1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 // Max recursion depth for collectBitParts used when detecting bswap and
95 // bitreverse idioms
96 static const unsigned BitPartRecursionMaxDepth = 64;
97 
98 //===----------------------------------------------------------------------===//
99 //  Local constant propagation.
100 //
101 
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination.  This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110                                   const TargetLibraryInfo *TLI,
111                                   DomTreeUpdater *DTU) {
112   Instruction *T = BB->getTerminator();
113   IRBuilder<> Builder(T);
114 
115   // Branch - See if we are conditional jumping on constant
116   if (auto *BI = dyn_cast<BranchInst>(T)) {
117     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
118     BasicBlock *Dest1 = BI->getSuccessor(0);
119     BasicBlock *Dest2 = BI->getSuccessor(1);
120 
121     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122       // Are we branching on constant?
123       // YES.  Change to unconditional branch...
124       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
126 
127       // Let the basic block know that we are letting go of it.  Based on this,
128       // it will adjust it's PHI nodes.
129       OldDest->removePredecessor(BB);
130 
131       // Replace the conditional branch with an unconditional one.
132       Builder.CreateBr(Destination);
133       BI->eraseFromParent();
134       if (DTU)
135         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136       return true;
137     }
138 
139     if (Dest2 == Dest1) {       // Conditional branch to same location?
140       // This branch matches something like this:
141       //     br bool %cond, label %Dest, label %Dest
142       // and changes it into:  br label %Dest
143 
144       // Let the basic block know that we are letting go of one copy of it.
145       assert(BI->getParent() && "Terminator not inserted in block!");
146       Dest1->removePredecessor(BI->getParent());
147 
148       // Replace the conditional branch with an unconditional one.
149       Builder.CreateBr(Dest1);
150       Value *Cond = BI->getCondition();
151       BI->eraseFromParent();
152       if (DeleteDeadConditions)
153         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154       return true;
155     }
156     return false;
157   }
158 
159   if (auto *SI = dyn_cast<SwitchInst>(T)) {
160     // If we are switching on a constant, we can convert the switch to an
161     // unconditional branch.
162     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163     BasicBlock *DefaultDest = SI->getDefaultDest();
164     BasicBlock *TheOnlyDest = DefaultDest;
165 
166     // If the default is unreachable, ignore it when searching for TheOnlyDest.
167     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168         SI->getNumCases() > 0) {
169       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170     }
171 
172     // Figure out which case it goes to.
173     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174       // Found case matching a constant operand?
175       if (i->getCaseValue() == CI) {
176         TheOnlyDest = i->getCaseSuccessor();
177         break;
178       }
179 
180       // Check to see if this branch is going to the same place as the default
181       // dest.  If so, eliminate it as an explicit compare.
182       if (i->getCaseSuccessor() == DefaultDest) {
183         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184         unsigned NCases = SI->getNumCases();
185         // Fold the case metadata into the default if there will be any branches
186         // left, unless the metadata doesn't match the switch.
187         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188           // Collect branch weights into a vector.
189           SmallVector<uint32_t, 8> Weights;
190           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191                ++MD_i) {
192             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193             Weights.push_back(CI->getValue().getZExtValue());
194           }
195           // Merge weight of this case to the default weight.
196           unsigned idx = i->getCaseIndex();
197           Weights[0] += Weights[idx+1];
198           // Remove weight for this case.
199           std::swap(Weights[idx+1], Weights.back());
200           Weights.pop_back();
201           SI->setMetadata(LLVMContext::MD_prof,
202                           MDBuilder(BB->getContext()).
203                           createBranchWeights(Weights));
204         }
205         // Remove this entry.
206         BasicBlock *ParentBB = SI->getParent();
207         DefaultDest->removePredecessor(ParentBB);
208         i = SI->removeCase(i);
209         e = SI->case_end();
210         if (DTU)
211           DTU->applyUpdatesPermissive(
212               {{DominatorTree::Delete, ParentBB, DefaultDest}});
213         continue;
214       }
215 
216       // Otherwise, check to see if the switch only branches to one destination.
217       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218       // destinations.
219       if (i->getCaseSuccessor() != TheOnlyDest)
220         TheOnlyDest = nullptr;
221 
222       // Increment this iterator as we haven't removed the case.
223       ++i;
224     }
225 
226     if (CI && !TheOnlyDest) {
227       // Branching on a constant, but not any of the cases, go to the default
228       // successor.
229       TheOnlyDest = SI->getDefaultDest();
230     }
231 
232     // If we found a single destination that we can fold the switch into, do so
233     // now.
234     if (TheOnlyDest) {
235       // Insert the new branch.
236       Builder.CreateBr(TheOnlyDest);
237       BasicBlock *BB = SI->getParent();
238       std::vector <DominatorTree::UpdateType> Updates;
239       if (DTU)
240         Updates.reserve(SI->getNumSuccessors() - 1);
241 
242       // Remove entries from PHI nodes which we no longer branch to...
243       for (BasicBlock *Succ : successors(SI)) {
244         // Found case matching a constant operand?
245         if (Succ == TheOnlyDest) {
246           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247         } else {
248           Succ->removePredecessor(BB);
249           if (DTU)
250             Updates.push_back({DominatorTree::Delete, BB, Succ});
251         }
252       }
253 
254       // Delete the old switch.
255       Value *Cond = SI->getCondition();
256       SI->eraseFromParent();
257       if (DeleteDeadConditions)
258         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259       if (DTU)
260         DTU->applyUpdatesPermissive(Updates);
261       return true;
262     }
263 
264     if (SI->getNumCases() == 1) {
265       // Otherwise, we can fold this switch into a conditional branch
266       // instruction if it has only one non-default destination.
267       auto FirstCase = *SI->case_begin();
268       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269           FirstCase.getCaseValue(), "cond");
270 
271       // Insert the new branch.
272       BranchInst *NewBr = Builder.CreateCondBr(Cond,
273                                                FirstCase.getCaseSuccessor(),
274                                                SI->getDefaultDest());
275       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276       if (MD && MD->getNumOperands() == 3) {
277         ConstantInt *SICase =
278             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279         ConstantInt *SIDef =
280             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281         assert(SICase && SIDef);
282         // The TrueWeight should be the weight for the single case of SI.
283         NewBr->setMetadata(LLVMContext::MD_prof,
284                         MDBuilder(BB->getContext()).
285                         createBranchWeights(SICase->getValue().getZExtValue(),
286                                             SIDef->getValue().getZExtValue()));
287       }
288 
289       // Update make.implicit metadata to the newly-created conditional branch.
290       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291       if (MakeImplicitMD)
292         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293 
294       // Delete the old switch.
295       SI->eraseFromParent();
296       return true;
297     }
298     return false;
299   }
300 
301   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302     // indirectbr blockaddress(@F, @BB) -> br label @BB
303     if (auto *BA =
304           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305       BasicBlock *TheOnlyDest = BA->getBasicBlock();
306       std::vector <DominatorTree::UpdateType> Updates;
307       if (DTU)
308         Updates.reserve(IBI->getNumDestinations() - 1);
309 
310       // Insert the new branch.
311       Builder.CreateBr(TheOnlyDest);
312 
313       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314         if (IBI->getDestination(i) == TheOnlyDest) {
315           TheOnlyDest = nullptr;
316         } else {
317           BasicBlock *ParentBB = IBI->getParent();
318           BasicBlock *DestBB = IBI->getDestination(i);
319           DestBB->removePredecessor(ParentBB);
320           if (DTU)
321             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322         }
323       }
324       Value *Address = IBI->getAddress();
325       IBI->eraseFromParent();
326       if (DeleteDeadConditions)
327         // Delete pointer cast instructions.
328         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
329 
330       // Also zap the blockaddress constant if there are no users remaining,
331       // otherwise the destination is still marked as having its address taken.
332       if (BA->use_empty())
333         BA->destroyConstant();
334 
335       // If we didn't find our destination in the IBI successor list, then we
336       // have undefined behavior.  Replace the unconditional branch with an
337       // 'unreachable' instruction.
338       if (TheOnlyDest) {
339         BB->getTerminator()->eraseFromParent();
340         new UnreachableInst(BB->getContext(), BB);
341       }
342 
343       if (DTU)
344         DTU->applyUpdatesPermissive(Updates);
345       return true;
346     }
347   }
348 
349   return false;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 //  Local dead code elimination.
354 //
355 
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
358 ///
359 bool llvm::isInstructionTriviallyDead(Instruction *I,
360                                       const TargetLibraryInfo *TLI) {
361   if (!I->use_empty())
362     return false;
363   return wouldInstructionBeTriviallyDead(I, TLI);
364 }
365 
366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
367                                            const TargetLibraryInfo *TLI) {
368   if (I->isTerminator())
369     return false;
370 
371   // We don't want the landingpad-like instructions removed by anything this
372   // general.
373   if (I->isEHPad())
374     return false;
375 
376   // We don't want debug info removed by anything this general, unless
377   // debug info is empty.
378   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
379     if (DDI->getAddress())
380       return false;
381     return true;
382   }
383   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
384     if (DVI->getValue())
385       return false;
386     return true;
387   }
388   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
389     if (DLI->getLabel())
390       return false;
391     return true;
392   }
393 
394   if (!I->mayHaveSideEffects())
395     return true;
396 
397   // Special case intrinsics that "may have side effects" but can be deleted
398   // when dead.
399   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
400     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401     if (II->getIntrinsicID() == Intrinsic::stacksave ||
402         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
403       return true;
404 
405     // Lifetime intrinsics are dead when their right-hand is undef.
406     if (II->isLifetimeStartOrEnd())
407       return isa<UndefValue>(II->getArgOperand(1));
408 
409     // Assumptions are dead if their condition is trivially true.  Guards on
410     // true are operationally no-ops.  In the future we can consider more
411     // sophisticated tradeoffs for guards considering potential for check
412     // widening, but for now we keep things simple.
413     if (II->getIntrinsicID() == Intrinsic::assume ||
414         II->getIntrinsicID() == Intrinsic::experimental_guard) {
415       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
416         return !Cond->isZero();
417 
418       return false;
419     }
420   }
421 
422   if (isAllocLikeFn(I, TLI))
423     return true;
424 
425   if (CallInst *CI = isFreeCall(I, TLI))
426     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
427       return C->isNullValue() || isa<UndefValue>(C);
428 
429   if (auto *Call = dyn_cast<CallBase>(I))
430     if (isMathLibCallNoop(Call, TLI))
431       return true;
432 
433   return false;
434 }
435 
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it.  If that makes any of its operands
438 /// trivially dead, delete them too, recursively.  Return true if any
439 /// instructions were deleted.
440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
442   Instruction *I = dyn_cast<Instruction>(V);
443   if (!I || !isInstructionTriviallyDead(I, TLI))
444     return false;
445 
446   SmallVector<Instruction*, 16> DeadInsts;
447   DeadInsts.push_back(I);
448   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
449 
450   return true;
451 }
452 
453 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
455     MemorySSAUpdater *MSSAU) {
456   // Process the dead instruction list until empty.
457   while (!DeadInsts.empty()) {
458     Instruction &I = *DeadInsts.pop_back_val();
459     assert(I.use_empty() && "Instructions with uses are not dead.");
460     assert(isInstructionTriviallyDead(&I, TLI) &&
461            "Live instruction found in dead worklist!");
462 
463     // Don't lose the debug info while deleting the instructions.
464     salvageDebugInfo(I);
465 
466     // Null out all of the instruction's operands to see if any operand becomes
467     // dead as we go.
468     for (Use &OpU : I.operands()) {
469       Value *OpV = OpU.get();
470       OpU.set(nullptr);
471 
472       if (!OpV->use_empty())
473         continue;
474 
475       // If the operand is an instruction that became dead as we nulled out the
476       // operand, and if it is 'trivially' dead, delete it in a future loop
477       // iteration.
478       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
479         if (isInstructionTriviallyDead(OpI, TLI))
480           DeadInsts.push_back(OpI);
481     }
482     if (MSSAU)
483       MSSAU->removeMemoryAccess(&I);
484 
485     I.eraseFromParent();
486   }
487 }
488 void llvm::setDbgVariableUndef(DbgVariableIntrinsic *DVI) {
489   Value *DbgValue = DVI->getVariableLocation(false);
490   Value *Undef = UndefValue::get(DbgValue ? DbgValue->getType()
491                                           : Type::getInt1Ty(DVI->getContext()));
492   DVI->setOperand(
493       0, MetadataAsValue::get(DVI->getContext(), ValueAsMetadata::get(Undef)));
494 }
495 
496 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
497   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
498   findDbgUsers(DbgUsers, I);
499   for (auto *DII : DbgUsers)
500     setDbgVariableUndef(DII);
501   return !DbgUsers.empty();
502 }
503 
504 /// areAllUsesEqual - Check whether the uses of a value are all the same.
505 /// This is similar to Instruction::hasOneUse() except this will also return
506 /// true when there are no uses or multiple uses that all refer to the same
507 /// value.
508 static bool areAllUsesEqual(Instruction *I) {
509   Value::user_iterator UI = I->user_begin();
510   Value::user_iterator UE = I->user_end();
511   if (UI == UE)
512     return true;
513 
514   User *TheUse = *UI;
515   for (++UI; UI != UE; ++UI) {
516     if (*UI != TheUse)
517       return false;
518   }
519   return true;
520 }
521 
522 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
523 /// dead PHI node, due to being a def-use chain of single-use nodes that
524 /// either forms a cycle or is terminated by a trivially dead instruction,
525 /// delete it.  If that makes any of its operands trivially dead, delete them
526 /// too, recursively.  Return true if a change was made.
527 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
528                                         const TargetLibraryInfo *TLI) {
529   SmallPtrSet<Instruction*, 4> Visited;
530   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
531        I = cast<Instruction>(*I->user_begin())) {
532     if (I->use_empty())
533       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
534 
535     // If we find an instruction more than once, we're on a cycle that
536     // won't prove fruitful.
537     if (!Visited.insert(I).second) {
538       // Break the cycle and delete the instruction and its operands.
539       I->replaceAllUsesWith(UndefValue::get(I->getType()));
540       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
541       return true;
542     }
543   }
544   return false;
545 }
546 
547 static bool
548 simplifyAndDCEInstruction(Instruction *I,
549                           SmallSetVector<Instruction *, 16> &WorkList,
550                           const DataLayout &DL,
551                           const TargetLibraryInfo *TLI) {
552   if (isInstructionTriviallyDead(I, TLI)) {
553     salvageDebugInfo(*I);
554 
555     // Null out all of the instruction's operands to see if any operand becomes
556     // dead as we go.
557     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
558       Value *OpV = I->getOperand(i);
559       I->setOperand(i, nullptr);
560 
561       if (!OpV->use_empty() || I == OpV)
562         continue;
563 
564       // If the operand is an instruction that became dead as we nulled out the
565       // operand, and if it is 'trivially' dead, delete it in a future loop
566       // iteration.
567       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
568         if (isInstructionTriviallyDead(OpI, TLI))
569           WorkList.insert(OpI);
570     }
571 
572     I->eraseFromParent();
573 
574     return true;
575   }
576 
577   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
578     // Add the users to the worklist. CAREFUL: an instruction can use itself,
579     // in the case of a phi node.
580     for (User *U : I->users()) {
581       if (U != I) {
582         WorkList.insert(cast<Instruction>(U));
583       }
584     }
585 
586     // Replace the instruction with its simplified value.
587     bool Changed = false;
588     if (!I->use_empty()) {
589       I->replaceAllUsesWith(SimpleV);
590       Changed = true;
591     }
592     if (isInstructionTriviallyDead(I, TLI)) {
593       I->eraseFromParent();
594       Changed = true;
595     }
596     return Changed;
597   }
598   return false;
599 }
600 
601 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
602 /// simplify any instructions in it and recursively delete dead instructions.
603 ///
604 /// This returns true if it changed the code, note that it can delete
605 /// instructions in other blocks as well in this block.
606 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
607                                        const TargetLibraryInfo *TLI) {
608   bool MadeChange = false;
609   const DataLayout &DL = BB->getModule()->getDataLayout();
610 
611 #ifndef NDEBUG
612   // In debug builds, ensure that the terminator of the block is never replaced
613   // or deleted by these simplifications. The idea of simplification is that it
614   // cannot introduce new instructions, and there is no way to replace the
615   // terminator of a block without introducing a new instruction.
616   AssertingVH<Instruction> TerminatorVH(&BB->back());
617 #endif
618 
619   SmallSetVector<Instruction *, 16> WorkList;
620   // Iterate over the original function, only adding insts to the worklist
621   // if they actually need to be revisited. This avoids having to pre-init
622   // the worklist with the entire function's worth of instructions.
623   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
624        BI != E;) {
625     assert(!BI->isTerminator());
626     Instruction *I = &*BI;
627     ++BI;
628 
629     // We're visiting this instruction now, so make sure it's not in the
630     // worklist from an earlier visit.
631     if (!WorkList.count(I))
632       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
633   }
634 
635   while (!WorkList.empty()) {
636     Instruction *I = WorkList.pop_back_val();
637     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
638   }
639   return MadeChange;
640 }
641 
642 //===----------------------------------------------------------------------===//
643 //  Control Flow Graph Restructuring.
644 //
645 
646 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
647                                         DomTreeUpdater *DTU) {
648   // This only adjusts blocks with PHI nodes.
649   if (!isa<PHINode>(BB->begin()))
650     return;
651 
652   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
653   // them down.  This will leave us with single entry phi nodes and other phis
654   // that can be removed.
655   BB->removePredecessor(Pred, true);
656 
657   WeakTrackingVH PhiIt = &BB->front();
658   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
659     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
660     Value *OldPhiIt = PhiIt;
661 
662     if (!recursivelySimplifyInstruction(PN))
663       continue;
664 
665     // If recursive simplification ended up deleting the next PHI node we would
666     // iterate to, then our iterator is invalid, restart scanning from the top
667     // of the block.
668     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
669   }
670   if (DTU)
671     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
672 }
673 
674 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
675                                        DomTreeUpdater *DTU) {
676 
677   // If BB has single-entry PHI nodes, fold them.
678   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
679     Value *NewVal = PN->getIncomingValue(0);
680     // Replace self referencing PHI with undef, it must be dead.
681     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
682     PN->replaceAllUsesWith(NewVal);
683     PN->eraseFromParent();
684   }
685 
686   BasicBlock *PredBB = DestBB->getSinglePredecessor();
687   assert(PredBB && "Block doesn't have a single predecessor!");
688 
689   bool ReplaceEntryBB = false;
690   if (PredBB == &DestBB->getParent()->getEntryBlock())
691     ReplaceEntryBB = true;
692 
693   // DTU updates: Collect all the edges that enter
694   // PredBB. These dominator edges will be redirected to DestBB.
695   SmallVector<DominatorTree::UpdateType, 32> Updates;
696 
697   if (DTU) {
698     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
699     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
700       Updates.push_back({DominatorTree::Delete, *I, PredBB});
701       // This predecessor of PredBB may already have DestBB as a successor.
702       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
703         Updates.push_back({DominatorTree::Insert, *I, DestBB});
704     }
705   }
706 
707   // Zap anything that took the address of DestBB.  Not doing this will give the
708   // address an invalid value.
709   if (DestBB->hasAddressTaken()) {
710     BlockAddress *BA = BlockAddress::get(DestBB);
711     Constant *Replacement =
712       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
713     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
714                                                      BA->getType()));
715     BA->destroyConstant();
716   }
717 
718   // Anything that branched to PredBB now branches to DestBB.
719   PredBB->replaceAllUsesWith(DestBB);
720 
721   // Splice all the instructions from PredBB to DestBB.
722   PredBB->getTerminator()->eraseFromParent();
723   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
724   new UnreachableInst(PredBB->getContext(), PredBB);
725 
726   // If the PredBB is the entry block of the function, move DestBB up to
727   // become the entry block after we erase PredBB.
728   if (ReplaceEntryBB)
729     DestBB->moveAfter(PredBB);
730 
731   if (DTU) {
732     assert(PredBB->getInstList().size() == 1 &&
733            isa<UnreachableInst>(PredBB->getTerminator()) &&
734            "The successor list of PredBB isn't empty before "
735            "applying corresponding DTU updates.");
736     DTU->applyUpdatesPermissive(Updates);
737     DTU->deleteBB(PredBB);
738     // Recalculation of DomTree is needed when updating a forward DomTree and
739     // the Entry BB is replaced.
740     if (ReplaceEntryBB && DTU->hasDomTree()) {
741       // The entry block was removed and there is no external interface for
742       // the dominator tree to be notified of this change. In this corner-case
743       // we recalculate the entire tree.
744       DTU->recalculate(*(DestBB->getParent()));
745     }
746   }
747 
748   else {
749     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
750   }
751 }
752 
753 /// Return true if we can choose one of these values to use in place of the
754 /// other. Note that we will always choose the non-undef value to keep.
755 static bool CanMergeValues(Value *First, Value *Second) {
756   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
757 }
758 
759 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
760 /// branch to Succ, into Succ.
761 ///
762 /// Assumption: Succ is the single successor for BB.
763 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
764   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
765 
766   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
767                     << Succ->getName() << "\n");
768   // Shortcut, if there is only a single predecessor it must be BB and merging
769   // is always safe
770   if (Succ->getSinglePredecessor()) return true;
771 
772   // Make a list of the predecessors of BB
773   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
774 
775   // Look at all the phi nodes in Succ, to see if they present a conflict when
776   // merging these blocks
777   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
778     PHINode *PN = cast<PHINode>(I);
779 
780     // If the incoming value from BB is again a PHINode in
781     // BB which has the same incoming value for *PI as PN does, we can
782     // merge the phi nodes and then the blocks can still be merged
783     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
784     if (BBPN && BBPN->getParent() == BB) {
785       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
786         BasicBlock *IBB = PN->getIncomingBlock(PI);
787         if (BBPreds.count(IBB) &&
788             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
789                             PN->getIncomingValue(PI))) {
790           LLVM_DEBUG(dbgs()
791                      << "Can't fold, phi node " << PN->getName() << " in "
792                      << Succ->getName() << " is conflicting with "
793                      << BBPN->getName() << " with regard to common predecessor "
794                      << IBB->getName() << "\n");
795           return false;
796         }
797       }
798     } else {
799       Value* Val = PN->getIncomingValueForBlock(BB);
800       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
801         // See if the incoming value for the common predecessor is equal to the
802         // one for BB, in which case this phi node will not prevent the merging
803         // of the block.
804         BasicBlock *IBB = PN->getIncomingBlock(PI);
805         if (BBPreds.count(IBB) &&
806             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
807           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
808                             << " in " << Succ->getName()
809                             << " is conflicting with regard to common "
810                             << "predecessor " << IBB->getName() << "\n");
811           return false;
812         }
813       }
814     }
815   }
816 
817   return true;
818 }
819 
820 using PredBlockVector = SmallVector<BasicBlock *, 16>;
821 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
822 
823 /// Determines the value to use as the phi node input for a block.
824 ///
825 /// Select between \p OldVal any value that we know flows from \p BB
826 /// to a particular phi on the basis of which one (if either) is not
827 /// undef. Update IncomingValues based on the selected value.
828 ///
829 /// \param OldVal The value we are considering selecting.
830 /// \param BB The block that the value flows in from.
831 /// \param IncomingValues A map from block-to-value for other phi inputs
832 /// that we have examined.
833 ///
834 /// \returns the selected value.
835 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
836                                           IncomingValueMap &IncomingValues) {
837   if (!isa<UndefValue>(OldVal)) {
838     assert((!IncomingValues.count(BB) ||
839             IncomingValues.find(BB)->second == OldVal) &&
840            "Expected OldVal to match incoming value from BB!");
841 
842     IncomingValues.insert(std::make_pair(BB, OldVal));
843     return OldVal;
844   }
845 
846   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
847   if (It != IncomingValues.end()) return It->second;
848 
849   return OldVal;
850 }
851 
852 /// Create a map from block to value for the operands of a
853 /// given phi.
854 ///
855 /// Create a map from block to value for each non-undef value flowing
856 /// into \p PN.
857 ///
858 /// \param PN The phi we are collecting the map for.
859 /// \param IncomingValues [out] The map from block to value for this phi.
860 static void gatherIncomingValuesToPhi(PHINode *PN,
861                                       IncomingValueMap &IncomingValues) {
862   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
863     BasicBlock *BB = PN->getIncomingBlock(i);
864     Value *V = PN->getIncomingValue(i);
865 
866     if (!isa<UndefValue>(V))
867       IncomingValues.insert(std::make_pair(BB, V));
868   }
869 }
870 
871 /// Replace the incoming undef values to a phi with the values
872 /// from a block-to-value map.
873 ///
874 /// \param PN The phi we are replacing the undefs in.
875 /// \param IncomingValues A map from block to value.
876 static void replaceUndefValuesInPhi(PHINode *PN,
877                                     const IncomingValueMap &IncomingValues) {
878   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
879     Value *V = PN->getIncomingValue(i);
880 
881     if (!isa<UndefValue>(V)) continue;
882 
883     BasicBlock *BB = PN->getIncomingBlock(i);
884     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
885     if (It == IncomingValues.end()) continue;
886 
887     PN->setIncomingValue(i, It->second);
888   }
889 }
890 
891 /// Replace a value flowing from a block to a phi with
892 /// potentially multiple instances of that value flowing from the
893 /// block's predecessors to the phi.
894 ///
895 /// \param BB The block with the value flowing into the phi.
896 /// \param BBPreds The predecessors of BB.
897 /// \param PN The phi that we are updating.
898 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
899                                                 const PredBlockVector &BBPreds,
900                                                 PHINode *PN) {
901   Value *OldVal = PN->removeIncomingValue(BB, false);
902   assert(OldVal && "No entry in PHI for Pred BB!");
903 
904   IncomingValueMap IncomingValues;
905 
906   // We are merging two blocks - BB, and the block containing PN - and
907   // as a result we need to redirect edges from the predecessors of BB
908   // to go to the block containing PN, and update PN
909   // accordingly. Since we allow merging blocks in the case where the
910   // predecessor and successor blocks both share some predecessors,
911   // and where some of those common predecessors might have undef
912   // values flowing into PN, we want to rewrite those values to be
913   // consistent with the non-undef values.
914 
915   gatherIncomingValuesToPhi(PN, IncomingValues);
916 
917   // If this incoming value is one of the PHI nodes in BB, the new entries
918   // in the PHI node are the entries from the old PHI.
919   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
920     PHINode *OldValPN = cast<PHINode>(OldVal);
921     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
922       // Note that, since we are merging phi nodes and BB and Succ might
923       // have common predecessors, we could end up with a phi node with
924       // identical incoming branches. This will be cleaned up later (and
925       // will trigger asserts if we try to clean it up now, without also
926       // simplifying the corresponding conditional branch).
927       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
928       Value *PredVal = OldValPN->getIncomingValue(i);
929       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
930                                                     IncomingValues);
931 
932       // And add a new incoming value for this predecessor for the
933       // newly retargeted branch.
934       PN->addIncoming(Selected, PredBB);
935     }
936   } else {
937     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
938       // Update existing incoming values in PN for this
939       // predecessor of BB.
940       BasicBlock *PredBB = BBPreds[i];
941       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
942                                                     IncomingValues);
943 
944       // And add a new incoming value for this predecessor for the
945       // newly retargeted branch.
946       PN->addIncoming(Selected, PredBB);
947     }
948   }
949 
950   replaceUndefValuesInPhi(PN, IncomingValues);
951 }
952 
953 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
954                                                    DomTreeUpdater *DTU) {
955   assert(BB != &BB->getParent()->getEntryBlock() &&
956          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
957 
958   // We can't eliminate infinite loops.
959   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
960   if (BB == Succ) return false;
961 
962   // Check to see if merging these blocks would cause conflicts for any of the
963   // phi nodes in BB or Succ. If not, we can safely merge.
964   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
965 
966   // Check for cases where Succ has multiple predecessors and a PHI node in BB
967   // has uses which will not disappear when the PHI nodes are merged.  It is
968   // possible to handle such cases, but difficult: it requires checking whether
969   // BB dominates Succ, which is non-trivial to calculate in the case where
970   // Succ has multiple predecessors.  Also, it requires checking whether
971   // constructing the necessary self-referential PHI node doesn't introduce any
972   // conflicts; this isn't too difficult, but the previous code for doing this
973   // was incorrect.
974   //
975   // Note that if this check finds a live use, BB dominates Succ, so BB is
976   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
977   // folding the branch isn't profitable in that case anyway.
978   if (!Succ->getSinglePredecessor()) {
979     BasicBlock::iterator BBI = BB->begin();
980     while (isa<PHINode>(*BBI)) {
981       for (Use &U : BBI->uses()) {
982         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
983           if (PN->getIncomingBlock(U) != BB)
984             return false;
985         } else {
986           return false;
987         }
988       }
989       ++BBI;
990     }
991   }
992 
993   // We cannot fold the block if it's a branch to an already present callbr
994   // successor because that creates duplicate successors.
995   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
996     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
997       if (Succ == CBI->getDefaultDest())
998         return false;
999       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1000         if (Succ == CBI->getIndirectDest(i))
1001           return false;
1002     }
1003   }
1004 
1005   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1006 
1007   SmallVector<DominatorTree::UpdateType, 32> Updates;
1008   if (DTU) {
1009     Updates.push_back({DominatorTree::Delete, BB, Succ});
1010     // All predecessors of BB will be moved to Succ.
1011     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1012       Updates.push_back({DominatorTree::Delete, *I, BB});
1013       // This predecessor of BB may already have Succ as a successor.
1014       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1015         Updates.push_back({DominatorTree::Insert, *I, Succ});
1016     }
1017   }
1018 
1019   if (isa<PHINode>(Succ->begin())) {
1020     // If there is more than one pred of succ, and there are PHI nodes in
1021     // the successor, then we need to add incoming edges for the PHI nodes
1022     //
1023     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1024 
1025     // Loop over all of the PHI nodes in the successor of BB.
1026     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1027       PHINode *PN = cast<PHINode>(I);
1028 
1029       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1030     }
1031   }
1032 
1033   if (Succ->getSinglePredecessor()) {
1034     // BB is the only predecessor of Succ, so Succ will end up with exactly
1035     // the same predecessors BB had.
1036 
1037     // Copy over any phi, debug or lifetime instruction.
1038     BB->getTerminator()->eraseFromParent();
1039     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1040                                BB->getInstList());
1041   } else {
1042     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1043       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1044       assert(PN->use_empty() && "There shouldn't be any uses here!");
1045       PN->eraseFromParent();
1046     }
1047     // If Succ has multiple predecessors, each debug intrinsic in BB may or may
1048     // not be valid when we reach Succ, so the debug variable should be set
1049     // undef since its value is unknown.
1050     Instruction *DbgInsertPoint = Succ->getFirstNonPHI();
1051     while (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(&BB->front())) {
1052       if (auto DVI = dyn_cast<DbgVariableIntrinsic>(DI)) {
1053         if (!isa<DbgDeclareInst>(DVI))
1054           setDbgVariableUndef(DVI);
1055         DVI->moveBefore(DbgInsertPoint);
1056       } else {
1057         break;
1058       }
1059     }
1060   }
1061 
1062   // If the unconditional branch we replaced contains llvm.loop metadata, we
1063   // add the metadata to the branch instructions in the predecessors.
1064   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1065   Instruction *TI = BB->getTerminator();
1066   if (TI)
1067     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1068       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1069         BasicBlock *Pred = *PI;
1070         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1071       }
1072 
1073   // Everything that jumped to BB now goes to Succ.
1074   BB->replaceAllUsesWith(Succ);
1075   if (!Succ->hasName()) Succ->takeName(BB);
1076 
1077   // Clear the successor list of BB to match updates applying to DTU later.
1078   if (BB->getTerminator())
1079     BB->getInstList().pop_back();
1080   new UnreachableInst(BB->getContext(), BB);
1081   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1082                            "applying corresponding DTU updates.");
1083 
1084   if (DTU) {
1085     DTU->applyUpdatesPermissive(Updates);
1086     DTU->deleteBB(BB);
1087   } else {
1088     BB->eraseFromParent(); // Delete the old basic block.
1089   }
1090   return true;
1091 }
1092 
1093 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1094   // This implementation doesn't currently consider undef operands
1095   // specially. Theoretically, two phis which are identical except for
1096   // one having an undef where the other doesn't could be collapsed.
1097 
1098   struct PHIDenseMapInfo {
1099     static PHINode *getEmptyKey() {
1100       return DenseMapInfo<PHINode *>::getEmptyKey();
1101     }
1102 
1103     static PHINode *getTombstoneKey() {
1104       return DenseMapInfo<PHINode *>::getTombstoneKey();
1105     }
1106 
1107     static unsigned getHashValue(PHINode *PN) {
1108       // Compute a hash value on the operands. Instcombine will likely have
1109       // sorted them, which helps expose duplicates, but we have to check all
1110       // the operands to be safe in case instcombine hasn't run.
1111       return static_cast<unsigned>(hash_combine(
1112           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1113           hash_combine_range(PN->block_begin(), PN->block_end())));
1114     }
1115 
1116     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1117       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1118           RHS == getEmptyKey() || RHS == getTombstoneKey())
1119         return LHS == RHS;
1120       return LHS->isIdenticalTo(RHS);
1121     }
1122   };
1123 
1124   // Set of unique PHINodes.
1125   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1126 
1127   // Examine each PHI.
1128   bool Changed = false;
1129   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1130     auto Inserted = PHISet.insert(PN);
1131     if (!Inserted.second) {
1132       // A duplicate. Replace this PHI with its duplicate.
1133       PN->replaceAllUsesWith(*Inserted.first);
1134       PN->eraseFromParent();
1135       Changed = true;
1136 
1137       // The RAUW can change PHIs that we already visited. Start over from the
1138       // beginning.
1139       PHISet.clear();
1140       I = BB->begin();
1141     }
1142   }
1143 
1144   return Changed;
1145 }
1146 
1147 /// enforceKnownAlignment - If the specified pointer points to an object that
1148 /// we control, modify the object's alignment to PrefAlign. This isn't
1149 /// often possible though. If alignment is important, a more reliable approach
1150 /// is to simply align all global variables and allocation instructions to
1151 /// their preferred alignment from the beginning.
1152 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment,
1153                                       unsigned PrefAlign,
1154                                       const DataLayout &DL) {
1155   assert(PrefAlign > Alignment);
1156 
1157   V = V->stripPointerCasts();
1158 
1159   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1160     // TODO: ideally, computeKnownBits ought to have used
1161     // AllocaInst::getAlignment() in its computation already, making
1162     // the below max redundant. But, as it turns out,
1163     // stripPointerCasts recurses through infinite layers of bitcasts,
1164     // while computeKnownBits is not allowed to traverse more than 6
1165     // levels.
1166     Alignment = std::max(AI->getAlignment(), Alignment);
1167     if (PrefAlign <= Alignment)
1168       return Alignment;
1169 
1170     // If the preferred alignment is greater than the natural stack alignment
1171     // then don't round up. This avoids dynamic stack realignment.
1172     if (DL.exceedsNaturalStackAlignment(Align(PrefAlign)))
1173       return Alignment;
1174     AI->setAlignment(MaybeAlign(PrefAlign));
1175     return PrefAlign;
1176   }
1177 
1178   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1179     // TODO: as above, this shouldn't be necessary.
1180     Alignment = std::max(GO->getAlignment(), Alignment);
1181     if (PrefAlign <= Alignment)
1182       return Alignment;
1183 
1184     // If there is a large requested alignment and we can, bump up the alignment
1185     // of the global.  If the memory we set aside for the global may not be the
1186     // memory used by the final program then it is impossible for us to reliably
1187     // enforce the preferred alignment.
1188     if (!GO->canIncreaseAlignment())
1189       return Alignment;
1190 
1191     GO->setAlignment(MaybeAlign(PrefAlign));
1192     return PrefAlign;
1193   }
1194 
1195   return Alignment;
1196 }
1197 
1198 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1199                                           const DataLayout &DL,
1200                                           const Instruction *CxtI,
1201                                           AssumptionCache *AC,
1202                                           const DominatorTree *DT) {
1203   assert(V->getType()->isPointerTy() &&
1204          "getOrEnforceKnownAlignment expects a pointer!");
1205 
1206   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1207   unsigned TrailZ = Known.countMinTrailingZeros();
1208 
1209   // Avoid trouble with ridiculously large TrailZ values, such as
1210   // those computed from a null pointer.
1211   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1212 
1213   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1214 
1215   // LLVM doesn't support alignments larger than this currently.
1216   Align = std::min(Align, +Value::MaximumAlignment);
1217 
1218   if (PrefAlign > Align)
1219     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1220 
1221   // We don't need to make any adjustment.
1222   return Align;
1223 }
1224 
1225 ///===---------------------------------------------------------------------===//
1226 ///  Dbg Intrinsic utilities
1227 ///
1228 
1229 /// See if there is a dbg.value intrinsic for DIVar before I.
1230 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1231                               Instruction *I) {
1232   // Since we can't guarantee that the original dbg.declare instrinsic
1233   // is removed by LowerDbgDeclare(), we need to make sure that we are
1234   // not inserting the same dbg.value intrinsic over and over.
1235   BasicBlock::InstListType::iterator PrevI(I);
1236   if (PrevI != I->getParent()->getInstList().begin()) {
1237     --PrevI;
1238     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1239       if (DVI->getValue() == I->getOperand(0) &&
1240           DVI->getVariable() == DIVar &&
1241           DVI->getExpression() == DIExpr)
1242         return true;
1243   }
1244   return false;
1245 }
1246 
1247 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1248 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1249                              DIExpression *DIExpr,
1250                              PHINode *APN) {
1251   // Since we can't guarantee that the original dbg.declare instrinsic
1252   // is removed by LowerDbgDeclare(), we need to make sure that we are
1253   // not inserting the same dbg.value intrinsic over and over.
1254   SmallVector<DbgValueInst *, 1> DbgValues;
1255   findDbgValues(DbgValues, APN);
1256   for (auto *DVI : DbgValues) {
1257     assert(DVI->getValue() == APN);
1258     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1259       return true;
1260   }
1261   return false;
1262 }
1263 
1264 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1265 /// (or fragment of the variable) described by \p DII.
1266 ///
1267 /// This is primarily intended as a helper for the different
1268 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1269 /// converted describes an alloca'd variable, so we need to use the
1270 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1271 /// identified as covering an n-bit fragment, if the store size of i1 is at
1272 /// least n bits.
1273 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1274   const DataLayout &DL = DII->getModule()->getDataLayout();
1275   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1276   if (auto FragmentSize = DII->getFragmentSizeInBits())
1277     return ValueSize >= *FragmentSize;
1278   // We can't always calculate the size of the DI variable (e.g. if it is a
1279   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1280   // intead.
1281   if (DII->isAddressOfVariable())
1282     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1283       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1284         return ValueSize >= *FragmentSize;
1285   // Could not determine size of variable. Conservatively return false.
1286   return false;
1287 }
1288 
1289 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1290 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1291 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1292 /// case this DebugLoc leaks into any adjacent instructions.
1293 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1294   // Original dbg.declare must have a location.
1295   DebugLoc DeclareLoc = DII->getDebugLoc();
1296   MDNode *Scope = DeclareLoc.getScope();
1297   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1298   // Produce an unknown location with the correct scope / inlinedAt fields.
1299   return DebugLoc::get(0, 0, Scope, InlinedAt);
1300 }
1301 
1302 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1303 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1304 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1305                                            StoreInst *SI, DIBuilder &Builder) {
1306   assert(DII->isAddressOfVariable());
1307   auto *DIVar = DII->getVariable();
1308   assert(DIVar && "Missing variable");
1309   auto *DIExpr = DII->getExpression();
1310   Value *DV = SI->getValueOperand();
1311 
1312   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1313 
1314   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1315     // FIXME: If storing to a part of the variable described by the dbg.declare,
1316     // then we want to insert a dbg.value for the corresponding fragment.
1317     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1318                       << *DII << '\n');
1319     // For now, when there is a store to parts of the variable (but we do not
1320     // know which part) we insert an dbg.value instrinsic to indicate that we
1321     // know nothing about the variable's content.
1322     DV = UndefValue::get(DV->getType());
1323     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1324       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1325     return;
1326   }
1327 
1328   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1329     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1330 }
1331 
1332 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1333 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1334 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1335                                            LoadInst *LI, DIBuilder &Builder) {
1336   auto *DIVar = DII->getVariable();
1337   auto *DIExpr = DII->getExpression();
1338   assert(DIVar && "Missing variable");
1339 
1340   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1341     return;
1342 
1343   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1344     // FIXME: If only referring to a part of the variable described by the
1345     // dbg.declare, then we want to insert a dbg.value for the corresponding
1346     // fragment.
1347     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1348                       << *DII << '\n');
1349     return;
1350   }
1351 
1352   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1353 
1354   // We are now tracking the loaded value instead of the address. In the
1355   // future if multi-location support is added to the IR, it might be
1356   // preferable to keep tracking both the loaded value and the original
1357   // address in case the alloca can not be elided.
1358   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1359       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1360   DbgValue->insertAfter(LI);
1361 }
1362 
1363 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1364 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1365 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1366                                            PHINode *APN, DIBuilder &Builder) {
1367   auto *DIVar = DII->getVariable();
1368   auto *DIExpr = DII->getExpression();
1369   assert(DIVar && "Missing variable");
1370 
1371   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1372     return;
1373 
1374   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1375     // FIXME: If only referring to a part of the variable described by the
1376     // dbg.declare, then we want to insert a dbg.value for the corresponding
1377     // fragment.
1378     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1379                       << *DII << '\n');
1380     return;
1381   }
1382 
1383   BasicBlock *BB = APN->getParent();
1384   auto InsertionPt = BB->getFirstInsertionPt();
1385 
1386   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1387 
1388   // The block may be a catchswitch block, which does not have a valid
1389   // insertion point.
1390   // FIXME: Insert dbg.value markers in the successors when appropriate.
1391   if (InsertionPt != BB->end())
1392     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1393 }
1394 
1395 /// Determine whether this alloca is either a VLA or an array.
1396 static bool isArray(AllocaInst *AI) {
1397   return AI->isArrayAllocation() ||
1398          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1399 }
1400 
1401 /// Determine whether this alloca is a structure.
1402 static bool isStructure(AllocaInst *AI) {
1403   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1404 }
1405 
1406 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1407 /// of llvm.dbg.value intrinsics.
1408 bool llvm::LowerDbgDeclare(Function &F) {
1409   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1410   SmallVector<DbgDeclareInst *, 4> Dbgs;
1411   for (auto &FI : F)
1412     for (Instruction &BI : FI)
1413       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1414         Dbgs.push_back(DDI);
1415 
1416   if (Dbgs.empty())
1417     return false;
1418 
1419   for (auto &I : Dbgs) {
1420     DbgDeclareInst *DDI = I;
1421     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1422     // If this is an alloca for a scalar variable, insert a dbg.value
1423     // at each load and store to the alloca and erase the dbg.declare.
1424     // The dbg.values allow tracking a variable even if it is not
1425     // stored on the stack, while the dbg.declare can only describe
1426     // the stack slot (and at a lexical-scope granularity). Later
1427     // passes will attempt to elide the stack slot.
1428     if (!AI || isArray(AI) || isStructure(AI))
1429       continue;
1430 
1431     // A volatile load/store means that the alloca can't be elided anyway.
1432     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1433           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1434             return LI->isVolatile();
1435           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1436             return SI->isVolatile();
1437           return false;
1438         }))
1439       continue;
1440 
1441     SmallVector<const Value *, 8> WorkList;
1442     WorkList.push_back(AI);
1443     while (!WorkList.empty()) {
1444       const Value *V = WorkList.pop_back_val();
1445       for (auto &AIUse : V->uses()) {
1446         User *U = AIUse.getUser();
1447         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1448           if (AIUse.getOperandNo() == 1)
1449             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1450         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1451           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1452         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1453           // This is a call by-value or some other instruction that takes a
1454           // pointer to the variable. Insert a *value* intrinsic that describes
1455           // the variable by dereferencing the alloca.
1456           if (!CI->isLifetimeStartOrEnd()) {
1457             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1458             auto *DerefExpr =
1459                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1460             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1461                                         NewLoc, CI);
1462           }
1463         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1464           if (BI->getType()->isPointerTy())
1465             WorkList.push_back(BI);
1466         }
1467       }
1468     }
1469     DDI->eraseFromParent();
1470   }
1471   return true;
1472 }
1473 
1474 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1475 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1476                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1477   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1478   if (InsertedPHIs.size() == 0)
1479     return;
1480 
1481   // Map existing PHI nodes to their dbg.values.
1482   ValueToValueMapTy DbgValueMap;
1483   for (auto &I : *BB) {
1484     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1485       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1486         DbgValueMap.insert({Loc, DbgII});
1487     }
1488   }
1489   if (DbgValueMap.size() == 0)
1490     return;
1491 
1492   // Then iterate through the new PHIs and look to see if they use one of the
1493   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1494   // propagate the info through the new PHI.
1495   LLVMContext &C = BB->getContext();
1496   for (auto PHI : InsertedPHIs) {
1497     BasicBlock *Parent = PHI->getParent();
1498     // Avoid inserting an intrinsic into an EH block.
1499     if (Parent->getFirstNonPHI()->isEHPad())
1500       continue;
1501     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1502     for (auto VI : PHI->operand_values()) {
1503       auto V = DbgValueMap.find(VI);
1504       if (V != DbgValueMap.end()) {
1505         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1506         Instruction *NewDbgII = DbgII->clone();
1507         NewDbgII->setOperand(0, PhiMAV);
1508         auto InsertionPt = Parent->getFirstInsertionPt();
1509         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1510         NewDbgII->insertBefore(&*InsertionPt);
1511       }
1512     }
1513   }
1514 }
1515 
1516 /// Finds all intrinsics declaring local variables as living in the memory that
1517 /// 'V' points to. This may include a mix of dbg.declare and
1518 /// dbg.addr intrinsics.
1519 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1520   // This function is hot. Check whether the value has any metadata to avoid a
1521   // DenseMap lookup.
1522   if (!V->isUsedByMetadata())
1523     return {};
1524   auto *L = LocalAsMetadata::getIfExists(V);
1525   if (!L)
1526     return {};
1527   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1528   if (!MDV)
1529     return {};
1530 
1531   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1532   for (User *U : MDV->users()) {
1533     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1534       if (DII->isAddressOfVariable())
1535         Declares.push_back(DII);
1536   }
1537 
1538   return Declares;
1539 }
1540 
1541 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1542   // This function is hot. Check whether the value has any metadata to avoid a
1543   // DenseMap lookup.
1544   if (!V->isUsedByMetadata())
1545     return;
1546   if (auto *L = LocalAsMetadata::getIfExists(V))
1547     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1548       for (User *U : MDV->users())
1549         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1550           DbgValues.push_back(DVI);
1551 }
1552 
1553 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1554                         Value *V) {
1555   // This function is hot. Check whether the value has any metadata to avoid a
1556   // DenseMap lookup.
1557   if (!V->isUsedByMetadata())
1558     return;
1559   if (auto *L = LocalAsMetadata::getIfExists(V))
1560     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1561       for (User *U : MDV->users())
1562         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1563           DbgUsers.push_back(DII);
1564 }
1565 
1566 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1567                              Instruction *InsertBefore, DIBuilder &Builder,
1568                              uint8_t DIExprFlags, int Offset) {
1569   auto DbgAddrs = FindDbgAddrUses(Address);
1570   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1571     DebugLoc Loc = DII->getDebugLoc();
1572     auto *DIVar = DII->getVariable();
1573     auto *DIExpr = DII->getExpression();
1574     assert(DIVar && "Missing variable");
1575     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1576     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1577     // llvm.dbg.declare.
1578     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1579     if (DII == InsertBefore)
1580       InsertBefore = InsertBefore->getNextNode();
1581     DII->eraseFromParent();
1582   }
1583   return !DbgAddrs.empty();
1584 }
1585 
1586 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1587                                       DIBuilder &Builder, uint8_t DIExprFlags,
1588                                       int Offset) {
1589   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1590                            DIExprFlags, Offset);
1591 }
1592 
1593 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1594                                         DIBuilder &Builder, int Offset) {
1595   DebugLoc Loc = DVI->getDebugLoc();
1596   auto *DIVar = DVI->getVariable();
1597   auto *DIExpr = DVI->getExpression();
1598   assert(DIVar && "Missing variable");
1599 
1600   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1601   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1602   // it and give up.
1603   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1604       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1605     return;
1606 
1607   // Insert the offset before the first deref.
1608   // We could just change the offset argument of dbg.value, but it's unsigned...
1609   if (Offset)
1610     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1611 
1612   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1613   DVI->eraseFromParent();
1614 }
1615 
1616 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1617                                     DIBuilder &Builder, int Offset) {
1618   if (auto *L = LocalAsMetadata::getIfExists(AI))
1619     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1620       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1621         Use &U = *UI++;
1622         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1623           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1624       }
1625 }
1626 
1627 /// Wrap \p V in a ValueAsMetadata instance.
1628 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1629   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1630 }
1631 
1632 bool llvm::salvageDebugInfo(Instruction &I) {
1633   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1634   findDbgUsers(DbgUsers, &I);
1635   if (DbgUsers.empty())
1636     return false;
1637 
1638   return salvageDebugInfoForDbgValues(I, DbgUsers);
1639 }
1640 
1641 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) {
1642   if (!salvageDebugInfo(I))
1643     replaceDbgUsesWithUndef(&I);
1644 }
1645 
1646 bool llvm::salvageDebugInfoForDbgValues(
1647     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1648   auto &Ctx = I.getContext();
1649   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1650 
1651   for (auto *DII : DbgUsers) {
1652     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1653     // are implicitly pointing out the value as a DWARF memory location
1654     // description.
1655     bool StackValue = isa<DbgValueInst>(DII);
1656 
1657     DIExpression *DIExpr =
1658         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1659 
1660     // salvageDebugInfoImpl should fail on examining the first element of
1661     // DbgUsers, or none of them.
1662     if (!DIExpr)
1663       return false;
1664 
1665     DII->setOperand(0, wrapMD(I.getOperand(0)));
1666     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1667     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1668   }
1669 
1670   return true;
1671 }
1672 
1673 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1674                                          DIExpression *SrcDIExpr,
1675                                          bool WithStackValue) {
1676   auto &M = *I.getModule();
1677   auto &DL = M.getDataLayout();
1678 
1679   // Apply a vector of opcodes to the source DIExpression.
1680   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1681     DIExpression *DIExpr = SrcDIExpr;
1682     if (!Ops.empty()) {
1683       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1684     }
1685     return DIExpr;
1686   };
1687 
1688   // Apply the given offset to the source DIExpression.
1689   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1690     SmallVector<uint64_t, 8> Ops;
1691     DIExpression::appendOffset(Ops, Offset);
1692     return doSalvage(Ops);
1693   };
1694 
1695   // initializer-list helper for applying operators to the source DIExpression.
1696   auto applyOps =
1697       [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1698     SmallVector<uint64_t, 8> Ops(Opcodes);
1699     return doSalvage(Ops);
1700   };
1701 
1702   if (auto *CI = dyn_cast<CastInst>(&I)) {
1703     // No-op casts and zexts are irrelevant for debug info.
1704     if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1705       return SrcDIExpr;
1706     return nullptr;
1707   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1708     unsigned BitWidth =
1709         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1710     // Rewrite a constant GEP into a DIExpression.
1711     APInt Offset(BitWidth, 0);
1712     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1713       return applyOffset(Offset.getSExtValue());
1714     } else {
1715       return nullptr;
1716     }
1717   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1718     // Rewrite binary operations with constant integer operands.
1719     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1720     if (!ConstInt || ConstInt->getBitWidth() > 64)
1721       return nullptr;
1722 
1723     uint64_t Val = ConstInt->getSExtValue();
1724     switch (BI->getOpcode()) {
1725     case Instruction::Add:
1726       return applyOffset(Val);
1727     case Instruction::Sub:
1728       return applyOffset(-int64_t(Val));
1729     case Instruction::Mul:
1730       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1731     case Instruction::SDiv:
1732       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1733     case Instruction::SRem:
1734       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1735     case Instruction::Or:
1736       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1737     case Instruction::And:
1738       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1739     case Instruction::Xor:
1740       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1741     case Instruction::Shl:
1742       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1743     case Instruction::LShr:
1744       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1745     case Instruction::AShr:
1746       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1747     default:
1748       // TODO: Salvage constants from each kind of binop we know about.
1749       return nullptr;
1750     }
1751     // *Not* to do: we should not attempt to salvage load instructions,
1752     // because the validity and lifetime of a dbg.value containing
1753     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1754   }
1755   return nullptr;
1756 }
1757 
1758 /// A replacement for a dbg.value expression.
1759 using DbgValReplacement = Optional<DIExpression *>;
1760 
1761 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1762 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1763 /// changes are made.
1764 static bool rewriteDebugUsers(
1765     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1766     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1767   // Find debug users of From.
1768   SmallVector<DbgVariableIntrinsic *, 1> Users;
1769   findDbgUsers(Users, &From);
1770   if (Users.empty())
1771     return false;
1772 
1773   // Prevent use-before-def of To.
1774   bool Changed = false;
1775   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1776   if (isa<Instruction>(&To)) {
1777     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1778 
1779     for (auto *DII : Users) {
1780       // It's common to see a debug user between From and DomPoint. Move it
1781       // after DomPoint to preserve the variable update without any reordering.
1782       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1783         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1784         DII->moveAfter(&DomPoint);
1785         Changed = true;
1786 
1787       // Users which otherwise aren't dominated by the replacement value must
1788       // be salvaged or deleted.
1789       } else if (!DT.dominates(&DomPoint, DII)) {
1790         UndefOrSalvage.insert(DII);
1791       }
1792     }
1793   }
1794 
1795   // Update debug users without use-before-def risk.
1796   for (auto *DII : Users) {
1797     if (UndefOrSalvage.count(DII))
1798       continue;
1799 
1800     LLVMContext &Ctx = DII->getContext();
1801     DbgValReplacement DVR = RewriteExpr(*DII);
1802     if (!DVR)
1803       continue;
1804 
1805     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1806     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1807     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1808     Changed = true;
1809   }
1810 
1811   if (!UndefOrSalvage.empty()) {
1812     // Try to salvage the remaining debug users.
1813     salvageDebugInfoOrMarkUndef(From);
1814     Changed = true;
1815   }
1816 
1817   return Changed;
1818 }
1819 
1820 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1821 /// losslessly preserve the bits and semantics of the value. This predicate is
1822 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1823 ///
1824 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1825 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1826 /// and also does not allow lossless pointer <-> integer conversions.
1827 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1828                                          Type *ToTy) {
1829   // Trivially compatible types.
1830   if (FromTy == ToTy)
1831     return true;
1832 
1833   // Handle compatible pointer <-> integer conversions.
1834   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1835     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1836     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1837                               !DL.isNonIntegralPointerType(ToTy);
1838     return SameSize && LosslessConversion;
1839   }
1840 
1841   // TODO: This is not exhaustive.
1842   return false;
1843 }
1844 
1845 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1846                                  Instruction &DomPoint, DominatorTree &DT) {
1847   // Exit early if From has no debug users.
1848   if (!From.isUsedByMetadata())
1849     return false;
1850 
1851   assert(&From != &To && "Can't replace something with itself");
1852 
1853   Type *FromTy = From.getType();
1854   Type *ToTy = To.getType();
1855 
1856   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1857     return DII.getExpression();
1858   };
1859 
1860   // Handle no-op conversions.
1861   Module &M = *From.getModule();
1862   const DataLayout &DL = M.getDataLayout();
1863   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1864     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1865 
1866   // Handle integer-to-integer widening and narrowing.
1867   // FIXME: Use DW_OP_convert when it's available everywhere.
1868   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1869     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1870     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1871     assert(FromBits != ToBits && "Unexpected no-op conversion");
1872 
1873     // When the width of the result grows, assume that a debugger will only
1874     // access the low `FromBits` bits when inspecting the source variable.
1875     if (FromBits < ToBits)
1876       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1877 
1878     // The width of the result has shrunk. Use sign/zero extension to describe
1879     // the source variable's high bits.
1880     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1881       DILocalVariable *Var = DII.getVariable();
1882 
1883       // Without knowing signedness, sign/zero extension isn't possible.
1884       auto Signedness = Var->getSignedness();
1885       if (!Signedness)
1886         return None;
1887 
1888       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1889       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1890                                      Signed);
1891     };
1892     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1893   }
1894 
1895   // TODO: Floating-point conversions, vectors.
1896   return false;
1897 }
1898 
1899 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1900   unsigned NumDeadInst = 0;
1901   // Delete the instructions backwards, as it has a reduced likelihood of
1902   // having to update as many def-use and use-def chains.
1903   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1904   while (EndInst != &BB->front()) {
1905     // Delete the next to last instruction.
1906     Instruction *Inst = &*--EndInst->getIterator();
1907     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1908       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1909     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1910       EndInst = Inst;
1911       continue;
1912     }
1913     if (!isa<DbgInfoIntrinsic>(Inst))
1914       ++NumDeadInst;
1915     Inst->eraseFromParent();
1916   }
1917   return NumDeadInst;
1918 }
1919 
1920 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1921                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1922                                    MemorySSAUpdater *MSSAU) {
1923   BasicBlock *BB = I->getParent();
1924   std::vector <DominatorTree::UpdateType> Updates;
1925 
1926   if (MSSAU)
1927     MSSAU->changeToUnreachable(I);
1928 
1929   // Loop over all of the successors, removing BB's entry from any PHI
1930   // nodes.
1931   if (DTU)
1932     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1933   for (BasicBlock *Successor : successors(BB)) {
1934     Successor->removePredecessor(BB, PreserveLCSSA);
1935     if (DTU)
1936       Updates.push_back({DominatorTree::Delete, BB, Successor});
1937   }
1938   // Insert a call to llvm.trap right before this.  This turns the undefined
1939   // behavior into a hard fail instead of falling through into random code.
1940   if (UseLLVMTrap) {
1941     Function *TrapFn =
1942       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1943     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1944     CallTrap->setDebugLoc(I->getDebugLoc());
1945   }
1946   auto *UI = new UnreachableInst(I->getContext(), I);
1947   UI->setDebugLoc(I->getDebugLoc());
1948 
1949   // All instructions after this are dead.
1950   unsigned NumInstrsRemoved = 0;
1951   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1952   while (BBI != BBE) {
1953     if (!BBI->use_empty())
1954       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1955     BB->getInstList().erase(BBI++);
1956     ++NumInstrsRemoved;
1957   }
1958   if (DTU)
1959     DTU->applyUpdatesPermissive(Updates);
1960   return NumInstrsRemoved;
1961 }
1962 
1963 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1964   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1965   SmallVector<OperandBundleDef, 1> OpBundles;
1966   II->getOperandBundlesAsDefs(OpBundles);
1967   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1968                                        II->getCalledValue(), Args, OpBundles);
1969   NewCall->setCallingConv(II->getCallingConv());
1970   NewCall->setAttributes(II->getAttributes());
1971   NewCall->setDebugLoc(II->getDebugLoc());
1972   NewCall->copyMetadata(*II);
1973   return NewCall;
1974 }
1975 
1976 /// changeToCall - Convert the specified invoke into a normal call.
1977 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
1978   CallInst *NewCall = createCallMatchingInvoke(II);
1979   NewCall->takeName(II);
1980   NewCall->insertBefore(II);
1981   II->replaceAllUsesWith(NewCall);
1982 
1983   // Follow the call by a branch to the normal destination.
1984   BasicBlock *NormalDestBB = II->getNormalDest();
1985   BranchInst::Create(NormalDestBB, II);
1986 
1987   // Update PHI nodes in the unwind destination
1988   BasicBlock *BB = II->getParent();
1989   BasicBlock *UnwindDestBB = II->getUnwindDest();
1990   UnwindDestBB->removePredecessor(BB);
1991   II->eraseFromParent();
1992   if (DTU)
1993     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
1994 }
1995 
1996 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1997                                                    BasicBlock *UnwindEdge) {
1998   BasicBlock *BB = CI->getParent();
1999 
2000   // Convert this function call into an invoke instruction.  First, split the
2001   // basic block.
2002   BasicBlock *Split =
2003       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2004 
2005   // Delete the unconditional branch inserted by splitBasicBlock
2006   BB->getInstList().pop_back();
2007 
2008   // Create the new invoke instruction.
2009   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2010   SmallVector<OperandBundleDef, 1> OpBundles;
2011 
2012   CI->getOperandBundlesAsDefs(OpBundles);
2013 
2014   // Note: we're round tripping operand bundles through memory here, and that
2015   // can potentially be avoided with a cleverer API design that we do not have
2016   // as of this time.
2017 
2018   InvokeInst *II =
2019       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2020                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2021   II->setDebugLoc(CI->getDebugLoc());
2022   II->setCallingConv(CI->getCallingConv());
2023   II->setAttributes(CI->getAttributes());
2024 
2025   // Make sure that anything using the call now uses the invoke!  This also
2026   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2027   CI->replaceAllUsesWith(II);
2028 
2029   // Delete the original call
2030   Split->getInstList().pop_front();
2031   return Split;
2032 }
2033 
2034 static bool markAliveBlocks(Function &F,
2035                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2036                             DomTreeUpdater *DTU = nullptr) {
2037   SmallVector<BasicBlock*, 128> Worklist;
2038   BasicBlock *BB = &F.front();
2039   Worklist.push_back(BB);
2040   Reachable.insert(BB);
2041   bool Changed = false;
2042   do {
2043     BB = Worklist.pop_back_val();
2044 
2045     // Do a quick scan of the basic block, turning any obviously unreachable
2046     // instructions into LLVM unreachable insts.  The instruction combining pass
2047     // canonicalizes unreachable insts into stores to null or undef.
2048     for (Instruction &I : *BB) {
2049       if (auto *CI = dyn_cast<CallInst>(&I)) {
2050         Value *Callee = CI->getCalledValue();
2051         // Handle intrinsic calls.
2052         if (Function *F = dyn_cast<Function>(Callee)) {
2053           auto IntrinsicID = F->getIntrinsicID();
2054           // Assumptions that are known to be false are equivalent to
2055           // unreachable. Also, if the condition is undefined, then we make the
2056           // choice most beneficial to the optimizer, and choose that to also be
2057           // unreachable.
2058           if (IntrinsicID == Intrinsic::assume) {
2059             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2060               // Don't insert a call to llvm.trap right before the unreachable.
2061               changeToUnreachable(CI, false, false, DTU);
2062               Changed = true;
2063               break;
2064             }
2065           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2066             // A call to the guard intrinsic bails out of the current
2067             // compilation unit if the predicate passed to it is false. If the
2068             // predicate is a constant false, then we know the guard will bail
2069             // out of the current compile unconditionally, so all code following
2070             // it is dead.
2071             //
2072             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2073             // guards to treat `undef` as `false` since a guard on `undef` can
2074             // still be useful for widening.
2075             if (match(CI->getArgOperand(0), m_Zero()))
2076               if (!isa<UnreachableInst>(CI->getNextNode())) {
2077                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2078                                     false, DTU);
2079                 Changed = true;
2080                 break;
2081               }
2082           }
2083         } else if ((isa<ConstantPointerNull>(Callee) &&
2084                     !NullPointerIsDefined(CI->getFunction())) ||
2085                    isa<UndefValue>(Callee)) {
2086           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2087           Changed = true;
2088           break;
2089         }
2090         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2091           // If we found a call to a no-return function, insert an unreachable
2092           // instruction after it.  Make sure there isn't *already* one there
2093           // though.
2094           if (!isa<UnreachableInst>(CI->getNextNode())) {
2095             // Don't insert a call to llvm.trap right before the unreachable.
2096             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2097             Changed = true;
2098           }
2099           break;
2100         }
2101       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2102         // Store to undef and store to null are undefined and used to signal
2103         // that they should be changed to unreachable by passes that can't
2104         // modify the CFG.
2105 
2106         // Don't touch volatile stores.
2107         if (SI->isVolatile()) continue;
2108 
2109         Value *Ptr = SI->getOperand(1);
2110 
2111         if (isa<UndefValue>(Ptr) ||
2112             (isa<ConstantPointerNull>(Ptr) &&
2113              !NullPointerIsDefined(SI->getFunction(),
2114                                    SI->getPointerAddressSpace()))) {
2115           changeToUnreachable(SI, true, false, DTU);
2116           Changed = true;
2117           break;
2118         }
2119       }
2120     }
2121 
2122     Instruction *Terminator = BB->getTerminator();
2123     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2124       // Turn invokes that call 'nounwind' functions into ordinary calls.
2125       Value *Callee = II->getCalledValue();
2126       if ((isa<ConstantPointerNull>(Callee) &&
2127            !NullPointerIsDefined(BB->getParent())) ||
2128           isa<UndefValue>(Callee)) {
2129         changeToUnreachable(II, true, false, DTU);
2130         Changed = true;
2131       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2132         if (II->use_empty() && II->onlyReadsMemory()) {
2133           // jump to the normal destination branch.
2134           BasicBlock *NormalDestBB = II->getNormalDest();
2135           BasicBlock *UnwindDestBB = II->getUnwindDest();
2136           BranchInst::Create(NormalDestBB, II);
2137           UnwindDestBB->removePredecessor(II->getParent());
2138           II->eraseFromParent();
2139           if (DTU)
2140             DTU->applyUpdatesPermissive(
2141                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2142         } else
2143           changeToCall(II, DTU);
2144         Changed = true;
2145       }
2146     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2147       // Remove catchpads which cannot be reached.
2148       struct CatchPadDenseMapInfo {
2149         static CatchPadInst *getEmptyKey() {
2150           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2151         }
2152 
2153         static CatchPadInst *getTombstoneKey() {
2154           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2155         }
2156 
2157         static unsigned getHashValue(CatchPadInst *CatchPad) {
2158           return static_cast<unsigned>(hash_combine_range(
2159               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2160         }
2161 
2162         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2163           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2164               RHS == getEmptyKey() || RHS == getTombstoneKey())
2165             return LHS == RHS;
2166           return LHS->isIdenticalTo(RHS);
2167         }
2168       };
2169 
2170       // Set of unique CatchPads.
2171       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2172                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2173           HandlerSet;
2174       detail::DenseSetEmpty Empty;
2175       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2176                                              E = CatchSwitch->handler_end();
2177            I != E; ++I) {
2178         BasicBlock *HandlerBB = *I;
2179         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2180         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2181           CatchSwitch->removeHandler(I);
2182           --I;
2183           --E;
2184           Changed = true;
2185         }
2186       }
2187     }
2188 
2189     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2190     for (BasicBlock *Successor : successors(BB))
2191       if (Reachable.insert(Successor).second)
2192         Worklist.push_back(Successor);
2193   } while (!Worklist.empty());
2194   return Changed;
2195 }
2196 
2197 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2198   Instruction *TI = BB->getTerminator();
2199 
2200   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2201     changeToCall(II, DTU);
2202     return;
2203   }
2204 
2205   Instruction *NewTI;
2206   BasicBlock *UnwindDest;
2207 
2208   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2209     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2210     UnwindDest = CRI->getUnwindDest();
2211   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2212     auto *NewCatchSwitch = CatchSwitchInst::Create(
2213         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2214         CatchSwitch->getName(), CatchSwitch);
2215     for (BasicBlock *PadBB : CatchSwitch->handlers())
2216       NewCatchSwitch->addHandler(PadBB);
2217 
2218     NewTI = NewCatchSwitch;
2219     UnwindDest = CatchSwitch->getUnwindDest();
2220   } else {
2221     llvm_unreachable("Could not find unwind successor");
2222   }
2223 
2224   NewTI->takeName(TI);
2225   NewTI->setDebugLoc(TI->getDebugLoc());
2226   UnwindDest->removePredecessor(BB);
2227   TI->replaceAllUsesWith(NewTI);
2228   TI->eraseFromParent();
2229   if (DTU)
2230     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2231 }
2232 
2233 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2234 /// if they are in a dead cycle.  Return true if a change was made, false
2235 /// otherwise.
2236 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2237                                    MemorySSAUpdater *MSSAU) {
2238   SmallPtrSet<BasicBlock *, 16> Reachable;
2239   bool Changed = markAliveBlocks(F, Reachable, DTU);
2240 
2241   // If there are unreachable blocks in the CFG...
2242   if (Reachable.size() == F.size())
2243     return Changed;
2244 
2245   assert(Reachable.size() < F.size());
2246   NumRemoved += F.size() - Reachable.size();
2247 
2248   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2249   for (BasicBlock &BB : F) {
2250     // Skip reachable basic blocks
2251     if (Reachable.find(&BB) != Reachable.end())
2252       continue;
2253     DeadBlockSet.insert(&BB);
2254   }
2255 
2256   if (MSSAU)
2257     MSSAU->removeBlocks(DeadBlockSet);
2258 
2259   // Loop over all of the basic blocks that are not reachable, dropping all of
2260   // their internal references. Update DTU if available.
2261   std::vector<DominatorTree::UpdateType> Updates;
2262   for (auto *BB : DeadBlockSet) {
2263     for (BasicBlock *Successor : successors(BB)) {
2264       if (!DeadBlockSet.count(Successor))
2265         Successor->removePredecessor(BB);
2266       if (DTU)
2267         Updates.push_back({DominatorTree::Delete, BB, Successor});
2268     }
2269     BB->dropAllReferences();
2270     if (DTU) {
2271       Instruction *TI = BB->getTerminator();
2272       assert(TI && "Basic block should have a terminator");
2273       // Terminators like invoke can have users. We have to replace their users,
2274       // before removing them.
2275       if (!TI->use_empty())
2276         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2277       TI->eraseFromParent();
2278       new UnreachableInst(BB->getContext(), BB);
2279       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2280                                "applying corresponding DTU updates.");
2281     }
2282   }
2283 
2284   if (DTU) {
2285     DTU->applyUpdatesPermissive(Updates);
2286     bool Deleted = false;
2287     for (auto *BB : DeadBlockSet) {
2288       if (DTU->isBBPendingDeletion(BB))
2289         --NumRemoved;
2290       else
2291         Deleted = true;
2292       DTU->deleteBB(BB);
2293     }
2294     if (!Deleted)
2295       return false;
2296   } else {
2297     for (auto *BB : DeadBlockSet)
2298       BB->eraseFromParent();
2299   }
2300 
2301   return true;
2302 }
2303 
2304 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2305                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2306   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2307   K->dropUnknownNonDebugMetadata(KnownIDs);
2308   K->getAllMetadataOtherThanDebugLoc(Metadata);
2309   for (const auto &MD : Metadata) {
2310     unsigned Kind = MD.first;
2311     MDNode *JMD = J->getMetadata(Kind);
2312     MDNode *KMD = MD.second;
2313 
2314     switch (Kind) {
2315       default:
2316         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2317         break;
2318       case LLVMContext::MD_dbg:
2319         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2320       case LLVMContext::MD_tbaa:
2321         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2322         break;
2323       case LLVMContext::MD_alias_scope:
2324         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2325         break;
2326       case LLVMContext::MD_noalias:
2327       case LLVMContext::MD_mem_parallel_loop_access:
2328         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2329         break;
2330       case LLVMContext::MD_access_group:
2331         K->setMetadata(LLVMContext::MD_access_group,
2332                        intersectAccessGroups(K, J));
2333         break;
2334       case LLVMContext::MD_range:
2335 
2336         // If K does move, use most generic range. Otherwise keep the range of
2337         // K.
2338         if (DoesKMove)
2339           // FIXME: If K does move, we should drop the range info and nonnull.
2340           //        Currently this function is used with DoesKMove in passes
2341           //        doing hoisting/sinking and the current behavior of using the
2342           //        most generic range is correct in those cases.
2343           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2344         break;
2345       case LLVMContext::MD_fpmath:
2346         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2347         break;
2348       case LLVMContext::MD_invariant_load:
2349         // Only set the !invariant.load if it is present in both instructions.
2350         K->setMetadata(Kind, JMD);
2351         break;
2352       case LLVMContext::MD_nonnull:
2353         // If K does move, keep nonull if it is present in both instructions.
2354         if (DoesKMove)
2355           K->setMetadata(Kind, JMD);
2356         break;
2357       case LLVMContext::MD_invariant_group:
2358         // Preserve !invariant.group in K.
2359         break;
2360       case LLVMContext::MD_align:
2361         K->setMetadata(Kind,
2362           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2363         break;
2364       case LLVMContext::MD_dereferenceable:
2365       case LLVMContext::MD_dereferenceable_or_null:
2366         K->setMetadata(Kind,
2367           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2368         break;
2369       case LLVMContext::MD_preserve_access_index:
2370         // Preserve !preserve.access.index in K.
2371         break;
2372     }
2373   }
2374   // Set !invariant.group from J if J has it. If both instructions have it
2375   // then we will just pick it from J - even when they are different.
2376   // Also make sure that K is load or store - f.e. combining bitcast with load
2377   // could produce bitcast with invariant.group metadata, which is invalid.
2378   // FIXME: we should try to preserve both invariant.group md if they are
2379   // different, but right now instruction can only have one invariant.group.
2380   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2381     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2382       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2383 }
2384 
2385 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2386                                  bool KDominatesJ) {
2387   unsigned KnownIDs[] = {
2388       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2389       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2390       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2391       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2392       LLVMContext::MD_dereferenceable,
2393       LLVMContext::MD_dereferenceable_or_null,
2394       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2395   combineMetadata(K, J, KnownIDs, KDominatesJ);
2396 }
2397 
2398 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2399   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2400   Source.getAllMetadata(MD);
2401   MDBuilder MDB(Dest.getContext());
2402   Type *NewType = Dest.getType();
2403   const DataLayout &DL = Source.getModule()->getDataLayout();
2404   for (const auto &MDPair : MD) {
2405     unsigned ID = MDPair.first;
2406     MDNode *N = MDPair.second;
2407     // Note, essentially every kind of metadata should be preserved here! This
2408     // routine is supposed to clone a load instruction changing *only its type*.
2409     // The only metadata it makes sense to drop is metadata which is invalidated
2410     // when the pointer type changes. This should essentially never be the case
2411     // in LLVM, but we explicitly switch over only known metadata to be
2412     // conservatively correct. If you are adding metadata to LLVM which pertains
2413     // to loads, you almost certainly want to add it here.
2414     switch (ID) {
2415     case LLVMContext::MD_dbg:
2416     case LLVMContext::MD_tbaa:
2417     case LLVMContext::MD_prof:
2418     case LLVMContext::MD_fpmath:
2419     case LLVMContext::MD_tbaa_struct:
2420     case LLVMContext::MD_invariant_load:
2421     case LLVMContext::MD_alias_scope:
2422     case LLVMContext::MD_noalias:
2423     case LLVMContext::MD_nontemporal:
2424     case LLVMContext::MD_mem_parallel_loop_access:
2425     case LLVMContext::MD_access_group:
2426       // All of these directly apply.
2427       Dest.setMetadata(ID, N);
2428       break;
2429 
2430     case LLVMContext::MD_nonnull:
2431       copyNonnullMetadata(Source, N, Dest);
2432       break;
2433 
2434     case LLVMContext::MD_align:
2435     case LLVMContext::MD_dereferenceable:
2436     case LLVMContext::MD_dereferenceable_or_null:
2437       // These only directly apply if the new type is also a pointer.
2438       if (NewType->isPointerTy())
2439         Dest.setMetadata(ID, N);
2440       break;
2441 
2442     case LLVMContext::MD_range:
2443       copyRangeMetadata(DL, Source, N, Dest);
2444       break;
2445     }
2446   }
2447 }
2448 
2449 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2450   auto *ReplInst = dyn_cast<Instruction>(Repl);
2451   if (!ReplInst)
2452     return;
2453 
2454   // Patch the replacement so that it is not more restrictive than the value
2455   // being replaced.
2456   // Note that if 'I' is a load being replaced by some operation,
2457   // for example, by an arithmetic operation, then andIRFlags()
2458   // would just erase all math flags from the original arithmetic
2459   // operation, which is clearly not wanted and not needed.
2460   if (!isa<LoadInst>(I))
2461     ReplInst->andIRFlags(I);
2462 
2463   // FIXME: If both the original and replacement value are part of the
2464   // same control-flow region (meaning that the execution of one
2465   // guarantees the execution of the other), then we can combine the
2466   // noalias scopes here and do better than the general conservative
2467   // answer used in combineMetadata().
2468 
2469   // In general, GVN unifies expressions over different control-flow
2470   // regions, and so we need a conservative combination of the noalias
2471   // scopes.
2472   static const unsigned KnownIDs[] = {
2473       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2474       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2475       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2476       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2477       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2478   combineMetadata(ReplInst, I, KnownIDs, false);
2479 }
2480 
2481 template <typename RootType, typename DominatesFn>
2482 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2483                                          const RootType &Root,
2484                                          const DominatesFn &Dominates) {
2485   assert(From->getType() == To->getType());
2486 
2487   unsigned Count = 0;
2488   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2489        UI != UE;) {
2490     Use &U = *UI++;
2491     if (!Dominates(Root, U))
2492       continue;
2493     U.set(To);
2494     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2495                       << "' as " << *To << " in " << *U << "\n");
2496     ++Count;
2497   }
2498   return Count;
2499 }
2500 
2501 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2502    assert(From->getType() == To->getType());
2503    auto *BB = From->getParent();
2504    unsigned Count = 0;
2505 
2506   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2507        UI != UE;) {
2508     Use &U = *UI++;
2509     auto *I = cast<Instruction>(U.getUser());
2510     if (I->getParent() == BB)
2511       continue;
2512     U.set(To);
2513     ++Count;
2514   }
2515   return Count;
2516 }
2517 
2518 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2519                                         DominatorTree &DT,
2520                                         const BasicBlockEdge &Root) {
2521   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2522     return DT.dominates(Root, U);
2523   };
2524   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2525 }
2526 
2527 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2528                                         DominatorTree &DT,
2529                                         const BasicBlock *BB) {
2530   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2531     auto *I = cast<Instruction>(U.getUser())->getParent();
2532     return DT.properlyDominates(BB, I);
2533   };
2534   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2535 }
2536 
2537 bool llvm::callsGCLeafFunction(const CallBase *Call,
2538                                const TargetLibraryInfo &TLI) {
2539   // Check if the function is specifically marked as a gc leaf function.
2540   if (Call->hasFnAttr("gc-leaf-function"))
2541     return true;
2542   if (const Function *F = Call->getCalledFunction()) {
2543     if (F->hasFnAttribute("gc-leaf-function"))
2544       return true;
2545 
2546     if (auto IID = F->getIntrinsicID())
2547       // Most LLVM intrinsics do not take safepoints.
2548       return IID != Intrinsic::experimental_gc_statepoint &&
2549              IID != Intrinsic::experimental_deoptimize;
2550   }
2551 
2552   // Lib calls can be materialized by some passes, and won't be
2553   // marked as 'gc-leaf-function.' All available Libcalls are
2554   // GC-leaf.
2555   LibFunc LF;
2556   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2557     return TLI.has(LF);
2558   }
2559 
2560   return false;
2561 }
2562 
2563 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2564                                LoadInst &NewLI) {
2565   auto *NewTy = NewLI.getType();
2566 
2567   // This only directly applies if the new type is also a pointer.
2568   if (NewTy->isPointerTy()) {
2569     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2570     return;
2571   }
2572 
2573   // The only other translation we can do is to integral loads with !range
2574   // metadata.
2575   if (!NewTy->isIntegerTy())
2576     return;
2577 
2578   MDBuilder MDB(NewLI.getContext());
2579   const Value *Ptr = OldLI.getPointerOperand();
2580   auto *ITy = cast<IntegerType>(NewTy);
2581   auto *NullInt = ConstantExpr::getPtrToInt(
2582       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2583   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2584   NewLI.setMetadata(LLVMContext::MD_range,
2585                     MDB.createRange(NonNullInt, NullInt));
2586 }
2587 
2588 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2589                              MDNode *N, LoadInst &NewLI) {
2590   auto *NewTy = NewLI.getType();
2591 
2592   // Give up unless it is converted to a pointer where there is a single very
2593   // valuable mapping we can do reliably.
2594   // FIXME: It would be nice to propagate this in more ways, but the type
2595   // conversions make it hard.
2596   if (!NewTy->isPointerTy())
2597     return;
2598 
2599   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2600   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2601     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2602     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2603   }
2604 }
2605 
2606 void llvm::dropDebugUsers(Instruction &I) {
2607   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2608   findDbgUsers(DbgUsers, &I);
2609   for (auto *DII : DbgUsers)
2610     DII->eraseFromParent();
2611 }
2612 
2613 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2614                                     BasicBlock *BB) {
2615   // Since we are moving the instructions out of its basic block, we do not
2616   // retain their original debug locations (DILocations) and debug intrinsic
2617   // instructions.
2618   //
2619   // Doing so would degrade the debugging experience and adversely affect the
2620   // accuracy of profiling information.
2621   //
2622   // Currently, when hoisting the instructions, we take the following actions:
2623   // - Remove their debug intrinsic instructions.
2624   // - Set their debug locations to the values from the insertion point.
2625   //
2626   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2627   // need to be deleted, is because there will not be any instructions with a
2628   // DILocation in either branch left after performing the transformation. We
2629   // can only insert a dbg.value after the two branches are joined again.
2630   //
2631   // See PR38762, PR39243 for more details.
2632   //
2633   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2634   // encode predicated DIExpressions that yield different results on different
2635   // code paths.
2636   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2637     Instruction *I = &*II;
2638     I->dropUnknownNonDebugMetadata();
2639     if (I->isUsedByMetadata())
2640       dropDebugUsers(*I);
2641     if (isa<DbgInfoIntrinsic>(I)) {
2642       // Remove DbgInfo Intrinsics.
2643       II = I->eraseFromParent();
2644       continue;
2645     }
2646     I->setDebugLoc(InsertPt->getDebugLoc());
2647     ++II;
2648   }
2649   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2650                                  BB->begin(),
2651                                  BB->getTerminator()->getIterator());
2652 }
2653 
2654 namespace {
2655 
2656 /// A potential constituent of a bitreverse or bswap expression. See
2657 /// collectBitParts for a fuller explanation.
2658 struct BitPart {
2659   BitPart(Value *P, unsigned BW) : Provider(P) {
2660     Provenance.resize(BW);
2661   }
2662 
2663   /// The Value that this is a bitreverse/bswap of.
2664   Value *Provider;
2665 
2666   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2667   /// in Provider becomes bit B in the result of this expression.
2668   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2669 
2670   enum { Unset = -1 };
2671 };
2672 
2673 } // end anonymous namespace
2674 
2675 /// Analyze the specified subexpression and see if it is capable of providing
2676 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2677 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2678 /// the output of the expression came from a corresponding bit in some other
2679 /// value. This function is recursive, and the end result is a mapping of
2680 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2681 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2682 ///
2683 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2684 /// that the expression deposits the low byte of %X into the high byte of the
2685 /// result and that all other bits are zero. This expression is accepted and a
2686 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2687 /// [0-7].
2688 ///
2689 /// To avoid revisiting values, the BitPart results are memoized into the
2690 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2691 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2692 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2693 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2694 /// type instead to provide the same functionality.
2695 ///
2696 /// Because we pass around references into \c BPS, we must use a container that
2697 /// does not invalidate internal references (std::map instead of DenseMap).
2698 static const Optional<BitPart> &
2699 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2700                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2701   auto I = BPS.find(V);
2702   if (I != BPS.end())
2703     return I->second;
2704 
2705   auto &Result = BPS[V] = None;
2706   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2707 
2708   // Prevent stack overflow by limiting the recursion depth
2709   if (Depth == BitPartRecursionMaxDepth) {
2710     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2711     return Result;
2712   }
2713 
2714   if (Instruction *I = dyn_cast<Instruction>(V)) {
2715     // If this is an or instruction, it may be an inner node of the bswap.
2716     if (I->getOpcode() == Instruction::Or) {
2717       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2718                                 MatchBitReversals, BPS, Depth + 1);
2719       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2720                                 MatchBitReversals, BPS, Depth + 1);
2721       if (!A || !B)
2722         return Result;
2723 
2724       // Try and merge the two together.
2725       if (!A->Provider || A->Provider != B->Provider)
2726         return Result;
2727 
2728       Result = BitPart(A->Provider, BitWidth);
2729       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2730         if (A->Provenance[i] != BitPart::Unset &&
2731             B->Provenance[i] != BitPart::Unset &&
2732             A->Provenance[i] != B->Provenance[i])
2733           return Result = None;
2734 
2735         if (A->Provenance[i] == BitPart::Unset)
2736           Result->Provenance[i] = B->Provenance[i];
2737         else
2738           Result->Provenance[i] = A->Provenance[i];
2739       }
2740 
2741       return Result;
2742     }
2743 
2744     // If this is a logical shift by a constant, recurse then shift the result.
2745     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2746       unsigned BitShift =
2747           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2748       // Ensure the shift amount is defined.
2749       if (BitShift > BitWidth)
2750         return Result;
2751 
2752       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2753                                   MatchBitReversals, BPS, Depth + 1);
2754       if (!Res)
2755         return Result;
2756       Result = Res;
2757 
2758       // Perform the "shift" on BitProvenance.
2759       auto &P = Result->Provenance;
2760       if (I->getOpcode() == Instruction::Shl) {
2761         P.erase(std::prev(P.end(), BitShift), P.end());
2762         P.insert(P.begin(), BitShift, BitPart::Unset);
2763       } else {
2764         P.erase(P.begin(), std::next(P.begin(), BitShift));
2765         P.insert(P.end(), BitShift, BitPart::Unset);
2766       }
2767 
2768       return Result;
2769     }
2770 
2771     // If this is a logical 'and' with a mask that clears bits, recurse then
2772     // unset the appropriate bits.
2773     if (I->getOpcode() == Instruction::And &&
2774         isa<ConstantInt>(I->getOperand(1))) {
2775       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2776       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2777 
2778       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2779       // early exit.
2780       unsigned NumMaskedBits = AndMask.countPopulation();
2781       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2782         return Result;
2783 
2784       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2785                                   MatchBitReversals, BPS, Depth + 1);
2786       if (!Res)
2787         return Result;
2788       Result = Res;
2789 
2790       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2791         // If the AndMask is zero for this bit, clear the bit.
2792         if ((AndMask & Bit) == 0)
2793           Result->Provenance[i] = BitPart::Unset;
2794       return Result;
2795     }
2796 
2797     // If this is a zext instruction zero extend the result.
2798     if (I->getOpcode() == Instruction::ZExt) {
2799       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2800                                   MatchBitReversals, BPS, Depth + 1);
2801       if (!Res)
2802         return Result;
2803 
2804       Result = BitPart(Res->Provider, BitWidth);
2805       auto NarrowBitWidth =
2806           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2807       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2808         Result->Provenance[i] = Res->Provenance[i];
2809       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2810         Result->Provenance[i] = BitPart::Unset;
2811       return Result;
2812     }
2813   }
2814 
2815   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2816   // the input value to the bswap/bitreverse.
2817   Result = BitPart(V, BitWidth);
2818   for (unsigned i = 0; i < BitWidth; ++i)
2819     Result->Provenance[i] = i;
2820   return Result;
2821 }
2822 
2823 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2824                                           unsigned BitWidth) {
2825   if (From % 8 != To % 8)
2826     return false;
2827   // Convert from bit indices to byte indices and check for a byte reversal.
2828   From >>= 3;
2829   To >>= 3;
2830   BitWidth >>= 3;
2831   return From == BitWidth - To - 1;
2832 }
2833 
2834 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2835                                                unsigned BitWidth) {
2836   return From == BitWidth - To - 1;
2837 }
2838 
2839 bool llvm::recognizeBSwapOrBitReverseIdiom(
2840     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2841     SmallVectorImpl<Instruction *> &InsertedInsts) {
2842   if (Operator::getOpcode(I) != Instruction::Or)
2843     return false;
2844   if (!MatchBSwaps && !MatchBitReversals)
2845     return false;
2846   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2847   if (!ITy || ITy->getBitWidth() > 128)
2848     return false;   // Can't do vectors or integers > 128 bits.
2849   unsigned BW = ITy->getBitWidth();
2850 
2851   unsigned DemandedBW = BW;
2852   IntegerType *DemandedTy = ITy;
2853   if (I->hasOneUse()) {
2854     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2855       DemandedTy = cast<IntegerType>(Trunc->getType());
2856       DemandedBW = DemandedTy->getBitWidth();
2857     }
2858   }
2859 
2860   // Try to find all the pieces corresponding to the bswap.
2861   std::map<Value *, Optional<BitPart>> BPS;
2862   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2863   if (!Res)
2864     return false;
2865   auto &BitProvenance = Res->Provenance;
2866 
2867   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2868   // only byteswap values with an even number of bytes.
2869   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2870   for (unsigned i = 0; i < DemandedBW; ++i) {
2871     OKForBSwap &=
2872         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2873     OKForBitReverse &=
2874         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2875   }
2876 
2877   Intrinsic::ID Intrin;
2878   if (OKForBSwap && MatchBSwaps)
2879     Intrin = Intrinsic::bswap;
2880   else if (OKForBitReverse && MatchBitReversals)
2881     Intrin = Intrinsic::bitreverse;
2882   else
2883     return false;
2884 
2885   if (ITy != DemandedTy) {
2886     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2887     Value *Provider = Res->Provider;
2888     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2889     // We may need to truncate the provider.
2890     if (DemandedTy != ProviderTy) {
2891       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2892                                      "trunc", I);
2893       InsertedInsts.push_back(Trunc);
2894       Provider = Trunc;
2895     }
2896     auto *CI = CallInst::Create(F, Provider, "rev", I);
2897     InsertedInsts.push_back(CI);
2898     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2899     InsertedInsts.push_back(ExtInst);
2900     return true;
2901   }
2902 
2903   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2904   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2905   return true;
2906 }
2907 
2908 // CodeGen has special handling for some string functions that may replace
2909 // them with target-specific intrinsics.  Since that'd skip our interceptors
2910 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2911 // we mark affected calls as NoBuiltin, which will disable optimization
2912 // in CodeGen.
2913 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2914     CallInst *CI, const TargetLibraryInfo *TLI) {
2915   Function *F = CI->getCalledFunction();
2916   LibFunc Func;
2917   if (F && !F->hasLocalLinkage() && F->hasName() &&
2918       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2919       !F->doesNotAccessMemory())
2920     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2921 }
2922 
2923 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2924   // We can't have a PHI with a metadata type.
2925   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2926     return false;
2927 
2928   // Early exit.
2929   if (!isa<Constant>(I->getOperand(OpIdx)))
2930     return true;
2931 
2932   switch (I->getOpcode()) {
2933   default:
2934     return true;
2935   case Instruction::Call:
2936   case Instruction::Invoke:
2937     // Can't handle inline asm. Skip it.
2938     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2939       return false;
2940     // Many arithmetic intrinsics have no issue taking a
2941     // variable, however it's hard to distingish these from
2942     // specials such as @llvm.frameaddress that require a constant.
2943     if (isa<IntrinsicInst>(I))
2944       return false;
2945 
2946     // Constant bundle operands may need to retain their constant-ness for
2947     // correctness.
2948     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2949       return false;
2950     return true;
2951   case Instruction::ShuffleVector:
2952     // Shufflevector masks are constant.
2953     return OpIdx != 2;
2954   case Instruction::Switch:
2955   case Instruction::ExtractValue:
2956     // All operands apart from the first are constant.
2957     return OpIdx == 0;
2958   case Instruction::InsertValue:
2959     // All operands apart from the first and the second are constant.
2960     return OpIdx < 2;
2961   case Instruction::Alloca:
2962     // Static allocas (constant size in the entry block) are handled by
2963     // prologue/epilogue insertion so they're free anyway. We definitely don't
2964     // want to make them non-constant.
2965     return !cast<AllocaInst>(I)->isStaticAlloca();
2966   case Instruction::GetElementPtr:
2967     if (OpIdx == 0)
2968       return true;
2969     gep_type_iterator It = gep_type_begin(I);
2970     for (auto E = std::next(It, OpIdx); It != E; ++It)
2971       if (It.isStruct())
2972         return false;
2973     return true;
2974   }
2975 }
2976 
2977 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
2978 AllocaInst *llvm::findAllocaForValue(Value *V,
2979                                      AllocaForValueMapTy &AllocaForValue) {
2980   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2981     return AI;
2982   // See if we've already calculated (or started to calculate) alloca for a
2983   // given value.
2984   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2985   if (I != AllocaForValue.end())
2986     return I->second;
2987   // Store 0 while we're calculating alloca for value V to avoid
2988   // infinite recursion if the value references itself.
2989   AllocaForValue[V] = nullptr;
2990   AllocaInst *Res = nullptr;
2991   if (CastInst *CI = dyn_cast<CastInst>(V))
2992     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
2993   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2994     for (Value *IncValue : PN->incoming_values()) {
2995       // Allow self-referencing phi-nodes.
2996       if (IncValue == PN)
2997         continue;
2998       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
2999       // AI for incoming values should exist and should all be equal.
3000       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3001         return nullptr;
3002       Res = IncValueAI;
3003     }
3004   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3005     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3006   } else {
3007     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3008                       << *V << "\n");
3009   }
3010   if (Res)
3011     AllocaForValue[V] = Res;
3012   return Res;
3013 }
3014