range(From->uses())) {
2724 auto *I = cast<Instruction>(U.getUser());
2725 if (I->getParent() == BB)
2726 continue;
2727 U.set(To);
2728 ++Count;
2729 }
2730 return Count;
2731 }
2732
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)2733 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2734 DominatorTree &DT,
2735 const BasicBlockEdge &Root) {
2736 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2737 return DT.dominates(Root, U);
2738 };
2739 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2740 }
2741
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)2742 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2743 DominatorTree &DT,
2744 const BasicBlock *BB) {
2745 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2746 return DT.dominates(BB, U);
2747 };
2748 return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2749 }
2750
callsGCLeafFunction(const CallBase * Call,const TargetLibraryInfo & TLI)2751 bool llvm::callsGCLeafFunction(const CallBase *Call,
2752 const TargetLibraryInfo &TLI) {
2753 // Check if the function is specifically marked as a gc leaf function.
2754 if (Call->hasFnAttr("gc-leaf-function"))
2755 return true;
2756 if (const Function *F = Call->getCalledFunction()) {
2757 if (F->hasFnAttribute("gc-leaf-function"))
2758 return true;
2759
2760 if (auto IID = F->getIntrinsicID()) {
2761 // Most LLVM intrinsics do not take safepoints.
2762 return IID != Intrinsic::experimental_gc_statepoint &&
2763 IID != Intrinsic::experimental_deoptimize &&
2764 IID != Intrinsic::memcpy_element_unordered_atomic &&
2765 IID != Intrinsic::memmove_element_unordered_atomic;
2766 }
2767 }
2768
2769 // Lib calls can be materialized by some passes, and won't be
2770 // marked as 'gc-leaf-function.' All available Libcalls are
2771 // GC-leaf.
2772 LibFunc LF;
2773 if (TLI.getLibFunc(*Call, LF)) {
2774 return TLI.has(LF);
2775 }
2776
2777 return false;
2778 }
2779
copyNonnullMetadata(const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2780 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2781 LoadInst &NewLI) {
2782 auto *NewTy = NewLI.getType();
2783
2784 // This only directly applies if the new type is also a pointer.
2785 if (NewTy->isPointerTy()) {
2786 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2787 return;
2788 }
2789
2790 // The only other translation we can do is to integral loads with !range
2791 // metadata.
2792 if (!NewTy->isIntegerTy())
2793 return;
2794
2795 MDBuilder MDB(NewLI.getContext());
2796 const Value *Ptr = OldLI.getPointerOperand();
2797 auto *ITy = cast<IntegerType>(NewTy);
2798 auto *NullInt = ConstantExpr::getPtrToInt(
2799 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2800 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2801 NewLI.setMetadata(LLVMContext::MD_range,
2802 MDB.createRange(NonNullInt, NullInt));
2803 }
2804
copyRangeMetadata(const DataLayout & DL,const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2805 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2806 MDNode *N, LoadInst &NewLI) {
2807 auto *NewTy = NewLI.getType();
2808
2809 // Give up unless it is converted to a pointer where there is a single very
2810 // valuable mapping we can do reliably.
2811 // FIXME: It would be nice to propagate this in more ways, but the type
2812 // conversions make it hard.
2813 if (!NewTy->isPointerTy())
2814 return;
2815
2816 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2817 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2818 MDNode *NN = MDNode::get(OldLI.getContext(), None);
2819 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2820 }
2821 }
2822
dropDebugUsers(Instruction & I)2823 void llvm::dropDebugUsers(Instruction &I) {
2824 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2825 findDbgUsers(DbgUsers, &I);
2826 for (auto *DII : DbgUsers)
2827 DII->eraseFromParent();
2828 }
2829
hoistAllInstructionsInto(BasicBlock * DomBlock,Instruction * InsertPt,BasicBlock * BB)2830 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2831 BasicBlock *BB) {
2832 // Since we are moving the instructions out of its basic block, we do not
2833 // retain their original debug locations (DILocations) and debug intrinsic
2834 // instructions.
2835 //
2836 // Doing so would degrade the debugging experience and adversely affect the
2837 // accuracy of profiling information.
2838 //
2839 // Currently, when hoisting the instructions, we take the following actions:
2840 // - Remove their debug intrinsic instructions.
2841 // - Set their debug locations to the values from the insertion point.
2842 //
2843 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2844 // need to be deleted, is because there will not be any instructions with a
2845 // DILocation in either branch left after performing the transformation. We
2846 // can only insert a dbg.value after the two branches are joined again.
2847 //
2848 // See PR38762, PR39243 for more details.
2849 //
2850 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2851 // encode predicated DIExpressions that yield different results on different
2852 // code paths.
2853
2854 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2855 Instruction *I = &*II;
2856 I->dropUndefImplyingAttrsAndUnknownMetadata();
2857 if (I->isUsedByMetadata())
2858 dropDebugUsers(*I);
2859 if (I->isDebugOrPseudoInst()) {
2860 // Remove DbgInfo and pseudo probe Intrinsics.
2861 II = I->eraseFromParent();
2862 continue;
2863 }
2864 I->setDebugLoc(InsertPt->getDebugLoc());
2865 ++II;
2866 }
2867 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2868 BB->begin(),
2869 BB->getTerminator()->getIterator());
2870 }
2871
2872 namespace {
2873
2874 /// A potential constituent of a bitreverse or bswap expression. See
2875 /// collectBitParts for a fuller explanation.
2876 struct BitPart {
BitPart__anon905553690811::BitPart2877 BitPart(Value *P, unsigned BW) : Provider(P) {
2878 Provenance.resize(BW);
2879 }
2880
2881 /// The Value that this is a bitreverse/bswap of.
2882 Value *Provider;
2883
2884 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2885 /// in Provider becomes bit B in the result of this expression.
2886 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2887
2888 enum { Unset = -1 };
2889 };
2890
2891 } // end anonymous namespace
2892
2893 /// Analyze the specified subexpression and see if it is capable of providing
2894 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2895 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2896 /// the output of the expression came from a corresponding bit in some other
2897 /// value. This function is recursive, and the end result is a mapping of
2898 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2899 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2900 ///
2901 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2902 /// that the expression deposits the low byte of %X into the high byte of the
2903 /// result and that all other bits are zero. This expression is accepted and a
2904 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2905 /// [0-7].
2906 ///
2907 /// For vector types, all analysis is performed at the per-element level. No
2908 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2909 /// constant masks must be splatted across all elements.
2910 ///
2911 /// To avoid revisiting values, the BitPart results are memoized into the
2912 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2913 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2914 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2915 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2916 /// type instead to provide the same functionality.
2917 ///
2918 /// Because we pass around references into \c BPS, we must use a container that
2919 /// does not invalidate internal references (std::map instead of DenseMap).
2920 static const Optional<BitPart> &
collectBitParts(Value * V,bool MatchBSwaps,bool MatchBitReversals,std::map<Value *,Optional<BitPart>> & BPS,int Depth,bool & FoundRoot)2921 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2922 std::map<Value *, Optional<BitPart>> &BPS, int Depth,
2923 bool &FoundRoot) {
2924 auto I = BPS.find(V);
2925 if (I != BPS.end())
2926 return I->second;
2927
2928 auto &Result = BPS[V] = None;
2929 auto BitWidth = V->getType()->getScalarSizeInBits();
2930
2931 // Can't do integer/elements > 128 bits.
2932 if (BitWidth > 128)
2933 return Result;
2934
2935 // Prevent stack overflow by limiting the recursion depth
2936 if (Depth == BitPartRecursionMaxDepth) {
2937 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2938 return Result;
2939 }
2940
2941 if (auto *I = dyn_cast<Instruction>(V)) {
2942 Value *X, *Y;
2943 const APInt *C;
2944
2945 // If this is an or instruction, it may be an inner node of the bswap.
2946 if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2947 // Check we have both sources and they are from the same provider.
2948 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2949 Depth + 1, FoundRoot);
2950 if (!A || !A->Provider)
2951 return Result;
2952
2953 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
2954 Depth + 1, FoundRoot);
2955 if (!B || A->Provider != B->Provider)
2956 return Result;
2957
2958 // Try and merge the two together.
2959 Result = BitPart(A->Provider, BitWidth);
2960 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2961 if (A->Provenance[BitIdx] != BitPart::Unset &&
2962 B->Provenance[BitIdx] != BitPart::Unset &&
2963 A->Provenance[BitIdx] != B->Provenance[BitIdx])
2964 return Result = None;
2965
2966 if (A->Provenance[BitIdx] == BitPart::Unset)
2967 Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2968 else
2969 Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2970 }
2971
2972 return Result;
2973 }
2974
2975 // If this is a logical shift by a constant, recurse then shift the result.
2976 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2977 const APInt &BitShift = *C;
2978
2979 // Ensure the shift amount is defined.
2980 if (BitShift.uge(BitWidth))
2981 return Result;
2982
2983 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
2984 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
2985 return Result;
2986
2987 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2988 Depth + 1, FoundRoot);
2989 if (!Res)
2990 return Result;
2991 Result = Res;
2992
2993 // Perform the "shift" on BitProvenance.
2994 auto &P = Result->Provenance;
2995 if (I->getOpcode() == Instruction::Shl) {
2996 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2997 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2998 } else {
2999 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3000 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3001 }
3002
3003 return Result;
3004 }
3005
3006 // If this is a logical 'and' with a mask that clears bits, recurse then
3007 // unset the appropriate bits.
3008 if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3009 const APInt &AndMask = *C;
3010
3011 // Check that the mask allows a multiple of 8 bits for a bswap, for an
3012 // early exit.
3013 unsigned NumMaskedBits = AndMask.countPopulation();
3014 if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3015 return Result;
3016
3017 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3018 Depth + 1, FoundRoot);
3019 if (!Res)
3020 return Result;
3021 Result = Res;
3022
3023 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3024 // If the AndMask is zero for this bit, clear the bit.
3025 if (AndMask[BitIdx] == 0)
3026 Result->Provenance[BitIdx] = BitPart::Unset;
3027 return Result;
3028 }
3029
3030 // If this is a zext instruction zero extend the result.
3031 if (match(V, m_ZExt(m_Value(X)))) {
3032 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3033 Depth + 1, FoundRoot);
3034 if (!Res)
3035 return Result;
3036
3037 Result = BitPart(Res->Provider, BitWidth);
3038 auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3039 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3040 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3041 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3042 Result->Provenance[BitIdx] = BitPart::Unset;
3043 return Result;
3044 }
3045
3046 // If this is a truncate instruction, extract the lower bits.
3047 if (match(V, m_Trunc(m_Value(X)))) {
3048 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3049 Depth + 1, FoundRoot);
3050 if (!Res)
3051 return Result;
3052
3053 Result = BitPart(Res->Provider, BitWidth);
3054 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3055 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3056 return Result;
3057 }
3058
3059 // BITREVERSE - most likely due to us previous matching a partial
3060 // bitreverse.
3061 if (match(V, m_BitReverse(m_Value(X)))) {
3062 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3063 Depth + 1, FoundRoot);
3064 if (!Res)
3065 return Result;
3066
3067 Result = BitPart(Res->Provider, BitWidth);
3068 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3069 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3070 return Result;
3071 }
3072
3073 // BSWAP - most likely due to us previous matching a partial bswap.
3074 if (match(V, m_BSwap(m_Value(X)))) {
3075 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3076 Depth + 1, FoundRoot);
3077 if (!Res)
3078 return Result;
3079
3080 unsigned ByteWidth = BitWidth / 8;
3081 Result = BitPart(Res->Provider, BitWidth);
3082 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3083 unsigned ByteBitOfs = ByteIdx * 8;
3084 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3085 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3086 Res->Provenance[ByteBitOfs + BitIdx];
3087 }
3088 return Result;
3089 }
3090
3091 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3092 // amount (modulo).
3093 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3094 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3095 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3096 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3097 // We can treat fshr as a fshl by flipping the modulo amount.
3098 unsigned ModAmt = C->urem(BitWidth);
3099 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3100 ModAmt = BitWidth - ModAmt;
3101
3102 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3103 if (!MatchBitReversals && (ModAmt % 8) != 0)
3104 return Result;
3105
3106 // Check we have both sources and they are from the same provider.
3107 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3108 Depth + 1, FoundRoot);
3109 if (!LHS || !LHS->Provider)
3110 return Result;
3111
3112 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3113 Depth + 1, FoundRoot);
3114 if (!RHS || LHS->Provider != RHS->Provider)
3115 return Result;
3116
3117 unsigned StartBitRHS = BitWidth - ModAmt;
3118 Result = BitPart(LHS->Provider, BitWidth);
3119 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3120 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3121 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3122 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3123 return Result;
3124 }
3125 }
3126
3127 // If we've already found a root input value then we're never going to merge
3128 // these back together.
3129 if (FoundRoot)
3130 return Result;
3131
3132 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3133 // be the root input value to the bswap/bitreverse.
3134 FoundRoot = true;
3135 Result = BitPart(V, BitWidth);
3136 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3137 Result->Provenance[BitIdx] = BitIdx;
3138 return Result;
3139 }
3140
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)3141 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3142 unsigned BitWidth) {
3143 if (From % 8 != To % 8)
3144 return false;
3145 // Convert from bit indices to byte indices and check for a byte reversal.
3146 From >>= 3;
3147 To >>= 3;
3148 BitWidth >>= 3;
3149 return From == BitWidth - To - 1;
3150 }
3151
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)3152 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3153 unsigned BitWidth) {
3154 return From == BitWidth - To - 1;
3155 }
3156
recognizeBSwapOrBitReverseIdiom(Instruction * I,bool MatchBSwaps,bool MatchBitReversals,SmallVectorImpl<Instruction * > & InsertedInsts)3157 bool llvm::recognizeBSwapOrBitReverseIdiom(
3158 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3159 SmallVectorImpl<Instruction *> &InsertedInsts) {
3160 if (!match(I, m_Or(m_Value(), m_Value())) &&
3161 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3162 !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3163 return false;
3164 if (!MatchBSwaps && !MatchBitReversals)
3165 return false;
3166 Type *ITy = I->getType();
3167 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3168 return false; // Can't do integer/elements > 128 bits.
3169
3170 // Try to find all the pieces corresponding to the bswap.
3171 bool FoundRoot = false;
3172 std::map<Value *, Optional<BitPart>> BPS;
3173 const auto &Res =
3174 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3175 if (!Res)
3176 return false;
3177 ArrayRef<int8_t> BitProvenance = Res->Provenance;
3178 assert(all_of(BitProvenance,
3179 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3180 "Illegal bit provenance index");
3181
3182 // If the upper bits are zero, then attempt to perform as a truncated op.
3183 Type *DemandedTy = ITy;
3184 if (BitProvenance.back() == BitPart::Unset) {
3185 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3186 BitProvenance = BitProvenance.drop_back();
3187 if (BitProvenance.empty())
3188 return false; // TODO - handle null value?
3189 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3190 if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3191 DemandedTy = VectorType::get(DemandedTy, IVecTy);
3192 }
3193
3194 // Check BitProvenance hasn't found a source larger than the result type.
3195 unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3196 if (DemandedBW > ITy->getScalarSizeInBits())
3197 return false;
3198
3199 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3200 // only byteswap values with an even number of bytes.
3201 APInt DemandedMask = APInt::getAllOnes(DemandedBW);
3202 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3203 bool OKForBitReverse = MatchBitReversals;
3204 for (unsigned BitIdx = 0;
3205 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3206 if (BitProvenance[BitIdx] == BitPart::Unset) {
3207 DemandedMask.clearBit(BitIdx);
3208 continue;
3209 }
3210 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3211 DemandedBW);
3212 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3213 BitIdx, DemandedBW);
3214 }
3215
3216 Intrinsic::ID Intrin;
3217 if (OKForBSwap)
3218 Intrin = Intrinsic::bswap;
3219 else if (OKForBitReverse)
3220 Intrin = Intrinsic::bitreverse;
3221 else
3222 return false;
3223
3224 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3225 Value *Provider = Res->Provider;
3226
3227 // We may need to truncate the provider.
3228 if (DemandedTy != Provider->getType()) {
3229 auto *Trunc =
3230 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3231 InsertedInsts.push_back(Trunc);
3232 Provider = Trunc;
3233 }
3234
3235 Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3236 InsertedInsts.push_back(Result);
3237
3238 if (!DemandedMask.isAllOnes()) {
3239 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3240 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3241 InsertedInsts.push_back(Result);
3242 }
3243
3244 // We may need to zeroextend back to the result type.
3245 if (ITy != Result->getType()) {
3246 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3247 InsertedInsts.push_back(ExtInst);
3248 }
3249
3250 return true;
3251 }
3252
3253 // CodeGen has special handling for some string functions that may replace
3254 // them with target-specific intrinsics. Since that'd skip our interceptors
3255 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3256 // we mark affected calls as NoBuiltin, which will disable optimization
3257 // in CodeGen.
maybeMarkSanitizerLibraryCallNoBuiltin(CallInst * CI,const TargetLibraryInfo * TLI)3258 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3259 CallInst *CI, const TargetLibraryInfo *TLI) {
3260 Function *F = CI->getCalledFunction();
3261 LibFunc Func;
3262 if (F && !F->hasLocalLinkage() && F->hasName() &&
3263 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3264 !F->doesNotAccessMemory())
3265 CI->addFnAttr(Attribute::NoBuiltin);
3266 }
3267
canReplaceOperandWithVariable(const Instruction * I,unsigned OpIdx)3268 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3269 // We can't have a PHI with a metadata type.
3270 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3271 return false;
3272
3273 // Early exit.
3274 if (!isa<Constant>(I->getOperand(OpIdx)))
3275 return true;
3276
3277 switch (I->getOpcode()) {
3278 default:
3279 return true;
3280 case Instruction::Call:
3281 case Instruction::Invoke: {
3282 const auto &CB = cast<CallBase>(*I);
3283
3284 // Can't handle inline asm. Skip it.
3285 if (CB.isInlineAsm())
3286 return false;
3287
3288 // Constant bundle operands may need to retain their constant-ness for
3289 // correctness.
3290 if (CB.isBundleOperand(OpIdx))
3291 return false;
3292
3293 if (OpIdx < CB.arg_size()) {
3294 // Some variadic intrinsics require constants in the variadic arguments,
3295 // which currently aren't markable as immarg.
3296 if (isa<IntrinsicInst>(CB) &&
3297 OpIdx >= CB.getFunctionType()->getNumParams()) {
3298 // This is known to be OK for stackmap.
3299 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3300 }
3301
3302 // gcroot is a special case, since it requires a constant argument which
3303 // isn't also required to be a simple ConstantInt.
3304 if (CB.getIntrinsicID() == Intrinsic::gcroot)
3305 return false;
3306
3307 // Some intrinsic operands are required to be immediates.
3308 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3309 }
3310
3311 // It is never allowed to replace the call argument to an intrinsic, but it
3312 // may be possible for a call.
3313 return !isa<IntrinsicInst>(CB);
3314 }
3315 case Instruction::ShuffleVector:
3316 // Shufflevector masks are constant.
3317 return OpIdx != 2;
3318 case Instruction::Switch:
3319 case Instruction::ExtractValue:
3320 // All operands apart from the first are constant.
3321 return OpIdx == 0;
3322 case Instruction::InsertValue:
3323 // All operands apart from the first and the second are constant.
3324 return OpIdx < 2;
3325 case Instruction::Alloca:
3326 // Static allocas (constant size in the entry block) are handled by
3327 // prologue/epilogue insertion so they're free anyway. We definitely don't
3328 // want to make them non-constant.
3329 return !cast<AllocaInst>(I)->isStaticAlloca();
3330 case Instruction::GetElementPtr:
3331 if (OpIdx == 0)
3332 return true;
3333 gep_type_iterator It = gep_type_begin(I);
3334 for (auto E = std::next(It, OpIdx); It != E; ++It)
3335 if (It.isStruct())
3336 return false;
3337 return true;
3338 }
3339 }
3340
invertCondition(Value * Condition)3341 Value *llvm::invertCondition(Value *Condition) {
3342 // First: Check if it's a constant
3343 if (Constant *C = dyn_cast<Constant>(Condition))
3344 return ConstantExpr::getNot(C);
3345
3346 // Second: If the condition is already inverted, return the original value
3347 Value *NotCondition;
3348 if (match(Condition, m_Not(m_Value(NotCondition))))
3349 return NotCondition;
3350
3351 BasicBlock *Parent = nullptr;
3352 Instruction *Inst = dyn_cast<Instruction>(Condition);
3353 if (Inst)
3354 Parent = Inst->getParent();
3355 else if (Argument *Arg = dyn_cast<Argument>(Condition))
3356 Parent = &Arg->getParent()->getEntryBlock();
3357 assert(Parent && "Unsupported condition to invert");
3358
3359 // Third: Check all the users for an invert
3360 for (User *U : Condition->users())
3361 if (Instruction *I = dyn_cast<Instruction>(U))
3362 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3363 return I;
3364
3365 // Last option: Create a new instruction
3366 auto *Inverted =
3367 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3368 if (Inst && !isa<PHINode>(Inst))
3369 Inverted->insertAfter(Inst);
3370 else
3371 Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3372 return Inverted;
3373 }
3374
inferAttributesFromOthers(Function & F)3375 bool llvm::inferAttributesFromOthers(Function &F) {
3376 // Note: We explicitly check for attributes rather than using cover functions
3377 // because some of the cover functions include the logic being implemented.
3378
3379 bool Changed = false;
3380 // readnone + not convergent implies nosync
3381 if (!F.hasFnAttribute(Attribute::NoSync) &&
3382 F.doesNotAccessMemory() && !F.isConvergent()) {
3383 F.setNoSync();
3384 Changed = true;
3385 }
3386
3387 // readonly implies nofree
3388 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3389 F.setDoesNotFreeMemory();
3390 Changed = true;
3391 }
3392
3393 // willreturn implies mustprogress
3394 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3395 F.setMustProgress();
3396 Changed = true;
3397 }
3398
3399 // TODO: There are a bunch of cases of restrictive memory effects we
3400 // can infer by inspecting arguments of argmemonly-ish functions.
3401
3402 return Changed;
3403 }
3404