1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/DomTreeUpdater.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   TerminatorInst *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
396         II->getIntrinsicID() == Intrinsic::lifetime_end)
397       return isa<UndefValue>(II->getArgOperand(1));
398 
399     // Assumptions are dead if their condition is trivially true.  Guards on
400     // true are operationally no-ops.  In the future we can consider more
401     // sophisticated tradeoffs for guards considering potential for check
402     // widening, but for now we keep things simple.
403     if (II->getIntrinsicID() == Intrinsic::assume ||
404         II->getIntrinsicID() == Intrinsic::experimental_guard) {
405       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406         return !Cond->isZero();
407 
408       return false;
409     }
410   }
411 
412   if (isAllocLikeFn(I, TLI))
413     return true;
414 
415   if (CallInst *CI = isFreeCall(I, TLI))
416     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417       return C->isNullValue() || isa<UndefValue>(C);
418 
419   if (CallSite CS = CallSite(I))
420     if (isMathLibCallNoop(CS, TLI))
421       return true;
422 
423   return false;
424 }
425 
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it.  If that makes any of its operands
428 /// trivially dead, delete them too, recursively.  Return true if any
429 /// instructions were deleted.
430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445     MemorySSAUpdater *MSSAU) {
446   // Process the dead instruction list until empty.
447   while (!DeadInsts.empty()) {
448     Instruction &I = *DeadInsts.pop_back_val();
449     assert(I.use_empty() && "Instructions with uses are not dead.");
450     assert(isInstructionTriviallyDead(&I, TLI) &&
451            "Live instruction found in dead worklist!");
452 
453     // Don't lose the debug info while deleting the instructions.
454     salvageDebugInfo(I);
455 
456     // Null out all of the instruction's operands to see if any operand becomes
457     // dead as we go.
458     for (Use &OpU : I.operands()) {
459       Value *OpV = OpU.get();
460       OpU.set(nullptr);
461 
462       if (!OpV->use_empty())
463         continue;
464 
465       // If the operand is an instruction that became dead as we nulled out the
466       // operand, and if it is 'trivially' dead, delete it in a future loop
467       // iteration.
468       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469         if (isInstructionTriviallyDead(OpI, TLI))
470           DeadInsts.push_back(OpI);
471     }
472     if (MSSAU)
473       MSSAU->removeMemoryAccess(&I);
474 
475     I.eraseFromParent();
476   }
477 }
478 
479 /// areAllUsesEqual - Check whether the uses of a value are all the same.
480 /// This is similar to Instruction::hasOneUse() except this will also return
481 /// true when there are no uses or multiple uses that all refer to the same
482 /// value.
483 static bool areAllUsesEqual(Instruction *I) {
484   Value::user_iterator UI = I->user_begin();
485   Value::user_iterator UE = I->user_end();
486   if (UI == UE)
487     return true;
488 
489   User *TheUse = *UI;
490   for (++UI; UI != UE; ++UI) {
491     if (*UI != TheUse)
492       return false;
493   }
494   return true;
495 }
496 
497 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
498 /// dead PHI node, due to being a def-use chain of single-use nodes that
499 /// either forms a cycle or is terminated by a trivially dead instruction,
500 /// delete it.  If that makes any of its operands trivially dead, delete them
501 /// too, recursively.  Return true if a change was made.
502 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
503                                         const TargetLibraryInfo *TLI) {
504   SmallPtrSet<Instruction*, 4> Visited;
505   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
506        I = cast<Instruction>(*I->user_begin())) {
507     if (I->use_empty())
508       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
509 
510     // If we find an instruction more than once, we're on a cycle that
511     // won't prove fruitful.
512     if (!Visited.insert(I).second) {
513       // Break the cycle and delete the instruction and its operands.
514       I->replaceAllUsesWith(UndefValue::get(I->getType()));
515       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
516       return true;
517     }
518   }
519   return false;
520 }
521 
522 static bool
523 simplifyAndDCEInstruction(Instruction *I,
524                           SmallSetVector<Instruction *, 16> &WorkList,
525                           const DataLayout &DL,
526                           const TargetLibraryInfo *TLI) {
527   if (isInstructionTriviallyDead(I, TLI)) {
528     salvageDebugInfo(*I);
529 
530     // Null out all of the instruction's operands to see if any operand becomes
531     // dead as we go.
532     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
533       Value *OpV = I->getOperand(i);
534       I->setOperand(i, nullptr);
535 
536       if (!OpV->use_empty() || I == OpV)
537         continue;
538 
539       // If the operand is an instruction that became dead as we nulled out the
540       // operand, and if it is 'trivially' dead, delete it in a future loop
541       // iteration.
542       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
543         if (isInstructionTriviallyDead(OpI, TLI))
544           WorkList.insert(OpI);
545     }
546 
547     I->eraseFromParent();
548 
549     return true;
550   }
551 
552   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
553     // Add the users to the worklist. CAREFUL: an instruction can use itself,
554     // in the case of a phi node.
555     for (User *U : I->users()) {
556       if (U != I) {
557         WorkList.insert(cast<Instruction>(U));
558       }
559     }
560 
561     // Replace the instruction with its simplified value.
562     bool Changed = false;
563     if (!I->use_empty()) {
564       I->replaceAllUsesWith(SimpleV);
565       Changed = true;
566     }
567     if (isInstructionTriviallyDead(I, TLI)) {
568       I->eraseFromParent();
569       Changed = true;
570     }
571     return Changed;
572   }
573   return false;
574 }
575 
576 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
577 /// simplify any instructions in it and recursively delete dead instructions.
578 ///
579 /// This returns true if it changed the code, note that it can delete
580 /// instructions in other blocks as well in this block.
581 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
582                                        const TargetLibraryInfo *TLI) {
583   bool MadeChange = false;
584   const DataLayout &DL = BB->getModule()->getDataLayout();
585 
586 #ifndef NDEBUG
587   // In debug builds, ensure that the terminator of the block is never replaced
588   // or deleted by these simplifications. The idea of simplification is that it
589   // cannot introduce new instructions, and there is no way to replace the
590   // terminator of a block without introducing a new instruction.
591   AssertingVH<Instruction> TerminatorVH(&BB->back());
592 #endif
593 
594   SmallSetVector<Instruction *, 16> WorkList;
595   // Iterate over the original function, only adding insts to the worklist
596   // if they actually need to be revisited. This avoids having to pre-init
597   // the worklist with the entire function's worth of instructions.
598   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
599        BI != E;) {
600     assert(!BI->isTerminator());
601     Instruction *I = &*BI;
602     ++BI;
603 
604     // We're visiting this instruction now, so make sure it's not in the
605     // worklist from an earlier visit.
606     if (!WorkList.count(I))
607       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
608   }
609 
610   while (!WorkList.empty()) {
611     Instruction *I = WorkList.pop_back_val();
612     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
613   }
614   return MadeChange;
615 }
616 
617 //===----------------------------------------------------------------------===//
618 //  Control Flow Graph Restructuring.
619 //
620 
621 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
622 /// method is called when we're about to delete Pred as a predecessor of BB.  If
623 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
624 ///
625 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
626 /// nodes that collapse into identity values.  For example, if we have:
627 ///   x = phi(1, 0, 0, 0)
628 ///   y = and x, z
629 ///
630 /// .. and delete the predecessor corresponding to the '1', this will attempt to
631 /// recursively fold the and to 0.
632 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
633                                         DomTreeUpdater *DTU) {
634   // This only adjusts blocks with PHI nodes.
635   if (!isa<PHINode>(BB->begin()))
636     return;
637 
638   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
639   // them down.  This will leave us with single entry phi nodes and other phis
640   // that can be removed.
641   BB->removePredecessor(Pred, true);
642 
643   WeakTrackingVH PhiIt = &BB->front();
644   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
645     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
646     Value *OldPhiIt = PhiIt;
647 
648     if (!recursivelySimplifyInstruction(PN))
649       continue;
650 
651     // If recursive simplification ended up deleting the next PHI node we would
652     // iterate to, then our iterator is invalid, restart scanning from the top
653     // of the block.
654     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
655   }
656   if (DTU)
657     DTU->deleteEdgeRelaxed(Pred, BB);
658 }
659 
660 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
661 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
662 /// between them, moving the instructions in the predecessor into DestBB and
663 /// deleting the predecessor block.
664 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
665                                        DomTreeUpdater *DTU) {
666 
667   // If BB has single-entry PHI nodes, fold them.
668   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
669     Value *NewVal = PN->getIncomingValue(0);
670     // Replace self referencing PHI with undef, it must be dead.
671     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
672     PN->replaceAllUsesWith(NewVal);
673     PN->eraseFromParent();
674   }
675 
676   BasicBlock *PredBB = DestBB->getSinglePredecessor();
677   assert(PredBB && "Block doesn't have a single predecessor!");
678 
679   bool ReplaceEntryBB = false;
680   if (PredBB == &DestBB->getParent()->getEntryBlock())
681     ReplaceEntryBB = true;
682 
683   // DTU updates: Collect all the edges that enter
684   // PredBB. These dominator edges will be redirected to DestBB.
685   std::vector <DominatorTree::UpdateType> Updates;
686 
687   if (DTU) {
688     Updates.reserve(1 + (2 * pred_size(PredBB)));
689     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
690     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
691       Updates.push_back({DominatorTree::Delete, *I, PredBB});
692       // This predecessor of PredBB may already have DestBB as a successor.
693       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
694         Updates.push_back({DominatorTree::Insert, *I, DestBB});
695     }
696   }
697 
698   // Zap anything that took the address of DestBB.  Not doing this will give the
699   // address an invalid value.
700   if (DestBB->hasAddressTaken()) {
701     BlockAddress *BA = BlockAddress::get(DestBB);
702     Constant *Replacement =
703       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
704     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
705                                                      BA->getType()));
706     BA->destroyConstant();
707   }
708 
709   // Anything that branched to PredBB now branches to DestBB.
710   PredBB->replaceAllUsesWith(DestBB);
711 
712   // Splice all the instructions from PredBB to DestBB.
713   PredBB->getTerminator()->eraseFromParent();
714   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
715   new UnreachableInst(PredBB->getContext(), PredBB);
716 
717   // If the PredBB is the entry block of the function, move DestBB up to
718   // become the entry block after we erase PredBB.
719   if (ReplaceEntryBB)
720     DestBB->moveAfter(PredBB);
721 
722   if (DTU) {
723     assert(PredBB->getInstList().size() == 1 &&
724            isa<UnreachableInst>(PredBB->getTerminator()) &&
725            "The successor list of PredBB isn't empty before "
726            "applying corresponding DTU updates.");
727     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
728     DTU->deleteBB(PredBB);
729     // Recalculation of DomTree is needed when updating a forward DomTree and
730     // the Entry BB is replaced.
731     if (ReplaceEntryBB && DTU->hasDomTree()) {
732       // The entry block was removed and there is no external interface for
733       // the dominator tree to be notified of this change. In this corner-case
734       // we recalculate the entire tree.
735       DTU->recalculate(*(DestBB->getParent()));
736     }
737   }
738 
739   else {
740     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
741   }
742 }
743 
744 /// CanMergeValues - Return true if we can choose one of these values to use
745 /// in place of the other. Note that we will always choose the non-undef
746 /// value to keep.
747 static bool CanMergeValues(Value *First, Value *Second) {
748   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
749 }
750 
751 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
752 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
753 ///
754 /// Assumption: Succ is the single successor for BB.
755 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
756   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
757 
758   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
759                     << Succ->getName() << "\n");
760   // Shortcut, if there is only a single predecessor it must be BB and merging
761   // is always safe
762   if (Succ->getSinglePredecessor()) return true;
763 
764   // Make a list of the predecessors of BB
765   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
766 
767   // Look at all the phi nodes in Succ, to see if they present a conflict when
768   // merging these blocks
769   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
770     PHINode *PN = cast<PHINode>(I);
771 
772     // If the incoming value from BB is again a PHINode in
773     // BB which has the same incoming value for *PI as PN does, we can
774     // merge the phi nodes and then the blocks can still be merged
775     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
776     if (BBPN && BBPN->getParent() == BB) {
777       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
778         BasicBlock *IBB = PN->getIncomingBlock(PI);
779         if (BBPreds.count(IBB) &&
780             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
781                             PN->getIncomingValue(PI))) {
782           LLVM_DEBUG(dbgs()
783                      << "Can't fold, phi node " << PN->getName() << " in "
784                      << Succ->getName() << " is conflicting with "
785                      << BBPN->getName() << " with regard to common predecessor "
786                      << IBB->getName() << "\n");
787           return false;
788         }
789       }
790     } else {
791       Value* Val = PN->getIncomingValueForBlock(BB);
792       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
793         // See if the incoming value for the common predecessor is equal to the
794         // one for BB, in which case this phi node will not prevent the merging
795         // of the block.
796         BasicBlock *IBB = PN->getIncomingBlock(PI);
797         if (BBPreds.count(IBB) &&
798             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
799           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
800                             << " in " << Succ->getName()
801                             << " is conflicting with regard to common "
802                             << "predecessor " << IBB->getName() << "\n");
803           return false;
804         }
805       }
806     }
807   }
808 
809   return true;
810 }
811 
812 using PredBlockVector = SmallVector<BasicBlock *, 16>;
813 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
814 
815 /// Determines the value to use as the phi node input for a block.
816 ///
817 /// Select between \p OldVal any value that we know flows from \p BB
818 /// to a particular phi on the basis of which one (if either) is not
819 /// undef. Update IncomingValues based on the selected value.
820 ///
821 /// \param OldVal The value we are considering selecting.
822 /// \param BB The block that the value flows in from.
823 /// \param IncomingValues A map from block-to-value for other phi inputs
824 /// that we have examined.
825 ///
826 /// \returns the selected value.
827 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
828                                           IncomingValueMap &IncomingValues) {
829   if (!isa<UndefValue>(OldVal)) {
830     assert((!IncomingValues.count(BB) ||
831             IncomingValues.find(BB)->second == OldVal) &&
832            "Expected OldVal to match incoming value from BB!");
833 
834     IncomingValues.insert(std::make_pair(BB, OldVal));
835     return OldVal;
836   }
837 
838   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
839   if (It != IncomingValues.end()) return It->second;
840 
841   return OldVal;
842 }
843 
844 /// Create a map from block to value for the operands of a
845 /// given phi.
846 ///
847 /// Create a map from block to value for each non-undef value flowing
848 /// into \p PN.
849 ///
850 /// \param PN The phi we are collecting the map for.
851 /// \param IncomingValues [out] The map from block to value for this phi.
852 static void gatherIncomingValuesToPhi(PHINode *PN,
853                                       IncomingValueMap &IncomingValues) {
854   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
855     BasicBlock *BB = PN->getIncomingBlock(i);
856     Value *V = PN->getIncomingValue(i);
857 
858     if (!isa<UndefValue>(V))
859       IncomingValues.insert(std::make_pair(BB, V));
860   }
861 }
862 
863 /// Replace the incoming undef values to a phi with the values
864 /// from a block-to-value map.
865 ///
866 /// \param PN The phi we are replacing the undefs in.
867 /// \param IncomingValues A map from block to value.
868 static void replaceUndefValuesInPhi(PHINode *PN,
869                                     const IncomingValueMap &IncomingValues) {
870   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
871     Value *V = PN->getIncomingValue(i);
872 
873     if (!isa<UndefValue>(V)) continue;
874 
875     BasicBlock *BB = PN->getIncomingBlock(i);
876     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
877     if (It == IncomingValues.end()) continue;
878 
879     PN->setIncomingValue(i, It->second);
880   }
881 }
882 
883 /// Replace a value flowing from a block to a phi with
884 /// potentially multiple instances of that value flowing from the
885 /// block's predecessors to the phi.
886 ///
887 /// \param BB The block with the value flowing into the phi.
888 /// \param BBPreds The predecessors of BB.
889 /// \param PN The phi that we are updating.
890 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
891                                                 const PredBlockVector &BBPreds,
892                                                 PHINode *PN) {
893   Value *OldVal = PN->removeIncomingValue(BB, false);
894   assert(OldVal && "No entry in PHI for Pred BB!");
895 
896   IncomingValueMap IncomingValues;
897 
898   // We are merging two blocks - BB, and the block containing PN - and
899   // as a result we need to redirect edges from the predecessors of BB
900   // to go to the block containing PN, and update PN
901   // accordingly. Since we allow merging blocks in the case where the
902   // predecessor and successor blocks both share some predecessors,
903   // and where some of those common predecessors might have undef
904   // values flowing into PN, we want to rewrite those values to be
905   // consistent with the non-undef values.
906 
907   gatherIncomingValuesToPhi(PN, IncomingValues);
908 
909   // If this incoming value is one of the PHI nodes in BB, the new entries
910   // in the PHI node are the entries from the old PHI.
911   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
912     PHINode *OldValPN = cast<PHINode>(OldVal);
913     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
914       // Note that, since we are merging phi nodes and BB and Succ might
915       // have common predecessors, we could end up with a phi node with
916       // identical incoming branches. This will be cleaned up later (and
917       // will trigger asserts if we try to clean it up now, without also
918       // simplifying the corresponding conditional branch).
919       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
920       Value *PredVal = OldValPN->getIncomingValue(i);
921       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
922                                                     IncomingValues);
923 
924       // And add a new incoming value for this predecessor for the
925       // newly retargeted branch.
926       PN->addIncoming(Selected, PredBB);
927     }
928   } else {
929     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
930       // Update existing incoming values in PN for this
931       // predecessor of BB.
932       BasicBlock *PredBB = BBPreds[i];
933       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
934                                                     IncomingValues);
935 
936       // And add a new incoming value for this predecessor for the
937       // newly retargeted branch.
938       PN->addIncoming(Selected, PredBB);
939     }
940   }
941 
942   replaceUndefValuesInPhi(PN, IncomingValues);
943 }
944 
945 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
946 /// unconditional branch, and contains no instructions other than PHI nodes,
947 /// potential side-effect free intrinsics and the branch.  If possible,
948 /// eliminate BB by rewriting all the predecessors to branch to the successor
949 /// block and return true.  If we can't transform, return false.
950 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
951                                                    DomTreeUpdater *DTU) {
952   assert(BB != &BB->getParent()->getEntryBlock() &&
953          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
954 
955   // We can't eliminate infinite loops.
956   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
957   if (BB == Succ) return false;
958 
959   // Check to see if merging these blocks would cause conflicts for any of the
960   // phi nodes in BB or Succ. If not, we can safely merge.
961   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
962 
963   // Check for cases where Succ has multiple predecessors and a PHI node in BB
964   // has uses which will not disappear when the PHI nodes are merged.  It is
965   // possible to handle such cases, but difficult: it requires checking whether
966   // BB dominates Succ, which is non-trivial to calculate in the case where
967   // Succ has multiple predecessors.  Also, it requires checking whether
968   // constructing the necessary self-referential PHI node doesn't introduce any
969   // conflicts; this isn't too difficult, but the previous code for doing this
970   // was incorrect.
971   //
972   // Note that if this check finds a live use, BB dominates Succ, so BB is
973   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
974   // folding the branch isn't profitable in that case anyway.
975   if (!Succ->getSinglePredecessor()) {
976     BasicBlock::iterator BBI = BB->begin();
977     while (isa<PHINode>(*BBI)) {
978       for (Use &U : BBI->uses()) {
979         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
980           if (PN->getIncomingBlock(U) != BB)
981             return false;
982         } else {
983           return false;
984         }
985       }
986       ++BBI;
987     }
988   }
989 
990   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
991 
992   std::vector<DominatorTree::UpdateType> Updates;
993   if (DTU) {
994     Updates.reserve(1 + (2 * pred_size(BB)));
995     Updates.push_back({DominatorTree::Delete, BB, Succ});
996     // All predecessors of BB will be moved to Succ.
997     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
998       Updates.push_back({DominatorTree::Delete, *I, BB});
999       // This predecessor of BB may already have Succ as a successor.
1000       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1001         Updates.push_back({DominatorTree::Insert, *I, Succ});
1002     }
1003   }
1004 
1005   if (isa<PHINode>(Succ->begin())) {
1006     // If there is more than one pred of succ, and there are PHI nodes in
1007     // the successor, then we need to add incoming edges for the PHI nodes
1008     //
1009     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1010 
1011     // Loop over all of the PHI nodes in the successor of BB.
1012     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1013       PHINode *PN = cast<PHINode>(I);
1014 
1015       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1016     }
1017   }
1018 
1019   if (Succ->getSinglePredecessor()) {
1020     // BB is the only predecessor of Succ, so Succ will end up with exactly
1021     // the same predecessors BB had.
1022 
1023     // Copy over any phi, debug or lifetime instruction.
1024     BB->getTerminator()->eraseFromParent();
1025     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1026                                BB->getInstList());
1027   } else {
1028     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1029       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1030       assert(PN->use_empty() && "There shouldn't be any uses here!");
1031       PN->eraseFromParent();
1032     }
1033   }
1034 
1035   // If the unconditional branch we replaced contains llvm.loop metadata, we
1036   // add the metadata to the branch instructions in the predecessors.
1037   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1038   Instruction *TI = BB->getTerminator();
1039   if (TI)
1040     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1041       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1042         BasicBlock *Pred = *PI;
1043         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1044       }
1045 
1046   // Everything that jumped to BB now goes to Succ.
1047   BB->replaceAllUsesWith(Succ);
1048   if (!Succ->hasName()) Succ->takeName(BB);
1049 
1050   // Clear the successor list of BB to match updates applying to DTU later.
1051   if (BB->getTerminator())
1052     BB->getInstList().pop_back();
1053   new UnreachableInst(BB->getContext(), BB);
1054   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1055                            "applying corresponding DTU updates.");
1056 
1057   if (DTU) {
1058     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1059     DTU->deleteBB(BB);
1060   } else {
1061     BB->eraseFromParent(); // Delete the old basic block.
1062   }
1063   return true;
1064 }
1065 
1066 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1067 /// nodes in this block. This doesn't try to be clever about PHI nodes
1068 /// which differ only in the order of the incoming values, but instcombine
1069 /// orders them so it usually won't matter.
1070 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1071   // This implementation doesn't currently consider undef operands
1072   // specially. Theoretically, two phis which are identical except for
1073   // one having an undef where the other doesn't could be collapsed.
1074 
1075   struct PHIDenseMapInfo {
1076     static PHINode *getEmptyKey() {
1077       return DenseMapInfo<PHINode *>::getEmptyKey();
1078     }
1079 
1080     static PHINode *getTombstoneKey() {
1081       return DenseMapInfo<PHINode *>::getTombstoneKey();
1082     }
1083 
1084     static unsigned getHashValue(PHINode *PN) {
1085       // Compute a hash value on the operands. Instcombine will likely have
1086       // sorted them, which helps expose duplicates, but we have to check all
1087       // the operands to be safe in case instcombine hasn't run.
1088       return static_cast<unsigned>(hash_combine(
1089           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1090           hash_combine_range(PN->block_begin(), PN->block_end())));
1091     }
1092 
1093     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1094       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1095           RHS == getEmptyKey() || RHS == getTombstoneKey())
1096         return LHS == RHS;
1097       return LHS->isIdenticalTo(RHS);
1098     }
1099   };
1100 
1101   // Set of unique PHINodes.
1102   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1103 
1104   // Examine each PHI.
1105   bool Changed = false;
1106   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1107     auto Inserted = PHISet.insert(PN);
1108     if (!Inserted.second) {
1109       // A duplicate. Replace this PHI with its duplicate.
1110       PN->replaceAllUsesWith(*Inserted.first);
1111       PN->eraseFromParent();
1112       Changed = true;
1113 
1114       // The RAUW can change PHIs that we already visited. Start over from the
1115       // beginning.
1116       PHISet.clear();
1117       I = BB->begin();
1118     }
1119   }
1120 
1121   return Changed;
1122 }
1123 
1124 /// enforceKnownAlignment - If the specified pointer points to an object that
1125 /// we control, modify the object's alignment to PrefAlign. This isn't
1126 /// often possible though. If alignment is important, a more reliable approach
1127 /// is to simply align all global variables and allocation instructions to
1128 /// their preferred alignment from the beginning.
1129 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1130                                       unsigned PrefAlign,
1131                                       const DataLayout &DL) {
1132   assert(PrefAlign > Align);
1133 
1134   V = V->stripPointerCasts();
1135 
1136   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1137     // TODO: ideally, computeKnownBits ought to have used
1138     // AllocaInst::getAlignment() in its computation already, making
1139     // the below max redundant. But, as it turns out,
1140     // stripPointerCasts recurses through infinite layers of bitcasts,
1141     // while computeKnownBits is not allowed to traverse more than 6
1142     // levels.
1143     Align = std::max(AI->getAlignment(), Align);
1144     if (PrefAlign <= Align)
1145       return Align;
1146 
1147     // If the preferred alignment is greater than the natural stack alignment
1148     // then don't round up. This avoids dynamic stack realignment.
1149     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1150       return Align;
1151     AI->setAlignment(PrefAlign);
1152     return PrefAlign;
1153   }
1154 
1155   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1156     // TODO: as above, this shouldn't be necessary.
1157     Align = std::max(GO->getAlignment(), Align);
1158     if (PrefAlign <= Align)
1159       return Align;
1160 
1161     // If there is a large requested alignment and we can, bump up the alignment
1162     // of the global.  If the memory we set aside for the global may not be the
1163     // memory used by the final program then it is impossible for us to reliably
1164     // enforce the preferred alignment.
1165     if (!GO->canIncreaseAlignment())
1166       return Align;
1167 
1168     GO->setAlignment(PrefAlign);
1169     return PrefAlign;
1170   }
1171 
1172   return Align;
1173 }
1174 
1175 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1176                                           const DataLayout &DL,
1177                                           const Instruction *CxtI,
1178                                           AssumptionCache *AC,
1179                                           const DominatorTree *DT) {
1180   assert(V->getType()->isPointerTy() &&
1181          "getOrEnforceKnownAlignment expects a pointer!");
1182 
1183   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1184   unsigned TrailZ = Known.countMinTrailingZeros();
1185 
1186   // Avoid trouble with ridiculously large TrailZ values, such as
1187   // those computed from a null pointer.
1188   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1189 
1190   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1191 
1192   // LLVM doesn't support alignments larger than this currently.
1193   Align = std::min(Align, +Value::MaximumAlignment);
1194 
1195   if (PrefAlign > Align)
1196     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1197 
1198   // We don't need to make any adjustment.
1199   return Align;
1200 }
1201 
1202 ///===---------------------------------------------------------------------===//
1203 ///  Dbg Intrinsic utilities
1204 ///
1205 
1206 /// See if there is a dbg.value intrinsic for DIVar before I.
1207 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1208                               Instruction *I) {
1209   // Since we can't guarantee that the original dbg.declare instrinsic
1210   // is removed by LowerDbgDeclare(), we need to make sure that we are
1211   // not inserting the same dbg.value intrinsic over and over.
1212   BasicBlock::InstListType::iterator PrevI(I);
1213   if (PrevI != I->getParent()->getInstList().begin()) {
1214     --PrevI;
1215     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1216       if (DVI->getValue() == I->getOperand(0) &&
1217           DVI->getVariable() == DIVar &&
1218           DVI->getExpression() == DIExpr)
1219         return true;
1220   }
1221   return false;
1222 }
1223 
1224 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1225 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1226                              DIExpression *DIExpr,
1227                              PHINode *APN) {
1228   // Since we can't guarantee that the original dbg.declare instrinsic
1229   // is removed by LowerDbgDeclare(), we need to make sure that we are
1230   // not inserting the same dbg.value intrinsic over and over.
1231   SmallVector<DbgValueInst *, 1> DbgValues;
1232   findDbgValues(DbgValues, APN);
1233   for (auto *DVI : DbgValues) {
1234     assert(DVI->getValue() == APN);
1235     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1236       return true;
1237   }
1238   return false;
1239 }
1240 
1241 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1242 /// (or fragment of the variable) described by \p DII.
1243 ///
1244 /// This is primarily intended as a helper for the different
1245 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1246 /// converted describes an alloca'd variable, so we need to use the
1247 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1248 /// identified as covering an n-bit fragment, if the store size of i1 is at
1249 /// least n bits.
1250 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1251   const DataLayout &DL = DII->getModule()->getDataLayout();
1252   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1253   if (auto FragmentSize = DII->getFragmentSizeInBits())
1254     return ValueSize >= *FragmentSize;
1255   // We can't always calculate the size of the DI variable (e.g. if it is a
1256   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1257   // intead.
1258   if (DII->isAddressOfVariable())
1259     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1260       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1261         return ValueSize >= *FragmentSize;
1262   // Could not determine size of variable. Conservatively return false.
1263   return false;
1264 }
1265 
1266 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1267 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1268 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1269                                            StoreInst *SI, DIBuilder &Builder) {
1270   assert(DII->isAddressOfVariable());
1271   auto *DIVar = DII->getVariable();
1272   assert(DIVar && "Missing variable");
1273   auto *DIExpr = DII->getExpression();
1274   Value *DV = SI->getOperand(0);
1275 
1276   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1277     // FIXME: If storing to a part of the variable described by the dbg.declare,
1278     // then we want to insert a dbg.value for the corresponding fragment.
1279     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1280                       << *DII << '\n');
1281     // For now, when there is a store to parts of the variable (but we do not
1282     // know which part) we insert an dbg.value instrinsic to indicate that we
1283     // know nothing about the variable's content.
1284     DV = UndefValue::get(DV->getType());
1285     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1286       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1287                                       SI);
1288     return;
1289   }
1290 
1291   // If an argument is zero extended then use argument directly. The ZExt
1292   // may be zapped by an optimization pass in future.
1293   Argument *ExtendedArg = nullptr;
1294   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1295     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1296   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1297     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1298   if (ExtendedArg) {
1299     // If this DII was already describing only a fragment of a variable, ensure
1300     // that fragment is appropriately narrowed here.
1301     // But if a fragment wasn't used, describe the value as the original
1302     // argument (rather than the zext or sext) so that it remains described even
1303     // if the sext/zext is optimized away. This widens the variable description,
1304     // leaving it up to the consumer to know how the smaller value may be
1305     // represented in a larger register.
1306     if (auto Fragment = DIExpr->getFragmentInfo()) {
1307       unsigned FragmentOffset = Fragment->OffsetInBits;
1308       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1309                                    DIExpr->elements_end() - 3);
1310       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1311       Ops.push_back(FragmentOffset);
1312       const DataLayout &DL = DII->getModule()->getDataLayout();
1313       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1314       DIExpr = Builder.createExpression(Ops);
1315     }
1316     DV = ExtendedArg;
1317   }
1318   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1319     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1320                                     SI);
1321 }
1322 
1323 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1324 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1325 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1326                                            LoadInst *LI, DIBuilder &Builder) {
1327   auto *DIVar = DII->getVariable();
1328   auto *DIExpr = DII->getExpression();
1329   assert(DIVar && "Missing variable");
1330 
1331   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1332     return;
1333 
1334   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1335     // FIXME: If only referring to a part of the variable described by the
1336     // dbg.declare, then we want to insert a dbg.value for the corresponding
1337     // fragment.
1338     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1339                       << *DII << '\n');
1340     return;
1341   }
1342 
1343   // We are now tracking the loaded value instead of the address. In the
1344   // future if multi-location support is added to the IR, it might be
1345   // preferable to keep tracking both the loaded value and the original
1346   // address in case the alloca can not be elided.
1347   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1348       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1349   DbgValue->insertAfter(LI);
1350 }
1351 
1352 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1353 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1354 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1355                                            PHINode *APN, DIBuilder &Builder) {
1356   auto *DIVar = DII->getVariable();
1357   auto *DIExpr = DII->getExpression();
1358   assert(DIVar && "Missing variable");
1359 
1360   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1361     return;
1362 
1363   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1364     // FIXME: If only referring to a part of the variable described by the
1365     // dbg.declare, then we want to insert a dbg.value for the corresponding
1366     // fragment.
1367     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1368                       << *DII << '\n');
1369     return;
1370   }
1371 
1372   BasicBlock *BB = APN->getParent();
1373   auto InsertionPt = BB->getFirstInsertionPt();
1374 
1375   // The block may be a catchswitch block, which does not have a valid
1376   // insertion point.
1377   // FIXME: Insert dbg.value markers in the successors when appropriate.
1378   if (InsertionPt != BB->end())
1379     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1380                                     &*InsertionPt);
1381 }
1382 
1383 /// Determine whether this alloca is either a VLA or an array.
1384 static bool isArray(AllocaInst *AI) {
1385   return AI->isArrayAllocation() ||
1386     AI->getType()->getElementType()->isArrayTy();
1387 }
1388 
1389 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1390 /// of llvm.dbg.value intrinsics.
1391 bool llvm::LowerDbgDeclare(Function &F) {
1392   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1393   SmallVector<DbgDeclareInst *, 4> Dbgs;
1394   for (auto &FI : F)
1395     for (Instruction &BI : FI)
1396       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1397         Dbgs.push_back(DDI);
1398 
1399   if (Dbgs.empty())
1400     return false;
1401 
1402   for (auto &I : Dbgs) {
1403     DbgDeclareInst *DDI = I;
1404     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1405     // If this is an alloca for a scalar variable, insert a dbg.value
1406     // at each load and store to the alloca and erase the dbg.declare.
1407     // The dbg.values allow tracking a variable even if it is not
1408     // stored on the stack, while the dbg.declare can only describe
1409     // the stack slot (and at a lexical-scope granularity). Later
1410     // passes will attempt to elide the stack slot.
1411     if (!AI || isArray(AI))
1412       continue;
1413 
1414     // A volatile load/store means that the alloca can't be elided anyway.
1415     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1416           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1417             return LI->isVolatile();
1418           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1419             return SI->isVolatile();
1420           return false;
1421         }))
1422       continue;
1423 
1424     for (auto &AIUse : AI->uses()) {
1425       User *U = AIUse.getUser();
1426       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1427         if (AIUse.getOperandNo() == 1)
1428           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1429       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1430         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1431       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1432         // This is a call by-value or some other instruction that takes a
1433         // pointer to the variable. Insert a *value* intrinsic that describes
1434         // the variable by dereferencing the alloca.
1435         auto *DerefExpr =
1436             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1437         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1438                                     DDI->getDebugLoc(), CI);
1439       }
1440     }
1441     DDI->eraseFromParent();
1442   }
1443   return true;
1444 }
1445 
1446 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1447 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1448                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1449   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1450   if (InsertedPHIs.size() == 0)
1451     return;
1452 
1453   // Map existing PHI nodes to their dbg.values.
1454   ValueToValueMapTy DbgValueMap;
1455   for (auto &I : *BB) {
1456     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1457       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1458         DbgValueMap.insert({Loc, DbgII});
1459     }
1460   }
1461   if (DbgValueMap.size() == 0)
1462     return;
1463 
1464   // Then iterate through the new PHIs and look to see if they use one of the
1465   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1466   // propagate the info through the new PHI.
1467   LLVMContext &C = BB->getContext();
1468   for (auto PHI : InsertedPHIs) {
1469     BasicBlock *Parent = PHI->getParent();
1470     // Avoid inserting an intrinsic into an EH block.
1471     if (Parent->getFirstNonPHI()->isEHPad())
1472       continue;
1473     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1474     for (auto VI : PHI->operand_values()) {
1475       auto V = DbgValueMap.find(VI);
1476       if (V != DbgValueMap.end()) {
1477         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1478         Instruction *NewDbgII = DbgII->clone();
1479         NewDbgII->setOperand(0, PhiMAV);
1480         auto InsertionPt = Parent->getFirstInsertionPt();
1481         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1482         NewDbgII->insertBefore(&*InsertionPt);
1483       }
1484     }
1485   }
1486 }
1487 
1488 /// Finds all intrinsics declaring local variables as living in the memory that
1489 /// 'V' points to. This may include a mix of dbg.declare and
1490 /// dbg.addr intrinsics.
1491 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1492   // This function is hot. Check whether the value has any metadata to avoid a
1493   // DenseMap lookup.
1494   if (!V->isUsedByMetadata())
1495     return {};
1496   auto *L = LocalAsMetadata::getIfExists(V);
1497   if (!L)
1498     return {};
1499   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1500   if (!MDV)
1501     return {};
1502 
1503   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1504   for (User *U : MDV->users()) {
1505     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1506       if (DII->isAddressOfVariable())
1507         Declares.push_back(DII);
1508   }
1509 
1510   return Declares;
1511 }
1512 
1513 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1514   // This function is hot. Check whether the value has any metadata to avoid a
1515   // DenseMap lookup.
1516   if (!V->isUsedByMetadata())
1517     return;
1518   if (auto *L = LocalAsMetadata::getIfExists(V))
1519     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1520       for (User *U : MDV->users())
1521         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1522           DbgValues.push_back(DVI);
1523 }
1524 
1525 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1526                         Value *V) {
1527   // This function is hot. Check whether the value has any metadata to avoid a
1528   // DenseMap lookup.
1529   if (!V->isUsedByMetadata())
1530     return;
1531   if (auto *L = LocalAsMetadata::getIfExists(V))
1532     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1533       for (User *U : MDV->users())
1534         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1535           DbgUsers.push_back(DII);
1536 }
1537 
1538 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1539                              Instruction *InsertBefore, DIBuilder &Builder,
1540                              bool DerefBefore, int Offset, bool DerefAfter) {
1541   auto DbgAddrs = FindDbgAddrUses(Address);
1542   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1543     DebugLoc Loc = DII->getDebugLoc();
1544     auto *DIVar = DII->getVariable();
1545     auto *DIExpr = DII->getExpression();
1546     assert(DIVar && "Missing variable");
1547     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1548     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1549     // llvm.dbg.declare.
1550     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1551     if (DII == InsertBefore)
1552       InsertBefore = InsertBefore->getNextNode();
1553     DII->eraseFromParent();
1554   }
1555   return !DbgAddrs.empty();
1556 }
1557 
1558 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1559                                       DIBuilder &Builder, bool DerefBefore,
1560                                       int Offset, bool DerefAfter) {
1561   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1562                            DerefBefore, Offset, DerefAfter);
1563 }
1564 
1565 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1566                                         DIBuilder &Builder, int Offset) {
1567   DebugLoc Loc = DVI->getDebugLoc();
1568   auto *DIVar = DVI->getVariable();
1569   auto *DIExpr = DVI->getExpression();
1570   assert(DIVar && "Missing variable");
1571 
1572   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1573   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1574   // it and give up.
1575   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1576       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1577     return;
1578 
1579   // Insert the offset immediately after the first deref.
1580   // We could just change the offset argument of dbg.value, but it's unsigned...
1581   if (Offset) {
1582     SmallVector<uint64_t, 4> Ops;
1583     Ops.push_back(dwarf::DW_OP_deref);
1584     DIExpression::appendOffset(Ops, Offset);
1585     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1586     DIExpr = Builder.createExpression(Ops);
1587   }
1588 
1589   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1590   DVI->eraseFromParent();
1591 }
1592 
1593 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1594                                     DIBuilder &Builder, int Offset) {
1595   if (auto *L = LocalAsMetadata::getIfExists(AI))
1596     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1597       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1598         Use &U = *UI++;
1599         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1600           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1601       }
1602 }
1603 
1604 /// Wrap \p V in a ValueAsMetadata instance.
1605 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1606   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1607 }
1608 
1609 bool llvm::salvageDebugInfo(Instruction &I) {
1610   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1611   findDbgUsers(DbgUsers, &I);
1612   if (DbgUsers.empty())
1613     return false;
1614 
1615   auto &M = *I.getModule();
1616   auto &DL = M.getDataLayout();
1617   auto &Ctx = I.getContext();
1618   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1619 
1620   auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1621     auto *DIExpr = DII->getExpression();
1622     if (!Ops.empty()) {
1623       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1624       // are implicitly pointing out the value as a DWARF memory location
1625       // description.
1626       bool WithStackValue = isa<DbgValueInst>(DII);
1627       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1628     }
1629     DII->setOperand(0, wrapMD(I.getOperand(0)));
1630     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1631     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1632   };
1633 
1634   auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1635     SmallVector<uint64_t, 8> Ops;
1636     DIExpression::appendOffset(Ops, Offset);
1637     doSalvage(DII, Ops);
1638   };
1639 
1640   auto applyOps = [&](DbgVariableIntrinsic *DII,
1641                       std::initializer_list<uint64_t> Opcodes) {
1642     SmallVector<uint64_t, 8> Ops(Opcodes);
1643     doSalvage(DII, Ops);
1644   };
1645 
1646   if (auto *CI = dyn_cast<CastInst>(&I)) {
1647     if (!CI->isNoopCast(DL))
1648       return false;
1649 
1650     // No-op casts are irrelevant for debug info.
1651     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1652     for (auto *DII : DbgUsers) {
1653       DII->setOperand(0, CastSrc);
1654       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1655     }
1656     return true;
1657   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1658     unsigned BitWidth =
1659         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1660     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1661     // arithmetic to compute the variable's *value* in the DIExpression, we
1662     // need to mark the expression with a DW_OP_stack_value.
1663     APInt Offset(BitWidth, 0);
1664     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1665       for (auto *DII : DbgUsers)
1666         applyOffset(DII, Offset.getSExtValue());
1667     return true;
1668   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1669     // Rewrite binary operations with constant integer operands.
1670     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1671     if (!ConstInt || ConstInt->getBitWidth() > 64)
1672       return false;
1673 
1674     uint64_t Val = ConstInt->getSExtValue();
1675     for (auto *DII : DbgUsers) {
1676       switch (BI->getOpcode()) {
1677       case Instruction::Add:
1678         applyOffset(DII, Val);
1679         break;
1680       case Instruction::Sub:
1681         applyOffset(DII, -int64_t(Val));
1682         break;
1683       case Instruction::Mul:
1684         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1685         break;
1686       case Instruction::SDiv:
1687         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1688         break;
1689       case Instruction::SRem:
1690         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1691         break;
1692       case Instruction::Or:
1693         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1694         break;
1695       case Instruction::And:
1696         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1697         break;
1698       case Instruction::Xor:
1699         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1700         break;
1701       case Instruction::Shl:
1702         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1703         break;
1704       case Instruction::LShr:
1705         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1706         break;
1707       case Instruction::AShr:
1708         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1709         break;
1710       default:
1711         // TODO: Salvage constants from each kind of binop we know about.
1712         return false;
1713       }
1714     }
1715     return true;
1716   } else if (isa<LoadInst>(&I)) {
1717     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1718     for (auto *DII : DbgUsers) {
1719       // Rewrite the load into DW_OP_deref.
1720       auto *DIExpr = DII->getExpression();
1721       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1722       DII->setOperand(0, AddrMD);
1723       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1724       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1725     }
1726     return true;
1727   }
1728   return false;
1729 }
1730 
1731 /// A replacement for a dbg.value expression.
1732 using DbgValReplacement = Optional<DIExpression *>;
1733 
1734 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1735 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1736 /// changes are made.
1737 static bool rewriteDebugUsers(
1738     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1739     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1740   // Find debug users of From.
1741   SmallVector<DbgVariableIntrinsic *, 1> Users;
1742   findDbgUsers(Users, &From);
1743   if (Users.empty())
1744     return false;
1745 
1746   // Prevent use-before-def of To.
1747   bool Changed = false;
1748   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1749   if (isa<Instruction>(&To)) {
1750     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1751 
1752     for (auto *DII : Users) {
1753       // It's common to see a debug user between From and DomPoint. Move it
1754       // after DomPoint to preserve the variable update without any reordering.
1755       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1756         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1757         DII->moveAfter(&DomPoint);
1758         Changed = true;
1759 
1760       // Users which otherwise aren't dominated by the replacement value must
1761       // be salvaged or deleted.
1762       } else if (!DT.dominates(&DomPoint, DII)) {
1763         DeleteOrSalvage.insert(DII);
1764       }
1765     }
1766   }
1767 
1768   // Update debug users without use-before-def risk.
1769   for (auto *DII : Users) {
1770     if (DeleteOrSalvage.count(DII))
1771       continue;
1772 
1773     LLVMContext &Ctx = DII->getContext();
1774     DbgValReplacement DVR = RewriteExpr(*DII);
1775     if (!DVR)
1776       continue;
1777 
1778     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1779     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1780     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1781     Changed = true;
1782   }
1783 
1784   if (!DeleteOrSalvage.empty()) {
1785     // Try to salvage the remaining debug users.
1786     Changed |= salvageDebugInfo(From);
1787 
1788     // Delete the debug users which weren't salvaged.
1789     for (auto *DII : DeleteOrSalvage) {
1790       if (DII->getVariableLocation() == &From) {
1791         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1792         DII->eraseFromParent();
1793         Changed = true;
1794       }
1795     }
1796   }
1797 
1798   return Changed;
1799 }
1800 
1801 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1802 /// losslessly preserve the bits and semantics of the value. This predicate is
1803 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1804 ///
1805 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1806 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1807 /// and also does not allow lossless pointer <-> integer conversions.
1808 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1809                                          Type *ToTy) {
1810   // Trivially compatible types.
1811   if (FromTy == ToTy)
1812     return true;
1813 
1814   // Handle compatible pointer <-> integer conversions.
1815   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1816     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1817     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1818                               !DL.isNonIntegralPointerType(ToTy);
1819     return SameSize && LosslessConversion;
1820   }
1821 
1822   // TODO: This is not exhaustive.
1823   return false;
1824 }
1825 
1826 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1827                                  Instruction &DomPoint, DominatorTree &DT) {
1828   // Exit early if From has no debug users.
1829   if (!From.isUsedByMetadata())
1830     return false;
1831 
1832   assert(&From != &To && "Can't replace something with itself");
1833 
1834   Type *FromTy = From.getType();
1835   Type *ToTy = To.getType();
1836 
1837   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1838     return DII.getExpression();
1839   };
1840 
1841   // Handle no-op conversions.
1842   Module &M = *From.getModule();
1843   const DataLayout &DL = M.getDataLayout();
1844   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1845     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1846 
1847   // Handle integer-to-integer widening and narrowing.
1848   // FIXME: Use DW_OP_convert when it's available everywhere.
1849   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1850     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1851     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1852     assert(FromBits != ToBits && "Unexpected no-op conversion");
1853 
1854     // When the width of the result grows, assume that a debugger will only
1855     // access the low `FromBits` bits when inspecting the source variable.
1856     if (FromBits < ToBits)
1857       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1858 
1859     // The width of the result has shrunk. Use sign/zero extension to describe
1860     // the source variable's high bits.
1861     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1862       DILocalVariable *Var = DII.getVariable();
1863 
1864       // Without knowing signedness, sign/zero extension isn't possible.
1865       auto Signedness = Var->getSignedness();
1866       if (!Signedness)
1867         return None;
1868 
1869       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1870 
1871       if (!Signed) {
1872         // In the unsigned case, assume that a debugger will initialize the
1873         // high bits to 0 and do a no-op conversion.
1874         return Identity(DII);
1875       } else {
1876         // In the signed case, the high bits are given by sign extension, i.e:
1877         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1878         // Calculate the high bits and OR them together with the low bits.
1879         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1880                                       (ToBits - 1), dwarf::DW_OP_shr,
1881                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1882                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1883         return DIExpression::appendToStack(DII.getExpression(), Ops);
1884       }
1885     };
1886     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1887   }
1888 
1889   // TODO: Floating-point conversions, vectors.
1890   return false;
1891 }
1892 
1893 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1894   unsigned NumDeadInst = 0;
1895   // Delete the instructions backwards, as it has a reduced likelihood of
1896   // having to update as many def-use and use-def chains.
1897   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1898   while (EndInst != &BB->front()) {
1899     // Delete the next to last instruction.
1900     Instruction *Inst = &*--EndInst->getIterator();
1901     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1902       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1903     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1904       EndInst = Inst;
1905       continue;
1906     }
1907     if (!isa<DbgInfoIntrinsic>(Inst))
1908       ++NumDeadInst;
1909     Inst->eraseFromParent();
1910   }
1911   return NumDeadInst;
1912 }
1913 
1914 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1915                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1916   BasicBlock *BB = I->getParent();
1917   std::vector <DominatorTree::UpdateType> Updates;
1918 
1919   // Loop over all of the successors, removing BB's entry from any PHI
1920   // nodes.
1921   if (DTU)
1922     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1923   for (BasicBlock *Successor : successors(BB)) {
1924     Successor->removePredecessor(BB, PreserveLCSSA);
1925     if (DTU)
1926       Updates.push_back({DominatorTree::Delete, BB, Successor});
1927   }
1928   // Insert a call to llvm.trap right before this.  This turns the undefined
1929   // behavior into a hard fail instead of falling through into random code.
1930   if (UseLLVMTrap) {
1931     Function *TrapFn =
1932       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1933     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1934     CallTrap->setDebugLoc(I->getDebugLoc());
1935   }
1936   auto *UI = new UnreachableInst(I->getContext(), I);
1937   UI->setDebugLoc(I->getDebugLoc());
1938 
1939   // All instructions after this are dead.
1940   unsigned NumInstrsRemoved = 0;
1941   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1942   while (BBI != BBE) {
1943     if (!BBI->use_empty())
1944       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1945     BB->getInstList().erase(BBI++);
1946     ++NumInstrsRemoved;
1947   }
1948   if (DTU)
1949     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1950   return NumInstrsRemoved;
1951 }
1952 
1953 /// changeToCall - Convert the specified invoke into a normal call.
1954 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1955   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1956   SmallVector<OperandBundleDef, 1> OpBundles;
1957   II->getOperandBundlesAsDefs(OpBundles);
1958   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1959                                        "", II);
1960   NewCall->takeName(II);
1961   NewCall->setCallingConv(II->getCallingConv());
1962   NewCall->setAttributes(II->getAttributes());
1963   NewCall->setDebugLoc(II->getDebugLoc());
1964   II->replaceAllUsesWith(NewCall);
1965 
1966   // Follow the call by a branch to the normal destination.
1967   BasicBlock *NormalDestBB = II->getNormalDest();
1968   BranchInst::Create(NormalDestBB, II);
1969 
1970   // Update PHI nodes in the unwind destination
1971   BasicBlock *BB = II->getParent();
1972   BasicBlock *UnwindDestBB = II->getUnwindDest();
1973   UnwindDestBB->removePredecessor(BB);
1974   II->eraseFromParent();
1975   if (DTU)
1976     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1977 }
1978 
1979 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1980                                                    BasicBlock *UnwindEdge) {
1981   BasicBlock *BB = CI->getParent();
1982 
1983   // Convert this function call into an invoke instruction.  First, split the
1984   // basic block.
1985   BasicBlock *Split =
1986       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1987 
1988   // Delete the unconditional branch inserted by splitBasicBlock
1989   BB->getInstList().pop_back();
1990 
1991   // Create the new invoke instruction.
1992   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1993   SmallVector<OperandBundleDef, 1> OpBundles;
1994 
1995   CI->getOperandBundlesAsDefs(OpBundles);
1996 
1997   // Note: we're round tripping operand bundles through memory here, and that
1998   // can potentially be avoided with a cleverer API design that we do not have
1999   // as of this time.
2000 
2001   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
2002                                       InvokeArgs, OpBundles, CI->getName(), BB);
2003   II->setDebugLoc(CI->getDebugLoc());
2004   II->setCallingConv(CI->getCallingConv());
2005   II->setAttributes(CI->getAttributes());
2006 
2007   // Make sure that anything using the call now uses the invoke!  This also
2008   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2009   CI->replaceAllUsesWith(II);
2010 
2011   // Delete the original call
2012   Split->getInstList().pop_front();
2013   return Split;
2014 }
2015 
2016 static bool markAliveBlocks(Function &F,
2017                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2018                             DomTreeUpdater *DTU = nullptr) {
2019   SmallVector<BasicBlock*, 128> Worklist;
2020   BasicBlock *BB = &F.front();
2021   Worklist.push_back(BB);
2022   Reachable.insert(BB);
2023   bool Changed = false;
2024   do {
2025     BB = Worklist.pop_back_val();
2026 
2027     // Do a quick scan of the basic block, turning any obviously unreachable
2028     // instructions into LLVM unreachable insts.  The instruction combining pass
2029     // canonicalizes unreachable insts into stores to null or undef.
2030     for (Instruction &I : *BB) {
2031       if (auto *CI = dyn_cast<CallInst>(&I)) {
2032         Value *Callee = CI->getCalledValue();
2033         // Handle intrinsic calls.
2034         if (Function *F = dyn_cast<Function>(Callee)) {
2035           auto IntrinsicID = F->getIntrinsicID();
2036           // Assumptions that are known to be false are equivalent to
2037           // unreachable. Also, if the condition is undefined, then we make the
2038           // choice most beneficial to the optimizer, and choose that to also be
2039           // unreachable.
2040           if (IntrinsicID == Intrinsic::assume) {
2041             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2042               // Don't insert a call to llvm.trap right before the unreachable.
2043               changeToUnreachable(CI, false, false, DTU);
2044               Changed = true;
2045               break;
2046             }
2047           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2048             // A call to the guard intrinsic bails out of the current
2049             // compilation unit if the predicate passed to it is false. If the
2050             // predicate is a constant false, then we know the guard will bail
2051             // out of the current compile unconditionally, so all code following
2052             // it is dead.
2053             //
2054             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2055             // guards to treat `undef` as `false` since a guard on `undef` can
2056             // still be useful for widening.
2057             if (match(CI->getArgOperand(0), m_Zero()))
2058               if (!isa<UnreachableInst>(CI->getNextNode())) {
2059                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2060                                     false, DTU);
2061                 Changed = true;
2062                 break;
2063               }
2064           }
2065         } else if ((isa<ConstantPointerNull>(Callee) &&
2066                     !NullPointerIsDefined(CI->getFunction())) ||
2067                    isa<UndefValue>(Callee)) {
2068           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2069           Changed = true;
2070           break;
2071         }
2072         if (CI->doesNotReturn()) {
2073           // If we found a call to a no-return function, insert an unreachable
2074           // instruction after it.  Make sure there isn't *already* one there
2075           // though.
2076           if (!isa<UnreachableInst>(CI->getNextNode())) {
2077             // Don't insert a call to llvm.trap right before the unreachable.
2078             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2079             Changed = true;
2080           }
2081           break;
2082         }
2083       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2084         // Store to undef and store to null are undefined and used to signal
2085         // that they should be changed to unreachable by passes that can't
2086         // modify the CFG.
2087 
2088         // Don't touch volatile stores.
2089         if (SI->isVolatile()) continue;
2090 
2091         Value *Ptr = SI->getOperand(1);
2092 
2093         if (isa<UndefValue>(Ptr) ||
2094             (isa<ConstantPointerNull>(Ptr) &&
2095              !NullPointerIsDefined(SI->getFunction(),
2096                                    SI->getPointerAddressSpace()))) {
2097           changeToUnreachable(SI, true, false, DTU);
2098           Changed = true;
2099           break;
2100         }
2101       }
2102     }
2103 
2104     TerminatorInst *Terminator = BB->getTerminator();
2105     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2106       // Turn invokes that call 'nounwind' functions into ordinary calls.
2107       Value *Callee = II->getCalledValue();
2108       if ((isa<ConstantPointerNull>(Callee) &&
2109            !NullPointerIsDefined(BB->getParent())) ||
2110           isa<UndefValue>(Callee)) {
2111         changeToUnreachable(II, true, false, DTU);
2112         Changed = true;
2113       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2114         if (II->use_empty() && II->onlyReadsMemory()) {
2115           // jump to the normal destination branch.
2116           BasicBlock *NormalDestBB = II->getNormalDest();
2117           BasicBlock *UnwindDestBB = II->getUnwindDest();
2118           BranchInst::Create(NormalDestBB, II);
2119           UnwindDestBB->removePredecessor(II->getParent());
2120           II->eraseFromParent();
2121           if (DTU)
2122             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2123         } else
2124           changeToCall(II, DTU);
2125         Changed = true;
2126       }
2127     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2128       // Remove catchpads which cannot be reached.
2129       struct CatchPadDenseMapInfo {
2130         static CatchPadInst *getEmptyKey() {
2131           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2132         }
2133 
2134         static CatchPadInst *getTombstoneKey() {
2135           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2136         }
2137 
2138         static unsigned getHashValue(CatchPadInst *CatchPad) {
2139           return static_cast<unsigned>(hash_combine_range(
2140               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2141         }
2142 
2143         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2144           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2145               RHS == getEmptyKey() || RHS == getTombstoneKey())
2146             return LHS == RHS;
2147           return LHS->isIdenticalTo(RHS);
2148         }
2149       };
2150 
2151       // Set of unique CatchPads.
2152       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2153                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2154           HandlerSet;
2155       detail::DenseSetEmpty Empty;
2156       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2157                                              E = CatchSwitch->handler_end();
2158            I != E; ++I) {
2159         BasicBlock *HandlerBB = *I;
2160         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2161         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2162           CatchSwitch->removeHandler(I);
2163           --I;
2164           --E;
2165           Changed = true;
2166         }
2167       }
2168     }
2169 
2170     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2171     for (BasicBlock *Successor : successors(BB))
2172       if (Reachable.insert(Successor).second)
2173         Worklist.push_back(Successor);
2174   } while (!Worklist.empty());
2175   return Changed;
2176 }
2177 
2178 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2179   TerminatorInst *TI = BB->getTerminator();
2180 
2181   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2182     changeToCall(II, DTU);
2183     return;
2184   }
2185 
2186   TerminatorInst *NewTI;
2187   BasicBlock *UnwindDest;
2188 
2189   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2190     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2191     UnwindDest = CRI->getUnwindDest();
2192   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2193     auto *NewCatchSwitch = CatchSwitchInst::Create(
2194         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2195         CatchSwitch->getName(), CatchSwitch);
2196     for (BasicBlock *PadBB : CatchSwitch->handlers())
2197       NewCatchSwitch->addHandler(PadBB);
2198 
2199     NewTI = NewCatchSwitch;
2200     UnwindDest = CatchSwitch->getUnwindDest();
2201   } else {
2202     llvm_unreachable("Could not find unwind successor");
2203   }
2204 
2205   NewTI->takeName(TI);
2206   NewTI->setDebugLoc(TI->getDebugLoc());
2207   UnwindDest->removePredecessor(BB);
2208   TI->replaceAllUsesWith(NewTI);
2209   TI->eraseFromParent();
2210   if (DTU)
2211     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2212 }
2213 
2214 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2215 /// if they are in a dead cycle.  Return true if a change was made, false
2216 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2217 /// after modifying the CFG.
2218 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2219                                    DomTreeUpdater *DTU,
2220                                    MemorySSAUpdater *MSSAU) {
2221   SmallPtrSet<BasicBlock*, 16> Reachable;
2222   bool Changed = markAliveBlocks(F, Reachable, DTU);
2223 
2224   // If there are unreachable blocks in the CFG...
2225   if (Reachable.size() == F.size())
2226     return Changed;
2227 
2228   assert(Reachable.size() < F.size());
2229   NumRemoved += F.size()-Reachable.size();
2230 
2231   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2232   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2233     auto *BB = &*I;
2234     if (Reachable.count(BB))
2235       continue;
2236     DeadBlockSet.insert(BB);
2237   }
2238 
2239   if (MSSAU)
2240     MSSAU->removeBlocks(DeadBlockSet);
2241 
2242   // Loop over all of the basic blocks that are not reachable, dropping all of
2243   // their internal references. Update DTU and LVI if available.
2244   std::vector<DominatorTree::UpdateType> Updates;
2245   for (auto *BB : DeadBlockSet) {
2246     for (BasicBlock *Successor : successors(BB)) {
2247       if (!DeadBlockSet.count(Successor))
2248         Successor->removePredecessor(BB);
2249       if (DTU)
2250         Updates.push_back({DominatorTree::Delete, BB, Successor});
2251     }
2252     if (LVI)
2253       LVI->eraseBlock(BB);
2254     BB->dropAllReferences();
2255   }
2256   for (Function::iterator I = ++F.begin(); I != F.end();) {
2257     auto *BB = &*I;
2258     if (Reachable.count(BB)) {
2259       ++I;
2260       continue;
2261     }
2262     if (DTU) {
2263       // Remove the TerminatorInst of BB to clear the successor list of BB.
2264       if (BB->getTerminator())
2265         BB->getInstList().pop_back();
2266       new UnreachableInst(BB->getContext(), BB);
2267       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2268                                "applying corresponding DTU updates.");
2269       ++I;
2270     } else {
2271       I = F.getBasicBlockList().erase(I);
2272     }
2273   }
2274 
2275   if (DTU) {
2276     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2277     bool Deleted = false;
2278     for (auto *BB : DeadBlockSet) {
2279       if (DTU->isBBPendingDeletion(BB))
2280         --NumRemoved;
2281       else
2282         Deleted = true;
2283       DTU->deleteBB(BB);
2284     }
2285     if (!Deleted)
2286       return false;
2287   }
2288   return true;
2289 }
2290 
2291 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2292                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2293   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2294   K->dropUnknownNonDebugMetadata(KnownIDs);
2295   K->getAllMetadataOtherThanDebugLoc(Metadata);
2296   for (const auto &MD : Metadata) {
2297     unsigned Kind = MD.first;
2298     MDNode *JMD = J->getMetadata(Kind);
2299     MDNode *KMD = MD.second;
2300 
2301     switch (Kind) {
2302       default:
2303         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2304         break;
2305       case LLVMContext::MD_dbg:
2306         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2307       case LLVMContext::MD_tbaa:
2308         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2309         break;
2310       case LLVMContext::MD_alias_scope:
2311         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2312         break;
2313       case LLVMContext::MD_noalias:
2314       case LLVMContext::MD_mem_parallel_loop_access:
2315         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2316         break;
2317       case LLVMContext::MD_range:
2318         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2319         break;
2320       case LLVMContext::MD_fpmath:
2321         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2322         break;
2323       case LLVMContext::MD_invariant_load:
2324         // Only set the !invariant.load if it is present in both instructions.
2325         K->setMetadata(Kind, JMD);
2326         break;
2327       case LLVMContext::MD_nonnull:
2328         // If K does move, keep nonull if it is present in both instructions.
2329         if (DoesKMove)
2330           K->setMetadata(Kind, JMD);
2331         break;
2332       case LLVMContext::MD_invariant_group:
2333         // Preserve !invariant.group in K.
2334         break;
2335       case LLVMContext::MD_align:
2336         K->setMetadata(Kind,
2337           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2338         break;
2339       case LLVMContext::MD_dereferenceable:
2340       case LLVMContext::MD_dereferenceable_or_null:
2341         K->setMetadata(Kind,
2342           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2343         break;
2344     }
2345   }
2346   // Set !invariant.group from J if J has it. If both instructions have it
2347   // then we will just pick it from J - even when they are different.
2348   // Also make sure that K is load or store - f.e. combining bitcast with load
2349   // could produce bitcast with invariant.group metadata, which is invalid.
2350   // FIXME: we should try to preserve both invariant.group md if they are
2351   // different, but right now instruction can only have one invariant.group.
2352   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2353     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2354       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2355 }
2356 
2357 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2358                                  bool KDominatesJ) {
2359   unsigned KnownIDs[] = {
2360       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2361       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2362       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2363       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2364       LLVMContext::MD_dereferenceable,
2365       LLVMContext::MD_dereferenceable_or_null};
2366   combineMetadata(K, J, KnownIDs, KDominatesJ);
2367 }
2368 
2369 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2370   auto *ReplInst = dyn_cast<Instruction>(Repl);
2371   if (!ReplInst)
2372     return;
2373 
2374   // Patch the replacement so that it is not more restrictive than the value
2375   // being replaced.
2376   // Note that if 'I' is a load being replaced by some operation,
2377   // for example, by an arithmetic operation, then andIRFlags()
2378   // would just erase all math flags from the original arithmetic
2379   // operation, which is clearly not wanted and not needed.
2380   if (!isa<LoadInst>(I))
2381     ReplInst->andIRFlags(I);
2382 
2383   // FIXME: If both the original and replacement value are part of the
2384   // same control-flow region (meaning that the execution of one
2385   // guarantees the execution of the other), then we can combine the
2386   // noalias scopes here and do better than the general conservative
2387   // answer used in combineMetadata().
2388 
2389   // In general, GVN unifies expressions over different control-flow
2390   // regions, and so we need a conservative combination of the noalias
2391   // scopes.
2392   static const unsigned KnownIDs[] = {
2393       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2394       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2395       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2396       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull};
2397   combineMetadata(ReplInst, I, KnownIDs, false);
2398 }
2399 
2400 template <typename RootType, typename DominatesFn>
2401 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2402                                          const RootType &Root,
2403                                          const DominatesFn &Dominates) {
2404   assert(From->getType() == To->getType());
2405 
2406   unsigned Count = 0;
2407   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2408        UI != UE;) {
2409     Use &U = *UI++;
2410     if (!Dominates(Root, U))
2411       continue;
2412     U.set(To);
2413     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2414                       << "' as " << *To << " in " << *U << "\n");
2415     ++Count;
2416   }
2417   return Count;
2418 }
2419 
2420 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2421    assert(From->getType() == To->getType());
2422    auto *BB = From->getParent();
2423    unsigned Count = 0;
2424 
2425   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2426        UI != UE;) {
2427     Use &U = *UI++;
2428     auto *I = cast<Instruction>(U.getUser());
2429     if (I->getParent() == BB)
2430       continue;
2431     U.set(To);
2432     ++Count;
2433   }
2434   return Count;
2435 }
2436 
2437 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2438                                         DominatorTree &DT,
2439                                         const BasicBlockEdge &Root) {
2440   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2441     return DT.dominates(Root, U);
2442   };
2443   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2444 }
2445 
2446 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2447                                         DominatorTree &DT,
2448                                         const BasicBlock *BB) {
2449   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2450     auto *I = cast<Instruction>(U.getUser())->getParent();
2451     return DT.properlyDominates(BB, I);
2452   };
2453   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2454 }
2455 
2456 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2457                                const TargetLibraryInfo &TLI) {
2458   // Check if the function is specifically marked as a gc leaf function.
2459   if (CS.hasFnAttr("gc-leaf-function"))
2460     return true;
2461   if (const Function *F = CS.getCalledFunction()) {
2462     if (F->hasFnAttribute("gc-leaf-function"))
2463       return true;
2464 
2465     if (auto IID = F->getIntrinsicID())
2466       // Most LLVM intrinsics do not take safepoints.
2467       return IID != Intrinsic::experimental_gc_statepoint &&
2468              IID != Intrinsic::experimental_deoptimize;
2469   }
2470 
2471   // Lib calls can be materialized by some passes, and won't be
2472   // marked as 'gc-leaf-function.' All available Libcalls are
2473   // GC-leaf.
2474   LibFunc LF;
2475   if (TLI.getLibFunc(CS, LF)) {
2476     return TLI.has(LF);
2477   }
2478 
2479   return false;
2480 }
2481 
2482 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2483                                LoadInst &NewLI) {
2484   auto *NewTy = NewLI.getType();
2485 
2486   // This only directly applies if the new type is also a pointer.
2487   if (NewTy->isPointerTy()) {
2488     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2489     return;
2490   }
2491 
2492   // The only other translation we can do is to integral loads with !range
2493   // metadata.
2494   if (!NewTy->isIntegerTy())
2495     return;
2496 
2497   MDBuilder MDB(NewLI.getContext());
2498   const Value *Ptr = OldLI.getPointerOperand();
2499   auto *ITy = cast<IntegerType>(NewTy);
2500   auto *NullInt = ConstantExpr::getPtrToInt(
2501       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2502   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2503   NewLI.setMetadata(LLVMContext::MD_range,
2504                     MDB.createRange(NonNullInt, NullInt));
2505 }
2506 
2507 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2508                              MDNode *N, LoadInst &NewLI) {
2509   auto *NewTy = NewLI.getType();
2510 
2511   // Give up unless it is converted to a pointer where there is a single very
2512   // valuable mapping we can do reliably.
2513   // FIXME: It would be nice to propagate this in more ways, but the type
2514   // conversions make it hard.
2515   if (!NewTy->isPointerTy())
2516     return;
2517 
2518   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2519   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2520     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2521     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2522   }
2523 }
2524 
2525 void llvm::dropDebugUsers(Instruction &I) {
2526   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2527   findDbgUsers(DbgUsers, &I);
2528   for (auto *DII : DbgUsers)
2529     DII->eraseFromParent();
2530 }
2531 
2532 namespace {
2533 
2534 /// A potential constituent of a bitreverse or bswap expression. See
2535 /// collectBitParts for a fuller explanation.
2536 struct BitPart {
2537   BitPart(Value *P, unsigned BW) : Provider(P) {
2538     Provenance.resize(BW);
2539   }
2540 
2541   /// The Value that this is a bitreverse/bswap of.
2542   Value *Provider;
2543 
2544   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2545   /// in Provider becomes bit B in the result of this expression.
2546   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2547 
2548   enum { Unset = -1 };
2549 };
2550 
2551 } // end anonymous namespace
2552 
2553 /// Analyze the specified subexpression and see if it is capable of providing
2554 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2555 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2556 /// the output of the expression came from a corresponding bit in some other
2557 /// value. This function is recursive, and the end result is a mapping of
2558 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2559 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2560 ///
2561 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2562 /// that the expression deposits the low byte of %X into the high byte of the
2563 /// result and that all other bits are zero. This expression is accepted and a
2564 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2565 /// [0-7].
2566 ///
2567 /// To avoid revisiting values, the BitPart results are memoized into the
2568 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2569 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2570 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2571 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2572 /// type instead to provide the same functionality.
2573 ///
2574 /// Because we pass around references into \c BPS, we must use a container that
2575 /// does not invalidate internal references (std::map instead of DenseMap).
2576 static const Optional<BitPart> &
2577 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2578                 std::map<Value *, Optional<BitPart>> &BPS) {
2579   auto I = BPS.find(V);
2580   if (I != BPS.end())
2581     return I->second;
2582 
2583   auto &Result = BPS[V] = None;
2584   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2585 
2586   if (Instruction *I = dyn_cast<Instruction>(V)) {
2587     // If this is an or instruction, it may be an inner node of the bswap.
2588     if (I->getOpcode() == Instruction::Or) {
2589       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2590                                 MatchBitReversals, BPS);
2591       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2592                                 MatchBitReversals, BPS);
2593       if (!A || !B)
2594         return Result;
2595 
2596       // Try and merge the two together.
2597       if (!A->Provider || A->Provider != B->Provider)
2598         return Result;
2599 
2600       Result = BitPart(A->Provider, BitWidth);
2601       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2602         if (A->Provenance[i] != BitPart::Unset &&
2603             B->Provenance[i] != BitPart::Unset &&
2604             A->Provenance[i] != B->Provenance[i])
2605           return Result = None;
2606 
2607         if (A->Provenance[i] == BitPart::Unset)
2608           Result->Provenance[i] = B->Provenance[i];
2609         else
2610           Result->Provenance[i] = A->Provenance[i];
2611       }
2612 
2613       return Result;
2614     }
2615 
2616     // If this is a logical shift by a constant, recurse then shift the result.
2617     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2618       unsigned BitShift =
2619           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2620       // Ensure the shift amount is defined.
2621       if (BitShift > BitWidth)
2622         return Result;
2623 
2624       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2625                                   MatchBitReversals, BPS);
2626       if (!Res)
2627         return Result;
2628       Result = Res;
2629 
2630       // Perform the "shift" on BitProvenance.
2631       auto &P = Result->Provenance;
2632       if (I->getOpcode() == Instruction::Shl) {
2633         P.erase(std::prev(P.end(), BitShift), P.end());
2634         P.insert(P.begin(), BitShift, BitPart::Unset);
2635       } else {
2636         P.erase(P.begin(), std::next(P.begin(), BitShift));
2637         P.insert(P.end(), BitShift, BitPart::Unset);
2638       }
2639 
2640       return Result;
2641     }
2642 
2643     // If this is a logical 'and' with a mask that clears bits, recurse then
2644     // unset the appropriate bits.
2645     if (I->getOpcode() == Instruction::And &&
2646         isa<ConstantInt>(I->getOperand(1))) {
2647       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2648       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2649 
2650       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2651       // early exit.
2652       unsigned NumMaskedBits = AndMask.countPopulation();
2653       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2654         return Result;
2655 
2656       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2657                                   MatchBitReversals, BPS);
2658       if (!Res)
2659         return Result;
2660       Result = Res;
2661 
2662       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2663         // If the AndMask is zero for this bit, clear the bit.
2664         if ((AndMask & Bit) == 0)
2665           Result->Provenance[i] = BitPart::Unset;
2666       return Result;
2667     }
2668 
2669     // If this is a zext instruction zero extend the result.
2670     if (I->getOpcode() == Instruction::ZExt) {
2671       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2672                                   MatchBitReversals, BPS);
2673       if (!Res)
2674         return Result;
2675 
2676       Result = BitPart(Res->Provider, BitWidth);
2677       auto NarrowBitWidth =
2678           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2679       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2680         Result->Provenance[i] = Res->Provenance[i];
2681       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2682         Result->Provenance[i] = BitPart::Unset;
2683       return Result;
2684     }
2685   }
2686 
2687   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2688   // the input value to the bswap/bitreverse.
2689   Result = BitPart(V, BitWidth);
2690   for (unsigned i = 0; i < BitWidth; ++i)
2691     Result->Provenance[i] = i;
2692   return Result;
2693 }
2694 
2695 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2696                                           unsigned BitWidth) {
2697   if (From % 8 != To % 8)
2698     return false;
2699   // Convert from bit indices to byte indices and check for a byte reversal.
2700   From >>= 3;
2701   To >>= 3;
2702   BitWidth >>= 3;
2703   return From == BitWidth - To - 1;
2704 }
2705 
2706 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2707                                                unsigned BitWidth) {
2708   return From == BitWidth - To - 1;
2709 }
2710 
2711 bool llvm::recognizeBSwapOrBitReverseIdiom(
2712     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2713     SmallVectorImpl<Instruction *> &InsertedInsts) {
2714   if (Operator::getOpcode(I) != Instruction::Or)
2715     return false;
2716   if (!MatchBSwaps && !MatchBitReversals)
2717     return false;
2718   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2719   if (!ITy || ITy->getBitWidth() > 128)
2720     return false;   // Can't do vectors or integers > 128 bits.
2721   unsigned BW = ITy->getBitWidth();
2722 
2723   unsigned DemandedBW = BW;
2724   IntegerType *DemandedTy = ITy;
2725   if (I->hasOneUse()) {
2726     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2727       DemandedTy = cast<IntegerType>(Trunc->getType());
2728       DemandedBW = DemandedTy->getBitWidth();
2729     }
2730   }
2731 
2732   // Try to find all the pieces corresponding to the bswap.
2733   std::map<Value *, Optional<BitPart>> BPS;
2734   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2735   if (!Res)
2736     return false;
2737   auto &BitProvenance = Res->Provenance;
2738 
2739   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2740   // only byteswap values with an even number of bytes.
2741   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2742   for (unsigned i = 0; i < DemandedBW; ++i) {
2743     OKForBSwap &=
2744         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2745     OKForBitReverse &=
2746         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2747   }
2748 
2749   Intrinsic::ID Intrin;
2750   if (OKForBSwap && MatchBSwaps)
2751     Intrin = Intrinsic::bswap;
2752   else if (OKForBitReverse && MatchBitReversals)
2753     Intrin = Intrinsic::bitreverse;
2754   else
2755     return false;
2756 
2757   if (ITy != DemandedTy) {
2758     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2759     Value *Provider = Res->Provider;
2760     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2761     // We may need to truncate the provider.
2762     if (DemandedTy != ProviderTy) {
2763       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2764                                      "trunc", I);
2765       InsertedInsts.push_back(Trunc);
2766       Provider = Trunc;
2767     }
2768     auto *CI = CallInst::Create(F, Provider, "rev", I);
2769     InsertedInsts.push_back(CI);
2770     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2771     InsertedInsts.push_back(ExtInst);
2772     return true;
2773   }
2774 
2775   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2776   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2777   return true;
2778 }
2779 
2780 // CodeGen has special handling for some string functions that may replace
2781 // them with target-specific intrinsics.  Since that'd skip our interceptors
2782 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2783 // we mark affected calls as NoBuiltin, which will disable optimization
2784 // in CodeGen.
2785 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2786     CallInst *CI, const TargetLibraryInfo *TLI) {
2787   Function *F = CI->getCalledFunction();
2788   LibFunc Func;
2789   if (F && !F->hasLocalLinkage() && F->hasName() &&
2790       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2791       !F->doesNotAccessMemory())
2792     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2793 }
2794 
2795 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2796   // We can't have a PHI with a metadata type.
2797   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2798     return false;
2799 
2800   // Early exit.
2801   if (!isa<Constant>(I->getOperand(OpIdx)))
2802     return true;
2803 
2804   switch (I->getOpcode()) {
2805   default:
2806     return true;
2807   case Instruction::Call:
2808   case Instruction::Invoke:
2809     // Can't handle inline asm. Skip it.
2810     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2811       return false;
2812     // Many arithmetic intrinsics have no issue taking a
2813     // variable, however it's hard to distingish these from
2814     // specials such as @llvm.frameaddress that require a constant.
2815     if (isa<IntrinsicInst>(I))
2816       return false;
2817 
2818     // Constant bundle operands may need to retain their constant-ness for
2819     // correctness.
2820     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2821       return false;
2822     return true;
2823   case Instruction::ShuffleVector:
2824     // Shufflevector masks are constant.
2825     return OpIdx != 2;
2826   case Instruction::Switch:
2827   case Instruction::ExtractValue:
2828     // All operands apart from the first are constant.
2829     return OpIdx == 0;
2830   case Instruction::InsertValue:
2831     // All operands apart from the first and the second are constant.
2832     return OpIdx < 2;
2833   case Instruction::Alloca:
2834     // Static allocas (constant size in the entry block) are handled by
2835     // prologue/epilogue insertion so they're free anyway. We definitely don't
2836     // want to make them non-constant.
2837     return !cast<AllocaInst>(I)->isStaticAlloca();
2838   case Instruction::GetElementPtr:
2839     if (OpIdx == 0)
2840       return true;
2841     gep_type_iterator It = gep_type_begin(I);
2842     for (auto E = std::next(It, OpIdx); It != E; ++It)
2843       if (It.isStruct())
2844         return false;
2845     return true;
2846   }
2847 }
2848