1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 BasicBlock *Dest1 = BI->getSuccessor(0); 138 BasicBlock *Dest2 = BI->getSuccessor(1); 139 140 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 141 // Are we branching on constant? 142 // YES. Change to unconditional branch... 143 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 144 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 145 146 // Let the basic block know that we are letting go of it. Based on this, 147 // it will adjust it's PHI nodes. 148 OldDest->removePredecessor(BB); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Destination); 152 BI->eraseFromParent(); 153 if (DTU) 154 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 155 return true; 156 } 157 158 if (Dest2 == Dest1) { // Conditional branch to same location? 159 // This branch matches something like this: 160 // br bool %cond, label %Dest, label %Dest 161 // and changes it into: br label %Dest 162 163 // Let the basic block know that we are letting go of one copy of it. 164 assert(BI->getParent() && "Terminator not inserted in block!"); 165 Dest1->removePredecessor(BI->getParent()); 166 167 // Replace the conditional branch with an unconditional one. 168 Builder.CreateBr(Dest1); 169 Value *Cond = BI->getCondition(); 170 BI->eraseFromParent(); 171 if (DeleteDeadConditions) 172 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 173 return true; 174 } 175 return false; 176 } 177 178 if (auto *SI = dyn_cast<SwitchInst>(T)) { 179 // If we are switching on a constant, we can convert the switch to an 180 // unconditional branch. 181 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 182 BasicBlock *DefaultDest = SI->getDefaultDest(); 183 BasicBlock *TheOnlyDest = DefaultDest; 184 185 // If the default is unreachable, ignore it when searching for TheOnlyDest. 186 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 187 SI->getNumCases() > 0) { 188 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 189 } 190 191 bool Changed = false; 192 193 // Figure out which case it goes to. 194 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 195 // Found case matching a constant operand? 196 if (i->getCaseValue() == CI) { 197 TheOnlyDest = i->getCaseSuccessor(); 198 break; 199 } 200 201 // Check to see if this branch is going to the same place as the default 202 // dest. If so, eliminate it as an explicit compare. 203 if (i->getCaseSuccessor() == DefaultDest) { 204 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 205 unsigned NCases = SI->getNumCases(); 206 // Fold the case metadata into the default if there will be any branches 207 // left, unless the metadata doesn't match the switch. 208 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 209 // Collect branch weights into a vector. 210 SmallVector<uint32_t, 8> Weights; 211 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 212 ++MD_i) { 213 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 214 Weights.push_back(CI->getValue().getZExtValue()); 215 } 216 // Merge weight of this case to the default weight. 217 unsigned idx = i->getCaseIndex(); 218 Weights[0] += Weights[idx+1]; 219 // Remove weight for this case. 220 std::swap(Weights[idx+1], Weights.back()); 221 Weights.pop_back(); 222 SI->setMetadata(LLVMContext::MD_prof, 223 MDBuilder(BB->getContext()). 224 createBranchWeights(Weights)); 225 } 226 // Remove this entry. 227 BasicBlock *ParentBB = SI->getParent(); 228 DefaultDest->removePredecessor(ParentBB); 229 i = SI->removeCase(i); 230 e = SI->case_end(); 231 Changed = true; 232 if (DTU) 233 DTU->applyUpdatesPermissive( 234 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 std::vector <DominatorTree::UpdateType> Updates; 261 if (DTU) 262 Updates.reserve(SI->getNumSuccessors() - 1); 263 264 // Remove entries from PHI nodes which we no longer branch to... 265 for (BasicBlock *Succ : successors(SI)) { 266 // Found case matching a constant operand? 267 if (Succ == TheOnlyDest) { 268 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 269 } else { 270 Succ->removePredecessor(BB); 271 if (DTU) 272 Updates.push_back({DominatorTree::Delete, BB, Succ}); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) 282 DTU->applyUpdatesPermissive(Updates); 283 return true; 284 } 285 286 if (SI->getNumCases() == 1) { 287 // Otherwise, we can fold this switch into a conditional branch 288 // instruction if it has only one non-default destination. 289 auto FirstCase = *SI->case_begin(); 290 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 291 FirstCase.getCaseValue(), "cond"); 292 293 // Insert the new branch. 294 BranchInst *NewBr = Builder.CreateCondBr(Cond, 295 FirstCase.getCaseSuccessor(), 296 SI->getDefaultDest()); 297 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 298 if (MD && MD->getNumOperands() == 3) { 299 ConstantInt *SICase = 300 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 301 ConstantInt *SIDef = 302 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 303 assert(SICase && SIDef); 304 // The TrueWeight should be the weight for the single case of SI. 305 NewBr->setMetadata(LLVMContext::MD_prof, 306 MDBuilder(BB->getContext()). 307 createBranchWeights(SICase->getValue().getZExtValue(), 308 SIDef->getValue().getZExtValue())); 309 } 310 311 // Update make.implicit metadata to the newly-created conditional branch. 312 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 313 if (MakeImplicitMD) 314 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 315 316 // Delete the old switch. 317 SI->eraseFromParent(); 318 return true; 319 } 320 return Changed; 321 } 322 323 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 324 // indirectbr blockaddress(@F, @BB) -> br label @BB 325 if (auto *BA = 326 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 327 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 328 std::vector <DominatorTree::UpdateType> Updates; 329 if (DTU) 330 Updates.reserve(IBI->getNumDestinations() - 1); 331 332 // Insert the new branch. 333 Builder.CreateBr(TheOnlyDest); 334 335 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 336 if (IBI->getDestination(i) == TheOnlyDest) { 337 TheOnlyDest = nullptr; 338 } else { 339 BasicBlock *ParentBB = IBI->getParent(); 340 BasicBlock *DestBB = IBI->getDestination(i); 341 DestBB->removePredecessor(ParentBB); 342 if (DTU) 343 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 344 } 345 } 346 Value *Address = IBI->getAddress(); 347 IBI->eraseFromParent(); 348 if (DeleteDeadConditions) 349 // Delete pointer cast instructions. 350 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 351 352 // Also zap the blockaddress constant if there are no users remaining, 353 // otherwise the destination is still marked as having its address taken. 354 if (BA->use_empty()) 355 BA->destroyConstant(); 356 357 // If we didn't find our destination in the IBI successor list, then we 358 // have undefined behavior. Replace the unconditional branch with an 359 // 'unreachable' instruction. 360 if (TheOnlyDest) { 361 BB->getTerminator()->eraseFromParent(); 362 new UnreachableInst(BB->getContext(), BB); 363 } 364 365 if (DTU) 366 DTU->applyUpdatesPermissive(Updates); 367 return true; 368 } 369 } 370 371 return false; 372 } 373 374 //===----------------------------------------------------------------------===// 375 // Local dead code elimination. 376 // 377 378 /// isInstructionTriviallyDead - Return true if the result produced by the 379 /// instruction is not used, and the instruction has no side effects. 380 /// 381 bool llvm::isInstructionTriviallyDead(Instruction *I, 382 const TargetLibraryInfo *TLI) { 383 if (!I->use_empty()) 384 return false; 385 return wouldInstructionBeTriviallyDead(I, TLI); 386 } 387 388 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (I->isTerminator()) 391 return false; 392 393 // We don't want the landingpad-like instructions removed by anything this 394 // general. 395 if (I->isEHPad()) 396 return false; 397 398 // We don't want debug info removed by anything this general, unless 399 // debug info is empty. 400 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 401 if (DDI->getAddress()) 402 return false; 403 return true; 404 } 405 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 406 if (DVI->getValue()) 407 return false; 408 return true; 409 } 410 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 411 if (DLI->getLabel()) 412 return false; 413 return true; 414 } 415 416 if (!I->mayHaveSideEffects()) 417 return true; 418 419 // Special case intrinsics that "may have side effects" but can be deleted 420 // when dead. 421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 422 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 423 if (II->getIntrinsicID() == Intrinsic::stacksave || 424 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 425 return true; 426 427 if (II->isLifetimeStartOrEnd()) { 428 auto *Arg = II->getArgOperand(1); 429 // Lifetime intrinsics are dead when their right-hand is undef. 430 if (isa<UndefValue>(Arg)) 431 return true; 432 // If the right-hand is an alloc, global, or argument and the only uses 433 // are lifetime intrinsics then the intrinsics are dead. 434 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 435 return llvm::all_of(Arg->uses(), [](Use &Use) { 436 if (IntrinsicInst *IntrinsicUse = 437 dyn_cast<IntrinsicInst>(Use.getUser())) 438 return IntrinsicUse->isLifetimeStartOrEnd(); 439 return false; 440 }); 441 return false; 442 } 443 444 // Assumptions are dead if their condition is trivially true. Guards on 445 // true are operationally no-ops. In the future we can consider more 446 // sophisticated tradeoffs for guards considering potential for check 447 // widening, but for now we keep things simple. 448 if ((II->getIntrinsicID() == Intrinsic::assume && 449 isAssumeWithEmptyBundle(*II)) || 450 II->getIntrinsicID() == Intrinsic::experimental_guard) { 451 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 452 return !Cond->isZero(); 453 454 return false; 455 } 456 } 457 458 if (isAllocLikeFn(I, TLI)) 459 return true; 460 461 if (CallInst *CI = isFreeCall(I, TLI)) 462 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 463 return C->isNullValue() || isa<UndefValue>(C); 464 465 if (auto *Call = dyn_cast<CallBase>(I)) 466 if (isMathLibCallNoop(Call, TLI)) 467 return true; 468 469 return false; 470 } 471 472 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 473 /// trivially dead instruction, delete it. If that makes any of its operands 474 /// trivially dead, delete them too, recursively. Return true if any 475 /// instructions were deleted. 476 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 477 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 478 std::function<void(Value *)> AboutToDeleteCallback) { 479 Instruction *I = dyn_cast<Instruction>(V); 480 if (!I || !isInstructionTriviallyDead(I, TLI)) 481 return false; 482 483 SmallVector<WeakTrackingVH, 16> DeadInsts; 484 DeadInsts.push_back(I); 485 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 486 AboutToDeleteCallback); 487 488 return true; 489 } 490 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 492 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 493 MemorySSAUpdater *MSSAU, 494 std::function<void(Value *)> AboutToDeleteCallback) { 495 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 496 for (; S != E; ++S) { 497 auto *I = cast<Instruction>(DeadInsts[S]); 498 if (!isInstructionTriviallyDead(I)) { 499 DeadInsts[S] = nullptr; 500 ++Alive; 501 } 502 } 503 if (Alive == E) 504 return false; 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 return true; 508 } 509 510 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 511 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 512 MemorySSAUpdater *MSSAU, 513 std::function<void(Value *)> AboutToDeleteCallback) { 514 // Process the dead instruction list until empty. 515 while (!DeadInsts.empty()) { 516 Value *V = DeadInsts.pop_back_val(); 517 Instruction *I = cast_or_null<Instruction>(V); 518 if (!I) 519 continue; 520 assert(isInstructionTriviallyDead(I, TLI) && 521 "Live instruction found in dead worklist!"); 522 assert(I->use_empty() && "Instructions with uses are not dead."); 523 524 // Don't lose the debug info while deleting the instructions. 525 salvageDebugInfo(*I); 526 527 if (AboutToDeleteCallback) 528 AboutToDeleteCallback(I); 529 530 // Null out all of the instruction's operands to see if any operand becomes 531 // dead as we go. 532 for (Use &OpU : I->operands()) { 533 Value *OpV = OpU.get(); 534 OpU.set(nullptr); 535 536 if (!OpV->use_empty()) 537 continue; 538 539 // If the operand is an instruction that became dead as we nulled out the 540 // operand, and if it is 'trivially' dead, delete it in a future loop 541 // iteration. 542 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 543 if (isInstructionTriviallyDead(OpI, TLI)) 544 DeadInsts.push_back(OpI); 545 } 546 if (MSSAU) 547 MSSAU->removeMemoryAccess(I); 548 549 I->eraseFromParent(); 550 } 551 } 552 553 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 554 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 555 findDbgUsers(DbgUsers, I); 556 for (auto *DII : DbgUsers) { 557 Value *Undef = UndefValue::get(I->getType()); 558 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 559 ValueAsMetadata::get(Undef))); 560 } 561 return !DbgUsers.empty(); 562 } 563 564 /// areAllUsesEqual - Check whether the uses of a value are all the same. 565 /// This is similar to Instruction::hasOneUse() except this will also return 566 /// true when there are no uses or multiple uses that all refer to the same 567 /// value. 568 static bool areAllUsesEqual(Instruction *I) { 569 Value::user_iterator UI = I->user_begin(); 570 Value::user_iterator UE = I->user_end(); 571 if (UI == UE) 572 return true; 573 574 User *TheUse = *UI; 575 for (++UI; UI != UE; ++UI) { 576 if (*UI != TheUse) 577 return false; 578 } 579 return true; 580 } 581 582 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 583 /// dead PHI node, due to being a def-use chain of single-use nodes that 584 /// either forms a cycle or is terminated by a trivially dead instruction, 585 /// delete it. If that makes any of its operands trivially dead, delete them 586 /// too, recursively. Return true if a change was made. 587 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 588 const TargetLibraryInfo *TLI, 589 llvm::MemorySSAUpdater *MSSAU) { 590 SmallPtrSet<Instruction*, 4> Visited; 591 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 592 I = cast<Instruction>(*I->user_begin())) { 593 if (I->use_empty()) 594 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 595 596 // If we find an instruction more than once, we're on a cycle that 597 // won't prove fruitful. 598 if (!Visited.insert(I).second) { 599 // Break the cycle and delete the instruction and its operands. 600 I->replaceAllUsesWith(UndefValue::get(I->getType())); 601 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 602 return true; 603 } 604 } 605 return false; 606 } 607 608 static bool 609 simplifyAndDCEInstruction(Instruction *I, 610 SmallSetVector<Instruction *, 16> &WorkList, 611 const DataLayout &DL, 612 const TargetLibraryInfo *TLI) { 613 if (isInstructionTriviallyDead(I, TLI)) { 614 salvageDebugInfo(*I); 615 616 // Null out all of the instruction's operands to see if any operand becomes 617 // dead as we go. 618 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 619 Value *OpV = I->getOperand(i); 620 I->setOperand(i, nullptr); 621 622 if (!OpV->use_empty() || I == OpV) 623 continue; 624 625 // If the operand is an instruction that became dead as we nulled out the 626 // operand, and if it is 'trivially' dead, delete it in a future loop 627 // iteration. 628 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 629 if (isInstructionTriviallyDead(OpI, TLI)) 630 WorkList.insert(OpI); 631 } 632 633 I->eraseFromParent(); 634 635 return true; 636 } 637 638 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 639 // Add the users to the worklist. CAREFUL: an instruction can use itself, 640 // in the case of a phi node. 641 for (User *U : I->users()) { 642 if (U != I) { 643 WorkList.insert(cast<Instruction>(U)); 644 } 645 } 646 647 // Replace the instruction with its simplified value. 648 bool Changed = false; 649 if (!I->use_empty()) { 650 I->replaceAllUsesWith(SimpleV); 651 Changed = true; 652 } 653 if (isInstructionTriviallyDead(I, TLI)) { 654 I->eraseFromParent(); 655 Changed = true; 656 } 657 return Changed; 658 } 659 return false; 660 } 661 662 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 663 /// simplify any instructions in it and recursively delete dead instructions. 664 /// 665 /// This returns true if it changed the code, note that it can delete 666 /// instructions in other blocks as well in this block. 667 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 668 const TargetLibraryInfo *TLI) { 669 bool MadeChange = false; 670 const DataLayout &DL = BB->getModule()->getDataLayout(); 671 672 #ifndef NDEBUG 673 // In debug builds, ensure that the terminator of the block is never replaced 674 // or deleted by these simplifications. The idea of simplification is that it 675 // cannot introduce new instructions, and there is no way to replace the 676 // terminator of a block without introducing a new instruction. 677 AssertingVH<Instruction> TerminatorVH(&BB->back()); 678 #endif 679 680 SmallSetVector<Instruction *, 16> WorkList; 681 // Iterate over the original function, only adding insts to the worklist 682 // if they actually need to be revisited. This avoids having to pre-init 683 // the worklist with the entire function's worth of instructions. 684 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 685 BI != E;) { 686 assert(!BI->isTerminator()); 687 Instruction *I = &*BI; 688 ++BI; 689 690 // We're visiting this instruction now, so make sure it's not in the 691 // worklist from an earlier visit. 692 if (!WorkList.count(I)) 693 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 694 } 695 696 while (!WorkList.empty()) { 697 Instruction *I = WorkList.pop_back_val(); 698 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 699 } 700 return MadeChange; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // Control Flow Graph Restructuring. 705 // 706 707 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 708 DomTreeUpdater *DTU) { 709 710 // If BB has single-entry PHI nodes, fold them. 711 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 712 Value *NewVal = PN->getIncomingValue(0); 713 // Replace self referencing PHI with undef, it must be dead. 714 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 715 PN->replaceAllUsesWith(NewVal); 716 PN->eraseFromParent(); 717 } 718 719 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 720 assert(PredBB && "Block doesn't have a single predecessor!"); 721 722 bool ReplaceEntryBB = false; 723 if (PredBB == &DestBB->getParent()->getEntryBlock()) 724 ReplaceEntryBB = true; 725 726 // DTU updates: Collect all the edges that enter 727 // PredBB. These dominator edges will be redirected to DestBB. 728 SmallVector<DominatorTree::UpdateType, 32> Updates; 729 730 if (DTU) { 731 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 732 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 733 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 734 // This predecessor of PredBB may already have DestBB as a successor. 735 if (!llvm::is_contained(successors(*I), DestBB)) 736 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 737 } 738 } 739 740 // Zap anything that took the address of DestBB. Not doing this will give the 741 // address an invalid value. 742 if (DestBB->hasAddressTaken()) { 743 BlockAddress *BA = BlockAddress::get(DestBB); 744 Constant *Replacement = 745 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 746 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 747 BA->getType())); 748 BA->destroyConstant(); 749 } 750 751 // Anything that branched to PredBB now branches to DestBB. 752 PredBB->replaceAllUsesWith(DestBB); 753 754 // Splice all the instructions from PredBB to DestBB. 755 PredBB->getTerminator()->eraseFromParent(); 756 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 757 new UnreachableInst(PredBB->getContext(), PredBB); 758 759 // If the PredBB is the entry block of the function, move DestBB up to 760 // become the entry block after we erase PredBB. 761 if (ReplaceEntryBB) 762 DestBB->moveAfter(PredBB); 763 764 if (DTU) { 765 assert(PredBB->getInstList().size() == 1 && 766 isa<UnreachableInst>(PredBB->getTerminator()) && 767 "The successor list of PredBB isn't empty before " 768 "applying corresponding DTU updates."); 769 DTU->applyUpdatesPermissive(Updates); 770 DTU->deleteBB(PredBB); 771 // Recalculation of DomTree is needed when updating a forward DomTree and 772 // the Entry BB is replaced. 773 if (ReplaceEntryBB && DTU->hasDomTree()) { 774 // The entry block was removed and there is no external interface for 775 // the dominator tree to be notified of this change. In this corner-case 776 // we recalculate the entire tree. 777 DTU->recalculate(*(DestBB->getParent())); 778 } 779 } 780 781 else { 782 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 783 } 784 } 785 786 /// Return true if we can choose one of these values to use in place of the 787 /// other. Note that we will always choose the non-undef value to keep. 788 static bool CanMergeValues(Value *First, Value *Second) { 789 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 790 } 791 792 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 793 /// branch to Succ, into Succ. 794 /// 795 /// Assumption: Succ is the single successor for BB. 796 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 797 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 798 799 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 800 << Succ->getName() << "\n"); 801 // Shortcut, if there is only a single predecessor it must be BB and merging 802 // is always safe 803 if (Succ->getSinglePredecessor()) return true; 804 805 // Make a list of the predecessors of BB 806 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 807 808 // Look at all the phi nodes in Succ, to see if they present a conflict when 809 // merging these blocks 810 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 811 PHINode *PN = cast<PHINode>(I); 812 813 // If the incoming value from BB is again a PHINode in 814 // BB which has the same incoming value for *PI as PN does, we can 815 // merge the phi nodes and then the blocks can still be merged 816 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 817 if (BBPN && BBPN->getParent() == BB) { 818 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 819 BasicBlock *IBB = PN->getIncomingBlock(PI); 820 if (BBPreds.count(IBB) && 821 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 822 PN->getIncomingValue(PI))) { 823 LLVM_DEBUG(dbgs() 824 << "Can't fold, phi node " << PN->getName() << " in " 825 << Succ->getName() << " is conflicting with " 826 << BBPN->getName() << " with regard to common predecessor " 827 << IBB->getName() << "\n"); 828 return false; 829 } 830 } 831 } else { 832 Value* Val = PN->getIncomingValueForBlock(BB); 833 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 834 // See if the incoming value for the common predecessor is equal to the 835 // one for BB, in which case this phi node will not prevent the merging 836 // of the block. 837 BasicBlock *IBB = PN->getIncomingBlock(PI); 838 if (BBPreds.count(IBB) && 839 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 840 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 841 << " in " << Succ->getName() 842 << " is conflicting with regard to common " 843 << "predecessor " << IBB->getName() << "\n"); 844 return false; 845 } 846 } 847 } 848 } 849 850 return true; 851 } 852 853 using PredBlockVector = SmallVector<BasicBlock *, 16>; 854 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 855 856 /// Determines the value to use as the phi node input for a block. 857 /// 858 /// Select between \p OldVal any value that we know flows from \p BB 859 /// to a particular phi on the basis of which one (if either) is not 860 /// undef. Update IncomingValues based on the selected value. 861 /// 862 /// \param OldVal The value we are considering selecting. 863 /// \param BB The block that the value flows in from. 864 /// \param IncomingValues A map from block-to-value for other phi inputs 865 /// that we have examined. 866 /// 867 /// \returns the selected value. 868 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 869 IncomingValueMap &IncomingValues) { 870 if (!isa<UndefValue>(OldVal)) { 871 assert((!IncomingValues.count(BB) || 872 IncomingValues.find(BB)->second == OldVal) && 873 "Expected OldVal to match incoming value from BB!"); 874 875 IncomingValues.insert(std::make_pair(BB, OldVal)); 876 return OldVal; 877 } 878 879 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 880 if (It != IncomingValues.end()) return It->second; 881 882 return OldVal; 883 } 884 885 /// Create a map from block to value for the operands of a 886 /// given phi. 887 /// 888 /// Create a map from block to value for each non-undef value flowing 889 /// into \p PN. 890 /// 891 /// \param PN The phi we are collecting the map for. 892 /// \param IncomingValues [out] The map from block to value for this phi. 893 static void gatherIncomingValuesToPhi(PHINode *PN, 894 IncomingValueMap &IncomingValues) { 895 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 896 BasicBlock *BB = PN->getIncomingBlock(i); 897 Value *V = PN->getIncomingValue(i); 898 899 if (!isa<UndefValue>(V)) 900 IncomingValues.insert(std::make_pair(BB, V)); 901 } 902 } 903 904 /// Replace the incoming undef values to a phi with the values 905 /// from a block-to-value map. 906 /// 907 /// \param PN The phi we are replacing the undefs in. 908 /// \param IncomingValues A map from block to value. 909 static void replaceUndefValuesInPhi(PHINode *PN, 910 const IncomingValueMap &IncomingValues) { 911 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 912 Value *V = PN->getIncomingValue(i); 913 914 if (!isa<UndefValue>(V)) continue; 915 916 BasicBlock *BB = PN->getIncomingBlock(i); 917 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 918 if (It == IncomingValues.end()) continue; 919 920 PN->setIncomingValue(i, It->second); 921 } 922 } 923 924 /// Replace a value flowing from a block to a phi with 925 /// potentially multiple instances of that value flowing from the 926 /// block's predecessors to the phi. 927 /// 928 /// \param BB The block with the value flowing into the phi. 929 /// \param BBPreds The predecessors of BB. 930 /// \param PN The phi that we are updating. 931 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 932 const PredBlockVector &BBPreds, 933 PHINode *PN) { 934 Value *OldVal = PN->removeIncomingValue(BB, false); 935 assert(OldVal && "No entry in PHI for Pred BB!"); 936 937 IncomingValueMap IncomingValues; 938 939 // We are merging two blocks - BB, and the block containing PN - and 940 // as a result we need to redirect edges from the predecessors of BB 941 // to go to the block containing PN, and update PN 942 // accordingly. Since we allow merging blocks in the case where the 943 // predecessor and successor blocks both share some predecessors, 944 // and where some of those common predecessors might have undef 945 // values flowing into PN, we want to rewrite those values to be 946 // consistent with the non-undef values. 947 948 gatherIncomingValuesToPhi(PN, IncomingValues); 949 950 // If this incoming value is one of the PHI nodes in BB, the new entries 951 // in the PHI node are the entries from the old PHI. 952 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 953 PHINode *OldValPN = cast<PHINode>(OldVal); 954 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 955 // Note that, since we are merging phi nodes and BB and Succ might 956 // have common predecessors, we could end up with a phi node with 957 // identical incoming branches. This will be cleaned up later (and 958 // will trigger asserts if we try to clean it up now, without also 959 // simplifying the corresponding conditional branch). 960 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 961 Value *PredVal = OldValPN->getIncomingValue(i); 962 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 963 IncomingValues); 964 965 // And add a new incoming value for this predecessor for the 966 // newly retargeted branch. 967 PN->addIncoming(Selected, PredBB); 968 } 969 } else { 970 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 971 // Update existing incoming values in PN for this 972 // predecessor of BB. 973 BasicBlock *PredBB = BBPreds[i]; 974 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 975 IncomingValues); 976 977 // And add a new incoming value for this predecessor for the 978 // newly retargeted branch. 979 PN->addIncoming(Selected, PredBB); 980 } 981 } 982 983 replaceUndefValuesInPhi(PN, IncomingValues); 984 } 985 986 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 987 DomTreeUpdater *DTU) { 988 assert(BB != &BB->getParent()->getEntryBlock() && 989 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 990 991 // We can't eliminate infinite loops. 992 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 993 if (BB == Succ) return false; 994 995 // Check to see if merging these blocks would cause conflicts for any of the 996 // phi nodes in BB or Succ. If not, we can safely merge. 997 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 998 999 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1000 // has uses which will not disappear when the PHI nodes are merged. It is 1001 // possible to handle such cases, but difficult: it requires checking whether 1002 // BB dominates Succ, which is non-trivial to calculate in the case where 1003 // Succ has multiple predecessors. Also, it requires checking whether 1004 // constructing the necessary self-referential PHI node doesn't introduce any 1005 // conflicts; this isn't too difficult, but the previous code for doing this 1006 // was incorrect. 1007 // 1008 // Note that if this check finds a live use, BB dominates Succ, so BB is 1009 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1010 // folding the branch isn't profitable in that case anyway. 1011 if (!Succ->getSinglePredecessor()) { 1012 BasicBlock::iterator BBI = BB->begin(); 1013 while (isa<PHINode>(*BBI)) { 1014 for (Use &U : BBI->uses()) { 1015 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1016 if (PN->getIncomingBlock(U) != BB) 1017 return false; 1018 } else { 1019 return false; 1020 } 1021 } 1022 ++BBI; 1023 } 1024 } 1025 1026 // We cannot fold the block if it's a branch to an already present callbr 1027 // successor because that creates duplicate successors. 1028 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1029 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1030 if (Succ == CBI->getDefaultDest()) 1031 return false; 1032 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1033 if (Succ == CBI->getIndirectDest(i)) 1034 return false; 1035 } 1036 } 1037 1038 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1039 1040 SmallVector<DominatorTree::UpdateType, 32> Updates; 1041 if (DTU) { 1042 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1043 // All predecessors of BB will be moved to Succ. 1044 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1045 Updates.push_back({DominatorTree::Delete, *I, BB}); 1046 // This predecessor of BB may already have Succ as a successor. 1047 if (!llvm::is_contained(successors(*I), Succ)) 1048 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1049 } 1050 } 1051 1052 if (isa<PHINode>(Succ->begin())) { 1053 // If there is more than one pred of succ, and there are PHI nodes in 1054 // the successor, then we need to add incoming edges for the PHI nodes 1055 // 1056 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1057 1058 // Loop over all of the PHI nodes in the successor of BB. 1059 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1060 PHINode *PN = cast<PHINode>(I); 1061 1062 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1063 } 1064 } 1065 1066 if (Succ->getSinglePredecessor()) { 1067 // BB is the only predecessor of Succ, so Succ will end up with exactly 1068 // the same predecessors BB had. 1069 1070 // Copy over any phi, debug or lifetime instruction. 1071 BB->getTerminator()->eraseFromParent(); 1072 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1073 BB->getInstList()); 1074 } else { 1075 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1076 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1077 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1078 PN->eraseFromParent(); 1079 } 1080 } 1081 1082 // If the unconditional branch we replaced contains llvm.loop metadata, we 1083 // add the metadata to the branch instructions in the predecessors. 1084 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1085 Instruction *TI = BB->getTerminator(); 1086 if (TI) 1087 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1088 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1089 BasicBlock *Pred = *PI; 1090 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1091 } 1092 1093 // Everything that jumped to BB now goes to Succ. 1094 BB->replaceAllUsesWith(Succ); 1095 if (!Succ->hasName()) Succ->takeName(BB); 1096 1097 // Clear the successor list of BB to match updates applying to DTU later. 1098 if (BB->getTerminator()) 1099 BB->getInstList().pop_back(); 1100 new UnreachableInst(BB->getContext(), BB); 1101 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1102 "applying corresponding DTU updates."); 1103 1104 if (DTU) { 1105 DTU->applyUpdatesPermissive(Updates); 1106 DTU->deleteBB(BB); 1107 } else { 1108 BB->eraseFromParent(); // Delete the old basic block. 1109 } 1110 return true; 1111 } 1112 1113 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1114 // This implementation doesn't currently consider undef operands 1115 // specially. Theoretically, two phis which are identical except for 1116 // one having an undef where the other doesn't could be collapsed. 1117 1118 bool Changed = false; 1119 1120 // Examine each PHI. 1121 // Note that increment of I must *NOT* be in the iteration_expression, since 1122 // we don't want to immediately advance when we restart from the beginning. 1123 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1124 ++I; 1125 // Is there an identical PHI node in this basic block? 1126 // Note that we only look in the upper square's triangle, 1127 // we already checked that the lower triangle PHI's aren't identical. 1128 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1129 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1130 continue; 1131 // A duplicate. Replace this PHI with the base PHI. 1132 ++NumPHICSEs; 1133 DuplicatePN->replaceAllUsesWith(PN); 1134 DuplicatePN->eraseFromParent(); 1135 Changed = true; 1136 1137 // The RAUW can change PHIs that we already visited. 1138 I = BB->begin(); 1139 break; // Start over from the beginning. 1140 } 1141 } 1142 return Changed; 1143 } 1144 1145 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1146 // This implementation doesn't currently consider undef operands 1147 // specially. Theoretically, two phis which are identical except for 1148 // one having an undef where the other doesn't could be collapsed. 1149 1150 struct PHIDenseMapInfo { 1151 static PHINode *getEmptyKey() { 1152 return DenseMapInfo<PHINode *>::getEmptyKey(); 1153 } 1154 1155 static PHINode *getTombstoneKey() { 1156 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1157 } 1158 1159 static bool isSentinel(PHINode *PN) { 1160 return PN == getEmptyKey() || PN == getTombstoneKey(); 1161 } 1162 1163 // WARNING: this logic must be kept in sync with 1164 // Instruction::isIdenticalToWhenDefined()! 1165 static unsigned getHashValueImpl(PHINode *PN) { 1166 // Compute a hash value on the operands. Instcombine will likely have 1167 // sorted them, which helps expose duplicates, but we have to check all 1168 // the operands to be safe in case instcombine hasn't run. 1169 return static_cast<unsigned>(hash_combine( 1170 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1171 hash_combine_range(PN->block_begin(), PN->block_end()))); 1172 } 1173 1174 static unsigned getHashValue(PHINode *PN) { 1175 #ifndef NDEBUG 1176 // If -phicse-debug-hash was specified, return a constant -- this 1177 // will force all hashing to collide, so we'll exhaustively search 1178 // the table for a match, and the assertion in isEqual will fire if 1179 // there's a bug causing equal keys to hash differently. 1180 if (PHICSEDebugHash) 1181 return 0; 1182 #endif 1183 return getHashValueImpl(PN); 1184 } 1185 1186 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1187 if (isSentinel(LHS) || isSentinel(RHS)) 1188 return LHS == RHS; 1189 return LHS->isIdenticalTo(RHS); 1190 } 1191 1192 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1193 // These comparisons are nontrivial, so assert that equality implies 1194 // hash equality (DenseMap demands this as an invariant). 1195 bool Result = isEqualImpl(LHS, RHS); 1196 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1197 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1198 return Result; 1199 } 1200 }; 1201 1202 // Set of unique PHINodes. 1203 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1204 PHISet.reserve(4 * PHICSENumPHISmallSize); 1205 1206 // Examine each PHI. 1207 bool Changed = false; 1208 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1209 auto Inserted = PHISet.insert(PN); 1210 if (!Inserted.second) { 1211 // A duplicate. Replace this PHI with its duplicate. 1212 ++NumPHICSEs; 1213 PN->replaceAllUsesWith(*Inserted.first); 1214 PN->eraseFromParent(); 1215 Changed = true; 1216 1217 // The RAUW can change PHIs that we already visited. Start over from the 1218 // beginning. 1219 PHISet.clear(); 1220 I = BB->begin(); 1221 } 1222 } 1223 1224 return Changed; 1225 } 1226 1227 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1228 if ( 1229 #ifndef NDEBUG 1230 !PHICSEDebugHash && 1231 #endif 1232 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1233 return EliminateDuplicatePHINodesNaiveImpl(BB); 1234 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1235 } 1236 1237 /// If the specified pointer points to an object that we control, try to modify 1238 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1239 /// the value after the operation, which may be lower than PrefAlign. 1240 /// 1241 /// Increating value alignment isn't often possible though. If alignment is 1242 /// important, a more reliable approach is to simply align all global variables 1243 /// and allocation instructions to their preferred alignment from the beginning. 1244 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1245 const DataLayout &DL) { 1246 V = V->stripPointerCasts(); 1247 1248 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1249 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1250 // than the current alignment, as the known bits calculation should have 1251 // already taken it into account. However, this is not always the case, 1252 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1253 // doesn't. 1254 Align CurrentAlign = AI->getAlign(); 1255 if (PrefAlign <= CurrentAlign) 1256 return CurrentAlign; 1257 1258 // If the preferred alignment is greater than the natural stack alignment 1259 // then don't round up. This avoids dynamic stack realignment. 1260 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1261 return CurrentAlign; 1262 AI->setAlignment(PrefAlign); 1263 return PrefAlign; 1264 } 1265 1266 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1267 // TODO: as above, this shouldn't be necessary. 1268 Align CurrentAlign = GO->getPointerAlignment(DL); 1269 if (PrefAlign <= CurrentAlign) 1270 return CurrentAlign; 1271 1272 // If there is a large requested alignment and we can, bump up the alignment 1273 // of the global. If the memory we set aside for the global may not be the 1274 // memory used by the final program then it is impossible for us to reliably 1275 // enforce the preferred alignment. 1276 if (!GO->canIncreaseAlignment()) 1277 return CurrentAlign; 1278 1279 GO->setAlignment(PrefAlign); 1280 return PrefAlign; 1281 } 1282 1283 return Align(1); 1284 } 1285 1286 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1287 const DataLayout &DL, 1288 const Instruction *CxtI, 1289 AssumptionCache *AC, 1290 const DominatorTree *DT) { 1291 assert(V->getType()->isPointerTy() && 1292 "getOrEnforceKnownAlignment expects a pointer!"); 1293 1294 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1295 unsigned TrailZ = Known.countMinTrailingZeros(); 1296 1297 // Avoid trouble with ridiculously large TrailZ values, such as 1298 // those computed from a null pointer. 1299 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1300 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1301 1302 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1303 1304 if (PrefAlign && *PrefAlign > Alignment) 1305 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1306 1307 // We don't need to make any adjustment. 1308 return Alignment; 1309 } 1310 1311 ///===---------------------------------------------------------------------===// 1312 /// Dbg Intrinsic utilities 1313 /// 1314 1315 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1316 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1317 DIExpression *DIExpr, 1318 PHINode *APN) { 1319 // Since we can't guarantee that the original dbg.declare instrinsic 1320 // is removed by LowerDbgDeclare(), we need to make sure that we are 1321 // not inserting the same dbg.value intrinsic over and over. 1322 SmallVector<DbgValueInst *, 1> DbgValues; 1323 findDbgValues(DbgValues, APN); 1324 for (auto *DVI : DbgValues) { 1325 assert(DVI->getValue() == APN); 1326 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1327 return true; 1328 } 1329 return false; 1330 } 1331 1332 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1333 /// (or fragment of the variable) described by \p DII. 1334 /// 1335 /// This is primarily intended as a helper for the different 1336 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1337 /// converted describes an alloca'd variable, so we need to use the 1338 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1339 /// identified as covering an n-bit fragment, if the store size of i1 is at 1340 /// least n bits. 1341 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1342 const DataLayout &DL = DII->getModule()->getDataLayout(); 1343 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1344 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1345 assert(!ValueSize.isScalable() && 1346 "Fragments don't work on scalable types."); 1347 return ValueSize.getFixedSize() >= *FragmentSize; 1348 } 1349 // We can't always calculate the size of the DI variable (e.g. if it is a 1350 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1351 // intead. 1352 if (DII->isAddressOfVariable()) 1353 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1354 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1355 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1356 "Both sizes should agree on the scalable flag."); 1357 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1358 } 1359 // Could not determine size of variable. Conservatively return false. 1360 return false; 1361 } 1362 1363 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1364 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1365 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1366 /// case this DebugLoc leaks into any adjacent instructions. 1367 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1368 // Original dbg.declare must have a location. 1369 DebugLoc DeclareLoc = DII->getDebugLoc(); 1370 MDNode *Scope = DeclareLoc.getScope(); 1371 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1372 // Produce an unknown location with the correct scope / inlinedAt fields. 1373 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1374 } 1375 1376 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1377 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1378 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1379 StoreInst *SI, DIBuilder &Builder) { 1380 assert(DII->isAddressOfVariable()); 1381 auto *DIVar = DII->getVariable(); 1382 assert(DIVar && "Missing variable"); 1383 auto *DIExpr = DII->getExpression(); 1384 Value *DV = SI->getValueOperand(); 1385 1386 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1387 1388 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1389 // FIXME: If storing to a part of the variable described by the dbg.declare, 1390 // then we want to insert a dbg.value for the corresponding fragment. 1391 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1392 << *DII << '\n'); 1393 // For now, when there is a store to parts of the variable (but we do not 1394 // know which part) we insert an dbg.value instrinsic to indicate that we 1395 // know nothing about the variable's content. 1396 DV = UndefValue::get(DV->getType()); 1397 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1398 return; 1399 } 1400 1401 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1402 } 1403 1404 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1405 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1406 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1407 LoadInst *LI, DIBuilder &Builder) { 1408 auto *DIVar = DII->getVariable(); 1409 auto *DIExpr = DII->getExpression(); 1410 assert(DIVar && "Missing variable"); 1411 1412 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1413 // FIXME: If only referring to a part of the variable described by the 1414 // dbg.declare, then we want to insert a dbg.value for the corresponding 1415 // fragment. 1416 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1417 << *DII << '\n'); 1418 return; 1419 } 1420 1421 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1422 1423 // We are now tracking the loaded value instead of the address. In the 1424 // future if multi-location support is added to the IR, it might be 1425 // preferable to keep tracking both the loaded value and the original 1426 // address in case the alloca can not be elided. 1427 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1428 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1429 DbgValue->insertAfter(LI); 1430 } 1431 1432 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1433 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1434 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1435 PHINode *APN, DIBuilder &Builder) { 1436 auto *DIVar = DII->getVariable(); 1437 auto *DIExpr = DII->getExpression(); 1438 assert(DIVar && "Missing variable"); 1439 1440 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1441 return; 1442 1443 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1444 // FIXME: If only referring to a part of the variable described by the 1445 // dbg.declare, then we want to insert a dbg.value for the corresponding 1446 // fragment. 1447 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1448 << *DII << '\n'); 1449 return; 1450 } 1451 1452 BasicBlock *BB = APN->getParent(); 1453 auto InsertionPt = BB->getFirstInsertionPt(); 1454 1455 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1456 1457 // The block may be a catchswitch block, which does not have a valid 1458 // insertion point. 1459 // FIXME: Insert dbg.value markers in the successors when appropriate. 1460 if (InsertionPt != BB->end()) 1461 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1462 } 1463 1464 /// Determine whether this alloca is either a VLA or an array. 1465 static bool isArray(AllocaInst *AI) { 1466 return AI->isArrayAllocation() || 1467 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1468 } 1469 1470 /// Determine whether this alloca is a structure. 1471 static bool isStructure(AllocaInst *AI) { 1472 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1473 } 1474 1475 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1476 /// of llvm.dbg.value intrinsics. 1477 bool llvm::LowerDbgDeclare(Function &F) { 1478 bool Changed = false; 1479 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1480 SmallVector<DbgDeclareInst *, 4> Dbgs; 1481 for (auto &FI : F) 1482 for (Instruction &BI : FI) 1483 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1484 Dbgs.push_back(DDI); 1485 1486 if (Dbgs.empty()) 1487 return Changed; 1488 1489 for (auto &I : Dbgs) { 1490 DbgDeclareInst *DDI = I; 1491 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1492 // If this is an alloca for a scalar variable, insert a dbg.value 1493 // at each load and store to the alloca and erase the dbg.declare. 1494 // The dbg.values allow tracking a variable even if it is not 1495 // stored on the stack, while the dbg.declare can only describe 1496 // the stack slot (and at a lexical-scope granularity). Later 1497 // passes will attempt to elide the stack slot. 1498 if (!AI || isArray(AI) || isStructure(AI)) 1499 continue; 1500 1501 // A volatile load/store means that the alloca can't be elided anyway. 1502 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1503 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1504 return LI->isVolatile(); 1505 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1506 return SI->isVolatile(); 1507 return false; 1508 })) 1509 continue; 1510 1511 SmallVector<const Value *, 8> WorkList; 1512 WorkList.push_back(AI); 1513 while (!WorkList.empty()) { 1514 const Value *V = WorkList.pop_back_val(); 1515 for (auto &AIUse : V->uses()) { 1516 User *U = AIUse.getUser(); 1517 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1518 if (AIUse.getOperandNo() == 1) 1519 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1520 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1521 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1522 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1523 // This is a call by-value or some other instruction that takes a 1524 // pointer to the variable. Insert a *value* intrinsic that describes 1525 // the variable by dereferencing the alloca. 1526 if (!CI->isLifetimeStartOrEnd()) { 1527 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1528 auto *DerefExpr = 1529 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1530 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1531 NewLoc, CI); 1532 } 1533 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1534 if (BI->getType()->isPointerTy()) 1535 WorkList.push_back(BI); 1536 } 1537 } 1538 } 1539 DDI->eraseFromParent(); 1540 Changed = true; 1541 } 1542 1543 if (Changed) 1544 for (BasicBlock &BB : F) 1545 RemoveRedundantDbgInstrs(&BB); 1546 1547 return Changed; 1548 } 1549 1550 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1551 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1552 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1553 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1554 if (InsertedPHIs.size() == 0) 1555 return; 1556 1557 // Map existing PHI nodes to their dbg.values. 1558 ValueToValueMapTy DbgValueMap; 1559 for (auto &I : *BB) { 1560 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1561 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1562 DbgValueMap.insert({Loc, DbgII}); 1563 } 1564 } 1565 if (DbgValueMap.size() == 0) 1566 return; 1567 1568 // Then iterate through the new PHIs and look to see if they use one of the 1569 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1570 // propagate the info through the new PHI. 1571 LLVMContext &C = BB->getContext(); 1572 for (auto PHI : InsertedPHIs) { 1573 BasicBlock *Parent = PHI->getParent(); 1574 // Avoid inserting an intrinsic into an EH block. 1575 if (Parent->getFirstNonPHI()->isEHPad()) 1576 continue; 1577 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1578 for (auto VI : PHI->operand_values()) { 1579 auto V = DbgValueMap.find(VI); 1580 if (V != DbgValueMap.end()) { 1581 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1582 Instruction *NewDbgII = DbgII->clone(); 1583 NewDbgII->setOperand(0, PhiMAV); 1584 auto InsertionPt = Parent->getFirstInsertionPt(); 1585 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1586 NewDbgII->insertBefore(&*InsertionPt); 1587 } 1588 } 1589 } 1590 } 1591 1592 /// Finds all intrinsics declaring local variables as living in the memory that 1593 /// 'V' points to. This may include a mix of dbg.declare and 1594 /// dbg.addr intrinsics. 1595 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1596 // This function is hot. Check whether the value has any metadata to avoid a 1597 // DenseMap lookup. 1598 if (!V->isUsedByMetadata()) 1599 return {}; 1600 auto *L = LocalAsMetadata::getIfExists(V); 1601 if (!L) 1602 return {}; 1603 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1604 if (!MDV) 1605 return {}; 1606 1607 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1608 for (User *U : MDV->users()) { 1609 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1610 if (DII->isAddressOfVariable()) 1611 Declares.push_back(DII); 1612 } 1613 1614 return Declares; 1615 } 1616 1617 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1618 TinyPtrVector<DbgDeclareInst *> DDIs; 1619 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1620 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1621 DDIs.push_back(DDI); 1622 return DDIs; 1623 } 1624 1625 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1626 // This function is hot. Check whether the value has any metadata to avoid a 1627 // DenseMap lookup. 1628 if (!V->isUsedByMetadata()) 1629 return; 1630 if (auto *L = LocalAsMetadata::getIfExists(V)) 1631 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1632 for (User *U : MDV->users()) 1633 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1634 DbgValues.push_back(DVI); 1635 } 1636 1637 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1638 Value *V) { 1639 // This function is hot. Check whether the value has any metadata to avoid a 1640 // DenseMap lookup. 1641 if (!V->isUsedByMetadata()) 1642 return; 1643 if (auto *L = LocalAsMetadata::getIfExists(V)) 1644 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1645 for (User *U : MDV->users()) 1646 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1647 DbgUsers.push_back(DII); 1648 } 1649 1650 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1651 DIBuilder &Builder, uint8_t DIExprFlags, 1652 int Offset) { 1653 auto DbgAddrs = FindDbgAddrUses(Address); 1654 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1655 DebugLoc Loc = DII->getDebugLoc(); 1656 auto *DIVar = DII->getVariable(); 1657 auto *DIExpr = DII->getExpression(); 1658 assert(DIVar && "Missing variable"); 1659 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1660 // Insert llvm.dbg.declare immediately before DII, and remove old 1661 // llvm.dbg.declare. 1662 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1663 DII->eraseFromParent(); 1664 } 1665 return !DbgAddrs.empty(); 1666 } 1667 1668 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1669 DIBuilder &Builder, int Offset) { 1670 DebugLoc Loc = DVI->getDebugLoc(); 1671 auto *DIVar = DVI->getVariable(); 1672 auto *DIExpr = DVI->getExpression(); 1673 assert(DIVar && "Missing variable"); 1674 1675 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1676 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1677 // it and give up. 1678 if (!DIExpr || DIExpr->getNumElements() < 1 || 1679 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1680 return; 1681 1682 // Insert the offset before the first deref. 1683 // We could just change the offset argument of dbg.value, but it's unsigned... 1684 if (Offset) 1685 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1686 1687 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1688 DVI->eraseFromParent(); 1689 } 1690 1691 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1692 DIBuilder &Builder, int Offset) { 1693 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1694 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1695 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1696 Use &U = *UI++; 1697 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1698 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1699 } 1700 } 1701 1702 /// Wrap \p V in a ValueAsMetadata instance. 1703 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1704 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1705 } 1706 1707 /// Where possible to salvage debug information for \p I do so 1708 /// and return True. If not possible mark undef and return False. 1709 void llvm::salvageDebugInfo(Instruction &I) { 1710 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1711 findDbgUsers(DbgUsers, &I); 1712 salvageDebugInfoForDbgValues(I, DbgUsers); 1713 } 1714 1715 void llvm::salvageDebugInfoForDbgValues( 1716 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1717 auto &Ctx = I.getContext(); 1718 bool Salvaged = false; 1719 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1720 1721 for (auto *DII : DbgUsers) { 1722 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1723 // are implicitly pointing out the value as a DWARF memory location 1724 // description. 1725 bool StackValue = isa<DbgValueInst>(DII); 1726 1727 DIExpression *DIExpr = 1728 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1729 1730 // salvageDebugInfoImpl should fail on examining the first element of 1731 // DbgUsers, or none of them. 1732 if (!DIExpr) 1733 break; 1734 1735 DII->setOperand(0, wrapMD(I.getOperand(0))); 1736 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1737 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1738 Salvaged = true; 1739 } 1740 1741 if (Salvaged) 1742 return; 1743 1744 for (auto *DII : DbgUsers) { 1745 Value *Undef = UndefValue::get(I.getType()); 1746 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1747 ValueAsMetadata::get(Undef))); 1748 } 1749 } 1750 1751 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1752 DIExpression *SrcDIExpr, 1753 bool WithStackValue) { 1754 auto &M = *I.getModule(); 1755 auto &DL = M.getDataLayout(); 1756 1757 // Apply a vector of opcodes to the source DIExpression. 1758 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1759 DIExpression *DIExpr = SrcDIExpr; 1760 if (!Ops.empty()) { 1761 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1762 } 1763 return DIExpr; 1764 }; 1765 1766 // Apply the given offset to the source DIExpression. 1767 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1768 SmallVector<uint64_t, 8> Ops; 1769 DIExpression::appendOffset(Ops, Offset); 1770 return doSalvage(Ops); 1771 }; 1772 1773 // initializer-list helper for applying operators to the source DIExpression. 1774 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1775 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1776 return doSalvage(Ops); 1777 }; 1778 1779 if (auto *CI = dyn_cast<CastInst>(&I)) { 1780 // No-op casts are irrelevant for debug info. 1781 if (CI->isNoopCast(DL)) 1782 return SrcDIExpr; 1783 1784 Type *Type = CI->getType(); 1785 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1786 if (Type->isVectorTy() || 1787 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1788 return nullptr; 1789 1790 Value *FromValue = CI->getOperand(0); 1791 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1792 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1793 1794 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1795 isa<SExtInst>(&I))); 1796 } 1797 1798 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1799 unsigned BitWidth = 1800 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1801 // Rewrite a constant GEP into a DIExpression. 1802 APInt Offset(BitWidth, 0); 1803 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1804 return applyOffset(Offset.getSExtValue()); 1805 } else { 1806 return nullptr; 1807 } 1808 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1809 // Rewrite binary operations with constant integer operands. 1810 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1811 if (!ConstInt || ConstInt->getBitWidth() > 64) 1812 return nullptr; 1813 1814 uint64_t Val = ConstInt->getSExtValue(); 1815 switch (BI->getOpcode()) { 1816 case Instruction::Add: 1817 return applyOffset(Val); 1818 case Instruction::Sub: 1819 return applyOffset(-int64_t(Val)); 1820 case Instruction::Mul: 1821 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1822 case Instruction::SDiv: 1823 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1824 case Instruction::SRem: 1825 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1826 case Instruction::Or: 1827 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1828 case Instruction::And: 1829 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1830 case Instruction::Xor: 1831 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1832 case Instruction::Shl: 1833 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1834 case Instruction::LShr: 1835 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1836 case Instruction::AShr: 1837 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1838 default: 1839 // TODO: Salvage constants from each kind of binop we know about. 1840 return nullptr; 1841 } 1842 // *Not* to do: we should not attempt to salvage load instructions, 1843 // because the validity and lifetime of a dbg.value containing 1844 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1845 } 1846 return nullptr; 1847 } 1848 1849 /// A replacement for a dbg.value expression. 1850 using DbgValReplacement = Optional<DIExpression *>; 1851 1852 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1853 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1854 /// changes are made. 1855 static bool rewriteDebugUsers( 1856 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1857 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1858 // Find debug users of From. 1859 SmallVector<DbgVariableIntrinsic *, 1> Users; 1860 findDbgUsers(Users, &From); 1861 if (Users.empty()) 1862 return false; 1863 1864 // Prevent use-before-def of To. 1865 bool Changed = false; 1866 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1867 if (isa<Instruction>(&To)) { 1868 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1869 1870 for (auto *DII : Users) { 1871 // It's common to see a debug user between From and DomPoint. Move it 1872 // after DomPoint to preserve the variable update without any reordering. 1873 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1874 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1875 DII->moveAfter(&DomPoint); 1876 Changed = true; 1877 1878 // Users which otherwise aren't dominated by the replacement value must 1879 // be salvaged or deleted. 1880 } else if (!DT.dominates(&DomPoint, DII)) { 1881 UndefOrSalvage.insert(DII); 1882 } 1883 } 1884 } 1885 1886 // Update debug users without use-before-def risk. 1887 for (auto *DII : Users) { 1888 if (UndefOrSalvage.count(DII)) 1889 continue; 1890 1891 LLVMContext &Ctx = DII->getContext(); 1892 DbgValReplacement DVR = RewriteExpr(*DII); 1893 if (!DVR) 1894 continue; 1895 1896 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1897 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1898 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1899 Changed = true; 1900 } 1901 1902 if (!UndefOrSalvage.empty()) { 1903 // Try to salvage the remaining debug users. 1904 salvageDebugInfo(From); 1905 Changed = true; 1906 } 1907 1908 return Changed; 1909 } 1910 1911 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1912 /// losslessly preserve the bits and semantics of the value. This predicate is 1913 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1914 /// 1915 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1916 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1917 /// and also does not allow lossless pointer <-> integer conversions. 1918 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1919 Type *ToTy) { 1920 // Trivially compatible types. 1921 if (FromTy == ToTy) 1922 return true; 1923 1924 // Handle compatible pointer <-> integer conversions. 1925 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1926 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1927 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1928 !DL.isNonIntegralPointerType(ToTy); 1929 return SameSize && LosslessConversion; 1930 } 1931 1932 // TODO: This is not exhaustive. 1933 return false; 1934 } 1935 1936 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1937 Instruction &DomPoint, DominatorTree &DT) { 1938 // Exit early if From has no debug users. 1939 if (!From.isUsedByMetadata()) 1940 return false; 1941 1942 assert(&From != &To && "Can't replace something with itself"); 1943 1944 Type *FromTy = From.getType(); 1945 Type *ToTy = To.getType(); 1946 1947 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1948 return DII.getExpression(); 1949 }; 1950 1951 // Handle no-op conversions. 1952 Module &M = *From.getModule(); 1953 const DataLayout &DL = M.getDataLayout(); 1954 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1955 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1956 1957 // Handle integer-to-integer widening and narrowing. 1958 // FIXME: Use DW_OP_convert when it's available everywhere. 1959 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1960 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1961 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1962 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1963 1964 // When the width of the result grows, assume that a debugger will only 1965 // access the low `FromBits` bits when inspecting the source variable. 1966 if (FromBits < ToBits) 1967 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1968 1969 // The width of the result has shrunk. Use sign/zero extension to describe 1970 // the source variable's high bits. 1971 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1972 DILocalVariable *Var = DII.getVariable(); 1973 1974 // Without knowing signedness, sign/zero extension isn't possible. 1975 auto Signedness = Var->getSignedness(); 1976 if (!Signedness) 1977 return None; 1978 1979 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1980 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1981 Signed); 1982 }; 1983 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1984 } 1985 1986 // TODO: Floating-point conversions, vectors. 1987 return false; 1988 } 1989 1990 std::pair<unsigned, unsigned> 1991 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1992 unsigned NumDeadInst = 0; 1993 unsigned NumDeadDbgInst = 0; 1994 // Delete the instructions backwards, as it has a reduced likelihood of 1995 // having to update as many def-use and use-def chains. 1996 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1997 while (EndInst != &BB->front()) { 1998 // Delete the next to last instruction. 1999 Instruction *Inst = &*--EndInst->getIterator(); 2000 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2001 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2002 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2003 EndInst = Inst; 2004 continue; 2005 } 2006 if (isa<DbgInfoIntrinsic>(Inst)) 2007 ++NumDeadDbgInst; 2008 else 2009 ++NumDeadInst; 2010 Inst->eraseFromParent(); 2011 } 2012 return {NumDeadInst, NumDeadDbgInst}; 2013 } 2014 2015 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2016 bool PreserveLCSSA, DomTreeUpdater *DTU, 2017 MemorySSAUpdater *MSSAU) { 2018 BasicBlock *BB = I->getParent(); 2019 std::vector <DominatorTree::UpdateType> Updates; 2020 2021 if (MSSAU) 2022 MSSAU->changeToUnreachable(I); 2023 2024 // Loop over all of the successors, removing BB's entry from any PHI 2025 // nodes. 2026 if (DTU) 2027 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 2028 for (BasicBlock *Successor : successors(BB)) { 2029 Successor->removePredecessor(BB, PreserveLCSSA); 2030 if (DTU) 2031 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2032 } 2033 // Insert a call to llvm.trap right before this. This turns the undefined 2034 // behavior into a hard fail instead of falling through into random code. 2035 if (UseLLVMTrap) { 2036 Function *TrapFn = 2037 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2038 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2039 CallTrap->setDebugLoc(I->getDebugLoc()); 2040 } 2041 auto *UI = new UnreachableInst(I->getContext(), I); 2042 UI->setDebugLoc(I->getDebugLoc()); 2043 2044 // All instructions after this are dead. 2045 unsigned NumInstrsRemoved = 0; 2046 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2047 while (BBI != BBE) { 2048 if (!BBI->use_empty()) 2049 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2050 BB->getInstList().erase(BBI++); 2051 ++NumInstrsRemoved; 2052 } 2053 if (DTU) 2054 DTU->applyUpdatesPermissive(Updates); 2055 return NumInstrsRemoved; 2056 } 2057 2058 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2059 SmallVector<Value *, 8> Args(II->args()); 2060 SmallVector<OperandBundleDef, 1> OpBundles; 2061 II->getOperandBundlesAsDefs(OpBundles); 2062 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2063 II->getCalledOperand(), Args, OpBundles); 2064 NewCall->setCallingConv(II->getCallingConv()); 2065 NewCall->setAttributes(II->getAttributes()); 2066 NewCall->setDebugLoc(II->getDebugLoc()); 2067 NewCall->copyMetadata(*II); 2068 2069 // If the invoke had profile metadata, try converting them for CallInst. 2070 uint64_t TotalWeight; 2071 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2072 // Set the total weight if it fits into i32, otherwise reset. 2073 MDBuilder MDB(NewCall->getContext()); 2074 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2075 ? nullptr 2076 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2077 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2078 } 2079 2080 return NewCall; 2081 } 2082 2083 /// changeToCall - Convert the specified invoke into a normal call. 2084 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2085 CallInst *NewCall = createCallMatchingInvoke(II); 2086 NewCall->takeName(II); 2087 NewCall->insertBefore(II); 2088 II->replaceAllUsesWith(NewCall); 2089 2090 // Follow the call by a branch to the normal destination. 2091 BasicBlock *NormalDestBB = II->getNormalDest(); 2092 BranchInst::Create(NormalDestBB, II); 2093 2094 // Update PHI nodes in the unwind destination 2095 BasicBlock *BB = II->getParent(); 2096 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2097 UnwindDestBB->removePredecessor(BB); 2098 II->eraseFromParent(); 2099 if (DTU) 2100 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2101 } 2102 2103 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2104 BasicBlock *UnwindEdge) { 2105 BasicBlock *BB = CI->getParent(); 2106 2107 // Convert this function call into an invoke instruction. First, split the 2108 // basic block. 2109 BasicBlock *Split = 2110 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2111 2112 // Delete the unconditional branch inserted by splitBasicBlock 2113 BB->getInstList().pop_back(); 2114 2115 // Create the new invoke instruction. 2116 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2117 SmallVector<OperandBundleDef, 1> OpBundles; 2118 2119 CI->getOperandBundlesAsDefs(OpBundles); 2120 2121 // Note: we're round tripping operand bundles through memory here, and that 2122 // can potentially be avoided with a cleverer API design that we do not have 2123 // as of this time. 2124 2125 InvokeInst *II = 2126 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2127 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2128 II->setDebugLoc(CI->getDebugLoc()); 2129 II->setCallingConv(CI->getCallingConv()); 2130 II->setAttributes(CI->getAttributes()); 2131 2132 // Make sure that anything using the call now uses the invoke! This also 2133 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2134 CI->replaceAllUsesWith(II); 2135 2136 // Delete the original call 2137 Split->getInstList().pop_front(); 2138 return Split; 2139 } 2140 2141 static bool markAliveBlocks(Function &F, 2142 SmallPtrSetImpl<BasicBlock *> &Reachable, 2143 DomTreeUpdater *DTU = nullptr) { 2144 SmallVector<BasicBlock*, 128> Worklist; 2145 BasicBlock *BB = &F.front(); 2146 Worklist.push_back(BB); 2147 Reachable.insert(BB); 2148 bool Changed = false; 2149 do { 2150 BB = Worklist.pop_back_val(); 2151 2152 // Do a quick scan of the basic block, turning any obviously unreachable 2153 // instructions into LLVM unreachable insts. The instruction combining pass 2154 // canonicalizes unreachable insts into stores to null or undef. 2155 for (Instruction &I : *BB) { 2156 if (auto *CI = dyn_cast<CallInst>(&I)) { 2157 Value *Callee = CI->getCalledOperand(); 2158 // Handle intrinsic calls. 2159 if (Function *F = dyn_cast<Function>(Callee)) { 2160 auto IntrinsicID = F->getIntrinsicID(); 2161 // Assumptions that are known to be false are equivalent to 2162 // unreachable. Also, if the condition is undefined, then we make the 2163 // choice most beneficial to the optimizer, and choose that to also be 2164 // unreachable. 2165 if (IntrinsicID == Intrinsic::assume) { 2166 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2167 // Don't insert a call to llvm.trap right before the unreachable. 2168 changeToUnreachable(CI, false, false, DTU); 2169 Changed = true; 2170 break; 2171 } 2172 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2173 // A call to the guard intrinsic bails out of the current 2174 // compilation unit if the predicate passed to it is false. If the 2175 // predicate is a constant false, then we know the guard will bail 2176 // out of the current compile unconditionally, so all code following 2177 // it is dead. 2178 // 2179 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2180 // guards to treat `undef` as `false` since a guard on `undef` can 2181 // still be useful for widening. 2182 if (match(CI->getArgOperand(0), m_Zero())) 2183 if (!isa<UnreachableInst>(CI->getNextNode())) { 2184 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2185 false, DTU); 2186 Changed = true; 2187 break; 2188 } 2189 } 2190 } else if ((isa<ConstantPointerNull>(Callee) && 2191 !NullPointerIsDefined(CI->getFunction())) || 2192 isa<UndefValue>(Callee)) { 2193 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2194 Changed = true; 2195 break; 2196 } 2197 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2198 // If we found a call to a no-return function, insert an unreachable 2199 // instruction after it. Make sure there isn't *already* one there 2200 // though. 2201 if (!isa<UnreachableInst>(CI->getNextNode())) { 2202 // Don't insert a call to llvm.trap right before the unreachable. 2203 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2204 Changed = true; 2205 } 2206 break; 2207 } 2208 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2209 // Store to undef and store to null are undefined and used to signal 2210 // that they should be changed to unreachable by passes that can't 2211 // modify the CFG. 2212 2213 // Don't touch volatile stores. 2214 if (SI->isVolatile()) continue; 2215 2216 Value *Ptr = SI->getOperand(1); 2217 2218 if (isa<UndefValue>(Ptr) || 2219 (isa<ConstantPointerNull>(Ptr) && 2220 !NullPointerIsDefined(SI->getFunction(), 2221 SI->getPointerAddressSpace()))) { 2222 changeToUnreachable(SI, true, false, DTU); 2223 Changed = true; 2224 break; 2225 } 2226 } 2227 } 2228 2229 Instruction *Terminator = BB->getTerminator(); 2230 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2231 // Turn invokes that call 'nounwind' functions into ordinary calls. 2232 Value *Callee = II->getCalledOperand(); 2233 if ((isa<ConstantPointerNull>(Callee) && 2234 !NullPointerIsDefined(BB->getParent())) || 2235 isa<UndefValue>(Callee)) { 2236 changeToUnreachable(II, true, false, DTU); 2237 Changed = true; 2238 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2239 if (II->use_empty() && II->onlyReadsMemory()) { 2240 // jump to the normal destination branch. 2241 BasicBlock *NormalDestBB = II->getNormalDest(); 2242 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2243 BranchInst::Create(NormalDestBB, II); 2244 UnwindDestBB->removePredecessor(II->getParent()); 2245 II->eraseFromParent(); 2246 if (DTU) 2247 DTU->applyUpdatesPermissive( 2248 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2249 } else 2250 changeToCall(II, DTU); 2251 Changed = true; 2252 } 2253 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2254 // Remove catchpads which cannot be reached. 2255 struct CatchPadDenseMapInfo { 2256 static CatchPadInst *getEmptyKey() { 2257 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2258 } 2259 2260 static CatchPadInst *getTombstoneKey() { 2261 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2262 } 2263 2264 static unsigned getHashValue(CatchPadInst *CatchPad) { 2265 return static_cast<unsigned>(hash_combine_range( 2266 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2267 } 2268 2269 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2270 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2271 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2272 return LHS == RHS; 2273 return LHS->isIdenticalTo(RHS); 2274 } 2275 }; 2276 2277 // Set of unique CatchPads. 2278 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2279 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2280 HandlerSet; 2281 detail::DenseSetEmpty Empty; 2282 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2283 E = CatchSwitch->handler_end(); 2284 I != E; ++I) { 2285 BasicBlock *HandlerBB = *I; 2286 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2287 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2288 CatchSwitch->removeHandler(I); 2289 --I; 2290 --E; 2291 Changed = true; 2292 } 2293 } 2294 } 2295 2296 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2297 for (BasicBlock *Successor : successors(BB)) 2298 if (Reachable.insert(Successor).second) 2299 Worklist.push_back(Successor); 2300 } while (!Worklist.empty()); 2301 return Changed; 2302 } 2303 2304 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2305 Instruction *TI = BB->getTerminator(); 2306 2307 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2308 changeToCall(II, DTU); 2309 return; 2310 } 2311 2312 Instruction *NewTI; 2313 BasicBlock *UnwindDest; 2314 2315 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2316 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2317 UnwindDest = CRI->getUnwindDest(); 2318 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2319 auto *NewCatchSwitch = CatchSwitchInst::Create( 2320 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2321 CatchSwitch->getName(), CatchSwitch); 2322 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2323 NewCatchSwitch->addHandler(PadBB); 2324 2325 NewTI = NewCatchSwitch; 2326 UnwindDest = CatchSwitch->getUnwindDest(); 2327 } else { 2328 llvm_unreachable("Could not find unwind successor"); 2329 } 2330 2331 NewTI->takeName(TI); 2332 NewTI->setDebugLoc(TI->getDebugLoc()); 2333 UnwindDest->removePredecessor(BB); 2334 TI->replaceAllUsesWith(NewTI); 2335 TI->eraseFromParent(); 2336 if (DTU) 2337 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2338 } 2339 2340 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2341 /// if they are in a dead cycle. Return true if a change was made, false 2342 /// otherwise. 2343 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2344 MemorySSAUpdater *MSSAU) { 2345 SmallPtrSet<BasicBlock *, 16> Reachable; 2346 bool Changed = markAliveBlocks(F, Reachable, DTU); 2347 2348 // If there are unreachable blocks in the CFG... 2349 if (Reachable.size() == F.size()) 2350 return Changed; 2351 2352 assert(Reachable.size() < F.size()); 2353 NumRemoved += F.size() - Reachable.size(); 2354 2355 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2356 for (BasicBlock &BB : F) { 2357 // Skip reachable basic blocks 2358 if (Reachable.count(&BB)) 2359 continue; 2360 DeadBlockSet.insert(&BB); 2361 } 2362 2363 if (MSSAU) 2364 MSSAU->removeBlocks(DeadBlockSet); 2365 2366 // Loop over all of the basic blocks that are not reachable, dropping all of 2367 // their internal references. Update DTU if available. 2368 std::vector<DominatorTree::UpdateType> Updates; 2369 for (auto *BB : DeadBlockSet) { 2370 for (BasicBlock *Successor : successors(BB)) { 2371 if (!DeadBlockSet.count(Successor)) 2372 Successor->removePredecessor(BB); 2373 if (DTU) 2374 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2375 } 2376 BB->dropAllReferences(); 2377 if (DTU) { 2378 Instruction *TI = BB->getTerminator(); 2379 assert(TI && "Basic block should have a terminator"); 2380 // Terminators like invoke can have users. We have to replace their users, 2381 // before removing them. 2382 if (!TI->use_empty()) 2383 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2384 TI->eraseFromParent(); 2385 new UnreachableInst(BB->getContext(), BB); 2386 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2387 "applying corresponding DTU updates."); 2388 } 2389 } 2390 2391 if (DTU) { 2392 DTU->applyUpdatesPermissive(Updates); 2393 bool Deleted = false; 2394 for (auto *BB : DeadBlockSet) { 2395 if (DTU->isBBPendingDeletion(BB)) 2396 --NumRemoved; 2397 else 2398 Deleted = true; 2399 DTU->deleteBB(BB); 2400 } 2401 if (!Deleted) 2402 return false; 2403 } else { 2404 for (auto *BB : DeadBlockSet) 2405 BB->eraseFromParent(); 2406 } 2407 2408 return true; 2409 } 2410 2411 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2412 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2413 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2414 K->dropUnknownNonDebugMetadata(KnownIDs); 2415 K->getAllMetadataOtherThanDebugLoc(Metadata); 2416 for (const auto &MD : Metadata) { 2417 unsigned Kind = MD.first; 2418 MDNode *JMD = J->getMetadata(Kind); 2419 MDNode *KMD = MD.second; 2420 2421 switch (Kind) { 2422 default: 2423 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2424 break; 2425 case LLVMContext::MD_dbg: 2426 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2427 case LLVMContext::MD_tbaa: 2428 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2429 break; 2430 case LLVMContext::MD_alias_scope: 2431 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2432 break; 2433 case LLVMContext::MD_noalias: 2434 case LLVMContext::MD_mem_parallel_loop_access: 2435 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2436 break; 2437 case LLVMContext::MD_access_group: 2438 K->setMetadata(LLVMContext::MD_access_group, 2439 intersectAccessGroups(K, J)); 2440 break; 2441 case LLVMContext::MD_range: 2442 2443 // If K does move, use most generic range. Otherwise keep the range of 2444 // K. 2445 if (DoesKMove) 2446 // FIXME: If K does move, we should drop the range info and nonnull. 2447 // Currently this function is used with DoesKMove in passes 2448 // doing hoisting/sinking and the current behavior of using the 2449 // most generic range is correct in those cases. 2450 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2451 break; 2452 case LLVMContext::MD_fpmath: 2453 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2454 break; 2455 case LLVMContext::MD_invariant_load: 2456 // Only set the !invariant.load if it is present in both instructions. 2457 K->setMetadata(Kind, JMD); 2458 break; 2459 case LLVMContext::MD_nonnull: 2460 // If K does move, keep nonull if it is present in both instructions. 2461 if (DoesKMove) 2462 K->setMetadata(Kind, JMD); 2463 break; 2464 case LLVMContext::MD_invariant_group: 2465 // Preserve !invariant.group in K. 2466 break; 2467 case LLVMContext::MD_align: 2468 K->setMetadata(Kind, 2469 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2470 break; 2471 case LLVMContext::MD_dereferenceable: 2472 case LLVMContext::MD_dereferenceable_or_null: 2473 K->setMetadata(Kind, 2474 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2475 break; 2476 case LLVMContext::MD_preserve_access_index: 2477 // Preserve !preserve.access.index in K. 2478 break; 2479 } 2480 } 2481 // Set !invariant.group from J if J has it. If both instructions have it 2482 // then we will just pick it from J - even when they are different. 2483 // Also make sure that K is load or store - f.e. combining bitcast with load 2484 // could produce bitcast with invariant.group metadata, which is invalid. 2485 // FIXME: we should try to preserve both invariant.group md if they are 2486 // different, but right now instruction can only have one invariant.group. 2487 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2488 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2489 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2490 } 2491 2492 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2493 bool KDominatesJ) { 2494 unsigned KnownIDs[] = { 2495 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2496 LLVMContext::MD_noalias, LLVMContext::MD_range, 2497 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2498 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2499 LLVMContext::MD_dereferenceable, 2500 LLVMContext::MD_dereferenceable_or_null, 2501 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2502 combineMetadata(K, J, KnownIDs, KDominatesJ); 2503 } 2504 2505 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2506 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2507 Source.getAllMetadata(MD); 2508 MDBuilder MDB(Dest.getContext()); 2509 Type *NewType = Dest.getType(); 2510 const DataLayout &DL = Source.getModule()->getDataLayout(); 2511 for (const auto &MDPair : MD) { 2512 unsigned ID = MDPair.first; 2513 MDNode *N = MDPair.second; 2514 // Note, essentially every kind of metadata should be preserved here! This 2515 // routine is supposed to clone a load instruction changing *only its type*. 2516 // The only metadata it makes sense to drop is metadata which is invalidated 2517 // when the pointer type changes. This should essentially never be the case 2518 // in LLVM, but we explicitly switch over only known metadata to be 2519 // conservatively correct. If you are adding metadata to LLVM which pertains 2520 // to loads, you almost certainly want to add it here. 2521 switch (ID) { 2522 case LLVMContext::MD_dbg: 2523 case LLVMContext::MD_tbaa: 2524 case LLVMContext::MD_prof: 2525 case LLVMContext::MD_fpmath: 2526 case LLVMContext::MD_tbaa_struct: 2527 case LLVMContext::MD_invariant_load: 2528 case LLVMContext::MD_alias_scope: 2529 case LLVMContext::MD_noalias: 2530 case LLVMContext::MD_nontemporal: 2531 case LLVMContext::MD_mem_parallel_loop_access: 2532 case LLVMContext::MD_access_group: 2533 // All of these directly apply. 2534 Dest.setMetadata(ID, N); 2535 break; 2536 2537 case LLVMContext::MD_nonnull: 2538 copyNonnullMetadata(Source, N, Dest); 2539 break; 2540 2541 case LLVMContext::MD_align: 2542 case LLVMContext::MD_dereferenceable: 2543 case LLVMContext::MD_dereferenceable_or_null: 2544 // These only directly apply if the new type is also a pointer. 2545 if (NewType->isPointerTy()) 2546 Dest.setMetadata(ID, N); 2547 break; 2548 2549 case LLVMContext::MD_range: 2550 copyRangeMetadata(DL, Source, N, Dest); 2551 break; 2552 } 2553 } 2554 } 2555 2556 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2557 auto *ReplInst = dyn_cast<Instruction>(Repl); 2558 if (!ReplInst) 2559 return; 2560 2561 // Patch the replacement so that it is not more restrictive than the value 2562 // being replaced. 2563 // Note that if 'I' is a load being replaced by some operation, 2564 // for example, by an arithmetic operation, then andIRFlags() 2565 // would just erase all math flags from the original arithmetic 2566 // operation, which is clearly not wanted and not needed. 2567 if (!isa<LoadInst>(I)) 2568 ReplInst->andIRFlags(I); 2569 2570 // FIXME: If both the original and replacement value are part of the 2571 // same control-flow region (meaning that the execution of one 2572 // guarantees the execution of the other), then we can combine the 2573 // noalias scopes here and do better than the general conservative 2574 // answer used in combineMetadata(). 2575 2576 // In general, GVN unifies expressions over different control-flow 2577 // regions, and so we need a conservative combination of the noalias 2578 // scopes. 2579 static const unsigned KnownIDs[] = { 2580 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2581 LLVMContext::MD_noalias, LLVMContext::MD_range, 2582 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2583 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2584 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2585 combineMetadata(ReplInst, I, KnownIDs, false); 2586 } 2587 2588 template <typename RootType, typename DominatesFn> 2589 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2590 const RootType &Root, 2591 const DominatesFn &Dominates) { 2592 assert(From->getType() == To->getType()); 2593 2594 unsigned Count = 0; 2595 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2596 UI != UE;) { 2597 Use &U = *UI++; 2598 if (!Dominates(Root, U)) 2599 continue; 2600 U.set(To); 2601 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2602 << "' as " << *To << " in " << *U << "\n"); 2603 ++Count; 2604 } 2605 return Count; 2606 } 2607 2608 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2609 assert(From->getType() == To->getType()); 2610 auto *BB = From->getParent(); 2611 unsigned Count = 0; 2612 2613 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2614 UI != UE;) { 2615 Use &U = *UI++; 2616 auto *I = cast<Instruction>(U.getUser()); 2617 if (I->getParent() == BB) 2618 continue; 2619 U.set(To); 2620 ++Count; 2621 } 2622 return Count; 2623 } 2624 2625 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2626 DominatorTree &DT, 2627 const BasicBlockEdge &Root) { 2628 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2629 return DT.dominates(Root, U); 2630 }; 2631 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2632 } 2633 2634 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2635 DominatorTree &DT, 2636 const BasicBlock *BB) { 2637 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2638 auto *I = cast<Instruction>(U.getUser())->getParent(); 2639 return DT.properlyDominates(BB, I); 2640 }; 2641 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2642 } 2643 2644 bool llvm::callsGCLeafFunction(const CallBase *Call, 2645 const TargetLibraryInfo &TLI) { 2646 // Check if the function is specifically marked as a gc leaf function. 2647 if (Call->hasFnAttr("gc-leaf-function")) 2648 return true; 2649 if (const Function *F = Call->getCalledFunction()) { 2650 if (F->hasFnAttribute("gc-leaf-function")) 2651 return true; 2652 2653 if (auto IID = F->getIntrinsicID()) { 2654 // Most LLVM intrinsics do not take safepoints. 2655 return IID != Intrinsic::experimental_gc_statepoint && 2656 IID != Intrinsic::experimental_deoptimize && 2657 IID != Intrinsic::memcpy_element_unordered_atomic && 2658 IID != Intrinsic::memmove_element_unordered_atomic; 2659 } 2660 } 2661 2662 // Lib calls can be materialized by some passes, and won't be 2663 // marked as 'gc-leaf-function.' All available Libcalls are 2664 // GC-leaf. 2665 LibFunc LF; 2666 if (TLI.getLibFunc(*Call, LF)) { 2667 return TLI.has(LF); 2668 } 2669 2670 return false; 2671 } 2672 2673 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2674 LoadInst &NewLI) { 2675 auto *NewTy = NewLI.getType(); 2676 2677 // This only directly applies if the new type is also a pointer. 2678 if (NewTy->isPointerTy()) { 2679 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2680 return; 2681 } 2682 2683 // The only other translation we can do is to integral loads with !range 2684 // metadata. 2685 if (!NewTy->isIntegerTy()) 2686 return; 2687 2688 MDBuilder MDB(NewLI.getContext()); 2689 const Value *Ptr = OldLI.getPointerOperand(); 2690 auto *ITy = cast<IntegerType>(NewTy); 2691 auto *NullInt = ConstantExpr::getPtrToInt( 2692 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2693 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2694 NewLI.setMetadata(LLVMContext::MD_range, 2695 MDB.createRange(NonNullInt, NullInt)); 2696 } 2697 2698 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2699 MDNode *N, LoadInst &NewLI) { 2700 auto *NewTy = NewLI.getType(); 2701 2702 // Give up unless it is converted to a pointer where there is a single very 2703 // valuable mapping we can do reliably. 2704 // FIXME: It would be nice to propagate this in more ways, but the type 2705 // conversions make it hard. 2706 if (!NewTy->isPointerTy()) 2707 return; 2708 2709 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2710 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2711 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2712 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2713 } 2714 } 2715 2716 void llvm::dropDebugUsers(Instruction &I) { 2717 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2718 findDbgUsers(DbgUsers, &I); 2719 for (auto *DII : DbgUsers) 2720 DII->eraseFromParent(); 2721 } 2722 2723 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2724 BasicBlock *BB) { 2725 // Since we are moving the instructions out of its basic block, we do not 2726 // retain their original debug locations (DILocations) and debug intrinsic 2727 // instructions. 2728 // 2729 // Doing so would degrade the debugging experience and adversely affect the 2730 // accuracy of profiling information. 2731 // 2732 // Currently, when hoisting the instructions, we take the following actions: 2733 // - Remove their debug intrinsic instructions. 2734 // - Set their debug locations to the values from the insertion point. 2735 // 2736 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2737 // need to be deleted, is because there will not be any instructions with a 2738 // DILocation in either branch left after performing the transformation. We 2739 // can only insert a dbg.value after the two branches are joined again. 2740 // 2741 // See PR38762, PR39243 for more details. 2742 // 2743 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2744 // encode predicated DIExpressions that yield different results on different 2745 // code paths. 2746 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2747 Instruction *I = &*II; 2748 I->dropUnknownNonDebugMetadata(); 2749 if (I->isUsedByMetadata()) 2750 dropDebugUsers(*I); 2751 if (isa<DbgInfoIntrinsic>(I)) { 2752 // Remove DbgInfo Intrinsics. 2753 II = I->eraseFromParent(); 2754 continue; 2755 } 2756 I->setDebugLoc(InsertPt->getDebugLoc()); 2757 ++II; 2758 } 2759 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2760 BB->begin(), 2761 BB->getTerminator()->getIterator()); 2762 } 2763 2764 namespace { 2765 2766 /// A potential constituent of a bitreverse or bswap expression. See 2767 /// collectBitParts for a fuller explanation. 2768 struct BitPart { 2769 BitPart(Value *P, unsigned BW) : Provider(P) { 2770 Provenance.resize(BW); 2771 } 2772 2773 /// The Value that this is a bitreverse/bswap of. 2774 Value *Provider; 2775 2776 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2777 /// in Provider becomes bit B in the result of this expression. 2778 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2779 2780 enum { Unset = -1 }; 2781 }; 2782 2783 } // end anonymous namespace 2784 2785 /// Analyze the specified subexpression and see if it is capable of providing 2786 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2787 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2788 /// the output of the expression came from a corresponding bit in some other 2789 /// value. This function is recursive, and the end result is a mapping of 2790 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2791 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2792 /// 2793 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2794 /// that the expression deposits the low byte of %X into the high byte of the 2795 /// result and that all other bits are zero. This expression is accepted and a 2796 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2797 /// [0-7]. 2798 /// 2799 /// For vector types, all analysis is performed at the per-element level. No 2800 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2801 /// constant masks must be splatted across all elements. 2802 /// 2803 /// To avoid revisiting values, the BitPart results are memoized into the 2804 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2805 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2806 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2807 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2808 /// type instead to provide the same functionality. 2809 /// 2810 /// Because we pass around references into \c BPS, we must use a container that 2811 /// does not invalidate internal references (std::map instead of DenseMap). 2812 static const Optional<BitPart> & 2813 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2814 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2815 auto I = BPS.find(V); 2816 if (I != BPS.end()) 2817 return I->second; 2818 2819 auto &Result = BPS[V] = None; 2820 auto BitWidth = V->getType()->getScalarSizeInBits(); 2821 2822 // Prevent stack overflow by limiting the recursion depth 2823 if (Depth == BitPartRecursionMaxDepth) { 2824 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2825 return Result; 2826 } 2827 2828 if (auto *I = dyn_cast<Instruction>(V)) { 2829 Value *X, *Y; 2830 const APInt *C; 2831 2832 // If this is an or instruction, it may be an inner node of the bswap. 2833 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2834 const auto &A = 2835 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2836 const auto &B = 2837 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2838 if (!A || !B) 2839 return Result; 2840 2841 // Try and merge the two together. 2842 if (!A->Provider || A->Provider != B->Provider) 2843 return Result; 2844 2845 Result = BitPart(A->Provider, BitWidth); 2846 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2847 if (A->Provenance[BitIdx] != BitPart::Unset && 2848 B->Provenance[BitIdx] != BitPart::Unset && 2849 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2850 return Result = None; 2851 2852 if (A->Provenance[BitIdx] == BitPart::Unset) 2853 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2854 else 2855 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2856 } 2857 2858 return Result; 2859 } 2860 2861 // If this is a logical shift by a constant, recurse then shift the result. 2862 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2863 const APInt &BitShift = *C; 2864 2865 // Ensure the shift amount is defined. 2866 if (BitShift.uge(BitWidth)) 2867 return Result; 2868 2869 const auto &Res = 2870 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2871 if (!Res) 2872 return Result; 2873 Result = Res; 2874 2875 // Perform the "shift" on BitProvenance. 2876 auto &P = Result->Provenance; 2877 if (I->getOpcode() == Instruction::Shl) { 2878 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2879 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2880 } else { 2881 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2882 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2883 } 2884 2885 return Result; 2886 } 2887 2888 // If this is a logical 'and' with a mask that clears bits, recurse then 2889 // unset the appropriate bits. 2890 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2891 const APInt &AndMask = *C; 2892 2893 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2894 // early exit. 2895 unsigned NumMaskedBits = AndMask.countPopulation(); 2896 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2897 return Result; 2898 2899 const auto &Res = 2900 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2901 if (!Res) 2902 return Result; 2903 Result = Res; 2904 2905 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2906 // If the AndMask is zero for this bit, clear the bit. 2907 if (AndMask[BitIdx] == 0) 2908 Result->Provenance[BitIdx] = BitPart::Unset; 2909 return Result; 2910 } 2911 2912 // If this is a zext instruction zero extend the result. 2913 if (match(V, m_ZExt(m_Value(X)))) { 2914 const auto &Res = 2915 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2916 if (!Res) 2917 return Result; 2918 2919 Result = BitPart(Res->Provider, BitWidth); 2920 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2921 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2922 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2923 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2924 Result->Provenance[BitIdx] = BitPart::Unset; 2925 return Result; 2926 } 2927 2928 // BITREVERSE - most likely due to us previous matching a partial 2929 // bitreverse. 2930 if (match(V, m_BitReverse(m_Value(X)))) { 2931 const auto &Res = 2932 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2933 if (!Res) 2934 return Result; 2935 2936 Result = BitPart(Res->Provider, BitWidth); 2937 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2938 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2939 return Result; 2940 } 2941 2942 // BSWAP - most likely due to us previous matching a partial bswap. 2943 if (match(V, m_BSwap(m_Value(X)))) { 2944 const auto &Res = 2945 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2946 if (!Res) 2947 return Result; 2948 2949 unsigned ByteWidth = BitWidth / 8; 2950 Result = BitPart(Res->Provider, BitWidth); 2951 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2952 unsigned ByteBitOfs = ByteIdx * 8; 2953 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2954 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2955 Res->Provenance[ByteBitOfs + BitIdx]; 2956 } 2957 return Result; 2958 } 2959 2960 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2961 // amount (modulo). 2962 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2963 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2964 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 2965 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 2966 // We can treat fshr as a fshl by flipping the modulo amount. 2967 unsigned ModAmt = C->urem(BitWidth); 2968 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 2969 ModAmt = BitWidth - ModAmt; 2970 2971 const auto &LHS = 2972 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2973 const auto &RHS = 2974 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2975 2976 // Check we have both sources and they are from the same provider. 2977 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 2978 return Result; 2979 2980 unsigned StartBitRHS = BitWidth - ModAmt; 2981 Result = BitPart(LHS->Provider, BitWidth); 2982 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 2983 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 2984 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 2985 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 2986 return Result; 2987 } 2988 } 2989 2990 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2991 // the input value to the bswap/bitreverse. 2992 Result = BitPart(V, BitWidth); 2993 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2994 Result->Provenance[BitIdx] = BitIdx; 2995 return Result; 2996 } 2997 2998 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2999 unsigned BitWidth) { 3000 if (From % 8 != To % 8) 3001 return false; 3002 // Convert from bit indices to byte indices and check for a byte reversal. 3003 From >>= 3; 3004 To >>= 3; 3005 BitWidth >>= 3; 3006 return From == BitWidth - To - 1; 3007 } 3008 3009 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3010 unsigned BitWidth) { 3011 return From == BitWidth - To - 1; 3012 } 3013 3014 bool llvm::recognizeBSwapOrBitReverseIdiom( 3015 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3016 SmallVectorImpl<Instruction *> &InsertedInsts) { 3017 if (Operator::getOpcode(I) != Instruction::Or) 3018 return false; 3019 if (!MatchBSwaps && !MatchBitReversals) 3020 return false; 3021 Type *ITy = I->getType(); 3022 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3023 return false; // Can't do integer/elements > 128 bits. 3024 3025 Type *DemandedTy = ITy; 3026 if (I->hasOneUse()) 3027 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3028 DemandedTy = Trunc->getType(); 3029 3030 // Try to find all the pieces corresponding to the bswap. 3031 std::map<Value *, Optional<BitPart>> BPS; 3032 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3033 if (!Res) 3034 return false; 3035 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3036 assert(all_of(BitProvenance, 3037 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3038 "Illegal bit provenance index"); 3039 3040 // If the upper bits are zero, then attempt to perform as a truncated op. 3041 if (BitProvenance.back() == BitPart::Unset) { 3042 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3043 BitProvenance = BitProvenance.drop_back(); 3044 if (BitProvenance.empty()) 3045 return false; // TODO - handle null value? 3046 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3047 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3048 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3049 } 3050 3051 // Check BitProvenance hasn't found a source larger than the result type. 3052 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3053 if (DemandedBW > ITy->getScalarSizeInBits()) 3054 return false; 3055 3056 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3057 // only byteswap values with an even number of bytes. 3058 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3059 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3060 bool OKForBitReverse = MatchBitReversals; 3061 for (unsigned BitIdx = 0; 3062 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3063 if (BitProvenance[BitIdx] == BitPart::Unset) { 3064 DemandedMask.clearBit(BitIdx); 3065 continue; 3066 } 3067 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3068 DemandedBW); 3069 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3070 BitIdx, DemandedBW); 3071 } 3072 3073 Intrinsic::ID Intrin; 3074 if (OKForBSwap) 3075 Intrin = Intrinsic::bswap; 3076 else if (OKForBitReverse) 3077 Intrin = Intrinsic::bitreverse; 3078 else 3079 return false; 3080 3081 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3082 Value *Provider = Res->Provider; 3083 3084 // We may need to truncate the provider. 3085 if (DemandedTy != Provider->getType()) { 3086 auto *Trunc = 3087 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3088 InsertedInsts.push_back(Trunc); 3089 Provider = Trunc; 3090 } 3091 3092 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3093 InsertedInsts.push_back(Result); 3094 3095 if (!DemandedMask.isAllOnesValue()) { 3096 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3097 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3098 InsertedInsts.push_back(Result); 3099 } 3100 3101 // We may need to zeroextend back to the result type. 3102 if (ITy != Result->getType()) { 3103 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3104 InsertedInsts.push_back(ExtInst); 3105 } 3106 3107 return true; 3108 } 3109 3110 // CodeGen has special handling for some string functions that may replace 3111 // them with target-specific intrinsics. Since that'd skip our interceptors 3112 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3113 // we mark affected calls as NoBuiltin, which will disable optimization 3114 // in CodeGen. 3115 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3116 CallInst *CI, const TargetLibraryInfo *TLI) { 3117 Function *F = CI->getCalledFunction(); 3118 LibFunc Func; 3119 if (F && !F->hasLocalLinkage() && F->hasName() && 3120 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3121 !F->doesNotAccessMemory()) 3122 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3123 } 3124 3125 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3126 // We can't have a PHI with a metadata type. 3127 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3128 return false; 3129 3130 // Early exit. 3131 if (!isa<Constant>(I->getOperand(OpIdx))) 3132 return true; 3133 3134 switch (I->getOpcode()) { 3135 default: 3136 return true; 3137 case Instruction::Call: 3138 case Instruction::Invoke: { 3139 const auto &CB = cast<CallBase>(*I); 3140 3141 // Can't handle inline asm. Skip it. 3142 if (CB.isInlineAsm()) 3143 return false; 3144 3145 // Constant bundle operands may need to retain their constant-ness for 3146 // correctness. 3147 if (CB.isBundleOperand(OpIdx)) 3148 return false; 3149 3150 if (OpIdx < CB.getNumArgOperands()) { 3151 // Some variadic intrinsics require constants in the variadic arguments, 3152 // which currently aren't markable as immarg. 3153 if (isa<IntrinsicInst>(CB) && 3154 OpIdx >= CB.getFunctionType()->getNumParams()) { 3155 // This is known to be OK for stackmap. 3156 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3157 } 3158 3159 // gcroot is a special case, since it requires a constant argument which 3160 // isn't also required to be a simple ConstantInt. 3161 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3162 return false; 3163 3164 // Some intrinsic operands are required to be immediates. 3165 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3166 } 3167 3168 // It is never allowed to replace the call argument to an intrinsic, but it 3169 // may be possible for a call. 3170 return !isa<IntrinsicInst>(CB); 3171 } 3172 case Instruction::ShuffleVector: 3173 // Shufflevector masks are constant. 3174 return OpIdx != 2; 3175 case Instruction::Switch: 3176 case Instruction::ExtractValue: 3177 // All operands apart from the first are constant. 3178 return OpIdx == 0; 3179 case Instruction::InsertValue: 3180 // All operands apart from the first and the second are constant. 3181 return OpIdx < 2; 3182 case Instruction::Alloca: 3183 // Static allocas (constant size in the entry block) are handled by 3184 // prologue/epilogue insertion so they're free anyway. We definitely don't 3185 // want to make them non-constant. 3186 return !cast<AllocaInst>(I)->isStaticAlloca(); 3187 case Instruction::GetElementPtr: 3188 if (OpIdx == 0) 3189 return true; 3190 gep_type_iterator It = gep_type_begin(I); 3191 for (auto E = std::next(It, OpIdx); It != E; ++It) 3192 if (It.isStruct()) 3193 return false; 3194 return true; 3195 } 3196 } 3197 3198 Value *llvm::invertCondition(Value *Condition) { 3199 // First: Check if it's a constant 3200 if (Constant *C = dyn_cast<Constant>(Condition)) 3201 return ConstantExpr::getNot(C); 3202 3203 // Second: If the condition is already inverted, return the original value 3204 Value *NotCondition; 3205 if (match(Condition, m_Not(m_Value(NotCondition)))) 3206 return NotCondition; 3207 3208 BasicBlock *Parent = nullptr; 3209 Instruction *Inst = dyn_cast<Instruction>(Condition); 3210 if (Inst) 3211 Parent = Inst->getParent(); 3212 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3213 Parent = &Arg->getParent()->getEntryBlock(); 3214 assert(Parent && "Unsupported condition to invert"); 3215 3216 // Third: Check all the users for an invert 3217 for (User *U : Condition->users()) 3218 if (Instruction *I = dyn_cast<Instruction>(U)) 3219 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3220 return I; 3221 3222 // Last option: Create a new instruction 3223 auto *Inverted = 3224 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3225 if (Inst && !isa<PHINode>(Inst)) 3226 Inverted->insertAfter(Inst); 3227 else 3228 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3229 return Inverted; 3230 } 3231