1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstdint>
80 #include <iterator>
81 #include <map>
82 #include <utility>
83 
84 using namespace llvm;
85 using namespace llvm::PatternMatch;
86 
87 #define DEBUG_TYPE "local"
88 
89 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
90 
91 //===----------------------------------------------------------------------===//
92 //  Local constant propagation.
93 //
94 
95 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
96 /// constant value, convert it into an unconditional branch to the constant
97 /// destination.  This is a nontrivial operation because the successors of this
98 /// basic block must have their PHI nodes updated.
99 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
100 /// conditions and indirectbr addresses this might make dead if
101 /// DeleteDeadConditions is true.
102 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
103                                   const TargetLibraryInfo *TLI,
104                                   DeferredDominance *DDT) {
105   TerminatorInst *T = BB->getTerminator();
106   IRBuilder<> Builder(T);
107 
108   // Branch - See if we are conditional jumping on constant
109   if (auto *BI = dyn_cast<BranchInst>(T)) {
110     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
111     BasicBlock *Dest1 = BI->getSuccessor(0);
112     BasicBlock *Dest2 = BI->getSuccessor(1);
113 
114     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
115       // Are we branching on constant?
116       // YES.  Change to unconditional branch...
117       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
118       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
119 
120       // Let the basic block know that we are letting go of it.  Based on this,
121       // it will adjust it's PHI nodes.
122       OldDest->removePredecessor(BB);
123 
124       // Replace the conditional branch with an unconditional one.
125       Builder.CreateBr(Destination);
126       BI->eraseFromParent();
127       if (DDT)
128         DDT->deleteEdge(BB, OldDest);
129       return true;
130     }
131 
132     if (Dest2 == Dest1) {       // Conditional branch to same location?
133       // This branch matches something like this:
134       //     br bool %cond, label %Dest, label %Dest
135       // and changes it into:  br label %Dest
136 
137       // Let the basic block know that we are letting go of one copy of it.
138       assert(BI->getParent() && "Terminator not inserted in block!");
139       Dest1->removePredecessor(BI->getParent());
140 
141       // Replace the conditional branch with an unconditional one.
142       Builder.CreateBr(Dest1);
143       Value *Cond = BI->getCondition();
144       BI->eraseFromParent();
145       if (DeleteDeadConditions)
146         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
147       return true;
148     }
149     return false;
150   }
151 
152   if (auto *SI = dyn_cast<SwitchInst>(T)) {
153     // If we are switching on a constant, we can convert the switch to an
154     // unconditional branch.
155     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
156     BasicBlock *DefaultDest = SI->getDefaultDest();
157     BasicBlock *TheOnlyDest = DefaultDest;
158 
159     // If the default is unreachable, ignore it when searching for TheOnlyDest.
160     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
161         SI->getNumCases() > 0) {
162       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
163     }
164 
165     // Figure out which case it goes to.
166     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
167       // Found case matching a constant operand?
168       if (i->getCaseValue() == CI) {
169         TheOnlyDest = i->getCaseSuccessor();
170         break;
171       }
172 
173       // Check to see if this branch is going to the same place as the default
174       // dest.  If so, eliminate it as an explicit compare.
175       if (i->getCaseSuccessor() == DefaultDest) {
176         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
177         unsigned NCases = SI->getNumCases();
178         // Fold the case metadata into the default if there will be any branches
179         // left, unless the metadata doesn't match the switch.
180         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
181           // Collect branch weights into a vector.
182           SmallVector<uint32_t, 8> Weights;
183           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
184                ++MD_i) {
185             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
186             Weights.push_back(CI->getValue().getZExtValue());
187           }
188           // Merge weight of this case to the default weight.
189           unsigned idx = i->getCaseIndex();
190           Weights[0] += Weights[idx+1];
191           // Remove weight for this case.
192           std::swap(Weights[idx+1], Weights.back());
193           Weights.pop_back();
194           SI->setMetadata(LLVMContext::MD_prof,
195                           MDBuilder(BB->getContext()).
196                           createBranchWeights(Weights));
197         }
198         // Remove this entry.
199         BasicBlock *ParentBB = SI->getParent();
200         DefaultDest->removePredecessor(ParentBB);
201         i = SI->removeCase(i);
202         e = SI->case_end();
203         if (DDT)
204           DDT->deleteEdge(ParentBB, DefaultDest);
205         continue;
206       }
207 
208       // Otherwise, check to see if the switch only branches to one destination.
209       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
210       // destinations.
211       if (i->getCaseSuccessor() != TheOnlyDest)
212         TheOnlyDest = nullptr;
213 
214       // Increment this iterator as we haven't removed the case.
215       ++i;
216     }
217 
218     if (CI && !TheOnlyDest) {
219       // Branching on a constant, but not any of the cases, go to the default
220       // successor.
221       TheOnlyDest = SI->getDefaultDest();
222     }
223 
224     // If we found a single destination that we can fold the switch into, do so
225     // now.
226     if (TheOnlyDest) {
227       // Insert the new branch.
228       Builder.CreateBr(TheOnlyDest);
229       BasicBlock *BB = SI->getParent();
230       std::vector <DominatorTree::UpdateType> Updates;
231       if (DDT)
232         Updates.reserve(SI->getNumSuccessors() - 1);
233 
234       // Remove entries from PHI nodes which we no longer branch to...
235       for (BasicBlock *Succ : SI->successors()) {
236         // Found case matching a constant operand?
237         if (Succ == TheOnlyDest) {
238           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
239         } else {
240           Succ->removePredecessor(BB);
241           if (DDT)
242             Updates.push_back({DominatorTree::Delete, BB, Succ});
243         }
244       }
245 
246       // Delete the old switch.
247       Value *Cond = SI->getCondition();
248       SI->eraseFromParent();
249       if (DeleteDeadConditions)
250         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
251       if (DDT)
252         DDT->applyUpdates(Updates);
253       return true;
254     }
255 
256     if (SI->getNumCases() == 1) {
257       // Otherwise, we can fold this switch into a conditional branch
258       // instruction if it has only one non-default destination.
259       auto FirstCase = *SI->case_begin();
260       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
261           FirstCase.getCaseValue(), "cond");
262 
263       // Insert the new branch.
264       BranchInst *NewBr = Builder.CreateCondBr(Cond,
265                                                FirstCase.getCaseSuccessor(),
266                                                SI->getDefaultDest());
267       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
268       if (MD && MD->getNumOperands() == 3) {
269         ConstantInt *SICase =
270             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
271         ConstantInt *SIDef =
272             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
273         assert(SICase && SIDef);
274         // The TrueWeight should be the weight for the single case of SI.
275         NewBr->setMetadata(LLVMContext::MD_prof,
276                         MDBuilder(BB->getContext()).
277                         createBranchWeights(SICase->getValue().getZExtValue(),
278                                             SIDef->getValue().getZExtValue()));
279       }
280 
281       // Update make.implicit metadata to the newly-created conditional branch.
282       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
283       if (MakeImplicitMD)
284         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
285 
286       // Delete the old switch.
287       SI->eraseFromParent();
288       return true;
289     }
290     return false;
291   }
292 
293   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
294     // indirectbr blockaddress(@F, @BB) -> br label @BB
295     if (auto *BA =
296           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
297       BasicBlock *TheOnlyDest = BA->getBasicBlock();
298       std::vector <DominatorTree::UpdateType> Updates;
299       if (DDT)
300         Updates.reserve(IBI->getNumDestinations() - 1);
301 
302       // Insert the new branch.
303       Builder.CreateBr(TheOnlyDest);
304 
305       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
306         if (IBI->getDestination(i) == TheOnlyDest) {
307           TheOnlyDest = nullptr;
308         } else {
309           BasicBlock *ParentBB = IBI->getParent();
310           BasicBlock *DestBB = IBI->getDestination(i);
311           DestBB->removePredecessor(ParentBB);
312           if (DDT)
313             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
314         }
315       }
316       Value *Address = IBI->getAddress();
317       IBI->eraseFromParent();
318       if (DeleteDeadConditions)
319         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
320 
321       // If we didn't find our destination in the IBI successor list, then we
322       // have undefined behavior.  Replace the unconditional branch with an
323       // 'unreachable' instruction.
324       if (TheOnlyDest) {
325         BB->getTerminator()->eraseFromParent();
326         new UnreachableInst(BB->getContext(), BB);
327       }
328 
329       if (DDT)
330         DDT->applyUpdates(Updates);
331       return true;
332     }
333   }
334 
335   return false;
336 }
337 
338 //===----------------------------------------------------------------------===//
339 //  Local dead code elimination.
340 //
341 
342 /// isInstructionTriviallyDead - Return true if the result produced by the
343 /// instruction is not used, and the instruction has no side effects.
344 ///
345 bool llvm::isInstructionTriviallyDead(Instruction *I,
346                                       const TargetLibraryInfo *TLI) {
347   if (!I->use_empty())
348     return false;
349   return wouldInstructionBeTriviallyDead(I, TLI);
350 }
351 
352 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
353                                            const TargetLibraryInfo *TLI) {
354   if (isa<TerminatorInst>(I))
355     return false;
356 
357   // We don't want the landingpad-like instructions removed by anything this
358   // general.
359   if (I->isEHPad())
360     return false;
361 
362   // We don't want debug info removed by anything this general, unless
363   // debug info is empty.
364   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
365     if (DDI->getAddress())
366       return false;
367     return true;
368   }
369   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
370     if (DVI->getValue())
371       return false;
372     return true;
373   }
374 
375   if (!I->mayHaveSideEffects())
376     return true;
377 
378   // Special case intrinsics that "may have side effects" but can be deleted
379   // when dead.
380   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
381     // Safe to delete llvm.stacksave if dead.
382     if (II->getIntrinsicID() == Intrinsic::stacksave)
383       return true;
384 
385     // Lifetime intrinsics are dead when their right-hand is undef.
386     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
387         II->getIntrinsicID() == Intrinsic::lifetime_end)
388       return isa<UndefValue>(II->getArgOperand(1));
389 
390     // Assumptions are dead if their condition is trivially true.  Guards on
391     // true are operationally no-ops.  In the future we can consider more
392     // sophisticated tradeoffs for guards considering potential for check
393     // widening, but for now we keep things simple.
394     if (II->getIntrinsicID() == Intrinsic::assume ||
395         II->getIntrinsicID() == Intrinsic::experimental_guard) {
396       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
397         return !Cond->isZero();
398 
399       return false;
400     }
401   }
402 
403   if (isAllocLikeFn(I, TLI))
404     return true;
405 
406   if (CallInst *CI = isFreeCall(I, TLI))
407     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
408       return C->isNullValue() || isa<UndefValue>(C);
409 
410   if (CallSite CS = CallSite(I))
411     if (isMathLibCallNoop(CS, TLI))
412       return true;
413 
414   return false;
415 }
416 
417 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
418 /// trivially dead instruction, delete it.  If that makes any of its operands
419 /// trivially dead, delete them too, recursively.  Return true if any
420 /// instructions were deleted.
421 bool
422 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
423                                                  const TargetLibraryInfo *TLI) {
424   Instruction *I = dyn_cast<Instruction>(V);
425   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
426     return false;
427 
428   SmallVector<Instruction*, 16> DeadInsts;
429   DeadInsts.push_back(I);
430 
431   do {
432     I = DeadInsts.pop_back_val();
433 
434     // Null out all of the instruction's operands to see if any operand becomes
435     // dead as we go.
436     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
437       Value *OpV = I->getOperand(i);
438       I->setOperand(i, nullptr);
439 
440       if (!OpV->use_empty()) continue;
441 
442       // If the operand is an instruction that became dead as we nulled out the
443       // operand, and if it is 'trivially' dead, delete it in a future loop
444       // iteration.
445       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
446         if (isInstructionTriviallyDead(OpI, TLI))
447           DeadInsts.push_back(OpI);
448     }
449 
450     I->eraseFromParent();
451   } while (!DeadInsts.empty());
452 
453   return true;
454 }
455 
456 /// areAllUsesEqual - Check whether the uses of a value are all the same.
457 /// This is similar to Instruction::hasOneUse() except this will also return
458 /// true when there are no uses or multiple uses that all refer to the same
459 /// value.
460 static bool areAllUsesEqual(Instruction *I) {
461   Value::user_iterator UI = I->user_begin();
462   Value::user_iterator UE = I->user_end();
463   if (UI == UE)
464     return true;
465 
466   User *TheUse = *UI;
467   for (++UI; UI != UE; ++UI) {
468     if (*UI != TheUse)
469       return false;
470   }
471   return true;
472 }
473 
474 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
475 /// dead PHI node, due to being a def-use chain of single-use nodes that
476 /// either forms a cycle or is terminated by a trivially dead instruction,
477 /// delete it.  If that makes any of its operands trivially dead, delete them
478 /// too, recursively.  Return true if a change was made.
479 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
480                                         const TargetLibraryInfo *TLI) {
481   SmallPtrSet<Instruction*, 4> Visited;
482   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
483        I = cast<Instruction>(*I->user_begin())) {
484     if (I->use_empty())
485       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
486 
487     // If we find an instruction more than once, we're on a cycle that
488     // won't prove fruitful.
489     if (!Visited.insert(I).second) {
490       // Break the cycle and delete the instruction and its operands.
491       I->replaceAllUsesWith(UndefValue::get(I->getType()));
492       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
493       return true;
494     }
495   }
496   return false;
497 }
498 
499 static bool
500 simplifyAndDCEInstruction(Instruction *I,
501                           SmallSetVector<Instruction *, 16> &WorkList,
502                           const DataLayout &DL,
503                           const TargetLibraryInfo *TLI) {
504   if (isInstructionTriviallyDead(I, TLI)) {
505     // Null out all of the instruction's operands to see if any operand becomes
506     // dead as we go.
507     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
508       Value *OpV = I->getOperand(i);
509       I->setOperand(i, nullptr);
510 
511       if (!OpV->use_empty() || I == OpV)
512         continue;
513 
514       // If the operand is an instruction that became dead as we nulled out the
515       // operand, and if it is 'trivially' dead, delete it in a future loop
516       // iteration.
517       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
518         if (isInstructionTriviallyDead(OpI, TLI))
519           WorkList.insert(OpI);
520     }
521 
522     I->eraseFromParent();
523 
524     return true;
525   }
526 
527   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
528     // Add the users to the worklist. CAREFUL: an instruction can use itself,
529     // in the case of a phi node.
530     for (User *U : I->users()) {
531       if (U != I) {
532         WorkList.insert(cast<Instruction>(U));
533       }
534     }
535 
536     // Replace the instruction with its simplified value.
537     bool Changed = false;
538     if (!I->use_empty()) {
539       I->replaceAllUsesWith(SimpleV);
540       Changed = true;
541     }
542     if (isInstructionTriviallyDead(I, TLI)) {
543       I->eraseFromParent();
544       Changed = true;
545     }
546     return Changed;
547   }
548   return false;
549 }
550 
551 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
552 /// simplify any instructions in it and recursively delete dead instructions.
553 ///
554 /// This returns true if it changed the code, note that it can delete
555 /// instructions in other blocks as well in this block.
556 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
557                                        const TargetLibraryInfo *TLI) {
558   bool MadeChange = false;
559   const DataLayout &DL = BB->getModule()->getDataLayout();
560 
561 #ifndef NDEBUG
562   // In debug builds, ensure that the terminator of the block is never replaced
563   // or deleted by these simplifications. The idea of simplification is that it
564   // cannot introduce new instructions, and there is no way to replace the
565   // terminator of a block without introducing a new instruction.
566   AssertingVH<Instruction> TerminatorVH(&BB->back());
567 #endif
568 
569   SmallSetVector<Instruction *, 16> WorkList;
570   // Iterate over the original function, only adding insts to the worklist
571   // if they actually need to be revisited. This avoids having to pre-init
572   // the worklist with the entire function's worth of instructions.
573   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
574        BI != E;) {
575     assert(!BI->isTerminator());
576     Instruction *I = &*BI;
577     ++BI;
578 
579     // We're visiting this instruction now, so make sure it's not in the
580     // worklist from an earlier visit.
581     if (!WorkList.count(I))
582       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
583   }
584 
585   while (!WorkList.empty()) {
586     Instruction *I = WorkList.pop_back_val();
587     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
588   }
589   return MadeChange;
590 }
591 
592 //===----------------------------------------------------------------------===//
593 //  Control Flow Graph Restructuring.
594 //
595 
596 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
597 /// method is called when we're about to delete Pred as a predecessor of BB.  If
598 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
599 ///
600 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
601 /// nodes that collapse into identity values.  For example, if we have:
602 ///   x = phi(1, 0, 0, 0)
603 ///   y = and x, z
604 ///
605 /// .. and delete the predecessor corresponding to the '1', this will attempt to
606 /// recursively fold the and to 0.
607 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
608                                         DeferredDominance *DDT) {
609   // This only adjusts blocks with PHI nodes.
610   if (!isa<PHINode>(BB->begin()))
611     return;
612 
613   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
614   // them down.  This will leave us with single entry phi nodes and other phis
615   // that can be removed.
616   BB->removePredecessor(Pred, true);
617 
618   WeakTrackingVH PhiIt = &BB->front();
619   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
620     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
621     Value *OldPhiIt = PhiIt;
622 
623     if (!recursivelySimplifyInstruction(PN))
624       continue;
625 
626     // If recursive simplification ended up deleting the next PHI node we would
627     // iterate to, then our iterator is invalid, restart scanning from the top
628     // of the block.
629     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
630   }
631   if (DDT)
632     DDT->deleteEdge(Pred, BB);
633 }
634 
635 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
636 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
637 /// between them, moving the instructions in the predecessor into DestBB and
638 /// deleting the predecessor block.
639 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
640                                        DeferredDominance *DDT) {
641   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
642 
643   // If BB has single-entry PHI nodes, fold them.
644   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
645     Value *NewVal = PN->getIncomingValue(0);
646     // Replace self referencing PHI with undef, it must be dead.
647     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
648     PN->replaceAllUsesWith(NewVal);
649     PN->eraseFromParent();
650   }
651 
652   BasicBlock *PredBB = DestBB->getSinglePredecessor();
653   assert(PredBB && "Block doesn't have a single predecessor!");
654 
655   bool ReplaceEntryBB = false;
656   if (PredBB == &DestBB->getParent()->getEntryBlock())
657     ReplaceEntryBB = true;
658 
659   // Deferred DT update: Collect all the edges that enter PredBB. These
660   // dominator edges will be redirected to DestBB.
661   std::vector <DominatorTree::UpdateType> Updates;
662   if (DDT && !ReplaceEntryBB) {
663     Updates.reserve(1 +
664                     (2 * std::distance(pred_begin(PredBB), pred_end(PredBB))));
665     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
666     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
667       Updates.push_back({DominatorTree::Delete, *I, PredBB});
668       // This predecessor of PredBB may already have DestBB as a successor.
669       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
670         Updates.push_back({DominatorTree::Insert, *I, DestBB});
671     }
672   }
673 
674   // Zap anything that took the address of DestBB.  Not doing this will give the
675   // address an invalid value.
676   if (DestBB->hasAddressTaken()) {
677     BlockAddress *BA = BlockAddress::get(DestBB);
678     Constant *Replacement =
679       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
680     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
681                                                      BA->getType()));
682     BA->destroyConstant();
683   }
684 
685   // Anything that branched to PredBB now branches to DestBB.
686   PredBB->replaceAllUsesWith(DestBB);
687 
688   // Splice all the instructions from PredBB to DestBB.
689   PredBB->getTerminator()->eraseFromParent();
690   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
691 
692   // If the PredBB is the entry block of the function, move DestBB up to
693   // become the entry block after we erase PredBB.
694   if (ReplaceEntryBB)
695     DestBB->moveAfter(PredBB);
696 
697   if (DT) {
698     // For some irreducible CFG we end up having forward-unreachable blocks
699     // so check if getNode returns a valid node before updating the domtree.
700     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
701       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
702       DT->changeImmediateDominator(DestBB, PredBBIDom);
703       DT->eraseNode(PredBB);
704     }
705   }
706 
707   if (DDT) {
708     DDT->deleteBB(PredBB); // Deferred deletion of BB.
709     if (ReplaceEntryBB)
710       // The entry block was removed and there is no external interface for the
711       // dominator tree to be notified of this change. In this corner-case we
712       // recalculate the entire tree.
713       DDT->recalculate(*(DestBB->getParent()));
714     else
715       DDT->applyUpdates(Updates);
716   } else {
717     PredBB->eraseFromParent(); // Nuke BB.
718   }
719 }
720 
721 /// CanMergeValues - Return true if we can choose one of these values to use
722 /// in place of the other. Note that we will always choose the non-undef
723 /// value to keep.
724 static bool CanMergeValues(Value *First, Value *Second) {
725   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
726 }
727 
728 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
729 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
730 ///
731 /// Assumption: Succ is the single successor for BB.
732 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
733   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
734 
735   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
736         << Succ->getName() << "\n");
737   // Shortcut, if there is only a single predecessor it must be BB and merging
738   // is always safe
739   if (Succ->getSinglePredecessor()) return true;
740 
741   // Make a list of the predecessors of BB
742   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
743 
744   // Look at all the phi nodes in Succ, to see if they present a conflict when
745   // merging these blocks
746   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
747     PHINode *PN = cast<PHINode>(I);
748 
749     // If the incoming value from BB is again a PHINode in
750     // BB which has the same incoming value for *PI as PN does, we can
751     // merge the phi nodes and then the blocks can still be merged
752     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
753     if (BBPN && BBPN->getParent() == BB) {
754       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
755         BasicBlock *IBB = PN->getIncomingBlock(PI);
756         if (BBPreds.count(IBB) &&
757             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
758                             PN->getIncomingValue(PI))) {
759           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
760                 << Succ->getName() << " is conflicting with "
761                 << BBPN->getName() << " with regard to common predecessor "
762                 << IBB->getName() << "\n");
763           return false;
764         }
765       }
766     } else {
767       Value* Val = PN->getIncomingValueForBlock(BB);
768       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
769         // See if the incoming value for the common predecessor is equal to the
770         // one for BB, in which case this phi node will not prevent the merging
771         // of the block.
772         BasicBlock *IBB = PN->getIncomingBlock(PI);
773         if (BBPreds.count(IBB) &&
774             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
775           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
776                 << Succ->getName() << " is conflicting with regard to common "
777                 << "predecessor " << IBB->getName() << "\n");
778           return false;
779         }
780       }
781     }
782   }
783 
784   return true;
785 }
786 
787 using PredBlockVector = SmallVector<BasicBlock *, 16>;
788 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
789 
790 /// \brief Determines the value to use as the phi node input for a block.
791 ///
792 /// Select between \p OldVal any value that we know flows from \p BB
793 /// to a particular phi on the basis of which one (if either) is not
794 /// undef. Update IncomingValues based on the selected value.
795 ///
796 /// \param OldVal The value we are considering selecting.
797 /// \param BB The block that the value flows in from.
798 /// \param IncomingValues A map from block-to-value for other phi inputs
799 /// that we have examined.
800 ///
801 /// \returns the selected value.
802 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
803                                           IncomingValueMap &IncomingValues) {
804   if (!isa<UndefValue>(OldVal)) {
805     assert((!IncomingValues.count(BB) ||
806             IncomingValues.find(BB)->second == OldVal) &&
807            "Expected OldVal to match incoming value from BB!");
808 
809     IncomingValues.insert(std::make_pair(BB, OldVal));
810     return OldVal;
811   }
812 
813   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
814   if (It != IncomingValues.end()) return It->second;
815 
816   return OldVal;
817 }
818 
819 /// \brief Create a map from block to value for the operands of a
820 /// given phi.
821 ///
822 /// Create a map from block to value for each non-undef value flowing
823 /// into \p PN.
824 ///
825 /// \param PN The phi we are collecting the map for.
826 /// \param IncomingValues [out] The map from block to value for this phi.
827 static void gatherIncomingValuesToPhi(PHINode *PN,
828                                       IncomingValueMap &IncomingValues) {
829   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
830     BasicBlock *BB = PN->getIncomingBlock(i);
831     Value *V = PN->getIncomingValue(i);
832 
833     if (!isa<UndefValue>(V))
834       IncomingValues.insert(std::make_pair(BB, V));
835   }
836 }
837 
838 /// \brief Replace the incoming undef values to a phi with the values
839 /// from a block-to-value map.
840 ///
841 /// \param PN The phi we are replacing the undefs in.
842 /// \param IncomingValues A map from block to value.
843 static void replaceUndefValuesInPhi(PHINode *PN,
844                                     const IncomingValueMap &IncomingValues) {
845   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
846     Value *V = PN->getIncomingValue(i);
847 
848     if (!isa<UndefValue>(V)) continue;
849 
850     BasicBlock *BB = PN->getIncomingBlock(i);
851     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
852     if (It == IncomingValues.end()) continue;
853 
854     PN->setIncomingValue(i, It->second);
855   }
856 }
857 
858 /// \brief Replace a value flowing from a block to a phi with
859 /// potentially multiple instances of that value flowing from the
860 /// block's predecessors to the phi.
861 ///
862 /// \param BB The block with the value flowing into the phi.
863 /// \param BBPreds The predecessors of BB.
864 /// \param PN The phi that we are updating.
865 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
866                                                 const PredBlockVector &BBPreds,
867                                                 PHINode *PN) {
868   Value *OldVal = PN->removeIncomingValue(BB, false);
869   assert(OldVal && "No entry in PHI for Pred BB!");
870 
871   IncomingValueMap IncomingValues;
872 
873   // We are merging two blocks - BB, and the block containing PN - and
874   // as a result we need to redirect edges from the predecessors of BB
875   // to go to the block containing PN, and update PN
876   // accordingly. Since we allow merging blocks in the case where the
877   // predecessor and successor blocks both share some predecessors,
878   // and where some of those common predecessors might have undef
879   // values flowing into PN, we want to rewrite those values to be
880   // consistent with the non-undef values.
881 
882   gatherIncomingValuesToPhi(PN, IncomingValues);
883 
884   // If this incoming value is one of the PHI nodes in BB, the new entries
885   // in the PHI node are the entries from the old PHI.
886   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
887     PHINode *OldValPN = cast<PHINode>(OldVal);
888     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
889       // Note that, since we are merging phi nodes and BB and Succ might
890       // have common predecessors, we could end up with a phi node with
891       // identical incoming branches. This will be cleaned up later (and
892       // will trigger asserts if we try to clean it up now, without also
893       // simplifying the corresponding conditional branch).
894       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
895       Value *PredVal = OldValPN->getIncomingValue(i);
896       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
897                                                     IncomingValues);
898 
899       // And add a new incoming value for this predecessor for the
900       // newly retargeted branch.
901       PN->addIncoming(Selected, PredBB);
902     }
903   } else {
904     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
905       // Update existing incoming values in PN for this
906       // predecessor of BB.
907       BasicBlock *PredBB = BBPreds[i];
908       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
909                                                     IncomingValues);
910 
911       // And add a new incoming value for this predecessor for the
912       // newly retargeted branch.
913       PN->addIncoming(Selected, PredBB);
914     }
915   }
916 
917   replaceUndefValuesInPhi(PN, IncomingValues);
918 }
919 
920 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
921 /// unconditional branch, and contains no instructions other than PHI nodes,
922 /// potential side-effect free intrinsics and the branch.  If possible,
923 /// eliminate BB by rewriting all the predecessors to branch to the successor
924 /// block and return true.  If we can't transform, return false.
925 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
926                                                    DeferredDominance *DDT) {
927   assert(BB != &BB->getParent()->getEntryBlock() &&
928          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
929 
930   // We can't eliminate infinite loops.
931   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
932   if (BB == Succ) return false;
933 
934   // Check to see if merging these blocks would cause conflicts for any of the
935   // phi nodes in BB or Succ. If not, we can safely merge.
936   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
937 
938   // Check for cases where Succ has multiple predecessors and a PHI node in BB
939   // has uses which will not disappear when the PHI nodes are merged.  It is
940   // possible to handle such cases, but difficult: it requires checking whether
941   // BB dominates Succ, which is non-trivial to calculate in the case where
942   // Succ has multiple predecessors.  Also, it requires checking whether
943   // constructing the necessary self-referential PHI node doesn't introduce any
944   // conflicts; this isn't too difficult, but the previous code for doing this
945   // was incorrect.
946   //
947   // Note that if this check finds a live use, BB dominates Succ, so BB is
948   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
949   // folding the branch isn't profitable in that case anyway.
950   if (!Succ->getSinglePredecessor()) {
951     BasicBlock::iterator BBI = BB->begin();
952     while (isa<PHINode>(*BBI)) {
953       for (Use &U : BBI->uses()) {
954         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
955           if (PN->getIncomingBlock(U) != BB)
956             return false;
957         } else {
958           return false;
959         }
960       }
961       ++BBI;
962     }
963   }
964 
965   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
966 
967   std::vector<DominatorTree::UpdateType> Updates;
968   if (DDT) {
969     Updates.reserve(1 + (2 * std::distance(pred_begin(BB), pred_end(BB))));
970     Updates.push_back({DominatorTree::Delete, BB, Succ});
971     // All predecessors of BB will be moved to Succ.
972     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
973       Updates.push_back({DominatorTree::Delete, *I, BB});
974       // This predecessor of BB may already have Succ as a successor.
975       if (llvm::find(successors(*I), Succ) == succ_end(*I))
976         Updates.push_back({DominatorTree::Insert, *I, Succ});
977     }
978   }
979 
980   if (isa<PHINode>(Succ->begin())) {
981     // If there is more than one pred of succ, and there are PHI nodes in
982     // the successor, then we need to add incoming edges for the PHI nodes
983     //
984     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
985 
986     // Loop over all of the PHI nodes in the successor of BB.
987     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
988       PHINode *PN = cast<PHINode>(I);
989 
990       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
991     }
992   }
993 
994   if (Succ->getSinglePredecessor()) {
995     // BB is the only predecessor of Succ, so Succ will end up with exactly
996     // the same predecessors BB had.
997 
998     // Copy over any phi, debug or lifetime instruction.
999     BB->getTerminator()->eraseFromParent();
1000     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1001                                BB->getInstList());
1002   } else {
1003     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1004       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1005       assert(PN->use_empty() && "There shouldn't be any uses here!");
1006       PN->eraseFromParent();
1007     }
1008   }
1009 
1010   // If the unconditional branch we replaced contains llvm.loop metadata, we
1011   // add the metadata to the branch instructions in the predecessors.
1012   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1013   Instruction *TI = BB->getTerminator();
1014   if (TI)
1015     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1016       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1017         BasicBlock *Pred = *PI;
1018         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1019       }
1020 
1021   // Everything that jumped to BB now goes to Succ.
1022   BB->replaceAllUsesWith(Succ);
1023   if (!Succ->hasName()) Succ->takeName(BB);
1024 
1025   if (DDT) {
1026     DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1027     DDT->applyUpdates(Updates);
1028   } else {
1029     BB->eraseFromParent(); // Delete the old basic block.
1030   }
1031   return true;
1032 }
1033 
1034 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1035 /// nodes in this block. This doesn't try to be clever about PHI nodes
1036 /// which differ only in the order of the incoming values, but instcombine
1037 /// orders them so it usually won't matter.
1038 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1039   // This implementation doesn't currently consider undef operands
1040   // specially. Theoretically, two phis which are identical except for
1041   // one having an undef where the other doesn't could be collapsed.
1042 
1043   struct PHIDenseMapInfo {
1044     static PHINode *getEmptyKey() {
1045       return DenseMapInfo<PHINode *>::getEmptyKey();
1046     }
1047 
1048     static PHINode *getTombstoneKey() {
1049       return DenseMapInfo<PHINode *>::getTombstoneKey();
1050     }
1051 
1052     static unsigned getHashValue(PHINode *PN) {
1053       // Compute a hash value on the operands. Instcombine will likely have
1054       // sorted them, which helps expose duplicates, but we have to check all
1055       // the operands to be safe in case instcombine hasn't run.
1056       return static_cast<unsigned>(hash_combine(
1057           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1058           hash_combine_range(PN->block_begin(), PN->block_end())));
1059     }
1060 
1061     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1062       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1063           RHS == getEmptyKey() || RHS == getTombstoneKey())
1064         return LHS == RHS;
1065       return LHS->isIdenticalTo(RHS);
1066     }
1067   };
1068 
1069   // Set of unique PHINodes.
1070   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1071 
1072   // Examine each PHI.
1073   bool Changed = false;
1074   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1075     auto Inserted = PHISet.insert(PN);
1076     if (!Inserted.second) {
1077       // A duplicate. Replace this PHI with its duplicate.
1078       PN->replaceAllUsesWith(*Inserted.first);
1079       PN->eraseFromParent();
1080       Changed = true;
1081 
1082       // The RAUW can change PHIs that we already visited. Start over from the
1083       // beginning.
1084       PHISet.clear();
1085       I = BB->begin();
1086     }
1087   }
1088 
1089   return Changed;
1090 }
1091 
1092 /// enforceKnownAlignment - If the specified pointer points to an object that
1093 /// we control, modify the object's alignment to PrefAlign. This isn't
1094 /// often possible though. If alignment is important, a more reliable approach
1095 /// is to simply align all global variables and allocation instructions to
1096 /// their preferred alignment from the beginning.
1097 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1098                                       unsigned PrefAlign,
1099                                       const DataLayout &DL) {
1100   assert(PrefAlign > Align);
1101 
1102   V = V->stripPointerCasts();
1103 
1104   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1105     // TODO: ideally, computeKnownBits ought to have used
1106     // AllocaInst::getAlignment() in its computation already, making
1107     // the below max redundant. But, as it turns out,
1108     // stripPointerCasts recurses through infinite layers of bitcasts,
1109     // while computeKnownBits is not allowed to traverse more than 6
1110     // levels.
1111     Align = std::max(AI->getAlignment(), Align);
1112     if (PrefAlign <= Align)
1113       return Align;
1114 
1115     // If the preferred alignment is greater than the natural stack alignment
1116     // then don't round up. This avoids dynamic stack realignment.
1117     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1118       return Align;
1119     AI->setAlignment(PrefAlign);
1120     return PrefAlign;
1121   }
1122 
1123   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1124     // TODO: as above, this shouldn't be necessary.
1125     Align = std::max(GO->getAlignment(), Align);
1126     if (PrefAlign <= Align)
1127       return Align;
1128 
1129     // If there is a large requested alignment and we can, bump up the alignment
1130     // of the global.  If the memory we set aside for the global may not be the
1131     // memory used by the final program then it is impossible for us to reliably
1132     // enforce the preferred alignment.
1133     if (!GO->canIncreaseAlignment())
1134       return Align;
1135 
1136     GO->setAlignment(PrefAlign);
1137     return PrefAlign;
1138   }
1139 
1140   return Align;
1141 }
1142 
1143 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1144                                           const DataLayout &DL,
1145                                           const Instruction *CxtI,
1146                                           AssumptionCache *AC,
1147                                           const DominatorTree *DT) {
1148   assert(V->getType()->isPointerTy() &&
1149          "getOrEnforceKnownAlignment expects a pointer!");
1150 
1151   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1152   unsigned TrailZ = Known.countMinTrailingZeros();
1153 
1154   // Avoid trouble with ridiculously large TrailZ values, such as
1155   // those computed from a null pointer.
1156   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1157 
1158   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1159 
1160   // LLVM doesn't support alignments larger than this currently.
1161   Align = std::min(Align, +Value::MaximumAlignment);
1162 
1163   if (PrefAlign > Align)
1164     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1165 
1166   // We don't need to make any adjustment.
1167   return Align;
1168 }
1169 
1170 ///===---------------------------------------------------------------------===//
1171 ///  Dbg Intrinsic utilities
1172 ///
1173 
1174 /// See if there is a dbg.value intrinsic for DIVar before I.
1175 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1176                               Instruction *I) {
1177   // Since we can't guarantee that the original dbg.declare instrinsic
1178   // is removed by LowerDbgDeclare(), we need to make sure that we are
1179   // not inserting the same dbg.value intrinsic over and over.
1180   BasicBlock::InstListType::iterator PrevI(I);
1181   if (PrevI != I->getParent()->getInstList().begin()) {
1182     --PrevI;
1183     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1184       if (DVI->getValue() == I->getOperand(0) &&
1185           DVI->getVariable() == DIVar &&
1186           DVI->getExpression() == DIExpr)
1187         return true;
1188   }
1189   return false;
1190 }
1191 
1192 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1193 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1194                              DIExpression *DIExpr,
1195                              PHINode *APN) {
1196   // Since we can't guarantee that the original dbg.declare instrinsic
1197   // is removed by LowerDbgDeclare(), we need to make sure that we are
1198   // not inserting the same dbg.value intrinsic over and over.
1199   SmallVector<DbgValueInst *, 1> DbgValues;
1200   findDbgValues(DbgValues, APN);
1201   for (auto *DVI : DbgValues) {
1202     assert(DVI->getValue() == APN);
1203     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1204       return true;
1205   }
1206   return false;
1207 }
1208 
1209 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1210 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1211 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1212                                            StoreInst *SI, DIBuilder &Builder) {
1213   assert(DII->isAddressOfVariable());
1214   auto *DIVar = DII->getVariable();
1215   assert(DIVar && "Missing variable");
1216   auto *DIExpr = DII->getExpression();
1217   Value *DV = SI->getOperand(0);
1218 
1219   // If an argument is zero extended then use argument directly. The ZExt
1220   // may be zapped by an optimization pass in future.
1221   Argument *ExtendedArg = nullptr;
1222   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1223     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1224   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1225     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1226   if (ExtendedArg) {
1227     // If this DII was already describing only a fragment of a variable, ensure
1228     // that fragment is appropriately narrowed here.
1229     // But if a fragment wasn't used, describe the value as the original
1230     // argument (rather than the zext or sext) so that it remains described even
1231     // if the sext/zext is optimized away. This widens the variable description,
1232     // leaving it up to the consumer to know how the smaller value may be
1233     // represented in a larger register.
1234     if (auto Fragment = DIExpr->getFragmentInfo()) {
1235       unsigned FragmentOffset = Fragment->OffsetInBits;
1236       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1237                                    DIExpr->elements_end() - 3);
1238       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1239       Ops.push_back(FragmentOffset);
1240       const DataLayout &DL = DII->getModule()->getDataLayout();
1241       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1242       DIExpr = Builder.createExpression(Ops);
1243     }
1244     DV = ExtendedArg;
1245   }
1246   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1247     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1248                                     SI);
1249 }
1250 
1251 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1252 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1253 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1254                                            LoadInst *LI, DIBuilder &Builder) {
1255   auto *DIVar = DII->getVariable();
1256   auto *DIExpr = DII->getExpression();
1257   assert(DIVar && "Missing variable");
1258 
1259   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1260     return;
1261 
1262   // We are now tracking the loaded value instead of the address. In the
1263   // future if multi-location support is added to the IR, it might be
1264   // preferable to keep tracking both the loaded value and the original
1265   // address in case the alloca can not be elided.
1266   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1267       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1268   DbgValue->insertAfter(LI);
1269 }
1270 
1271 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1272 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1273 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1274                                            PHINode *APN, DIBuilder &Builder) {
1275   auto *DIVar = DII->getVariable();
1276   auto *DIExpr = DII->getExpression();
1277   assert(DIVar && "Missing variable");
1278 
1279   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1280     return;
1281 
1282   BasicBlock *BB = APN->getParent();
1283   auto InsertionPt = BB->getFirstInsertionPt();
1284 
1285   // The block may be a catchswitch block, which does not have a valid
1286   // insertion point.
1287   // FIXME: Insert dbg.value markers in the successors when appropriate.
1288   if (InsertionPt != BB->end())
1289     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1290                                     &*InsertionPt);
1291 }
1292 
1293 /// Determine whether this alloca is either a VLA or an array.
1294 static bool isArray(AllocaInst *AI) {
1295   return AI->isArrayAllocation() ||
1296     AI->getType()->getElementType()->isArrayTy();
1297 }
1298 
1299 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1300 /// of llvm.dbg.value intrinsics.
1301 bool llvm::LowerDbgDeclare(Function &F) {
1302   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1303   SmallVector<DbgDeclareInst *, 4> Dbgs;
1304   for (auto &FI : F)
1305     for (Instruction &BI : FI)
1306       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1307         Dbgs.push_back(DDI);
1308 
1309   if (Dbgs.empty())
1310     return false;
1311 
1312   for (auto &I : Dbgs) {
1313     DbgDeclareInst *DDI = I;
1314     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1315     // If this is an alloca for a scalar variable, insert a dbg.value
1316     // at each load and store to the alloca and erase the dbg.declare.
1317     // The dbg.values allow tracking a variable even if it is not
1318     // stored on the stack, while the dbg.declare can only describe
1319     // the stack slot (and at a lexical-scope granularity). Later
1320     // passes will attempt to elide the stack slot.
1321     if (AI && !isArray(AI)) {
1322       for (auto &AIUse : AI->uses()) {
1323         User *U = AIUse.getUser();
1324         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1325           if (AIUse.getOperandNo() == 1)
1326             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1327         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1328           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1329         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1330           // This is a call by-value or some other instruction that
1331           // takes a pointer to the variable. Insert a *value*
1332           // intrinsic that describes the alloca.
1333           DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1334                                       DDI->getExpression(), DDI->getDebugLoc(),
1335                                       CI);
1336         }
1337       }
1338       DDI->eraseFromParent();
1339     }
1340   }
1341   return true;
1342 }
1343 
1344 /// Finds all intrinsics declaring local variables as living in the memory that
1345 /// 'V' points to. This may include a mix of dbg.declare and
1346 /// dbg.addr intrinsics.
1347 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1348   auto *L = LocalAsMetadata::getIfExists(V);
1349   if (!L)
1350     return {};
1351   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1352   if (!MDV)
1353     return {};
1354 
1355   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1356   for (User *U : MDV->users()) {
1357     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1358       if (DII->isAddressOfVariable())
1359         Declares.push_back(DII);
1360   }
1361 
1362   return Declares;
1363 }
1364 
1365 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1366   if (auto *L = LocalAsMetadata::getIfExists(V))
1367     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1368       for (User *U : MDV->users())
1369         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1370           DbgValues.push_back(DVI);
1371 }
1372 
1373 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1374                         Value *V) {
1375   if (auto *L = LocalAsMetadata::getIfExists(V))
1376     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1377       for (User *U : MDV->users())
1378         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1379           DbgUsers.push_back(DII);
1380 }
1381 
1382 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1383                              Instruction *InsertBefore, DIBuilder &Builder,
1384                              bool DerefBefore, int Offset, bool DerefAfter) {
1385   auto DbgAddrs = FindDbgAddrUses(Address);
1386   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1387     DebugLoc Loc = DII->getDebugLoc();
1388     auto *DIVar = DII->getVariable();
1389     auto *DIExpr = DII->getExpression();
1390     assert(DIVar && "Missing variable");
1391     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1392     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1393     // llvm.dbg.declare.
1394     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1395     if (DII == InsertBefore)
1396       InsertBefore = &*std::next(InsertBefore->getIterator());
1397     DII->eraseFromParent();
1398   }
1399   return !DbgAddrs.empty();
1400 }
1401 
1402 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1403                                       DIBuilder &Builder, bool DerefBefore,
1404                                       int Offset, bool DerefAfter) {
1405   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1406                            DerefBefore, Offset, DerefAfter);
1407 }
1408 
1409 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1410                                         DIBuilder &Builder, int Offset) {
1411   DebugLoc Loc = DVI->getDebugLoc();
1412   auto *DIVar = DVI->getVariable();
1413   auto *DIExpr = DVI->getExpression();
1414   assert(DIVar && "Missing variable");
1415 
1416   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1417   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1418   // it and give up.
1419   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1420       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1421     return;
1422 
1423   // Insert the offset immediately after the first deref.
1424   // We could just change the offset argument of dbg.value, but it's unsigned...
1425   if (Offset) {
1426     SmallVector<uint64_t, 4> Ops;
1427     Ops.push_back(dwarf::DW_OP_deref);
1428     DIExpression::appendOffset(Ops, Offset);
1429     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1430     DIExpr = Builder.createExpression(Ops);
1431   }
1432 
1433   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1434   DVI->eraseFromParent();
1435 }
1436 
1437 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1438                                     DIBuilder &Builder, int Offset) {
1439   if (auto *L = LocalAsMetadata::getIfExists(AI))
1440     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1441       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1442         Use &U = *UI++;
1443         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1444           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1445       }
1446 }
1447 
1448 void llvm::salvageDebugInfo(Instruction &I) {
1449   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1450   findDbgUsers(DbgUsers, &I);
1451   if (DbgUsers.empty())
1452     return;
1453 
1454   auto &M = *I.getModule();
1455 
1456   auto wrapMD = [&](Value *V) {
1457     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1458   };
1459 
1460   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1461     auto *DIExpr = DII->getExpression();
1462     DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
1463                                    DIExpression::NoDeref,
1464                                    DIExpression::WithStackValue);
1465     DII->setOperand(0, wrapMD(I.getOperand(0)));
1466     DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1467     DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1468   };
1469 
1470   if (isa<BitCastInst>(&I) || isa<IntToPtrInst>(&I)) {
1471     // Bitcasts are entirely irrelevant for debug info. Rewrite dbg.value,
1472     // dbg.addr, and dbg.declare to use the cast's source.
1473     for (auto *DII : DbgUsers) {
1474       DII->setOperand(0, wrapMD(I.getOperand(0)));
1475       DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1476     }
1477   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1478     unsigned BitWidth =
1479         M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
1480     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1481     // arithmetic to compute the variable's *value* in the DIExpression, we
1482     // need to mark the expression with a DW_OP_stack_value.
1483     APInt Offset(BitWidth, 0);
1484     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1485       for (auto *DII : DbgUsers)
1486         applyOffset(DII, Offset.getSExtValue());
1487   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1488     if (BI->getOpcode() == Instruction::Add)
1489       if (auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)))
1490         if (ConstInt->getBitWidth() <= 64)
1491           for (auto *DII : DbgUsers)
1492             applyOffset(DII, ConstInt->getSExtValue());
1493   } else if (isa<LoadInst>(&I)) {
1494     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1495     for (auto *DII : DbgUsers) {
1496       // Rewrite the load into DW_OP_deref.
1497       auto *DIExpr = DII->getExpression();
1498       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1499       DII->setOperand(0, AddrMD);
1500       DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1501       DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1502     }
1503   }
1504 }
1505 
1506 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1507   unsigned NumDeadInst = 0;
1508   // Delete the instructions backwards, as it has a reduced likelihood of
1509   // having to update as many def-use and use-def chains.
1510   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1511   while (EndInst != &BB->front()) {
1512     // Delete the next to last instruction.
1513     Instruction *Inst = &*--EndInst->getIterator();
1514     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1515       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1516     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1517       EndInst = Inst;
1518       continue;
1519     }
1520     if (!isa<DbgInfoIntrinsic>(Inst))
1521       ++NumDeadInst;
1522     Inst->eraseFromParent();
1523   }
1524   return NumDeadInst;
1525 }
1526 
1527 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1528                                    bool PreserveLCSSA, DeferredDominance *DDT) {
1529   BasicBlock *BB = I->getParent();
1530   std::vector <DominatorTree::UpdateType> Updates;
1531 
1532   // Loop over all of the successors, removing BB's entry from any PHI
1533   // nodes.
1534   if (DDT)
1535     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1536   for (BasicBlock *Successor : successors(BB)) {
1537     Successor->removePredecessor(BB, PreserveLCSSA);
1538     if (DDT)
1539       Updates.push_back({DominatorTree::Delete, BB, Successor});
1540   }
1541   // Insert a call to llvm.trap right before this.  This turns the undefined
1542   // behavior into a hard fail instead of falling through into random code.
1543   if (UseLLVMTrap) {
1544     Function *TrapFn =
1545       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1546     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1547     CallTrap->setDebugLoc(I->getDebugLoc());
1548   }
1549   new UnreachableInst(I->getContext(), I);
1550 
1551   // All instructions after this are dead.
1552   unsigned NumInstrsRemoved = 0;
1553   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1554   while (BBI != BBE) {
1555     if (!BBI->use_empty())
1556       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1557     BB->getInstList().erase(BBI++);
1558     ++NumInstrsRemoved;
1559   }
1560   if (DDT)
1561     DDT->applyUpdates(Updates);
1562   return NumInstrsRemoved;
1563 }
1564 
1565 /// changeToCall - Convert the specified invoke into a normal call.
1566 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1567   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1568   SmallVector<OperandBundleDef, 1> OpBundles;
1569   II->getOperandBundlesAsDefs(OpBundles);
1570   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1571                                        "", II);
1572   NewCall->takeName(II);
1573   NewCall->setCallingConv(II->getCallingConv());
1574   NewCall->setAttributes(II->getAttributes());
1575   NewCall->setDebugLoc(II->getDebugLoc());
1576   II->replaceAllUsesWith(NewCall);
1577 
1578   // Follow the call by a branch to the normal destination.
1579   BasicBlock *NormalDestBB = II->getNormalDest();
1580   BranchInst::Create(NormalDestBB, II);
1581 
1582   // Update PHI nodes in the unwind destination
1583   BasicBlock *BB = II->getParent();
1584   BasicBlock *UnwindDestBB = II->getUnwindDest();
1585   UnwindDestBB->removePredecessor(BB);
1586   II->eraseFromParent();
1587   if (DDT)
1588     DDT->deleteEdge(BB, UnwindDestBB);
1589 }
1590 
1591 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1592                                                    BasicBlock *UnwindEdge) {
1593   BasicBlock *BB = CI->getParent();
1594 
1595   // Convert this function call into an invoke instruction.  First, split the
1596   // basic block.
1597   BasicBlock *Split =
1598       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1599 
1600   // Delete the unconditional branch inserted by splitBasicBlock
1601   BB->getInstList().pop_back();
1602 
1603   // Create the new invoke instruction.
1604   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1605   SmallVector<OperandBundleDef, 1> OpBundles;
1606 
1607   CI->getOperandBundlesAsDefs(OpBundles);
1608 
1609   // Note: we're round tripping operand bundles through memory here, and that
1610   // can potentially be avoided with a cleverer API design that we do not have
1611   // as of this time.
1612 
1613   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1614                                       InvokeArgs, OpBundles, CI->getName(), BB);
1615   II->setDebugLoc(CI->getDebugLoc());
1616   II->setCallingConv(CI->getCallingConv());
1617   II->setAttributes(CI->getAttributes());
1618 
1619   // Make sure that anything using the call now uses the invoke!  This also
1620   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1621   CI->replaceAllUsesWith(II);
1622 
1623   // Delete the original call
1624   Split->getInstList().pop_front();
1625   return Split;
1626 }
1627 
1628 static bool markAliveBlocks(Function &F,
1629                             SmallPtrSetImpl<BasicBlock*> &Reachable,
1630                             DeferredDominance *DDT = nullptr) {
1631   SmallVector<BasicBlock*, 128> Worklist;
1632   BasicBlock *BB = &F.front();
1633   Worklist.push_back(BB);
1634   Reachable.insert(BB);
1635   bool Changed = false;
1636   do {
1637     BB = Worklist.pop_back_val();
1638 
1639     // Do a quick scan of the basic block, turning any obviously unreachable
1640     // instructions into LLVM unreachable insts.  The instruction combining pass
1641     // canonicalizes unreachable insts into stores to null or undef.
1642     for (Instruction &I : *BB) {
1643       // Assumptions that are known to be false are equivalent to unreachable.
1644       // Also, if the condition is undefined, then we make the choice most
1645       // beneficial to the optimizer, and choose that to also be unreachable.
1646       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1647         if (II->getIntrinsicID() == Intrinsic::assume) {
1648           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1649             // Don't insert a call to llvm.trap right before the unreachable.
1650             changeToUnreachable(II, false, false, DDT);
1651             Changed = true;
1652             break;
1653           }
1654         }
1655 
1656         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1657           // A call to the guard intrinsic bails out of the current compilation
1658           // unit if the predicate passed to it is false.  If the predicate is a
1659           // constant false, then we know the guard will bail out of the current
1660           // compile unconditionally, so all code following it is dead.
1661           //
1662           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1663           // guards to treat `undef` as `false` since a guard on `undef` can
1664           // still be useful for widening.
1665           if (match(II->getArgOperand(0), m_Zero()))
1666             if (!isa<UnreachableInst>(II->getNextNode())) {
1667               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1668                                   false, DDT);
1669               Changed = true;
1670               break;
1671             }
1672         }
1673       }
1674 
1675       if (auto *CI = dyn_cast<CallInst>(&I)) {
1676         Value *Callee = CI->getCalledValue();
1677         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1678           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
1679           Changed = true;
1680           break;
1681         }
1682         if (CI->doesNotReturn()) {
1683           // If we found a call to a no-return function, insert an unreachable
1684           // instruction after it.  Make sure there isn't *already* one there
1685           // though.
1686           if (!isa<UnreachableInst>(CI->getNextNode())) {
1687             // Don't insert a call to llvm.trap right before the unreachable.
1688             changeToUnreachable(CI->getNextNode(), false, false, DDT);
1689             Changed = true;
1690           }
1691           break;
1692         }
1693       }
1694 
1695       // Store to undef and store to null are undefined and used to signal that
1696       // they should be changed to unreachable by passes that can't modify the
1697       // CFG.
1698       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1699         // Don't touch volatile stores.
1700         if (SI->isVolatile()) continue;
1701 
1702         Value *Ptr = SI->getOperand(1);
1703 
1704         if (isa<UndefValue>(Ptr) ||
1705             (isa<ConstantPointerNull>(Ptr) &&
1706              SI->getPointerAddressSpace() == 0)) {
1707           changeToUnreachable(SI, true, false, DDT);
1708           Changed = true;
1709           break;
1710         }
1711       }
1712     }
1713 
1714     TerminatorInst *Terminator = BB->getTerminator();
1715     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1716       // Turn invokes that call 'nounwind' functions into ordinary calls.
1717       Value *Callee = II->getCalledValue();
1718       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1719         changeToUnreachable(II, true, false, DDT);
1720         Changed = true;
1721       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1722         if (II->use_empty() && II->onlyReadsMemory()) {
1723           // jump to the normal destination branch.
1724           BasicBlock *NormalDestBB = II->getNormalDest();
1725           BasicBlock *UnwindDestBB = II->getUnwindDest();
1726           BranchInst::Create(NormalDestBB, II);
1727           UnwindDestBB->removePredecessor(II->getParent());
1728           II->eraseFromParent();
1729           if (DDT)
1730             DDT->deleteEdge(BB, UnwindDestBB);
1731         } else
1732           changeToCall(II, DDT);
1733         Changed = true;
1734       }
1735     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1736       // Remove catchpads which cannot be reached.
1737       struct CatchPadDenseMapInfo {
1738         static CatchPadInst *getEmptyKey() {
1739           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1740         }
1741 
1742         static CatchPadInst *getTombstoneKey() {
1743           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1744         }
1745 
1746         static unsigned getHashValue(CatchPadInst *CatchPad) {
1747           return static_cast<unsigned>(hash_combine_range(
1748               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1749         }
1750 
1751         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1752           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1753               RHS == getEmptyKey() || RHS == getTombstoneKey())
1754             return LHS == RHS;
1755           return LHS->isIdenticalTo(RHS);
1756         }
1757       };
1758 
1759       // Set of unique CatchPads.
1760       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1761                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1762           HandlerSet;
1763       detail::DenseSetEmpty Empty;
1764       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1765                                              E = CatchSwitch->handler_end();
1766            I != E; ++I) {
1767         BasicBlock *HandlerBB = *I;
1768         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1769         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1770           CatchSwitch->removeHandler(I);
1771           --I;
1772           --E;
1773           Changed = true;
1774         }
1775       }
1776     }
1777 
1778     Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
1779     for (BasicBlock *Successor : successors(BB))
1780       if (Reachable.insert(Successor).second)
1781         Worklist.push_back(Successor);
1782   } while (!Worklist.empty());
1783   return Changed;
1784 }
1785 
1786 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
1787   TerminatorInst *TI = BB->getTerminator();
1788 
1789   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1790     changeToCall(II, DDT);
1791     return;
1792   }
1793 
1794   TerminatorInst *NewTI;
1795   BasicBlock *UnwindDest;
1796 
1797   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1798     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1799     UnwindDest = CRI->getUnwindDest();
1800   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1801     auto *NewCatchSwitch = CatchSwitchInst::Create(
1802         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1803         CatchSwitch->getName(), CatchSwitch);
1804     for (BasicBlock *PadBB : CatchSwitch->handlers())
1805       NewCatchSwitch->addHandler(PadBB);
1806 
1807     NewTI = NewCatchSwitch;
1808     UnwindDest = CatchSwitch->getUnwindDest();
1809   } else {
1810     llvm_unreachable("Could not find unwind successor");
1811   }
1812 
1813   NewTI->takeName(TI);
1814   NewTI->setDebugLoc(TI->getDebugLoc());
1815   UnwindDest->removePredecessor(BB);
1816   TI->replaceAllUsesWith(NewTI);
1817   TI->eraseFromParent();
1818   if (DDT)
1819     DDT->deleteEdge(BB, UnwindDest);
1820 }
1821 
1822 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1823 /// if they are in a dead cycle.  Return true if a change was made, false
1824 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1825 /// after modifying the CFG.
1826 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
1827                                    DeferredDominance *DDT) {
1828   SmallPtrSet<BasicBlock*, 16> Reachable;
1829   bool Changed = markAliveBlocks(F, Reachable, DDT);
1830 
1831   // If there are unreachable blocks in the CFG...
1832   if (Reachable.size() == F.size())
1833     return Changed;
1834 
1835   assert(Reachable.size() < F.size());
1836   NumRemoved += F.size()-Reachable.size();
1837 
1838   // Loop over all of the basic blocks that are not reachable, dropping all of
1839   // their internal references. Update DDT and LVI if available.
1840   std::vector <DominatorTree::UpdateType> Updates;
1841   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
1842     auto *BB = &*I;
1843     if (Reachable.count(BB))
1844       continue;
1845     for (BasicBlock *Successor : successors(BB)) {
1846       if (Reachable.count(Successor))
1847         Successor->removePredecessor(BB);
1848       if (DDT)
1849         Updates.push_back({DominatorTree::Delete, BB, Successor});
1850     }
1851     if (LVI)
1852       LVI->eraseBlock(BB);
1853     BB->dropAllReferences();
1854   }
1855 
1856   for (Function::iterator I = ++F.begin(); I != F.end();) {
1857     auto *BB = &*I;
1858     if (Reachable.count(BB)) {
1859       ++I;
1860       continue;
1861     }
1862     if (DDT) {
1863       DDT->deleteBB(BB); // deferred deletion of BB.
1864       ++I;
1865     } else {
1866       I = F.getBasicBlockList().erase(I);
1867     }
1868   }
1869 
1870   if (DDT)
1871     DDT->applyUpdates(Updates);
1872   return true;
1873 }
1874 
1875 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1876                            ArrayRef<unsigned> KnownIDs) {
1877   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1878   K->dropUnknownNonDebugMetadata(KnownIDs);
1879   K->getAllMetadataOtherThanDebugLoc(Metadata);
1880   for (const auto &MD : Metadata) {
1881     unsigned Kind = MD.first;
1882     MDNode *JMD = J->getMetadata(Kind);
1883     MDNode *KMD = MD.second;
1884 
1885     switch (Kind) {
1886       default:
1887         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1888         break;
1889       case LLVMContext::MD_dbg:
1890         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1891       case LLVMContext::MD_tbaa:
1892         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1893         break;
1894       case LLVMContext::MD_alias_scope:
1895         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1896         break;
1897       case LLVMContext::MD_noalias:
1898       case LLVMContext::MD_mem_parallel_loop_access:
1899         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1900         break;
1901       case LLVMContext::MD_range:
1902         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1903         break;
1904       case LLVMContext::MD_fpmath:
1905         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1906         break;
1907       case LLVMContext::MD_invariant_load:
1908         // Only set the !invariant.load if it is present in both instructions.
1909         K->setMetadata(Kind, JMD);
1910         break;
1911       case LLVMContext::MD_nonnull:
1912         // Only set the !nonnull if it is present in both instructions.
1913         K->setMetadata(Kind, JMD);
1914         break;
1915       case LLVMContext::MD_invariant_group:
1916         // Preserve !invariant.group in K.
1917         break;
1918       case LLVMContext::MD_align:
1919         K->setMetadata(Kind,
1920           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1921         break;
1922       case LLVMContext::MD_dereferenceable:
1923       case LLVMContext::MD_dereferenceable_or_null:
1924         K->setMetadata(Kind,
1925           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1926         break;
1927     }
1928   }
1929   // Set !invariant.group from J if J has it. If both instructions have it
1930   // then we will just pick it from J - even when they are different.
1931   // Also make sure that K is load or store - f.e. combining bitcast with load
1932   // could produce bitcast with invariant.group metadata, which is invalid.
1933   // FIXME: we should try to preserve both invariant.group md if they are
1934   // different, but right now instruction can only have one invariant.group.
1935   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1936     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1937       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1938 }
1939 
1940 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1941   unsigned KnownIDs[] = {
1942       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1943       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1944       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1945       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1946       LLVMContext::MD_dereferenceable,
1947       LLVMContext::MD_dereferenceable_or_null};
1948   combineMetadata(K, J, KnownIDs);
1949 }
1950 
1951 template <typename RootType, typename DominatesFn>
1952 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
1953                                          const RootType &Root,
1954                                          const DominatesFn &Dominates) {
1955   assert(From->getType() == To->getType());
1956 
1957   unsigned Count = 0;
1958   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1959        UI != UE;) {
1960     Use &U = *UI++;
1961     if (!Dominates(Root, U))
1962       continue;
1963     U.set(To);
1964     DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1965                  << *To << " in " << *U << "\n");
1966     ++Count;
1967   }
1968   return Count;
1969 }
1970 
1971 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
1972    assert(From->getType() == To->getType());
1973    auto *BB = From->getParent();
1974    unsigned Count = 0;
1975 
1976   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1977        UI != UE;) {
1978     Use &U = *UI++;
1979     auto *I = cast<Instruction>(U.getUser());
1980     if (I->getParent() == BB)
1981       continue;
1982     U.set(To);
1983     ++Count;
1984   }
1985   return Count;
1986 }
1987 
1988 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1989                                         DominatorTree &DT,
1990                                         const BasicBlockEdge &Root) {
1991   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
1992     return DT.dominates(Root, U);
1993   };
1994   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
1995 }
1996 
1997 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1998                                         DominatorTree &DT,
1999                                         const BasicBlock *BB) {
2000   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2001     auto *I = cast<Instruction>(U.getUser())->getParent();
2002     return DT.properlyDominates(BB, I);
2003   };
2004   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2005 }
2006 
2007 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2008                                const TargetLibraryInfo &TLI) {
2009   // Check if the function is specifically marked as a gc leaf function.
2010   if (CS.hasFnAttr("gc-leaf-function"))
2011     return true;
2012   if (const Function *F = CS.getCalledFunction()) {
2013     if (F->hasFnAttribute("gc-leaf-function"))
2014       return true;
2015 
2016     if (auto IID = F->getIntrinsicID())
2017       // Most LLVM intrinsics do not take safepoints.
2018       return IID != Intrinsic::experimental_gc_statepoint &&
2019              IID != Intrinsic::experimental_deoptimize;
2020   }
2021 
2022   // Lib calls can be materialized by some passes, and won't be
2023   // marked as 'gc-leaf-function.' All available Libcalls are
2024   // GC-leaf.
2025   LibFunc LF;
2026   if (TLI.getLibFunc(CS, LF)) {
2027     return TLI.has(LF);
2028   }
2029 
2030   return false;
2031 }
2032 
2033 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2034                                LoadInst &NewLI) {
2035   auto *NewTy = NewLI.getType();
2036 
2037   // This only directly applies if the new type is also a pointer.
2038   if (NewTy->isPointerTy()) {
2039     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2040     return;
2041   }
2042 
2043   // The only other translation we can do is to integral loads with !range
2044   // metadata.
2045   if (!NewTy->isIntegerTy())
2046     return;
2047 
2048   MDBuilder MDB(NewLI.getContext());
2049   const Value *Ptr = OldLI.getPointerOperand();
2050   auto *ITy = cast<IntegerType>(NewTy);
2051   auto *NullInt = ConstantExpr::getPtrToInt(
2052       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2053   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2054   NewLI.setMetadata(LLVMContext::MD_range,
2055                     MDB.createRange(NonNullInt, NullInt));
2056 }
2057 
2058 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2059                              MDNode *N, LoadInst &NewLI) {
2060   auto *NewTy = NewLI.getType();
2061 
2062   // Give up unless it is converted to a pointer where there is a single very
2063   // valuable mapping we can do reliably.
2064   // FIXME: It would be nice to propagate this in more ways, but the type
2065   // conversions make it hard.
2066   if (!NewTy->isPointerTy())
2067     return;
2068 
2069   unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
2070   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2071     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2072     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2073   }
2074 }
2075 
2076 namespace {
2077 
2078 /// A potential constituent of a bitreverse or bswap expression. See
2079 /// collectBitParts for a fuller explanation.
2080 struct BitPart {
2081   BitPart(Value *P, unsigned BW) : Provider(P) {
2082     Provenance.resize(BW);
2083   }
2084 
2085   /// The Value that this is a bitreverse/bswap of.
2086   Value *Provider;
2087 
2088   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2089   /// in Provider becomes bit B in the result of this expression.
2090   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2091 
2092   enum { Unset = -1 };
2093 };
2094 
2095 } // end anonymous namespace
2096 
2097 /// Analyze the specified subexpression and see if it is capable of providing
2098 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2099 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2100 /// the output of the expression came from a corresponding bit in some other
2101 /// value. This function is recursive, and the end result is a mapping of
2102 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2103 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2104 ///
2105 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2106 /// that the expression deposits the low byte of %X into the high byte of the
2107 /// result and that all other bits are zero. This expression is accepted and a
2108 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2109 /// [0-7].
2110 ///
2111 /// To avoid revisiting values, the BitPart results are memoized into the
2112 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2113 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2114 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2115 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2116 /// type instead to provide the same functionality.
2117 ///
2118 /// Because we pass around references into \c BPS, we must use a container that
2119 /// does not invalidate internal references (std::map instead of DenseMap).
2120 static const Optional<BitPart> &
2121 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2122                 std::map<Value *, Optional<BitPart>> &BPS) {
2123   auto I = BPS.find(V);
2124   if (I != BPS.end())
2125     return I->second;
2126 
2127   auto &Result = BPS[V] = None;
2128   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2129 
2130   if (Instruction *I = dyn_cast<Instruction>(V)) {
2131     // If this is an or instruction, it may be an inner node of the bswap.
2132     if (I->getOpcode() == Instruction::Or) {
2133       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2134                                 MatchBitReversals, BPS);
2135       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2136                                 MatchBitReversals, BPS);
2137       if (!A || !B)
2138         return Result;
2139 
2140       // Try and merge the two together.
2141       if (!A->Provider || A->Provider != B->Provider)
2142         return Result;
2143 
2144       Result = BitPart(A->Provider, BitWidth);
2145       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2146         if (A->Provenance[i] != BitPart::Unset &&
2147             B->Provenance[i] != BitPart::Unset &&
2148             A->Provenance[i] != B->Provenance[i])
2149           return Result = None;
2150 
2151         if (A->Provenance[i] == BitPart::Unset)
2152           Result->Provenance[i] = B->Provenance[i];
2153         else
2154           Result->Provenance[i] = A->Provenance[i];
2155       }
2156 
2157       return Result;
2158     }
2159 
2160     // If this is a logical shift by a constant, recurse then shift the result.
2161     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2162       unsigned BitShift =
2163           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2164       // Ensure the shift amount is defined.
2165       if (BitShift > BitWidth)
2166         return Result;
2167 
2168       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2169                                   MatchBitReversals, BPS);
2170       if (!Res)
2171         return Result;
2172       Result = Res;
2173 
2174       // Perform the "shift" on BitProvenance.
2175       auto &P = Result->Provenance;
2176       if (I->getOpcode() == Instruction::Shl) {
2177         P.erase(std::prev(P.end(), BitShift), P.end());
2178         P.insert(P.begin(), BitShift, BitPart::Unset);
2179       } else {
2180         P.erase(P.begin(), std::next(P.begin(), BitShift));
2181         P.insert(P.end(), BitShift, BitPart::Unset);
2182       }
2183 
2184       return Result;
2185     }
2186 
2187     // If this is a logical 'and' with a mask that clears bits, recurse then
2188     // unset the appropriate bits.
2189     if (I->getOpcode() == Instruction::And &&
2190         isa<ConstantInt>(I->getOperand(1))) {
2191       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2192       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2193 
2194       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2195       // early exit.
2196       unsigned NumMaskedBits = AndMask.countPopulation();
2197       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2198         return Result;
2199 
2200       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2201                                   MatchBitReversals, BPS);
2202       if (!Res)
2203         return Result;
2204       Result = Res;
2205 
2206       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2207         // If the AndMask is zero for this bit, clear the bit.
2208         if ((AndMask & Bit) == 0)
2209           Result->Provenance[i] = BitPart::Unset;
2210       return Result;
2211     }
2212 
2213     // If this is a zext instruction zero extend the result.
2214     if (I->getOpcode() == Instruction::ZExt) {
2215       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2216                                   MatchBitReversals, BPS);
2217       if (!Res)
2218         return Result;
2219 
2220       Result = BitPart(Res->Provider, BitWidth);
2221       auto NarrowBitWidth =
2222           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2223       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2224         Result->Provenance[i] = Res->Provenance[i];
2225       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2226         Result->Provenance[i] = BitPart::Unset;
2227       return Result;
2228     }
2229   }
2230 
2231   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2232   // the input value to the bswap/bitreverse.
2233   Result = BitPart(V, BitWidth);
2234   for (unsigned i = 0; i < BitWidth; ++i)
2235     Result->Provenance[i] = i;
2236   return Result;
2237 }
2238 
2239 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2240                                           unsigned BitWidth) {
2241   if (From % 8 != To % 8)
2242     return false;
2243   // Convert from bit indices to byte indices and check for a byte reversal.
2244   From >>= 3;
2245   To >>= 3;
2246   BitWidth >>= 3;
2247   return From == BitWidth - To - 1;
2248 }
2249 
2250 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2251                                                unsigned BitWidth) {
2252   return From == BitWidth - To - 1;
2253 }
2254 
2255 bool llvm::recognizeBSwapOrBitReverseIdiom(
2256     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2257     SmallVectorImpl<Instruction *> &InsertedInsts) {
2258   if (Operator::getOpcode(I) != Instruction::Or)
2259     return false;
2260   if (!MatchBSwaps && !MatchBitReversals)
2261     return false;
2262   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2263   if (!ITy || ITy->getBitWidth() > 128)
2264     return false;   // Can't do vectors or integers > 128 bits.
2265   unsigned BW = ITy->getBitWidth();
2266 
2267   unsigned DemandedBW = BW;
2268   IntegerType *DemandedTy = ITy;
2269   if (I->hasOneUse()) {
2270     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2271       DemandedTy = cast<IntegerType>(Trunc->getType());
2272       DemandedBW = DemandedTy->getBitWidth();
2273     }
2274   }
2275 
2276   // Try to find all the pieces corresponding to the bswap.
2277   std::map<Value *, Optional<BitPart>> BPS;
2278   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2279   if (!Res)
2280     return false;
2281   auto &BitProvenance = Res->Provenance;
2282 
2283   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2284   // only byteswap values with an even number of bytes.
2285   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2286   for (unsigned i = 0; i < DemandedBW; ++i) {
2287     OKForBSwap &=
2288         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2289     OKForBitReverse &=
2290         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2291   }
2292 
2293   Intrinsic::ID Intrin;
2294   if (OKForBSwap && MatchBSwaps)
2295     Intrin = Intrinsic::bswap;
2296   else if (OKForBitReverse && MatchBitReversals)
2297     Intrin = Intrinsic::bitreverse;
2298   else
2299     return false;
2300 
2301   if (ITy != DemandedTy) {
2302     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2303     Value *Provider = Res->Provider;
2304     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2305     // We may need to truncate the provider.
2306     if (DemandedTy != ProviderTy) {
2307       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2308                                      "trunc", I);
2309       InsertedInsts.push_back(Trunc);
2310       Provider = Trunc;
2311     }
2312     auto *CI = CallInst::Create(F, Provider, "rev", I);
2313     InsertedInsts.push_back(CI);
2314     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2315     InsertedInsts.push_back(ExtInst);
2316     return true;
2317   }
2318 
2319   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2320   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2321   return true;
2322 }
2323 
2324 // CodeGen has special handling for some string functions that may replace
2325 // them with target-specific intrinsics.  Since that'd skip our interceptors
2326 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2327 // we mark affected calls as NoBuiltin, which will disable optimization
2328 // in CodeGen.
2329 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2330     CallInst *CI, const TargetLibraryInfo *TLI) {
2331   Function *F = CI->getCalledFunction();
2332   LibFunc Func;
2333   if (F && !F->hasLocalLinkage() && F->hasName() &&
2334       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2335       !F->doesNotAccessMemory())
2336     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2337 }
2338 
2339 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2340   // We can't have a PHI with a metadata type.
2341   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2342     return false;
2343 
2344   // Early exit.
2345   if (!isa<Constant>(I->getOperand(OpIdx)))
2346     return true;
2347 
2348   switch (I->getOpcode()) {
2349   default:
2350     return true;
2351   case Instruction::Call:
2352   case Instruction::Invoke:
2353     // Can't handle inline asm. Skip it.
2354     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2355       return false;
2356     // Many arithmetic intrinsics have no issue taking a
2357     // variable, however it's hard to distingish these from
2358     // specials such as @llvm.frameaddress that require a constant.
2359     if (isa<IntrinsicInst>(I))
2360       return false;
2361 
2362     // Constant bundle operands may need to retain their constant-ness for
2363     // correctness.
2364     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2365       return false;
2366     return true;
2367   case Instruction::ShuffleVector:
2368     // Shufflevector masks are constant.
2369     return OpIdx != 2;
2370   case Instruction::Switch:
2371   case Instruction::ExtractValue:
2372     // All operands apart from the first are constant.
2373     return OpIdx == 0;
2374   case Instruction::InsertValue:
2375     // All operands apart from the first and the second are constant.
2376     return OpIdx < 2;
2377   case Instruction::Alloca:
2378     // Static allocas (constant size in the entry block) are handled by
2379     // prologue/epilogue insertion so they're free anyway. We definitely don't
2380     // want to make them non-constant.
2381     return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
2382   case Instruction::GetElementPtr:
2383     if (OpIdx == 0)
2384       return true;
2385     gep_type_iterator It = gep_type_begin(I);
2386     for (auto E = std::next(It, OpIdx); It != E; ++It)
2387       if (It.isStruct())
2388         return false;
2389     return true;
2390   }
2391 }
2392