1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->getValue()) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (auto *CB = dyn_cast<CallBase>(I)) { 424 // Treat calls that may not return as alive. 425 // TODO: Remove the intrinsic escape hatch once all intrinsics set 426 // willreturn properly. 427 if (!CB->willReturn() && !isa<IntrinsicInst>(I)) 428 return false; 429 } 430 431 if (!I->mayHaveSideEffects()) 432 return true; 433 434 // Special case intrinsics that "may have side effects" but can be deleted 435 // when dead. 436 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 437 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 438 if (II->getIntrinsicID() == Intrinsic::stacksave || 439 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 440 return true; 441 442 if (II->isLifetimeStartOrEnd()) { 443 auto *Arg = II->getArgOperand(1); 444 // Lifetime intrinsics are dead when their right-hand is undef. 445 if (isa<UndefValue>(Arg)) 446 return true; 447 // If the right-hand is an alloc, global, or argument and the only uses 448 // are lifetime intrinsics then the intrinsics are dead. 449 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 450 return llvm::all_of(Arg->uses(), [](Use &Use) { 451 if (IntrinsicInst *IntrinsicUse = 452 dyn_cast<IntrinsicInst>(Use.getUser())) 453 return IntrinsicUse->isLifetimeStartOrEnd(); 454 return false; 455 }); 456 return false; 457 } 458 459 // Assumptions are dead if their condition is trivially true. Guards on 460 // true are operationally no-ops. In the future we can consider more 461 // sophisticated tradeoffs for guards considering potential for check 462 // widening, but for now we keep things simple. 463 if ((II->getIntrinsicID() == Intrinsic::assume && 464 isAssumeWithEmptyBundle(*II)) || 465 II->getIntrinsicID() == Intrinsic::experimental_guard) { 466 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 467 return !Cond->isZero(); 468 469 return false; 470 } 471 } 472 473 if (isAllocLikeFn(I, TLI)) 474 return true; 475 476 if (CallInst *CI = isFreeCall(I, TLI)) 477 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 478 return C->isNullValue() || isa<UndefValue>(C); 479 480 if (auto *Call = dyn_cast<CallBase>(I)) 481 if (isMathLibCallNoop(Call, TLI)) 482 return true; 483 484 return false; 485 } 486 487 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 488 /// trivially dead instruction, delete it. If that makes any of its operands 489 /// trivially dead, delete them too, recursively. Return true if any 490 /// instructions were deleted. 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 492 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 493 std::function<void(Value *)> AboutToDeleteCallback) { 494 Instruction *I = dyn_cast<Instruction>(V); 495 if (!I || !isInstructionTriviallyDead(I, TLI)) 496 return false; 497 498 SmallVector<WeakTrackingVH, 16> DeadInsts; 499 DeadInsts.push_back(I); 500 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 501 AboutToDeleteCallback); 502 503 return true; 504 } 505 506 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 507 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 508 MemorySSAUpdater *MSSAU, 509 std::function<void(Value *)> AboutToDeleteCallback) { 510 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 511 for (; S != E; ++S) { 512 auto *I = cast<Instruction>(DeadInsts[S]); 513 if (!isInstructionTriviallyDead(I)) { 514 DeadInsts[S] = nullptr; 515 ++Alive; 516 } 517 } 518 if (Alive == E) 519 return false; 520 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 521 AboutToDeleteCallback); 522 return true; 523 } 524 525 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 526 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 527 MemorySSAUpdater *MSSAU, 528 std::function<void(Value *)> AboutToDeleteCallback) { 529 // Process the dead instruction list until empty. 530 while (!DeadInsts.empty()) { 531 Value *V = DeadInsts.pop_back_val(); 532 Instruction *I = cast_or_null<Instruction>(V); 533 if (!I) 534 continue; 535 assert(isInstructionTriviallyDead(I, TLI) && 536 "Live instruction found in dead worklist!"); 537 assert(I->use_empty() && "Instructions with uses are not dead."); 538 539 // Don't lose the debug info while deleting the instructions. 540 salvageDebugInfo(*I); 541 542 if (AboutToDeleteCallback) 543 AboutToDeleteCallback(I); 544 545 // Null out all of the instruction's operands to see if any operand becomes 546 // dead as we go. 547 for (Use &OpU : I->operands()) { 548 Value *OpV = OpU.get(); 549 OpU.set(nullptr); 550 551 if (!OpV->use_empty()) 552 continue; 553 554 // If the operand is an instruction that became dead as we nulled out the 555 // operand, and if it is 'trivially' dead, delete it in a future loop 556 // iteration. 557 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 558 if (isInstructionTriviallyDead(OpI, TLI)) 559 DeadInsts.push_back(OpI); 560 } 561 if (MSSAU) 562 MSSAU->removeMemoryAccess(I); 563 564 I->eraseFromParent(); 565 } 566 } 567 568 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 569 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 570 findDbgUsers(DbgUsers, I); 571 for (auto *DII : DbgUsers) { 572 Value *Undef = UndefValue::get(I->getType()); 573 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 574 ValueAsMetadata::get(Undef))); 575 } 576 return !DbgUsers.empty(); 577 } 578 579 /// areAllUsesEqual - Check whether the uses of a value are all the same. 580 /// This is similar to Instruction::hasOneUse() except this will also return 581 /// true when there are no uses or multiple uses that all refer to the same 582 /// value. 583 static bool areAllUsesEqual(Instruction *I) { 584 Value::user_iterator UI = I->user_begin(); 585 Value::user_iterator UE = I->user_end(); 586 if (UI == UE) 587 return true; 588 589 User *TheUse = *UI; 590 for (++UI; UI != UE; ++UI) { 591 if (*UI != TheUse) 592 return false; 593 } 594 return true; 595 } 596 597 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 598 /// dead PHI node, due to being a def-use chain of single-use nodes that 599 /// either forms a cycle or is terminated by a trivially dead instruction, 600 /// delete it. If that makes any of its operands trivially dead, delete them 601 /// too, recursively. Return true if a change was made. 602 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 603 const TargetLibraryInfo *TLI, 604 llvm::MemorySSAUpdater *MSSAU) { 605 SmallPtrSet<Instruction*, 4> Visited; 606 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 607 I = cast<Instruction>(*I->user_begin())) { 608 if (I->use_empty()) 609 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 610 611 // If we find an instruction more than once, we're on a cycle that 612 // won't prove fruitful. 613 if (!Visited.insert(I).second) { 614 // Break the cycle and delete the instruction and its operands. 615 I->replaceAllUsesWith(UndefValue::get(I->getType())); 616 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 617 return true; 618 } 619 } 620 return false; 621 } 622 623 static bool 624 simplifyAndDCEInstruction(Instruction *I, 625 SmallSetVector<Instruction *, 16> &WorkList, 626 const DataLayout &DL, 627 const TargetLibraryInfo *TLI) { 628 if (isInstructionTriviallyDead(I, TLI)) { 629 salvageDebugInfo(*I); 630 631 // Null out all of the instruction's operands to see if any operand becomes 632 // dead as we go. 633 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 634 Value *OpV = I->getOperand(i); 635 I->setOperand(i, nullptr); 636 637 if (!OpV->use_empty() || I == OpV) 638 continue; 639 640 // If the operand is an instruction that became dead as we nulled out the 641 // operand, and if it is 'trivially' dead, delete it in a future loop 642 // iteration. 643 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 644 if (isInstructionTriviallyDead(OpI, TLI)) 645 WorkList.insert(OpI); 646 } 647 648 I->eraseFromParent(); 649 650 return true; 651 } 652 653 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 654 // Add the users to the worklist. CAREFUL: an instruction can use itself, 655 // in the case of a phi node. 656 for (User *U : I->users()) { 657 if (U != I) { 658 WorkList.insert(cast<Instruction>(U)); 659 } 660 } 661 662 // Replace the instruction with its simplified value. 663 bool Changed = false; 664 if (!I->use_empty()) { 665 I->replaceAllUsesWith(SimpleV); 666 Changed = true; 667 } 668 if (isInstructionTriviallyDead(I, TLI)) { 669 I->eraseFromParent(); 670 Changed = true; 671 } 672 return Changed; 673 } 674 return false; 675 } 676 677 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 678 /// simplify any instructions in it and recursively delete dead instructions. 679 /// 680 /// This returns true if it changed the code, note that it can delete 681 /// instructions in other blocks as well in this block. 682 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 683 const TargetLibraryInfo *TLI) { 684 bool MadeChange = false; 685 const DataLayout &DL = BB->getModule()->getDataLayout(); 686 687 #ifndef NDEBUG 688 // In debug builds, ensure that the terminator of the block is never replaced 689 // or deleted by these simplifications. The idea of simplification is that it 690 // cannot introduce new instructions, and there is no way to replace the 691 // terminator of a block without introducing a new instruction. 692 AssertingVH<Instruction> TerminatorVH(&BB->back()); 693 #endif 694 695 SmallSetVector<Instruction *, 16> WorkList; 696 // Iterate over the original function, only adding insts to the worklist 697 // if they actually need to be revisited. This avoids having to pre-init 698 // the worklist with the entire function's worth of instructions. 699 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 700 BI != E;) { 701 assert(!BI->isTerminator()); 702 Instruction *I = &*BI; 703 ++BI; 704 705 // We're visiting this instruction now, so make sure it's not in the 706 // worklist from an earlier visit. 707 if (!WorkList.count(I)) 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 711 while (!WorkList.empty()) { 712 Instruction *I = WorkList.pop_back_val(); 713 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 714 } 715 return MadeChange; 716 } 717 718 //===----------------------------------------------------------------------===// 719 // Control Flow Graph Restructuring. 720 // 721 722 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 723 DomTreeUpdater *DTU) { 724 725 // If BB has single-entry PHI nodes, fold them. 726 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 727 Value *NewVal = PN->getIncomingValue(0); 728 // Replace self referencing PHI with undef, it must be dead. 729 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 730 PN->replaceAllUsesWith(NewVal); 731 PN->eraseFromParent(); 732 } 733 734 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 735 assert(PredBB && "Block doesn't have a single predecessor!"); 736 737 bool ReplaceEntryBB = false; 738 if (PredBB == &DestBB->getParent()->getEntryBlock()) 739 ReplaceEntryBB = true; 740 741 // DTU updates: Collect all the edges that enter 742 // PredBB. These dominator edges will be redirected to DestBB. 743 SmallVector<DominatorTree::UpdateType, 32> Updates; 744 745 if (DTU) { 746 for (BasicBlock *PredPredBB : predecessors(PredBB)) { 747 // This predecessor of PredBB may already have DestBB as a successor. 748 if (!llvm::is_contained(successors(PredPredBB), DestBB)) 749 Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB}); 750 Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB}); 751 } 752 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 753 } 754 755 // Zap anything that took the address of DestBB. Not doing this will give the 756 // address an invalid value. 757 if (DestBB->hasAddressTaken()) { 758 BlockAddress *BA = BlockAddress::get(DestBB); 759 Constant *Replacement = 760 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 761 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 762 BA->getType())); 763 BA->destroyConstant(); 764 } 765 766 // Anything that branched to PredBB now branches to DestBB. 767 PredBB->replaceAllUsesWith(DestBB); 768 769 // Splice all the instructions from PredBB to DestBB. 770 PredBB->getTerminator()->eraseFromParent(); 771 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 772 new UnreachableInst(PredBB->getContext(), PredBB); 773 774 // If the PredBB is the entry block of the function, move DestBB up to 775 // become the entry block after we erase PredBB. 776 if (ReplaceEntryBB) 777 DestBB->moveAfter(PredBB); 778 779 if (DTU) { 780 assert(PredBB->getInstList().size() == 1 && 781 isa<UnreachableInst>(PredBB->getTerminator()) && 782 "The successor list of PredBB isn't empty before " 783 "applying corresponding DTU updates."); 784 DTU->applyUpdatesPermissive(Updates); 785 DTU->deleteBB(PredBB); 786 // Recalculation of DomTree is needed when updating a forward DomTree and 787 // the Entry BB is replaced. 788 if (ReplaceEntryBB && DTU->hasDomTree()) { 789 // The entry block was removed and there is no external interface for 790 // the dominator tree to be notified of this change. In this corner-case 791 // we recalculate the entire tree. 792 DTU->recalculate(*(DestBB->getParent())); 793 } 794 } 795 796 else { 797 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 798 } 799 } 800 801 /// Return true if we can choose one of these values to use in place of the 802 /// other. Note that we will always choose the non-undef value to keep. 803 static bool CanMergeValues(Value *First, Value *Second) { 804 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 805 } 806 807 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 808 /// branch to Succ, into Succ. 809 /// 810 /// Assumption: Succ is the single successor for BB. 811 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 812 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 813 814 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 815 << Succ->getName() << "\n"); 816 // Shortcut, if there is only a single predecessor it must be BB and merging 817 // is always safe 818 if (Succ->getSinglePredecessor()) return true; 819 820 // Make a list of the predecessors of BB 821 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 822 823 // Look at all the phi nodes in Succ, to see if they present a conflict when 824 // merging these blocks 825 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 826 PHINode *PN = cast<PHINode>(I); 827 828 // If the incoming value from BB is again a PHINode in 829 // BB which has the same incoming value for *PI as PN does, we can 830 // merge the phi nodes and then the blocks can still be merged 831 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 832 if (BBPN && BBPN->getParent() == BB) { 833 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 834 BasicBlock *IBB = PN->getIncomingBlock(PI); 835 if (BBPreds.count(IBB) && 836 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 837 PN->getIncomingValue(PI))) { 838 LLVM_DEBUG(dbgs() 839 << "Can't fold, phi node " << PN->getName() << " in " 840 << Succ->getName() << " is conflicting with " 841 << BBPN->getName() << " with regard to common predecessor " 842 << IBB->getName() << "\n"); 843 return false; 844 } 845 } 846 } else { 847 Value* Val = PN->getIncomingValueForBlock(BB); 848 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 849 // See if the incoming value for the common predecessor is equal to the 850 // one for BB, in which case this phi node will not prevent the merging 851 // of the block. 852 BasicBlock *IBB = PN->getIncomingBlock(PI); 853 if (BBPreds.count(IBB) && 854 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 855 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 856 << " in " << Succ->getName() 857 << " is conflicting with regard to common " 858 << "predecessor " << IBB->getName() << "\n"); 859 return false; 860 } 861 } 862 } 863 } 864 865 return true; 866 } 867 868 using PredBlockVector = SmallVector<BasicBlock *, 16>; 869 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 870 871 /// Determines the value to use as the phi node input for a block. 872 /// 873 /// Select between \p OldVal any value that we know flows from \p BB 874 /// to a particular phi on the basis of which one (if either) is not 875 /// undef. Update IncomingValues based on the selected value. 876 /// 877 /// \param OldVal The value we are considering selecting. 878 /// \param BB The block that the value flows in from. 879 /// \param IncomingValues A map from block-to-value for other phi inputs 880 /// that we have examined. 881 /// 882 /// \returns the selected value. 883 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 884 IncomingValueMap &IncomingValues) { 885 if (!isa<UndefValue>(OldVal)) { 886 assert((!IncomingValues.count(BB) || 887 IncomingValues.find(BB)->second == OldVal) && 888 "Expected OldVal to match incoming value from BB!"); 889 890 IncomingValues.insert(std::make_pair(BB, OldVal)); 891 return OldVal; 892 } 893 894 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 895 if (It != IncomingValues.end()) return It->second; 896 897 return OldVal; 898 } 899 900 /// Create a map from block to value for the operands of a 901 /// given phi. 902 /// 903 /// Create a map from block to value for each non-undef value flowing 904 /// into \p PN. 905 /// 906 /// \param PN The phi we are collecting the map for. 907 /// \param IncomingValues [out] The map from block to value for this phi. 908 static void gatherIncomingValuesToPhi(PHINode *PN, 909 IncomingValueMap &IncomingValues) { 910 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 911 BasicBlock *BB = PN->getIncomingBlock(i); 912 Value *V = PN->getIncomingValue(i); 913 914 if (!isa<UndefValue>(V)) 915 IncomingValues.insert(std::make_pair(BB, V)); 916 } 917 } 918 919 /// Replace the incoming undef values to a phi with the values 920 /// from a block-to-value map. 921 /// 922 /// \param PN The phi we are replacing the undefs in. 923 /// \param IncomingValues A map from block to value. 924 static void replaceUndefValuesInPhi(PHINode *PN, 925 const IncomingValueMap &IncomingValues) { 926 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 927 Value *V = PN->getIncomingValue(i); 928 929 if (!isa<UndefValue>(V)) continue; 930 931 BasicBlock *BB = PN->getIncomingBlock(i); 932 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 933 if (It == IncomingValues.end()) continue; 934 935 PN->setIncomingValue(i, It->second); 936 } 937 } 938 939 /// Replace a value flowing from a block to a phi with 940 /// potentially multiple instances of that value flowing from the 941 /// block's predecessors to the phi. 942 /// 943 /// \param BB The block with the value flowing into the phi. 944 /// \param BBPreds The predecessors of BB. 945 /// \param PN The phi that we are updating. 946 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 947 const PredBlockVector &BBPreds, 948 PHINode *PN) { 949 Value *OldVal = PN->removeIncomingValue(BB, false); 950 assert(OldVal && "No entry in PHI for Pred BB!"); 951 952 IncomingValueMap IncomingValues; 953 954 // We are merging two blocks - BB, and the block containing PN - and 955 // as a result we need to redirect edges from the predecessors of BB 956 // to go to the block containing PN, and update PN 957 // accordingly. Since we allow merging blocks in the case where the 958 // predecessor and successor blocks both share some predecessors, 959 // and where some of those common predecessors might have undef 960 // values flowing into PN, we want to rewrite those values to be 961 // consistent with the non-undef values. 962 963 gatherIncomingValuesToPhi(PN, IncomingValues); 964 965 // If this incoming value is one of the PHI nodes in BB, the new entries 966 // in the PHI node are the entries from the old PHI. 967 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 968 PHINode *OldValPN = cast<PHINode>(OldVal); 969 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 970 // Note that, since we are merging phi nodes and BB and Succ might 971 // have common predecessors, we could end up with a phi node with 972 // identical incoming branches. This will be cleaned up later (and 973 // will trigger asserts if we try to clean it up now, without also 974 // simplifying the corresponding conditional branch). 975 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 976 Value *PredVal = OldValPN->getIncomingValue(i); 977 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 978 IncomingValues); 979 980 // And add a new incoming value for this predecessor for the 981 // newly retargeted branch. 982 PN->addIncoming(Selected, PredBB); 983 } 984 } else { 985 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 986 // Update existing incoming values in PN for this 987 // predecessor of BB. 988 BasicBlock *PredBB = BBPreds[i]; 989 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 990 IncomingValues); 991 992 // And add a new incoming value for this predecessor for the 993 // newly retargeted branch. 994 PN->addIncoming(Selected, PredBB); 995 } 996 } 997 998 replaceUndefValuesInPhi(PN, IncomingValues); 999 } 1000 1001 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1002 DomTreeUpdater *DTU) { 1003 assert(BB != &BB->getParent()->getEntryBlock() && 1004 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1005 1006 // We can't eliminate infinite loops. 1007 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1008 if (BB == Succ) return false; 1009 1010 // Check to see if merging these blocks would cause conflicts for any of the 1011 // phi nodes in BB or Succ. If not, we can safely merge. 1012 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1013 1014 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1015 // has uses which will not disappear when the PHI nodes are merged. It is 1016 // possible to handle such cases, but difficult: it requires checking whether 1017 // BB dominates Succ, which is non-trivial to calculate in the case where 1018 // Succ has multiple predecessors. Also, it requires checking whether 1019 // constructing the necessary self-referential PHI node doesn't introduce any 1020 // conflicts; this isn't too difficult, but the previous code for doing this 1021 // was incorrect. 1022 // 1023 // Note that if this check finds a live use, BB dominates Succ, so BB is 1024 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1025 // folding the branch isn't profitable in that case anyway. 1026 if (!Succ->getSinglePredecessor()) { 1027 BasicBlock::iterator BBI = BB->begin(); 1028 while (isa<PHINode>(*BBI)) { 1029 for (Use &U : BBI->uses()) { 1030 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1031 if (PN->getIncomingBlock(U) != BB) 1032 return false; 1033 } else { 1034 return false; 1035 } 1036 } 1037 ++BBI; 1038 } 1039 } 1040 1041 // We cannot fold the block if it's a branch to an already present callbr 1042 // successor because that creates duplicate successors. 1043 for (BasicBlock *PredBB : predecessors(BB)) { 1044 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1045 if (Succ == CBI->getDefaultDest()) 1046 return false; 1047 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1048 if (Succ == CBI->getIndirectDest(i)) 1049 return false; 1050 } 1051 } 1052 1053 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1054 1055 SmallVector<DominatorTree::UpdateType, 32> Updates; 1056 if (DTU) { 1057 // All predecessors of BB will be moved to Succ. 1058 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1059 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1060 for (auto *Predecessor : Predecessors) { 1061 // This predecessor of BB may already have Succ as a successor. 1062 if (!llvm::is_contained(successors(Predecessor), Succ)) 1063 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1064 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1065 } 1066 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1067 } 1068 1069 if (isa<PHINode>(Succ->begin())) { 1070 // If there is more than one pred of succ, and there are PHI nodes in 1071 // the successor, then we need to add incoming edges for the PHI nodes 1072 // 1073 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1074 1075 // Loop over all of the PHI nodes in the successor of BB. 1076 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1077 PHINode *PN = cast<PHINode>(I); 1078 1079 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1080 } 1081 } 1082 1083 if (Succ->getSinglePredecessor()) { 1084 // BB is the only predecessor of Succ, so Succ will end up with exactly 1085 // the same predecessors BB had. 1086 1087 // Copy over any phi, debug or lifetime instruction. 1088 BB->getTerminator()->eraseFromParent(); 1089 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1090 BB->getInstList()); 1091 } else { 1092 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1093 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1094 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1095 PN->eraseFromParent(); 1096 } 1097 } 1098 1099 // If the unconditional branch we replaced contains llvm.loop metadata, we 1100 // add the metadata to the branch instructions in the predecessors. 1101 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1102 Instruction *TI = BB->getTerminator(); 1103 if (TI) 1104 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1105 for (BasicBlock *Pred : predecessors(BB)) 1106 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1107 1108 // Everything that jumped to BB now goes to Succ. 1109 BB->replaceAllUsesWith(Succ); 1110 if (!Succ->hasName()) Succ->takeName(BB); 1111 1112 // Clear the successor list of BB to match updates applying to DTU later. 1113 if (BB->getTerminator()) 1114 BB->getInstList().pop_back(); 1115 new UnreachableInst(BB->getContext(), BB); 1116 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1117 "applying corresponding DTU updates."); 1118 1119 if (DTU) { 1120 DTU->applyUpdates(Updates); 1121 DTU->deleteBB(BB); 1122 } else { 1123 BB->eraseFromParent(); // Delete the old basic block. 1124 } 1125 return true; 1126 } 1127 1128 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1129 // This implementation doesn't currently consider undef operands 1130 // specially. Theoretically, two phis which are identical except for 1131 // one having an undef where the other doesn't could be collapsed. 1132 1133 bool Changed = false; 1134 1135 // Examine each PHI. 1136 // Note that increment of I must *NOT* be in the iteration_expression, since 1137 // we don't want to immediately advance when we restart from the beginning. 1138 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1139 ++I; 1140 // Is there an identical PHI node in this basic block? 1141 // Note that we only look in the upper square's triangle, 1142 // we already checked that the lower triangle PHI's aren't identical. 1143 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1144 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1145 continue; 1146 // A duplicate. Replace this PHI with the base PHI. 1147 ++NumPHICSEs; 1148 DuplicatePN->replaceAllUsesWith(PN); 1149 DuplicatePN->eraseFromParent(); 1150 Changed = true; 1151 1152 // The RAUW can change PHIs that we already visited. 1153 I = BB->begin(); 1154 break; // Start over from the beginning. 1155 } 1156 } 1157 return Changed; 1158 } 1159 1160 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1161 // This implementation doesn't currently consider undef operands 1162 // specially. Theoretically, two phis which are identical except for 1163 // one having an undef where the other doesn't could be collapsed. 1164 1165 struct PHIDenseMapInfo { 1166 static PHINode *getEmptyKey() { 1167 return DenseMapInfo<PHINode *>::getEmptyKey(); 1168 } 1169 1170 static PHINode *getTombstoneKey() { 1171 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1172 } 1173 1174 static bool isSentinel(PHINode *PN) { 1175 return PN == getEmptyKey() || PN == getTombstoneKey(); 1176 } 1177 1178 // WARNING: this logic must be kept in sync with 1179 // Instruction::isIdenticalToWhenDefined()! 1180 static unsigned getHashValueImpl(PHINode *PN) { 1181 // Compute a hash value on the operands. Instcombine will likely have 1182 // sorted them, which helps expose duplicates, but we have to check all 1183 // the operands to be safe in case instcombine hasn't run. 1184 return static_cast<unsigned>(hash_combine( 1185 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1186 hash_combine_range(PN->block_begin(), PN->block_end()))); 1187 } 1188 1189 static unsigned getHashValue(PHINode *PN) { 1190 #ifndef NDEBUG 1191 // If -phicse-debug-hash was specified, return a constant -- this 1192 // will force all hashing to collide, so we'll exhaustively search 1193 // the table for a match, and the assertion in isEqual will fire if 1194 // there's a bug causing equal keys to hash differently. 1195 if (PHICSEDebugHash) 1196 return 0; 1197 #endif 1198 return getHashValueImpl(PN); 1199 } 1200 1201 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1202 if (isSentinel(LHS) || isSentinel(RHS)) 1203 return LHS == RHS; 1204 return LHS->isIdenticalTo(RHS); 1205 } 1206 1207 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1208 // These comparisons are nontrivial, so assert that equality implies 1209 // hash equality (DenseMap demands this as an invariant). 1210 bool Result = isEqualImpl(LHS, RHS); 1211 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1212 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1213 return Result; 1214 } 1215 }; 1216 1217 // Set of unique PHINodes. 1218 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1219 PHISet.reserve(4 * PHICSENumPHISmallSize); 1220 1221 // Examine each PHI. 1222 bool Changed = false; 1223 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1224 auto Inserted = PHISet.insert(PN); 1225 if (!Inserted.second) { 1226 // A duplicate. Replace this PHI with its duplicate. 1227 ++NumPHICSEs; 1228 PN->replaceAllUsesWith(*Inserted.first); 1229 PN->eraseFromParent(); 1230 Changed = true; 1231 1232 // The RAUW can change PHIs that we already visited. Start over from the 1233 // beginning. 1234 PHISet.clear(); 1235 I = BB->begin(); 1236 } 1237 } 1238 1239 return Changed; 1240 } 1241 1242 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1243 if ( 1244 #ifndef NDEBUG 1245 !PHICSEDebugHash && 1246 #endif 1247 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1248 return EliminateDuplicatePHINodesNaiveImpl(BB); 1249 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1250 } 1251 1252 /// If the specified pointer points to an object that we control, try to modify 1253 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1254 /// the value after the operation, which may be lower than PrefAlign. 1255 /// 1256 /// Increating value alignment isn't often possible though. If alignment is 1257 /// important, a more reliable approach is to simply align all global variables 1258 /// and allocation instructions to their preferred alignment from the beginning. 1259 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1260 const DataLayout &DL) { 1261 V = V->stripPointerCasts(); 1262 1263 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1264 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1265 // than the current alignment, as the known bits calculation should have 1266 // already taken it into account. However, this is not always the case, 1267 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1268 // doesn't. 1269 Align CurrentAlign = AI->getAlign(); 1270 if (PrefAlign <= CurrentAlign) 1271 return CurrentAlign; 1272 1273 // If the preferred alignment is greater than the natural stack alignment 1274 // then don't round up. This avoids dynamic stack realignment. 1275 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1276 return CurrentAlign; 1277 AI->setAlignment(PrefAlign); 1278 return PrefAlign; 1279 } 1280 1281 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1282 // TODO: as above, this shouldn't be necessary. 1283 Align CurrentAlign = GO->getPointerAlignment(DL); 1284 if (PrefAlign <= CurrentAlign) 1285 return CurrentAlign; 1286 1287 // If there is a large requested alignment and we can, bump up the alignment 1288 // of the global. If the memory we set aside for the global may not be the 1289 // memory used by the final program then it is impossible for us to reliably 1290 // enforce the preferred alignment. 1291 if (!GO->canIncreaseAlignment()) 1292 return CurrentAlign; 1293 1294 GO->setAlignment(PrefAlign); 1295 return PrefAlign; 1296 } 1297 1298 return Align(1); 1299 } 1300 1301 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1302 const DataLayout &DL, 1303 const Instruction *CxtI, 1304 AssumptionCache *AC, 1305 const DominatorTree *DT) { 1306 assert(V->getType()->isPointerTy() && 1307 "getOrEnforceKnownAlignment expects a pointer!"); 1308 1309 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1310 unsigned TrailZ = Known.countMinTrailingZeros(); 1311 1312 // Avoid trouble with ridiculously large TrailZ values, such as 1313 // those computed from a null pointer. 1314 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1315 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1316 1317 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1318 1319 if (PrefAlign && *PrefAlign > Alignment) 1320 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1321 1322 // We don't need to make any adjustment. 1323 return Alignment; 1324 } 1325 1326 ///===---------------------------------------------------------------------===// 1327 /// Dbg Intrinsic utilities 1328 /// 1329 1330 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1331 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1332 DIExpression *DIExpr, 1333 PHINode *APN) { 1334 // Since we can't guarantee that the original dbg.declare instrinsic 1335 // is removed by LowerDbgDeclare(), we need to make sure that we are 1336 // not inserting the same dbg.value intrinsic over and over. 1337 SmallVector<DbgValueInst *, 1> DbgValues; 1338 findDbgValues(DbgValues, APN); 1339 for (auto *DVI : DbgValues) { 1340 assert(DVI->getValue() == APN); 1341 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1342 return true; 1343 } 1344 return false; 1345 } 1346 1347 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1348 /// (or fragment of the variable) described by \p DII. 1349 /// 1350 /// This is primarily intended as a helper for the different 1351 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1352 /// converted describes an alloca'd variable, so we need to use the 1353 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1354 /// identified as covering an n-bit fragment, if the store size of i1 is at 1355 /// least n bits. 1356 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1357 const DataLayout &DL = DII->getModule()->getDataLayout(); 1358 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1359 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1360 assert(!ValueSize.isScalable() && 1361 "Fragments don't work on scalable types."); 1362 return ValueSize.getFixedSize() >= *FragmentSize; 1363 } 1364 // We can't always calculate the size of the DI variable (e.g. if it is a 1365 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1366 // intead. 1367 if (DII->isAddressOfVariable()) 1368 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1369 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1370 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1371 "Both sizes should agree on the scalable flag."); 1372 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1373 } 1374 // Could not determine size of variable. Conservatively return false. 1375 return false; 1376 } 1377 1378 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1379 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1380 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1381 /// case this DebugLoc leaks into any adjacent instructions. 1382 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1383 // Original dbg.declare must have a location. 1384 DebugLoc DeclareLoc = DII->getDebugLoc(); 1385 MDNode *Scope = DeclareLoc.getScope(); 1386 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1387 // Produce an unknown location with the correct scope / inlinedAt fields. 1388 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1389 } 1390 1391 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1392 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1393 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1394 StoreInst *SI, DIBuilder &Builder) { 1395 assert(DII->isAddressOfVariable()); 1396 auto *DIVar = DII->getVariable(); 1397 assert(DIVar && "Missing variable"); 1398 auto *DIExpr = DII->getExpression(); 1399 Value *DV = SI->getValueOperand(); 1400 1401 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1402 1403 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1404 // FIXME: If storing to a part of the variable described by the dbg.declare, 1405 // then we want to insert a dbg.value for the corresponding fragment. 1406 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1407 << *DII << '\n'); 1408 // For now, when there is a store to parts of the variable (but we do not 1409 // know which part) we insert an dbg.value instrinsic to indicate that we 1410 // know nothing about the variable's content. 1411 DV = UndefValue::get(DV->getType()); 1412 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1413 return; 1414 } 1415 1416 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1417 } 1418 1419 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1420 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1421 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1422 LoadInst *LI, DIBuilder &Builder) { 1423 auto *DIVar = DII->getVariable(); 1424 auto *DIExpr = DII->getExpression(); 1425 assert(DIVar && "Missing variable"); 1426 1427 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1428 // FIXME: If only referring to a part of the variable described by the 1429 // dbg.declare, then we want to insert a dbg.value for the corresponding 1430 // fragment. 1431 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1432 << *DII << '\n'); 1433 return; 1434 } 1435 1436 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1437 1438 // We are now tracking the loaded value instead of the address. In the 1439 // future if multi-location support is added to the IR, it might be 1440 // preferable to keep tracking both the loaded value and the original 1441 // address in case the alloca can not be elided. 1442 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1443 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1444 DbgValue->insertAfter(LI); 1445 } 1446 1447 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1448 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1449 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1450 PHINode *APN, DIBuilder &Builder) { 1451 auto *DIVar = DII->getVariable(); 1452 auto *DIExpr = DII->getExpression(); 1453 assert(DIVar && "Missing variable"); 1454 1455 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1456 return; 1457 1458 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1459 // FIXME: If only referring to a part of the variable described by the 1460 // dbg.declare, then we want to insert a dbg.value for the corresponding 1461 // fragment. 1462 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1463 << *DII << '\n'); 1464 return; 1465 } 1466 1467 BasicBlock *BB = APN->getParent(); 1468 auto InsertionPt = BB->getFirstInsertionPt(); 1469 1470 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1471 1472 // The block may be a catchswitch block, which does not have a valid 1473 // insertion point. 1474 // FIXME: Insert dbg.value markers in the successors when appropriate. 1475 if (InsertionPt != BB->end()) 1476 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1477 } 1478 1479 /// Determine whether this alloca is either a VLA or an array. 1480 static bool isArray(AllocaInst *AI) { 1481 return AI->isArrayAllocation() || 1482 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1483 } 1484 1485 /// Determine whether this alloca is a structure. 1486 static bool isStructure(AllocaInst *AI) { 1487 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1488 } 1489 1490 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1491 /// of llvm.dbg.value intrinsics. 1492 bool llvm::LowerDbgDeclare(Function &F) { 1493 bool Changed = false; 1494 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1495 SmallVector<DbgDeclareInst *, 4> Dbgs; 1496 for (auto &FI : F) 1497 for (Instruction &BI : FI) 1498 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1499 Dbgs.push_back(DDI); 1500 1501 if (Dbgs.empty()) 1502 return Changed; 1503 1504 for (auto &I : Dbgs) { 1505 DbgDeclareInst *DDI = I; 1506 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1507 // If this is an alloca for a scalar variable, insert a dbg.value 1508 // at each load and store to the alloca and erase the dbg.declare. 1509 // The dbg.values allow tracking a variable even if it is not 1510 // stored on the stack, while the dbg.declare can only describe 1511 // the stack slot (and at a lexical-scope granularity). Later 1512 // passes will attempt to elide the stack slot. 1513 if (!AI || isArray(AI) || isStructure(AI)) 1514 continue; 1515 1516 // A volatile load/store means that the alloca can't be elided anyway. 1517 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1518 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1519 return LI->isVolatile(); 1520 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1521 return SI->isVolatile(); 1522 return false; 1523 })) 1524 continue; 1525 1526 SmallVector<const Value *, 8> WorkList; 1527 WorkList.push_back(AI); 1528 while (!WorkList.empty()) { 1529 const Value *V = WorkList.pop_back_val(); 1530 for (auto &AIUse : V->uses()) { 1531 User *U = AIUse.getUser(); 1532 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1533 if (AIUse.getOperandNo() == 1) 1534 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1535 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1536 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1537 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1538 // This is a call by-value or some other instruction that takes a 1539 // pointer to the variable. Insert a *value* intrinsic that describes 1540 // the variable by dereferencing the alloca. 1541 if (!CI->isLifetimeStartOrEnd()) { 1542 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1543 auto *DerefExpr = 1544 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1545 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1546 NewLoc, CI); 1547 } 1548 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1549 if (BI->getType()->isPointerTy()) 1550 WorkList.push_back(BI); 1551 } 1552 } 1553 } 1554 DDI->eraseFromParent(); 1555 Changed = true; 1556 } 1557 1558 if (Changed) 1559 for (BasicBlock &BB : F) 1560 RemoveRedundantDbgInstrs(&BB); 1561 1562 return Changed; 1563 } 1564 1565 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1566 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1567 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1568 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1569 if (InsertedPHIs.size() == 0) 1570 return; 1571 1572 // Map existing PHI nodes to their dbg.values. 1573 ValueToValueMapTy DbgValueMap; 1574 for (auto &I : *BB) { 1575 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1576 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1577 DbgValueMap.insert({Loc, DbgII}); 1578 } 1579 } 1580 if (DbgValueMap.size() == 0) 1581 return; 1582 1583 // Then iterate through the new PHIs and look to see if they use one of the 1584 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1585 // propagate the info through the new PHI. 1586 LLVMContext &C = BB->getContext(); 1587 for (auto PHI : InsertedPHIs) { 1588 BasicBlock *Parent = PHI->getParent(); 1589 // Avoid inserting an intrinsic into an EH block. 1590 if (Parent->getFirstNonPHI()->isEHPad()) 1591 continue; 1592 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1593 for (auto VI : PHI->operand_values()) { 1594 auto V = DbgValueMap.find(VI); 1595 if (V != DbgValueMap.end()) { 1596 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1597 Instruction *NewDbgII = DbgII->clone(); 1598 NewDbgII->setOperand(0, PhiMAV); 1599 auto InsertionPt = Parent->getFirstInsertionPt(); 1600 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1601 NewDbgII->insertBefore(&*InsertionPt); 1602 } 1603 } 1604 } 1605 } 1606 1607 /// Finds all intrinsics declaring local variables as living in the memory that 1608 /// 'V' points to. This may include a mix of dbg.declare and 1609 /// dbg.addr intrinsics. 1610 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1611 // This function is hot. Check whether the value has any metadata to avoid a 1612 // DenseMap lookup. 1613 if (!V->isUsedByMetadata()) 1614 return {}; 1615 auto *L = LocalAsMetadata::getIfExists(V); 1616 if (!L) 1617 return {}; 1618 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1619 if (!MDV) 1620 return {}; 1621 1622 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1623 for (User *U : MDV->users()) { 1624 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1625 if (DII->isAddressOfVariable()) 1626 Declares.push_back(DII); 1627 } 1628 1629 return Declares; 1630 } 1631 1632 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1633 TinyPtrVector<DbgDeclareInst *> DDIs; 1634 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1635 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1636 DDIs.push_back(DDI); 1637 return DDIs; 1638 } 1639 1640 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1641 // This function is hot. Check whether the value has any metadata to avoid a 1642 // DenseMap lookup. 1643 if (!V->isUsedByMetadata()) 1644 return; 1645 if (auto *L = LocalAsMetadata::getIfExists(V)) 1646 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1647 for (User *U : MDV->users()) 1648 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1649 DbgValues.push_back(DVI); 1650 } 1651 1652 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1653 Value *V) { 1654 // This function is hot. Check whether the value has any metadata to avoid a 1655 // DenseMap lookup. 1656 if (!V->isUsedByMetadata()) 1657 return; 1658 if (auto *L = LocalAsMetadata::getIfExists(V)) 1659 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1660 for (User *U : MDV->users()) 1661 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1662 DbgUsers.push_back(DII); 1663 } 1664 1665 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1666 DIBuilder &Builder, uint8_t DIExprFlags, 1667 int Offset) { 1668 auto DbgAddrs = FindDbgAddrUses(Address); 1669 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1670 DebugLoc Loc = DII->getDebugLoc(); 1671 auto *DIVar = DII->getVariable(); 1672 auto *DIExpr = DII->getExpression(); 1673 assert(DIVar && "Missing variable"); 1674 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1675 // Insert llvm.dbg.declare immediately before DII, and remove old 1676 // llvm.dbg.declare. 1677 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1678 DII->eraseFromParent(); 1679 } 1680 return !DbgAddrs.empty(); 1681 } 1682 1683 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1684 DIBuilder &Builder, int Offset) { 1685 DebugLoc Loc = DVI->getDebugLoc(); 1686 auto *DIVar = DVI->getVariable(); 1687 auto *DIExpr = DVI->getExpression(); 1688 assert(DIVar && "Missing variable"); 1689 1690 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1691 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1692 // it and give up. 1693 if (!DIExpr || DIExpr->getNumElements() < 1 || 1694 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1695 return; 1696 1697 // Insert the offset before the first deref. 1698 // We could just change the offset argument of dbg.value, but it's unsigned... 1699 if (Offset) 1700 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1701 1702 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1703 DVI->eraseFromParent(); 1704 } 1705 1706 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1707 DIBuilder &Builder, int Offset) { 1708 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1709 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1710 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1711 Use &U = *UI++; 1712 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1713 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1714 } 1715 } 1716 1717 /// Wrap \p V in a ValueAsMetadata instance. 1718 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1719 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1720 } 1721 1722 /// Where possible to salvage debug information for \p I do so 1723 /// and return True. If not possible mark undef and return False. 1724 void llvm::salvageDebugInfo(Instruction &I) { 1725 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1726 findDbgUsers(DbgUsers, &I); 1727 salvageDebugInfoForDbgValues(I, DbgUsers); 1728 } 1729 1730 void llvm::salvageDebugInfoForDbgValues( 1731 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1732 auto &Ctx = I.getContext(); 1733 bool Salvaged = false; 1734 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1735 1736 for (auto *DII : DbgUsers) { 1737 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1738 // are implicitly pointing out the value as a DWARF memory location 1739 // description. 1740 bool StackValue = isa<DbgValueInst>(DII); 1741 1742 DIExpression *DIExpr = 1743 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1744 1745 // salvageDebugInfoImpl should fail on examining the first element of 1746 // DbgUsers, or none of them. 1747 if (!DIExpr) 1748 break; 1749 1750 DII->setOperand(0, wrapMD(I.getOperand(0))); 1751 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1752 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1753 Salvaged = true; 1754 } 1755 1756 if (Salvaged) 1757 return; 1758 1759 for (auto *DII : DbgUsers) { 1760 Value *Undef = UndefValue::get(I.getType()); 1761 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1762 ValueAsMetadata::get(Undef))); 1763 } 1764 } 1765 1766 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1767 DIExpression *SrcDIExpr, 1768 bool WithStackValue) { 1769 auto &M = *I.getModule(); 1770 auto &DL = M.getDataLayout(); 1771 1772 // Apply a vector of opcodes to the source DIExpression. 1773 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1774 DIExpression *DIExpr = SrcDIExpr; 1775 if (!Ops.empty()) { 1776 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1777 } 1778 return DIExpr; 1779 }; 1780 1781 // Apply the given offset to the source DIExpression. 1782 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1783 SmallVector<uint64_t, 8> Ops; 1784 DIExpression::appendOffset(Ops, Offset); 1785 return doSalvage(Ops); 1786 }; 1787 1788 // initializer-list helper for applying operators to the source DIExpression. 1789 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1790 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1791 return doSalvage(Ops); 1792 }; 1793 1794 if (auto *CI = dyn_cast<CastInst>(&I)) { 1795 // No-op casts are irrelevant for debug info. 1796 if (CI->isNoopCast(DL)) 1797 return SrcDIExpr; 1798 1799 Type *Type = CI->getType(); 1800 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1801 if (Type->isVectorTy() || 1802 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1803 return nullptr; 1804 1805 Value *FromValue = CI->getOperand(0); 1806 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1807 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1808 1809 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1810 isa<SExtInst>(&I))); 1811 } 1812 1813 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1814 unsigned BitWidth = 1815 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1816 // Rewrite a constant GEP into a DIExpression. 1817 APInt Offset(BitWidth, 0); 1818 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1819 return applyOffset(Offset.getSExtValue()); 1820 } else { 1821 return nullptr; 1822 } 1823 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1824 // Rewrite binary operations with constant integer operands. 1825 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1826 if (!ConstInt || ConstInt->getBitWidth() > 64) 1827 return nullptr; 1828 1829 uint64_t Val = ConstInt->getSExtValue(); 1830 switch (BI->getOpcode()) { 1831 case Instruction::Add: 1832 return applyOffset(Val); 1833 case Instruction::Sub: 1834 return applyOffset(-int64_t(Val)); 1835 case Instruction::Mul: 1836 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1837 case Instruction::SDiv: 1838 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1839 case Instruction::SRem: 1840 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1841 case Instruction::Or: 1842 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1843 case Instruction::And: 1844 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1845 case Instruction::Xor: 1846 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1847 case Instruction::Shl: 1848 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1849 case Instruction::LShr: 1850 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1851 case Instruction::AShr: 1852 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1853 default: 1854 // TODO: Salvage constants from each kind of binop we know about. 1855 return nullptr; 1856 } 1857 // *Not* to do: we should not attempt to salvage load instructions, 1858 // because the validity and lifetime of a dbg.value containing 1859 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1860 } 1861 return nullptr; 1862 } 1863 1864 /// A replacement for a dbg.value expression. 1865 using DbgValReplacement = Optional<DIExpression *>; 1866 1867 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1868 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1869 /// changes are made. 1870 static bool rewriteDebugUsers( 1871 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1872 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1873 // Find debug users of From. 1874 SmallVector<DbgVariableIntrinsic *, 1> Users; 1875 findDbgUsers(Users, &From); 1876 if (Users.empty()) 1877 return false; 1878 1879 // Prevent use-before-def of To. 1880 bool Changed = false; 1881 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1882 if (isa<Instruction>(&To)) { 1883 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1884 1885 for (auto *DII : Users) { 1886 // It's common to see a debug user between From and DomPoint. Move it 1887 // after DomPoint to preserve the variable update without any reordering. 1888 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1889 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1890 DII->moveAfter(&DomPoint); 1891 Changed = true; 1892 1893 // Users which otherwise aren't dominated by the replacement value must 1894 // be salvaged or deleted. 1895 } else if (!DT.dominates(&DomPoint, DII)) { 1896 UndefOrSalvage.insert(DII); 1897 } 1898 } 1899 } 1900 1901 // Update debug users without use-before-def risk. 1902 for (auto *DII : Users) { 1903 if (UndefOrSalvage.count(DII)) 1904 continue; 1905 1906 LLVMContext &Ctx = DII->getContext(); 1907 DbgValReplacement DVR = RewriteExpr(*DII); 1908 if (!DVR) 1909 continue; 1910 1911 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1912 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1913 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1914 Changed = true; 1915 } 1916 1917 if (!UndefOrSalvage.empty()) { 1918 // Try to salvage the remaining debug users. 1919 salvageDebugInfo(From); 1920 Changed = true; 1921 } 1922 1923 return Changed; 1924 } 1925 1926 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1927 /// losslessly preserve the bits and semantics of the value. This predicate is 1928 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1929 /// 1930 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1931 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1932 /// and also does not allow lossless pointer <-> integer conversions. 1933 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1934 Type *ToTy) { 1935 // Trivially compatible types. 1936 if (FromTy == ToTy) 1937 return true; 1938 1939 // Handle compatible pointer <-> integer conversions. 1940 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1941 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1942 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1943 !DL.isNonIntegralPointerType(ToTy); 1944 return SameSize && LosslessConversion; 1945 } 1946 1947 // TODO: This is not exhaustive. 1948 return false; 1949 } 1950 1951 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1952 Instruction &DomPoint, DominatorTree &DT) { 1953 // Exit early if From has no debug users. 1954 if (!From.isUsedByMetadata()) 1955 return false; 1956 1957 assert(&From != &To && "Can't replace something with itself"); 1958 1959 Type *FromTy = From.getType(); 1960 Type *ToTy = To.getType(); 1961 1962 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1963 return DII.getExpression(); 1964 }; 1965 1966 // Handle no-op conversions. 1967 Module &M = *From.getModule(); 1968 const DataLayout &DL = M.getDataLayout(); 1969 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1970 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1971 1972 // Handle integer-to-integer widening and narrowing. 1973 // FIXME: Use DW_OP_convert when it's available everywhere. 1974 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1975 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1976 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1977 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1978 1979 // When the width of the result grows, assume that a debugger will only 1980 // access the low `FromBits` bits when inspecting the source variable. 1981 if (FromBits < ToBits) 1982 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1983 1984 // The width of the result has shrunk. Use sign/zero extension to describe 1985 // the source variable's high bits. 1986 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1987 DILocalVariable *Var = DII.getVariable(); 1988 1989 // Without knowing signedness, sign/zero extension isn't possible. 1990 auto Signedness = Var->getSignedness(); 1991 if (!Signedness) 1992 return None; 1993 1994 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1995 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1996 Signed); 1997 }; 1998 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1999 } 2000 2001 // TODO: Floating-point conversions, vectors. 2002 return false; 2003 } 2004 2005 std::pair<unsigned, unsigned> 2006 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2007 unsigned NumDeadInst = 0; 2008 unsigned NumDeadDbgInst = 0; 2009 // Delete the instructions backwards, as it has a reduced likelihood of 2010 // having to update as many def-use and use-def chains. 2011 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2012 while (EndInst != &BB->front()) { 2013 // Delete the next to last instruction. 2014 Instruction *Inst = &*--EndInst->getIterator(); 2015 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2016 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2017 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2018 EndInst = Inst; 2019 continue; 2020 } 2021 if (isa<DbgInfoIntrinsic>(Inst)) 2022 ++NumDeadDbgInst; 2023 else 2024 ++NumDeadInst; 2025 Inst->eraseFromParent(); 2026 } 2027 return {NumDeadInst, NumDeadDbgInst}; 2028 } 2029 2030 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2031 bool PreserveLCSSA, DomTreeUpdater *DTU, 2032 MemorySSAUpdater *MSSAU) { 2033 BasicBlock *BB = I->getParent(); 2034 2035 if (MSSAU) 2036 MSSAU->changeToUnreachable(I); 2037 2038 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2039 2040 // Loop over all of the successors, removing BB's entry from any PHI 2041 // nodes. 2042 for (BasicBlock *Successor : successors(BB)) { 2043 Successor->removePredecessor(BB, PreserveLCSSA); 2044 if (DTU) 2045 UniqueSuccessors.insert(Successor); 2046 } 2047 // Insert a call to llvm.trap right before this. This turns the undefined 2048 // behavior into a hard fail instead of falling through into random code. 2049 if (UseLLVMTrap) { 2050 Function *TrapFn = 2051 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2052 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2053 CallTrap->setDebugLoc(I->getDebugLoc()); 2054 } 2055 auto *UI = new UnreachableInst(I->getContext(), I); 2056 UI->setDebugLoc(I->getDebugLoc()); 2057 2058 // All instructions after this are dead. 2059 unsigned NumInstrsRemoved = 0; 2060 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2061 while (BBI != BBE) { 2062 if (!BBI->use_empty()) 2063 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2064 BB->getInstList().erase(BBI++); 2065 ++NumInstrsRemoved; 2066 } 2067 if (DTU) { 2068 SmallVector<DominatorTree::UpdateType, 8> Updates; 2069 Updates.reserve(UniqueSuccessors.size()); 2070 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2071 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2072 DTU->applyUpdates(Updates); 2073 } 2074 return NumInstrsRemoved; 2075 } 2076 2077 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2078 SmallVector<Value *, 8> Args(II->args()); 2079 SmallVector<OperandBundleDef, 1> OpBundles; 2080 II->getOperandBundlesAsDefs(OpBundles); 2081 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2082 II->getCalledOperand(), Args, OpBundles); 2083 NewCall->setCallingConv(II->getCallingConv()); 2084 NewCall->setAttributes(II->getAttributes()); 2085 NewCall->setDebugLoc(II->getDebugLoc()); 2086 NewCall->copyMetadata(*II); 2087 2088 // If the invoke had profile metadata, try converting them for CallInst. 2089 uint64_t TotalWeight; 2090 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2091 // Set the total weight if it fits into i32, otherwise reset. 2092 MDBuilder MDB(NewCall->getContext()); 2093 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2094 ? nullptr 2095 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2096 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2097 } 2098 2099 return NewCall; 2100 } 2101 2102 /// changeToCall - Convert the specified invoke into a normal call. 2103 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2104 CallInst *NewCall = createCallMatchingInvoke(II); 2105 NewCall->takeName(II); 2106 NewCall->insertBefore(II); 2107 II->replaceAllUsesWith(NewCall); 2108 2109 // Follow the call by a branch to the normal destination. 2110 BasicBlock *NormalDestBB = II->getNormalDest(); 2111 BranchInst::Create(NormalDestBB, II); 2112 2113 // Update PHI nodes in the unwind destination 2114 BasicBlock *BB = II->getParent(); 2115 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2116 UnwindDestBB->removePredecessor(BB); 2117 II->eraseFromParent(); 2118 if (DTU) 2119 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2120 } 2121 2122 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2123 BasicBlock *UnwindEdge, 2124 DomTreeUpdater *DTU) { 2125 BasicBlock *BB = CI->getParent(); 2126 2127 // Convert this function call into an invoke instruction. First, split the 2128 // basic block. 2129 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2130 CI->getName() + ".noexc"); 2131 2132 // Delete the unconditional branch inserted by SplitBlock 2133 BB->getInstList().pop_back(); 2134 2135 // Create the new invoke instruction. 2136 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2137 SmallVector<OperandBundleDef, 1> OpBundles; 2138 2139 CI->getOperandBundlesAsDefs(OpBundles); 2140 2141 // Note: we're round tripping operand bundles through memory here, and that 2142 // can potentially be avoided with a cleverer API design that we do not have 2143 // as of this time. 2144 2145 InvokeInst *II = 2146 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2147 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2148 II->setDebugLoc(CI->getDebugLoc()); 2149 II->setCallingConv(CI->getCallingConv()); 2150 II->setAttributes(CI->getAttributes()); 2151 2152 if (DTU) 2153 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2154 2155 // Make sure that anything using the call now uses the invoke! This also 2156 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2157 CI->replaceAllUsesWith(II); 2158 2159 // Delete the original call 2160 Split->getInstList().pop_front(); 2161 return Split; 2162 } 2163 2164 static bool markAliveBlocks(Function &F, 2165 SmallPtrSetImpl<BasicBlock *> &Reachable, 2166 DomTreeUpdater *DTU = nullptr) { 2167 SmallVector<BasicBlock*, 128> Worklist; 2168 BasicBlock *BB = &F.front(); 2169 Worklist.push_back(BB); 2170 Reachable.insert(BB); 2171 bool Changed = false; 2172 do { 2173 BB = Worklist.pop_back_val(); 2174 2175 // Do a quick scan of the basic block, turning any obviously unreachable 2176 // instructions into LLVM unreachable insts. The instruction combining pass 2177 // canonicalizes unreachable insts into stores to null or undef. 2178 for (Instruction &I : *BB) { 2179 if (auto *CI = dyn_cast<CallInst>(&I)) { 2180 Value *Callee = CI->getCalledOperand(); 2181 // Handle intrinsic calls. 2182 if (Function *F = dyn_cast<Function>(Callee)) { 2183 auto IntrinsicID = F->getIntrinsicID(); 2184 // Assumptions that are known to be false are equivalent to 2185 // unreachable. Also, if the condition is undefined, then we make the 2186 // choice most beneficial to the optimizer, and choose that to also be 2187 // unreachable. 2188 if (IntrinsicID == Intrinsic::assume) { 2189 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2190 // Don't insert a call to llvm.trap right before the unreachable. 2191 changeToUnreachable(CI, false, false, DTU); 2192 Changed = true; 2193 break; 2194 } 2195 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2196 // A call to the guard intrinsic bails out of the current 2197 // compilation unit if the predicate passed to it is false. If the 2198 // predicate is a constant false, then we know the guard will bail 2199 // out of the current compile unconditionally, so all code following 2200 // it is dead. 2201 // 2202 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2203 // guards to treat `undef` as `false` since a guard on `undef` can 2204 // still be useful for widening. 2205 if (match(CI->getArgOperand(0), m_Zero())) 2206 if (!isa<UnreachableInst>(CI->getNextNode())) { 2207 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2208 false, DTU); 2209 Changed = true; 2210 break; 2211 } 2212 } 2213 } else if ((isa<ConstantPointerNull>(Callee) && 2214 !NullPointerIsDefined(CI->getFunction())) || 2215 isa<UndefValue>(Callee)) { 2216 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2217 Changed = true; 2218 break; 2219 } 2220 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2221 // If we found a call to a no-return function, insert an unreachable 2222 // instruction after it. Make sure there isn't *already* one there 2223 // though. 2224 if (!isa<UnreachableInst>(CI->getNextNode())) { 2225 // Don't insert a call to llvm.trap right before the unreachable. 2226 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2227 Changed = true; 2228 } 2229 break; 2230 } 2231 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2232 // Store to undef and store to null are undefined and used to signal 2233 // that they should be changed to unreachable by passes that can't 2234 // modify the CFG. 2235 2236 // Don't touch volatile stores. 2237 if (SI->isVolatile()) continue; 2238 2239 Value *Ptr = SI->getOperand(1); 2240 2241 if (isa<UndefValue>(Ptr) || 2242 (isa<ConstantPointerNull>(Ptr) && 2243 !NullPointerIsDefined(SI->getFunction(), 2244 SI->getPointerAddressSpace()))) { 2245 changeToUnreachable(SI, true, false, DTU); 2246 Changed = true; 2247 break; 2248 } 2249 } 2250 } 2251 2252 Instruction *Terminator = BB->getTerminator(); 2253 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2254 // Turn invokes that call 'nounwind' functions into ordinary calls. 2255 Value *Callee = II->getCalledOperand(); 2256 if ((isa<ConstantPointerNull>(Callee) && 2257 !NullPointerIsDefined(BB->getParent())) || 2258 isa<UndefValue>(Callee)) { 2259 changeToUnreachable(II, true, false, DTU); 2260 Changed = true; 2261 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2262 if (II->use_empty() && II->onlyReadsMemory()) { 2263 // jump to the normal destination branch. 2264 BasicBlock *NormalDestBB = II->getNormalDest(); 2265 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2266 BranchInst::Create(NormalDestBB, II); 2267 UnwindDestBB->removePredecessor(II->getParent()); 2268 II->eraseFromParent(); 2269 if (DTU) 2270 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2271 } else 2272 changeToCall(II, DTU); 2273 Changed = true; 2274 } 2275 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2276 // Remove catchpads which cannot be reached. 2277 struct CatchPadDenseMapInfo { 2278 static CatchPadInst *getEmptyKey() { 2279 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2280 } 2281 2282 static CatchPadInst *getTombstoneKey() { 2283 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2284 } 2285 2286 static unsigned getHashValue(CatchPadInst *CatchPad) { 2287 return static_cast<unsigned>(hash_combine_range( 2288 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2289 } 2290 2291 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2292 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2293 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2294 return LHS == RHS; 2295 return LHS->isIdenticalTo(RHS); 2296 } 2297 }; 2298 2299 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2300 // Set of unique CatchPads. 2301 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2302 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2303 HandlerSet; 2304 detail::DenseSetEmpty Empty; 2305 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2306 E = CatchSwitch->handler_end(); 2307 I != E; ++I) { 2308 BasicBlock *HandlerBB = *I; 2309 ++NumPerSuccessorCases[HandlerBB]; 2310 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2311 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2312 --NumPerSuccessorCases[HandlerBB]; 2313 CatchSwitch->removeHandler(I); 2314 --I; 2315 --E; 2316 Changed = true; 2317 } 2318 } 2319 std::vector<DominatorTree::UpdateType> Updates; 2320 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2321 if (I.second == 0) 2322 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2323 if (DTU) 2324 DTU->applyUpdates(Updates); 2325 } 2326 2327 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2328 for (BasicBlock *Successor : successors(BB)) 2329 if (Reachable.insert(Successor).second) 2330 Worklist.push_back(Successor); 2331 } while (!Worklist.empty()); 2332 return Changed; 2333 } 2334 2335 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2336 Instruction *TI = BB->getTerminator(); 2337 2338 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2339 changeToCall(II, DTU); 2340 return; 2341 } 2342 2343 Instruction *NewTI; 2344 BasicBlock *UnwindDest; 2345 2346 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2347 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2348 UnwindDest = CRI->getUnwindDest(); 2349 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2350 auto *NewCatchSwitch = CatchSwitchInst::Create( 2351 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2352 CatchSwitch->getName(), CatchSwitch); 2353 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2354 NewCatchSwitch->addHandler(PadBB); 2355 2356 NewTI = NewCatchSwitch; 2357 UnwindDest = CatchSwitch->getUnwindDest(); 2358 } else { 2359 llvm_unreachable("Could not find unwind successor"); 2360 } 2361 2362 NewTI->takeName(TI); 2363 NewTI->setDebugLoc(TI->getDebugLoc()); 2364 UnwindDest->removePredecessor(BB); 2365 TI->replaceAllUsesWith(NewTI); 2366 TI->eraseFromParent(); 2367 if (DTU) 2368 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2369 } 2370 2371 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2372 /// if they are in a dead cycle. Return true if a change was made, false 2373 /// otherwise. 2374 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2375 MemorySSAUpdater *MSSAU) { 2376 SmallPtrSet<BasicBlock *, 16> Reachable; 2377 bool Changed = markAliveBlocks(F, Reachable, DTU); 2378 2379 // If there are unreachable blocks in the CFG... 2380 if (Reachable.size() == F.size()) 2381 return Changed; 2382 2383 assert(Reachable.size() < F.size()); 2384 2385 // Are there any blocks left to actually delete? 2386 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2387 for (BasicBlock &BB : F) { 2388 // Skip reachable basic blocks 2389 if (Reachable.count(&BB)) 2390 continue; 2391 // Skip already-deleted blocks 2392 if (DTU && DTU->isBBPendingDeletion(&BB)) 2393 continue; 2394 BlocksToRemove.insert(&BB); 2395 } 2396 2397 if (BlocksToRemove.empty()) 2398 return Changed; 2399 2400 Changed = true; 2401 NumRemoved += BlocksToRemove.size(); 2402 2403 if (MSSAU) 2404 MSSAU->removeBlocks(BlocksToRemove); 2405 2406 // Loop over all of the basic blocks that are up for removal, dropping all of 2407 // their internal references. Update DTU if available. 2408 std::vector<DominatorTree::UpdateType> Updates; 2409 for (auto *BB : BlocksToRemove) { 2410 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2411 for (BasicBlock *Successor : successors(BB)) { 2412 // Only remove references to BB in reachable successors of BB. 2413 if (Reachable.count(Successor)) 2414 Successor->removePredecessor(BB); 2415 if (DTU) 2416 UniqueSuccessors.insert(Successor); 2417 } 2418 BB->dropAllReferences(); 2419 if (DTU) { 2420 Instruction *TI = BB->getTerminator(); 2421 assert(TI && "Basic block should have a terminator"); 2422 // Terminators like invoke can have users. We have to replace their users, 2423 // before removing them. 2424 if (!TI->use_empty()) 2425 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2426 TI->eraseFromParent(); 2427 new UnreachableInst(BB->getContext(), BB); 2428 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2429 "applying corresponding DTU updates."); 2430 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2431 for (auto *UniqueSuccessor : UniqueSuccessors) 2432 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2433 } 2434 } 2435 2436 if (DTU) { 2437 DTU->applyUpdates(Updates); 2438 for (auto *BB : BlocksToRemove) 2439 DTU->deleteBB(BB); 2440 } else { 2441 for (auto *BB : BlocksToRemove) 2442 BB->eraseFromParent(); 2443 } 2444 2445 return Changed; 2446 } 2447 2448 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2449 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2450 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2451 K->dropUnknownNonDebugMetadata(KnownIDs); 2452 K->getAllMetadataOtherThanDebugLoc(Metadata); 2453 for (const auto &MD : Metadata) { 2454 unsigned Kind = MD.first; 2455 MDNode *JMD = J->getMetadata(Kind); 2456 MDNode *KMD = MD.second; 2457 2458 switch (Kind) { 2459 default: 2460 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2461 break; 2462 case LLVMContext::MD_dbg: 2463 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2464 case LLVMContext::MD_tbaa: 2465 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2466 break; 2467 case LLVMContext::MD_alias_scope: 2468 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2469 break; 2470 case LLVMContext::MD_noalias: 2471 case LLVMContext::MD_mem_parallel_loop_access: 2472 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2473 break; 2474 case LLVMContext::MD_access_group: 2475 K->setMetadata(LLVMContext::MD_access_group, 2476 intersectAccessGroups(K, J)); 2477 break; 2478 case LLVMContext::MD_range: 2479 2480 // If K does move, use most generic range. Otherwise keep the range of 2481 // K. 2482 if (DoesKMove) 2483 // FIXME: If K does move, we should drop the range info and nonnull. 2484 // Currently this function is used with DoesKMove in passes 2485 // doing hoisting/sinking and the current behavior of using the 2486 // most generic range is correct in those cases. 2487 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2488 break; 2489 case LLVMContext::MD_fpmath: 2490 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2491 break; 2492 case LLVMContext::MD_invariant_load: 2493 // Only set the !invariant.load if it is present in both instructions. 2494 K->setMetadata(Kind, JMD); 2495 break; 2496 case LLVMContext::MD_nonnull: 2497 // If K does move, keep nonull if it is present in both instructions. 2498 if (DoesKMove) 2499 K->setMetadata(Kind, JMD); 2500 break; 2501 case LLVMContext::MD_invariant_group: 2502 // Preserve !invariant.group in K. 2503 break; 2504 case LLVMContext::MD_align: 2505 K->setMetadata(Kind, 2506 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2507 break; 2508 case LLVMContext::MD_dereferenceable: 2509 case LLVMContext::MD_dereferenceable_or_null: 2510 K->setMetadata(Kind, 2511 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2512 break; 2513 case LLVMContext::MD_preserve_access_index: 2514 // Preserve !preserve.access.index in K. 2515 break; 2516 } 2517 } 2518 // Set !invariant.group from J if J has it. If both instructions have it 2519 // then we will just pick it from J - even when they are different. 2520 // Also make sure that K is load or store - f.e. combining bitcast with load 2521 // could produce bitcast with invariant.group metadata, which is invalid. 2522 // FIXME: we should try to preserve both invariant.group md if they are 2523 // different, but right now instruction can only have one invariant.group. 2524 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2525 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2526 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2527 } 2528 2529 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2530 bool KDominatesJ) { 2531 unsigned KnownIDs[] = { 2532 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2533 LLVMContext::MD_noalias, LLVMContext::MD_range, 2534 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2535 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2536 LLVMContext::MD_dereferenceable, 2537 LLVMContext::MD_dereferenceable_or_null, 2538 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2539 combineMetadata(K, J, KnownIDs, KDominatesJ); 2540 } 2541 2542 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2543 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2544 Source.getAllMetadata(MD); 2545 MDBuilder MDB(Dest.getContext()); 2546 Type *NewType = Dest.getType(); 2547 const DataLayout &DL = Source.getModule()->getDataLayout(); 2548 for (const auto &MDPair : MD) { 2549 unsigned ID = MDPair.first; 2550 MDNode *N = MDPair.second; 2551 // Note, essentially every kind of metadata should be preserved here! This 2552 // routine is supposed to clone a load instruction changing *only its type*. 2553 // The only metadata it makes sense to drop is metadata which is invalidated 2554 // when the pointer type changes. This should essentially never be the case 2555 // in LLVM, but we explicitly switch over only known metadata to be 2556 // conservatively correct. If you are adding metadata to LLVM which pertains 2557 // to loads, you almost certainly want to add it here. 2558 switch (ID) { 2559 case LLVMContext::MD_dbg: 2560 case LLVMContext::MD_tbaa: 2561 case LLVMContext::MD_prof: 2562 case LLVMContext::MD_fpmath: 2563 case LLVMContext::MD_tbaa_struct: 2564 case LLVMContext::MD_invariant_load: 2565 case LLVMContext::MD_alias_scope: 2566 case LLVMContext::MD_noalias: 2567 case LLVMContext::MD_nontemporal: 2568 case LLVMContext::MD_mem_parallel_loop_access: 2569 case LLVMContext::MD_access_group: 2570 // All of these directly apply. 2571 Dest.setMetadata(ID, N); 2572 break; 2573 2574 case LLVMContext::MD_nonnull: 2575 copyNonnullMetadata(Source, N, Dest); 2576 break; 2577 2578 case LLVMContext::MD_align: 2579 case LLVMContext::MD_dereferenceable: 2580 case LLVMContext::MD_dereferenceable_or_null: 2581 // These only directly apply if the new type is also a pointer. 2582 if (NewType->isPointerTy()) 2583 Dest.setMetadata(ID, N); 2584 break; 2585 2586 case LLVMContext::MD_range: 2587 copyRangeMetadata(DL, Source, N, Dest); 2588 break; 2589 } 2590 } 2591 } 2592 2593 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2594 auto *ReplInst = dyn_cast<Instruction>(Repl); 2595 if (!ReplInst) 2596 return; 2597 2598 // Patch the replacement so that it is not more restrictive than the value 2599 // being replaced. 2600 // Note that if 'I' is a load being replaced by some operation, 2601 // for example, by an arithmetic operation, then andIRFlags() 2602 // would just erase all math flags from the original arithmetic 2603 // operation, which is clearly not wanted and not needed. 2604 if (!isa<LoadInst>(I)) 2605 ReplInst->andIRFlags(I); 2606 2607 // FIXME: If both the original and replacement value are part of the 2608 // same control-flow region (meaning that the execution of one 2609 // guarantees the execution of the other), then we can combine the 2610 // noalias scopes here and do better than the general conservative 2611 // answer used in combineMetadata(). 2612 2613 // In general, GVN unifies expressions over different control-flow 2614 // regions, and so we need a conservative combination of the noalias 2615 // scopes. 2616 static const unsigned KnownIDs[] = { 2617 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2618 LLVMContext::MD_noalias, LLVMContext::MD_range, 2619 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2620 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2621 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2622 combineMetadata(ReplInst, I, KnownIDs, false); 2623 } 2624 2625 template <typename RootType, typename DominatesFn> 2626 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2627 const RootType &Root, 2628 const DominatesFn &Dominates) { 2629 assert(From->getType() == To->getType()); 2630 2631 unsigned Count = 0; 2632 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2633 UI != UE;) { 2634 Use &U = *UI++; 2635 if (!Dominates(Root, U)) 2636 continue; 2637 U.set(To); 2638 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2639 << "' as " << *To << " in " << *U << "\n"); 2640 ++Count; 2641 } 2642 return Count; 2643 } 2644 2645 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2646 assert(From->getType() == To->getType()); 2647 auto *BB = From->getParent(); 2648 unsigned Count = 0; 2649 2650 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2651 UI != UE;) { 2652 Use &U = *UI++; 2653 auto *I = cast<Instruction>(U.getUser()); 2654 if (I->getParent() == BB) 2655 continue; 2656 U.set(To); 2657 ++Count; 2658 } 2659 return Count; 2660 } 2661 2662 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2663 DominatorTree &DT, 2664 const BasicBlockEdge &Root) { 2665 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2666 return DT.dominates(Root, U); 2667 }; 2668 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2669 } 2670 2671 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2672 DominatorTree &DT, 2673 const BasicBlock *BB) { 2674 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2675 auto *I = cast<Instruction>(U.getUser())->getParent(); 2676 return DT.properlyDominates(BB, I); 2677 }; 2678 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2679 } 2680 2681 bool llvm::callsGCLeafFunction(const CallBase *Call, 2682 const TargetLibraryInfo &TLI) { 2683 // Check if the function is specifically marked as a gc leaf function. 2684 if (Call->hasFnAttr("gc-leaf-function")) 2685 return true; 2686 if (const Function *F = Call->getCalledFunction()) { 2687 if (F->hasFnAttribute("gc-leaf-function")) 2688 return true; 2689 2690 if (auto IID = F->getIntrinsicID()) { 2691 // Most LLVM intrinsics do not take safepoints. 2692 return IID != Intrinsic::experimental_gc_statepoint && 2693 IID != Intrinsic::experimental_deoptimize && 2694 IID != Intrinsic::memcpy_element_unordered_atomic && 2695 IID != Intrinsic::memmove_element_unordered_atomic; 2696 } 2697 } 2698 2699 // Lib calls can be materialized by some passes, and won't be 2700 // marked as 'gc-leaf-function.' All available Libcalls are 2701 // GC-leaf. 2702 LibFunc LF; 2703 if (TLI.getLibFunc(*Call, LF)) { 2704 return TLI.has(LF); 2705 } 2706 2707 return false; 2708 } 2709 2710 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2711 LoadInst &NewLI) { 2712 auto *NewTy = NewLI.getType(); 2713 2714 // This only directly applies if the new type is also a pointer. 2715 if (NewTy->isPointerTy()) { 2716 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2717 return; 2718 } 2719 2720 // The only other translation we can do is to integral loads with !range 2721 // metadata. 2722 if (!NewTy->isIntegerTy()) 2723 return; 2724 2725 MDBuilder MDB(NewLI.getContext()); 2726 const Value *Ptr = OldLI.getPointerOperand(); 2727 auto *ITy = cast<IntegerType>(NewTy); 2728 auto *NullInt = ConstantExpr::getPtrToInt( 2729 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2730 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2731 NewLI.setMetadata(LLVMContext::MD_range, 2732 MDB.createRange(NonNullInt, NullInt)); 2733 } 2734 2735 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2736 MDNode *N, LoadInst &NewLI) { 2737 auto *NewTy = NewLI.getType(); 2738 2739 // Give up unless it is converted to a pointer where there is a single very 2740 // valuable mapping we can do reliably. 2741 // FIXME: It would be nice to propagate this in more ways, but the type 2742 // conversions make it hard. 2743 if (!NewTy->isPointerTy()) 2744 return; 2745 2746 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2747 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2748 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2749 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2750 } 2751 } 2752 2753 void llvm::dropDebugUsers(Instruction &I) { 2754 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2755 findDbgUsers(DbgUsers, &I); 2756 for (auto *DII : DbgUsers) 2757 DII->eraseFromParent(); 2758 } 2759 2760 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2761 BasicBlock *BB) { 2762 // Since we are moving the instructions out of its basic block, we do not 2763 // retain their original debug locations (DILocations) and debug intrinsic 2764 // instructions. 2765 // 2766 // Doing so would degrade the debugging experience and adversely affect the 2767 // accuracy of profiling information. 2768 // 2769 // Currently, when hoisting the instructions, we take the following actions: 2770 // - Remove their debug intrinsic instructions. 2771 // - Set their debug locations to the values from the insertion point. 2772 // 2773 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2774 // need to be deleted, is because there will not be any instructions with a 2775 // DILocation in either branch left after performing the transformation. We 2776 // can only insert a dbg.value after the two branches are joined again. 2777 // 2778 // See PR38762, PR39243 for more details. 2779 // 2780 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2781 // encode predicated DIExpressions that yield different results on different 2782 // code paths. 2783 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2784 Instruction *I = &*II; 2785 I->dropUnknownNonDebugMetadata(); 2786 if (I->isUsedByMetadata()) 2787 dropDebugUsers(*I); 2788 if (isa<DbgInfoIntrinsic>(I)) { 2789 // Remove DbgInfo Intrinsics. 2790 II = I->eraseFromParent(); 2791 continue; 2792 } 2793 I->setDebugLoc(InsertPt->getDebugLoc()); 2794 ++II; 2795 } 2796 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2797 BB->begin(), 2798 BB->getTerminator()->getIterator()); 2799 } 2800 2801 namespace { 2802 2803 /// A potential constituent of a bitreverse or bswap expression. See 2804 /// collectBitParts for a fuller explanation. 2805 struct BitPart { 2806 BitPart(Value *P, unsigned BW) : Provider(P) { 2807 Provenance.resize(BW); 2808 } 2809 2810 /// The Value that this is a bitreverse/bswap of. 2811 Value *Provider; 2812 2813 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2814 /// in Provider becomes bit B in the result of this expression. 2815 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2816 2817 enum { Unset = -1 }; 2818 }; 2819 2820 } // end anonymous namespace 2821 2822 /// Analyze the specified subexpression and see if it is capable of providing 2823 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2824 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2825 /// the output of the expression came from a corresponding bit in some other 2826 /// value. This function is recursive, and the end result is a mapping of 2827 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2828 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2829 /// 2830 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2831 /// that the expression deposits the low byte of %X into the high byte of the 2832 /// result and that all other bits are zero. This expression is accepted and a 2833 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2834 /// [0-7]. 2835 /// 2836 /// For vector types, all analysis is performed at the per-element level. No 2837 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2838 /// constant masks must be splatted across all elements. 2839 /// 2840 /// To avoid revisiting values, the BitPart results are memoized into the 2841 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2842 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2843 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2844 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2845 /// type instead to provide the same functionality. 2846 /// 2847 /// Because we pass around references into \c BPS, we must use a container that 2848 /// does not invalidate internal references (std::map instead of DenseMap). 2849 static const Optional<BitPart> & 2850 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2851 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2852 auto I = BPS.find(V); 2853 if (I != BPS.end()) 2854 return I->second; 2855 2856 auto &Result = BPS[V] = None; 2857 auto BitWidth = V->getType()->getScalarSizeInBits(); 2858 2859 // Prevent stack overflow by limiting the recursion depth 2860 if (Depth == BitPartRecursionMaxDepth) { 2861 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2862 return Result; 2863 } 2864 2865 if (auto *I = dyn_cast<Instruction>(V)) { 2866 Value *X, *Y; 2867 const APInt *C; 2868 2869 // If this is an or instruction, it may be an inner node of the bswap. 2870 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2871 const auto &A = 2872 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2873 const auto &B = 2874 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2875 if (!A || !B) 2876 return Result; 2877 2878 // Try and merge the two together. 2879 if (!A->Provider || A->Provider != B->Provider) 2880 return Result; 2881 2882 Result = BitPart(A->Provider, BitWidth); 2883 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2884 if (A->Provenance[BitIdx] != BitPart::Unset && 2885 B->Provenance[BitIdx] != BitPart::Unset && 2886 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2887 return Result = None; 2888 2889 if (A->Provenance[BitIdx] == BitPart::Unset) 2890 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2891 else 2892 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2893 } 2894 2895 return Result; 2896 } 2897 2898 // If this is a logical shift by a constant, recurse then shift the result. 2899 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2900 const APInt &BitShift = *C; 2901 2902 // Ensure the shift amount is defined. 2903 if (BitShift.uge(BitWidth)) 2904 return Result; 2905 2906 const auto &Res = 2907 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2908 if (!Res) 2909 return Result; 2910 Result = Res; 2911 2912 // Perform the "shift" on BitProvenance. 2913 auto &P = Result->Provenance; 2914 if (I->getOpcode() == Instruction::Shl) { 2915 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2916 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2917 } else { 2918 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2919 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2920 } 2921 2922 return Result; 2923 } 2924 2925 // If this is a logical 'and' with a mask that clears bits, recurse then 2926 // unset the appropriate bits. 2927 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2928 const APInt &AndMask = *C; 2929 2930 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2931 // early exit. 2932 unsigned NumMaskedBits = AndMask.countPopulation(); 2933 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2934 return Result; 2935 2936 const auto &Res = 2937 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2938 if (!Res) 2939 return Result; 2940 Result = Res; 2941 2942 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2943 // If the AndMask is zero for this bit, clear the bit. 2944 if (AndMask[BitIdx] == 0) 2945 Result->Provenance[BitIdx] = BitPart::Unset; 2946 return Result; 2947 } 2948 2949 // If this is a zext instruction zero extend the result. 2950 if (match(V, m_ZExt(m_Value(X)))) { 2951 const auto &Res = 2952 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2953 if (!Res) 2954 return Result; 2955 2956 Result = BitPart(Res->Provider, BitWidth); 2957 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2958 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2959 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2960 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2961 Result->Provenance[BitIdx] = BitPart::Unset; 2962 return Result; 2963 } 2964 2965 // BITREVERSE - most likely due to us previous matching a partial 2966 // bitreverse. 2967 if (match(V, m_BitReverse(m_Value(X)))) { 2968 const auto &Res = 2969 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2970 if (!Res) 2971 return Result; 2972 2973 Result = BitPart(Res->Provider, BitWidth); 2974 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2975 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2976 return Result; 2977 } 2978 2979 // BSWAP - most likely due to us previous matching a partial bswap. 2980 if (match(V, m_BSwap(m_Value(X)))) { 2981 const auto &Res = 2982 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2983 if (!Res) 2984 return Result; 2985 2986 unsigned ByteWidth = BitWidth / 8; 2987 Result = BitPart(Res->Provider, BitWidth); 2988 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2989 unsigned ByteBitOfs = ByteIdx * 8; 2990 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2991 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2992 Res->Provenance[ByteBitOfs + BitIdx]; 2993 } 2994 return Result; 2995 } 2996 2997 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2998 // amount (modulo). 2999 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3000 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3001 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3002 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3003 // We can treat fshr as a fshl by flipping the modulo amount. 3004 unsigned ModAmt = C->urem(BitWidth); 3005 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3006 ModAmt = BitWidth - ModAmt; 3007 3008 const auto &LHS = 3009 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3010 const auto &RHS = 3011 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3012 3013 // Check we have both sources and they are from the same provider. 3014 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3015 return Result; 3016 3017 unsigned StartBitRHS = BitWidth - ModAmt; 3018 Result = BitPart(LHS->Provider, BitWidth); 3019 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3020 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3021 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3022 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3023 return Result; 3024 } 3025 } 3026 3027 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3028 // the input value to the bswap/bitreverse. 3029 Result = BitPart(V, BitWidth); 3030 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3031 Result->Provenance[BitIdx] = BitIdx; 3032 return Result; 3033 } 3034 3035 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3036 unsigned BitWidth) { 3037 if (From % 8 != To % 8) 3038 return false; 3039 // Convert from bit indices to byte indices and check for a byte reversal. 3040 From >>= 3; 3041 To >>= 3; 3042 BitWidth >>= 3; 3043 return From == BitWidth - To - 1; 3044 } 3045 3046 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3047 unsigned BitWidth) { 3048 return From == BitWidth - To - 1; 3049 } 3050 3051 bool llvm::recognizeBSwapOrBitReverseIdiom( 3052 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3053 SmallVectorImpl<Instruction *> &InsertedInsts) { 3054 if (Operator::getOpcode(I) != Instruction::Or) 3055 return false; 3056 if (!MatchBSwaps && !MatchBitReversals) 3057 return false; 3058 Type *ITy = I->getType(); 3059 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3060 return false; // Can't do integer/elements > 128 bits. 3061 3062 Type *DemandedTy = ITy; 3063 if (I->hasOneUse()) 3064 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3065 DemandedTy = Trunc->getType(); 3066 3067 // Try to find all the pieces corresponding to the bswap. 3068 std::map<Value *, Optional<BitPart>> BPS; 3069 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3070 if (!Res) 3071 return false; 3072 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3073 assert(all_of(BitProvenance, 3074 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3075 "Illegal bit provenance index"); 3076 3077 // If the upper bits are zero, then attempt to perform as a truncated op. 3078 if (BitProvenance.back() == BitPart::Unset) { 3079 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3080 BitProvenance = BitProvenance.drop_back(); 3081 if (BitProvenance.empty()) 3082 return false; // TODO - handle null value? 3083 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3084 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3085 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3086 } 3087 3088 // Check BitProvenance hasn't found a source larger than the result type. 3089 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3090 if (DemandedBW > ITy->getScalarSizeInBits()) 3091 return false; 3092 3093 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3094 // only byteswap values with an even number of bytes. 3095 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3096 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3097 bool OKForBitReverse = MatchBitReversals; 3098 for (unsigned BitIdx = 0; 3099 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3100 if (BitProvenance[BitIdx] == BitPart::Unset) { 3101 DemandedMask.clearBit(BitIdx); 3102 continue; 3103 } 3104 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3105 DemandedBW); 3106 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3107 BitIdx, DemandedBW); 3108 } 3109 3110 Intrinsic::ID Intrin; 3111 if (OKForBSwap) 3112 Intrin = Intrinsic::bswap; 3113 else if (OKForBitReverse) 3114 Intrin = Intrinsic::bitreverse; 3115 else 3116 return false; 3117 3118 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3119 Value *Provider = Res->Provider; 3120 3121 // We may need to truncate the provider. 3122 if (DemandedTy != Provider->getType()) { 3123 auto *Trunc = 3124 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3125 InsertedInsts.push_back(Trunc); 3126 Provider = Trunc; 3127 } 3128 3129 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3130 InsertedInsts.push_back(Result); 3131 3132 if (!DemandedMask.isAllOnesValue()) { 3133 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3134 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3135 InsertedInsts.push_back(Result); 3136 } 3137 3138 // We may need to zeroextend back to the result type. 3139 if (ITy != Result->getType()) { 3140 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3141 InsertedInsts.push_back(ExtInst); 3142 } 3143 3144 return true; 3145 } 3146 3147 // CodeGen has special handling for some string functions that may replace 3148 // them with target-specific intrinsics. Since that'd skip our interceptors 3149 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3150 // we mark affected calls as NoBuiltin, which will disable optimization 3151 // in CodeGen. 3152 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3153 CallInst *CI, const TargetLibraryInfo *TLI) { 3154 Function *F = CI->getCalledFunction(); 3155 LibFunc Func; 3156 if (F && !F->hasLocalLinkage() && F->hasName() && 3157 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3158 !F->doesNotAccessMemory()) 3159 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3160 } 3161 3162 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3163 // We can't have a PHI with a metadata type. 3164 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3165 return false; 3166 3167 // Early exit. 3168 if (!isa<Constant>(I->getOperand(OpIdx))) 3169 return true; 3170 3171 switch (I->getOpcode()) { 3172 default: 3173 return true; 3174 case Instruction::Call: 3175 case Instruction::Invoke: { 3176 const auto &CB = cast<CallBase>(*I); 3177 3178 // Can't handle inline asm. Skip it. 3179 if (CB.isInlineAsm()) 3180 return false; 3181 3182 // Constant bundle operands may need to retain their constant-ness for 3183 // correctness. 3184 if (CB.isBundleOperand(OpIdx)) 3185 return false; 3186 3187 if (OpIdx < CB.getNumArgOperands()) { 3188 // Some variadic intrinsics require constants in the variadic arguments, 3189 // which currently aren't markable as immarg. 3190 if (isa<IntrinsicInst>(CB) && 3191 OpIdx >= CB.getFunctionType()->getNumParams()) { 3192 // This is known to be OK for stackmap. 3193 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3194 } 3195 3196 // gcroot is a special case, since it requires a constant argument which 3197 // isn't also required to be a simple ConstantInt. 3198 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3199 return false; 3200 3201 // Some intrinsic operands are required to be immediates. 3202 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3203 } 3204 3205 // It is never allowed to replace the call argument to an intrinsic, but it 3206 // may be possible for a call. 3207 return !isa<IntrinsicInst>(CB); 3208 } 3209 case Instruction::ShuffleVector: 3210 // Shufflevector masks are constant. 3211 return OpIdx != 2; 3212 case Instruction::Switch: 3213 case Instruction::ExtractValue: 3214 // All operands apart from the first are constant. 3215 return OpIdx == 0; 3216 case Instruction::InsertValue: 3217 // All operands apart from the first and the second are constant. 3218 return OpIdx < 2; 3219 case Instruction::Alloca: 3220 // Static allocas (constant size in the entry block) are handled by 3221 // prologue/epilogue insertion so they're free anyway. We definitely don't 3222 // want to make them non-constant. 3223 return !cast<AllocaInst>(I)->isStaticAlloca(); 3224 case Instruction::GetElementPtr: 3225 if (OpIdx == 0) 3226 return true; 3227 gep_type_iterator It = gep_type_begin(I); 3228 for (auto E = std::next(It, OpIdx); It != E; ++It) 3229 if (It.isStruct()) 3230 return false; 3231 return true; 3232 } 3233 } 3234 3235 Value *llvm::invertCondition(Value *Condition) { 3236 // First: Check if it's a constant 3237 if (Constant *C = dyn_cast<Constant>(Condition)) 3238 return ConstantExpr::getNot(C); 3239 3240 // Second: If the condition is already inverted, return the original value 3241 Value *NotCondition; 3242 if (match(Condition, m_Not(m_Value(NotCondition)))) 3243 return NotCondition; 3244 3245 BasicBlock *Parent = nullptr; 3246 Instruction *Inst = dyn_cast<Instruction>(Condition); 3247 if (Inst) 3248 Parent = Inst->getParent(); 3249 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3250 Parent = &Arg->getParent()->getEntryBlock(); 3251 assert(Parent && "Unsupported condition to invert"); 3252 3253 // Third: Check all the users for an invert 3254 for (User *U : Condition->users()) 3255 if (Instruction *I = dyn_cast<Instruction>(U)) 3256 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3257 return I; 3258 3259 // Last option: Create a new instruction 3260 auto *Inverted = 3261 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3262 if (Inst && !isa<PHINode>(Inst)) 3263 Inverted->insertAfter(Inst); 3264 else 3265 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3266 return Inverted; 3267 } 3268