1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/DomTreeUpdater.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 TerminatorInst *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->deleteEdgeRelaxed(BB, OldDest); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 208 continue; 209 } 210 211 // Otherwise, check to see if the switch only branches to one destination. 212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 213 // destinations. 214 if (i->getCaseSuccessor() != TheOnlyDest) 215 TheOnlyDest = nullptr; 216 217 // Increment this iterator as we haven't removed the case. 218 ++i; 219 } 220 221 if (CI && !TheOnlyDest) { 222 // Branching on a constant, but not any of the cases, go to the default 223 // successor. 224 TheOnlyDest = SI->getDefaultDest(); 225 } 226 227 // If we found a single destination that we can fold the switch into, do so 228 // now. 229 if (TheOnlyDest) { 230 // Insert the new branch. 231 Builder.CreateBr(TheOnlyDest); 232 BasicBlock *BB = SI->getParent(); 233 std::vector <DominatorTree::UpdateType> Updates; 234 if (DTU) 235 Updates.reserve(SI->getNumSuccessors() - 1); 236 237 // Remove entries from PHI nodes which we no longer branch to... 238 for (BasicBlock *Succ : successors(SI)) { 239 // Found case matching a constant operand? 240 if (Succ == TheOnlyDest) { 241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 242 } else { 243 Succ->removePredecessor(BB); 244 if (DTU) 245 Updates.push_back({DominatorTree::Delete, BB, Succ}); 246 } 247 } 248 249 // Delete the old switch. 250 Value *Cond = SI->getCondition(); 251 SI->eraseFromParent(); 252 if (DeleteDeadConditions) 253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 254 if (DTU) 255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 256 return true; 257 } 258 259 if (SI->getNumCases() == 1) { 260 // Otherwise, we can fold this switch into a conditional branch 261 // instruction if it has only one non-default destination. 262 auto FirstCase = *SI->case_begin(); 263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 264 FirstCase.getCaseValue(), "cond"); 265 266 // Insert the new branch. 267 BranchInst *NewBr = Builder.CreateCondBr(Cond, 268 FirstCase.getCaseSuccessor(), 269 SI->getDefaultDest()); 270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 271 if (MD && MD->getNumOperands() == 3) { 272 ConstantInt *SICase = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 274 ConstantInt *SIDef = 275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 276 assert(SICase && SIDef); 277 // The TrueWeight should be the weight for the single case of SI. 278 NewBr->setMetadata(LLVMContext::MD_prof, 279 MDBuilder(BB->getContext()). 280 createBranchWeights(SICase->getValue().getZExtValue(), 281 SIDef->getValue().getZExtValue())); 282 } 283 284 // Update make.implicit metadata to the newly-created conditional branch. 285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 286 if (MakeImplicitMD) 287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 288 289 // Delete the old switch. 290 SI->eraseFromParent(); 291 return true; 292 } 293 return false; 294 } 295 296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 297 // indirectbr blockaddress(@F, @BB) -> br label @BB 298 if (auto *BA = 299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 300 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 301 std::vector <DominatorTree::UpdateType> Updates; 302 if (DTU) 303 Updates.reserve(IBI->getNumDestinations() - 1); 304 305 // Insert the new branch. 306 Builder.CreateBr(TheOnlyDest); 307 308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 309 if (IBI->getDestination(i) == TheOnlyDest) { 310 TheOnlyDest = nullptr; 311 } else { 312 BasicBlock *ParentBB = IBI->getParent(); 313 BasicBlock *DestBB = IBI->getDestination(i); 314 DestBB->removePredecessor(ParentBB); 315 if (DTU) 316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 317 } 318 } 319 Value *Address = IBI->getAddress(); 320 IBI->eraseFromParent(); 321 if (DeleteDeadConditions) 322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 323 324 // If we didn't find our destination in the IBI successor list, then we 325 // have undefined behavior. Replace the unconditional branch with an 326 // 'unreachable' instruction. 327 if (TheOnlyDest) { 328 BB->getTerminator()->eraseFromParent(); 329 new UnreachableInst(BB->getContext(), BB); 330 } 331 332 if (DTU) 333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 334 return true; 335 } 336 } 337 338 return false; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Local dead code elimination. 343 // 344 345 /// isInstructionTriviallyDead - Return true if the result produced by the 346 /// instruction is not used, and the instruction has no side effects. 347 /// 348 bool llvm::isInstructionTriviallyDead(Instruction *I, 349 const TargetLibraryInfo *TLI) { 350 if (!I->use_empty()) 351 return false; 352 return wouldInstructionBeTriviallyDead(I, TLI); 353 } 354 355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 356 const TargetLibraryInfo *TLI) { 357 if (I->isTerminator()) 358 return false; 359 360 // We don't want the landingpad-like instructions removed by anything this 361 // general. 362 if (I->isEHPad()) 363 return false; 364 365 // We don't want debug info removed by anything this general, unless 366 // debug info is empty. 367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 368 if (DDI->getAddress()) 369 return false; 370 return true; 371 } 372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 373 if (DVI->getValue()) 374 return false; 375 return true; 376 } 377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 378 if (DLI->getLabel()) 379 return false; 380 return true; 381 } 382 383 if (!I->mayHaveSideEffects()) 384 return true; 385 386 // Special case intrinsics that "may have side effects" but can be deleted 387 // when dead. 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 389 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 390 if (II->getIntrinsicID() == Intrinsic::stacksave || 391 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 392 return true; 393 394 // Lifetime intrinsics are dead when their right-hand is undef. 395 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 396 II->getIntrinsicID() == Intrinsic::lifetime_end) 397 return isa<UndefValue>(II->getArgOperand(1)); 398 399 // Assumptions are dead if their condition is trivially true. Guards on 400 // true are operationally no-ops. In the future we can consider more 401 // sophisticated tradeoffs for guards considering potential for check 402 // widening, but for now we keep things simple. 403 if (II->getIntrinsicID() == Intrinsic::assume || 404 II->getIntrinsicID() == Intrinsic::experimental_guard) { 405 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 406 return !Cond->isZero(); 407 408 return false; 409 } 410 } 411 412 if (isAllocLikeFn(I, TLI)) 413 return true; 414 415 if (CallInst *CI = isFreeCall(I, TLI)) 416 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 417 return C->isNullValue() || isa<UndefValue>(C); 418 419 if (CallSite CS = CallSite(I)) 420 if (isMathLibCallNoop(CS, TLI)) 421 return true; 422 423 return false; 424 } 425 426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 427 /// trivially dead instruction, delete it. If that makes any of its operands 428 /// trivially dead, delete them too, recursively. Return true if any 429 /// instructions were deleted. 430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 431 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 432 Instruction *I = dyn_cast<Instruction>(V); 433 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 434 return false; 435 436 SmallVector<Instruction*, 16> DeadInsts; 437 DeadInsts.push_back(I); 438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 439 440 return true; 441 } 442 443 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 445 MemorySSAUpdater *MSSAU) { 446 // Process the dead instruction list until empty. 447 while (!DeadInsts.empty()) { 448 Instruction &I = *DeadInsts.pop_back_val(); 449 assert(I.use_empty() && "Instructions with uses are not dead."); 450 assert(isInstructionTriviallyDead(&I, TLI) && 451 "Live instruction found in dead worklist!"); 452 453 // Don't lose the debug info while deleting the instructions. 454 salvageDebugInfo(I); 455 456 // Null out all of the instruction's operands to see if any operand becomes 457 // dead as we go. 458 for (Use &OpU : I.operands()) { 459 Value *OpV = OpU.get(); 460 OpU.set(nullptr); 461 462 if (!OpV->use_empty()) 463 continue; 464 465 // If the operand is an instruction that became dead as we nulled out the 466 // operand, and if it is 'trivially' dead, delete it in a future loop 467 // iteration. 468 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 469 if (isInstructionTriviallyDead(OpI, TLI)) 470 DeadInsts.push_back(OpI); 471 } 472 if (MSSAU) 473 MSSAU->removeMemoryAccess(&I); 474 475 I.eraseFromParent(); 476 } 477 } 478 479 /// areAllUsesEqual - Check whether the uses of a value are all the same. 480 /// This is similar to Instruction::hasOneUse() except this will also return 481 /// true when there are no uses or multiple uses that all refer to the same 482 /// value. 483 static bool areAllUsesEqual(Instruction *I) { 484 Value::user_iterator UI = I->user_begin(); 485 Value::user_iterator UE = I->user_end(); 486 if (UI == UE) 487 return true; 488 489 User *TheUse = *UI; 490 for (++UI; UI != UE; ++UI) { 491 if (*UI != TheUse) 492 return false; 493 } 494 return true; 495 } 496 497 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 498 /// dead PHI node, due to being a def-use chain of single-use nodes that 499 /// either forms a cycle or is terminated by a trivially dead instruction, 500 /// delete it. If that makes any of its operands trivially dead, delete them 501 /// too, recursively. Return true if a change was made. 502 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 503 const TargetLibraryInfo *TLI) { 504 SmallPtrSet<Instruction*, 4> Visited; 505 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 506 I = cast<Instruction>(*I->user_begin())) { 507 if (I->use_empty()) 508 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 509 510 // If we find an instruction more than once, we're on a cycle that 511 // won't prove fruitful. 512 if (!Visited.insert(I).second) { 513 // Break the cycle and delete the instruction and its operands. 514 I->replaceAllUsesWith(UndefValue::get(I->getType())); 515 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 516 return true; 517 } 518 } 519 return false; 520 } 521 522 static bool 523 simplifyAndDCEInstruction(Instruction *I, 524 SmallSetVector<Instruction *, 16> &WorkList, 525 const DataLayout &DL, 526 const TargetLibraryInfo *TLI) { 527 if (isInstructionTriviallyDead(I, TLI)) { 528 salvageDebugInfo(*I); 529 530 // Null out all of the instruction's operands to see if any operand becomes 531 // dead as we go. 532 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 533 Value *OpV = I->getOperand(i); 534 I->setOperand(i, nullptr); 535 536 if (!OpV->use_empty() || I == OpV) 537 continue; 538 539 // If the operand is an instruction that became dead as we nulled out the 540 // operand, and if it is 'trivially' dead, delete it in a future loop 541 // iteration. 542 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 543 if (isInstructionTriviallyDead(OpI, TLI)) 544 WorkList.insert(OpI); 545 } 546 547 I->eraseFromParent(); 548 549 return true; 550 } 551 552 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 553 // Add the users to the worklist. CAREFUL: an instruction can use itself, 554 // in the case of a phi node. 555 for (User *U : I->users()) { 556 if (U != I) { 557 WorkList.insert(cast<Instruction>(U)); 558 } 559 } 560 561 // Replace the instruction with its simplified value. 562 bool Changed = false; 563 if (!I->use_empty()) { 564 I->replaceAllUsesWith(SimpleV); 565 Changed = true; 566 } 567 if (isInstructionTriviallyDead(I, TLI)) { 568 I->eraseFromParent(); 569 Changed = true; 570 } 571 return Changed; 572 } 573 return false; 574 } 575 576 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 577 /// simplify any instructions in it and recursively delete dead instructions. 578 /// 579 /// This returns true if it changed the code, note that it can delete 580 /// instructions in other blocks as well in this block. 581 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 582 const TargetLibraryInfo *TLI) { 583 bool MadeChange = false; 584 const DataLayout &DL = BB->getModule()->getDataLayout(); 585 586 #ifndef NDEBUG 587 // In debug builds, ensure that the terminator of the block is never replaced 588 // or deleted by these simplifications. The idea of simplification is that it 589 // cannot introduce new instructions, and there is no way to replace the 590 // terminator of a block without introducing a new instruction. 591 AssertingVH<Instruction> TerminatorVH(&BB->back()); 592 #endif 593 594 SmallSetVector<Instruction *, 16> WorkList; 595 // Iterate over the original function, only adding insts to the worklist 596 // if they actually need to be revisited. This avoids having to pre-init 597 // the worklist with the entire function's worth of instructions. 598 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 599 BI != E;) { 600 assert(!BI->isTerminator()); 601 Instruction *I = &*BI; 602 ++BI; 603 604 // We're visiting this instruction now, so make sure it's not in the 605 // worklist from an earlier visit. 606 if (!WorkList.count(I)) 607 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 608 } 609 610 while (!WorkList.empty()) { 611 Instruction *I = WorkList.pop_back_val(); 612 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 613 } 614 return MadeChange; 615 } 616 617 //===----------------------------------------------------------------------===// 618 // Control Flow Graph Restructuring. 619 // 620 621 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 622 /// method is called when we're about to delete Pred as a predecessor of BB. If 623 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 624 /// 625 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 626 /// nodes that collapse into identity values. For example, if we have: 627 /// x = phi(1, 0, 0, 0) 628 /// y = and x, z 629 /// 630 /// .. and delete the predecessor corresponding to the '1', this will attempt to 631 /// recursively fold the and to 0. 632 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 633 DomTreeUpdater *DTU) { 634 // This only adjusts blocks with PHI nodes. 635 if (!isa<PHINode>(BB->begin())) 636 return; 637 638 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 639 // them down. This will leave us with single entry phi nodes and other phis 640 // that can be removed. 641 BB->removePredecessor(Pred, true); 642 643 WeakTrackingVH PhiIt = &BB->front(); 644 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 645 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 646 Value *OldPhiIt = PhiIt; 647 648 if (!recursivelySimplifyInstruction(PN)) 649 continue; 650 651 // If recursive simplification ended up deleting the next PHI node we would 652 // iterate to, then our iterator is invalid, restart scanning from the top 653 // of the block. 654 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 655 } 656 if (DTU) 657 DTU->deleteEdgeRelaxed(Pred, BB); 658 } 659 660 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 661 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 662 /// between them, moving the instructions in the predecessor into DestBB and 663 /// deleting the predecessor block. 664 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 665 DomTreeUpdater *DTU) { 666 667 // If BB has single-entry PHI nodes, fold them. 668 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 669 Value *NewVal = PN->getIncomingValue(0); 670 // Replace self referencing PHI with undef, it must be dead. 671 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 672 PN->replaceAllUsesWith(NewVal); 673 PN->eraseFromParent(); 674 } 675 676 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 677 assert(PredBB && "Block doesn't have a single predecessor!"); 678 679 bool ReplaceEntryBB = false; 680 if (PredBB == &DestBB->getParent()->getEntryBlock()) 681 ReplaceEntryBB = true; 682 683 // DTU updates: Collect all the edges that enter 684 // PredBB. These dominator edges will be redirected to DestBB. 685 std::vector <DominatorTree::UpdateType> Updates; 686 687 if (DTU) { 688 Updates.reserve(1 + (2 * pred_size(PredBB))); 689 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 690 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 691 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 692 // This predecessor of PredBB may already have DestBB as a successor. 693 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 694 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 695 } 696 } 697 698 // Zap anything that took the address of DestBB. Not doing this will give the 699 // address an invalid value. 700 if (DestBB->hasAddressTaken()) { 701 BlockAddress *BA = BlockAddress::get(DestBB); 702 Constant *Replacement = 703 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 704 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 705 BA->getType())); 706 BA->destroyConstant(); 707 } 708 709 // Anything that branched to PredBB now branches to DestBB. 710 PredBB->replaceAllUsesWith(DestBB); 711 712 // Splice all the instructions from PredBB to DestBB. 713 PredBB->getTerminator()->eraseFromParent(); 714 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 715 new UnreachableInst(PredBB->getContext(), PredBB); 716 717 // If the PredBB is the entry block of the function, move DestBB up to 718 // become the entry block after we erase PredBB. 719 if (ReplaceEntryBB) 720 DestBB->moveAfter(PredBB); 721 722 if (DTU) { 723 assert(PredBB->getInstList().size() == 1 && 724 isa<UnreachableInst>(PredBB->getTerminator()) && 725 "The successor list of PredBB isn't empty before " 726 "applying corresponding DTU updates."); 727 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 728 DTU->deleteBB(PredBB); 729 // Recalculation of DomTree is needed when updating a forward DomTree and 730 // the Entry BB is replaced. 731 if (ReplaceEntryBB && DTU->hasDomTree()) { 732 // The entry block was removed and there is no external interface for 733 // the dominator tree to be notified of this change. In this corner-case 734 // we recalculate the entire tree. 735 DTU->recalculate(*(DestBB->getParent())); 736 } 737 } 738 739 else { 740 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 741 } 742 } 743 744 /// CanMergeValues - Return true if we can choose one of these values to use 745 /// in place of the other. Note that we will always choose the non-undef 746 /// value to keep. 747 static bool CanMergeValues(Value *First, Value *Second) { 748 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 749 } 750 751 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 752 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 753 /// 754 /// Assumption: Succ is the single successor for BB. 755 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 756 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 757 758 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 759 << Succ->getName() << "\n"); 760 // Shortcut, if there is only a single predecessor it must be BB and merging 761 // is always safe 762 if (Succ->getSinglePredecessor()) return true; 763 764 // Make a list of the predecessors of BB 765 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 766 767 // Look at all the phi nodes in Succ, to see if they present a conflict when 768 // merging these blocks 769 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 770 PHINode *PN = cast<PHINode>(I); 771 772 // If the incoming value from BB is again a PHINode in 773 // BB which has the same incoming value for *PI as PN does, we can 774 // merge the phi nodes and then the blocks can still be merged 775 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 776 if (BBPN && BBPN->getParent() == BB) { 777 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 778 BasicBlock *IBB = PN->getIncomingBlock(PI); 779 if (BBPreds.count(IBB) && 780 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 781 PN->getIncomingValue(PI))) { 782 LLVM_DEBUG(dbgs() 783 << "Can't fold, phi node " << PN->getName() << " in " 784 << Succ->getName() << " is conflicting with " 785 << BBPN->getName() << " with regard to common predecessor " 786 << IBB->getName() << "\n"); 787 return false; 788 } 789 } 790 } else { 791 Value* Val = PN->getIncomingValueForBlock(BB); 792 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 793 // See if the incoming value for the common predecessor is equal to the 794 // one for BB, in which case this phi node will not prevent the merging 795 // of the block. 796 BasicBlock *IBB = PN->getIncomingBlock(PI); 797 if (BBPreds.count(IBB) && 798 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 799 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 800 << " in " << Succ->getName() 801 << " is conflicting with regard to common " 802 << "predecessor " << IBB->getName() << "\n"); 803 return false; 804 } 805 } 806 } 807 } 808 809 return true; 810 } 811 812 using PredBlockVector = SmallVector<BasicBlock *, 16>; 813 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 814 815 /// Determines the value to use as the phi node input for a block. 816 /// 817 /// Select between \p OldVal any value that we know flows from \p BB 818 /// to a particular phi on the basis of which one (if either) is not 819 /// undef. Update IncomingValues based on the selected value. 820 /// 821 /// \param OldVal The value we are considering selecting. 822 /// \param BB The block that the value flows in from. 823 /// \param IncomingValues A map from block-to-value for other phi inputs 824 /// that we have examined. 825 /// 826 /// \returns the selected value. 827 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 828 IncomingValueMap &IncomingValues) { 829 if (!isa<UndefValue>(OldVal)) { 830 assert((!IncomingValues.count(BB) || 831 IncomingValues.find(BB)->second == OldVal) && 832 "Expected OldVal to match incoming value from BB!"); 833 834 IncomingValues.insert(std::make_pair(BB, OldVal)); 835 return OldVal; 836 } 837 838 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 839 if (It != IncomingValues.end()) return It->second; 840 841 return OldVal; 842 } 843 844 /// Create a map from block to value for the operands of a 845 /// given phi. 846 /// 847 /// Create a map from block to value for each non-undef value flowing 848 /// into \p PN. 849 /// 850 /// \param PN The phi we are collecting the map for. 851 /// \param IncomingValues [out] The map from block to value for this phi. 852 static void gatherIncomingValuesToPhi(PHINode *PN, 853 IncomingValueMap &IncomingValues) { 854 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 855 BasicBlock *BB = PN->getIncomingBlock(i); 856 Value *V = PN->getIncomingValue(i); 857 858 if (!isa<UndefValue>(V)) 859 IncomingValues.insert(std::make_pair(BB, V)); 860 } 861 } 862 863 /// Replace the incoming undef values to a phi with the values 864 /// from a block-to-value map. 865 /// 866 /// \param PN The phi we are replacing the undefs in. 867 /// \param IncomingValues A map from block to value. 868 static void replaceUndefValuesInPhi(PHINode *PN, 869 const IncomingValueMap &IncomingValues) { 870 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 871 Value *V = PN->getIncomingValue(i); 872 873 if (!isa<UndefValue>(V)) continue; 874 875 BasicBlock *BB = PN->getIncomingBlock(i); 876 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 877 if (It == IncomingValues.end()) continue; 878 879 PN->setIncomingValue(i, It->second); 880 } 881 } 882 883 /// Replace a value flowing from a block to a phi with 884 /// potentially multiple instances of that value flowing from the 885 /// block's predecessors to the phi. 886 /// 887 /// \param BB The block with the value flowing into the phi. 888 /// \param BBPreds The predecessors of BB. 889 /// \param PN The phi that we are updating. 890 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 891 const PredBlockVector &BBPreds, 892 PHINode *PN) { 893 Value *OldVal = PN->removeIncomingValue(BB, false); 894 assert(OldVal && "No entry in PHI for Pred BB!"); 895 896 IncomingValueMap IncomingValues; 897 898 // We are merging two blocks - BB, and the block containing PN - and 899 // as a result we need to redirect edges from the predecessors of BB 900 // to go to the block containing PN, and update PN 901 // accordingly. Since we allow merging blocks in the case where the 902 // predecessor and successor blocks both share some predecessors, 903 // and where some of those common predecessors might have undef 904 // values flowing into PN, we want to rewrite those values to be 905 // consistent with the non-undef values. 906 907 gatherIncomingValuesToPhi(PN, IncomingValues); 908 909 // If this incoming value is one of the PHI nodes in BB, the new entries 910 // in the PHI node are the entries from the old PHI. 911 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 912 PHINode *OldValPN = cast<PHINode>(OldVal); 913 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 914 // Note that, since we are merging phi nodes and BB and Succ might 915 // have common predecessors, we could end up with a phi node with 916 // identical incoming branches. This will be cleaned up later (and 917 // will trigger asserts if we try to clean it up now, without also 918 // simplifying the corresponding conditional branch). 919 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 920 Value *PredVal = OldValPN->getIncomingValue(i); 921 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 922 IncomingValues); 923 924 // And add a new incoming value for this predecessor for the 925 // newly retargeted branch. 926 PN->addIncoming(Selected, PredBB); 927 } 928 } else { 929 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 930 // Update existing incoming values in PN for this 931 // predecessor of BB. 932 BasicBlock *PredBB = BBPreds[i]; 933 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 934 IncomingValues); 935 936 // And add a new incoming value for this predecessor for the 937 // newly retargeted branch. 938 PN->addIncoming(Selected, PredBB); 939 } 940 } 941 942 replaceUndefValuesInPhi(PN, IncomingValues); 943 } 944 945 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 946 /// unconditional branch, and contains no instructions other than PHI nodes, 947 /// potential side-effect free intrinsics and the branch. If possible, 948 /// eliminate BB by rewriting all the predecessors to branch to the successor 949 /// block and return true. If we can't transform, return false. 950 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 951 DomTreeUpdater *DTU) { 952 assert(BB != &BB->getParent()->getEntryBlock() && 953 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 954 955 // We can't eliminate infinite loops. 956 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 957 if (BB == Succ) return false; 958 959 // Check to see if merging these blocks would cause conflicts for any of the 960 // phi nodes in BB or Succ. If not, we can safely merge. 961 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 962 963 // Check for cases where Succ has multiple predecessors and a PHI node in BB 964 // has uses which will not disappear when the PHI nodes are merged. It is 965 // possible to handle such cases, but difficult: it requires checking whether 966 // BB dominates Succ, which is non-trivial to calculate in the case where 967 // Succ has multiple predecessors. Also, it requires checking whether 968 // constructing the necessary self-referential PHI node doesn't introduce any 969 // conflicts; this isn't too difficult, but the previous code for doing this 970 // was incorrect. 971 // 972 // Note that if this check finds a live use, BB dominates Succ, so BB is 973 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 974 // folding the branch isn't profitable in that case anyway. 975 if (!Succ->getSinglePredecessor()) { 976 BasicBlock::iterator BBI = BB->begin(); 977 while (isa<PHINode>(*BBI)) { 978 for (Use &U : BBI->uses()) { 979 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 980 if (PN->getIncomingBlock(U) != BB) 981 return false; 982 } else { 983 return false; 984 } 985 } 986 ++BBI; 987 } 988 } 989 990 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 991 992 std::vector<DominatorTree::UpdateType> Updates; 993 if (DTU) { 994 Updates.reserve(1 + (2 * pred_size(BB))); 995 Updates.push_back({DominatorTree::Delete, BB, Succ}); 996 // All predecessors of BB will be moved to Succ. 997 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 998 Updates.push_back({DominatorTree::Delete, *I, BB}); 999 // This predecessor of BB may already have Succ as a successor. 1000 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1001 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1002 } 1003 } 1004 1005 if (isa<PHINode>(Succ->begin())) { 1006 // If there is more than one pred of succ, and there are PHI nodes in 1007 // the successor, then we need to add incoming edges for the PHI nodes 1008 // 1009 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1010 1011 // Loop over all of the PHI nodes in the successor of BB. 1012 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1013 PHINode *PN = cast<PHINode>(I); 1014 1015 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1016 } 1017 } 1018 1019 if (Succ->getSinglePredecessor()) { 1020 // BB is the only predecessor of Succ, so Succ will end up with exactly 1021 // the same predecessors BB had. 1022 1023 // Copy over any phi, debug or lifetime instruction. 1024 BB->getTerminator()->eraseFromParent(); 1025 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1026 BB->getInstList()); 1027 } else { 1028 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1029 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1030 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1031 PN->eraseFromParent(); 1032 } 1033 } 1034 1035 // If the unconditional branch we replaced contains llvm.loop metadata, we 1036 // add the metadata to the branch instructions in the predecessors. 1037 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1038 Instruction *TI = BB->getTerminator(); 1039 if (TI) 1040 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1041 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1042 BasicBlock *Pred = *PI; 1043 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1044 } 1045 1046 // Everything that jumped to BB now goes to Succ. 1047 BB->replaceAllUsesWith(Succ); 1048 if (!Succ->hasName()) Succ->takeName(BB); 1049 1050 // Clear the successor list of BB to match updates applying to DTU later. 1051 if (BB->getTerminator()) 1052 BB->getInstList().pop_back(); 1053 new UnreachableInst(BB->getContext(), BB); 1054 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1055 "applying corresponding DTU updates."); 1056 1057 if (DTU) { 1058 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1059 DTU->deleteBB(BB); 1060 } else { 1061 BB->eraseFromParent(); // Delete the old basic block. 1062 } 1063 return true; 1064 } 1065 1066 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1067 /// nodes in this block. This doesn't try to be clever about PHI nodes 1068 /// which differ only in the order of the incoming values, but instcombine 1069 /// orders them so it usually won't matter. 1070 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1071 // This implementation doesn't currently consider undef operands 1072 // specially. Theoretically, two phis which are identical except for 1073 // one having an undef where the other doesn't could be collapsed. 1074 1075 struct PHIDenseMapInfo { 1076 static PHINode *getEmptyKey() { 1077 return DenseMapInfo<PHINode *>::getEmptyKey(); 1078 } 1079 1080 static PHINode *getTombstoneKey() { 1081 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1082 } 1083 1084 static unsigned getHashValue(PHINode *PN) { 1085 // Compute a hash value on the operands. Instcombine will likely have 1086 // sorted them, which helps expose duplicates, but we have to check all 1087 // the operands to be safe in case instcombine hasn't run. 1088 return static_cast<unsigned>(hash_combine( 1089 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1090 hash_combine_range(PN->block_begin(), PN->block_end()))); 1091 } 1092 1093 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1094 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1095 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1096 return LHS == RHS; 1097 return LHS->isIdenticalTo(RHS); 1098 } 1099 }; 1100 1101 // Set of unique PHINodes. 1102 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1103 1104 // Examine each PHI. 1105 bool Changed = false; 1106 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1107 auto Inserted = PHISet.insert(PN); 1108 if (!Inserted.second) { 1109 // A duplicate. Replace this PHI with its duplicate. 1110 PN->replaceAllUsesWith(*Inserted.first); 1111 PN->eraseFromParent(); 1112 Changed = true; 1113 1114 // The RAUW can change PHIs that we already visited. Start over from the 1115 // beginning. 1116 PHISet.clear(); 1117 I = BB->begin(); 1118 } 1119 } 1120 1121 return Changed; 1122 } 1123 1124 /// enforceKnownAlignment - If the specified pointer points to an object that 1125 /// we control, modify the object's alignment to PrefAlign. This isn't 1126 /// often possible though. If alignment is important, a more reliable approach 1127 /// is to simply align all global variables and allocation instructions to 1128 /// their preferred alignment from the beginning. 1129 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1130 unsigned PrefAlign, 1131 const DataLayout &DL) { 1132 assert(PrefAlign > Align); 1133 1134 V = V->stripPointerCasts(); 1135 1136 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1137 // TODO: ideally, computeKnownBits ought to have used 1138 // AllocaInst::getAlignment() in its computation already, making 1139 // the below max redundant. But, as it turns out, 1140 // stripPointerCasts recurses through infinite layers of bitcasts, 1141 // while computeKnownBits is not allowed to traverse more than 6 1142 // levels. 1143 Align = std::max(AI->getAlignment(), Align); 1144 if (PrefAlign <= Align) 1145 return Align; 1146 1147 // If the preferred alignment is greater than the natural stack alignment 1148 // then don't round up. This avoids dynamic stack realignment. 1149 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1150 return Align; 1151 AI->setAlignment(PrefAlign); 1152 return PrefAlign; 1153 } 1154 1155 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1156 // TODO: as above, this shouldn't be necessary. 1157 Align = std::max(GO->getAlignment(), Align); 1158 if (PrefAlign <= Align) 1159 return Align; 1160 1161 // If there is a large requested alignment and we can, bump up the alignment 1162 // of the global. If the memory we set aside for the global may not be the 1163 // memory used by the final program then it is impossible for us to reliably 1164 // enforce the preferred alignment. 1165 if (!GO->canIncreaseAlignment()) 1166 return Align; 1167 1168 GO->setAlignment(PrefAlign); 1169 return PrefAlign; 1170 } 1171 1172 return Align; 1173 } 1174 1175 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1176 const DataLayout &DL, 1177 const Instruction *CxtI, 1178 AssumptionCache *AC, 1179 const DominatorTree *DT) { 1180 assert(V->getType()->isPointerTy() && 1181 "getOrEnforceKnownAlignment expects a pointer!"); 1182 1183 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1184 unsigned TrailZ = Known.countMinTrailingZeros(); 1185 1186 // Avoid trouble with ridiculously large TrailZ values, such as 1187 // those computed from a null pointer. 1188 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1189 1190 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1191 1192 // LLVM doesn't support alignments larger than this currently. 1193 Align = std::min(Align, +Value::MaximumAlignment); 1194 1195 if (PrefAlign > Align) 1196 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1197 1198 // We don't need to make any adjustment. 1199 return Align; 1200 } 1201 1202 ///===---------------------------------------------------------------------===// 1203 /// Dbg Intrinsic utilities 1204 /// 1205 1206 /// See if there is a dbg.value intrinsic for DIVar before I. 1207 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1208 Instruction *I) { 1209 // Since we can't guarantee that the original dbg.declare instrinsic 1210 // is removed by LowerDbgDeclare(), we need to make sure that we are 1211 // not inserting the same dbg.value intrinsic over and over. 1212 BasicBlock::InstListType::iterator PrevI(I); 1213 if (PrevI != I->getParent()->getInstList().begin()) { 1214 --PrevI; 1215 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1216 if (DVI->getValue() == I->getOperand(0) && 1217 DVI->getVariable() == DIVar && 1218 DVI->getExpression() == DIExpr) 1219 return true; 1220 } 1221 return false; 1222 } 1223 1224 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1225 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1226 DIExpression *DIExpr, 1227 PHINode *APN) { 1228 // Since we can't guarantee that the original dbg.declare instrinsic 1229 // is removed by LowerDbgDeclare(), we need to make sure that we are 1230 // not inserting the same dbg.value intrinsic over and over. 1231 SmallVector<DbgValueInst *, 1> DbgValues; 1232 findDbgValues(DbgValues, APN); 1233 for (auto *DVI : DbgValues) { 1234 assert(DVI->getValue() == APN); 1235 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1236 return true; 1237 } 1238 return false; 1239 } 1240 1241 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1242 /// (or fragment of the variable) described by \p DII. 1243 /// 1244 /// This is primarily intended as a helper for the different 1245 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1246 /// converted describes an alloca'd variable, so we need to use the 1247 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1248 /// identified as covering an n-bit fragment, if the store size of i1 is at 1249 /// least n bits. 1250 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1251 const DataLayout &DL = DII->getModule()->getDataLayout(); 1252 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1253 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1254 return ValueSize >= *FragmentSize; 1255 // We can't always calculate the size of the DI variable (e.g. if it is a 1256 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1257 // intead. 1258 if (DII->isAddressOfVariable()) 1259 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1260 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1261 return ValueSize >= *FragmentSize; 1262 // Could not determine size of variable. Conservatively return false. 1263 return false; 1264 } 1265 1266 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1267 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1268 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1269 StoreInst *SI, DIBuilder &Builder) { 1270 assert(DII->isAddressOfVariable()); 1271 auto *DIVar = DII->getVariable(); 1272 assert(DIVar && "Missing variable"); 1273 auto *DIExpr = DII->getExpression(); 1274 Value *DV = SI->getOperand(0); 1275 1276 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1277 // FIXME: If storing to a part of the variable described by the dbg.declare, 1278 // then we want to insert a dbg.value for the corresponding fragment. 1279 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1280 << *DII << '\n'); 1281 // For now, when there is a store to parts of the variable (but we do not 1282 // know which part) we insert an dbg.value instrinsic to indicate that we 1283 // know nothing about the variable's content. 1284 DV = UndefValue::get(DV->getType()); 1285 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1286 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1287 SI); 1288 return; 1289 } 1290 1291 // If an argument is zero extended then use argument directly. The ZExt 1292 // may be zapped by an optimization pass in future. 1293 Argument *ExtendedArg = nullptr; 1294 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1295 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1296 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1297 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1298 if (ExtendedArg) { 1299 // If this DII was already describing only a fragment of a variable, ensure 1300 // that fragment is appropriately narrowed here. 1301 // But if a fragment wasn't used, describe the value as the original 1302 // argument (rather than the zext or sext) so that it remains described even 1303 // if the sext/zext is optimized away. This widens the variable description, 1304 // leaving it up to the consumer to know how the smaller value may be 1305 // represented in a larger register. 1306 if (auto Fragment = DIExpr->getFragmentInfo()) { 1307 unsigned FragmentOffset = Fragment->OffsetInBits; 1308 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1309 DIExpr->elements_end() - 3); 1310 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1311 Ops.push_back(FragmentOffset); 1312 const DataLayout &DL = DII->getModule()->getDataLayout(); 1313 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1314 DIExpr = Builder.createExpression(Ops); 1315 } 1316 DV = ExtendedArg; 1317 } 1318 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1319 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1320 SI); 1321 } 1322 1323 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1324 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1325 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1326 LoadInst *LI, DIBuilder &Builder) { 1327 auto *DIVar = DII->getVariable(); 1328 auto *DIExpr = DII->getExpression(); 1329 assert(DIVar && "Missing variable"); 1330 1331 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1332 return; 1333 1334 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1335 // FIXME: If only referring to a part of the variable described by the 1336 // dbg.declare, then we want to insert a dbg.value for the corresponding 1337 // fragment. 1338 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1339 << *DII << '\n'); 1340 return; 1341 } 1342 1343 // We are now tracking the loaded value instead of the address. In the 1344 // future if multi-location support is added to the IR, it might be 1345 // preferable to keep tracking both the loaded value and the original 1346 // address in case the alloca can not be elided. 1347 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1348 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1349 DbgValue->insertAfter(LI); 1350 } 1351 1352 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1353 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1354 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1355 PHINode *APN, DIBuilder &Builder) { 1356 auto *DIVar = DII->getVariable(); 1357 auto *DIExpr = DII->getExpression(); 1358 assert(DIVar && "Missing variable"); 1359 1360 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1361 return; 1362 1363 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1364 // FIXME: If only referring to a part of the variable described by the 1365 // dbg.declare, then we want to insert a dbg.value for the corresponding 1366 // fragment. 1367 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1368 << *DII << '\n'); 1369 return; 1370 } 1371 1372 BasicBlock *BB = APN->getParent(); 1373 auto InsertionPt = BB->getFirstInsertionPt(); 1374 1375 // The block may be a catchswitch block, which does not have a valid 1376 // insertion point. 1377 // FIXME: Insert dbg.value markers in the successors when appropriate. 1378 if (InsertionPt != BB->end()) 1379 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1380 &*InsertionPt); 1381 } 1382 1383 /// Determine whether this alloca is either a VLA or an array. 1384 static bool isArray(AllocaInst *AI) { 1385 return AI->isArrayAllocation() || 1386 AI->getType()->getElementType()->isArrayTy(); 1387 } 1388 1389 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1390 /// of llvm.dbg.value intrinsics. 1391 bool llvm::LowerDbgDeclare(Function &F) { 1392 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1393 SmallVector<DbgDeclareInst *, 4> Dbgs; 1394 for (auto &FI : F) 1395 for (Instruction &BI : FI) 1396 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1397 Dbgs.push_back(DDI); 1398 1399 if (Dbgs.empty()) 1400 return false; 1401 1402 for (auto &I : Dbgs) { 1403 DbgDeclareInst *DDI = I; 1404 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1405 // If this is an alloca for a scalar variable, insert a dbg.value 1406 // at each load and store to the alloca and erase the dbg.declare. 1407 // The dbg.values allow tracking a variable even if it is not 1408 // stored on the stack, while the dbg.declare can only describe 1409 // the stack slot (and at a lexical-scope granularity). Later 1410 // passes will attempt to elide the stack slot. 1411 if (!AI || isArray(AI)) 1412 continue; 1413 1414 // A volatile load/store means that the alloca can't be elided anyway. 1415 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1416 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1417 return LI->isVolatile(); 1418 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1419 return SI->isVolatile(); 1420 return false; 1421 })) 1422 continue; 1423 1424 for (auto &AIUse : AI->uses()) { 1425 User *U = AIUse.getUser(); 1426 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1427 if (AIUse.getOperandNo() == 1) 1428 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1429 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1430 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1431 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1432 // This is a call by-value or some other instruction that takes a 1433 // pointer to the variable. Insert a *value* intrinsic that describes 1434 // the variable by dereferencing the alloca. 1435 auto *DerefExpr = 1436 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1437 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1438 DDI->getDebugLoc(), CI); 1439 } 1440 } 1441 DDI->eraseFromParent(); 1442 } 1443 return true; 1444 } 1445 1446 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1447 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1448 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1449 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1450 if (InsertedPHIs.size() == 0) 1451 return; 1452 1453 // Map existing PHI nodes to their dbg.values. 1454 ValueToValueMapTy DbgValueMap; 1455 for (auto &I : *BB) { 1456 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1457 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1458 DbgValueMap.insert({Loc, DbgII}); 1459 } 1460 } 1461 if (DbgValueMap.size() == 0) 1462 return; 1463 1464 // Then iterate through the new PHIs and look to see if they use one of the 1465 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1466 // propagate the info through the new PHI. 1467 LLVMContext &C = BB->getContext(); 1468 for (auto PHI : InsertedPHIs) { 1469 BasicBlock *Parent = PHI->getParent(); 1470 // Avoid inserting an intrinsic into an EH block. 1471 if (Parent->getFirstNonPHI()->isEHPad()) 1472 continue; 1473 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1474 for (auto VI : PHI->operand_values()) { 1475 auto V = DbgValueMap.find(VI); 1476 if (V != DbgValueMap.end()) { 1477 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1478 Instruction *NewDbgII = DbgII->clone(); 1479 NewDbgII->setOperand(0, PhiMAV); 1480 auto InsertionPt = Parent->getFirstInsertionPt(); 1481 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1482 NewDbgII->insertBefore(&*InsertionPt); 1483 } 1484 } 1485 } 1486 } 1487 1488 /// Finds all intrinsics declaring local variables as living in the memory that 1489 /// 'V' points to. This may include a mix of dbg.declare and 1490 /// dbg.addr intrinsics. 1491 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1492 // This function is hot. Check whether the value has any metadata to avoid a 1493 // DenseMap lookup. 1494 if (!V->isUsedByMetadata()) 1495 return {}; 1496 auto *L = LocalAsMetadata::getIfExists(V); 1497 if (!L) 1498 return {}; 1499 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1500 if (!MDV) 1501 return {}; 1502 1503 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1504 for (User *U : MDV->users()) { 1505 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1506 if (DII->isAddressOfVariable()) 1507 Declares.push_back(DII); 1508 } 1509 1510 return Declares; 1511 } 1512 1513 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1514 // This function is hot. Check whether the value has any metadata to avoid a 1515 // DenseMap lookup. 1516 if (!V->isUsedByMetadata()) 1517 return; 1518 if (auto *L = LocalAsMetadata::getIfExists(V)) 1519 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1520 for (User *U : MDV->users()) 1521 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1522 DbgValues.push_back(DVI); 1523 } 1524 1525 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1526 Value *V) { 1527 // This function is hot. Check whether the value has any metadata to avoid a 1528 // DenseMap lookup. 1529 if (!V->isUsedByMetadata()) 1530 return; 1531 if (auto *L = LocalAsMetadata::getIfExists(V)) 1532 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1533 for (User *U : MDV->users()) 1534 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1535 DbgUsers.push_back(DII); 1536 } 1537 1538 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1539 Instruction *InsertBefore, DIBuilder &Builder, 1540 bool DerefBefore, int Offset, bool DerefAfter) { 1541 auto DbgAddrs = FindDbgAddrUses(Address); 1542 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1543 DebugLoc Loc = DII->getDebugLoc(); 1544 auto *DIVar = DII->getVariable(); 1545 auto *DIExpr = DII->getExpression(); 1546 assert(DIVar && "Missing variable"); 1547 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1548 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1549 // llvm.dbg.declare. 1550 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1551 if (DII == InsertBefore) 1552 InsertBefore = InsertBefore->getNextNode(); 1553 DII->eraseFromParent(); 1554 } 1555 return !DbgAddrs.empty(); 1556 } 1557 1558 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1559 DIBuilder &Builder, bool DerefBefore, 1560 int Offset, bool DerefAfter) { 1561 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1562 DerefBefore, Offset, DerefAfter); 1563 } 1564 1565 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1566 DIBuilder &Builder, int Offset) { 1567 DebugLoc Loc = DVI->getDebugLoc(); 1568 auto *DIVar = DVI->getVariable(); 1569 auto *DIExpr = DVI->getExpression(); 1570 assert(DIVar && "Missing variable"); 1571 1572 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1573 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1574 // it and give up. 1575 if (!DIExpr || DIExpr->getNumElements() < 1 || 1576 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1577 return; 1578 1579 // Insert the offset immediately after the first deref. 1580 // We could just change the offset argument of dbg.value, but it's unsigned... 1581 if (Offset) { 1582 SmallVector<uint64_t, 4> Ops; 1583 Ops.push_back(dwarf::DW_OP_deref); 1584 DIExpression::appendOffset(Ops, Offset); 1585 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1586 DIExpr = Builder.createExpression(Ops); 1587 } 1588 1589 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1590 DVI->eraseFromParent(); 1591 } 1592 1593 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1594 DIBuilder &Builder, int Offset) { 1595 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1596 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1597 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1598 Use &U = *UI++; 1599 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1600 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1601 } 1602 } 1603 1604 /// Wrap \p V in a ValueAsMetadata instance. 1605 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1606 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1607 } 1608 1609 bool llvm::salvageDebugInfo(Instruction &I) { 1610 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1611 findDbgUsers(DbgUsers, &I); 1612 if (DbgUsers.empty()) 1613 return false; 1614 1615 auto &M = *I.getModule(); 1616 auto &DL = M.getDataLayout(); 1617 auto &Ctx = I.getContext(); 1618 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1619 1620 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1621 auto *DIExpr = DII->getExpression(); 1622 if (!Ops.empty()) { 1623 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1624 // are implicitly pointing out the value as a DWARF memory location 1625 // description. 1626 bool WithStackValue = isa<DbgValueInst>(DII); 1627 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1628 } 1629 DII->setOperand(0, wrapMD(I.getOperand(0))); 1630 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1631 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1632 }; 1633 1634 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) { 1635 SmallVector<uint64_t, 8> Ops; 1636 DIExpression::appendOffset(Ops, Offset); 1637 doSalvage(DII, Ops); 1638 }; 1639 1640 auto applyOps = [&](DbgVariableIntrinsic *DII, 1641 std::initializer_list<uint64_t> Opcodes) { 1642 SmallVector<uint64_t, 8> Ops(Opcodes); 1643 doSalvage(DII, Ops); 1644 }; 1645 1646 if (auto *CI = dyn_cast<CastInst>(&I)) { 1647 if (!CI->isNoopCast(DL)) 1648 return false; 1649 1650 // No-op casts are irrelevant for debug info. 1651 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1652 for (auto *DII : DbgUsers) { 1653 DII->setOperand(0, CastSrc); 1654 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1655 } 1656 return true; 1657 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1658 unsigned BitWidth = 1659 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1660 // Rewrite a constant GEP into a DIExpression. Since we are performing 1661 // arithmetic to compute the variable's *value* in the DIExpression, we 1662 // need to mark the expression with a DW_OP_stack_value. 1663 APInt Offset(BitWidth, 0); 1664 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1665 for (auto *DII : DbgUsers) 1666 applyOffset(DII, Offset.getSExtValue()); 1667 return true; 1668 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1669 // Rewrite binary operations with constant integer operands. 1670 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1671 if (!ConstInt || ConstInt->getBitWidth() > 64) 1672 return false; 1673 1674 uint64_t Val = ConstInt->getSExtValue(); 1675 for (auto *DII : DbgUsers) { 1676 switch (BI->getOpcode()) { 1677 case Instruction::Add: 1678 applyOffset(DII, Val); 1679 break; 1680 case Instruction::Sub: 1681 applyOffset(DII, -int64_t(Val)); 1682 break; 1683 case Instruction::Mul: 1684 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1685 break; 1686 case Instruction::SDiv: 1687 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1688 break; 1689 case Instruction::SRem: 1690 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1691 break; 1692 case Instruction::Or: 1693 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1694 break; 1695 case Instruction::And: 1696 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1697 break; 1698 case Instruction::Xor: 1699 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1700 break; 1701 case Instruction::Shl: 1702 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1703 break; 1704 case Instruction::LShr: 1705 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1706 break; 1707 case Instruction::AShr: 1708 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1709 break; 1710 default: 1711 // TODO: Salvage constants from each kind of binop we know about. 1712 return false; 1713 } 1714 } 1715 return true; 1716 } else if (isa<LoadInst>(&I)) { 1717 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1718 for (auto *DII : DbgUsers) { 1719 // Rewrite the load into DW_OP_deref. 1720 auto *DIExpr = DII->getExpression(); 1721 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1722 DII->setOperand(0, AddrMD); 1723 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1724 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1725 } 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 /// A replacement for a dbg.value expression. 1732 using DbgValReplacement = Optional<DIExpression *>; 1733 1734 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1735 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1736 /// changes are made. 1737 static bool rewriteDebugUsers( 1738 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1739 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1740 // Find debug users of From. 1741 SmallVector<DbgVariableIntrinsic *, 1> Users; 1742 findDbgUsers(Users, &From); 1743 if (Users.empty()) 1744 return false; 1745 1746 // Prevent use-before-def of To. 1747 bool Changed = false; 1748 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1749 if (isa<Instruction>(&To)) { 1750 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1751 1752 for (auto *DII : Users) { 1753 // It's common to see a debug user between From and DomPoint. Move it 1754 // after DomPoint to preserve the variable update without any reordering. 1755 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1756 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1757 DII->moveAfter(&DomPoint); 1758 Changed = true; 1759 1760 // Users which otherwise aren't dominated by the replacement value must 1761 // be salvaged or deleted. 1762 } else if (!DT.dominates(&DomPoint, DII)) { 1763 DeleteOrSalvage.insert(DII); 1764 } 1765 } 1766 } 1767 1768 // Update debug users without use-before-def risk. 1769 for (auto *DII : Users) { 1770 if (DeleteOrSalvage.count(DII)) 1771 continue; 1772 1773 LLVMContext &Ctx = DII->getContext(); 1774 DbgValReplacement DVR = RewriteExpr(*DII); 1775 if (!DVR) 1776 continue; 1777 1778 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1779 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1780 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1781 Changed = true; 1782 } 1783 1784 if (!DeleteOrSalvage.empty()) { 1785 // Try to salvage the remaining debug users. 1786 Changed |= salvageDebugInfo(From); 1787 1788 // Delete the debug users which weren't salvaged. 1789 for (auto *DII : DeleteOrSalvage) { 1790 if (DII->getVariableLocation() == &From) { 1791 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1792 DII->eraseFromParent(); 1793 Changed = true; 1794 } 1795 } 1796 } 1797 1798 return Changed; 1799 } 1800 1801 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1802 /// losslessly preserve the bits and semantics of the value. This predicate is 1803 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1804 /// 1805 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1806 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1807 /// and also does not allow lossless pointer <-> integer conversions. 1808 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1809 Type *ToTy) { 1810 // Trivially compatible types. 1811 if (FromTy == ToTy) 1812 return true; 1813 1814 // Handle compatible pointer <-> integer conversions. 1815 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1816 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1817 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1818 !DL.isNonIntegralPointerType(ToTy); 1819 return SameSize && LosslessConversion; 1820 } 1821 1822 // TODO: This is not exhaustive. 1823 return false; 1824 } 1825 1826 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1827 Instruction &DomPoint, DominatorTree &DT) { 1828 // Exit early if From has no debug users. 1829 if (!From.isUsedByMetadata()) 1830 return false; 1831 1832 assert(&From != &To && "Can't replace something with itself"); 1833 1834 Type *FromTy = From.getType(); 1835 Type *ToTy = To.getType(); 1836 1837 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1838 return DII.getExpression(); 1839 }; 1840 1841 // Handle no-op conversions. 1842 Module &M = *From.getModule(); 1843 const DataLayout &DL = M.getDataLayout(); 1844 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1845 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1846 1847 // Handle integer-to-integer widening and narrowing. 1848 // FIXME: Use DW_OP_convert when it's available everywhere. 1849 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1850 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1851 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1852 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1853 1854 // When the width of the result grows, assume that a debugger will only 1855 // access the low `FromBits` bits when inspecting the source variable. 1856 if (FromBits < ToBits) 1857 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1858 1859 // The width of the result has shrunk. Use sign/zero extension to describe 1860 // the source variable's high bits. 1861 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1862 DILocalVariable *Var = DII.getVariable(); 1863 1864 // Without knowing signedness, sign/zero extension isn't possible. 1865 auto Signedness = Var->getSignedness(); 1866 if (!Signedness) 1867 return None; 1868 1869 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1870 1871 if (!Signed) { 1872 // In the unsigned case, assume that a debugger will initialize the 1873 // high bits to 0 and do a no-op conversion. 1874 return Identity(DII); 1875 } else { 1876 // In the signed case, the high bits are given by sign extension, i.e: 1877 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1878 // Calculate the high bits and OR them together with the low bits. 1879 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1880 (ToBits - 1), dwarf::DW_OP_shr, 1881 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1882 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1883 return DIExpression::appendToStack(DII.getExpression(), Ops); 1884 } 1885 }; 1886 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1887 } 1888 1889 // TODO: Floating-point conversions, vectors. 1890 return false; 1891 } 1892 1893 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1894 unsigned NumDeadInst = 0; 1895 // Delete the instructions backwards, as it has a reduced likelihood of 1896 // having to update as many def-use and use-def chains. 1897 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1898 while (EndInst != &BB->front()) { 1899 // Delete the next to last instruction. 1900 Instruction *Inst = &*--EndInst->getIterator(); 1901 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1902 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1903 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1904 EndInst = Inst; 1905 continue; 1906 } 1907 if (!isa<DbgInfoIntrinsic>(Inst)) 1908 ++NumDeadInst; 1909 Inst->eraseFromParent(); 1910 } 1911 return NumDeadInst; 1912 } 1913 1914 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1915 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1916 BasicBlock *BB = I->getParent(); 1917 std::vector <DominatorTree::UpdateType> Updates; 1918 1919 // Loop over all of the successors, removing BB's entry from any PHI 1920 // nodes. 1921 if (DTU) 1922 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1923 for (BasicBlock *Successor : successors(BB)) { 1924 Successor->removePredecessor(BB, PreserveLCSSA); 1925 if (DTU) 1926 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1927 } 1928 // Insert a call to llvm.trap right before this. This turns the undefined 1929 // behavior into a hard fail instead of falling through into random code. 1930 if (UseLLVMTrap) { 1931 Function *TrapFn = 1932 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1933 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1934 CallTrap->setDebugLoc(I->getDebugLoc()); 1935 } 1936 auto *UI = new UnreachableInst(I->getContext(), I); 1937 UI->setDebugLoc(I->getDebugLoc()); 1938 1939 // All instructions after this are dead. 1940 unsigned NumInstrsRemoved = 0; 1941 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1942 while (BBI != BBE) { 1943 if (!BBI->use_empty()) 1944 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1945 BB->getInstList().erase(BBI++); 1946 ++NumInstrsRemoved; 1947 } 1948 if (DTU) 1949 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1950 return NumInstrsRemoved; 1951 } 1952 1953 /// changeToCall - Convert the specified invoke into a normal call. 1954 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1955 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1956 SmallVector<OperandBundleDef, 1> OpBundles; 1957 II->getOperandBundlesAsDefs(OpBundles); 1958 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1959 "", II); 1960 NewCall->takeName(II); 1961 NewCall->setCallingConv(II->getCallingConv()); 1962 NewCall->setAttributes(II->getAttributes()); 1963 NewCall->setDebugLoc(II->getDebugLoc()); 1964 II->replaceAllUsesWith(NewCall); 1965 1966 // Follow the call by a branch to the normal destination. 1967 BasicBlock *NormalDestBB = II->getNormalDest(); 1968 BranchInst::Create(NormalDestBB, II); 1969 1970 // Update PHI nodes in the unwind destination 1971 BasicBlock *BB = II->getParent(); 1972 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1973 UnwindDestBB->removePredecessor(BB); 1974 II->eraseFromParent(); 1975 if (DTU) 1976 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1977 } 1978 1979 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1980 BasicBlock *UnwindEdge) { 1981 BasicBlock *BB = CI->getParent(); 1982 1983 // Convert this function call into an invoke instruction. First, split the 1984 // basic block. 1985 BasicBlock *Split = 1986 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1987 1988 // Delete the unconditional branch inserted by splitBasicBlock 1989 BB->getInstList().pop_back(); 1990 1991 // Create the new invoke instruction. 1992 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1993 SmallVector<OperandBundleDef, 1> OpBundles; 1994 1995 CI->getOperandBundlesAsDefs(OpBundles); 1996 1997 // Note: we're round tripping operand bundles through memory here, and that 1998 // can potentially be avoided with a cleverer API design that we do not have 1999 // as of this time. 2000 2001 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 2002 InvokeArgs, OpBundles, CI->getName(), BB); 2003 II->setDebugLoc(CI->getDebugLoc()); 2004 II->setCallingConv(CI->getCallingConv()); 2005 II->setAttributes(CI->getAttributes()); 2006 2007 // Make sure that anything using the call now uses the invoke! This also 2008 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2009 CI->replaceAllUsesWith(II); 2010 2011 // Delete the original call 2012 Split->getInstList().pop_front(); 2013 return Split; 2014 } 2015 2016 static bool markAliveBlocks(Function &F, 2017 SmallPtrSetImpl<BasicBlock *> &Reachable, 2018 DomTreeUpdater *DTU = nullptr) { 2019 SmallVector<BasicBlock*, 128> Worklist; 2020 BasicBlock *BB = &F.front(); 2021 Worklist.push_back(BB); 2022 Reachable.insert(BB); 2023 bool Changed = false; 2024 do { 2025 BB = Worklist.pop_back_val(); 2026 2027 // Do a quick scan of the basic block, turning any obviously unreachable 2028 // instructions into LLVM unreachable insts. The instruction combining pass 2029 // canonicalizes unreachable insts into stores to null or undef. 2030 for (Instruction &I : *BB) { 2031 if (auto *CI = dyn_cast<CallInst>(&I)) { 2032 Value *Callee = CI->getCalledValue(); 2033 // Handle intrinsic calls. 2034 if (Function *F = dyn_cast<Function>(Callee)) { 2035 auto IntrinsicID = F->getIntrinsicID(); 2036 // Assumptions that are known to be false are equivalent to 2037 // unreachable. Also, if the condition is undefined, then we make the 2038 // choice most beneficial to the optimizer, and choose that to also be 2039 // unreachable. 2040 if (IntrinsicID == Intrinsic::assume) { 2041 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2042 // Don't insert a call to llvm.trap right before the unreachable. 2043 changeToUnreachable(CI, false, false, DTU); 2044 Changed = true; 2045 break; 2046 } 2047 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2048 // A call to the guard intrinsic bails out of the current 2049 // compilation unit if the predicate passed to it is false. If the 2050 // predicate is a constant false, then we know the guard will bail 2051 // out of the current compile unconditionally, so all code following 2052 // it is dead. 2053 // 2054 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2055 // guards to treat `undef` as `false` since a guard on `undef` can 2056 // still be useful for widening. 2057 if (match(CI->getArgOperand(0), m_Zero())) 2058 if (!isa<UnreachableInst>(CI->getNextNode())) { 2059 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2060 false, DTU); 2061 Changed = true; 2062 break; 2063 } 2064 } 2065 } else if ((isa<ConstantPointerNull>(Callee) && 2066 !NullPointerIsDefined(CI->getFunction())) || 2067 isa<UndefValue>(Callee)) { 2068 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2069 Changed = true; 2070 break; 2071 } 2072 if (CI->doesNotReturn()) { 2073 // If we found a call to a no-return function, insert an unreachable 2074 // instruction after it. Make sure there isn't *already* one there 2075 // though. 2076 if (!isa<UnreachableInst>(CI->getNextNode())) { 2077 // Don't insert a call to llvm.trap right before the unreachable. 2078 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2079 Changed = true; 2080 } 2081 break; 2082 } 2083 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2084 // Store to undef and store to null are undefined and used to signal 2085 // that they should be changed to unreachable by passes that can't 2086 // modify the CFG. 2087 2088 // Don't touch volatile stores. 2089 if (SI->isVolatile()) continue; 2090 2091 Value *Ptr = SI->getOperand(1); 2092 2093 if (isa<UndefValue>(Ptr) || 2094 (isa<ConstantPointerNull>(Ptr) && 2095 !NullPointerIsDefined(SI->getFunction(), 2096 SI->getPointerAddressSpace()))) { 2097 changeToUnreachable(SI, true, false, DTU); 2098 Changed = true; 2099 break; 2100 } 2101 } 2102 } 2103 2104 TerminatorInst *Terminator = BB->getTerminator(); 2105 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2106 // Turn invokes that call 'nounwind' functions into ordinary calls. 2107 Value *Callee = II->getCalledValue(); 2108 if ((isa<ConstantPointerNull>(Callee) && 2109 !NullPointerIsDefined(BB->getParent())) || 2110 isa<UndefValue>(Callee)) { 2111 changeToUnreachable(II, true, false, DTU); 2112 Changed = true; 2113 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2114 if (II->use_empty() && II->onlyReadsMemory()) { 2115 // jump to the normal destination branch. 2116 BasicBlock *NormalDestBB = II->getNormalDest(); 2117 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2118 BranchInst::Create(NormalDestBB, II); 2119 UnwindDestBB->removePredecessor(II->getParent()); 2120 II->eraseFromParent(); 2121 if (DTU) 2122 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2123 } else 2124 changeToCall(II, DTU); 2125 Changed = true; 2126 } 2127 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2128 // Remove catchpads which cannot be reached. 2129 struct CatchPadDenseMapInfo { 2130 static CatchPadInst *getEmptyKey() { 2131 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2132 } 2133 2134 static CatchPadInst *getTombstoneKey() { 2135 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2136 } 2137 2138 static unsigned getHashValue(CatchPadInst *CatchPad) { 2139 return static_cast<unsigned>(hash_combine_range( 2140 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2141 } 2142 2143 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2144 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2145 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2146 return LHS == RHS; 2147 return LHS->isIdenticalTo(RHS); 2148 } 2149 }; 2150 2151 // Set of unique CatchPads. 2152 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2153 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2154 HandlerSet; 2155 detail::DenseSetEmpty Empty; 2156 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2157 E = CatchSwitch->handler_end(); 2158 I != E; ++I) { 2159 BasicBlock *HandlerBB = *I; 2160 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2161 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2162 CatchSwitch->removeHandler(I); 2163 --I; 2164 --E; 2165 Changed = true; 2166 } 2167 } 2168 } 2169 2170 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2171 for (BasicBlock *Successor : successors(BB)) 2172 if (Reachable.insert(Successor).second) 2173 Worklist.push_back(Successor); 2174 } while (!Worklist.empty()); 2175 return Changed; 2176 } 2177 2178 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2179 TerminatorInst *TI = BB->getTerminator(); 2180 2181 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2182 changeToCall(II, DTU); 2183 return; 2184 } 2185 2186 TerminatorInst *NewTI; 2187 BasicBlock *UnwindDest; 2188 2189 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2190 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2191 UnwindDest = CRI->getUnwindDest(); 2192 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2193 auto *NewCatchSwitch = CatchSwitchInst::Create( 2194 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2195 CatchSwitch->getName(), CatchSwitch); 2196 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2197 NewCatchSwitch->addHandler(PadBB); 2198 2199 NewTI = NewCatchSwitch; 2200 UnwindDest = CatchSwitch->getUnwindDest(); 2201 } else { 2202 llvm_unreachable("Could not find unwind successor"); 2203 } 2204 2205 NewTI->takeName(TI); 2206 NewTI->setDebugLoc(TI->getDebugLoc()); 2207 UnwindDest->removePredecessor(BB); 2208 TI->replaceAllUsesWith(NewTI); 2209 TI->eraseFromParent(); 2210 if (DTU) 2211 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2212 } 2213 2214 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2215 /// if they are in a dead cycle. Return true if a change was made, false 2216 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2217 /// after modifying the CFG. 2218 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2219 DomTreeUpdater *DTU, 2220 MemorySSAUpdater *MSSAU) { 2221 SmallPtrSet<BasicBlock*, 16> Reachable; 2222 bool Changed = markAliveBlocks(F, Reachable, DTU); 2223 2224 // If there are unreachable blocks in the CFG... 2225 if (Reachable.size() == F.size()) 2226 return Changed; 2227 2228 assert(Reachable.size() < F.size()); 2229 NumRemoved += F.size()-Reachable.size(); 2230 2231 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2232 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2233 auto *BB = &*I; 2234 if (Reachable.count(BB)) 2235 continue; 2236 DeadBlockSet.insert(BB); 2237 } 2238 2239 if (MSSAU) 2240 MSSAU->removeBlocks(DeadBlockSet); 2241 2242 // Loop over all of the basic blocks that are not reachable, dropping all of 2243 // their internal references. Update DTU and LVI if available. 2244 std::vector<DominatorTree::UpdateType> Updates; 2245 for (auto *BB : DeadBlockSet) { 2246 for (BasicBlock *Successor : successors(BB)) { 2247 if (!DeadBlockSet.count(Successor)) 2248 Successor->removePredecessor(BB); 2249 if (DTU) 2250 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2251 } 2252 if (LVI) 2253 LVI->eraseBlock(BB); 2254 BB->dropAllReferences(); 2255 } 2256 for (Function::iterator I = ++F.begin(); I != F.end();) { 2257 auto *BB = &*I; 2258 if (Reachable.count(BB)) { 2259 ++I; 2260 continue; 2261 } 2262 if (DTU) { 2263 // Remove the TerminatorInst of BB to clear the successor list of BB. 2264 if (BB->getTerminator()) 2265 BB->getInstList().pop_back(); 2266 new UnreachableInst(BB->getContext(), BB); 2267 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2268 "applying corresponding DTU updates."); 2269 ++I; 2270 } else { 2271 I = F.getBasicBlockList().erase(I); 2272 } 2273 } 2274 2275 if (DTU) { 2276 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2277 bool Deleted = false; 2278 for (auto *BB : DeadBlockSet) { 2279 if (DTU->isBBPendingDeletion(BB)) 2280 --NumRemoved; 2281 else 2282 Deleted = true; 2283 DTU->deleteBB(BB); 2284 } 2285 if (!Deleted) 2286 return false; 2287 } 2288 return true; 2289 } 2290 2291 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2292 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2293 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2294 K->dropUnknownNonDebugMetadata(KnownIDs); 2295 K->getAllMetadataOtherThanDebugLoc(Metadata); 2296 for (const auto &MD : Metadata) { 2297 unsigned Kind = MD.first; 2298 MDNode *JMD = J->getMetadata(Kind); 2299 MDNode *KMD = MD.second; 2300 2301 switch (Kind) { 2302 default: 2303 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2304 break; 2305 case LLVMContext::MD_dbg: 2306 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2307 case LLVMContext::MD_tbaa: 2308 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2309 break; 2310 case LLVMContext::MD_alias_scope: 2311 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2312 break; 2313 case LLVMContext::MD_noalias: 2314 case LLVMContext::MD_mem_parallel_loop_access: 2315 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2316 break; 2317 case LLVMContext::MD_range: 2318 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2319 break; 2320 case LLVMContext::MD_fpmath: 2321 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2322 break; 2323 case LLVMContext::MD_invariant_load: 2324 // Only set the !invariant.load if it is present in both instructions. 2325 K->setMetadata(Kind, JMD); 2326 break; 2327 case LLVMContext::MD_nonnull: 2328 // If K does move, keep nonull if it is present in both instructions. 2329 if (DoesKMove) 2330 K->setMetadata(Kind, JMD); 2331 break; 2332 case LLVMContext::MD_invariant_group: 2333 // Preserve !invariant.group in K. 2334 break; 2335 case LLVMContext::MD_align: 2336 K->setMetadata(Kind, 2337 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2338 break; 2339 case LLVMContext::MD_dereferenceable: 2340 case LLVMContext::MD_dereferenceable_or_null: 2341 K->setMetadata(Kind, 2342 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2343 break; 2344 } 2345 } 2346 // Set !invariant.group from J if J has it. If both instructions have it 2347 // then we will just pick it from J - even when they are different. 2348 // Also make sure that K is load or store - f.e. combining bitcast with load 2349 // could produce bitcast with invariant.group metadata, which is invalid. 2350 // FIXME: we should try to preserve both invariant.group md if they are 2351 // different, but right now instruction can only have one invariant.group. 2352 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2353 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2354 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2355 } 2356 2357 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2358 bool KDominatesJ) { 2359 unsigned KnownIDs[] = { 2360 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2361 LLVMContext::MD_noalias, LLVMContext::MD_range, 2362 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2363 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2364 LLVMContext::MD_dereferenceable, 2365 LLVMContext::MD_dereferenceable_or_null}; 2366 combineMetadata(K, J, KnownIDs, KDominatesJ); 2367 } 2368 2369 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2370 auto *ReplInst = dyn_cast<Instruction>(Repl); 2371 if (!ReplInst) 2372 return; 2373 2374 // Patch the replacement so that it is not more restrictive than the value 2375 // being replaced. 2376 // Note that if 'I' is a load being replaced by some operation, 2377 // for example, by an arithmetic operation, then andIRFlags() 2378 // would just erase all math flags from the original arithmetic 2379 // operation, which is clearly not wanted and not needed. 2380 if (!isa<LoadInst>(I)) 2381 ReplInst->andIRFlags(I); 2382 2383 // FIXME: If both the original and replacement value are part of the 2384 // same control-flow region (meaning that the execution of one 2385 // guarantees the execution of the other), then we can combine the 2386 // noalias scopes here and do better than the general conservative 2387 // answer used in combineMetadata(). 2388 2389 // In general, GVN unifies expressions over different control-flow 2390 // regions, and so we need a conservative combination of the noalias 2391 // scopes. 2392 static const unsigned KnownIDs[] = { 2393 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2394 LLVMContext::MD_noalias, LLVMContext::MD_range, 2395 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2396 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull}; 2397 combineMetadata(ReplInst, I, KnownIDs, false); 2398 } 2399 2400 template <typename RootType, typename DominatesFn> 2401 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2402 const RootType &Root, 2403 const DominatesFn &Dominates) { 2404 assert(From->getType() == To->getType()); 2405 2406 unsigned Count = 0; 2407 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2408 UI != UE;) { 2409 Use &U = *UI++; 2410 if (!Dominates(Root, U)) 2411 continue; 2412 U.set(To); 2413 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2414 << "' as " << *To << " in " << *U << "\n"); 2415 ++Count; 2416 } 2417 return Count; 2418 } 2419 2420 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2421 assert(From->getType() == To->getType()); 2422 auto *BB = From->getParent(); 2423 unsigned Count = 0; 2424 2425 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2426 UI != UE;) { 2427 Use &U = *UI++; 2428 auto *I = cast<Instruction>(U.getUser()); 2429 if (I->getParent() == BB) 2430 continue; 2431 U.set(To); 2432 ++Count; 2433 } 2434 return Count; 2435 } 2436 2437 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2438 DominatorTree &DT, 2439 const BasicBlockEdge &Root) { 2440 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2441 return DT.dominates(Root, U); 2442 }; 2443 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2444 } 2445 2446 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2447 DominatorTree &DT, 2448 const BasicBlock *BB) { 2449 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2450 auto *I = cast<Instruction>(U.getUser())->getParent(); 2451 return DT.properlyDominates(BB, I); 2452 }; 2453 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2454 } 2455 2456 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2457 const TargetLibraryInfo &TLI) { 2458 // Check if the function is specifically marked as a gc leaf function. 2459 if (CS.hasFnAttr("gc-leaf-function")) 2460 return true; 2461 if (const Function *F = CS.getCalledFunction()) { 2462 if (F->hasFnAttribute("gc-leaf-function")) 2463 return true; 2464 2465 if (auto IID = F->getIntrinsicID()) 2466 // Most LLVM intrinsics do not take safepoints. 2467 return IID != Intrinsic::experimental_gc_statepoint && 2468 IID != Intrinsic::experimental_deoptimize; 2469 } 2470 2471 // Lib calls can be materialized by some passes, and won't be 2472 // marked as 'gc-leaf-function.' All available Libcalls are 2473 // GC-leaf. 2474 LibFunc LF; 2475 if (TLI.getLibFunc(CS, LF)) { 2476 return TLI.has(LF); 2477 } 2478 2479 return false; 2480 } 2481 2482 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2483 LoadInst &NewLI) { 2484 auto *NewTy = NewLI.getType(); 2485 2486 // This only directly applies if the new type is also a pointer. 2487 if (NewTy->isPointerTy()) { 2488 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2489 return; 2490 } 2491 2492 // The only other translation we can do is to integral loads with !range 2493 // metadata. 2494 if (!NewTy->isIntegerTy()) 2495 return; 2496 2497 MDBuilder MDB(NewLI.getContext()); 2498 const Value *Ptr = OldLI.getPointerOperand(); 2499 auto *ITy = cast<IntegerType>(NewTy); 2500 auto *NullInt = ConstantExpr::getPtrToInt( 2501 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2502 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2503 NewLI.setMetadata(LLVMContext::MD_range, 2504 MDB.createRange(NonNullInt, NullInt)); 2505 } 2506 2507 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2508 MDNode *N, LoadInst &NewLI) { 2509 auto *NewTy = NewLI.getType(); 2510 2511 // Give up unless it is converted to a pointer where there is a single very 2512 // valuable mapping we can do reliably. 2513 // FIXME: It would be nice to propagate this in more ways, but the type 2514 // conversions make it hard. 2515 if (!NewTy->isPointerTy()) 2516 return; 2517 2518 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2519 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2520 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2521 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2522 } 2523 } 2524 2525 void llvm::dropDebugUsers(Instruction &I) { 2526 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2527 findDbgUsers(DbgUsers, &I); 2528 for (auto *DII : DbgUsers) 2529 DII->eraseFromParent(); 2530 } 2531 2532 namespace { 2533 2534 /// A potential constituent of a bitreverse or bswap expression. See 2535 /// collectBitParts for a fuller explanation. 2536 struct BitPart { 2537 BitPart(Value *P, unsigned BW) : Provider(P) { 2538 Provenance.resize(BW); 2539 } 2540 2541 /// The Value that this is a bitreverse/bswap of. 2542 Value *Provider; 2543 2544 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2545 /// in Provider becomes bit B in the result of this expression. 2546 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2547 2548 enum { Unset = -1 }; 2549 }; 2550 2551 } // end anonymous namespace 2552 2553 /// Analyze the specified subexpression and see if it is capable of providing 2554 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2555 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2556 /// the output of the expression came from a corresponding bit in some other 2557 /// value. This function is recursive, and the end result is a mapping of 2558 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2559 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2560 /// 2561 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2562 /// that the expression deposits the low byte of %X into the high byte of the 2563 /// result and that all other bits are zero. This expression is accepted and a 2564 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2565 /// [0-7]. 2566 /// 2567 /// To avoid revisiting values, the BitPart results are memoized into the 2568 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2569 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2570 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2571 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2572 /// type instead to provide the same functionality. 2573 /// 2574 /// Because we pass around references into \c BPS, we must use a container that 2575 /// does not invalidate internal references (std::map instead of DenseMap). 2576 static const Optional<BitPart> & 2577 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2578 std::map<Value *, Optional<BitPart>> &BPS) { 2579 auto I = BPS.find(V); 2580 if (I != BPS.end()) 2581 return I->second; 2582 2583 auto &Result = BPS[V] = None; 2584 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2585 2586 if (Instruction *I = dyn_cast<Instruction>(V)) { 2587 // If this is an or instruction, it may be an inner node of the bswap. 2588 if (I->getOpcode() == Instruction::Or) { 2589 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2590 MatchBitReversals, BPS); 2591 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2592 MatchBitReversals, BPS); 2593 if (!A || !B) 2594 return Result; 2595 2596 // Try and merge the two together. 2597 if (!A->Provider || A->Provider != B->Provider) 2598 return Result; 2599 2600 Result = BitPart(A->Provider, BitWidth); 2601 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2602 if (A->Provenance[i] != BitPart::Unset && 2603 B->Provenance[i] != BitPart::Unset && 2604 A->Provenance[i] != B->Provenance[i]) 2605 return Result = None; 2606 2607 if (A->Provenance[i] == BitPart::Unset) 2608 Result->Provenance[i] = B->Provenance[i]; 2609 else 2610 Result->Provenance[i] = A->Provenance[i]; 2611 } 2612 2613 return Result; 2614 } 2615 2616 // If this is a logical shift by a constant, recurse then shift the result. 2617 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2618 unsigned BitShift = 2619 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2620 // Ensure the shift amount is defined. 2621 if (BitShift > BitWidth) 2622 return Result; 2623 2624 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2625 MatchBitReversals, BPS); 2626 if (!Res) 2627 return Result; 2628 Result = Res; 2629 2630 // Perform the "shift" on BitProvenance. 2631 auto &P = Result->Provenance; 2632 if (I->getOpcode() == Instruction::Shl) { 2633 P.erase(std::prev(P.end(), BitShift), P.end()); 2634 P.insert(P.begin(), BitShift, BitPart::Unset); 2635 } else { 2636 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2637 P.insert(P.end(), BitShift, BitPart::Unset); 2638 } 2639 2640 return Result; 2641 } 2642 2643 // If this is a logical 'and' with a mask that clears bits, recurse then 2644 // unset the appropriate bits. 2645 if (I->getOpcode() == Instruction::And && 2646 isa<ConstantInt>(I->getOperand(1))) { 2647 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2648 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2649 2650 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2651 // early exit. 2652 unsigned NumMaskedBits = AndMask.countPopulation(); 2653 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2654 return Result; 2655 2656 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2657 MatchBitReversals, BPS); 2658 if (!Res) 2659 return Result; 2660 Result = Res; 2661 2662 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2663 // If the AndMask is zero for this bit, clear the bit. 2664 if ((AndMask & Bit) == 0) 2665 Result->Provenance[i] = BitPart::Unset; 2666 return Result; 2667 } 2668 2669 // If this is a zext instruction zero extend the result. 2670 if (I->getOpcode() == Instruction::ZExt) { 2671 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2672 MatchBitReversals, BPS); 2673 if (!Res) 2674 return Result; 2675 2676 Result = BitPart(Res->Provider, BitWidth); 2677 auto NarrowBitWidth = 2678 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2679 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2680 Result->Provenance[i] = Res->Provenance[i]; 2681 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2682 Result->Provenance[i] = BitPart::Unset; 2683 return Result; 2684 } 2685 } 2686 2687 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2688 // the input value to the bswap/bitreverse. 2689 Result = BitPart(V, BitWidth); 2690 for (unsigned i = 0; i < BitWidth; ++i) 2691 Result->Provenance[i] = i; 2692 return Result; 2693 } 2694 2695 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2696 unsigned BitWidth) { 2697 if (From % 8 != To % 8) 2698 return false; 2699 // Convert from bit indices to byte indices and check for a byte reversal. 2700 From >>= 3; 2701 To >>= 3; 2702 BitWidth >>= 3; 2703 return From == BitWidth - To - 1; 2704 } 2705 2706 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2707 unsigned BitWidth) { 2708 return From == BitWidth - To - 1; 2709 } 2710 2711 bool llvm::recognizeBSwapOrBitReverseIdiom( 2712 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2713 SmallVectorImpl<Instruction *> &InsertedInsts) { 2714 if (Operator::getOpcode(I) != Instruction::Or) 2715 return false; 2716 if (!MatchBSwaps && !MatchBitReversals) 2717 return false; 2718 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2719 if (!ITy || ITy->getBitWidth() > 128) 2720 return false; // Can't do vectors or integers > 128 bits. 2721 unsigned BW = ITy->getBitWidth(); 2722 2723 unsigned DemandedBW = BW; 2724 IntegerType *DemandedTy = ITy; 2725 if (I->hasOneUse()) { 2726 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2727 DemandedTy = cast<IntegerType>(Trunc->getType()); 2728 DemandedBW = DemandedTy->getBitWidth(); 2729 } 2730 } 2731 2732 // Try to find all the pieces corresponding to the bswap. 2733 std::map<Value *, Optional<BitPart>> BPS; 2734 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2735 if (!Res) 2736 return false; 2737 auto &BitProvenance = Res->Provenance; 2738 2739 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2740 // only byteswap values with an even number of bytes. 2741 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2742 for (unsigned i = 0; i < DemandedBW; ++i) { 2743 OKForBSwap &= 2744 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2745 OKForBitReverse &= 2746 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2747 } 2748 2749 Intrinsic::ID Intrin; 2750 if (OKForBSwap && MatchBSwaps) 2751 Intrin = Intrinsic::bswap; 2752 else if (OKForBitReverse && MatchBitReversals) 2753 Intrin = Intrinsic::bitreverse; 2754 else 2755 return false; 2756 2757 if (ITy != DemandedTy) { 2758 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2759 Value *Provider = Res->Provider; 2760 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2761 // We may need to truncate the provider. 2762 if (DemandedTy != ProviderTy) { 2763 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2764 "trunc", I); 2765 InsertedInsts.push_back(Trunc); 2766 Provider = Trunc; 2767 } 2768 auto *CI = CallInst::Create(F, Provider, "rev", I); 2769 InsertedInsts.push_back(CI); 2770 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2771 InsertedInsts.push_back(ExtInst); 2772 return true; 2773 } 2774 2775 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2776 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2777 return true; 2778 } 2779 2780 // CodeGen has special handling for some string functions that may replace 2781 // them with target-specific intrinsics. Since that'd skip our interceptors 2782 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2783 // we mark affected calls as NoBuiltin, which will disable optimization 2784 // in CodeGen. 2785 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2786 CallInst *CI, const TargetLibraryInfo *TLI) { 2787 Function *F = CI->getCalledFunction(); 2788 LibFunc Func; 2789 if (F && !F->hasLocalLinkage() && F->hasName() && 2790 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2791 !F->doesNotAccessMemory()) 2792 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2793 } 2794 2795 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2796 // We can't have a PHI with a metadata type. 2797 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2798 return false; 2799 2800 // Early exit. 2801 if (!isa<Constant>(I->getOperand(OpIdx))) 2802 return true; 2803 2804 switch (I->getOpcode()) { 2805 default: 2806 return true; 2807 case Instruction::Call: 2808 case Instruction::Invoke: 2809 // Can't handle inline asm. Skip it. 2810 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2811 return false; 2812 // Many arithmetic intrinsics have no issue taking a 2813 // variable, however it's hard to distingish these from 2814 // specials such as @llvm.frameaddress that require a constant. 2815 if (isa<IntrinsicInst>(I)) 2816 return false; 2817 2818 // Constant bundle operands may need to retain their constant-ness for 2819 // correctness. 2820 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2821 return false; 2822 return true; 2823 case Instruction::ShuffleVector: 2824 // Shufflevector masks are constant. 2825 return OpIdx != 2; 2826 case Instruction::Switch: 2827 case Instruction::ExtractValue: 2828 // All operands apart from the first are constant. 2829 return OpIdx == 0; 2830 case Instruction::InsertValue: 2831 // All operands apart from the first and the second are constant. 2832 return OpIdx < 2; 2833 case Instruction::Alloca: 2834 // Static allocas (constant size in the entry block) are handled by 2835 // prologue/epilogue insertion so they're free anyway. We definitely don't 2836 // want to make them non-constant. 2837 return !cast<AllocaInst>(I)->isStaticAlloca(); 2838 case Instruction::GetElementPtr: 2839 if (OpIdx == 0) 2840 return true; 2841 gep_type_iterator It = gep_type_begin(I); 2842 for (auto E = std::next(It, OpIdx); It != E; ++It) 2843 if (It.isStruct()) 2844 return false; 2845 return true; 2846 } 2847 } 2848