1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <climits> 79 #include <cstdint> 80 #include <iterator> 81 #include <map> 82 #include <utility> 83 84 using namespace llvm; 85 using namespace llvm::PatternMatch; 86 87 #define DEBUG_TYPE "local" 88 89 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 90 91 //===----------------------------------------------------------------------===// 92 // Local constant propagation. 93 // 94 95 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 96 /// constant value, convert it into an unconditional branch to the constant 97 /// destination. This is a nontrivial operation because the successors of this 98 /// basic block must have their PHI nodes updated. 99 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 100 /// conditions and indirectbr addresses this might make dead if 101 /// DeleteDeadConditions is true. 102 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 103 const TargetLibraryInfo *TLI, 104 DeferredDominance *DDT) { 105 TerminatorInst *T = BB->getTerminator(); 106 IRBuilder<> Builder(T); 107 108 // Branch - See if we are conditional jumping on constant 109 if (auto *BI = dyn_cast<BranchInst>(T)) { 110 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 111 BasicBlock *Dest1 = BI->getSuccessor(0); 112 BasicBlock *Dest2 = BI->getSuccessor(1); 113 114 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 115 // Are we branching on constant? 116 // YES. Change to unconditional branch... 117 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 118 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 119 120 // Let the basic block know that we are letting go of it. Based on this, 121 // it will adjust it's PHI nodes. 122 OldDest->removePredecessor(BB); 123 124 // Replace the conditional branch with an unconditional one. 125 Builder.CreateBr(Destination); 126 BI->eraseFromParent(); 127 if (DDT) 128 DDT->deleteEdge(BB, OldDest); 129 return true; 130 } 131 132 if (Dest2 == Dest1) { // Conditional branch to same location? 133 // This branch matches something like this: 134 // br bool %cond, label %Dest, label %Dest 135 // and changes it into: br label %Dest 136 137 // Let the basic block know that we are letting go of one copy of it. 138 assert(BI->getParent() && "Terminator not inserted in block!"); 139 Dest1->removePredecessor(BI->getParent()); 140 141 // Replace the conditional branch with an unconditional one. 142 Builder.CreateBr(Dest1); 143 Value *Cond = BI->getCondition(); 144 BI->eraseFromParent(); 145 if (DeleteDeadConditions) 146 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 147 return true; 148 } 149 return false; 150 } 151 152 if (auto *SI = dyn_cast<SwitchInst>(T)) { 153 // If we are switching on a constant, we can convert the switch to an 154 // unconditional branch. 155 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 156 BasicBlock *DefaultDest = SI->getDefaultDest(); 157 BasicBlock *TheOnlyDest = DefaultDest; 158 159 // If the default is unreachable, ignore it when searching for TheOnlyDest. 160 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 161 SI->getNumCases() > 0) { 162 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 163 } 164 165 // Figure out which case it goes to. 166 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 167 // Found case matching a constant operand? 168 if (i->getCaseValue() == CI) { 169 TheOnlyDest = i->getCaseSuccessor(); 170 break; 171 } 172 173 // Check to see if this branch is going to the same place as the default 174 // dest. If so, eliminate it as an explicit compare. 175 if (i->getCaseSuccessor() == DefaultDest) { 176 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 177 unsigned NCases = SI->getNumCases(); 178 // Fold the case metadata into the default if there will be any branches 179 // left, unless the metadata doesn't match the switch. 180 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 181 // Collect branch weights into a vector. 182 SmallVector<uint32_t, 8> Weights; 183 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 184 ++MD_i) { 185 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 186 Weights.push_back(CI->getValue().getZExtValue()); 187 } 188 // Merge weight of this case to the default weight. 189 unsigned idx = i->getCaseIndex(); 190 Weights[0] += Weights[idx+1]; 191 // Remove weight for this case. 192 std::swap(Weights[idx+1], Weights.back()); 193 Weights.pop_back(); 194 SI->setMetadata(LLVMContext::MD_prof, 195 MDBuilder(BB->getContext()). 196 createBranchWeights(Weights)); 197 } 198 // Remove this entry. 199 BasicBlock *ParentBB = SI->getParent(); 200 DefaultDest->removePredecessor(ParentBB); 201 i = SI->removeCase(i); 202 e = SI->case_end(); 203 if (DDT) 204 DDT->deleteEdge(ParentBB, DefaultDest); 205 continue; 206 } 207 208 // Otherwise, check to see if the switch only branches to one destination. 209 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 210 // destinations. 211 if (i->getCaseSuccessor() != TheOnlyDest) 212 TheOnlyDest = nullptr; 213 214 // Increment this iterator as we haven't removed the case. 215 ++i; 216 } 217 218 if (CI && !TheOnlyDest) { 219 // Branching on a constant, but not any of the cases, go to the default 220 // successor. 221 TheOnlyDest = SI->getDefaultDest(); 222 } 223 224 // If we found a single destination that we can fold the switch into, do so 225 // now. 226 if (TheOnlyDest) { 227 // Insert the new branch. 228 Builder.CreateBr(TheOnlyDest); 229 BasicBlock *BB = SI->getParent(); 230 std::vector <DominatorTree::UpdateType> Updates; 231 if (DDT) 232 Updates.reserve(SI->getNumSuccessors() - 1); 233 234 // Remove entries from PHI nodes which we no longer branch to... 235 for (BasicBlock *Succ : SI->successors()) { 236 // Found case matching a constant operand? 237 if (Succ == TheOnlyDest) { 238 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 239 } else { 240 Succ->removePredecessor(BB); 241 if (DDT) 242 Updates.push_back({DominatorTree::Delete, BB, Succ}); 243 } 244 } 245 246 // Delete the old switch. 247 Value *Cond = SI->getCondition(); 248 SI->eraseFromParent(); 249 if (DeleteDeadConditions) 250 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 251 if (DDT) 252 DDT->applyUpdates(Updates); 253 return true; 254 } 255 256 if (SI->getNumCases() == 1) { 257 // Otherwise, we can fold this switch into a conditional branch 258 // instruction if it has only one non-default destination. 259 auto FirstCase = *SI->case_begin(); 260 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 261 FirstCase.getCaseValue(), "cond"); 262 263 // Insert the new branch. 264 BranchInst *NewBr = Builder.CreateCondBr(Cond, 265 FirstCase.getCaseSuccessor(), 266 SI->getDefaultDest()); 267 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 268 if (MD && MD->getNumOperands() == 3) { 269 ConstantInt *SICase = 270 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 271 ConstantInt *SIDef = 272 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 273 assert(SICase && SIDef); 274 // The TrueWeight should be the weight for the single case of SI. 275 NewBr->setMetadata(LLVMContext::MD_prof, 276 MDBuilder(BB->getContext()). 277 createBranchWeights(SICase->getValue().getZExtValue(), 278 SIDef->getValue().getZExtValue())); 279 } 280 281 // Update make.implicit metadata to the newly-created conditional branch. 282 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 283 if (MakeImplicitMD) 284 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 285 286 // Delete the old switch. 287 SI->eraseFromParent(); 288 return true; 289 } 290 return false; 291 } 292 293 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 294 // indirectbr blockaddress(@F, @BB) -> br label @BB 295 if (auto *BA = 296 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 297 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 298 std::vector <DominatorTree::UpdateType> Updates; 299 if (DDT) 300 Updates.reserve(IBI->getNumDestinations() - 1); 301 302 // Insert the new branch. 303 Builder.CreateBr(TheOnlyDest); 304 305 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 306 if (IBI->getDestination(i) == TheOnlyDest) { 307 TheOnlyDest = nullptr; 308 } else { 309 BasicBlock *ParentBB = IBI->getParent(); 310 BasicBlock *DestBB = IBI->getDestination(i); 311 DestBB->removePredecessor(ParentBB); 312 if (DDT) 313 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 314 } 315 } 316 Value *Address = IBI->getAddress(); 317 IBI->eraseFromParent(); 318 if (DeleteDeadConditions) 319 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 320 321 // If we didn't find our destination in the IBI successor list, then we 322 // have undefined behavior. Replace the unconditional branch with an 323 // 'unreachable' instruction. 324 if (TheOnlyDest) { 325 BB->getTerminator()->eraseFromParent(); 326 new UnreachableInst(BB->getContext(), BB); 327 } 328 329 if (DDT) 330 DDT->applyUpdates(Updates); 331 return true; 332 } 333 } 334 335 return false; 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Local dead code elimination. 340 // 341 342 /// isInstructionTriviallyDead - Return true if the result produced by the 343 /// instruction is not used, and the instruction has no side effects. 344 /// 345 bool llvm::isInstructionTriviallyDead(Instruction *I, 346 const TargetLibraryInfo *TLI) { 347 if (!I->use_empty()) 348 return false; 349 return wouldInstructionBeTriviallyDead(I, TLI); 350 } 351 352 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 353 const TargetLibraryInfo *TLI) { 354 if (isa<TerminatorInst>(I)) 355 return false; 356 357 // We don't want the landingpad-like instructions removed by anything this 358 // general. 359 if (I->isEHPad()) 360 return false; 361 362 // We don't want debug info removed by anything this general, unless 363 // debug info is empty. 364 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 365 if (DDI->getAddress()) 366 return false; 367 return true; 368 } 369 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 370 if (DVI->getValue()) 371 return false; 372 return true; 373 } 374 375 if (!I->mayHaveSideEffects()) 376 return true; 377 378 // Special case intrinsics that "may have side effects" but can be deleted 379 // when dead. 380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 381 // Safe to delete llvm.stacksave if dead. 382 if (II->getIntrinsicID() == Intrinsic::stacksave) 383 return true; 384 385 // Lifetime intrinsics are dead when their right-hand is undef. 386 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 387 II->getIntrinsicID() == Intrinsic::lifetime_end) 388 return isa<UndefValue>(II->getArgOperand(1)); 389 390 // Assumptions are dead if their condition is trivially true. Guards on 391 // true are operationally no-ops. In the future we can consider more 392 // sophisticated tradeoffs for guards considering potential for check 393 // widening, but for now we keep things simple. 394 if (II->getIntrinsicID() == Intrinsic::assume || 395 II->getIntrinsicID() == Intrinsic::experimental_guard) { 396 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 397 return !Cond->isZero(); 398 399 return false; 400 } 401 } 402 403 if (isAllocLikeFn(I, TLI)) 404 return true; 405 406 if (CallInst *CI = isFreeCall(I, TLI)) 407 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 408 return C->isNullValue() || isa<UndefValue>(C); 409 410 if (CallSite CS = CallSite(I)) 411 if (isMathLibCallNoop(CS, TLI)) 412 return true; 413 414 return false; 415 } 416 417 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 418 /// trivially dead instruction, delete it. If that makes any of its operands 419 /// trivially dead, delete them too, recursively. Return true if any 420 /// instructions were deleted. 421 bool 422 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 423 const TargetLibraryInfo *TLI) { 424 Instruction *I = dyn_cast<Instruction>(V); 425 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 426 return false; 427 428 SmallVector<Instruction*, 16> DeadInsts; 429 DeadInsts.push_back(I); 430 431 do { 432 I = DeadInsts.pop_back_val(); 433 434 // Null out all of the instruction's operands to see if any operand becomes 435 // dead as we go. 436 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 437 Value *OpV = I->getOperand(i); 438 I->setOperand(i, nullptr); 439 440 if (!OpV->use_empty()) continue; 441 442 // If the operand is an instruction that became dead as we nulled out the 443 // operand, and if it is 'trivially' dead, delete it in a future loop 444 // iteration. 445 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 446 if (isInstructionTriviallyDead(OpI, TLI)) 447 DeadInsts.push_back(OpI); 448 } 449 450 I->eraseFromParent(); 451 } while (!DeadInsts.empty()); 452 453 return true; 454 } 455 456 /// areAllUsesEqual - Check whether the uses of a value are all the same. 457 /// This is similar to Instruction::hasOneUse() except this will also return 458 /// true when there are no uses or multiple uses that all refer to the same 459 /// value. 460 static bool areAllUsesEqual(Instruction *I) { 461 Value::user_iterator UI = I->user_begin(); 462 Value::user_iterator UE = I->user_end(); 463 if (UI == UE) 464 return true; 465 466 User *TheUse = *UI; 467 for (++UI; UI != UE; ++UI) { 468 if (*UI != TheUse) 469 return false; 470 } 471 return true; 472 } 473 474 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 475 /// dead PHI node, due to being a def-use chain of single-use nodes that 476 /// either forms a cycle or is terminated by a trivially dead instruction, 477 /// delete it. If that makes any of its operands trivially dead, delete them 478 /// too, recursively. Return true if a change was made. 479 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 480 const TargetLibraryInfo *TLI) { 481 SmallPtrSet<Instruction*, 4> Visited; 482 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 483 I = cast<Instruction>(*I->user_begin())) { 484 if (I->use_empty()) 485 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 486 487 // If we find an instruction more than once, we're on a cycle that 488 // won't prove fruitful. 489 if (!Visited.insert(I).second) { 490 // Break the cycle and delete the instruction and its operands. 491 I->replaceAllUsesWith(UndefValue::get(I->getType())); 492 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 493 return true; 494 } 495 } 496 return false; 497 } 498 499 static bool 500 simplifyAndDCEInstruction(Instruction *I, 501 SmallSetVector<Instruction *, 16> &WorkList, 502 const DataLayout &DL, 503 const TargetLibraryInfo *TLI) { 504 if (isInstructionTriviallyDead(I, TLI)) { 505 // Null out all of the instruction's operands to see if any operand becomes 506 // dead as we go. 507 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 508 Value *OpV = I->getOperand(i); 509 I->setOperand(i, nullptr); 510 511 if (!OpV->use_empty() || I == OpV) 512 continue; 513 514 // If the operand is an instruction that became dead as we nulled out the 515 // operand, and if it is 'trivially' dead, delete it in a future loop 516 // iteration. 517 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 518 if (isInstructionTriviallyDead(OpI, TLI)) 519 WorkList.insert(OpI); 520 } 521 522 I->eraseFromParent(); 523 524 return true; 525 } 526 527 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 528 // Add the users to the worklist. CAREFUL: an instruction can use itself, 529 // in the case of a phi node. 530 for (User *U : I->users()) { 531 if (U != I) { 532 WorkList.insert(cast<Instruction>(U)); 533 } 534 } 535 536 // Replace the instruction with its simplified value. 537 bool Changed = false; 538 if (!I->use_empty()) { 539 I->replaceAllUsesWith(SimpleV); 540 Changed = true; 541 } 542 if (isInstructionTriviallyDead(I, TLI)) { 543 I->eraseFromParent(); 544 Changed = true; 545 } 546 return Changed; 547 } 548 return false; 549 } 550 551 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 552 /// simplify any instructions in it and recursively delete dead instructions. 553 /// 554 /// This returns true if it changed the code, note that it can delete 555 /// instructions in other blocks as well in this block. 556 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 557 const TargetLibraryInfo *TLI) { 558 bool MadeChange = false; 559 const DataLayout &DL = BB->getModule()->getDataLayout(); 560 561 #ifndef NDEBUG 562 // In debug builds, ensure that the terminator of the block is never replaced 563 // or deleted by these simplifications. The idea of simplification is that it 564 // cannot introduce new instructions, and there is no way to replace the 565 // terminator of a block without introducing a new instruction. 566 AssertingVH<Instruction> TerminatorVH(&BB->back()); 567 #endif 568 569 SmallSetVector<Instruction *, 16> WorkList; 570 // Iterate over the original function, only adding insts to the worklist 571 // if they actually need to be revisited. This avoids having to pre-init 572 // the worklist with the entire function's worth of instructions. 573 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 574 BI != E;) { 575 assert(!BI->isTerminator()); 576 Instruction *I = &*BI; 577 ++BI; 578 579 // We're visiting this instruction now, so make sure it's not in the 580 // worklist from an earlier visit. 581 if (!WorkList.count(I)) 582 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 583 } 584 585 while (!WorkList.empty()) { 586 Instruction *I = WorkList.pop_back_val(); 587 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 588 } 589 return MadeChange; 590 } 591 592 //===----------------------------------------------------------------------===// 593 // Control Flow Graph Restructuring. 594 // 595 596 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 597 /// method is called when we're about to delete Pred as a predecessor of BB. If 598 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 599 /// 600 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 601 /// nodes that collapse into identity values. For example, if we have: 602 /// x = phi(1, 0, 0, 0) 603 /// y = and x, z 604 /// 605 /// .. and delete the predecessor corresponding to the '1', this will attempt to 606 /// recursively fold the and to 0. 607 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 608 DeferredDominance *DDT) { 609 // This only adjusts blocks with PHI nodes. 610 if (!isa<PHINode>(BB->begin())) 611 return; 612 613 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 614 // them down. This will leave us with single entry phi nodes and other phis 615 // that can be removed. 616 BB->removePredecessor(Pred, true); 617 618 WeakTrackingVH PhiIt = &BB->front(); 619 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 620 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 621 Value *OldPhiIt = PhiIt; 622 623 if (!recursivelySimplifyInstruction(PN)) 624 continue; 625 626 // If recursive simplification ended up deleting the next PHI node we would 627 // iterate to, then our iterator is invalid, restart scanning from the top 628 // of the block. 629 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 630 } 631 if (DDT) 632 DDT->deleteEdge(Pred, BB); 633 } 634 635 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 636 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 637 /// between them, moving the instructions in the predecessor into DestBB and 638 /// deleting the predecessor block. 639 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT, 640 DeferredDominance *DDT) { 641 assert(!(DT && DDT) && "Cannot call with both DT and DDT."); 642 643 // If BB has single-entry PHI nodes, fold them. 644 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 645 Value *NewVal = PN->getIncomingValue(0); 646 // Replace self referencing PHI with undef, it must be dead. 647 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 648 PN->replaceAllUsesWith(NewVal); 649 PN->eraseFromParent(); 650 } 651 652 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 653 assert(PredBB && "Block doesn't have a single predecessor!"); 654 655 bool ReplaceEntryBB = false; 656 if (PredBB == &DestBB->getParent()->getEntryBlock()) 657 ReplaceEntryBB = true; 658 659 // Deferred DT update: Collect all the edges that enter PredBB. These 660 // dominator edges will be redirected to DestBB. 661 std::vector <DominatorTree::UpdateType> Updates; 662 if (DDT && !ReplaceEntryBB) { 663 Updates.reserve(1 + 664 (2 * std::distance(pred_begin(PredBB), pred_end(PredBB)))); 665 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 666 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 667 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 668 // This predecessor of PredBB may already have DestBB as a successor. 669 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 670 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 671 } 672 } 673 674 // Zap anything that took the address of DestBB. Not doing this will give the 675 // address an invalid value. 676 if (DestBB->hasAddressTaken()) { 677 BlockAddress *BA = BlockAddress::get(DestBB); 678 Constant *Replacement = 679 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 680 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 681 BA->getType())); 682 BA->destroyConstant(); 683 } 684 685 // Anything that branched to PredBB now branches to DestBB. 686 PredBB->replaceAllUsesWith(DestBB); 687 688 // Splice all the instructions from PredBB to DestBB. 689 PredBB->getTerminator()->eraseFromParent(); 690 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 691 692 // If the PredBB is the entry block of the function, move DestBB up to 693 // become the entry block after we erase PredBB. 694 if (ReplaceEntryBB) 695 DestBB->moveAfter(PredBB); 696 697 if (DT) { 698 // For some irreducible CFG we end up having forward-unreachable blocks 699 // so check if getNode returns a valid node before updating the domtree. 700 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 701 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 702 DT->changeImmediateDominator(DestBB, PredBBIDom); 703 DT->eraseNode(PredBB); 704 } 705 } 706 707 if (DDT) { 708 DDT->deleteBB(PredBB); // Deferred deletion of BB. 709 if (ReplaceEntryBB) 710 // The entry block was removed and there is no external interface for the 711 // dominator tree to be notified of this change. In this corner-case we 712 // recalculate the entire tree. 713 DDT->recalculate(*(DestBB->getParent())); 714 else 715 DDT->applyUpdates(Updates); 716 } else { 717 PredBB->eraseFromParent(); // Nuke BB. 718 } 719 } 720 721 /// CanMergeValues - Return true if we can choose one of these values to use 722 /// in place of the other. Note that we will always choose the non-undef 723 /// value to keep. 724 static bool CanMergeValues(Value *First, Value *Second) { 725 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 726 } 727 728 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 729 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 730 /// 731 /// Assumption: Succ is the single successor for BB. 732 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 733 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 734 735 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 736 << Succ->getName() << "\n"); 737 // Shortcut, if there is only a single predecessor it must be BB and merging 738 // is always safe 739 if (Succ->getSinglePredecessor()) return true; 740 741 // Make a list of the predecessors of BB 742 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 743 744 // Look at all the phi nodes in Succ, to see if they present a conflict when 745 // merging these blocks 746 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 747 PHINode *PN = cast<PHINode>(I); 748 749 // If the incoming value from BB is again a PHINode in 750 // BB which has the same incoming value for *PI as PN does, we can 751 // merge the phi nodes and then the blocks can still be merged 752 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 753 if (BBPN && BBPN->getParent() == BB) { 754 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 755 BasicBlock *IBB = PN->getIncomingBlock(PI); 756 if (BBPreds.count(IBB) && 757 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 758 PN->getIncomingValue(PI))) { 759 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 760 << Succ->getName() << " is conflicting with " 761 << BBPN->getName() << " with regard to common predecessor " 762 << IBB->getName() << "\n"); 763 return false; 764 } 765 } 766 } else { 767 Value* Val = PN->getIncomingValueForBlock(BB); 768 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 769 // See if the incoming value for the common predecessor is equal to the 770 // one for BB, in which case this phi node will not prevent the merging 771 // of the block. 772 BasicBlock *IBB = PN->getIncomingBlock(PI); 773 if (BBPreds.count(IBB) && 774 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 775 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 776 << Succ->getName() << " is conflicting with regard to common " 777 << "predecessor " << IBB->getName() << "\n"); 778 return false; 779 } 780 } 781 } 782 } 783 784 return true; 785 } 786 787 using PredBlockVector = SmallVector<BasicBlock *, 16>; 788 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 789 790 /// \brief Determines the value to use as the phi node input for a block. 791 /// 792 /// Select between \p OldVal any value that we know flows from \p BB 793 /// to a particular phi on the basis of which one (if either) is not 794 /// undef. Update IncomingValues based on the selected value. 795 /// 796 /// \param OldVal The value we are considering selecting. 797 /// \param BB The block that the value flows in from. 798 /// \param IncomingValues A map from block-to-value for other phi inputs 799 /// that we have examined. 800 /// 801 /// \returns the selected value. 802 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 803 IncomingValueMap &IncomingValues) { 804 if (!isa<UndefValue>(OldVal)) { 805 assert((!IncomingValues.count(BB) || 806 IncomingValues.find(BB)->second == OldVal) && 807 "Expected OldVal to match incoming value from BB!"); 808 809 IncomingValues.insert(std::make_pair(BB, OldVal)); 810 return OldVal; 811 } 812 813 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 814 if (It != IncomingValues.end()) return It->second; 815 816 return OldVal; 817 } 818 819 /// \brief Create a map from block to value for the operands of a 820 /// given phi. 821 /// 822 /// Create a map from block to value for each non-undef value flowing 823 /// into \p PN. 824 /// 825 /// \param PN The phi we are collecting the map for. 826 /// \param IncomingValues [out] The map from block to value for this phi. 827 static void gatherIncomingValuesToPhi(PHINode *PN, 828 IncomingValueMap &IncomingValues) { 829 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 830 BasicBlock *BB = PN->getIncomingBlock(i); 831 Value *V = PN->getIncomingValue(i); 832 833 if (!isa<UndefValue>(V)) 834 IncomingValues.insert(std::make_pair(BB, V)); 835 } 836 } 837 838 /// \brief Replace the incoming undef values to a phi with the values 839 /// from a block-to-value map. 840 /// 841 /// \param PN The phi we are replacing the undefs in. 842 /// \param IncomingValues A map from block to value. 843 static void replaceUndefValuesInPhi(PHINode *PN, 844 const IncomingValueMap &IncomingValues) { 845 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 846 Value *V = PN->getIncomingValue(i); 847 848 if (!isa<UndefValue>(V)) continue; 849 850 BasicBlock *BB = PN->getIncomingBlock(i); 851 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 852 if (It == IncomingValues.end()) continue; 853 854 PN->setIncomingValue(i, It->second); 855 } 856 } 857 858 /// \brief Replace a value flowing from a block to a phi with 859 /// potentially multiple instances of that value flowing from the 860 /// block's predecessors to the phi. 861 /// 862 /// \param BB The block with the value flowing into the phi. 863 /// \param BBPreds The predecessors of BB. 864 /// \param PN The phi that we are updating. 865 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 866 const PredBlockVector &BBPreds, 867 PHINode *PN) { 868 Value *OldVal = PN->removeIncomingValue(BB, false); 869 assert(OldVal && "No entry in PHI for Pred BB!"); 870 871 IncomingValueMap IncomingValues; 872 873 // We are merging two blocks - BB, and the block containing PN - and 874 // as a result we need to redirect edges from the predecessors of BB 875 // to go to the block containing PN, and update PN 876 // accordingly. Since we allow merging blocks in the case where the 877 // predecessor and successor blocks both share some predecessors, 878 // and where some of those common predecessors might have undef 879 // values flowing into PN, we want to rewrite those values to be 880 // consistent with the non-undef values. 881 882 gatherIncomingValuesToPhi(PN, IncomingValues); 883 884 // If this incoming value is one of the PHI nodes in BB, the new entries 885 // in the PHI node are the entries from the old PHI. 886 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 887 PHINode *OldValPN = cast<PHINode>(OldVal); 888 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 889 // Note that, since we are merging phi nodes and BB and Succ might 890 // have common predecessors, we could end up with a phi node with 891 // identical incoming branches. This will be cleaned up later (and 892 // will trigger asserts if we try to clean it up now, without also 893 // simplifying the corresponding conditional branch). 894 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 895 Value *PredVal = OldValPN->getIncomingValue(i); 896 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 897 IncomingValues); 898 899 // And add a new incoming value for this predecessor for the 900 // newly retargeted branch. 901 PN->addIncoming(Selected, PredBB); 902 } 903 } else { 904 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 905 // Update existing incoming values in PN for this 906 // predecessor of BB. 907 BasicBlock *PredBB = BBPreds[i]; 908 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 909 IncomingValues); 910 911 // And add a new incoming value for this predecessor for the 912 // newly retargeted branch. 913 PN->addIncoming(Selected, PredBB); 914 } 915 } 916 917 replaceUndefValuesInPhi(PN, IncomingValues); 918 } 919 920 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 921 /// unconditional branch, and contains no instructions other than PHI nodes, 922 /// potential side-effect free intrinsics and the branch. If possible, 923 /// eliminate BB by rewriting all the predecessors to branch to the successor 924 /// block and return true. If we can't transform, return false. 925 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 926 DeferredDominance *DDT) { 927 assert(BB != &BB->getParent()->getEntryBlock() && 928 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 929 930 // We can't eliminate infinite loops. 931 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 932 if (BB == Succ) return false; 933 934 // Check to see if merging these blocks would cause conflicts for any of the 935 // phi nodes in BB or Succ. If not, we can safely merge. 936 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 937 938 // Check for cases where Succ has multiple predecessors and a PHI node in BB 939 // has uses which will not disappear when the PHI nodes are merged. It is 940 // possible to handle such cases, but difficult: it requires checking whether 941 // BB dominates Succ, which is non-trivial to calculate in the case where 942 // Succ has multiple predecessors. Also, it requires checking whether 943 // constructing the necessary self-referential PHI node doesn't introduce any 944 // conflicts; this isn't too difficult, but the previous code for doing this 945 // was incorrect. 946 // 947 // Note that if this check finds a live use, BB dominates Succ, so BB is 948 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 949 // folding the branch isn't profitable in that case anyway. 950 if (!Succ->getSinglePredecessor()) { 951 BasicBlock::iterator BBI = BB->begin(); 952 while (isa<PHINode>(*BBI)) { 953 for (Use &U : BBI->uses()) { 954 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 955 if (PN->getIncomingBlock(U) != BB) 956 return false; 957 } else { 958 return false; 959 } 960 } 961 ++BBI; 962 } 963 } 964 965 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 966 967 std::vector<DominatorTree::UpdateType> Updates; 968 if (DDT) { 969 Updates.reserve(1 + (2 * std::distance(pred_begin(BB), pred_end(BB)))); 970 Updates.push_back({DominatorTree::Delete, BB, Succ}); 971 // All predecessors of BB will be moved to Succ. 972 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 973 Updates.push_back({DominatorTree::Delete, *I, BB}); 974 // This predecessor of BB may already have Succ as a successor. 975 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 976 Updates.push_back({DominatorTree::Insert, *I, Succ}); 977 } 978 } 979 980 if (isa<PHINode>(Succ->begin())) { 981 // If there is more than one pred of succ, and there are PHI nodes in 982 // the successor, then we need to add incoming edges for the PHI nodes 983 // 984 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 985 986 // Loop over all of the PHI nodes in the successor of BB. 987 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 988 PHINode *PN = cast<PHINode>(I); 989 990 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 991 } 992 } 993 994 if (Succ->getSinglePredecessor()) { 995 // BB is the only predecessor of Succ, so Succ will end up with exactly 996 // the same predecessors BB had. 997 998 // Copy over any phi, debug or lifetime instruction. 999 BB->getTerminator()->eraseFromParent(); 1000 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1001 BB->getInstList()); 1002 } else { 1003 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1004 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1005 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1006 PN->eraseFromParent(); 1007 } 1008 } 1009 1010 // If the unconditional branch we replaced contains llvm.loop metadata, we 1011 // add the metadata to the branch instructions in the predecessors. 1012 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1013 Instruction *TI = BB->getTerminator(); 1014 if (TI) 1015 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1016 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1017 BasicBlock *Pred = *PI; 1018 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1019 } 1020 1021 // Everything that jumped to BB now goes to Succ. 1022 BB->replaceAllUsesWith(Succ); 1023 if (!Succ->hasName()) Succ->takeName(BB); 1024 1025 if (DDT) { 1026 DDT->deleteBB(BB); // Deferred deletion of the old basic block. 1027 DDT->applyUpdates(Updates); 1028 } else { 1029 BB->eraseFromParent(); // Delete the old basic block. 1030 } 1031 return true; 1032 } 1033 1034 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1035 /// nodes in this block. This doesn't try to be clever about PHI nodes 1036 /// which differ only in the order of the incoming values, but instcombine 1037 /// orders them so it usually won't matter. 1038 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1039 // This implementation doesn't currently consider undef operands 1040 // specially. Theoretically, two phis which are identical except for 1041 // one having an undef where the other doesn't could be collapsed. 1042 1043 struct PHIDenseMapInfo { 1044 static PHINode *getEmptyKey() { 1045 return DenseMapInfo<PHINode *>::getEmptyKey(); 1046 } 1047 1048 static PHINode *getTombstoneKey() { 1049 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1050 } 1051 1052 static unsigned getHashValue(PHINode *PN) { 1053 // Compute a hash value on the operands. Instcombine will likely have 1054 // sorted them, which helps expose duplicates, but we have to check all 1055 // the operands to be safe in case instcombine hasn't run. 1056 return static_cast<unsigned>(hash_combine( 1057 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1058 hash_combine_range(PN->block_begin(), PN->block_end()))); 1059 } 1060 1061 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1062 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1063 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1064 return LHS == RHS; 1065 return LHS->isIdenticalTo(RHS); 1066 } 1067 }; 1068 1069 // Set of unique PHINodes. 1070 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1071 1072 // Examine each PHI. 1073 bool Changed = false; 1074 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1075 auto Inserted = PHISet.insert(PN); 1076 if (!Inserted.second) { 1077 // A duplicate. Replace this PHI with its duplicate. 1078 PN->replaceAllUsesWith(*Inserted.first); 1079 PN->eraseFromParent(); 1080 Changed = true; 1081 1082 // The RAUW can change PHIs that we already visited. Start over from the 1083 // beginning. 1084 PHISet.clear(); 1085 I = BB->begin(); 1086 } 1087 } 1088 1089 return Changed; 1090 } 1091 1092 /// enforceKnownAlignment - If the specified pointer points to an object that 1093 /// we control, modify the object's alignment to PrefAlign. This isn't 1094 /// often possible though. If alignment is important, a more reliable approach 1095 /// is to simply align all global variables and allocation instructions to 1096 /// their preferred alignment from the beginning. 1097 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1098 unsigned PrefAlign, 1099 const DataLayout &DL) { 1100 assert(PrefAlign > Align); 1101 1102 V = V->stripPointerCasts(); 1103 1104 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1105 // TODO: ideally, computeKnownBits ought to have used 1106 // AllocaInst::getAlignment() in its computation already, making 1107 // the below max redundant. But, as it turns out, 1108 // stripPointerCasts recurses through infinite layers of bitcasts, 1109 // while computeKnownBits is not allowed to traverse more than 6 1110 // levels. 1111 Align = std::max(AI->getAlignment(), Align); 1112 if (PrefAlign <= Align) 1113 return Align; 1114 1115 // If the preferred alignment is greater than the natural stack alignment 1116 // then don't round up. This avoids dynamic stack realignment. 1117 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1118 return Align; 1119 AI->setAlignment(PrefAlign); 1120 return PrefAlign; 1121 } 1122 1123 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1124 // TODO: as above, this shouldn't be necessary. 1125 Align = std::max(GO->getAlignment(), Align); 1126 if (PrefAlign <= Align) 1127 return Align; 1128 1129 // If there is a large requested alignment and we can, bump up the alignment 1130 // of the global. If the memory we set aside for the global may not be the 1131 // memory used by the final program then it is impossible for us to reliably 1132 // enforce the preferred alignment. 1133 if (!GO->canIncreaseAlignment()) 1134 return Align; 1135 1136 GO->setAlignment(PrefAlign); 1137 return PrefAlign; 1138 } 1139 1140 return Align; 1141 } 1142 1143 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1144 const DataLayout &DL, 1145 const Instruction *CxtI, 1146 AssumptionCache *AC, 1147 const DominatorTree *DT) { 1148 assert(V->getType()->isPointerTy() && 1149 "getOrEnforceKnownAlignment expects a pointer!"); 1150 1151 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1152 unsigned TrailZ = Known.countMinTrailingZeros(); 1153 1154 // Avoid trouble with ridiculously large TrailZ values, such as 1155 // those computed from a null pointer. 1156 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1157 1158 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1159 1160 // LLVM doesn't support alignments larger than this currently. 1161 Align = std::min(Align, +Value::MaximumAlignment); 1162 1163 if (PrefAlign > Align) 1164 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1165 1166 // We don't need to make any adjustment. 1167 return Align; 1168 } 1169 1170 ///===---------------------------------------------------------------------===// 1171 /// Dbg Intrinsic utilities 1172 /// 1173 1174 /// See if there is a dbg.value intrinsic for DIVar before I. 1175 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1176 Instruction *I) { 1177 // Since we can't guarantee that the original dbg.declare instrinsic 1178 // is removed by LowerDbgDeclare(), we need to make sure that we are 1179 // not inserting the same dbg.value intrinsic over and over. 1180 BasicBlock::InstListType::iterator PrevI(I); 1181 if (PrevI != I->getParent()->getInstList().begin()) { 1182 --PrevI; 1183 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1184 if (DVI->getValue() == I->getOperand(0) && 1185 DVI->getVariable() == DIVar && 1186 DVI->getExpression() == DIExpr) 1187 return true; 1188 } 1189 return false; 1190 } 1191 1192 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1193 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1194 DIExpression *DIExpr, 1195 PHINode *APN) { 1196 // Since we can't guarantee that the original dbg.declare instrinsic 1197 // is removed by LowerDbgDeclare(), we need to make sure that we are 1198 // not inserting the same dbg.value intrinsic over and over. 1199 SmallVector<DbgValueInst *, 1> DbgValues; 1200 findDbgValues(DbgValues, APN); 1201 for (auto *DVI : DbgValues) { 1202 assert(DVI->getValue() == APN); 1203 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1204 return true; 1205 } 1206 return false; 1207 } 1208 1209 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1210 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1211 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1212 StoreInst *SI, DIBuilder &Builder) { 1213 assert(DII->isAddressOfVariable()); 1214 auto *DIVar = DII->getVariable(); 1215 assert(DIVar && "Missing variable"); 1216 auto *DIExpr = DII->getExpression(); 1217 Value *DV = SI->getOperand(0); 1218 1219 // If an argument is zero extended then use argument directly. The ZExt 1220 // may be zapped by an optimization pass in future. 1221 Argument *ExtendedArg = nullptr; 1222 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1223 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1224 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1225 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1226 if (ExtendedArg) { 1227 // If this DII was already describing only a fragment of a variable, ensure 1228 // that fragment is appropriately narrowed here. 1229 // But if a fragment wasn't used, describe the value as the original 1230 // argument (rather than the zext or sext) so that it remains described even 1231 // if the sext/zext is optimized away. This widens the variable description, 1232 // leaving it up to the consumer to know how the smaller value may be 1233 // represented in a larger register. 1234 if (auto Fragment = DIExpr->getFragmentInfo()) { 1235 unsigned FragmentOffset = Fragment->OffsetInBits; 1236 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1237 DIExpr->elements_end() - 3); 1238 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1239 Ops.push_back(FragmentOffset); 1240 const DataLayout &DL = DII->getModule()->getDataLayout(); 1241 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1242 DIExpr = Builder.createExpression(Ops); 1243 } 1244 DV = ExtendedArg; 1245 } 1246 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1247 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1248 SI); 1249 } 1250 1251 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1252 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1253 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1254 LoadInst *LI, DIBuilder &Builder) { 1255 auto *DIVar = DII->getVariable(); 1256 auto *DIExpr = DII->getExpression(); 1257 assert(DIVar && "Missing variable"); 1258 1259 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1260 return; 1261 1262 // We are now tracking the loaded value instead of the address. In the 1263 // future if multi-location support is added to the IR, it might be 1264 // preferable to keep tracking both the loaded value and the original 1265 // address in case the alloca can not be elided. 1266 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1267 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1268 DbgValue->insertAfter(LI); 1269 } 1270 1271 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1272 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1273 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1274 PHINode *APN, DIBuilder &Builder) { 1275 auto *DIVar = DII->getVariable(); 1276 auto *DIExpr = DII->getExpression(); 1277 assert(DIVar && "Missing variable"); 1278 1279 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1280 return; 1281 1282 BasicBlock *BB = APN->getParent(); 1283 auto InsertionPt = BB->getFirstInsertionPt(); 1284 1285 // The block may be a catchswitch block, which does not have a valid 1286 // insertion point. 1287 // FIXME: Insert dbg.value markers in the successors when appropriate. 1288 if (InsertionPt != BB->end()) 1289 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1290 &*InsertionPt); 1291 } 1292 1293 /// Determine whether this alloca is either a VLA or an array. 1294 static bool isArray(AllocaInst *AI) { 1295 return AI->isArrayAllocation() || 1296 AI->getType()->getElementType()->isArrayTy(); 1297 } 1298 1299 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1300 /// of llvm.dbg.value intrinsics. 1301 bool llvm::LowerDbgDeclare(Function &F) { 1302 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1303 SmallVector<DbgDeclareInst *, 4> Dbgs; 1304 for (auto &FI : F) 1305 for (Instruction &BI : FI) 1306 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1307 Dbgs.push_back(DDI); 1308 1309 if (Dbgs.empty()) 1310 return false; 1311 1312 for (auto &I : Dbgs) { 1313 DbgDeclareInst *DDI = I; 1314 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1315 // If this is an alloca for a scalar variable, insert a dbg.value 1316 // at each load and store to the alloca and erase the dbg.declare. 1317 // The dbg.values allow tracking a variable even if it is not 1318 // stored on the stack, while the dbg.declare can only describe 1319 // the stack slot (and at a lexical-scope granularity). Later 1320 // passes will attempt to elide the stack slot. 1321 if (AI && !isArray(AI)) { 1322 for (auto &AIUse : AI->uses()) { 1323 User *U = AIUse.getUser(); 1324 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1325 if (AIUse.getOperandNo() == 1) 1326 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1327 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1328 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1329 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1330 // This is a call by-value or some other instruction that 1331 // takes a pointer to the variable. Insert a *value* 1332 // intrinsic that describes the alloca. 1333 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1334 DDI->getExpression(), DDI->getDebugLoc(), 1335 CI); 1336 } 1337 } 1338 DDI->eraseFromParent(); 1339 } 1340 } 1341 return true; 1342 } 1343 1344 /// Finds all intrinsics declaring local variables as living in the memory that 1345 /// 'V' points to. This may include a mix of dbg.declare and 1346 /// dbg.addr intrinsics. 1347 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1348 auto *L = LocalAsMetadata::getIfExists(V); 1349 if (!L) 1350 return {}; 1351 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1352 if (!MDV) 1353 return {}; 1354 1355 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1356 for (User *U : MDV->users()) { 1357 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1358 if (DII->isAddressOfVariable()) 1359 Declares.push_back(DII); 1360 } 1361 1362 return Declares; 1363 } 1364 1365 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1366 if (auto *L = LocalAsMetadata::getIfExists(V)) 1367 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1368 for (User *U : MDV->users()) 1369 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1370 DbgValues.push_back(DVI); 1371 } 1372 1373 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1374 Value *V) { 1375 if (auto *L = LocalAsMetadata::getIfExists(V)) 1376 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1377 for (User *U : MDV->users()) 1378 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1379 DbgUsers.push_back(DII); 1380 } 1381 1382 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1383 Instruction *InsertBefore, DIBuilder &Builder, 1384 bool DerefBefore, int Offset, bool DerefAfter) { 1385 auto DbgAddrs = FindDbgAddrUses(Address); 1386 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1387 DebugLoc Loc = DII->getDebugLoc(); 1388 auto *DIVar = DII->getVariable(); 1389 auto *DIExpr = DII->getExpression(); 1390 assert(DIVar && "Missing variable"); 1391 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1392 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1393 // llvm.dbg.declare. 1394 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1395 if (DII == InsertBefore) 1396 InsertBefore = &*std::next(InsertBefore->getIterator()); 1397 DII->eraseFromParent(); 1398 } 1399 return !DbgAddrs.empty(); 1400 } 1401 1402 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1403 DIBuilder &Builder, bool DerefBefore, 1404 int Offset, bool DerefAfter) { 1405 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1406 DerefBefore, Offset, DerefAfter); 1407 } 1408 1409 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1410 DIBuilder &Builder, int Offset) { 1411 DebugLoc Loc = DVI->getDebugLoc(); 1412 auto *DIVar = DVI->getVariable(); 1413 auto *DIExpr = DVI->getExpression(); 1414 assert(DIVar && "Missing variable"); 1415 1416 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1417 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1418 // it and give up. 1419 if (!DIExpr || DIExpr->getNumElements() < 1 || 1420 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1421 return; 1422 1423 // Insert the offset immediately after the first deref. 1424 // We could just change the offset argument of dbg.value, but it's unsigned... 1425 if (Offset) { 1426 SmallVector<uint64_t, 4> Ops; 1427 Ops.push_back(dwarf::DW_OP_deref); 1428 DIExpression::appendOffset(Ops, Offset); 1429 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1430 DIExpr = Builder.createExpression(Ops); 1431 } 1432 1433 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1434 DVI->eraseFromParent(); 1435 } 1436 1437 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1438 DIBuilder &Builder, int Offset) { 1439 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1440 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1441 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1442 Use &U = *UI++; 1443 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1444 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1445 } 1446 } 1447 1448 void llvm::salvageDebugInfo(Instruction &I) { 1449 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1450 findDbgUsers(DbgUsers, &I); 1451 if (DbgUsers.empty()) 1452 return; 1453 1454 auto &M = *I.getModule(); 1455 1456 auto wrapMD = [&](Value *V) { 1457 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1458 }; 1459 1460 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) { 1461 auto *DIExpr = DII->getExpression(); 1462 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset, 1463 DIExpression::NoDeref, 1464 DIExpression::WithStackValue); 1465 DII->setOperand(0, wrapMD(I.getOperand(0))); 1466 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1467 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1468 }; 1469 1470 if (isa<BitCastInst>(&I) || isa<IntToPtrInst>(&I)) { 1471 // Bitcasts are entirely irrelevant for debug info. Rewrite dbg.value, 1472 // dbg.addr, and dbg.declare to use the cast's source. 1473 for (auto *DII : DbgUsers) { 1474 DII->setOperand(0, wrapMD(I.getOperand(0))); 1475 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1476 } 1477 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1478 unsigned BitWidth = 1479 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1480 // Rewrite a constant GEP into a DIExpression. Since we are performing 1481 // arithmetic to compute the variable's *value* in the DIExpression, we 1482 // need to mark the expression with a DW_OP_stack_value. 1483 APInt Offset(BitWidth, 0); 1484 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1485 for (auto *DII : DbgUsers) 1486 applyOffset(DII, Offset.getSExtValue()); 1487 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1488 if (BI->getOpcode() == Instruction::Add) 1489 if (auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1))) 1490 if (ConstInt->getBitWidth() <= 64) 1491 for (auto *DII : DbgUsers) 1492 applyOffset(DII, ConstInt->getSExtValue()); 1493 } else if (isa<LoadInst>(&I)) { 1494 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1495 for (auto *DII : DbgUsers) { 1496 // Rewrite the load into DW_OP_deref. 1497 auto *DIExpr = DII->getExpression(); 1498 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1499 DII->setOperand(0, AddrMD); 1500 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1501 DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1502 } 1503 } 1504 } 1505 1506 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1507 unsigned NumDeadInst = 0; 1508 // Delete the instructions backwards, as it has a reduced likelihood of 1509 // having to update as many def-use and use-def chains. 1510 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1511 while (EndInst != &BB->front()) { 1512 // Delete the next to last instruction. 1513 Instruction *Inst = &*--EndInst->getIterator(); 1514 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1515 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1516 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1517 EndInst = Inst; 1518 continue; 1519 } 1520 if (!isa<DbgInfoIntrinsic>(Inst)) 1521 ++NumDeadInst; 1522 Inst->eraseFromParent(); 1523 } 1524 return NumDeadInst; 1525 } 1526 1527 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1528 bool PreserveLCSSA, DeferredDominance *DDT) { 1529 BasicBlock *BB = I->getParent(); 1530 std::vector <DominatorTree::UpdateType> Updates; 1531 1532 // Loop over all of the successors, removing BB's entry from any PHI 1533 // nodes. 1534 if (DDT) 1535 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1536 for (BasicBlock *Successor : successors(BB)) { 1537 Successor->removePredecessor(BB, PreserveLCSSA); 1538 if (DDT) 1539 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1540 } 1541 // Insert a call to llvm.trap right before this. This turns the undefined 1542 // behavior into a hard fail instead of falling through into random code. 1543 if (UseLLVMTrap) { 1544 Function *TrapFn = 1545 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1546 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1547 CallTrap->setDebugLoc(I->getDebugLoc()); 1548 } 1549 new UnreachableInst(I->getContext(), I); 1550 1551 // All instructions after this are dead. 1552 unsigned NumInstrsRemoved = 0; 1553 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1554 while (BBI != BBE) { 1555 if (!BBI->use_empty()) 1556 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1557 BB->getInstList().erase(BBI++); 1558 ++NumInstrsRemoved; 1559 } 1560 if (DDT) 1561 DDT->applyUpdates(Updates); 1562 return NumInstrsRemoved; 1563 } 1564 1565 /// changeToCall - Convert the specified invoke into a normal call. 1566 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) { 1567 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1568 SmallVector<OperandBundleDef, 1> OpBundles; 1569 II->getOperandBundlesAsDefs(OpBundles); 1570 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1571 "", II); 1572 NewCall->takeName(II); 1573 NewCall->setCallingConv(II->getCallingConv()); 1574 NewCall->setAttributes(II->getAttributes()); 1575 NewCall->setDebugLoc(II->getDebugLoc()); 1576 II->replaceAllUsesWith(NewCall); 1577 1578 // Follow the call by a branch to the normal destination. 1579 BasicBlock *NormalDestBB = II->getNormalDest(); 1580 BranchInst::Create(NormalDestBB, II); 1581 1582 // Update PHI nodes in the unwind destination 1583 BasicBlock *BB = II->getParent(); 1584 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1585 UnwindDestBB->removePredecessor(BB); 1586 II->eraseFromParent(); 1587 if (DDT) 1588 DDT->deleteEdge(BB, UnwindDestBB); 1589 } 1590 1591 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1592 BasicBlock *UnwindEdge) { 1593 BasicBlock *BB = CI->getParent(); 1594 1595 // Convert this function call into an invoke instruction. First, split the 1596 // basic block. 1597 BasicBlock *Split = 1598 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1599 1600 // Delete the unconditional branch inserted by splitBasicBlock 1601 BB->getInstList().pop_back(); 1602 1603 // Create the new invoke instruction. 1604 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1605 SmallVector<OperandBundleDef, 1> OpBundles; 1606 1607 CI->getOperandBundlesAsDefs(OpBundles); 1608 1609 // Note: we're round tripping operand bundles through memory here, and that 1610 // can potentially be avoided with a cleverer API design that we do not have 1611 // as of this time. 1612 1613 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1614 InvokeArgs, OpBundles, CI->getName(), BB); 1615 II->setDebugLoc(CI->getDebugLoc()); 1616 II->setCallingConv(CI->getCallingConv()); 1617 II->setAttributes(CI->getAttributes()); 1618 1619 // Make sure that anything using the call now uses the invoke! This also 1620 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1621 CI->replaceAllUsesWith(II); 1622 1623 // Delete the original call 1624 Split->getInstList().pop_front(); 1625 return Split; 1626 } 1627 1628 static bool markAliveBlocks(Function &F, 1629 SmallPtrSetImpl<BasicBlock*> &Reachable, 1630 DeferredDominance *DDT = nullptr) { 1631 SmallVector<BasicBlock*, 128> Worklist; 1632 BasicBlock *BB = &F.front(); 1633 Worklist.push_back(BB); 1634 Reachable.insert(BB); 1635 bool Changed = false; 1636 do { 1637 BB = Worklist.pop_back_val(); 1638 1639 // Do a quick scan of the basic block, turning any obviously unreachable 1640 // instructions into LLVM unreachable insts. The instruction combining pass 1641 // canonicalizes unreachable insts into stores to null or undef. 1642 for (Instruction &I : *BB) { 1643 // Assumptions that are known to be false are equivalent to unreachable. 1644 // Also, if the condition is undefined, then we make the choice most 1645 // beneficial to the optimizer, and choose that to also be unreachable. 1646 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1647 if (II->getIntrinsicID() == Intrinsic::assume) { 1648 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1649 // Don't insert a call to llvm.trap right before the unreachable. 1650 changeToUnreachable(II, false, false, DDT); 1651 Changed = true; 1652 break; 1653 } 1654 } 1655 1656 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1657 // A call to the guard intrinsic bails out of the current compilation 1658 // unit if the predicate passed to it is false. If the predicate is a 1659 // constant false, then we know the guard will bail out of the current 1660 // compile unconditionally, so all code following it is dead. 1661 // 1662 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1663 // guards to treat `undef` as `false` since a guard on `undef` can 1664 // still be useful for widening. 1665 if (match(II->getArgOperand(0), m_Zero())) 1666 if (!isa<UnreachableInst>(II->getNextNode())) { 1667 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false, 1668 false, DDT); 1669 Changed = true; 1670 break; 1671 } 1672 } 1673 } 1674 1675 if (auto *CI = dyn_cast<CallInst>(&I)) { 1676 Value *Callee = CI->getCalledValue(); 1677 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1678 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT); 1679 Changed = true; 1680 break; 1681 } 1682 if (CI->doesNotReturn()) { 1683 // If we found a call to a no-return function, insert an unreachable 1684 // instruction after it. Make sure there isn't *already* one there 1685 // though. 1686 if (!isa<UnreachableInst>(CI->getNextNode())) { 1687 // Don't insert a call to llvm.trap right before the unreachable. 1688 changeToUnreachable(CI->getNextNode(), false, false, DDT); 1689 Changed = true; 1690 } 1691 break; 1692 } 1693 } 1694 1695 // Store to undef and store to null are undefined and used to signal that 1696 // they should be changed to unreachable by passes that can't modify the 1697 // CFG. 1698 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1699 // Don't touch volatile stores. 1700 if (SI->isVolatile()) continue; 1701 1702 Value *Ptr = SI->getOperand(1); 1703 1704 if (isa<UndefValue>(Ptr) || 1705 (isa<ConstantPointerNull>(Ptr) && 1706 SI->getPointerAddressSpace() == 0)) { 1707 changeToUnreachable(SI, true, false, DDT); 1708 Changed = true; 1709 break; 1710 } 1711 } 1712 } 1713 1714 TerminatorInst *Terminator = BB->getTerminator(); 1715 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1716 // Turn invokes that call 'nounwind' functions into ordinary calls. 1717 Value *Callee = II->getCalledValue(); 1718 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1719 changeToUnreachable(II, true, false, DDT); 1720 Changed = true; 1721 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1722 if (II->use_empty() && II->onlyReadsMemory()) { 1723 // jump to the normal destination branch. 1724 BasicBlock *NormalDestBB = II->getNormalDest(); 1725 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1726 BranchInst::Create(NormalDestBB, II); 1727 UnwindDestBB->removePredecessor(II->getParent()); 1728 II->eraseFromParent(); 1729 if (DDT) 1730 DDT->deleteEdge(BB, UnwindDestBB); 1731 } else 1732 changeToCall(II, DDT); 1733 Changed = true; 1734 } 1735 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1736 // Remove catchpads which cannot be reached. 1737 struct CatchPadDenseMapInfo { 1738 static CatchPadInst *getEmptyKey() { 1739 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1740 } 1741 1742 static CatchPadInst *getTombstoneKey() { 1743 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1744 } 1745 1746 static unsigned getHashValue(CatchPadInst *CatchPad) { 1747 return static_cast<unsigned>(hash_combine_range( 1748 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1749 } 1750 1751 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1752 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1753 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1754 return LHS == RHS; 1755 return LHS->isIdenticalTo(RHS); 1756 } 1757 }; 1758 1759 // Set of unique CatchPads. 1760 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1761 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1762 HandlerSet; 1763 detail::DenseSetEmpty Empty; 1764 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1765 E = CatchSwitch->handler_end(); 1766 I != E; ++I) { 1767 BasicBlock *HandlerBB = *I; 1768 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1769 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1770 CatchSwitch->removeHandler(I); 1771 --I; 1772 --E; 1773 Changed = true; 1774 } 1775 } 1776 } 1777 1778 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT); 1779 for (BasicBlock *Successor : successors(BB)) 1780 if (Reachable.insert(Successor).second) 1781 Worklist.push_back(Successor); 1782 } while (!Worklist.empty()); 1783 return Changed; 1784 } 1785 1786 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) { 1787 TerminatorInst *TI = BB->getTerminator(); 1788 1789 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1790 changeToCall(II, DDT); 1791 return; 1792 } 1793 1794 TerminatorInst *NewTI; 1795 BasicBlock *UnwindDest; 1796 1797 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1798 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1799 UnwindDest = CRI->getUnwindDest(); 1800 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1801 auto *NewCatchSwitch = CatchSwitchInst::Create( 1802 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1803 CatchSwitch->getName(), CatchSwitch); 1804 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1805 NewCatchSwitch->addHandler(PadBB); 1806 1807 NewTI = NewCatchSwitch; 1808 UnwindDest = CatchSwitch->getUnwindDest(); 1809 } else { 1810 llvm_unreachable("Could not find unwind successor"); 1811 } 1812 1813 NewTI->takeName(TI); 1814 NewTI->setDebugLoc(TI->getDebugLoc()); 1815 UnwindDest->removePredecessor(BB); 1816 TI->replaceAllUsesWith(NewTI); 1817 TI->eraseFromParent(); 1818 if (DDT) 1819 DDT->deleteEdge(BB, UnwindDest); 1820 } 1821 1822 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1823 /// if they are in a dead cycle. Return true if a change was made, false 1824 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1825 /// after modifying the CFG. 1826 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 1827 DeferredDominance *DDT) { 1828 SmallPtrSet<BasicBlock*, 16> Reachable; 1829 bool Changed = markAliveBlocks(F, Reachable, DDT); 1830 1831 // If there are unreachable blocks in the CFG... 1832 if (Reachable.size() == F.size()) 1833 return Changed; 1834 1835 assert(Reachable.size() < F.size()); 1836 NumRemoved += F.size()-Reachable.size(); 1837 1838 // Loop over all of the basic blocks that are not reachable, dropping all of 1839 // their internal references. Update DDT and LVI if available. 1840 std::vector <DominatorTree::UpdateType> Updates; 1841 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 1842 auto *BB = &*I; 1843 if (Reachable.count(BB)) 1844 continue; 1845 for (BasicBlock *Successor : successors(BB)) { 1846 if (Reachable.count(Successor)) 1847 Successor->removePredecessor(BB); 1848 if (DDT) 1849 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1850 } 1851 if (LVI) 1852 LVI->eraseBlock(BB); 1853 BB->dropAllReferences(); 1854 } 1855 1856 for (Function::iterator I = ++F.begin(); I != F.end();) { 1857 auto *BB = &*I; 1858 if (Reachable.count(BB)) { 1859 ++I; 1860 continue; 1861 } 1862 if (DDT) { 1863 DDT->deleteBB(BB); // deferred deletion of BB. 1864 ++I; 1865 } else { 1866 I = F.getBasicBlockList().erase(I); 1867 } 1868 } 1869 1870 if (DDT) 1871 DDT->applyUpdates(Updates); 1872 return true; 1873 } 1874 1875 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1876 ArrayRef<unsigned> KnownIDs) { 1877 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1878 K->dropUnknownNonDebugMetadata(KnownIDs); 1879 K->getAllMetadataOtherThanDebugLoc(Metadata); 1880 for (const auto &MD : Metadata) { 1881 unsigned Kind = MD.first; 1882 MDNode *JMD = J->getMetadata(Kind); 1883 MDNode *KMD = MD.second; 1884 1885 switch (Kind) { 1886 default: 1887 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1888 break; 1889 case LLVMContext::MD_dbg: 1890 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1891 case LLVMContext::MD_tbaa: 1892 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1893 break; 1894 case LLVMContext::MD_alias_scope: 1895 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1896 break; 1897 case LLVMContext::MD_noalias: 1898 case LLVMContext::MD_mem_parallel_loop_access: 1899 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1900 break; 1901 case LLVMContext::MD_range: 1902 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1903 break; 1904 case LLVMContext::MD_fpmath: 1905 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1906 break; 1907 case LLVMContext::MD_invariant_load: 1908 // Only set the !invariant.load if it is present in both instructions. 1909 K->setMetadata(Kind, JMD); 1910 break; 1911 case LLVMContext::MD_nonnull: 1912 // Only set the !nonnull if it is present in both instructions. 1913 K->setMetadata(Kind, JMD); 1914 break; 1915 case LLVMContext::MD_invariant_group: 1916 // Preserve !invariant.group in K. 1917 break; 1918 case LLVMContext::MD_align: 1919 K->setMetadata(Kind, 1920 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1921 break; 1922 case LLVMContext::MD_dereferenceable: 1923 case LLVMContext::MD_dereferenceable_or_null: 1924 K->setMetadata(Kind, 1925 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1926 break; 1927 } 1928 } 1929 // Set !invariant.group from J if J has it. If both instructions have it 1930 // then we will just pick it from J - even when they are different. 1931 // Also make sure that K is load or store - f.e. combining bitcast with load 1932 // could produce bitcast with invariant.group metadata, which is invalid. 1933 // FIXME: we should try to preserve both invariant.group md if they are 1934 // different, but right now instruction can only have one invariant.group. 1935 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1936 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1937 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1938 } 1939 1940 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1941 unsigned KnownIDs[] = { 1942 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1943 LLVMContext::MD_noalias, LLVMContext::MD_range, 1944 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1945 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1946 LLVMContext::MD_dereferenceable, 1947 LLVMContext::MD_dereferenceable_or_null}; 1948 combineMetadata(K, J, KnownIDs); 1949 } 1950 1951 template <typename RootType, typename DominatesFn> 1952 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1953 const RootType &Root, 1954 const DominatesFn &Dominates) { 1955 assert(From->getType() == To->getType()); 1956 1957 unsigned Count = 0; 1958 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1959 UI != UE;) { 1960 Use &U = *UI++; 1961 if (!Dominates(Root, U)) 1962 continue; 1963 U.set(To); 1964 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1965 << *To << " in " << *U << "\n"); 1966 ++Count; 1967 } 1968 return Count; 1969 } 1970 1971 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1972 assert(From->getType() == To->getType()); 1973 auto *BB = From->getParent(); 1974 unsigned Count = 0; 1975 1976 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1977 UI != UE;) { 1978 Use &U = *UI++; 1979 auto *I = cast<Instruction>(U.getUser()); 1980 if (I->getParent() == BB) 1981 continue; 1982 U.set(To); 1983 ++Count; 1984 } 1985 return Count; 1986 } 1987 1988 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1989 DominatorTree &DT, 1990 const BasicBlockEdge &Root) { 1991 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1992 return DT.dominates(Root, U); 1993 }; 1994 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1995 } 1996 1997 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1998 DominatorTree &DT, 1999 const BasicBlock *BB) { 2000 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2001 auto *I = cast<Instruction>(U.getUser())->getParent(); 2002 return DT.properlyDominates(BB, I); 2003 }; 2004 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2005 } 2006 2007 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2008 const TargetLibraryInfo &TLI) { 2009 // Check if the function is specifically marked as a gc leaf function. 2010 if (CS.hasFnAttr("gc-leaf-function")) 2011 return true; 2012 if (const Function *F = CS.getCalledFunction()) { 2013 if (F->hasFnAttribute("gc-leaf-function")) 2014 return true; 2015 2016 if (auto IID = F->getIntrinsicID()) 2017 // Most LLVM intrinsics do not take safepoints. 2018 return IID != Intrinsic::experimental_gc_statepoint && 2019 IID != Intrinsic::experimental_deoptimize; 2020 } 2021 2022 // Lib calls can be materialized by some passes, and won't be 2023 // marked as 'gc-leaf-function.' All available Libcalls are 2024 // GC-leaf. 2025 LibFunc LF; 2026 if (TLI.getLibFunc(CS, LF)) { 2027 return TLI.has(LF); 2028 } 2029 2030 return false; 2031 } 2032 2033 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2034 LoadInst &NewLI) { 2035 auto *NewTy = NewLI.getType(); 2036 2037 // This only directly applies if the new type is also a pointer. 2038 if (NewTy->isPointerTy()) { 2039 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2040 return; 2041 } 2042 2043 // The only other translation we can do is to integral loads with !range 2044 // metadata. 2045 if (!NewTy->isIntegerTy()) 2046 return; 2047 2048 MDBuilder MDB(NewLI.getContext()); 2049 const Value *Ptr = OldLI.getPointerOperand(); 2050 auto *ITy = cast<IntegerType>(NewTy); 2051 auto *NullInt = ConstantExpr::getPtrToInt( 2052 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2053 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2054 NewLI.setMetadata(LLVMContext::MD_range, 2055 MDB.createRange(NonNullInt, NullInt)); 2056 } 2057 2058 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2059 MDNode *N, LoadInst &NewLI) { 2060 auto *NewTy = NewLI.getType(); 2061 2062 // Give up unless it is converted to a pointer where there is a single very 2063 // valuable mapping we can do reliably. 2064 // FIXME: It would be nice to propagate this in more ways, but the type 2065 // conversions make it hard. 2066 if (!NewTy->isPointerTy()) 2067 return; 2068 2069 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 2070 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2071 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2072 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2073 } 2074 } 2075 2076 namespace { 2077 2078 /// A potential constituent of a bitreverse or bswap expression. See 2079 /// collectBitParts for a fuller explanation. 2080 struct BitPart { 2081 BitPart(Value *P, unsigned BW) : Provider(P) { 2082 Provenance.resize(BW); 2083 } 2084 2085 /// The Value that this is a bitreverse/bswap of. 2086 Value *Provider; 2087 2088 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2089 /// in Provider becomes bit B in the result of this expression. 2090 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2091 2092 enum { Unset = -1 }; 2093 }; 2094 2095 } // end anonymous namespace 2096 2097 /// Analyze the specified subexpression and see if it is capable of providing 2098 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2099 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2100 /// the output of the expression came from a corresponding bit in some other 2101 /// value. This function is recursive, and the end result is a mapping of 2102 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2103 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2104 /// 2105 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2106 /// that the expression deposits the low byte of %X into the high byte of the 2107 /// result and that all other bits are zero. This expression is accepted and a 2108 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2109 /// [0-7]. 2110 /// 2111 /// To avoid revisiting values, the BitPart results are memoized into the 2112 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2113 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2114 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2115 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2116 /// type instead to provide the same functionality. 2117 /// 2118 /// Because we pass around references into \c BPS, we must use a container that 2119 /// does not invalidate internal references (std::map instead of DenseMap). 2120 static const Optional<BitPart> & 2121 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2122 std::map<Value *, Optional<BitPart>> &BPS) { 2123 auto I = BPS.find(V); 2124 if (I != BPS.end()) 2125 return I->second; 2126 2127 auto &Result = BPS[V] = None; 2128 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2129 2130 if (Instruction *I = dyn_cast<Instruction>(V)) { 2131 // If this is an or instruction, it may be an inner node of the bswap. 2132 if (I->getOpcode() == Instruction::Or) { 2133 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2134 MatchBitReversals, BPS); 2135 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2136 MatchBitReversals, BPS); 2137 if (!A || !B) 2138 return Result; 2139 2140 // Try and merge the two together. 2141 if (!A->Provider || A->Provider != B->Provider) 2142 return Result; 2143 2144 Result = BitPart(A->Provider, BitWidth); 2145 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2146 if (A->Provenance[i] != BitPart::Unset && 2147 B->Provenance[i] != BitPart::Unset && 2148 A->Provenance[i] != B->Provenance[i]) 2149 return Result = None; 2150 2151 if (A->Provenance[i] == BitPart::Unset) 2152 Result->Provenance[i] = B->Provenance[i]; 2153 else 2154 Result->Provenance[i] = A->Provenance[i]; 2155 } 2156 2157 return Result; 2158 } 2159 2160 // If this is a logical shift by a constant, recurse then shift the result. 2161 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2162 unsigned BitShift = 2163 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2164 // Ensure the shift amount is defined. 2165 if (BitShift > BitWidth) 2166 return Result; 2167 2168 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2169 MatchBitReversals, BPS); 2170 if (!Res) 2171 return Result; 2172 Result = Res; 2173 2174 // Perform the "shift" on BitProvenance. 2175 auto &P = Result->Provenance; 2176 if (I->getOpcode() == Instruction::Shl) { 2177 P.erase(std::prev(P.end(), BitShift), P.end()); 2178 P.insert(P.begin(), BitShift, BitPart::Unset); 2179 } else { 2180 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2181 P.insert(P.end(), BitShift, BitPart::Unset); 2182 } 2183 2184 return Result; 2185 } 2186 2187 // If this is a logical 'and' with a mask that clears bits, recurse then 2188 // unset the appropriate bits. 2189 if (I->getOpcode() == Instruction::And && 2190 isa<ConstantInt>(I->getOperand(1))) { 2191 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2192 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2193 2194 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2195 // early exit. 2196 unsigned NumMaskedBits = AndMask.countPopulation(); 2197 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2198 return Result; 2199 2200 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2201 MatchBitReversals, BPS); 2202 if (!Res) 2203 return Result; 2204 Result = Res; 2205 2206 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2207 // If the AndMask is zero for this bit, clear the bit. 2208 if ((AndMask & Bit) == 0) 2209 Result->Provenance[i] = BitPart::Unset; 2210 return Result; 2211 } 2212 2213 // If this is a zext instruction zero extend the result. 2214 if (I->getOpcode() == Instruction::ZExt) { 2215 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2216 MatchBitReversals, BPS); 2217 if (!Res) 2218 return Result; 2219 2220 Result = BitPart(Res->Provider, BitWidth); 2221 auto NarrowBitWidth = 2222 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2223 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2224 Result->Provenance[i] = Res->Provenance[i]; 2225 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2226 Result->Provenance[i] = BitPart::Unset; 2227 return Result; 2228 } 2229 } 2230 2231 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2232 // the input value to the bswap/bitreverse. 2233 Result = BitPart(V, BitWidth); 2234 for (unsigned i = 0; i < BitWidth; ++i) 2235 Result->Provenance[i] = i; 2236 return Result; 2237 } 2238 2239 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2240 unsigned BitWidth) { 2241 if (From % 8 != To % 8) 2242 return false; 2243 // Convert from bit indices to byte indices and check for a byte reversal. 2244 From >>= 3; 2245 To >>= 3; 2246 BitWidth >>= 3; 2247 return From == BitWidth - To - 1; 2248 } 2249 2250 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2251 unsigned BitWidth) { 2252 return From == BitWidth - To - 1; 2253 } 2254 2255 bool llvm::recognizeBSwapOrBitReverseIdiom( 2256 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2257 SmallVectorImpl<Instruction *> &InsertedInsts) { 2258 if (Operator::getOpcode(I) != Instruction::Or) 2259 return false; 2260 if (!MatchBSwaps && !MatchBitReversals) 2261 return false; 2262 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2263 if (!ITy || ITy->getBitWidth() > 128) 2264 return false; // Can't do vectors or integers > 128 bits. 2265 unsigned BW = ITy->getBitWidth(); 2266 2267 unsigned DemandedBW = BW; 2268 IntegerType *DemandedTy = ITy; 2269 if (I->hasOneUse()) { 2270 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2271 DemandedTy = cast<IntegerType>(Trunc->getType()); 2272 DemandedBW = DemandedTy->getBitWidth(); 2273 } 2274 } 2275 2276 // Try to find all the pieces corresponding to the bswap. 2277 std::map<Value *, Optional<BitPart>> BPS; 2278 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2279 if (!Res) 2280 return false; 2281 auto &BitProvenance = Res->Provenance; 2282 2283 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2284 // only byteswap values with an even number of bytes. 2285 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2286 for (unsigned i = 0; i < DemandedBW; ++i) { 2287 OKForBSwap &= 2288 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2289 OKForBitReverse &= 2290 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2291 } 2292 2293 Intrinsic::ID Intrin; 2294 if (OKForBSwap && MatchBSwaps) 2295 Intrin = Intrinsic::bswap; 2296 else if (OKForBitReverse && MatchBitReversals) 2297 Intrin = Intrinsic::bitreverse; 2298 else 2299 return false; 2300 2301 if (ITy != DemandedTy) { 2302 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2303 Value *Provider = Res->Provider; 2304 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2305 // We may need to truncate the provider. 2306 if (DemandedTy != ProviderTy) { 2307 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2308 "trunc", I); 2309 InsertedInsts.push_back(Trunc); 2310 Provider = Trunc; 2311 } 2312 auto *CI = CallInst::Create(F, Provider, "rev", I); 2313 InsertedInsts.push_back(CI); 2314 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2315 InsertedInsts.push_back(ExtInst); 2316 return true; 2317 } 2318 2319 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2320 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2321 return true; 2322 } 2323 2324 // CodeGen has special handling for some string functions that may replace 2325 // them with target-specific intrinsics. Since that'd skip our interceptors 2326 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2327 // we mark affected calls as NoBuiltin, which will disable optimization 2328 // in CodeGen. 2329 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2330 CallInst *CI, const TargetLibraryInfo *TLI) { 2331 Function *F = CI->getCalledFunction(); 2332 LibFunc Func; 2333 if (F && !F->hasLocalLinkage() && F->hasName() && 2334 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2335 !F->doesNotAccessMemory()) 2336 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2337 } 2338 2339 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2340 // We can't have a PHI with a metadata type. 2341 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2342 return false; 2343 2344 // Early exit. 2345 if (!isa<Constant>(I->getOperand(OpIdx))) 2346 return true; 2347 2348 switch (I->getOpcode()) { 2349 default: 2350 return true; 2351 case Instruction::Call: 2352 case Instruction::Invoke: 2353 // Can't handle inline asm. Skip it. 2354 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2355 return false; 2356 // Many arithmetic intrinsics have no issue taking a 2357 // variable, however it's hard to distingish these from 2358 // specials such as @llvm.frameaddress that require a constant. 2359 if (isa<IntrinsicInst>(I)) 2360 return false; 2361 2362 // Constant bundle operands may need to retain their constant-ness for 2363 // correctness. 2364 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2365 return false; 2366 return true; 2367 case Instruction::ShuffleVector: 2368 // Shufflevector masks are constant. 2369 return OpIdx != 2; 2370 case Instruction::Switch: 2371 case Instruction::ExtractValue: 2372 // All operands apart from the first are constant. 2373 return OpIdx == 0; 2374 case Instruction::InsertValue: 2375 // All operands apart from the first and the second are constant. 2376 return OpIdx < 2; 2377 case Instruction::Alloca: 2378 // Static allocas (constant size in the entry block) are handled by 2379 // prologue/epilogue insertion so they're free anyway. We definitely don't 2380 // want to make them non-constant. 2381 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2382 case Instruction::GetElementPtr: 2383 if (OpIdx == 0) 2384 return true; 2385 gep_type_iterator It = gep_type_begin(I); 2386 for (auto E = std::next(It, OpIdx); It != E; ++It) 2387 if (It.isStruct()) 2388 return false; 2389 return true; 2390 } 2391 } 2392