1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 // Max recursion depth for collectBitParts used when detecting bswap and 108 // bitreverse idioms 109 static const unsigned BitPartRecursionMaxDepth = 64; 110 111 //===----------------------------------------------------------------------===// 112 // Local constant propagation. 113 // 114 115 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 116 /// constant value, convert it into an unconditional branch to the constant 117 /// destination. This is a nontrivial operation because the successors of this 118 /// basic block must have their PHI nodes updated. 119 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 120 /// conditions and indirectbr addresses this might make dead if 121 /// DeleteDeadConditions is true. 122 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 123 const TargetLibraryInfo *TLI, 124 DomTreeUpdater *DTU) { 125 Instruction *T = BB->getTerminator(); 126 IRBuilder<> Builder(T); 127 128 // Branch - See if we are conditional jumping on constant 129 if (auto *BI = dyn_cast<BranchInst>(T)) { 130 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 131 BasicBlock *Dest1 = BI->getSuccessor(0); 132 BasicBlock *Dest2 = BI->getSuccessor(1); 133 134 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 135 // Are we branching on constant? 136 // YES. Change to unconditional branch... 137 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 138 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 139 140 // Let the basic block know that we are letting go of it. Based on this, 141 // it will adjust it's PHI nodes. 142 OldDest->removePredecessor(BB); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Destination); 146 BI->eraseFromParent(); 147 if (DTU) 148 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 149 return true; 150 } 151 152 if (Dest2 == Dest1) { // Conditional branch to same location? 153 // This branch matches something like this: 154 // br bool %cond, label %Dest, label %Dest 155 // and changes it into: br label %Dest 156 157 // Let the basic block know that we are letting go of one copy of it. 158 assert(BI->getParent() && "Terminator not inserted in block!"); 159 Dest1->removePredecessor(BI->getParent()); 160 161 // Replace the conditional branch with an unconditional one. 162 Builder.CreateBr(Dest1); 163 Value *Cond = BI->getCondition(); 164 BI->eraseFromParent(); 165 if (DeleteDeadConditions) 166 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 167 return true; 168 } 169 return false; 170 } 171 172 if (auto *SI = dyn_cast<SwitchInst>(T)) { 173 // If we are switching on a constant, we can convert the switch to an 174 // unconditional branch. 175 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 176 BasicBlock *DefaultDest = SI->getDefaultDest(); 177 BasicBlock *TheOnlyDest = DefaultDest; 178 179 // If the default is unreachable, ignore it when searching for TheOnlyDest. 180 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 181 SI->getNumCases() > 0) { 182 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 183 } 184 185 // Figure out which case it goes to. 186 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 187 // Found case matching a constant operand? 188 if (i->getCaseValue() == CI) { 189 TheOnlyDest = i->getCaseSuccessor(); 190 break; 191 } 192 193 // Check to see if this branch is going to the same place as the default 194 // dest. If so, eliminate it as an explicit compare. 195 if (i->getCaseSuccessor() == DefaultDest) { 196 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 197 unsigned NCases = SI->getNumCases(); 198 // Fold the case metadata into the default if there will be any branches 199 // left, unless the metadata doesn't match the switch. 200 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 201 // Collect branch weights into a vector. 202 SmallVector<uint32_t, 8> Weights; 203 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 204 ++MD_i) { 205 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 206 Weights.push_back(CI->getValue().getZExtValue()); 207 } 208 // Merge weight of this case to the default weight. 209 unsigned idx = i->getCaseIndex(); 210 Weights[0] += Weights[idx+1]; 211 // Remove weight for this case. 212 std::swap(Weights[idx+1], Weights.back()); 213 Weights.pop_back(); 214 SI->setMetadata(LLVMContext::MD_prof, 215 MDBuilder(BB->getContext()). 216 createBranchWeights(Weights)); 217 } 218 // Remove this entry. 219 BasicBlock *ParentBB = SI->getParent(); 220 DefaultDest->removePredecessor(ParentBB); 221 i = SI->removeCase(i); 222 e = SI->case_end(); 223 if (DTU) 224 DTU->applyUpdatesPermissive( 225 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 226 continue; 227 } 228 229 // Otherwise, check to see if the switch only branches to one destination. 230 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 231 // destinations. 232 if (i->getCaseSuccessor() != TheOnlyDest) 233 TheOnlyDest = nullptr; 234 235 // Increment this iterator as we haven't removed the case. 236 ++i; 237 } 238 239 if (CI && !TheOnlyDest) { 240 // Branching on a constant, but not any of the cases, go to the default 241 // successor. 242 TheOnlyDest = SI->getDefaultDest(); 243 } 244 245 // If we found a single destination that we can fold the switch into, do so 246 // now. 247 if (TheOnlyDest) { 248 // Insert the new branch. 249 Builder.CreateBr(TheOnlyDest); 250 BasicBlock *BB = SI->getParent(); 251 std::vector <DominatorTree::UpdateType> Updates; 252 if (DTU) 253 Updates.reserve(SI->getNumSuccessors() - 1); 254 255 // Remove entries from PHI nodes which we no longer branch to... 256 for (BasicBlock *Succ : successors(SI)) { 257 // Found case matching a constant operand? 258 if (Succ == TheOnlyDest) { 259 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 260 } else { 261 Succ->removePredecessor(BB); 262 if (DTU) 263 Updates.push_back({DominatorTree::Delete, BB, Succ}); 264 } 265 } 266 267 // Delete the old switch. 268 Value *Cond = SI->getCondition(); 269 SI->eraseFromParent(); 270 if (DeleteDeadConditions) 271 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 272 if (DTU) 273 DTU->applyUpdatesPermissive(Updates); 274 return true; 275 } 276 277 if (SI->getNumCases() == 1) { 278 // Otherwise, we can fold this switch into a conditional branch 279 // instruction if it has only one non-default destination. 280 auto FirstCase = *SI->case_begin(); 281 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 282 FirstCase.getCaseValue(), "cond"); 283 284 // Insert the new branch. 285 BranchInst *NewBr = Builder.CreateCondBr(Cond, 286 FirstCase.getCaseSuccessor(), 287 SI->getDefaultDest()); 288 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 289 if (MD && MD->getNumOperands() == 3) { 290 ConstantInt *SICase = 291 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 292 ConstantInt *SIDef = 293 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 294 assert(SICase && SIDef); 295 // The TrueWeight should be the weight for the single case of SI. 296 NewBr->setMetadata(LLVMContext::MD_prof, 297 MDBuilder(BB->getContext()). 298 createBranchWeights(SICase->getValue().getZExtValue(), 299 SIDef->getValue().getZExtValue())); 300 } 301 302 // Update make.implicit metadata to the newly-created conditional branch. 303 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 304 if (MakeImplicitMD) 305 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 306 307 // Delete the old switch. 308 SI->eraseFromParent(); 309 return true; 310 } 311 return false; 312 } 313 314 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 315 // indirectbr blockaddress(@F, @BB) -> br label @BB 316 if (auto *BA = 317 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 318 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 319 std::vector <DominatorTree::UpdateType> Updates; 320 if (DTU) 321 Updates.reserve(IBI->getNumDestinations() - 1); 322 323 // Insert the new branch. 324 Builder.CreateBr(TheOnlyDest); 325 326 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 327 if (IBI->getDestination(i) == TheOnlyDest) { 328 TheOnlyDest = nullptr; 329 } else { 330 BasicBlock *ParentBB = IBI->getParent(); 331 BasicBlock *DestBB = IBI->getDestination(i); 332 DestBB->removePredecessor(ParentBB); 333 if (DTU) 334 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 335 } 336 } 337 Value *Address = IBI->getAddress(); 338 IBI->eraseFromParent(); 339 if (DeleteDeadConditions) 340 // Delete pointer cast instructions. 341 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 342 343 // Also zap the blockaddress constant if there are no users remaining, 344 // otherwise the destination is still marked as having its address taken. 345 if (BA->use_empty()) 346 BA->destroyConstant(); 347 348 // If we didn't find our destination in the IBI successor list, then we 349 // have undefined behavior. Replace the unconditional branch with an 350 // 'unreachable' instruction. 351 if (TheOnlyDest) { 352 BB->getTerminator()->eraseFromParent(); 353 new UnreachableInst(BB->getContext(), BB); 354 } 355 356 if (DTU) 357 DTU->applyUpdatesPermissive(Updates); 358 return true; 359 } 360 } 361 362 return false; 363 } 364 365 //===----------------------------------------------------------------------===// 366 // Local dead code elimination. 367 // 368 369 /// isInstructionTriviallyDead - Return true if the result produced by the 370 /// instruction is not used, and the instruction has no side effects. 371 /// 372 bool llvm::isInstructionTriviallyDead(Instruction *I, 373 const TargetLibraryInfo *TLI) { 374 if (!I->use_empty()) 375 return false; 376 return wouldInstructionBeTriviallyDead(I, TLI); 377 } 378 379 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 380 const TargetLibraryInfo *TLI) { 381 if (I->isTerminator()) 382 return false; 383 384 // We don't want the landingpad-like instructions removed by anything this 385 // general. 386 if (I->isEHPad()) 387 return false; 388 389 // We don't want debug info removed by anything this general, unless 390 // debug info is empty. 391 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 392 if (DDI->getAddress()) 393 return false; 394 return true; 395 } 396 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 397 if (DVI->getValue()) 398 return false; 399 return true; 400 } 401 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 402 if (DLI->getLabel()) 403 return false; 404 return true; 405 } 406 407 if (!I->mayHaveSideEffects()) 408 return true; 409 410 // Special case intrinsics that "may have side effects" but can be deleted 411 // when dead. 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 414 if (II->getIntrinsicID() == Intrinsic::stacksave || 415 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 416 return true; 417 418 if (II->isLifetimeStartOrEnd()) { 419 auto *Arg = II->getArgOperand(1); 420 // Lifetime intrinsics are dead when their right-hand is undef. 421 if (isa<UndefValue>(Arg)) 422 return true; 423 // If the right-hand is an alloc, global, or argument and the only uses 424 // are lifetime intrinsics then the intrinsics are dead. 425 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 426 return llvm::all_of(Arg->uses(), [](Use &Use) { 427 if (IntrinsicInst *IntrinsicUse = 428 dyn_cast<IntrinsicInst>(Use.getUser())) 429 return IntrinsicUse->isLifetimeStartOrEnd(); 430 return false; 431 }); 432 return false; 433 } 434 435 // Assumptions are dead if their condition is trivially true. Guards on 436 // true are operationally no-ops. In the future we can consider more 437 // sophisticated tradeoffs for guards considering potential for check 438 // widening, but for now we keep things simple. 439 if ((II->getIntrinsicID() == Intrinsic::assume && 440 isAssumeWithEmptyBundle(*II)) || 441 II->getIntrinsicID() == Intrinsic::experimental_guard) { 442 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 443 return !Cond->isZero(); 444 445 return false; 446 } 447 } 448 449 if (isAllocLikeFn(I, TLI)) 450 return true; 451 452 if (CallInst *CI = isFreeCall(I, TLI)) 453 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 454 return C->isNullValue() || isa<UndefValue>(C); 455 456 if (auto *Call = dyn_cast<CallBase>(I)) 457 if (isMathLibCallNoop(Call, TLI)) 458 return true; 459 460 return false; 461 } 462 463 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 464 /// trivially dead instruction, delete it. If that makes any of its operands 465 /// trivially dead, delete them too, recursively. Return true if any 466 /// instructions were deleted. 467 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 468 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 469 std::function<void(Value *)> AboutToDeleteCallback) { 470 Instruction *I = dyn_cast<Instruction>(V); 471 if (!I || !isInstructionTriviallyDead(I, TLI)) 472 return false; 473 474 SmallVector<WeakTrackingVH, 16> DeadInsts; 475 DeadInsts.push_back(I); 476 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 477 AboutToDeleteCallback); 478 479 return true; 480 } 481 482 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 483 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 484 MemorySSAUpdater *MSSAU, 485 std::function<void(Value *)> AboutToDeleteCallback) { 486 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 487 for (; S != E; ++S) { 488 auto *I = cast<Instruction>(DeadInsts[S]); 489 if (!isInstructionTriviallyDead(I)) { 490 DeadInsts[S] = nullptr; 491 ++Alive; 492 } 493 } 494 if (Alive == E) 495 return false; 496 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 497 AboutToDeleteCallback); 498 return true; 499 } 500 501 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 502 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 503 MemorySSAUpdater *MSSAU, 504 std::function<void(Value *)> AboutToDeleteCallback) { 505 // Process the dead instruction list until empty. 506 while (!DeadInsts.empty()) { 507 Value *V = DeadInsts.pop_back_val(); 508 Instruction *I = cast_or_null<Instruction>(V); 509 if (!I) 510 continue; 511 assert(isInstructionTriviallyDead(I, TLI) && 512 "Live instruction found in dead worklist!"); 513 assert(I->use_empty() && "Instructions with uses are not dead."); 514 515 // Don't lose the debug info while deleting the instructions. 516 salvageDebugInfo(*I); 517 518 if (AboutToDeleteCallback) 519 AboutToDeleteCallback(I); 520 521 // Null out all of the instruction's operands to see if any operand becomes 522 // dead as we go. 523 for (Use &OpU : I->operands()) { 524 Value *OpV = OpU.get(); 525 OpU.set(nullptr); 526 527 if (!OpV->use_empty()) 528 continue; 529 530 // If the operand is an instruction that became dead as we nulled out the 531 // operand, and if it is 'trivially' dead, delete it in a future loop 532 // iteration. 533 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 534 if (isInstructionTriviallyDead(OpI, TLI)) 535 DeadInsts.push_back(OpI); 536 } 537 if (MSSAU) 538 MSSAU->removeMemoryAccess(I); 539 540 I->eraseFromParent(); 541 } 542 } 543 544 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 545 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 546 findDbgUsers(DbgUsers, I); 547 for (auto *DII : DbgUsers) { 548 Value *Undef = UndefValue::get(I->getType()); 549 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 550 ValueAsMetadata::get(Undef))); 551 } 552 return !DbgUsers.empty(); 553 } 554 555 /// areAllUsesEqual - Check whether the uses of a value are all the same. 556 /// This is similar to Instruction::hasOneUse() except this will also return 557 /// true when there are no uses or multiple uses that all refer to the same 558 /// value. 559 static bool areAllUsesEqual(Instruction *I) { 560 Value::user_iterator UI = I->user_begin(); 561 Value::user_iterator UE = I->user_end(); 562 if (UI == UE) 563 return true; 564 565 User *TheUse = *UI; 566 for (++UI; UI != UE; ++UI) { 567 if (*UI != TheUse) 568 return false; 569 } 570 return true; 571 } 572 573 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 574 /// dead PHI node, due to being a def-use chain of single-use nodes that 575 /// either forms a cycle or is terminated by a trivially dead instruction, 576 /// delete it. If that makes any of its operands trivially dead, delete them 577 /// too, recursively. Return true if a change was made. 578 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 579 const TargetLibraryInfo *TLI, 580 llvm::MemorySSAUpdater *MSSAU) { 581 SmallPtrSet<Instruction*, 4> Visited; 582 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 583 I = cast<Instruction>(*I->user_begin())) { 584 if (I->use_empty()) 585 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 586 587 // If we find an instruction more than once, we're on a cycle that 588 // won't prove fruitful. 589 if (!Visited.insert(I).second) { 590 // Break the cycle and delete the instruction and its operands. 591 I->replaceAllUsesWith(UndefValue::get(I->getType())); 592 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 593 return true; 594 } 595 } 596 return false; 597 } 598 599 static bool 600 simplifyAndDCEInstruction(Instruction *I, 601 SmallSetVector<Instruction *, 16> &WorkList, 602 const DataLayout &DL, 603 const TargetLibraryInfo *TLI) { 604 if (isInstructionTriviallyDead(I, TLI)) { 605 salvageDebugInfo(*I); 606 607 // Null out all of the instruction's operands to see if any operand becomes 608 // dead as we go. 609 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 610 Value *OpV = I->getOperand(i); 611 I->setOperand(i, nullptr); 612 613 if (!OpV->use_empty() || I == OpV) 614 continue; 615 616 // If the operand is an instruction that became dead as we nulled out the 617 // operand, and if it is 'trivially' dead, delete it in a future loop 618 // iteration. 619 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 620 if (isInstructionTriviallyDead(OpI, TLI)) 621 WorkList.insert(OpI); 622 } 623 624 I->eraseFromParent(); 625 626 return true; 627 } 628 629 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 630 // Add the users to the worklist. CAREFUL: an instruction can use itself, 631 // in the case of a phi node. 632 for (User *U : I->users()) { 633 if (U != I) { 634 WorkList.insert(cast<Instruction>(U)); 635 } 636 } 637 638 // Replace the instruction with its simplified value. 639 bool Changed = false; 640 if (!I->use_empty()) { 641 I->replaceAllUsesWith(SimpleV); 642 Changed = true; 643 } 644 if (isInstructionTriviallyDead(I, TLI)) { 645 I->eraseFromParent(); 646 Changed = true; 647 } 648 return Changed; 649 } 650 return false; 651 } 652 653 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 654 /// simplify any instructions in it and recursively delete dead instructions. 655 /// 656 /// This returns true if it changed the code, note that it can delete 657 /// instructions in other blocks as well in this block. 658 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 659 const TargetLibraryInfo *TLI) { 660 bool MadeChange = false; 661 const DataLayout &DL = BB->getModule()->getDataLayout(); 662 663 #ifndef NDEBUG 664 // In debug builds, ensure that the terminator of the block is never replaced 665 // or deleted by these simplifications. The idea of simplification is that it 666 // cannot introduce new instructions, and there is no way to replace the 667 // terminator of a block without introducing a new instruction. 668 AssertingVH<Instruction> TerminatorVH(&BB->back()); 669 #endif 670 671 SmallSetVector<Instruction *, 16> WorkList; 672 // Iterate over the original function, only adding insts to the worklist 673 // if they actually need to be revisited. This avoids having to pre-init 674 // the worklist with the entire function's worth of instructions. 675 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 676 BI != E;) { 677 assert(!BI->isTerminator()); 678 Instruction *I = &*BI; 679 ++BI; 680 681 // We're visiting this instruction now, so make sure it's not in the 682 // worklist from an earlier visit. 683 if (!WorkList.count(I)) 684 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 685 } 686 687 while (!WorkList.empty()) { 688 Instruction *I = WorkList.pop_back_val(); 689 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 690 } 691 return MadeChange; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // Control Flow Graph Restructuring. 696 // 697 698 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 699 DomTreeUpdater *DTU) { 700 // This only adjusts blocks with PHI nodes. 701 if (!isa<PHINode>(BB->begin())) 702 return; 703 704 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 705 // them down. This will leave us with single entry phi nodes and other phis 706 // that can be removed. 707 BB->removePredecessor(Pred, true); 708 709 WeakTrackingVH PhiIt = &BB->front(); 710 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 711 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 712 Value *OldPhiIt = PhiIt; 713 714 if (!recursivelySimplifyInstruction(PN)) 715 continue; 716 717 // If recursive simplification ended up deleting the next PHI node we would 718 // iterate to, then our iterator is invalid, restart scanning from the top 719 // of the block. 720 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 721 } 722 if (DTU) 723 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 724 } 725 726 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 727 DomTreeUpdater *DTU) { 728 729 // If BB has single-entry PHI nodes, fold them. 730 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 731 Value *NewVal = PN->getIncomingValue(0); 732 // Replace self referencing PHI with undef, it must be dead. 733 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 734 PN->replaceAllUsesWith(NewVal); 735 PN->eraseFromParent(); 736 } 737 738 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 739 assert(PredBB && "Block doesn't have a single predecessor!"); 740 741 bool ReplaceEntryBB = false; 742 if (PredBB == &DestBB->getParent()->getEntryBlock()) 743 ReplaceEntryBB = true; 744 745 // DTU updates: Collect all the edges that enter 746 // PredBB. These dominator edges will be redirected to DestBB. 747 SmallVector<DominatorTree::UpdateType, 32> Updates; 748 749 if (DTU) { 750 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 751 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 752 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 753 // This predecessor of PredBB may already have DestBB as a successor. 754 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 755 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 756 } 757 } 758 759 // Zap anything that took the address of DestBB. Not doing this will give the 760 // address an invalid value. 761 if (DestBB->hasAddressTaken()) { 762 BlockAddress *BA = BlockAddress::get(DestBB); 763 Constant *Replacement = 764 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 765 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 766 BA->getType())); 767 BA->destroyConstant(); 768 } 769 770 // Anything that branched to PredBB now branches to DestBB. 771 PredBB->replaceAllUsesWith(DestBB); 772 773 // Splice all the instructions from PredBB to DestBB. 774 PredBB->getTerminator()->eraseFromParent(); 775 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 776 new UnreachableInst(PredBB->getContext(), PredBB); 777 778 // If the PredBB is the entry block of the function, move DestBB up to 779 // become the entry block after we erase PredBB. 780 if (ReplaceEntryBB) 781 DestBB->moveAfter(PredBB); 782 783 if (DTU) { 784 assert(PredBB->getInstList().size() == 1 && 785 isa<UnreachableInst>(PredBB->getTerminator()) && 786 "The successor list of PredBB isn't empty before " 787 "applying corresponding DTU updates."); 788 DTU->applyUpdatesPermissive(Updates); 789 DTU->deleteBB(PredBB); 790 // Recalculation of DomTree is needed when updating a forward DomTree and 791 // the Entry BB is replaced. 792 if (ReplaceEntryBB && DTU->hasDomTree()) { 793 // The entry block was removed and there is no external interface for 794 // the dominator tree to be notified of this change. In this corner-case 795 // we recalculate the entire tree. 796 DTU->recalculate(*(DestBB->getParent())); 797 } 798 } 799 800 else { 801 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 802 } 803 } 804 805 /// Return true if we can choose one of these values to use in place of the 806 /// other. Note that we will always choose the non-undef value to keep. 807 static bool CanMergeValues(Value *First, Value *Second) { 808 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 809 } 810 811 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 812 /// branch to Succ, into Succ. 813 /// 814 /// Assumption: Succ is the single successor for BB. 815 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 816 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 817 818 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 819 << Succ->getName() << "\n"); 820 // Shortcut, if there is only a single predecessor it must be BB and merging 821 // is always safe 822 if (Succ->getSinglePredecessor()) return true; 823 824 // Make a list of the predecessors of BB 825 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 826 827 // Look at all the phi nodes in Succ, to see if they present a conflict when 828 // merging these blocks 829 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 830 PHINode *PN = cast<PHINode>(I); 831 832 // If the incoming value from BB is again a PHINode in 833 // BB which has the same incoming value for *PI as PN does, we can 834 // merge the phi nodes and then the blocks can still be merged 835 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 836 if (BBPN && BBPN->getParent() == BB) { 837 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 838 BasicBlock *IBB = PN->getIncomingBlock(PI); 839 if (BBPreds.count(IBB) && 840 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 841 PN->getIncomingValue(PI))) { 842 LLVM_DEBUG(dbgs() 843 << "Can't fold, phi node " << PN->getName() << " in " 844 << Succ->getName() << " is conflicting with " 845 << BBPN->getName() << " with regard to common predecessor " 846 << IBB->getName() << "\n"); 847 return false; 848 } 849 } 850 } else { 851 Value* Val = PN->getIncomingValueForBlock(BB); 852 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 853 // See if the incoming value for the common predecessor is equal to the 854 // one for BB, in which case this phi node will not prevent the merging 855 // of the block. 856 BasicBlock *IBB = PN->getIncomingBlock(PI); 857 if (BBPreds.count(IBB) && 858 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 859 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 860 << " in " << Succ->getName() 861 << " is conflicting with regard to common " 862 << "predecessor " << IBB->getName() << "\n"); 863 return false; 864 } 865 } 866 } 867 } 868 869 return true; 870 } 871 872 using PredBlockVector = SmallVector<BasicBlock *, 16>; 873 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 874 875 /// Determines the value to use as the phi node input for a block. 876 /// 877 /// Select between \p OldVal any value that we know flows from \p BB 878 /// to a particular phi on the basis of which one (if either) is not 879 /// undef. Update IncomingValues based on the selected value. 880 /// 881 /// \param OldVal The value we are considering selecting. 882 /// \param BB The block that the value flows in from. 883 /// \param IncomingValues A map from block-to-value for other phi inputs 884 /// that we have examined. 885 /// 886 /// \returns the selected value. 887 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 888 IncomingValueMap &IncomingValues) { 889 if (!isa<UndefValue>(OldVal)) { 890 assert((!IncomingValues.count(BB) || 891 IncomingValues.find(BB)->second == OldVal) && 892 "Expected OldVal to match incoming value from BB!"); 893 894 IncomingValues.insert(std::make_pair(BB, OldVal)); 895 return OldVal; 896 } 897 898 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 899 if (It != IncomingValues.end()) return It->second; 900 901 return OldVal; 902 } 903 904 /// Create a map from block to value for the operands of a 905 /// given phi. 906 /// 907 /// Create a map from block to value for each non-undef value flowing 908 /// into \p PN. 909 /// 910 /// \param PN The phi we are collecting the map for. 911 /// \param IncomingValues [out] The map from block to value for this phi. 912 static void gatherIncomingValuesToPhi(PHINode *PN, 913 IncomingValueMap &IncomingValues) { 914 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 915 BasicBlock *BB = PN->getIncomingBlock(i); 916 Value *V = PN->getIncomingValue(i); 917 918 if (!isa<UndefValue>(V)) 919 IncomingValues.insert(std::make_pair(BB, V)); 920 } 921 } 922 923 /// Replace the incoming undef values to a phi with the values 924 /// from a block-to-value map. 925 /// 926 /// \param PN The phi we are replacing the undefs in. 927 /// \param IncomingValues A map from block to value. 928 static void replaceUndefValuesInPhi(PHINode *PN, 929 const IncomingValueMap &IncomingValues) { 930 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 931 Value *V = PN->getIncomingValue(i); 932 933 if (!isa<UndefValue>(V)) continue; 934 935 BasicBlock *BB = PN->getIncomingBlock(i); 936 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 937 if (It == IncomingValues.end()) continue; 938 939 PN->setIncomingValue(i, It->second); 940 } 941 } 942 943 /// Replace a value flowing from a block to a phi with 944 /// potentially multiple instances of that value flowing from the 945 /// block's predecessors to the phi. 946 /// 947 /// \param BB The block with the value flowing into the phi. 948 /// \param BBPreds The predecessors of BB. 949 /// \param PN The phi that we are updating. 950 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 951 const PredBlockVector &BBPreds, 952 PHINode *PN) { 953 Value *OldVal = PN->removeIncomingValue(BB, false); 954 assert(OldVal && "No entry in PHI for Pred BB!"); 955 956 IncomingValueMap IncomingValues; 957 958 // We are merging two blocks - BB, and the block containing PN - and 959 // as a result we need to redirect edges from the predecessors of BB 960 // to go to the block containing PN, and update PN 961 // accordingly. Since we allow merging blocks in the case where the 962 // predecessor and successor blocks both share some predecessors, 963 // and where some of those common predecessors might have undef 964 // values flowing into PN, we want to rewrite those values to be 965 // consistent with the non-undef values. 966 967 gatherIncomingValuesToPhi(PN, IncomingValues); 968 969 // If this incoming value is one of the PHI nodes in BB, the new entries 970 // in the PHI node are the entries from the old PHI. 971 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 972 PHINode *OldValPN = cast<PHINode>(OldVal); 973 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 974 // Note that, since we are merging phi nodes and BB and Succ might 975 // have common predecessors, we could end up with a phi node with 976 // identical incoming branches. This will be cleaned up later (and 977 // will trigger asserts if we try to clean it up now, without also 978 // simplifying the corresponding conditional branch). 979 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 980 Value *PredVal = OldValPN->getIncomingValue(i); 981 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 982 IncomingValues); 983 984 // And add a new incoming value for this predecessor for the 985 // newly retargeted branch. 986 PN->addIncoming(Selected, PredBB); 987 } 988 } else { 989 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 990 // Update existing incoming values in PN for this 991 // predecessor of BB. 992 BasicBlock *PredBB = BBPreds[i]; 993 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 994 IncomingValues); 995 996 // And add a new incoming value for this predecessor for the 997 // newly retargeted branch. 998 PN->addIncoming(Selected, PredBB); 999 } 1000 } 1001 1002 replaceUndefValuesInPhi(PN, IncomingValues); 1003 } 1004 1005 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1006 DomTreeUpdater *DTU) { 1007 assert(BB != &BB->getParent()->getEntryBlock() && 1008 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1009 1010 // We can't eliminate infinite loops. 1011 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1012 if (BB == Succ) return false; 1013 1014 // Check to see if merging these blocks would cause conflicts for any of the 1015 // phi nodes in BB or Succ. If not, we can safely merge. 1016 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1017 1018 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1019 // has uses which will not disappear when the PHI nodes are merged. It is 1020 // possible to handle such cases, but difficult: it requires checking whether 1021 // BB dominates Succ, which is non-trivial to calculate in the case where 1022 // Succ has multiple predecessors. Also, it requires checking whether 1023 // constructing the necessary self-referential PHI node doesn't introduce any 1024 // conflicts; this isn't too difficult, but the previous code for doing this 1025 // was incorrect. 1026 // 1027 // Note that if this check finds a live use, BB dominates Succ, so BB is 1028 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1029 // folding the branch isn't profitable in that case anyway. 1030 if (!Succ->getSinglePredecessor()) { 1031 BasicBlock::iterator BBI = BB->begin(); 1032 while (isa<PHINode>(*BBI)) { 1033 for (Use &U : BBI->uses()) { 1034 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1035 if (PN->getIncomingBlock(U) != BB) 1036 return false; 1037 } else { 1038 return false; 1039 } 1040 } 1041 ++BBI; 1042 } 1043 } 1044 1045 // We cannot fold the block if it's a branch to an already present callbr 1046 // successor because that creates duplicate successors. 1047 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1048 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1049 if (Succ == CBI->getDefaultDest()) 1050 return false; 1051 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1052 if (Succ == CBI->getIndirectDest(i)) 1053 return false; 1054 } 1055 } 1056 1057 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1058 1059 SmallVector<DominatorTree::UpdateType, 32> Updates; 1060 if (DTU) { 1061 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1062 // All predecessors of BB will be moved to Succ. 1063 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1064 Updates.push_back({DominatorTree::Delete, *I, BB}); 1065 // This predecessor of BB may already have Succ as a successor. 1066 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1067 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1068 } 1069 } 1070 1071 if (isa<PHINode>(Succ->begin())) { 1072 // If there is more than one pred of succ, and there are PHI nodes in 1073 // the successor, then we need to add incoming edges for the PHI nodes 1074 // 1075 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1076 1077 // Loop over all of the PHI nodes in the successor of BB. 1078 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1079 PHINode *PN = cast<PHINode>(I); 1080 1081 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1082 } 1083 } 1084 1085 if (Succ->getSinglePredecessor()) { 1086 // BB is the only predecessor of Succ, so Succ will end up with exactly 1087 // the same predecessors BB had. 1088 1089 // Copy over any phi, debug or lifetime instruction. 1090 BB->getTerminator()->eraseFromParent(); 1091 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1092 BB->getInstList()); 1093 } else { 1094 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1095 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1096 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1097 PN->eraseFromParent(); 1098 } 1099 } 1100 1101 // If the unconditional branch we replaced contains llvm.loop metadata, we 1102 // add the metadata to the branch instructions in the predecessors. 1103 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1104 Instruction *TI = BB->getTerminator(); 1105 if (TI) 1106 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1107 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1108 BasicBlock *Pred = *PI; 1109 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1110 } 1111 1112 // Everything that jumped to BB now goes to Succ. 1113 BB->replaceAllUsesWith(Succ); 1114 if (!Succ->hasName()) Succ->takeName(BB); 1115 1116 // Clear the successor list of BB to match updates applying to DTU later. 1117 if (BB->getTerminator()) 1118 BB->getInstList().pop_back(); 1119 new UnreachableInst(BB->getContext(), BB); 1120 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1121 "applying corresponding DTU updates."); 1122 1123 if (DTU) { 1124 DTU->applyUpdatesPermissive(Updates); 1125 DTU->deleteBB(BB); 1126 } else { 1127 BB->eraseFromParent(); // Delete the old basic block. 1128 } 1129 return true; 1130 } 1131 1132 // WARNING: this logic must be kept in sync with 1133 // Instruction::isIdenticalToWhenDefined()! 1134 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1135 // This implementation doesn't currently consider undef operands 1136 // specially. Theoretically, two phis which are identical except for 1137 // one having an undef where the other doesn't could be collapsed. 1138 1139 struct PHIDenseMapInfo { 1140 static PHINode *getEmptyKey() { 1141 return DenseMapInfo<PHINode *>::getEmptyKey(); 1142 } 1143 1144 static PHINode *getTombstoneKey() { 1145 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1146 } 1147 1148 static bool isSentinel(PHINode *PN) { 1149 return PN == getEmptyKey() || PN == getTombstoneKey(); 1150 } 1151 1152 static unsigned getHashValueImpl(PHINode *PN) { 1153 // Compute a hash value on the operands. Instcombine will likely have 1154 // sorted them, which helps expose duplicates, but we have to check all 1155 // the operands to be safe in case instcombine hasn't run. 1156 return static_cast<unsigned>(hash_combine( 1157 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1158 hash_combine_range(PN->block_begin(), PN->block_end()))); 1159 } 1160 1161 static unsigned getHashValue(PHINode *PN) { 1162 #ifndef NDEBUG 1163 // If -phicse-debug-hash was specified, return a constant -- this 1164 // will force all hashing to collide, so we'll exhaustively search 1165 // the table for a match, and the assertion in isEqual will fire if 1166 // there's a bug causing equal keys to hash differently. 1167 if (PHICSEDebugHash) 1168 return 0; 1169 #endif 1170 return getHashValueImpl(PN); 1171 } 1172 1173 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1174 if (isSentinel(LHS) || isSentinel(RHS)) 1175 return LHS == RHS; 1176 return LHS->isIdenticalTo(RHS); 1177 } 1178 1179 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1180 // These comparisons are nontrivial, so assert that equality implies 1181 // hash equality (DenseMap demands this as an invariant). 1182 bool Result = isEqualImpl(LHS, RHS); 1183 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1184 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1185 return Result; 1186 } 1187 }; 1188 1189 // Set of unique PHINodes. 1190 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1191 1192 // Examine each PHI. 1193 bool Changed = false; 1194 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1195 auto Inserted = PHISet.insert(PN); 1196 if (!Inserted.second) { 1197 // A duplicate. Replace this PHI with its duplicate. 1198 ++NumPHICSEs; 1199 PN->replaceAllUsesWith(*Inserted.first); 1200 PN->eraseFromParent(); 1201 Changed = true; 1202 1203 // The RAUW can change PHIs that we already visited. Start over from the 1204 // beginning. 1205 PHISet.clear(); 1206 I = BB->begin(); 1207 } 1208 } 1209 1210 return Changed; 1211 } 1212 1213 /// enforceKnownAlignment - If the specified pointer points to an object that 1214 /// we control, modify the object's alignment to PrefAlign. This isn't 1215 /// often possible though. If alignment is important, a more reliable approach 1216 /// is to simply align all global variables and allocation instructions to 1217 /// their preferred alignment from the beginning. 1218 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign, 1219 const DataLayout &DL) { 1220 assert(PrefAlign > Alignment); 1221 1222 V = V->stripPointerCasts(); 1223 1224 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1225 // TODO: ideally, computeKnownBits ought to have used 1226 // AllocaInst::getAlignment() in its computation already, making 1227 // the below max redundant. But, as it turns out, 1228 // stripPointerCasts recurses through infinite layers of bitcasts, 1229 // while computeKnownBits is not allowed to traverse more than 6 1230 // levels. 1231 Alignment = std::max(AI->getAlign(), Alignment); 1232 if (PrefAlign <= Alignment) 1233 return Alignment; 1234 1235 // If the preferred alignment is greater than the natural stack alignment 1236 // then don't round up. This avoids dynamic stack realignment. 1237 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1238 return Alignment; 1239 AI->setAlignment(PrefAlign); 1240 return PrefAlign; 1241 } 1242 1243 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1244 // TODO: as above, this shouldn't be necessary. 1245 Alignment = max(GO->getAlign(), Alignment); 1246 if (PrefAlign <= Alignment) 1247 return Alignment; 1248 1249 // If there is a large requested alignment and we can, bump up the alignment 1250 // of the global. If the memory we set aside for the global may not be the 1251 // memory used by the final program then it is impossible for us to reliably 1252 // enforce the preferred alignment. 1253 if (!GO->canIncreaseAlignment()) 1254 return Alignment; 1255 1256 GO->setAlignment(PrefAlign); 1257 return PrefAlign; 1258 } 1259 1260 return Alignment; 1261 } 1262 1263 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1264 const DataLayout &DL, 1265 const Instruction *CxtI, 1266 AssumptionCache *AC, 1267 const DominatorTree *DT) { 1268 assert(V->getType()->isPointerTy() && 1269 "getOrEnforceKnownAlignment expects a pointer!"); 1270 1271 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1272 unsigned TrailZ = Known.countMinTrailingZeros(); 1273 1274 // Avoid trouble with ridiculously large TrailZ values, such as 1275 // those computed from a null pointer. 1276 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1277 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1278 1279 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1280 1281 if (PrefAlign && *PrefAlign > Alignment) 1282 Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL); 1283 1284 // We don't need to make any adjustment. 1285 return Alignment; 1286 } 1287 1288 ///===---------------------------------------------------------------------===// 1289 /// Dbg Intrinsic utilities 1290 /// 1291 1292 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1293 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1294 DIExpression *DIExpr, 1295 PHINode *APN) { 1296 // Since we can't guarantee that the original dbg.declare instrinsic 1297 // is removed by LowerDbgDeclare(), we need to make sure that we are 1298 // not inserting the same dbg.value intrinsic over and over. 1299 SmallVector<DbgValueInst *, 1> DbgValues; 1300 findDbgValues(DbgValues, APN); 1301 for (auto *DVI : DbgValues) { 1302 assert(DVI->getValue() == APN); 1303 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1304 return true; 1305 } 1306 return false; 1307 } 1308 1309 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1310 /// (or fragment of the variable) described by \p DII. 1311 /// 1312 /// This is primarily intended as a helper for the different 1313 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1314 /// converted describes an alloca'd variable, so we need to use the 1315 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1316 /// identified as covering an n-bit fragment, if the store size of i1 is at 1317 /// least n bits. 1318 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1319 const DataLayout &DL = DII->getModule()->getDataLayout(); 1320 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1321 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1322 return ValueSize >= *FragmentSize; 1323 // We can't always calculate the size of the DI variable (e.g. if it is a 1324 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1325 // intead. 1326 if (DII->isAddressOfVariable()) 1327 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1328 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1329 return ValueSize >= *FragmentSize; 1330 // Could not determine size of variable. Conservatively return false. 1331 return false; 1332 } 1333 1334 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1335 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1336 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1337 /// case this DebugLoc leaks into any adjacent instructions. 1338 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1339 // Original dbg.declare must have a location. 1340 DebugLoc DeclareLoc = DII->getDebugLoc(); 1341 MDNode *Scope = DeclareLoc.getScope(); 1342 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1343 // Produce an unknown location with the correct scope / inlinedAt fields. 1344 return DebugLoc::get(0, 0, Scope, InlinedAt); 1345 } 1346 1347 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1348 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1349 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1350 StoreInst *SI, DIBuilder &Builder) { 1351 assert(DII->isAddressOfVariable()); 1352 auto *DIVar = DII->getVariable(); 1353 assert(DIVar && "Missing variable"); 1354 auto *DIExpr = DII->getExpression(); 1355 Value *DV = SI->getValueOperand(); 1356 1357 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1358 1359 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1360 // FIXME: If storing to a part of the variable described by the dbg.declare, 1361 // then we want to insert a dbg.value for the corresponding fragment. 1362 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1363 << *DII << '\n'); 1364 // For now, when there is a store to parts of the variable (but we do not 1365 // know which part) we insert an dbg.value instrinsic to indicate that we 1366 // know nothing about the variable's content. 1367 DV = UndefValue::get(DV->getType()); 1368 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1369 return; 1370 } 1371 1372 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1373 } 1374 1375 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1376 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1377 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1378 LoadInst *LI, DIBuilder &Builder) { 1379 auto *DIVar = DII->getVariable(); 1380 auto *DIExpr = DII->getExpression(); 1381 assert(DIVar && "Missing variable"); 1382 1383 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1384 // FIXME: If only referring to a part of the variable described by the 1385 // dbg.declare, then we want to insert a dbg.value for the corresponding 1386 // fragment. 1387 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1388 << *DII << '\n'); 1389 return; 1390 } 1391 1392 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1393 1394 // We are now tracking the loaded value instead of the address. In the 1395 // future if multi-location support is added to the IR, it might be 1396 // preferable to keep tracking both the loaded value and the original 1397 // address in case the alloca can not be elided. 1398 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1399 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1400 DbgValue->insertAfter(LI); 1401 } 1402 1403 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1404 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1405 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1406 PHINode *APN, DIBuilder &Builder) { 1407 auto *DIVar = DII->getVariable(); 1408 auto *DIExpr = DII->getExpression(); 1409 assert(DIVar && "Missing variable"); 1410 1411 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1412 return; 1413 1414 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1415 // FIXME: If only referring to a part of the variable described by the 1416 // dbg.declare, then we want to insert a dbg.value for the corresponding 1417 // fragment. 1418 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1419 << *DII << '\n'); 1420 return; 1421 } 1422 1423 BasicBlock *BB = APN->getParent(); 1424 auto InsertionPt = BB->getFirstInsertionPt(); 1425 1426 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1427 1428 // The block may be a catchswitch block, which does not have a valid 1429 // insertion point. 1430 // FIXME: Insert dbg.value markers in the successors when appropriate. 1431 if (InsertionPt != BB->end()) 1432 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1433 } 1434 1435 /// Determine whether this alloca is either a VLA or an array. 1436 static bool isArray(AllocaInst *AI) { 1437 return AI->isArrayAllocation() || 1438 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1439 } 1440 1441 /// Determine whether this alloca is a structure. 1442 static bool isStructure(AllocaInst *AI) { 1443 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1444 } 1445 1446 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1447 /// of llvm.dbg.value intrinsics. 1448 bool llvm::LowerDbgDeclare(Function &F) { 1449 bool Changed = false; 1450 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1451 SmallVector<DbgDeclareInst *, 4> Dbgs; 1452 for (auto &FI : F) 1453 for (Instruction &BI : FI) 1454 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1455 Dbgs.push_back(DDI); 1456 1457 if (Dbgs.empty()) 1458 return Changed; 1459 1460 for (auto &I : Dbgs) { 1461 DbgDeclareInst *DDI = I; 1462 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1463 // If this is an alloca for a scalar variable, insert a dbg.value 1464 // at each load and store to the alloca and erase the dbg.declare. 1465 // The dbg.values allow tracking a variable even if it is not 1466 // stored on the stack, while the dbg.declare can only describe 1467 // the stack slot (and at a lexical-scope granularity). Later 1468 // passes will attempt to elide the stack slot. 1469 if (!AI || isArray(AI) || isStructure(AI)) 1470 continue; 1471 1472 // A volatile load/store means that the alloca can't be elided anyway. 1473 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1474 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1475 return LI->isVolatile(); 1476 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1477 return SI->isVolatile(); 1478 return false; 1479 })) 1480 continue; 1481 1482 SmallVector<const Value *, 8> WorkList; 1483 WorkList.push_back(AI); 1484 while (!WorkList.empty()) { 1485 const Value *V = WorkList.pop_back_val(); 1486 for (auto &AIUse : V->uses()) { 1487 User *U = AIUse.getUser(); 1488 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1489 if (AIUse.getOperandNo() == 1) 1490 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1491 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1492 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1493 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1494 // This is a call by-value or some other instruction that takes a 1495 // pointer to the variable. Insert a *value* intrinsic that describes 1496 // the variable by dereferencing the alloca. 1497 if (!CI->isLifetimeStartOrEnd()) { 1498 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1499 auto *DerefExpr = 1500 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1501 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1502 NewLoc, CI); 1503 } 1504 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1505 if (BI->getType()->isPointerTy()) 1506 WorkList.push_back(BI); 1507 } 1508 } 1509 } 1510 DDI->eraseFromParent(); 1511 Changed = true; 1512 } 1513 1514 if (Changed) 1515 for (BasicBlock &BB : F) 1516 RemoveRedundantDbgInstrs(&BB); 1517 1518 return Changed; 1519 } 1520 1521 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1522 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1523 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1524 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1525 if (InsertedPHIs.size() == 0) 1526 return; 1527 1528 // Map existing PHI nodes to their dbg.values. 1529 ValueToValueMapTy DbgValueMap; 1530 for (auto &I : *BB) { 1531 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1532 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1533 DbgValueMap.insert({Loc, DbgII}); 1534 } 1535 } 1536 if (DbgValueMap.size() == 0) 1537 return; 1538 1539 // Then iterate through the new PHIs and look to see if they use one of the 1540 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1541 // propagate the info through the new PHI. 1542 LLVMContext &C = BB->getContext(); 1543 for (auto PHI : InsertedPHIs) { 1544 BasicBlock *Parent = PHI->getParent(); 1545 // Avoid inserting an intrinsic into an EH block. 1546 if (Parent->getFirstNonPHI()->isEHPad()) 1547 continue; 1548 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1549 for (auto VI : PHI->operand_values()) { 1550 auto V = DbgValueMap.find(VI); 1551 if (V != DbgValueMap.end()) { 1552 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1553 Instruction *NewDbgII = DbgII->clone(); 1554 NewDbgII->setOperand(0, PhiMAV); 1555 auto InsertionPt = Parent->getFirstInsertionPt(); 1556 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1557 NewDbgII->insertBefore(&*InsertionPt); 1558 } 1559 } 1560 } 1561 } 1562 1563 /// Finds all intrinsics declaring local variables as living in the memory that 1564 /// 'V' points to. This may include a mix of dbg.declare and 1565 /// dbg.addr intrinsics. 1566 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1567 // This function is hot. Check whether the value has any metadata to avoid a 1568 // DenseMap lookup. 1569 if (!V->isUsedByMetadata()) 1570 return {}; 1571 auto *L = LocalAsMetadata::getIfExists(V); 1572 if (!L) 1573 return {}; 1574 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1575 if (!MDV) 1576 return {}; 1577 1578 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1579 for (User *U : MDV->users()) { 1580 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1581 if (DII->isAddressOfVariable()) 1582 Declares.push_back(DII); 1583 } 1584 1585 return Declares; 1586 } 1587 1588 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1589 TinyPtrVector<DbgDeclareInst *> DDIs; 1590 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1591 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1592 DDIs.push_back(DDI); 1593 return DDIs; 1594 } 1595 1596 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1597 // This function is hot. Check whether the value has any metadata to avoid a 1598 // DenseMap lookup. 1599 if (!V->isUsedByMetadata()) 1600 return; 1601 if (auto *L = LocalAsMetadata::getIfExists(V)) 1602 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1603 for (User *U : MDV->users()) 1604 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1605 DbgValues.push_back(DVI); 1606 } 1607 1608 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1609 Value *V) { 1610 // This function is hot. Check whether the value has any metadata to avoid a 1611 // DenseMap lookup. 1612 if (!V->isUsedByMetadata()) 1613 return; 1614 if (auto *L = LocalAsMetadata::getIfExists(V)) 1615 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1616 for (User *U : MDV->users()) 1617 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1618 DbgUsers.push_back(DII); 1619 } 1620 1621 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1622 DIBuilder &Builder, uint8_t DIExprFlags, 1623 int Offset) { 1624 auto DbgAddrs = FindDbgAddrUses(Address); 1625 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1626 DebugLoc Loc = DII->getDebugLoc(); 1627 auto *DIVar = DII->getVariable(); 1628 auto *DIExpr = DII->getExpression(); 1629 assert(DIVar && "Missing variable"); 1630 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1631 // Insert llvm.dbg.declare immediately before DII, and remove old 1632 // llvm.dbg.declare. 1633 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1634 DII->eraseFromParent(); 1635 } 1636 return !DbgAddrs.empty(); 1637 } 1638 1639 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1640 DIBuilder &Builder, int Offset) { 1641 DebugLoc Loc = DVI->getDebugLoc(); 1642 auto *DIVar = DVI->getVariable(); 1643 auto *DIExpr = DVI->getExpression(); 1644 assert(DIVar && "Missing variable"); 1645 1646 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1647 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1648 // it and give up. 1649 if (!DIExpr || DIExpr->getNumElements() < 1 || 1650 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1651 return; 1652 1653 // Insert the offset before the first deref. 1654 // We could just change the offset argument of dbg.value, but it's unsigned... 1655 if (Offset) 1656 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1657 1658 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1659 DVI->eraseFromParent(); 1660 } 1661 1662 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1663 DIBuilder &Builder, int Offset) { 1664 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1665 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1666 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1667 Use &U = *UI++; 1668 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1669 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1670 } 1671 } 1672 1673 /// Wrap \p V in a ValueAsMetadata instance. 1674 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1675 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1676 } 1677 1678 /// Where possible to salvage debug information for \p I do so 1679 /// and return True. If not possible mark undef and return False. 1680 void llvm::salvageDebugInfo(Instruction &I) { 1681 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1682 findDbgUsers(DbgUsers, &I); 1683 salvageDebugInfoForDbgValues(I, DbgUsers); 1684 } 1685 1686 void llvm::salvageDebugInfoForDbgValues( 1687 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1688 auto &Ctx = I.getContext(); 1689 bool Salvaged = false; 1690 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1691 1692 for (auto *DII : DbgUsers) { 1693 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1694 // are implicitly pointing out the value as a DWARF memory location 1695 // description. 1696 bool StackValue = isa<DbgValueInst>(DII); 1697 1698 DIExpression *DIExpr = 1699 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1700 1701 // salvageDebugInfoImpl should fail on examining the first element of 1702 // DbgUsers, or none of them. 1703 if (!DIExpr) 1704 break; 1705 1706 DII->setOperand(0, wrapMD(I.getOperand(0))); 1707 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1708 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1709 Salvaged = true; 1710 } 1711 1712 if (Salvaged) 1713 return; 1714 1715 for (auto *DII : DbgUsers) { 1716 Value *Undef = UndefValue::get(I.getType()); 1717 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1718 ValueAsMetadata::get(Undef))); 1719 } 1720 } 1721 1722 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1723 DIExpression *SrcDIExpr, 1724 bool WithStackValue) { 1725 auto &M = *I.getModule(); 1726 auto &DL = M.getDataLayout(); 1727 1728 // Apply a vector of opcodes to the source DIExpression. 1729 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1730 DIExpression *DIExpr = SrcDIExpr; 1731 if (!Ops.empty()) { 1732 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1733 } 1734 return DIExpr; 1735 }; 1736 1737 // Apply the given offset to the source DIExpression. 1738 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1739 SmallVector<uint64_t, 8> Ops; 1740 DIExpression::appendOffset(Ops, Offset); 1741 return doSalvage(Ops); 1742 }; 1743 1744 // initializer-list helper for applying operators to the source DIExpression. 1745 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1746 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1747 return doSalvage(Ops); 1748 }; 1749 1750 if (auto *CI = dyn_cast<CastInst>(&I)) { 1751 // No-op casts are irrelevant for debug info. 1752 if (CI->isNoopCast(DL)) 1753 return SrcDIExpr; 1754 1755 Type *Type = CI->getType(); 1756 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1757 if (Type->isVectorTy() || 1758 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1759 return nullptr; 1760 1761 Value *FromValue = CI->getOperand(0); 1762 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1763 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1764 1765 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1766 isa<SExtInst>(&I))); 1767 } 1768 1769 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1770 unsigned BitWidth = 1771 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1772 // Rewrite a constant GEP into a DIExpression. 1773 APInt Offset(BitWidth, 0); 1774 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1775 return applyOffset(Offset.getSExtValue()); 1776 } else { 1777 return nullptr; 1778 } 1779 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1780 // Rewrite binary operations with constant integer operands. 1781 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1782 if (!ConstInt || ConstInt->getBitWidth() > 64) 1783 return nullptr; 1784 1785 uint64_t Val = ConstInt->getSExtValue(); 1786 switch (BI->getOpcode()) { 1787 case Instruction::Add: 1788 return applyOffset(Val); 1789 case Instruction::Sub: 1790 return applyOffset(-int64_t(Val)); 1791 case Instruction::Mul: 1792 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1793 case Instruction::SDiv: 1794 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1795 case Instruction::SRem: 1796 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1797 case Instruction::Or: 1798 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1799 case Instruction::And: 1800 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1801 case Instruction::Xor: 1802 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1803 case Instruction::Shl: 1804 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1805 case Instruction::LShr: 1806 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1807 case Instruction::AShr: 1808 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1809 default: 1810 // TODO: Salvage constants from each kind of binop we know about. 1811 return nullptr; 1812 } 1813 // *Not* to do: we should not attempt to salvage load instructions, 1814 // because the validity and lifetime of a dbg.value containing 1815 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1816 } 1817 return nullptr; 1818 } 1819 1820 /// A replacement for a dbg.value expression. 1821 using DbgValReplacement = Optional<DIExpression *>; 1822 1823 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1824 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1825 /// changes are made. 1826 static bool rewriteDebugUsers( 1827 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1828 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1829 // Find debug users of From. 1830 SmallVector<DbgVariableIntrinsic *, 1> Users; 1831 findDbgUsers(Users, &From); 1832 if (Users.empty()) 1833 return false; 1834 1835 // Prevent use-before-def of To. 1836 bool Changed = false; 1837 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1838 if (isa<Instruction>(&To)) { 1839 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1840 1841 for (auto *DII : Users) { 1842 // It's common to see a debug user between From and DomPoint. Move it 1843 // after DomPoint to preserve the variable update without any reordering. 1844 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1845 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1846 DII->moveAfter(&DomPoint); 1847 Changed = true; 1848 1849 // Users which otherwise aren't dominated by the replacement value must 1850 // be salvaged or deleted. 1851 } else if (!DT.dominates(&DomPoint, DII)) { 1852 UndefOrSalvage.insert(DII); 1853 } 1854 } 1855 } 1856 1857 // Update debug users without use-before-def risk. 1858 for (auto *DII : Users) { 1859 if (UndefOrSalvage.count(DII)) 1860 continue; 1861 1862 LLVMContext &Ctx = DII->getContext(); 1863 DbgValReplacement DVR = RewriteExpr(*DII); 1864 if (!DVR) 1865 continue; 1866 1867 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1868 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1869 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1870 Changed = true; 1871 } 1872 1873 if (!UndefOrSalvage.empty()) { 1874 // Try to salvage the remaining debug users. 1875 salvageDebugInfo(From); 1876 Changed = true; 1877 } 1878 1879 return Changed; 1880 } 1881 1882 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1883 /// losslessly preserve the bits and semantics of the value. This predicate is 1884 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1885 /// 1886 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1887 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1888 /// and also does not allow lossless pointer <-> integer conversions. 1889 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1890 Type *ToTy) { 1891 // Trivially compatible types. 1892 if (FromTy == ToTy) 1893 return true; 1894 1895 // Handle compatible pointer <-> integer conversions. 1896 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1897 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1898 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1899 !DL.isNonIntegralPointerType(ToTy); 1900 return SameSize && LosslessConversion; 1901 } 1902 1903 // TODO: This is not exhaustive. 1904 return false; 1905 } 1906 1907 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1908 Instruction &DomPoint, DominatorTree &DT) { 1909 // Exit early if From has no debug users. 1910 if (!From.isUsedByMetadata()) 1911 return false; 1912 1913 assert(&From != &To && "Can't replace something with itself"); 1914 1915 Type *FromTy = From.getType(); 1916 Type *ToTy = To.getType(); 1917 1918 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1919 return DII.getExpression(); 1920 }; 1921 1922 // Handle no-op conversions. 1923 Module &M = *From.getModule(); 1924 const DataLayout &DL = M.getDataLayout(); 1925 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1926 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1927 1928 // Handle integer-to-integer widening and narrowing. 1929 // FIXME: Use DW_OP_convert when it's available everywhere. 1930 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1931 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1932 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1933 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1934 1935 // When the width of the result grows, assume that a debugger will only 1936 // access the low `FromBits` bits when inspecting the source variable. 1937 if (FromBits < ToBits) 1938 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1939 1940 // The width of the result has shrunk. Use sign/zero extension to describe 1941 // the source variable's high bits. 1942 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1943 DILocalVariable *Var = DII.getVariable(); 1944 1945 // Without knowing signedness, sign/zero extension isn't possible. 1946 auto Signedness = Var->getSignedness(); 1947 if (!Signedness) 1948 return None; 1949 1950 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1951 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1952 Signed); 1953 }; 1954 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1955 } 1956 1957 // TODO: Floating-point conversions, vectors. 1958 return false; 1959 } 1960 1961 std::pair<unsigned, unsigned> 1962 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1963 unsigned NumDeadInst = 0; 1964 unsigned NumDeadDbgInst = 0; 1965 // Delete the instructions backwards, as it has a reduced likelihood of 1966 // having to update as many def-use and use-def chains. 1967 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1968 while (EndInst != &BB->front()) { 1969 // Delete the next to last instruction. 1970 Instruction *Inst = &*--EndInst->getIterator(); 1971 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1972 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1973 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1974 EndInst = Inst; 1975 continue; 1976 } 1977 if (isa<DbgInfoIntrinsic>(Inst)) 1978 ++NumDeadDbgInst; 1979 else 1980 ++NumDeadInst; 1981 Inst->eraseFromParent(); 1982 } 1983 return {NumDeadInst, NumDeadDbgInst}; 1984 } 1985 1986 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1987 bool PreserveLCSSA, DomTreeUpdater *DTU, 1988 MemorySSAUpdater *MSSAU) { 1989 BasicBlock *BB = I->getParent(); 1990 std::vector <DominatorTree::UpdateType> Updates; 1991 1992 if (MSSAU) 1993 MSSAU->changeToUnreachable(I); 1994 1995 // Loop over all of the successors, removing BB's entry from any PHI 1996 // nodes. 1997 if (DTU) 1998 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1999 for (BasicBlock *Successor : successors(BB)) { 2000 Successor->removePredecessor(BB, PreserveLCSSA); 2001 if (DTU) 2002 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2003 } 2004 // Insert a call to llvm.trap right before this. This turns the undefined 2005 // behavior into a hard fail instead of falling through into random code. 2006 if (UseLLVMTrap) { 2007 Function *TrapFn = 2008 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2009 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2010 CallTrap->setDebugLoc(I->getDebugLoc()); 2011 } 2012 auto *UI = new UnreachableInst(I->getContext(), I); 2013 UI->setDebugLoc(I->getDebugLoc()); 2014 2015 // All instructions after this are dead. 2016 unsigned NumInstrsRemoved = 0; 2017 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2018 while (BBI != BBE) { 2019 if (!BBI->use_empty()) 2020 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2021 BB->getInstList().erase(BBI++); 2022 ++NumInstrsRemoved; 2023 } 2024 if (DTU) 2025 DTU->applyUpdatesPermissive(Updates); 2026 return NumInstrsRemoved; 2027 } 2028 2029 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2030 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 2031 SmallVector<OperandBundleDef, 1> OpBundles; 2032 II->getOperandBundlesAsDefs(OpBundles); 2033 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2034 II->getCalledOperand(), Args, OpBundles); 2035 NewCall->setCallingConv(II->getCallingConv()); 2036 NewCall->setAttributes(II->getAttributes()); 2037 NewCall->setDebugLoc(II->getDebugLoc()); 2038 NewCall->copyMetadata(*II); 2039 2040 // If the invoke had profile metadata, try converting them for CallInst. 2041 uint64_t TotalWeight; 2042 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2043 // Set the total weight if it fits into i32, otherwise reset. 2044 MDBuilder MDB(NewCall->getContext()); 2045 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2046 ? nullptr 2047 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2048 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2049 } 2050 2051 return NewCall; 2052 } 2053 2054 /// changeToCall - Convert the specified invoke into a normal call. 2055 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2056 CallInst *NewCall = createCallMatchingInvoke(II); 2057 NewCall->takeName(II); 2058 NewCall->insertBefore(II); 2059 II->replaceAllUsesWith(NewCall); 2060 2061 // Follow the call by a branch to the normal destination. 2062 BasicBlock *NormalDestBB = II->getNormalDest(); 2063 BranchInst::Create(NormalDestBB, II); 2064 2065 // Update PHI nodes in the unwind destination 2066 BasicBlock *BB = II->getParent(); 2067 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2068 UnwindDestBB->removePredecessor(BB); 2069 II->eraseFromParent(); 2070 if (DTU) 2071 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2072 } 2073 2074 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2075 BasicBlock *UnwindEdge) { 2076 BasicBlock *BB = CI->getParent(); 2077 2078 // Convert this function call into an invoke instruction. First, split the 2079 // basic block. 2080 BasicBlock *Split = 2081 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2082 2083 // Delete the unconditional branch inserted by splitBasicBlock 2084 BB->getInstList().pop_back(); 2085 2086 // Create the new invoke instruction. 2087 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2088 SmallVector<OperandBundleDef, 1> OpBundles; 2089 2090 CI->getOperandBundlesAsDefs(OpBundles); 2091 2092 // Note: we're round tripping operand bundles through memory here, and that 2093 // can potentially be avoided with a cleverer API design that we do not have 2094 // as of this time. 2095 2096 InvokeInst *II = 2097 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2098 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2099 II->setDebugLoc(CI->getDebugLoc()); 2100 II->setCallingConv(CI->getCallingConv()); 2101 II->setAttributes(CI->getAttributes()); 2102 2103 // Make sure that anything using the call now uses the invoke! This also 2104 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2105 CI->replaceAllUsesWith(II); 2106 2107 // Delete the original call 2108 Split->getInstList().pop_front(); 2109 return Split; 2110 } 2111 2112 static bool markAliveBlocks(Function &F, 2113 SmallPtrSetImpl<BasicBlock *> &Reachable, 2114 DomTreeUpdater *DTU = nullptr) { 2115 SmallVector<BasicBlock*, 128> Worklist; 2116 BasicBlock *BB = &F.front(); 2117 Worklist.push_back(BB); 2118 Reachable.insert(BB); 2119 bool Changed = false; 2120 do { 2121 BB = Worklist.pop_back_val(); 2122 2123 // Do a quick scan of the basic block, turning any obviously unreachable 2124 // instructions into LLVM unreachable insts. The instruction combining pass 2125 // canonicalizes unreachable insts into stores to null or undef. 2126 for (Instruction &I : *BB) { 2127 if (auto *CI = dyn_cast<CallInst>(&I)) { 2128 Value *Callee = CI->getCalledOperand(); 2129 // Handle intrinsic calls. 2130 if (Function *F = dyn_cast<Function>(Callee)) { 2131 auto IntrinsicID = F->getIntrinsicID(); 2132 // Assumptions that are known to be false are equivalent to 2133 // unreachable. Also, if the condition is undefined, then we make the 2134 // choice most beneficial to the optimizer, and choose that to also be 2135 // unreachable. 2136 if (IntrinsicID == Intrinsic::assume) { 2137 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2138 // Don't insert a call to llvm.trap right before the unreachable. 2139 changeToUnreachable(CI, false, false, DTU); 2140 Changed = true; 2141 break; 2142 } 2143 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2144 // A call to the guard intrinsic bails out of the current 2145 // compilation unit if the predicate passed to it is false. If the 2146 // predicate is a constant false, then we know the guard will bail 2147 // out of the current compile unconditionally, so all code following 2148 // it is dead. 2149 // 2150 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2151 // guards to treat `undef` as `false` since a guard on `undef` can 2152 // still be useful for widening. 2153 if (match(CI->getArgOperand(0), m_Zero())) 2154 if (!isa<UnreachableInst>(CI->getNextNode())) { 2155 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2156 false, DTU); 2157 Changed = true; 2158 break; 2159 } 2160 } 2161 } else if ((isa<ConstantPointerNull>(Callee) && 2162 !NullPointerIsDefined(CI->getFunction())) || 2163 isa<UndefValue>(Callee)) { 2164 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2165 Changed = true; 2166 break; 2167 } 2168 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2169 // If we found a call to a no-return function, insert an unreachable 2170 // instruction after it. Make sure there isn't *already* one there 2171 // though. 2172 if (!isa<UnreachableInst>(CI->getNextNode())) { 2173 // Don't insert a call to llvm.trap right before the unreachable. 2174 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2175 Changed = true; 2176 } 2177 break; 2178 } 2179 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2180 // Store to undef and store to null are undefined and used to signal 2181 // that they should be changed to unreachable by passes that can't 2182 // modify the CFG. 2183 2184 // Don't touch volatile stores. 2185 if (SI->isVolatile()) continue; 2186 2187 Value *Ptr = SI->getOperand(1); 2188 2189 if (isa<UndefValue>(Ptr) || 2190 (isa<ConstantPointerNull>(Ptr) && 2191 !NullPointerIsDefined(SI->getFunction(), 2192 SI->getPointerAddressSpace()))) { 2193 changeToUnreachable(SI, true, false, DTU); 2194 Changed = true; 2195 break; 2196 } 2197 } 2198 } 2199 2200 Instruction *Terminator = BB->getTerminator(); 2201 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2202 // Turn invokes that call 'nounwind' functions into ordinary calls. 2203 Value *Callee = II->getCalledOperand(); 2204 if ((isa<ConstantPointerNull>(Callee) && 2205 !NullPointerIsDefined(BB->getParent())) || 2206 isa<UndefValue>(Callee)) { 2207 changeToUnreachable(II, true, false, DTU); 2208 Changed = true; 2209 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2210 if (II->use_empty() && II->onlyReadsMemory()) { 2211 // jump to the normal destination branch. 2212 BasicBlock *NormalDestBB = II->getNormalDest(); 2213 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2214 BranchInst::Create(NormalDestBB, II); 2215 UnwindDestBB->removePredecessor(II->getParent()); 2216 II->eraseFromParent(); 2217 if (DTU) 2218 DTU->applyUpdatesPermissive( 2219 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2220 } else 2221 changeToCall(II, DTU); 2222 Changed = true; 2223 } 2224 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2225 // Remove catchpads which cannot be reached. 2226 struct CatchPadDenseMapInfo { 2227 static CatchPadInst *getEmptyKey() { 2228 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2229 } 2230 2231 static CatchPadInst *getTombstoneKey() { 2232 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2233 } 2234 2235 static unsigned getHashValue(CatchPadInst *CatchPad) { 2236 return static_cast<unsigned>(hash_combine_range( 2237 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2238 } 2239 2240 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2241 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2242 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2243 return LHS == RHS; 2244 return LHS->isIdenticalTo(RHS); 2245 } 2246 }; 2247 2248 // Set of unique CatchPads. 2249 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2250 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2251 HandlerSet; 2252 detail::DenseSetEmpty Empty; 2253 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2254 E = CatchSwitch->handler_end(); 2255 I != E; ++I) { 2256 BasicBlock *HandlerBB = *I; 2257 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2258 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2259 CatchSwitch->removeHandler(I); 2260 --I; 2261 --E; 2262 Changed = true; 2263 } 2264 } 2265 } 2266 2267 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2268 for (BasicBlock *Successor : successors(BB)) 2269 if (Reachable.insert(Successor).second) 2270 Worklist.push_back(Successor); 2271 } while (!Worklist.empty()); 2272 return Changed; 2273 } 2274 2275 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2276 Instruction *TI = BB->getTerminator(); 2277 2278 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2279 changeToCall(II, DTU); 2280 return; 2281 } 2282 2283 Instruction *NewTI; 2284 BasicBlock *UnwindDest; 2285 2286 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2287 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2288 UnwindDest = CRI->getUnwindDest(); 2289 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2290 auto *NewCatchSwitch = CatchSwitchInst::Create( 2291 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2292 CatchSwitch->getName(), CatchSwitch); 2293 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2294 NewCatchSwitch->addHandler(PadBB); 2295 2296 NewTI = NewCatchSwitch; 2297 UnwindDest = CatchSwitch->getUnwindDest(); 2298 } else { 2299 llvm_unreachable("Could not find unwind successor"); 2300 } 2301 2302 NewTI->takeName(TI); 2303 NewTI->setDebugLoc(TI->getDebugLoc()); 2304 UnwindDest->removePredecessor(BB); 2305 TI->replaceAllUsesWith(NewTI); 2306 TI->eraseFromParent(); 2307 if (DTU) 2308 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2309 } 2310 2311 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2312 /// if they are in a dead cycle. Return true if a change was made, false 2313 /// otherwise. 2314 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2315 MemorySSAUpdater *MSSAU) { 2316 SmallPtrSet<BasicBlock *, 16> Reachable; 2317 bool Changed = markAliveBlocks(F, Reachable, DTU); 2318 2319 // If there are unreachable blocks in the CFG... 2320 if (Reachable.size() == F.size()) 2321 return Changed; 2322 2323 assert(Reachable.size() < F.size()); 2324 NumRemoved += F.size() - Reachable.size(); 2325 2326 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2327 for (BasicBlock &BB : F) { 2328 // Skip reachable basic blocks 2329 if (Reachable.count(&BB)) 2330 continue; 2331 DeadBlockSet.insert(&BB); 2332 } 2333 2334 if (MSSAU) 2335 MSSAU->removeBlocks(DeadBlockSet); 2336 2337 // Loop over all of the basic blocks that are not reachable, dropping all of 2338 // their internal references. Update DTU if available. 2339 std::vector<DominatorTree::UpdateType> Updates; 2340 for (auto *BB : DeadBlockSet) { 2341 for (BasicBlock *Successor : successors(BB)) { 2342 if (!DeadBlockSet.count(Successor)) 2343 Successor->removePredecessor(BB); 2344 if (DTU) 2345 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2346 } 2347 BB->dropAllReferences(); 2348 if (DTU) { 2349 Instruction *TI = BB->getTerminator(); 2350 assert(TI && "Basic block should have a terminator"); 2351 // Terminators like invoke can have users. We have to replace their users, 2352 // before removing them. 2353 if (!TI->use_empty()) 2354 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2355 TI->eraseFromParent(); 2356 new UnreachableInst(BB->getContext(), BB); 2357 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2358 "applying corresponding DTU updates."); 2359 } 2360 } 2361 2362 if (DTU) { 2363 DTU->applyUpdatesPermissive(Updates); 2364 bool Deleted = false; 2365 for (auto *BB : DeadBlockSet) { 2366 if (DTU->isBBPendingDeletion(BB)) 2367 --NumRemoved; 2368 else 2369 Deleted = true; 2370 DTU->deleteBB(BB); 2371 } 2372 if (!Deleted) 2373 return false; 2374 } else { 2375 for (auto *BB : DeadBlockSet) 2376 BB->eraseFromParent(); 2377 } 2378 2379 return true; 2380 } 2381 2382 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2383 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2384 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2385 K->dropUnknownNonDebugMetadata(KnownIDs); 2386 K->getAllMetadataOtherThanDebugLoc(Metadata); 2387 for (const auto &MD : Metadata) { 2388 unsigned Kind = MD.first; 2389 MDNode *JMD = J->getMetadata(Kind); 2390 MDNode *KMD = MD.second; 2391 2392 switch (Kind) { 2393 default: 2394 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2395 break; 2396 case LLVMContext::MD_dbg: 2397 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2398 case LLVMContext::MD_tbaa: 2399 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2400 break; 2401 case LLVMContext::MD_alias_scope: 2402 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2403 break; 2404 case LLVMContext::MD_noalias: 2405 case LLVMContext::MD_mem_parallel_loop_access: 2406 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2407 break; 2408 case LLVMContext::MD_access_group: 2409 K->setMetadata(LLVMContext::MD_access_group, 2410 intersectAccessGroups(K, J)); 2411 break; 2412 case LLVMContext::MD_range: 2413 2414 // If K does move, use most generic range. Otherwise keep the range of 2415 // K. 2416 if (DoesKMove) 2417 // FIXME: If K does move, we should drop the range info and nonnull. 2418 // Currently this function is used with DoesKMove in passes 2419 // doing hoisting/sinking and the current behavior of using the 2420 // most generic range is correct in those cases. 2421 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2422 break; 2423 case LLVMContext::MD_fpmath: 2424 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2425 break; 2426 case LLVMContext::MD_invariant_load: 2427 // Only set the !invariant.load if it is present in both instructions. 2428 K->setMetadata(Kind, JMD); 2429 break; 2430 case LLVMContext::MD_nonnull: 2431 // If K does move, keep nonull if it is present in both instructions. 2432 if (DoesKMove) 2433 K->setMetadata(Kind, JMD); 2434 break; 2435 case LLVMContext::MD_invariant_group: 2436 // Preserve !invariant.group in K. 2437 break; 2438 case LLVMContext::MD_align: 2439 K->setMetadata(Kind, 2440 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2441 break; 2442 case LLVMContext::MD_dereferenceable: 2443 case LLVMContext::MD_dereferenceable_or_null: 2444 K->setMetadata(Kind, 2445 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2446 break; 2447 case LLVMContext::MD_preserve_access_index: 2448 // Preserve !preserve.access.index in K. 2449 break; 2450 } 2451 } 2452 // Set !invariant.group from J if J has it. If both instructions have it 2453 // then we will just pick it from J - even when they are different. 2454 // Also make sure that K is load or store - f.e. combining bitcast with load 2455 // could produce bitcast with invariant.group metadata, which is invalid. 2456 // FIXME: we should try to preserve both invariant.group md if they are 2457 // different, but right now instruction can only have one invariant.group. 2458 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2459 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2460 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2461 } 2462 2463 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2464 bool KDominatesJ) { 2465 unsigned KnownIDs[] = { 2466 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2467 LLVMContext::MD_noalias, LLVMContext::MD_range, 2468 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2469 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2470 LLVMContext::MD_dereferenceable, 2471 LLVMContext::MD_dereferenceable_or_null, 2472 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2473 combineMetadata(K, J, KnownIDs, KDominatesJ); 2474 } 2475 2476 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2477 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2478 Source.getAllMetadata(MD); 2479 MDBuilder MDB(Dest.getContext()); 2480 Type *NewType = Dest.getType(); 2481 const DataLayout &DL = Source.getModule()->getDataLayout(); 2482 for (const auto &MDPair : MD) { 2483 unsigned ID = MDPair.first; 2484 MDNode *N = MDPair.second; 2485 // Note, essentially every kind of metadata should be preserved here! This 2486 // routine is supposed to clone a load instruction changing *only its type*. 2487 // The only metadata it makes sense to drop is metadata which is invalidated 2488 // when the pointer type changes. This should essentially never be the case 2489 // in LLVM, but we explicitly switch over only known metadata to be 2490 // conservatively correct. If you are adding metadata to LLVM which pertains 2491 // to loads, you almost certainly want to add it here. 2492 switch (ID) { 2493 case LLVMContext::MD_dbg: 2494 case LLVMContext::MD_tbaa: 2495 case LLVMContext::MD_prof: 2496 case LLVMContext::MD_fpmath: 2497 case LLVMContext::MD_tbaa_struct: 2498 case LLVMContext::MD_invariant_load: 2499 case LLVMContext::MD_alias_scope: 2500 case LLVMContext::MD_noalias: 2501 case LLVMContext::MD_nontemporal: 2502 case LLVMContext::MD_mem_parallel_loop_access: 2503 case LLVMContext::MD_access_group: 2504 // All of these directly apply. 2505 Dest.setMetadata(ID, N); 2506 break; 2507 2508 case LLVMContext::MD_nonnull: 2509 copyNonnullMetadata(Source, N, Dest); 2510 break; 2511 2512 case LLVMContext::MD_align: 2513 case LLVMContext::MD_dereferenceable: 2514 case LLVMContext::MD_dereferenceable_or_null: 2515 // These only directly apply if the new type is also a pointer. 2516 if (NewType->isPointerTy()) 2517 Dest.setMetadata(ID, N); 2518 break; 2519 2520 case LLVMContext::MD_range: 2521 copyRangeMetadata(DL, Source, N, Dest); 2522 break; 2523 } 2524 } 2525 } 2526 2527 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2528 auto *ReplInst = dyn_cast<Instruction>(Repl); 2529 if (!ReplInst) 2530 return; 2531 2532 // Patch the replacement so that it is not more restrictive than the value 2533 // being replaced. 2534 // Note that if 'I' is a load being replaced by some operation, 2535 // for example, by an arithmetic operation, then andIRFlags() 2536 // would just erase all math flags from the original arithmetic 2537 // operation, which is clearly not wanted and not needed. 2538 if (!isa<LoadInst>(I)) 2539 ReplInst->andIRFlags(I); 2540 2541 // FIXME: If both the original and replacement value are part of the 2542 // same control-flow region (meaning that the execution of one 2543 // guarantees the execution of the other), then we can combine the 2544 // noalias scopes here and do better than the general conservative 2545 // answer used in combineMetadata(). 2546 2547 // In general, GVN unifies expressions over different control-flow 2548 // regions, and so we need a conservative combination of the noalias 2549 // scopes. 2550 static const unsigned KnownIDs[] = { 2551 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2552 LLVMContext::MD_noalias, LLVMContext::MD_range, 2553 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2554 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2555 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2556 combineMetadata(ReplInst, I, KnownIDs, false); 2557 } 2558 2559 template <typename RootType, typename DominatesFn> 2560 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2561 const RootType &Root, 2562 const DominatesFn &Dominates) { 2563 assert(From->getType() == To->getType()); 2564 2565 unsigned Count = 0; 2566 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2567 UI != UE;) { 2568 Use &U = *UI++; 2569 if (!Dominates(Root, U)) 2570 continue; 2571 U.set(To); 2572 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2573 << "' as " << *To << " in " << *U << "\n"); 2574 ++Count; 2575 } 2576 return Count; 2577 } 2578 2579 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2580 assert(From->getType() == To->getType()); 2581 auto *BB = From->getParent(); 2582 unsigned Count = 0; 2583 2584 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2585 UI != UE;) { 2586 Use &U = *UI++; 2587 auto *I = cast<Instruction>(U.getUser()); 2588 if (I->getParent() == BB) 2589 continue; 2590 U.set(To); 2591 ++Count; 2592 } 2593 return Count; 2594 } 2595 2596 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2597 DominatorTree &DT, 2598 const BasicBlockEdge &Root) { 2599 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2600 return DT.dominates(Root, U); 2601 }; 2602 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2603 } 2604 2605 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2606 DominatorTree &DT, 2607 const BasicBlock *BB) { 2608 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2609 auto *I = cast<Instruction>(U.getUser())->getParent(); 2610 return DT.properlyDominates(BB, I); 2611 }; 2612 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2613 } 2614 2615 bool llvm::callsGCLeafFunction(const CallBase *Call, 2616 const TargetLibraryInfo &TLI) { 2617 // Check if the function is specifically marked as a gc leaf function. 2618 if (Call->hasFnAttr("gc-leaf-function")) 2619 return true; 2620 if (const Function *F = Call->getCalledFunction()) { 2621 if (F->hasFnAttribute("gc-leaf-function")) 2622 return true; 2623 2624 if (auto IID = F->getIntrinsicID()) 2625 // Most LLVM intrinsics do not take safepoints. 2626 return IID != Intrinsic::experimental_gc_statepoint && 2627 IID != Intrinsic::experimental_deoptimize; 2628 } 2629 2630 // Lib calls can be materialized by some passes, and won't be 2631 // marked as 'gc-leaf-function.' All available Libcalls are 2632 // GC-leaf. 2633 LibFunc LF; 2634 if (TLI.getLibFunc(*Call, LF)) { 2635 return TLI.has(LF); 2636 } 2637 2638 return false; 2639 } 2640 2641 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2642 LoadInst &NewLI) { 2643 auto *NewTy = NewLI.getType(); 2644 2645 // This only directly applies if the new type is also a pointer. 2646 if (NewTy->isPointerTy()) { 2647 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2648 return; 2649 } 2650 2651 // The only other translation we can do is to integral loads with !range 2652 // metadata. 2653 if (!NewTy->isIntegerTy()) 2654 return; 2655 2656 MDBuilder MDB(NewLI.getContext()); 2657 const Value *Ptr = OldLI.getPointerOperand(); 2658 auto *ITy = cast<IntegerType>(NewTy); 2659 auto *NullInt = ConstantExpr::getPtrToInt( 2660 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2661 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2662 NewLI.setMetadata(LLVMContext::MD_range, 2663 MDB.createRange(NonNullInt, NullInt)); 2664 } 2665 2666 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2667 MDNode *N, LoadInst &NewLI) { 2668 auto *NewTy = NewLI.getType(); 2669 2670 // Give up unless it is converted to a pointer where there is a single very 2671 // valuable mapping we can do reliably. 2672 // FIXME: It would be nice to propagate this in more ways, but the type 2673 // conversions make it hard. 2674 if (!NewTy->isPointerTy()) 2675 return; 2676 2677 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2678 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2679 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2680 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2681 } 2682 } 2683 2684 void llvm::dropDebugUsers(Instruction &I) { 2685 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2686 findDbgUsers(DbgUsers, &I); 2687 for (auto *DII : DbgUsers) 2688 DII->eraseFromParent(); 2689 } 2690 2691 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2692 BasicBlock *BB) { 2693 // Since we are moving the instructions out of its basic block, we do not 2694 // retain their original debug locations (DILocations) and debug intrinsic 2695 // instructions. 2696 // 2697 // Doing so would degrade the debugging experience and adversely affect the 2698 // accuracy of profiling information. 2699 // 2700 // Currently, when hoisting the instructions, we take the following actions: 2701 // - Remove their debug intrinsic instructions. 2702 // - Set their debug locations to the values from the insertion point. 2703 // 2704 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2705 // need to be deleted, is because there will not be any instructions with a 2706 // DILocation in either branch left after performing the transformation. We 2707 // can only insert a dbg.value after the two branches are joined again. 2708 // 2709 // See PR38762, PR39243 for more details. 2710 // 2711 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2712 // encode predicated DIExpressions that yield different results on different 2713 // code paths. 2714 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2715 Instruction *I = &*II; 2716 I->dropUnknownNonDebugMetadata(); 2717 if (I->isUsedByMetadata()) 2718 dropDebugUsers(*I); 2719 if (isa<DbgInfoIntrinsic>(I)) { 2720 // Remove DbgInfo Intrinsics. 2721 II = I->eraseFromParent(); 2722 continue; 2723 } 2724 I->setDebugLoc(InsertPt->getDebugLoc()); 2725 ++II; 2726 } 2727 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2728 BB->begin(), 2729 BB->getTerminator()->getIterator()); 2730 } 2731 2732 namespace { 2733 2734 /// A potential constituent of a bitreverse or bswap expression. See 2735 /// collectBitParts for a fuller explanation. 2736 struct BitPart { 2737 BitPart(Value *P, unsigned BW) : Provider(P) { 2738 Provenance.resize(BW); 2739 } 2740 2741 /// The Value that this is a bitreverse/bswap of. 2742 Value *Provider; 2743 2744 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2745 /// in Provider becomes bit B in the result of this expression. 2746 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2747 2748 enum { Unset = -1 }; 2749 }; 2750 2751 } // end anonymous namespace 2752 2753 /// Analyze the specified subexpression and see if it is capable of providing 2754 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2755 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2756 /// the output of the expression came from a corresponding bit in some other 2757 /// value. This function is recursive, and the end result is a mapping of 2758 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2759 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2760 /// 2761 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2762 /// that the expression deposits the low byte of %X into the high byte of the 2763 /// result and that all other bits are zero. This expression is accepted and a 2764 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2765 /// [0-7]. 2766 /// 2767 /// To avoid revisiting values, the BitPart results are memoized into the 2768 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2769 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2770 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2771 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2772 /// type instead to provide the same functionality. 2773 /// 2774 /// Because we pass around references into \c BPS, we must use a container that 2775 /// does not invalidate internal references (std::map instead of DenseMap). 2776 static const Optional<BitPart> & 2777 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2778 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2779 auto I = BPS.find(V); 2780 if (I != BPS.end()) 2781 return I->second; 2782 2783 auto &Result = BPS[V] = None; 2784 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2785 2786 // Prevent stack overflow by limiting the recursion depth 2787 if (Depth == BitPartRecursionMaxDepth) { 2788 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2789 return Result; 2790 } 2791 2792 if (Instruction *I = dyn_cast<Instruction>(V)) { 2793 // If this is an or instruction, it may be an inner node of the bswap. 2794 if (I->getOpcode() == Instruction::Or) { 2795 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2796 MatchBitReversals, BPS, Depth + 1); 2797 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2798 MatchBitReversals, BPS, Depth + 1); 2799 if (!A || !B) 2800 return Result; 2801 2802 // Try and merge the two together. 2803 if (!A->Provider || A->Provider != B->Provider) 2804 return Result; 2805 2806 Result = BitPart(A->Provider, BitWidth); 2807 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2808 if (A->Provenance[i] != BitPart::Unset && 2809 B->Provenance[i] != BitPart::Unset && 2810 A->Provenance[i] != B->Provenance[i]) 2811 return Result = None; 2812 2813 if (A->Provenance[i] == BitPart::Unset) 2814 Result->Provenance[i] = B->Provenance[i]; 2815 else 2816 Result->Provenance[i] = A->Provenance[i]; 2817 } 2818 2819 return Result; 2820 } 2821 2822 // If this is a logical shift by a constant, recurse then shift the result. 2823 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2824 unsigned BitShift = 2825 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2826 // Ensure the shift amount is defined. 2827 if (BitShift > BitWidth) 2828 return Result; 2829 2830 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2831 MatchBitReversals, BPS, Depth + 1); 2832 if (!Res) 2833 return Result; 2834 Result = Res; 2835 2836 // Perform the "shift" on BitProvenance. 2837 auto &P = Result->Provenance; 2838 if (I->getOpcode() == Instruction::Shl) { 2839 P.erase(std::prev(P.end(), BitShift), P.end()); 2840 P.insert(P.begin(), BitShift, BitPart::Unset); 2841 } else { 2842 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2843 P.insert(P.end(), BitShift, BitPart::Unset); 2844 } 2845 2846 return Result; 2847 } 2848 2849 // If this is a logical 'and' with a mask that clears bits, recurse then 2850 // unset the appropriate bits. 2851 if (I->getOpcode() == Instruction::And && 2852 isa<ConstantInt>(I->getOperand(1))) { 2853 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2854 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2855 2856 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2857 // early exit. 2858 unsigned NumMaskedBits = AndMask.countPopulation(); 2859 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2860 return Result; 2861 2862 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2863 MatchBitReversals, BPS, Depth + 1); 2864 if (!Res) 2865 return Result; 2866 Result = Res; 2867 2868 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2869 // If the AndMask is zero for this bit, clear the bit. 2870 if ((AndMask & Bit) == 0) 2871 Result->Provenance[i] = BitPart::Unset; 2872 return Result; 2873 } 2874 2875 // If this is a zext instruction zero extend the result. 2876 if (I->getOpcode() == Instruction::ZExt) { 2877 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2878 MatchBitReversals, BPS, Depth + 1); 2879 if (!Res) 2880 return Result; 2881 2882 Result = BitPart(Res->Provider, BitWidth); 2883 auto NarrowBitWidth = 2884 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2885 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2886 Result->Provenance[i] = Res->Provenance[i]; 2887 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2888 Result->Provenance[i] = BitPart::Unset; 2889 return Result; 2890 } 2891 } 2892 2893 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2894 // the input value to the bswap/bitreverse. 2895 Result = BitPart(V, BitWidth); 2896 for (unsigned i = 0; i < BitWidth; ++i) 2897 Result->Provenance[i] = i; 2898 return Result; 2899 } 2900 2901 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2902 unsigned BitWidth) { 2903 if (From % 8 != To % 8) 2904 return false; 2905 // Convert from bit indices to byte indices and check for a byte reversal. 2906 From >>= 3; 2907 To >>= 3; 2908 BitWidth >>= 3; 2909 return From == BitWidth - To - 1; 2910 } 2911 2912 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2913 unsigned BitWidth) { 2914 return From == BitWidth - To - 1; 2915 } 2916 2917 bool llvm::recognizeBSwapOrBitReverseIdiom( 2918 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2919 SmallVectorImpl<Instruction *> &InsertedInsts) { 2920 if (Operator::getOpcode(I) != Instruction::Or) 2921 return false; 2922 if (!MatchBSwaps && !MatchBitReversals) 2923 return false; 2924 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2925 if (!ITy || ITy->getBitWidth() > 128) 2926 return false; // Can't do vectors or integers > 128 bits. 2927 unsigned BW = ITy->getBitWidth(); 2928 2929 unsigned DemandedBW = BW; 2930 IntegerType *DemandedTy = ITy; 2931 if (I->hasOneUse()) { 2932 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2933 DemandedTy = cast<IntegerType>(Trunc->getType()); 2934 DemandedBW = DemandedTy->getBitWidth(); 2935 } 2936 } 2937 2938 // Try to find all the pieces corresponding to the bswap. 2939 std::map<Value *, Optional<BitPart>> BPS; 2940 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2941 if (!Res) 2942 return false; 2943 auto &BitProvenance = Res->Provenance; 2944 2945 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2946 // only byteswap values with an even number of bytes. 2947 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2948 for (unsigned i = 0; i < DemandedBW; ++i) { 2949 OKForBSwap &= 2950 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2951 OKForBitReverse &= 2952 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2953 } 2954 2955 Intrinsic::ID Intrin; 2956 if (OKForBSwap && MatchBSwaps) 2957 Intrin = Intrinsic::bswap; 2958 else if (OKForBitReverse && MatchBitReversals) 2959 Intrin = Intrinsic::bitreverse; 2960 else 2961 return false; 2962 2963 if (ITy != DemandedTy) { 2964 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2965 Value *Provider = Res->Provider; 2966 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2967 // We may need to truncate the provider. 2968 if (DemandedTy != ProviderTy) { 2969 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2970 "trunc", I); 2971 InsertedInsts.push_back(Trunc); 2972 Provider = Trunc; 2973 } 2974 auto *CI = CallInst::Create(F, Provider, "rev", I); 2975 InsertedInsts.push_back(CI); 2976 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2977 InsertedInsts.push_back(ExtInst); 2978 return true; 2979 } 2980 2981 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2982 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2983 return true; 2984 } 2985 2986 // CodeGen has special handling for some string functions that may replace 2987 // them with target-specific intrinsics. Since that'd skip our interceptors 2988 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2989 // we mark affected calls as NoBuiltin, which will disable optimization 2990 // in CodeGen. 2991 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2992 CallInst *CI, const TargetLibraryInfo *TLI) { 2993 Function *F = CI->getCalledFunction(); 2994 LibFunc Func; 2995 if (F && !F->hasLocalLinkage() && F->hasName() && 2996 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2997 !F->doesNotAccessMemory()) 2998 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2999 } 3000 3001 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3002 // We can't have a PHI with a metadata type. 3003 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3004 return false; 3005 3006 // Early exit. 3007 if (!isa<Constant>(I->getOperand(OpIdx))) 3008 return true; 3009 3010 switch (I->getOpcode()) { 3011 default: 3012 return true; 3013 case Instruction::Call: 3014 case Instruction::Invoke: { 3015 const auto &CB = cast<CallBase>(*I); 3016 3017 // Can't handle inline asm. Skip it. 3018 if (CB.isInlineAsm()) 3019 return false; 3020 3021 // Constant bundle operands may need to retain their constant-ness for 3022 // correctness. 3023 if (CB.isBundleOperand(OpIdx)) 3024 return false; 3025 3026 if (OpIdx < CB.getNumArgOperands()) { 3027 // Some variadic intrinsics require constants in the variadic arguments, 3028 // which currently aren't markable as immarg. 3029 if (isa<IntrinsicInst>(CB) && 3030 OpIdx >= CB.getFunctionType()->getNumParams()) { 3031 // This is known to be OK for stackmap. 3032 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3033 } 3034 3035 // gcroot is a special case, since it requires a constant argument which 3036 // isn't also required to be a simple ConstantInt. 3037 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3038 return false; 3039 3040 // Some intrinsic operands are required to be immediates. 3041 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3042 } 3043 3044 // It is never allowed to replace the call argument to an intrinsic, but it 3045 // may be possible for a call. 3046 return !isa<IntrinsicInst>(CB); 3047 } 3048 case Instruction::ShuffleVector: 3049 // Shufflevector masks are constant. 3050 return OpIdx != 2; 3051 case Instruction::Switch: 3052 case Instruction::ExtractValue: 3053 // All operands apart from the first are constant. 3054 return OpIdx == 0; 3055 case Instruction::InsertValue: 3056 // All operands apart from the first and the second are constant. 3057 return OpIdx < 2; 3058 case Instruction::Alloca: 3059 // Static allocas (constant size in the entry block) are handled by 3060 // prologue/epilogue insertion so they're free anyway. We definitely don't 3061 // want to make them non-constant. 3062 return !cast<AllocaInst>(I)->isStaticAlloca(); 3063 case Instruction::GetElementPtr: 3064 if (OpIdx == 0) 3065 return true; 3066 gep_type_iterator It = gep_type_begin(I); 3067 for (auto E = std::next(It, OpIdx); It != E; ++It) 3068 if (It.isStruct()) 3069 return false; 3070 return true; 3071 } 3072 } 3073 3074 Value *llvm::invertCondition(Value *Condition) { 3075 // First: Check if it's a constant 3076 if (Constant *C = dyn_cast<Constant>(Condition)) 3077 return ConstantExpr::getNot(C); 3078 3079 // Second: If the condition is already inverted, return the original value 3080 Value *NotCondition; 3081 if (match(Condition, m_Not(m_Value(NotCondition)))) 3082 return NotCondition; 3083 3084 BasicBlock *Parent = nullptr; 3085 Instruction *Inst = dyn_cast<Instruction>(Condition); 3086 if (Inst) 3087 Parent = Inst->getParent(); 3088 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3089 Parent = &Arg->getParent()->getEntryBlock(); 3090 assert(Parent && "Unsupported condition to invert"); 3091 3092 // Third: Check all the users for an invert 3093 for (User *U : Condition->users()) 3094 if (Instruction *I = dyn_cast<Instruction>(U)) 3095 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3096 return I; 3097 3098 // Last option: Create a new instruction 3099 auto *Inverted = 3100 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3101 if (Inst && !isa<PHINode>(Inst)) 3102 Inverted->insertAfter(Inst); 3103 else 3104 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3105 return Inverted; 3106 } 3107