1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 134 i != e; ++i) { 135 // Found case matching a constant operand? 136 if (i.getCaseValue() == CI) { 137 TheOnlyDest = i.getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i.getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty()) 291 return false; 292 return wouldInstructionBeTriviallyDead(I, TLI); 293 } 294 295 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 296 const TargetLibraryInfo *TLI) { 297 if (isa<TerminatorInst>(I)) 298 return false; 299 300 // We don't want the landingpad-like instructions removed by anything this 301 // general. 302 if (I->isEHPad()) 303 return false; 304 305 // We don't want debug info removed by anything this general, unless 306 // debug info is empty. 307 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 308 if (DDI->getAddress()) 309 return false; 310 return true; 311 } 312 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 313 if (DVI->getValue()) 314 return false; 315 return true; 316 } 317 318 if (!I->mayHaveSideEffects()) 319 return true; 320 321 // Special case intrinsics that "may have side effects" but can be deleted 322 // when dead. 323 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 324 // Safe to delete llvm.stacksave if dead. 325 if (II->getIntrinsicID() == Intrinsic::stacksave) 326 return true; 327 328 // Lifetime intrinsics are dead when their right-hand is undef. 329 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 330 II->getIntrinsicID() == Intrinsic::lifetime_end) 331 return isa<UndefValue>(II->getArgOperand(1)); 332 333 // Assumptions are dead if their condition is trivially true. Guards on 334 // true are operationally no-ops. In the future we can consider more 335 // sophisticated tradeoffs for guards considering potential for check 336 // widening, but for now we keep things simple. 337 if (II->getIntrinsicID() == Intrinsic::assume || 338 II->getIntrinsicID() == Intrinsic::experimental_guard) { 339 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 340 return !Cond->isZero(); 341 342 return false; 343 } 344 } 345 346 if (isAllocLikeFn(I, TLI)) 347 return true; 348 349 if (CallInst *CI = isFreeCall(I, TLI)) 350 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 351 return C->isNullValue() || isa<UndefValue>(C); 352 353 if (CallSite CS = CallSite(I)) 354 if (isMathLibCallNoop(CS, TLI)) 355 return true; 356 357 return false; 358 } 359 360 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 361 /// trivially dead instruction, delete it. If that makes any of its operands 362 /// trivially dead, delete them too, recursively. Return true if any 363 /// instructions were deleted. 364 bool 365 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 366 const TargetLibraryInfo *TLI) { 367 Instruction *I = dyn_cast<Instruction>(V); 368 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 369 return false; 370 371 SmallVector<Instruction*, 16> DeadInsts; 372 DeadInsts.push_back(I); 373 374 do { 375 I = DeadInsts.pop_back_val(); 376 377 // Null out all of the instruction's operands to see if any operand becomes 378 // dead as we go. 379 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 380 Value *OpV = I->getOperand(i); 381 I->setOperand(i, nullptr); 382 383 if (!OpV->use_empty()) continue; 384 385 // If the operand is an instruction that became dead as we nulled out the 386 // operand, and if it is 'trivially' dead, delete it in a future loop 387 // iteration. 388 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 389 if (isInstructionTriviallyDead(OpI, TLI)) 390 DeadInsts.push_back(OpI); 391 } 392 393 I->eraseFromParent(); 394 } while (!DeadInsts.empty()); 395 396 return true; 397 } 398 399 /// areAllUsesEqual - Check whether the uses of a value are all the same. 400 /// This is similar to Instruction::hasOneUse() except this will also return 401 /// true when there are no uses or multiple uses that all refer to the same 402 /// value. 403 static bool areAllUsesEqual(Instruction *I) { 404 Value::user_iterator UI = I->user_begin(); 405 Value::user_iterator UE = I->user_end(); 406 if (UI == UE) 407 return true; 408 409 User *TheUse = *UI; 410 for (++UI; UI != UE; ++UI) { 411 if (*UI != TheUse) 412 return false; 413 } 414 return true; 415 } 416 417 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 418 /// dead PHI node, due to being a def-use chain of single-use nodes that 419 /// either forms a cycle or is terminated by a trivially dead instruction, 420 /// delete it. If that makes any of its operands trivially dead, delete them 421 /// too, recursively. Return true if a change was made. 422 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 423 const TargetLibraryInfo *TLI) { 424 SmallPtrSet<Instruction*, 4> Visited; 425 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 426 I = cast<Instruction>(*I->user_begin())) { 427 if (I->use_empty()) 428 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 429 430 // If we find an instruction more than once, we're on a cycle that 431 // won't prove fruitful. 432 if (!Visited.insert(I).second) { 433 // Break the cycle and delete the instruction and its operands. 434 I->replaceAllUsesWith(UndefValue::get(I->getType())); 435 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 436 return true; 437 } 438 } 439 return false; 440 } 441 442 static bool 443 simplifyAndDCEInstruction(Instruction *I, 444 SmallSetVector<Instruction *, 16> &WorkList, 445 const DataLayout &DL, 446 const TargetLibraryInfo *TLI) { 447 if (isInstructionTriviallyDead(I, TLI)) { 448 // Null out all of the instruction's operands to see if any operand becomes 449 // dead as we go. 450 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 451 Value *OpV = I->getOperand(i); 452 I->setOperand(i, nullptr); 453 454 if (!OpV->use_empty() || I == OpV) 455 continue; 456 457 // If the operand is an instruction that became dead as we nulled out the 458 // operand, and if it is 'trivially' dead, delete it in a future loop 459 // iteration. 460 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 461 if (isInstructionTriviallyDead(OpI, TLI)) 462 WorkList.insert(OpI); 463 } 464 465 I->eraseFromParent(); 466 467 return true; 468 } 469 470 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 471 // Add the users to the worklist. CAREFUL: an instruction can use itself, 472 // in the case of a phi node. 473 for (User *U : I->users()) { 474 if (U != I) { 475 WorkList.insert(cast<Instruction>(U)); 476 } 477 } 478 479 // Replace the instruction with its simplified value. 480 bool Changed = false; 481 if (!I->use_empty()) { 482 I->replaceAllUsesWith(SimpleV); 483 Changed = true; 484 } 485 if (isInstructionTriviallyDead(I, TLI)) { 486 I->eraseFromParent(); 487 Changed = true; 488 } 489 return Changed; 490 } 491 return false; 492 } 493 494 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 495 /// simplify any instructions in it and recursively delete dead instructions. 496 /// 497 /// This returns true if it changed the code, note that it can delete 498 /// instructions in other blocks as well in this block. 499 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 500 const TargetLibraryInfo *TLI) { 501 bool MadeChange = false; 502 const DataLayout &DL = BB->getModule()->getDataLayout(); 503 504 #ifndef NDEBUG 505 // In debug builds, ensure that the terminator of the block is never replaced 506 // or deleted by these simplifications. The idea of simplification is that it 507 // cannot introduce new instructions, and there is no way to replace the 508 // terminator of a block without introducing a new instruction. 509 AssertingVH<Instruction> TerminatorVH(&BB->back()); 510 #endif 511 512 SmallSetVector<Instruction *, 16> WorkList; 513 // Iterate over the original function, only adding insts to the worklist 514 // if they actually need to be revisited. This avoids having to pre-init 515 // the worklist with the entire function's worth of instructions. 516 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 517 BI != E;) { 518 assert(!BI->isTerminator()); 519 Instruction *I = &*BI; 520 ++BI; 521 522 // We're visiting this instruction now, so make sure it's not in the 523 // worklist from an earlier visit. 524 if (!WorkList.count(I)) 525 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 526 } 527 528 while (!WorkList.empty()) { 529 Instruction *I = WorkList.pop_back_val(); 530 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 531 } 532 return MadeChange; 533 } 534 535 //===----------------------------------------------------------------------===// 536 // Control Flow Graph Restructuring. 537 // 538 539 540 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 541 /// method is called when we're about to delete Pred as a predecessor of BB. If 542 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 543 /// 544 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 545 /// nodes that collapse into identity values. For example, if we have: 546 /// x = phi(1, 0, 0, 0) 547 /// y = and x, z 548 /// 549 /// .. and delete the predecessor corresponding to the '1', this will attempt to 550 /// recursively fold the and to 0. 551 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 552 // This only adjusts blocks with PHI nodes. 553 if (!isa<PHINode>(BB->begin())) 554 return; 555 556 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 557 // them down. This will leave us with single entry phi nodes and other phis 558 // that can be removed. 559 BB->removePredecessor(Pred, true); 560 561 WeakVH PhiIt = &BB->front(); 562 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 563 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 564 Value *OldPhiIt = PhiIt; 565 566 if (!recursivelySimplifyInstruction(PN)) 567 continue; 568 569 // If recursive simplification ended up deleting the next PHI node we would 570 // iterate to, then our iterator is invalid, restart scanning from the top 571 // of the block. 572 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 573 } 574 } 575 576 577 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 578 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 579 /// between them, moving the instructions in the predecessor into DestBB and 580 /// deleting the predecessor block. 581 /// 582 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 583 // If BB has single-entry PHI nodes, fold them. 584 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 585 Value *NewVal = PN->getIncomingValue(0); 586 // Replace self referencing PHI with undef, it must be dead. 587 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 588 PN->replaceAllUsesWith(NewVal); 589 PN->eraseFromParent(); 590 } 591 592 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 593 assert(PredBB && "Block doesn't have a single predecessor!"); 594 595 // Zap anything that took the address of DestBB. Not doing this will give the 596 // address an invalid value. 597 if (DestBB->hasAddressTaken()) { 598 BlockAddress *BA = BlockAddress::get(DestBB); 599 Constant *Replacement = 600 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 601 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 602 BA->getType())); 603 BA->destroyConstant(); 604 } 605 606 // Anything that branched to PredBB now branches to DestBB. 607 PredBB->replaceAllUsesWith(DestBB); 608 609 // Splice all the instructions from PredBB to DestBB. 610 PredBB->getTerminator()->eraseFromParent(); 611 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 612 613 // If the PredBB is the entry block of the function, move DestBB up to 614 // become the entry block after we erase PredBB. 615 if (PredBB == &DestBB->getParent()->getEntryBlock()) 616 DestBB->moveAfter(PredBB); 617 618 if (DT) { 619 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 620 DT->changeImmediateDominator(DestBB, PredBBIDom); 621 DT->eraseNode(PredBB); 622 } 623 // Nuke BB. 624 PredBB->eraseFromParent(); 625 } 626 627 /// CanMergeValues - Return true if we can choose one of these values to use 628 /// in place of the other. Note that we will always choose the non-undef 629 /// value to keep. 630 static bool CanMergeValues(Value *First, Value *Second) { 631 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 632 } 633 634 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 635 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 636 /// 637 /// Assumption: Succ is the single successor for BB. 638 /// 639 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 640 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 641 642 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 643 << Succ->getName() << "\n"); 644 // Shortcut, if there is only a single predecessor it must be BB and merging 645 // is always safe 646 if (Succ->getSinglePredecessor()) return true; 647 648 // Make a list of the predecessors of BB 649 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 650 651 // Look at all the phi nodes in Succ, to see if they present a conflict when 652 // merging these blocks 653 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 654 PHINode *PN = cast<PHINode>(I); 655 656 // If the incoming value from BB is again a PHINode in 657 // BB which has the same incoming value for *PI as PN does, we can 658 // merge the phi nodes and then the blocks can still be merged 659 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 660 if (BBPN && BBPN->getParent() == BB) { 661 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 662 BasicBlock *IBB = PN->getIncomingBlock(PI); 663 if (BBPreds.count(IBB) && 664 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 665 PN->getIncomingValue(PI))) { 666 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 667 << Succ->getName() << " is conflicting with " 668 << BBPN->getName() << " with regard to common predecessor " 669 << IBB->getName() << "\n"); 670 return false; 671 } 672 } 673 } else { 674 Value* Val = PN->getIncomingValueForBlock(BB); 675 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 676 // See if the incoming value for the common predecessor is equal to the 677 // one for BB, in which case this phi node will not prevent the merging 678 // of the block. 679 BasicBlock *IBB = PN->getIncomingBlock(PI); 680 if (BBPreds.count(IBB) && 681 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 682 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 683 << Succ->getName() << " is conflicting with regard to common " 684 << "predecessor " << IBB->getName() << "\n"); 685 return false; 686 } 687 } 688 } 689 } 690 691 return true; 692 } 693 694 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 695 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 696 697 /// \brief Determines the value to use as the phi node input for a block. 698 /// 699 /// Select between \p OldVal any value that we know flows from \p BB 700 /// to a particular phi on the basis of which one (if either) is not 701 /// undef. Update IncomingValues based on the selected value. 702 /// 703 /// \param OldVal The value we are considering selecting. 704 /// \param BB The block that the value flows in from. 705 /// \param IncomingValues A map from block-to-value for other phi inputs 706 /// that we have examined. 707 /// 708 /// \returns the selected value. 709 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 710 IncomingValueMap &IncomingValues) { 711 if (!isa<UndefValue>(OldVal)) { 712 assert((!IncomingValues.count(BB) || 713 IncomingValues.find(BB)->second == OldVal) && 714 "Expected OldVal to match incoming value from BB!"); 715 716 IncomingValues.insert(std::make_pair(BB, OldVal)); 717 return OldVal; 718 } 719 720 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 721 if (It != IncomingValues.end()) return It->second; 722 723 return OldVal; 724 } 725 726 /// \brief Create a map from block to value for the operands of a 727 /// given phi. 728 /// 729 /// Create a map from block to value for each non-undef value flowing 730 /// into \p PN. 731 /// 732 /// \param PN The phi we are collecting the map for. 733 /// \param IncomingValues [out] The map from block to value for this phi. 734 static void gatherIncomingValuesToPhi(PHINode *PN, 735 IncomingValueMap &IncomingValues) { 736 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 737 BasicBlock *BB = PN->getIncomingBlock(i); 738 Value *V = PN->getIncomingValue(i); 739 740 if (!isa<UndefValue>(V)) 741 IncomingValues.insert(std::make_pair(BB, V)); 742 } 743 } 744 745 /// \brief Replace the incoming undef values to a phi with the values 746 /// from a block-to-value map. 747 /// 748 /// \param PN The phi we are replacing the undefs in. 749 /// \param IncomingValues A map from block to value. 750 static void replaceUndefValuesInPhi(PHINode *PN, 751 const IncomingValueMap &IncomingValues) { 752 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 753 Value *V = PN->getIncomingValue(i); 754 755 if (!isa<UndefValue>(V)) continue; 756 757 BasicBlock *BB = PN->getIncomingBlock(i); 758 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 759 if (It == IncomingValues.end()) continue; 760 761 PN->setIncomingValue(i, It->second); 762 } 763 } 764 765 /// \brief Replace a value flowing from a block to a phi with 766 /// potentially multiple instances of that value flowing from the 767 /// block's predecessors to the phi. 768 /// 769 /// \param BB The block with the value flowing into the phi. 770 /// \param BBPreds The predecessors of BB. 771 /// \param PN The phi that we are updating. 772 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 773 const PredBlockVector &BBPreds, 774 PHINode *PN) { 775 Value *OldVal = PN->removeIncomingValue(BB, false); 776 assert(OldVal && "No entry in PHI for Pred BB!"); 777 778 IncomingValueMap IncomingValues; 779 780 // We are merging two blocks - BB, and the block containing PN - and 781 // as a result we need to redirect edges from the predecessors of BB 782 // to go to the block containing PN, and update PN 783 // accordingly. Since we allow merging blocks in the case where the 784 // predecessor and successor blocks both share some predecessors, 785 // and where some of those common predecessors might have undef 786 // values flowing into PN, we want to rewrite those values to be 787 // consistent with the non-undef values. 788 789 gatherIncomingValuesToPhi(PN, IncomingValues); 790 791 // If this incoming value is one of the PHI nodes in BB, the new entries 792 // in the PHI node are the entries from the old PHI. 793 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 794 PHINode *OldValPN = cast<PHINode>(OldVal); 795 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 796 // Note that, since we are merging phi nodes and BB and Succ might 797 // have common predecessors, we could end up with a phi node with 798 // identical incoming branches. This will be cleaned up later (and 799 // will trigger asserts if we try to clean it up now, without also 800 // simplifying the corresponding conditional branch). 801 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 802 Value *PredVal = OldValPN->getIncomingValue(i); 803 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 804 IncomingValues); 805 806 // And add a new incoming value for this predecessor for the 807 // newly retargeted branch. 808 PN->addIncoming(Selected, PredBB); 809 } 810 } else { 811 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 812 // Update existing incoming values in PN for this 813 // predecessor of BB. 814 BasicBlock *PredBB = BBPreds[i]; 815 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 816 IncomingValues); 817 818 // And add a new incoming value for this predecessor for the 819 // newly retargeted branch. 820 PN->addIncoming(Selected, PredBB); 821 } 822 } 823 824 replaceUndefValuesInPhi(PN, IncomingValues); 825 } 826 827 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 828 /// unconditional branch, and contains no instructions other than PHI nodes, 829 /// potential side-effect free intrinsics and the branch. If possible, 830 /// eliminate BB by rewriting all the predecessors to branch to the successor 831 /// block and return true. If we can't transform, return false. 832 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 833 assert(BB != &BB->getParent()->getEntryBlock() && 834 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 835 836 // We can't eliminate infinite loops. 837 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 838 if (BB == Succ) return false; 839 840 // Check to see if merging these blocks would cause conflicts for any of the 841 // phi nodes in BB or Succ. If not, we can safely merge. 842 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 843 844 // Check for cases where Succ has multiple predecessors and a PHI node in BB 845 // has uses which will not disappear when the PHI nodes are merged. It is 846 // possible to handle such cases, but difficult: it requires checking whether 847 // BB dominates Succ, which is non-trivial to calculate in the case where 848 // Succ has multiple predecessors. Also, it requires checking whether 849 // constructing the necessary self-referential PHI node doesn't introduce any 850 // conflicts; this isn't too difficult, but the previous code for doing this 851 // was incorrect. 852 // 853 // Note that if this check finds a live use, BB dominates Succ, so BB is 854 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 855 // folding the branch isn't profitable in that case anyway. 856 if (!Succ->getSinglePredecessor()) { 857 BasicBlock::iterator BBI = BB->begin(); 858 while (isa<PHINode>(*BBI)) { 859 for (Use &U : BBI->uses()) { 860 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 861 if (PN->getIncomingBlock(U) != BB) 862 return false; 863 } else { 864 return false; 865 } 866 } 867 ++BBI; 868 } 869 } 870 871 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 872 873 if (isa<PHINode>(Succ->begin())) { 874 // If there is more than one pred of succ, and there are PHI nodes in 875 // the successor, then we need to add incoming edges for the PHI nodes 876 // 877 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 878 879 // Loop over all of the PHI nodes in the successor of BB. 880 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 881 PHINode *PN = cast<PHINode>(I); 882 883 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 884 } 885 } 886 887 if (Succ->getSinglePredecessor()) { 888 // BB is the only predecessor of Succ, so Succ will end up with exactly 889 // the same predecessors BB had. 890 891 // Copy over any phi, debug or lifetime instruction. 892 BB->getTerminator()->eraseFromParent(); 893 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 894 BB->getInstList()); 895 } else { 896 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 897 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 898 assert(PN->use_empty() && "There shouldn't be any uses here!"); 899 PN->eraseFromParent(); 900 } 901 } 902 903 // If the unconditional branch we replaced contains llvm.loop metadata, we 904 // add the metadata to the branch instructions in the predecessors. 905 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 906 Instruction *TI = BB->getTerminator(); 907 if (TI) 908 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 909 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 910 BasicBlock *Pred = *PI; 911 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 912 } 913 914 // Everything that jumped to BB now goes to Succ. 915 BB->replaceAllUsesWith(Succ); 916 if (!Succ->hasName()) Succ->takeName(BB); 917 BB->eraseFromParent(); // Delete the old basic block. 918 return true; 919 } 920 921 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 922 /// nodes in this block. This doesn't try to be clever about PHI nodes 923 /// which differ only in the order of the incoming values, but instcombine 924 /// orders them so it usually won't matter. 925 /// 926 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 927 // This implementation doesn't currently consider undef operands 928 // specially. Theoretically, two phis which are identical except for 929 // one having an undef where the other doesn't could be collapsed. 930 931 struct PHIDenseMapInfo { 932 static PHINode *getEmptyKey() { 933 return DenseMapInfo<PHINode *>::getEmptyKey(); 934 } 935 static PHINode *getTombstoneKey() { 936 return DenseMapInfo<PHINode *>::getTombstoneKey(); 937 } 938 static unsigned getHashValue(PHINode *PN) { 939 // Compute a hash value on the operands. Instcombine will likely have 940 // sorted them, which helps expose duplicates, but we have to check all 941 // the operands to be safe in case instcombine hasn't run. 942 return static_cast<unsigned>(hash_combine( 943 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 944 hash_combine_range(PN->block_begin(), PN->block_end()))); 945 } 946 static bool isEqual(PHINode *LHS, PHINode *RHS) { 947 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 948 RHS == getEmptyKey() || RHS == getTombstoneKey()) 949 return LHS == RHS; 950 return LHS->isIdenticalTo(RHS); 951 } 952 }; 953 954 // Set of unique PHINodes. 955 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 956 957 // Examine each PHI. 958 bool Changed = false; 959 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 960 auto Inserted = PHISet.insert(PN); 961 if (!Inserted.second) { 962 // A duplicate. Replace this PHI with its duplicate. 963 PN->replaceAllUsesWith(*Inserted.first); 964 PN->eraseFromParent(); 965 Changed = true; 966 967 // The RAUW can change PHIs that we already visited. Start over from the 968 // beginning. 969 PHISet.clear(); 970 I = BB->begin(); 971 } 972 } 973 974 return Changed; 975 } 976 977 /// enforceKnownAlignment - If the specified pointer points to an object that 978 /// we control, modify the object's alignment to PrefAlign. This isn't 979 /// often possible though. If alignment is important, a more reliable approach 980 /// is to simply align all global variables and allocation instructions to 981 /// their preferred alignment from the beginning. 982 /// 983 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 984 unsigned PrefAlign, 985 const DataLayout &DL) { 986 assert(PrefAlign > Align); 987 988 V = V->stripPointerCasts(); 989 990 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 991 // TODO: ideally, computeKnownBits ought to have used 992 // AllocaInst::getAlignment() in its computation already, making 993 // the below max redundant. But, as it turns out, 994 // stripPointerCasts recurses through infinite layers of bitcasts, 995 // while computeKnownBits is not allowed to traverse more than 6 996 // levels. 997 Align = std::max(AI->getAlignment(), Align); 998 if (PrefAlign <= Align) 999 return Align; 1000 1001 // If the preferred alignment is greater than the natural stack alignment 1002 // then don't round up. This avoids dynamic stack realignment. 1003 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1004 return Align; 1005 AI->setAlignment(PrefAlign); 1006 return PrefAlign; 1007 } 1008 1009 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1010 // TODO: as above, this shouldn't be necessary. 1011 Align = std::max(GO->getAlignment(), Align); 1012 if (PrefAlign <= Align) 1013 return Align; 1014 1015 // If there is a large requested alignment and we can, bump up the alignment 1016 // of the global. If the memory we set aside for the global may not be the 1017 // memory used by the final program then it is impossible for us to reliably 1018 // enforce the preferred alignment. 1019 if (!GO->canIncreaseAlignment()) 1020 return Align; 1021 1022 GO->setAlignment(PrefAlign); 1023 return PrefAlign; 1024 } 1025 1026 return Align; 1027 } 1028 1029 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1030 const DataLayout &DL, 1031 const Instruction *CxtI, 1032 AssumptionCache *AC, 1033 const DominatorTree *DT) { 1034 assert(V->getType()->isPointerTy() && 1035 "getOrEnforceKnownAlignment expects a pointer!"); 1036 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1037 1038 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1039 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1040 unsigned TrailZ = KnownZero.countTrailingOnes(); 1041 1042 // Avoid trouble with ridiculously large TrailZ values, such as 1043 // those computed from a null pointer. 1044 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1045 1046 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1047 1048 // LLVM doesn't support alignments larger than this currently. 1049 Align = std::min(Align, +Value::MaximumAlignment); 1050 1051 if (PrefAlign > Align) 1052 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1053 1054 // We don't need to make any adjustment. 1055 return Align; 1056 } 1057 1058 ///===---------------------------------------------------------------------===// 1059 /// Dbg Intrinsic utilities 1060 /// 1061 1062 /// See if there is a dbg.value intrinsic for DIVar before I. 1063 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1064 Instruction *I) { 1065 // Since we can't guarantee that the original dbg.declare instrinsic 1066 // is removed by LowerDbgDeclare(), we need to make sure that we are 1067 // not inserting the same dbg.value intrinsic over and over. 1068 llvm::BasicBlock::InstListType::iterator PrevI(I); 1069 if (PrevI != I->getParent()->getInstList().begin()) { 1070 --PrevI; 1071 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1072 if (DVI->getValue() == I->getOperand(0) && 1073 DVI->getOffset() == 0 && 1074 DVI->getVariable() == DIVar && 1075 DVI->getExpression() == DIExpr) 1076 return true; 1077 } 1078 return false; 1079 } 1080 1081 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1082 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1083 DIExpression *DIExpr, 1084 PHINode *APN) { 1085 // Since we can't guarantee that the original dbg.declare instrinsic 1086 // is removed by LowerDbgDeclare(), we need to make sure that we are 1087 // not inserting the same dbg.value intrinsic over and over. 1088 SmallVector<DbgValueInst *, 1> DbgValues; 1089 findDbgValues(DbgValues, APN); 1090 for (auto *DVI : DbgValues) { 1091 assert(DVI->getValue() == APN); 1092 assert(DVI->getOffset() == 0); 1093 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1094 return true; 1095 } 1096 return false; 1097 } 1098 1099 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1100 /// that has an associated llvm.dbg.decl intrinsic. 1101 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1102 StoreInst *SI, DIBuilder &Builder) { 1103 auto *DIVar = DDI->getVariable(); 1104 auto *DIExpr = DDI->getExpression(); 1105 assert(DIVar && "Missing variable"); 1106 1107 // If an argument is zero extended then use argument directly. The ZExt 1108 // may be zapped by an optimization pass in future. 1109 Argument *ExtendedArg = nullptr; 1110 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1111 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1112 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1113 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1114 if (ExtendedArg) { 1115 // We're now only describing a subset of the variable. The fragment we're 1116 // describing will always be smaller than the variable size, because 1117 // VariableSize == Size of Alloca described by DDI. Since SI stores 1118 // to the alloca described by DDI, if it's first operand is an extend, 1119 // we're guaranteed that before extension, the value was narrower than 1120 // the size of the alloca, hence the size of the described variable. 1121 SmallVector<uint64_t, 3> Ops; 1122 unsigned FragmentOffset = 0; 1123 // If this already is a bit fragment, we drop the bit fragment from the 1124 // expression and record the offset. 1125 auto Fragment = DIExpr->getFragmentInfo(); 1126 if (Fragment) { 1127 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1128 FragmentOffset = Fragment->OffsetInBits; 1129 } else { 1130 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1131 } 1132 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1133 Ops.push_back(FragmentOffset); 1134 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1135 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1136 auto NewDIExpr = Builder.createExpression(Ops); 1137 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1138 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1139 DDI->getDebugLoc(), SI); 1140 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1141 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1142 DDI->getDebugLoc(), SI); 1143 } 1144 1145 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1146 /// that has an associated llvm.dbg.decl intrinsic. 1147 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1148 LoadInst *LI, DIBuilder &Builder) { 1149 auto *DIVar = DDI->getVariable(); 1150 auto *DIExpr = DDI->getExpression(); 1151 assert(DIVar && "Missing variable"); 1152 1153 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1154 return; 1155 1156 // We are now tracking the loaded value instead of the address. In the 1157 // future if multi-location support is added to the IR, it might be 1158 // preferable to keep tracking both the loaded value and the original 1159 // address in case the alloca can not be elided. 1160 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1161 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1162 DbgValue->insertAfter(LI); 1163 } 1164 1165 /// Inserts a llvm.dbg.value intrinsic after a phi 1166 /// that has an associated llvm.dbg.decl intrinsic. 1167 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1168 PHINode *APN, DIBuilder &Builder) { 1169 auto *DIVar = DDI->getVariable(); 1170 auto *DIExpr = DDI->getExpression(); 1171 assert(DIVar && "Missing variable"); 1172 1173 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1174 return; 1175 1176 BasicBlock *BB = APN->getParent(); 1177 auto InsertionPt = BB->getFirstInsertionPt(); 1178 1179 // The block may be a catchswitch block, which does not have a valid 1180 // insertion point. 1181 // FIXME: Insert dbg.value markers in the successors when appropriate. 1182 if (InsertionPt != BB->end()) 1183 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1184 &*InsertionPt); 1185 } 1186 1187 /// Determine whether this alloca is either a VLA or an array. 1188 static bool isArray(AllocaInst *AI) { 1189 return AI->isArrayAllocation() || 1190 AI->getType()->getElementType()->isArrayTy(); 1191 } 1192 1193 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1194 /// of llvm.dbg.value intrinsics. 1195 bool llvm::LowerDbgDeclare(Function &F) { 1196 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1197 SmallVector<DbgDeclareInst *, 4> Dbgs; 1198 for (auto &FI : F) 1199 for (Instruction &BI : FI) 1200 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1201 Dbgs.push_back(DDI); 1202 1203 if (Dbgs.empty()) 1204 return false; 1205 1206 for (auto &I : Dbgs) { 1207 DbgDeclareInst *DDI = I; 1208 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1209 // If this is an alloca for a scalar variable, insert a dbg.value 1210 // at each load and store to the alloca and erase the dbg.declare. 1211 // The dbg.values allow tracking a variable even if it is not 1212 // stored on the stack, while the dbg.declare can only describe 1213 // the stack slot (and at a lexical-scope granularity). Later 1214 // passes will attempt to elide the stack slot. 1215 if (AI && !isArray(AI)) { 1216 for (auto &AIUse : AI->uses()) { 1217 User *U = AIUse.getUser(); 1218 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1219 if (AIUse.getOperandNo() == 1) 1220 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1221 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1222 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1223 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1224 // This is a call by-value or some other instruction that 1225 // takes a pointer to the variable. Insert a *value* 1226 // intrinsic that describes the alloca. 1227 SmallVector<uint64_t, 1> NewDIExpr; 1228 auto *DIExpr = DDI->getExpression(); 1229 NewDIExpr.push_back(dwarf::DW_OP_deref); 1230 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1231 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1232 DIB.createExpression(NewDIExpr), 1233 DDI->getDebugLoc(), CI); 1234 } 1235 } 1236 DDI->eraseFromParent(); 1237 } 1238 } 1239 return true; 1240 } 1241 1242 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1243 /// alloca 'V', if any. 1244 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1245 if (auto *L = LocalAsMetadata::getIfExists(V)) 1246 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1247 for (User *U : MDV->users()) 1248 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1249 return DDI; 1250 1251 return nullptr; 1252 } 1253 1254 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1255 if (auto *L = LocalAsMetadata::getIfExists(V)) 1256 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1257 for (User *U : MDV->users()) 1258 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1259 DbgValues.push_back(DVI); 1260 } 1261 1262 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) { 1263 Expr.push_back(dwarf::DW_OP_deref); 1264 } 1265 1266 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) { 1267 if (Offset > 0) { 1268 Expr.push_back(dwarf::DW_OP_plus); 1269 Expr.push_back(Offset); 1270 } else if (Offset < 0) { 1271 Expr.push_back(dwarf::DW_OP_minus); 1272 Expr.push_back(-Offset); 1273 } 1274 } 1275 1276 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder, 1277 DIExpression *DIExpr, bool Deref, 1278 int Offset) { 1279 if (!Deref && !Offset) 1280 return DIExpr; 1281 // Create a copy of the original DIDescriptor for user variable, prepending 1282 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1283 // will take a value storing address of the memory for variable, not 1284 // alloca itself. 1285 SmallVector<uint64_t, 4> NewDIExpr; 1286 if (Deref) 1287 DIExprAddDeref(NewDIExpr); 1288 DIExprAddOffset(NewDIExpr, Offset); 1289 if (DIExpr) 1290 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1291 return Builder.createExpression(NewDIExpr); 1292 } 1293 1294 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1295 Instruction *InsertBefore, DIBuilder &Builder, 1296 bool Deref, int Offset) { 1297 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1298 if (!DDI) 1299 return false; 1300 DebugLoc Loc = DDI->getDebugLoc(); 1301 auto *DIVar = DDI->getVariable(); 1302 auto *DIExpr = DDI->getExpression(); 1303 assert(DIVar && "Missing variable"); 1304 1305 DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset); 1306 1307 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1308 // old llvm.dbg.declare. 1309 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1310 DDI->eraseFromParent(); 1311 return true; 1312 } 1313 1314 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1315 DIBuilder &Builder, bool Deref, int Offset) { 1316 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1317 Deref, Offset); 1318 } 1319 1320 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1321 DIBuilder &Builder, int Offset) { 1322 DebugLoc Loc = DVI->getDebugLoc(); 1323 auto *DIVar = DVI->getVariable(); 1324 auto *DIExpr = DVI->getExpression(); 1325 assert(DIVar && "Missing variable"); 1326 1327 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1328 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1329 // it and give up. 1330 if (!DIExpr || DIExpr->getNumElements() < 1 || 1331 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1332 return; 1333 1334 // Insert the offset immediately after the first deref. 1335 // We could just change the offset argument of dbg.value, but it's unsigned... 1336 if (Offset) { 1337 SmallVector<uint64_t, 4> NewDIExpr; 1338 DIExprAddDeref(NewDIExpr); 1339 DIExprAddOffset(NewDIExpr, Offset); 1340 NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1341 DIExpr = Builder.createExpression(NewDIExpr); 1342 } 1343 1344 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1345 Loc, DVI); 1346 DVI->eraseFromParent(); 1347 } 1348 1349 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1350 DIBuilder &Builder, int Offset) { 1351 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1352 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1353 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1354 Use &U = *UI++; 1355 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1356 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1357 } 1358 } 1359 1360 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1361 unsigned NumDeadInst = 0; 1362 // Delete the instructions backwards, as it has a reduced likelihood of 1363 // having to update as many def-use and use-def chains. 1364 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1365 while (EndInst != &BB->front()) { 1366 // Delete the next to last instruction. 1367 Instruction *Inst = &*--EndInst->getIterator(); 1368 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1369 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1370 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1371 EndInst = Inst; 1372 continue; 1373 } 1374 if (!isa<DbgInfoIntrinsic>(Inst)) 1375 ++NumDeadInst; 1376 Inst->eraseFromParent(); 1377 } 1378 return NumDeadInst; 1379 } 1380 1381 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1382 bool PreserveLCSSA) { 1383 BasicBlock *BB = I->getParent(); 1384 // Loop over all of the successors, removing BB's entry from any PHI 1385 // nodes. 1386 for (BasicBlock *Successor : successors(BB)) 1387 Successor->removePredecessor(BB, PreserveLCSSA); 1388 1389 // Insert a call to llvm.trap right before this. This turns the undefined 1390 // behavior into a hard fail instead of falling through into random code. 1391 if (UseLLVMTrap) { 1392 Function *TrapFn = 1393 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1394 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1395 CallTrap->setDebugLoc(I->getDebugLoc()); 1396 } 1397 new UnreachableInst(I->getContext(), I); 1398 1399 // All instructions after this are dead. 1400 unsigned NumInstrsRemoved = 0; 1401 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1402 while (BBI != BBE) { 1403 if (!BBI->use_empty()) 1404 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1405 BB->getInstList().erase(BBI++); 1406 ++NumInstrsRemoved; 1407 } 1408 return NumInstrsRemoved; 1409 } 1410 1411 /// changeToCall - Convert the specified invoke into a normal call. 1412 static void changeToCall(InvokeInst *II) { 1413 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1414 SmallVector<OperandBundleDef, 1> OpBundles; 1415 II->getOperandBundlesAsDefs(OpBundles); 1416 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1417 "", II); 1418 NewCall->takeName(II); 1419 NewCall->setCallingConv(II->getCallingConv()); 1420 NewCall->setAttributes(II->getAttributes()); 1421 NewCall->setDebugLoc(II->getDebugLoc()); 1422 II->replaceAllUsesWith(NewCall); 1423 1424 // Follow the call by a branch to the normal destination. 1425 BranchInst::Create(II->getNormalDest(), II); 1426 1427 // Update PHI nodes in the unwind destination 1428 II->getUnwindDest()->removePredecessor(II->getParent()); 1429 II->eraseFromParent(); 1430 } 1431 1432 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1433 BasicBlock *UnwindEdge) { 1434 BasicBlock *BB = CI->getParent(); 1435 1436 // Convert this function call into an invoke instruction. First, split the 1437 // basic block. 1438 BasicBlock *Split = 1439 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1440 1441 // Delete the unconditional branch inserted by splitBasicBlock 1442 BB->getInstList().pop_back(); 1443 1444 // Create the new invoke instruction. 1445 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1446 SmallVector<OperandBundleDef, 1> OpBundles; 1447 1448 CI->getOperandBundlesAsDefs(OpBundles); 1449 1450 // Note: we're round tripping operand bundles through memory here, and that 1451 // can potentially be avoided with a cleverer API design that we do not have 1452 // as of this time. 1453 1454 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1455 InvokeArgs, OpBundles, CI->getName(), BB); 1456 II->setDebugLoc(CI->getDebugLoc()); 1457 II->setCallingConv(CI->getCallingConv()); 1458 II->setAttributes(CI->getAttributes()); 1459 1460 // Make sure that anything using the call now uses the invoke! This also 1461 // updates the CallGraph if present, because it uses a WeakVH. 1462 CI->replaceAllUsesWith(II); 1463 1464 // Delete the original call 1465 Split->getInstList().pop_front(); 1466 return Split; 1467 } 1468 1469 static bool markAliveBlocks(Function &F, 1470 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1471 1472 SmallVector<BasicBlock*, 128> Worklist; 1473 BasicBlock *BB = &F.front(); 1474 Worklist.push_back(BB); 1475 Reachable.insert(BB); 1476 bool Changed = false; 1477 do { 1478 BB = Worklist.pop_back_val(); 1479 1480 // Do a quick scan of the basic block, turning any obviously unreachable 1481 // instructions into LLVM unreachable insts. The instruction combining pass 1482 // canonicalizes unreachable insts into stores to null or undef. 1483 for (Instruction &I : *BB) { 1484 // Assumptions that are known to be false are equivalent to unreachable. 1485 // Also, if the condition is undefined, then we make the choice most 1486 // beneficial to the optimizer, and choose that to also be unreachable. 1487 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1488 if (II->getIntrinsicID() == Intrinsic::assume) { 1489 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1490 // Don't insert a call to llvm.trap right before the unreachable. 1491 changeToUnreachable(II, false); 1492 Changed = true; 1493 break; 1494 } 1495 } 1496 1497 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1498 // A call to the guard intrinsic bails out of the current compilation 1499 // unit if the predicate passed to it is false. If the predicate is a 1500 // constant false, then we know the guard will bail out of the current 1501 // compile unconditionally, so all code following it is dead. 1502 // 1503 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1504 // guards to treat `undef` as `false` since a guard on `undef` can 1505 // still be useful for widening. 1506 if (match(II->getArgOperand(0), m_Zero())) 1507 if (!isa<UnreachableInst>(II->getNextNode())) { 1508 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1509 Changed = true; 1510 break; 1511 } 1512 } 1513 } 1514 1515 if (auto *CI = dyn_cast<CallInst>(&I)) { 1516 Value *Callee = CI->getCalledValue(); 1517 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1518 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1519 Changed = true; 1520 break; 1521 } 1522 if (CI->doesNotReturn()) { 1523 // If we found a call to a no-return function, insert an unreachable 1524 // instruction after it. Make sure there isn't *already* one there 1525 // though. 1526 if (!isa<UnreachableInst>(CI->getNextNode())) { 1527 // Don't insert a call to llvm.trap right before the unreachable. 1528 changeToUnreachable(CI->getNextNode(), false); 1529 Changed = true; 1530 } 1531 break; 1532 } 1533 } 1534 1535 // Store to undef and store to null are undefined and used to signal that 1536 // they should be changed to unreachable by passes that can't modify the 1537 // CFG. 1538 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1539 // Don't touch volatile stores. 1540 if (SI->isVolatile()) continue; 1541 1542 Value *Ptr = SI->getOperand(1); 1543 1544 if (isa<UndefValue>(Ptr) || 1545 (isa<ConstantPointerNull>(Ptr) && 1546 SI->getPointerAddressSpace() == 0)) { 1547 changeToUnreachable(SI, true); 1548 Changed = true; 1549 break; 1550 } 1551 } 1552 } 1553 1554 TerminatorInst *Terminator = BB->getTerminator(); 1555 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1556 // Turn invokes that call 'nounwind' functions into ordinary calls. 1557 Value *Callee = II->getCalledValue(); 1558 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1559 changeToUnreachable(II, true); 1560 Changed = true; 1561 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1562 if (II->use_empty() && II->onlyReadsMemory()) { 1563 // jump to the normal destination branch. 1564 BranchInst::Create(II->getNormalDest(), II); 1565 II->getUnwindDest()->removePredecessor(II->getParent()); 1566 II->eraseFromParent(); 1567 } else 1568 changeToCall(II); 1569 Changed = true; 1570 } 1571 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1572 // Remove catchpads which cannot be reached. 1573 struct CatchPadDenseMapInfo { 1574 static CatchPadInst *getEmptyKey() { 1575 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1576 } 1577 static CatchPadInst *getTombstoneKey() { 1578 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1579 } 1580 static unsigned getHashValue(CatchPadInst *CatchPad) { 1581 return static_cast<unsigned>(hash_combine_range( 1582 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1583 } 1584 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1585 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1586 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1587 return LHS == RHS; 1588 return LHS->isIdenticalTo(RHS); 1589 } 1590 }; 1591 1592 // Set of unique CatchPads. 1593 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1594 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1595 HandlerSet; 1596 detail::DenseSetEmpty Empty; 1597 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1598 E = CatchSwitch->handler_end(); 1599 I != E; ++I) { 1600 BasicBlock *HandlerBB = *I; 1601 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1602 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1603 CatchSwitch->removeHandler(I); 1604 --I; 1605 --E; 1606 Changed = true; 1607 } 1608 } 1609 } 1610 1611 Changed |= ConstantFoldTerminator(BB, true); 1612 for (BasicBlock *Successor : successors(BB)) 1613 if (Reachable.insert(Successor).second) 1614 Worklist.push_back(Successor); 1615 } while (!Worklist.empty()); 1616 return Changed; 1617 } 1618 1619 void llvm::removeUnwindEdge(BasicBlock *BB) { 1620 TerminatorInst *TI = BB->getTerminator(); 1621 1622 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1623 changeToCall(II); 1624 return; 1625 } 1626 1627 TerminatorInst *NewTI; 1628 BasicBlock *UnwindDest; 1629 1630 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1631 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1632 UnwindDest = CRI->getUnwindDest(); 1633 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1634 auto *NewCatchSwitch = CatchSwitchInst::Create( 1635 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1636 CatchSwitch->getName(), CatchSwitch); 1637 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1638 NewCatchSwitch->addHandler(PadBB); 1639 1640 NewTI = NewCatchSwitch; 1641 UnwindDest = CatchSwitch->getUnwindDest(); 1642 } else { 1643 llvm_unreachable("Could not find unwind successor"); 1644 } 1645 1646 NewTI->takeName(TI); 1647 NewTI->setDebugLoc(TI->getDebugLoc()); 1648 UnwindDest->removePredecessor(BB); 1649 TI->replaceAllUsesWith(NewTI); 1650 TI->eraseFromParent(); 1651 } 1652 1653 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1654 /// if they are in a dead cycle. Return true if a change was made, false 1655 /// otherwise. 1656 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1657 SmallPtrSet<BasicBlock*, 16> Reachable; 1658 bool Changed = markAliveBlocks(F, Reachable); 1659 1660 // If there are unreachable blocks in the CFG... 1661 if (Reachable.size() == F.size()) 1662 return Changed; 1663 1664 assert(Reachable.size() < F.size()); 1665 NumRemoved += F.size()-Reachable.size(); 1666 1667 // Loop over all of the basic blocks that are not reachable, dropping all of 1668 // their internal references... 1669 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1670 if (Reachable.count(&*BB)) 1671 continue; 1672 1673 for (BasicBlock *Successor : successors(&*BB)) 1674 if (Reachable.count(Successor)) 1675 Successor->removePredecessor(&*BB); 1676 if (LVI) 1677 LVI->eraseBlock(&*BB); 1678 BB->dropAllReferences(); 1679 } 1680 1681 for (Function::iterator I = ++F.begin(); I != F.end();) 1682 if (!Reachable.count(&*I)) 1683 I = F.getBasicBlockList().erase(I); 1684 else 1685 ++I; 1686 1687 return true; 1688 } 1689 1690 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1691 ArrayRef<unsigned> KnownIDs) { 1692 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1693 K->dropUnknownNonDebugMetadata(KnownIDs); 1694 K->getAllMetadataOtherThanDebugLoc(Metadata); 1695 for (const auto &MD : Metadata) { 1696 unsigned Kind = MD.first; 1697 MDNode *JMD = J->getMetadata(Kind); 1698 MDNode *KMD = MD.second; 1699 1700 switch (Kind) { 1701 default: 1702 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1703 break; 1704 case LLVMContext::MD_dbg: 1705 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1706 case LLVMContext::MD_tbaa: 1707 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1708 break; 1709 case LLVMContext::MD_alias_scope: 1710 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1711 break; 1712 case LLVMContext::MD_noalias: 1713 case LLVMContext::MD_mem_parallel_loop_access: 1714 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1715 break; 1716 case LLVMContext::MD_range: 1717 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1718 break; 1719 case LLVMContext::MD_fpmath: 1720 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1721 break; 1722 case LLVMContext::MD_invariant_load: 1723 // Only set the !invariant.load if it is present in both instructions. 1724 K->setMetadata(Kind, JMD); 1725 break; 1726 case LLVMContext::MD_nonnull: 1727 // Only set the !nonnull if it is present in both instructions. 1728 K->setMetadata(Kind, JMD); 1729 break; 1730 case LLVMContext::MD_invariant_group: 1731 // Preserve !invariant.group in K. 1732 break; 1733 case LLVMContext::MD_align: 1734 K->setMetadata(Kind, 1735 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1736 break; 1737 case LLVMContext::MD_dereferenceable: 1738 case LLVMContext::MD_dereferenceable_or_null: 1739 K->setMetadata(Kind, 1740 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1741 break; 1742 } 1743 } 1744 // Set !invariant.group from J if J has it. If both instructions have it 1745 // then we will just pick it from J - even when they are different. 1746 // Also make sure that K is load or store - f.e. combining bitcast with load 1747 // could produce bitcast with invariant.group metadata, which is invalid. 1748 // FIXME: we should try to preserve both invariant.group md if they are 1749 // different, but right now instruction can only have one invariant.group. 1750 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1751 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1752 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1753 } 1754 1755 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1756 unsigned KnownIDs[] = { 1757 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1758 LLVMContext::MD_noalias, LLVMContext::MD_range, 1759 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1760 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1761 LLVMContext::MD_dereferenceable, 1762 LLVMContext::MD_dereferenceable_or_null}; 1763 combineMetadata(K, J, KnownIDs); 1764 } 1765 1766 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1767 DominatorTree &DT, 1768 const BasicBlockEdge &Root) { 1769 assert(From->getType() == To->getType()); 1770 1771 unsigned Count = 0; 1772 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1773 UI != UE; ) { 1774 Use &U = *UI++; 1775 if (DT.dominates(Root, U)) { 1776 U.set(To); 1777 DEBUG(dbgs() << "Replace dominated use of '" 1778 << From->getName() << "' as " 1779 << *To << " in " << *U << "\n"); 1780 ++Count; 1781 } 1782 } 1783 return Count; 1784 } 1785 1786 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1787 DominatorTree &DT, 1788 const BasicBlock *BB) { 1789 assert(From->getType() == To->getType()); 1790 1791 unsigned Count = 0; 1792 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1793 UI != UE;) { 1794 Use &U = *UI++; 1795 auto *I = cast<Instruction>(U.getUser()); 1796 if (DT.properlyDominates(BB, I->getParent())) { 1797 U.set(To); 1798 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1799 << *To << " in " << *U << "\n"); 1800 ++Count; 1801 } 1802 } 1803 return Count; 1804 } 1805 1806 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1807 // Check if the function is specifically marked as a gc leaf function. 1808 if (CS.hasFnAttr("gc-leaf-function")) 1809 return true; 1810 if (const Function *F = CS.getCalledFunction()) { 1811 if (F->hasFnAttribute("gc-leaf-function")) 1812 return true; 1813 1814 if (auto IID = F->getIntrinsicID()) 1815 // Most LLVM intrinsics do not take safepoints. 1816 return IID != Intrinsic::experimental_gc_statepoint && 1817 IID != Intrinsic::experimental_deoptimize; 1818 } 1819 1820 return false; 1821 } 1822 1823 namespace { 1824 /// A potential constituent of a bitreverse or bswap expression. See 1825 /// collectBitParts for a fuller explanation. 1826 struct BitPart { 1827 BitPart(Value *P, unsigned BW) : Provider(P) { 1828 Provenance.resize(BW); 1829 } 1830 1831 /// The Value that this is a bitreverse/bswap of. 1832 Value *Provider; 1833 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1834 /// in Provider becomes bit B in the result of this expression. 1835 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1836 1837 enum { Unset = -1 }; 1838 }; 1839 } // end anonymous namespace 1840 1841 /// Analyze the specified subexpression and see if it is capable of providing 1842 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1843 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1844 /// the output of the expression came from a corresponding bit in some other 1845 /// value. This function is recursive, and the end result is a mapping of 1846 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1847 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1848 /// 1849 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1850 /// that the expression deposits the low byte of %X into the high byte of the 1851 /// result and that all other bits are zero. This expression is accepted and a 1852 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1853 /// [0-7]. 1854 /// 1855 /// To avoid revisiting values, the BitPart results are memoized into the 1856 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1857 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1858 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1859 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1860 /// type instead to provide the same functionality. 1861 /// 1862 /// Because we pass around references into \c BPS, we must use a container that 1863 /// does not invalidate internal references (std::map instead of DenseMap). 1864 /// 1865 static const Optional<BitPart> & 1866 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1867 std::map<Value *, Optional<BitPart>> &BPS) { 1868 auto I = BPS.find(V); 1869 if (I != BPS.end()) 1870 return I->second; 1871 1872 auto &Result = BPS[V] = None; 1873 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1874 1875 if (Instruction *I = dyn_cast<Instruction>(V)) { 1876 // If this is an or instruction, it may be an inner node of the bswap. 1877 if (I->getOpcode() == Instruction::Or) { 1878 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1879 MatchBitReversals, BPS); 1880 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1881 MatchBitReversals, BPS); 1882 if (!A || !B) 1883 return Result; 1884 1885 // Try and merge the two together. 1886 if (!A->Provider || A->Provider != B->Provider) 1887 return Result; 1888 1889 Result = BitPart(A->Provider, BitWidth); 1890 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1891 if (A->Provenance[i] != BitPart::Unset && 1892 B->Provenance[i] != BitPart::Unset && 1893 A->Provenance[i] != B->Provenance[i]) 1894 return Result = None; 1895 1896 if (A->Provenance[i] == BitPart::Unset) 1897 Result->Provenance[i] = B->Provenance[i]; 1898 else 1899 Result->Provenance[i] = A->Provenance[i]; 1900 } 1901 1902 return Result; 1903 } 1904 1905 // If this is a logical shift by a constant, recurse then shift the result. 1906 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1907 unsigned BitShift = 1908 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1909 // Ensure the shift amount is defined. 1910 if (BitShift > BitWidth) 1911 return Result; 1912 1913 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1914 MatchBitReversals, BPS); 1915 if (!Res) 1916 return Result; 1917 Result = Res; 1918 1919 // Perform the "shift" on BitProvenance. 1920 auto &P = Result->Provenance; 1921 if (I->getOpcode() == Instruction::Shl) { 1922 P.erase(std::prev(P.end(), BitShift), P.end()); 1923 P.insert(P.begin(), BitShift, BitPart::Unset); 1924 } else { 1925 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1926 P.insert(P.end(), BitShift, BitPart::Unset); 1927 } 1928 1929 return Result; 1930 } 1931 1932 // If this is a logical 'and' with a mask that clears bits, recurse then 1933 // unset the appropriate bits. 1934 if (I->getOpcode() == Instruction::And && 1935 isa<ConstantInt>(I->getOperand(1))) { 1936 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1937 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1938 1939 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1940 // early exit. 1941 unsigned NumMaskedBits = AndMask.countPopulation(); 1942 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1943 return Result; 1944 1945 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1946 MatchBitReversals, BPS); 1947 if (!Res) 1948 return Result; 1949 Result = Res; 1950 1951 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1952 // If the AndMask is zero for this bit, clear the bit. 1953 if ((AndMask & Bit) == 0) 1954 Result->Provenance[i] = BitPart::Unset; 1955 return Result; 1956 } 1957 1958 // If this is a zext instruction zero extend the result. 1959 if (I->getOpcode() == Instruction::ZExt) { 1960 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1961 MatchBitReversals, BPS); 1962 if (!Res) 1963 return Result; 1964 1965 Result = BitPart(Res->Provider, BitWidth); 1966 auto NarrowBitWidth = 1967 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1968 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1969 Result->Provenance[i] = Res->Provenance[i]; 1970 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1971 Result->Provenance[i] = BitPart::Unset; 1972 return Result; 1973 } 1974 } 1975 1976 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1977 // the input value to the bswap/bitreverse. 1978 Result = BitPart(V, BitWidth); 1979 for (unsigned i = 0; i < BitWidth; ++i) 1980 Result->Provenance[i] = i; 1981 return Result; 1982 } 1983 1984 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1985 unsigned BitWidth) { 1986 if (From % 8 != To % 8) 1987 return false; 1988 // Convert from bit indices to byte indices and check for a byte reversal. 1989 From >>= 3; 1990 To >>= 3; 1991 BitWidth >>= 3; 1992 return From == BitWidth - To - 1; 1993 } 1994 1995 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1996 unsigned BitWidth) { 1997 return From == BitWidth - To - 1; 1998 } 1999 2000 /// Given an OR instruction, check to see if this is a bitreverse 2001 /// idiom. If so, insert the new intrinsic and return true. 2002 bool llvm::recognizeBSwapOrBitReverseIdiom( 2003 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2004 SmallVectorImpl<Instruction *> &InsertedInsts) { 2005 if (Operator::getOpcode(I) != Instruction::Or) 2006 return false; 2007 if (!MatchBSwaps && !MatchBitReversals) 2008 return false; 2009 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2010 if (!ITy || ITy->getBitWidth() > 128) 2011 return false; // Can't do vectors or integers > 128 bits. 2012 unsigned BW = ITy->getBitWidth(); 2013 2014 unsigned DemandedBW = BW; 2015 IntegerType *DemandedTy = ITy; 2016 if (I->hasOneUse()) { 2017 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2018 DemandedTy = cast<IntegerType>(Trunc->getType()); 2019 DemandedBW = DemandedTy->getBitWidth(); 2020 } 2021 } 2022 2023 // Try to find all the pieces corresponding to the bswap. 2024 std::map<Value *, Optional<BitPart>> BPS; 2025 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2026 if (!Res) 2027 return false; 2028 auto &BitProvenance = Res->Provenance; 2029 2030 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2031 // only byteswap values with an even number of bytes. 2032 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2033 for (unsigned i = 0; i < DemandedBW; ++i) { 2034 OKForBSwap &= 2035 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2036 OKForBitReverse &= 2037 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2038 } 2039 2040 Intrinsic::ID Intrin; 2041 if (OKForBSwap && MatchBSwaps) 2042 Intrin = Intrinsic::bswap; 2043 else if (OKForBitReverse && MatchBitReversals) 2044 Intrin = Intrinsic::bitreverse; 2045 else 2046 return false; 2047 2048 if (ITy != DemandedTy) { 2049 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2050 Value *Provider = Res->Provider; 2051 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2052 // We may need to truncate the provider. 2053 if (DemandedTy != ProviderTy) { 2054 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2055 "trunc", I); 2056 InsertedInsts.push_back(Trunc); 2057 Provider = Trunc; 2058 } 2059 auto *CI = CallInst::Create(F, Provider, "rev", I); 2060 InsertedInsts.push_back(CI); 2061 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2062 InsertedInsts.push_back(ExtInst); 2063 return true; 2064 } 2065 2066 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2067 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2068 return true; 2069 } 2070 2071 // CodeGen has special handling for some string functions that may replace 2072 // them with target-specific intrinsics. Since that'd skip our interceptors 2073 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2074 // we mark affected calls as NoBuiltin, which will disable optimization 2075 // in CodeGen. 2076 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2077 CallInst *CI, const TargetLibraryInfo *TLI) { 2078 Function *F = CI->getCalledFunction(); 2079 LibFunc Func; 2080 if (F && !F->hasLocalLinkage() && F->hasName() && 2081 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2082 !F->doesNotAccessMemory()) 2083 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin); 2084 } 2085