1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/DomTreeUpdater.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/KnownBits.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace llvm::PatternMatch; 88 89 #define DEBUG_TYPE "local" 90 91 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 92 93 //===----------------------------------------------------------------------===// 94 // Local constant propagation. 95 // 96 97 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 98 /// constant value, convert it into an unconditional branch to the constant 99 /// destination. This is a nontrivial operation because the successors of this 100 /// basic block must have their PHI nodes updated. 101 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 102 /// conditions and indirectbr addresses this might make dead if 103 /// DeleteDeadConditions is true. 104 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 105 const TargetLibraryInfo *TLI, 106 DomTreeUpdater *DTU) { 107 TerminatorInst *T = BB->getTerminator(); 108 IRBuilder<> Builder(T); 109 110 // Branch - See if we are conditional jumping on constant 111 if (auto *BI = dyn_cast<BranchInst>(T)) { 112 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 113 BasicBlock *Dest1 = BI->getSuccessor(0); 114 BasicBlock *Dest2 = BI->getSuccessor(1); 115 116 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 117 // Are we branching on constant? 118 // YES. Change to unconditional branch... 119 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 120 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 121 122 // Let the basic block know that we are letting go of it. Based on this, 123 // it will adjust it's PHI nodes. 124 OldDest->removePredecessor(BB); 125 126 // Replace the conditional branch with an unconditional one. 127 Builder.CreateBr(Destination); 128 BI->eraseFromParent(); 129 if (DTU) 130 DTU->deleteEdgeRelaxed(BB, OldDest); 131 return true; 132 } 133 134 if (Dest2 == Dest1) { // Conditional branch to same location? 135 // This branch matches something like this: 136 // br bool %cond, label %Dest, label %Dest 137 // and changes it into: br label %Dest 138 139 // Let the basic block know that we are letting go of one copy of it. 140 assert(BI->getParent() && "Terminator not inserted in block!"); 141 Dest1->removePredecessor(BI->getParent()); 142 143 // Replace the conditional branch with an unconditional one. 144 Builder.CreateBr(Dest1); 145 Value *Cond = BI->getCondition(); 146 BI->eraseFromParent(); 147 if (DeleteDeadConditions) 148 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 149 return true; 150 } 151 return false; 152 } 153 154 if (auto *SI = dyn_cast<SwitchInst>(T)) { 155 // If we are switching on a constant, we can convert the switch to an 156 // unconditional branch. 157 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 158 BasicBlock *DefaultDest = SI->getDefaultDest(); 159 BasicBlock *TheOnlyDest = DefaultDest; 160 161 // If the default is unreachable, ignore it when searching for TheOnlyDest. 162 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 163 SI->getNumCases() > 0) { 164 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 165 } 166 167 // Figure out which case it goes to. 168 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 169 // Found case matching a constant operand? 170 if (i->getCaseValue() == CI) { 171 TheOnlyDest = i->getCaseSuccessor(); 172 break; 173 } 174 175 // Check to see if this branch is going to the same place as the default 176 // dest. If so, eliminate it as an explicit compare. 177 if (i->getCaseSuccessor() == DefaultDest) { 178 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 179 unsigned NCases = SI->getNumCases(); 180 // Fold the case metadata into the default if there will be any branches 181 // left, unless the metadata doesn't match the switch. 182 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 183 // Collect branch weights into a vector. 184 SmallVector<uint32_t, 8> Weights; 185 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 186 ++MD_i) { 187 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 188 Weights.push_back(CI->getValue().getZExtValue()); 189 } 190 // Merge weight of this case to the default weight. 191 unsigned idx = i->getCaseIndex(); 192 Weights[0] += Weights[idx+1]; 193 // Remove weight for this case. 194 std::swap(Weights[idx+1], Weights.back()); 195 Weights.pop_back(); 196 SI->setMetadata(LLVMContext::MD_prof, 197 MDBuilder(BB->getContext()). 198 createBranchWeights(Weights)); 199 } 200 // Remove this entry. 201 BasicBlock *ParentBB = SI->getParent(); 202 DefaultDest->removePredecessor(ParentBB); 203 i = SI->removeCase(i); 204 e = SI->case_end(); 205 if (DTU) 206 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 207 continue; 208 } 209 210 // Otherwise, check to see if the switch only branches to one destination. 211 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 212 // destinations. 213 if (i->getCaseSuccessor() != TheOnlyDest) 214 TheOnlyDest = nullptr; 215 216 // Increment this iterator as we haven't removed the case. 217 ++i; 218 } 219 220 if (CI && !TheOnlyDest) { 221 // Branching on a constant, but not any of the cases, go to the default 222 // successor. 223 TheOnlyDest = SI->getDefaultDest(); 224 } 225 226 // If we found a single destination that we can fold the switch into, do so 227 // now. 228 if (TheOnlyDest) { 229 // Insert the new branch. 230 Builder.CreateBr(TheOnlyDest); 231 BasicBlock *BB = SI->getParent(); 232 std::vector <DominatorTree::UpdateType> Updates; 233 if (DTU) 234 Updates.reserve(SI->getNumSuccessors() - 1); 235 236 // Remove entries from PHI nodes which we no longer branch to... 237 for (BasicBlock *Succ : SI->successors()) { 238 // Found case matching a constant operand? 239 if (Succ == TheOnlyDest) { 240 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 241 } else { 242 Succ->removePredecessor(BB); 243 if (DTU) 244 Updates.push_back({DominatorTree::Delete, BB, Succ}); 245 } 246 } 247 248 // Delete the old switch. 249 Value *Cond = SI->getCondition(); 250 SI->eraseFromParent(); 251 if (DeleteDeadConditions) 252 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 253 if (DTU) 254 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 255 return true; 256 } 257 258 if (SI->getNumCases() == 1) { 259 // Otherwise, we can fold this switch into a conditional branch 260 // instruction if it has only one non-default destination. 261 auto FirstCase = *SI->case_begin(); 262 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 263 FirstCase.getCaseValue(), "cond"); 264 265 // Insert the new branch. 266 BranchInst *NewBr = Builder.CreateCondBr(Cond, 267 FirstCase.getCaseSuccessor(), 268 SI->getDefaultDest()); 269 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 270 if (MD && MD->getNumOperands() == 3) { 271 ConstantInt *SICase = 272 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 273 ConstantInt *SIDef = 274 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 275 assert(SICase && SIDef); 276 // The TrueWeight should be the weight for the single case of SI. 277 NewBr->setMetadata(LLVMContext::MD_prof, 278 MDBuilder(BB->getContext()). 279 createBranchWeights(SICase->getValue().getZExtValue(), 280 SIDef->getValue().getZExtValue())); 281 } 282 283 // Update make.implicit metadata to the newly-created conditional branch. 284 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 285 if (MakeImplicitMD) 286 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 287 288 // Delete the old switch. 289 SI->eraseFromParent(); 290 return true; 291 } 292 return false; 293 } 294 295 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 296 // indirectbr blockaddress(@F, @BB) -> br label @BB 297 if (auto *BA = 298 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 299 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 300 std::vector <DominatorTree::UpdateType> Updates; 301 if (DTU) 302 Updates.reserve(IBI->getNumDestinations() - 1); 303 304 // Insert the new branch. 305 Builder.CreateBr(TheOnlyDest); 306 307 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 308 if (IBI->getDestination(i) == TheOnlyDest) { 309 TheOnlyDest = nullptr; 310 } else { 311 BasicBlock *ParentBB = IBI->getParent(); 312 BasicBlock *DestBB = IBI->getDestination(i); 313 DestBB->removePredecessor(ParentBB); 314 if (DTU) 315 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 316 } 317 } 318 Value *Address = IBI->getAddress(); 319 IBI->eraseFromParent(); 320 if (DeleteDeadConditions) 321 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 322 323 // If we didn't find our destination in the IBI successor list, then we 324 // have undefined behavior. Replace the unconditional branch with an 325 // 'unreachable' instruction. 326 if (TheOnlyDest) { 327 BB->getTerminator()->eraseFromParent(); 328 new UnreachableInst(BB->getContext(), BB); 329 } 330 331 if (DTU) 332 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 333 return true; 334 } 335 } 336 337 return false; 338 } 339 340 //===----------------------------------------------------------------------===// 341 // Local dead code elimination. 342 // 343 344 /// isInstructionTriviallyDead - Return true if the result produced by the 345 /// instruction is not used, and the instruction has no side effects. 346 /// 347 bool llvm::isInstructionTriviallyDead(Instruction *I, 348 const TargetLibraryInfo *TLI) { 349 if (!I->use_empty()) 350 return false; 351 return wouldInstructionBeTriviallyDead(I, TLI); 352 } 353 354 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 355 const TargetLibraryInfo *TLI) { 356 if (isa<TerminatorInst>(I)) 357 return false; 358 359 // We don't want the landingpad-like instructions removed by anything this 360 // general. 361 if (I->isEHPad()) 362 return false; 363 364 // We don't want debug info removed by anything this general, unless 365 // debug info is empty. 366 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 367 if (DDI->getAddress()) 368 return false; 369 return true; 370 } 371 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 372 if (DVI->getValue()) 373 return false; 374 return true; 375 } 376 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 377 if (DLI->getLabel()) 378 return false; 379 return true; 380 } 381 382 if (!I->mayHaveSideEffects()) 383 return true; 384 385 // Special case intrinsics that "may have side effects" but can be deleted 386 // when dead. 387 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 388 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 389 if (II->getIntrinsicID() == Intrinsic::stacksave || 390 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 391 return true; 392 393 // Lifetime intrinsics are dead when their right-hand is undef. 394 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 395 II->getIntrinsicID() == Intrinsic::lifetime_end) 396 return isa<UndefValue>(II->getArgOperand(1)); 397 398 // Assumptions are dead if their condition is trivially true. Guards on 399 // true are operationally no-ops. In the future we can consider more 400 // sophisticated tradeoffs for guards considering potential for check 401 // widening, but for now we keep things simple. 402 if (II->getIntrinsicID() == Intrinsic::assume || 403 II->getIntrinsicID() == Intrinsic::experimental_guard) { 404 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 405 return !Cond->isZero(); 406 407 return false; 408 } 409 } 410 411 if (isAllocLikeFn(I, TLI)) 412 return true; 413 414 if (CallInst *CI = isFreeCall(I, TLI)) 415 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 416 return C->isNullValue() || isa<UndefValue>(C); 417 418 if (CallSite CS = CallSite(I)) 419 if (isMathLibCallNoop(CS, TLI)) 420 return true; 421 422 return false; 423 } 424 425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 426 /// trivially dead instruction, delete it. If that makes any of its operands 427 /// trivially dead, delete them too, recursively. Return true if any 428 /// instructions were deleted. 429 bool 430 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 431 const TargetLibraryInfo *TLI) { 432 Instruction *I = dyn_cast<Instruction>(V); 433 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 434 return false; 435 436 SmallVector<Instruction*, 16> DeadInsts; 437 DeadInsts.push_back(I); 438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 439 440 return true; 441 } 442 443 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI) { 445 // Process the dead instruction list until empty. 446 while (!DeadInsts.empty()) { 447 Instruction &I = *DeadInsts.pop_back_val(); 448 assert(I.use_empty() && "Instructions with uses are not dead."); 449 assert(isInstructionTriviallyDead(&I, TLI) && 450 "Live instruction found in dead worklist!"); 451 452 // Don't lose the debug info while deleting the instructions. 453 salvageDebugInfo(I); 454 455 // Null out all of the instruction's operands to see if any operand becomes 456 // dead as we go. 457 for (Use &OpU : I.operands()) { 458 Value *OpV = OpU.get(); 459 OpU.set(nullptr); 460 461 if (!OpV->use_empty()) 462 continue; 463 464 // If the operand is an instruction that became dead as we nulled out the 465 // operand, and if it is 'trivially' dead, delete it in a future loop 466 // iteration. 467 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 468 if (isInstructionTriviallyDead(OpI, TLI)) 469 DeadInsts.push_back(OpI); 470 } 471 472 I.eraseFromParent(); 473 } 474 } 475 476 /// areAllUsesEqual - Check whether the uses of a value are all the same. 477 /// This is similar to Instruction::hasOneUse() except this will also return 478 /// true when there are no uses or multiple uses that all refer to the same 479 /// value. 480 static bool areAllUsesEqual(Instruction *I) { 481 Value::user_iterator UI = I->user_begin(); 482 Value::user_iterator UE = I->user_end(); 483 if (UI == UE) 484 return true; 485 486 User *TheUse = *UI; 487 for (++UI; UI != UE; ++UI) { 488 if (*UI != TheUse) 489 return false; 490 } 491 return true; 492 } 493 494 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 495 /// dead PHI node, due to being a def-use chain of single-use nodes that 496 /// either forms a cycle or is terminated by a trivially dead instruction, 497 /// delete it. If that makes any of its operands trivially dead, delete them 498 /// too, recursively. Return true if a change was made. 499 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 500 const TargetLibraryInfo *TLI) { 501 SmallPtrSet<Instruction*, 4> Visited; 502 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 503 I = cast<Instruction>(*I->user_begin())) { 504 if (I->use_empty()) 505 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 506 507 // If we find an instruction more than once, we're on a cycle that 508 // won't prove fruitful. 509 if (!Visited.insert(I).second) { 510 // Break the cycle and delete the instruction and its operands. 511 I->replaceAllUsesWith(UndefValue::get(I->getType())); 512 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 513 return true; 514 } 515 } 516 return false; 517 } 518 519 static bool 520 simplifyAndDCEInstruction(Instruction *I, 521 SmallSetVector<Instruction *, 16> &WorkList, 522 const DataLayout &DL, 523 const TargetLibraryInfo *TLI) { 524 if (isInstructionTriviallyDead(I, TLI)) { 525 salvageDebugInfo(*I); 526 527 // Null out all of the instruction's operands to see if any operand becomes 528 // dead as we go. 529 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 530 Value *OpV = I->getOperand(i); 531 I->setOperand(i, nullptr); 532 533 if (!OpV->use_empty() || I == OpV) 534 continue; 535 536 // If the operand is an instruction that became dead as we nulled out the 537 // operand, and if it is 'trivially' dead, delete it in a future loop 538 // iteration. 539 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 540 if (isInstructionTriviallyDead(OpI, TLI)) 541 WorkList.insert(OpI); 542 } 543 544 I->eraseFromParent(); 545 546 return true; 547 } 548 549 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 550 // Add the users to the worklist. CAREFUL: an instruction can use itself, 551 // in the case of a phi node. 552 for (User *U : I->users()) { 553 if (U != I) { 554 WorkList.insert(cast<Instruction>(U)); 555 } 556 } 557 558 // Replace the instruction with its simplified value. 559 bool Changed = false; 560 if (!I->use_empty()) { 561 I->replaceAllUsesWith(SimpleV); 562 Changed = true; 563 } 564 if (isInstructionTriviallyDead(I, TLI)) { 565 I->eraseFromParent(); 566 Changed = true; 567 } 568 return Changed; 569 } 570 return false; 571 } 572 573 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 574 /// simplify any instructions in it and recursively delete dead instructions. 575 /// 576 /// This returns true if it changed the code, note that it can delete 577 /// instructions in other blocks as well in this block. 578 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 579 const TargetLibraryInfo *TLI) { 580 bool MadeChange = false; 581 const DataLayout &DL = BB->getModule()->getDataLayout(); 582 583 #ifndef NDEBUG 584 // In debug builds, ensure that the terminator of the block is never replaced 585 // or deleted by these simplifications. The idea of simplification is that it 586 // cannot introduce new instructions, and there is no way to replace the 587 // terminator of a block without introducing a new instruction. 588 AssertingVH<Instruction> TerminatorVH(&BB->back()); 589 #endif 590 591 SmallSetVector<Instruction *, 16> WorkList; 592 // Iterate over the original function, only adding insts to the worklist 593 // if they actually need to be revisited. This avoids having to pre-init 594 // the worklist with the entire function's worth of instructions. 595 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 596 BI != E;) { 597 assert(!BI->isTerminator()); 598 Instruction *I = &*BI; 599 ++BI; 600 601 // We're visiting this instruction now, so make sure it's not in the 602 // worklist from an earlier visit. 603 if (!WorkList.count(I)) 604 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 605 } 606 607 while (!WorkList.empty()) { 608 Instruction *I = WorkList.pop_back_val(); 609 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 610 } 611 return MadeChange; 612 } 613 614 //===----------------------------------------------------------------------===// 615 // Control Flow Graph Restructuring. 616 // 617 618 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 619 /// method is called when we're about to delete Pred as a predecessor of BB. If 620 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 621 /// 622 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 623 /// nodes that collapse into identity values. For example, if we have: 624 /// x = phi(1, 0, 0, 0) 625 /// y = and x, z 626 /// 627 /// .. and delete the predecessor corresponding to the '1', this will attempt to 628 /// recursively fold the and to 0. 629 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 630 DomTreeUpdater *DTU) { 631 // This only adjusts blocks with PHI nodes. 632 if (!isa<PHINode>(BB->begin())) 633 return; 634 635 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 636 // them down. This will leave us with single entry phi nodes and other phis 637 // that can be removed. 638 BB->removePredecessor(Pred, true); 639 640 WeakTrackingVH PhiIt = &BB->front(); 641 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 642 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 643 Value *OldPhiIt = PhiIt; 644 645 if (!recursivelySimplifyInstruction(PN)) 646 continue; 647 648 // If recursive simplification ended up deleting the next PHI node we would 649 // iterate to, then our iterator is invalid, restart scanning from the top 650 // of the block. 651 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 652 } 653 if (DTU) 654 DTU->deleteEdgeRelaxed(Pred, BB); 655 } 656 657 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 658 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 659 /// between them, moving the instructions in the predecessor into DestBB and 660 /// deleting the predecessor block. 661 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 662 DomTreeUpdater *DTU) { 663 664 // If BB has single-entry PHI nodes, fold them. 665 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 666 Value *NewVal = PN->getIncomingValue(0); 667 // Replace self referencing PHI with undef, it must be dead. 668 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 669 PN->replaceAllUsesWith(NewVal); 670 PN->eraseFromParent(); 671 } 672 673 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 674 assert(PredBB && "Block doesn't have a single predecessor!"); 675 676 bool ReplaceEntryBB = false; 677 if (PredBB == &DestBB->getParent()->getEntryBlock()) 678 ReplaceEntryBB = true; 679 680 // DTU updates: Collect all the edges that enter 681 // PredBB. These dominator edges will be redirected to DestBB. 682 std::vector <DominatorTree::UpdateType> Updates; 683 684 if (DTU) { 685 Updates.reserve(1 + (2 * pred_size(PredBB))); 686 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 687 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 688 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 689 // This predecessor of PredBB may already have DestBB as a successor. 690 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 691 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 692 } 693 } 694 695 // Zap anything that took the address of DestBB. Not doing this will give the 696 // address an invalid value. 697 if (DestBB->hasAddressTaken()) { 698 BlockAddress *BA = BlockAddress::get(DestBB); 699 Constant *Replacement = 700 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 701 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 702 BA->getType())); 703 BA->destroyConstant(); 704 } 705 706 // Anything that branched to PredBB now branches to DestBB. 707 PredBB->replaceAllUsesWith(DestBB); 708 709 // Splice all the instructions from PredBB to DestBB. 710 PredBB->getTerminator()->eraseFromParent(); 711 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 712 new UnreachableInst(PredBB->getContext(), PredBB); 713 714 // If the PredBB is the entry block of the function, move DestBB up to 715 // become the entry block after we erase PredBB. 716 if (ReplaceEntryBB) 717 DestBB->moveAfter(PredBB); 718 719 if (DTU) { 720 assert(PredBB->getInstList().size() == 1 && 721 isa<UnreachableInst>(PredBB->getTerminator()) && 722 "The successor list of PredBB isn't empty before " 723 "applying corresponding DTU updates."); 724 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 725 DTU->deleteBB(PredBB); 726 // Recalculation of DomTree is needed when updating a forward DomTree and 727 // the Entry BB is replaced. 728 if (ReplaceEntryBB && DTU->hasDomTree()) { 729 // The entry block was removed and there is no external interface for 730 // the dominator tree to be notified of this change. In this corner-case 731 // we recalculate the entire tree. 732 DTU->recalculate(*(DestBB->getParent())); 733 } 734 } 735 736 else { 737 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 738 } 739 } 740 741 /// CanMergeValues - Return true if we can choose one of these values to use 742 /// in place of the other. Note that we will always choose the non-undef 743 /// value to keep. 744 static bool CanMergeValues(Value *First, Value *Second) { 745 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 746 } 747 748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 750 /// 751 /// Assumption: Succ is the single successor for BB. 752 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 753 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 754 755 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 756 << Succ->getName() << "\n"); 757 // Shortcut, if there is only a single predecessor it must be BB and merging 758 // is always safe 759 if (Succ->getSinglePredecessor()) return true; 760 761 // Make a list of the predecessors of BB 762 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 763 764 // Look at all the phi nodes in Succ, to see if they present a conflict when 765 // merging these blocks 766 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 767 PHINode *PN = cast<PHINode>(I); 768 769 // If the incoming value from BB is again a PHINode in 770 // BB which has the same incoming value for *PI as PN does, we can 771 // merge the phi nodes and then the blocks can still be merged 772 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 773 if (BBPN && BBPN->getParent() == BB) { 774 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 775 BasicBlock *IBB = PN->getIncomingBlock(PI); 776 if (BBPreds.count(IBB) && 777 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 778 PN->getIncomingValue(PI))) { 779 LLVM_DEBUG(dbgs() 780 << "Can't fold, phi node " << PN->getName() << " in " 781 << Succ->getName() << " is conflicting with " 782 << BBPN->getName() << " with regard to common predecessor " 783 << IBB->getName() << "\n"); 784 return false; 785 } 786 } 787 } else { 788 Value* Val = PN->getIncomingValueForBlock(BB); 789 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 790 // See if the incoming value for the common predecessor is equal to the 791 // one for BB, in which case this phi node will not prevent the merging 792 // of the block. 793 BasicBlock *IBB = PN->getIncomingBlock(PI); 794 if (BBPreds.count(IBB) && 795 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 796 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 797 << " in " << Succ->getName() 798 << " is conflicting with regard to common " 799 << "predecessor " << IBB->getName() << "\n"); 800 return false; 801 } 802 } 803 } 804 } 805 806 return true; 807 } 808 809 using PredBlockVector = SmallVector<BasicBlock *, 16>; 810 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 811 812 /// Determines the value to use as the phi node input for a block. 813 /// 814 /// Select between \p OldVal any value that we know flows from \p BB 815 /// to a particular phi on the basis of which one (if either) is not 816 /// undef. Update IncomingValues based on the selected value. 817 /// 818 /// \param OldVal The value we are considering selecting. 819 /// \param BB The block that the value flows in from. 820 /// \param IncomingValues A map from block-to-value for other phi inputs 821 /// that we have examined. 822 /// 823 /// \returns the selected value. 824 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 825 IncomingValueMap &IncomingValues) { 826 if (!isa<UndefValue>(OldVal)) { 827 assert((!IncomingValues.count(BB) || 828 IncomingValues.find(BB)->second == OldVal) && 829 "Expected OldVal to match incoming value from BB!"); 830 831 IncomingValues.insert(std::make_pair(BB, OldVal)); 832 return OldVal; 833 } 834 835 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 836 if (It != IncomingValues.end()) return It->second; 837 838 return OldVal; 839 } 840 841 /// Create a map from block to value for the operands of a 842 /// given phi. 843 /// 844 /// Create a map from block to value for each non-undef value flowing 845 /// into \p PN. 846 /// 847 /// \param PN The phi we are collecting the map for. 848 /// \param IncomingValues [out] The map from block to value for this phi. 849 static void gatherIncomingValuesToPhi(PHINode *PN, 850 IncomingValueMap &IncomingValues) { 851 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 852 BasicBlock *BB = PN->getIncomingBlock(i); 853 Value *V = PN->getIncomingValue(i); 854 855 if (!isa<UndefValue>(V)) 856 IncomingValues.insert(std::make_pair(BB, V)); 857 } 858 } 859 860 /// Replace the incoming undef values to a phi with the values 861 /// from a block-to-value map. 862 /// 863 /// \param PN The phi we are replacing the undefs in. 864 /// \param IncomingValues A map from block to value. 865 static void replaceUndefValuesInPhi(PHINode *PN, 866 const IncomingValueMap &IncomingValues) { 867 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 868 Value *V = PN->getIncomingValue(i); 869 870 if (!isa<UndefValue>(V)) continue; 871 872 BasicBlock *BB = PN->getIncomingBlock(i); 873 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 874 if (It == IncomingValues.end()) continue; 875 876 PN->setIncomingValue(i, It->second); 877 } 878 } 879 880 /// Replace a value flowing from a block to a phi with 881 /// potentially multiple instances of that value flowing from the 882 /// block's predecessors to the phi. 883 /// 884 /// \param BB The block with the value flowing into the phi. 885 /// \param BBPreds The predecessors of BB. 886 /// \param PN The phi that we are updating. 887 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 888 const PredBlockVector &BBPreds, 889 PHINode *PN) { 890 Value *OldVal = PN->removeIncomingValue(BB, false); 891 assert(OldVal && "No entry in PHI for Pred BB!"); 892 893 IncomingValueMap IncomingValues; 894 895 // We are merging two blocks - BB, and the block containing PN - and 896 // as a result we need to redirect edges from the predecessors of BB 897 // to go to the block containing PN, and update PN 898 // accordingly. Since we allow merging blocks in the case where the 899 // predecessor and successor blocks both share some predecessors, 900 // and where some of those common predecessors might have undef 901 // values flowing into PN, we want to rewrite those values to be 902 // consistent with the non-undef values. 903 904 gatherIncomingValuesToPhi(PN, IncomingValues); 905 906 // If this incoming value is one of the PHI nodes in BB, the new entries 907 // in the PHI node are the entries from the old PHI. 908 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 909 PHINode *OldValPN = cast<PHINode>(OldVal); 910 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 911 // Note that, since we are merging phi nodes and BB and Succ might 912 // have common predecessors, we could end up with a phi node with 913 // identical incoming branches. This will be cleaned up later (and 914 // will trigger asserts if we try to clean it up now, without also 915 // simplifying the corresponding conditional branch). 916 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 917 Value *PredVal = OldValPN->getIncomingValue(i); 918 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 919 IncomingValues); 920 921 // And add a new incoming value for this predecessor for the 922 // newly retargeted branch. 923 PN->addIncoming(Selected, PredBB); 924 } 925 } else { 926 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 927 // Update existing incoming values in PN for this 928 // predecessor of BB. 929 BasicBlock *PredBB = BBPreds[i]; 930 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 931 IncomingValues); 932 933 // And add a new incoming value for this predecessor for the 934 // newly retargeted branch. 935 PN->addIncoming(Selected, PredBB); 936 } 937 } 938 939 replaceUndefValuesInPhi(PN, IncomingValues); 940 } 941 942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 943 /// unconditional branch, and contains no instructions other than PHI nodes, 944 /// potential side-effect free intrinsics and the branch. If possible, 945 /// eliminate BB by rewriting all the predecessors to branch to the successor 946 /// block and return true. If we can't transform, return false. 947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 948 DomTreeUpdater *DTU) { 949 assert(BB != &BB->getParent()->getEntryBlock() && 950 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 951 952 // We can't eliminate infinite loops. 953 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 954 if (BB == Succ) return false; 955 956 // Check to see if merging these blocks would cause conflicts for any of the 957 // phi nodes in BB or Succ. If not, we can safely merge. 958 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 959 960 // Check for cases where Succ has multiple predecessors and a PHI node in BB 961 // has uses which will not disappear when the PHI nodes are merged. It is 962 // possible to handle such cases, but difficult: it requires checking whether 963 // BB dominates Succ, which is non-trivial to calculate in the case where 964 // Succ has multiple predecessors. Also, it requires checking whether 965 // constructing the necessary self-referential PHI node doesn't introduce any 966 // conflicts; this isn't too difficult, but the previous code for doing this 967 // was incorrect. 968 // 969 // Note that if this check finds a live use, BB dominates Succ, so BB is 970 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 971 // folding the branch isn't profitable in that case anyway. 972 if (!Succ->getSinglePredecessor()) { 973 BasicBlock::iterator BBI = BB->begin(); 974 while (isa<PHINode>(*BBI)) { 975 for (Use &U : BBI->uses()) { 976 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 977 if (PN->getIncomingBlock(U) != BB) 978 return false; 979 } else { 980 return false; 981 } 982 } 983 ++BBI; 984 } 985 } 986 987 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 988 989 std::vector<DominatorTree::UpdateType> Updates; 990 if (DTU) { 991 Updates.reserve(1 + (2 * pred_size(BB))); 992 Updates.push_back({DominatorTree::Delete, BB, Succ}); 993 // All predecessors of BB will be moved to Succ. 994 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 995 Updates.push_back({DominatorTree::Delete, *I, BB}); 996 // This predecessor of BB may already have Succ as a successor. 997 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 998 Updates.push_back({DominatorTree::Insert, *I, Succ}); 999 } 1000 } 1001 1002 if (isa<PHINode>(Succ->begin())) { 1003 // If there is more than one pred of succ, and there are PHI nodes in 1004 // the successor, then we need to add incoming edges for the PHI nodes 1005 // 1006 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1007 1008 // Loop over all of the PHI nodes in the successor of BB. 1009 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1010 PHINode *PN = cast<PHINode>(I); 1011 1012 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1013 } 1014 } 1015 1016 if (Succ->getSinglePredecessor()) { 1017 // BB is the only predecessor of Succ, so Succ will end up with exactly 1018 // the same predecessors BB had. 1019 1020 // Copy over any phi, debug or lifetime instruction. 1021 BB->getTerminator()->eraseFromParent(); 1022 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1023 BB->getInstList()); 1024 } else { 1025 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1026 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1027 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1028 PN->eraseFromParent(); 1029 } 1030 } 1031 1032 // If the unconditional branch we replaced contains llvm.loop metadata, we 1033 // add the metadata to the branch instructions in the predecessors. 1034 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1035 Instruction *TI = BB->getTerminator(); 1036 if (TI) 1037 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1038 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1039 BasicBlock *Pred = *PI; 1040 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1041 } 1042 1043 // Everything that jumped to BB now goes to Succ. 1044 BB->replaceAllUsesWith(Succ); 1045 if (!Succ->hasName()) Succ->takeName(BB); 1046 1047 // Clear the successor list of BB to match updates applying to DTU later. 1048 if (BB->getTerminator()) 1049 BB->getInstList().pop_back(); 1050 new UnreachableInst(BB->getContext(), BB); 1051 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1052 "applying corresponding DTU updates."); 1053 1054 if (DTU) { 1055 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1056 DTU->deleteBB(BB); 1057 } else { 1058 BB->eraseFromParent(); // Delete the old basic block. 1059 } 1060 return true; 1061 } 1062 1063 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1064 /// nodes in this block. This doesn't try to be clever about PHI nodes 1065 /// which differ only in the order of the incoming values, but instcombine 1066 /// orders them so it usually won't matter. 1067 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1068 // This implementation doesn't currently consider undef operands 1069 // specially. Theoretically, two phis which are identical except for 1070 // one having an undef where the other doesn't could be collapsed. 1071 1072 struct PHIDenseMapInfo { 1073 static PHINode *getEmptyKey() { 1074 return DenseMapInfo<PHINode *>::getEmptyKey(); 1075 } 1076 1077 static PHINode *getTombstoneKey() { 1078 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1079 } 1080 1081 static unsigned getHashValue(PHINode *PN) { 1082 // Compute a hash value on the operands. Instcombine will likely have 1083 // sorted them, which helps expose duplicates, but we have to check all 1084 // the operands to be safe in case instcombine hasn't run. 1085 return static_cast<unsigned>(hash_combine( 1086 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1087 hash_combine_range(PN->block_begin(), PN->block_end()))); 1088 } 1089 1090 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1091 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1092 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1093 return LHS == RHS; 1094 return LHS->isIdenticalTo(RHS); 1095 } 1096 }; 1097 1098 // Set of unique PHINodes. 1099 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1100 1101 // Examine each PHI. 1102 bool Changed = false; 1103 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1104 auto Inserted = PHISet.insert(PN); 1105 if (!Inserted.second) { 1106 // A duplicate. Replace this PHI with its duplicate. 1107 PN->replaceAllUsesWith(*Inserted.first); 1108 PN->eraseFromParent(); 1109 Changed = true; 1110 1111 // The RAUW can change PHIs that we already visited. Start over from the 1112 // beginning. 1113 PHISet.clear(); 1114 I = BB->begin(); 1115 } 1116 } 1117 1118 return Changed; 1119 } 1120 1121 /// enforceKnownAlignment - If the specified pointer points to an object that 1122 /// we control, modify the object's alignment to PrefAlign. This isn't 1123 /// often possible though. If alignment is important, a more reliable approach 1124 /// is to simply align all global variables and allocation instructions to 1125 /// their preferred alignment from the beginning. 1126 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1127 unsigned PrefAlign, 1128 const DataLayout &DL) { 1129 assert(PrefAlign > Align); 1130 1131 V = V->stripPointerCasts(); 1132 1133 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1134 // TODO: ideally, computeKnownBits ought to have used 1135 // AllocaInst::getAlignment() in its computation already, making 1136 // the below max redundant. But, as it turns out, 1137 // stripPointerCasts recurses through infinite layers of bitcasts, 1138 // while computeKnownBits is not allowed to traverse more than 6 1139 // levels. 1140 Align = std::max(AI->getAlignment(), Align); 1141 if (PrefAlign <= Align) 1142 return Align; 1143 1144 // If the preferred alignment is greater than the natural stack alignment 1145 // then don't round up. This avoids dynamic stack realignment. 1146 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1147 return Align; 1148 AI->setAlignment(PrefAlign); 1149 return PrefAlign; 1150 } 1151 1152 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1153 // TODO: as above, this shouldn't be necessary. 1154 Align = std::max(GO->getAlignment(), Align); 1155 if (PrefAlign <= Align) 1156 return Align; 1157 1158 // If there is a large requested alignment and we can, bump up the alignment 1159 // of the global. If the memory we set aside for the global may not be the 1160 // memory used by the final program then it is impossible for us to reliably 1161 // enforce the preferred alignment. 1162 if (!GO->canIncreaseAlignment()) 1163 return Align; 1164 1165 GO->setAlignment(PrefAlign); 1166 return PrefAlign; 1167 } 1168 1169 return Align; 1170 } 1171 1172 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1173 const DataLayout &DL, 1174 const Instruction *CxtI, 1175 AssumptionCache *AC, 1176 const DominatorTree *DT) { 1177 assert(V->getType()->isPointerTy() && 1178 "getOrEnforceKnownAlignment expects a pointer!"); 1179 1180 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1181 unsigned TrailZ = Known.countMinTrailingZeros(); 1182 1183 // Avoid trouble with ridiculously large TrailZ values, such as 1184 // those computed from a null pointer. 1185 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1186 1187 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1188 1189 // LLVM doesn't support alignments larger than this currently. 1190 Align = std::min(Align, +Value::MaximumAlignment); 1191 1192 if (PrefAlign > Align) 1193 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1194 1195 // We don't need to make any adjustment. 1196 return Align; 1197 } 1198 1199 ///===---------------------------------------------------------------------===// 1200 /// Dbg Intrinsic utilities 1201 /// 1202 1203 /// See if there is a dbg.value intrinsic for DIVar before I. 1204 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1205 Instruction *I) { 1206 // Since we can't guarantee that the original dbg.declare instrinsic 1207 // is removed by LowerDbgDeclare(), we need to make sure that we are 1208 // not inserting the same dbg.value intrinsic over and over. 1209 BasicBlock::InstListType::iterator PrevI(I); 1210 if (PrevI != I->getParent()->getInstList().begin()) { 1211 --PrevI; 1212 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1213 if (DVI->getValue() == I->getOperand(0) && 1214 DVI->getVariable() == DIVar && 1215 DVI->getExpression() == DIExpr) 1216 return true; 1217 } 1218 return false; 1219 } 1220 1221 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1222 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1223 DIExpression *DIExpr, 1224 PHINode *APN) { 1225 // Since we can't guarantee that the original dbg.declare instrinsic 1226 // is removed by LowerDbgDeclare(), we need to make sure that we are 1227 // not inserting the same dbg.value intrinsic over and over. 1228 SmallVector<DbgValueInst *, 1> DbgValues; 1229 findDbgValues(DbgValues, APN); 1230 for (auto *DVI : DbgValues) { 1231 assert(DVI->getValue() == APN); 1232 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1233 return true; 1234 } 1235 return false; 1236 } 1237 1238 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1239 /// (or fragment of the variable) described by \p DII. 1240 /// 1241 /// This is primarily intended as a helper for the different 1242 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1243 /// converted describes an alloca'd variable, so we need to use the 1244 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1245 /// identified as covering an n-bit fragment, if the store size of i1 is at 1246 /// least n bits. 1247 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1248 const DataLayout &DL = DII->getModule()->getDataLayout(); 1249 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1250 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1251 return ValueSize >= *FragmentSize; 1252 // We can't always calculate the size of the DI variable (e.g. if it is a 1253 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1254 // intead. 1255 if (DII->isAddressOfVariable()) 1256 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1257 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1258 return ValueSize >= *FragmentSize; 1259 // Could not determine size of variable. Conservatively return false. 1260 return false; 1261 } 1262 1263 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1264 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1265 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1266 StoreInst *SI, DIBuilder &Builder) { 1267 assert(DII->isAddressOfVariable()); 1268 auto *DIVar = DII->getVariable(); 1269 assert(DIVar && "Missing variable"); 1270 auto *DIExpr = DII->getExpression(); 1271 Value *DV = SI->getOperand(0); 1272 1273 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1274 // FIXME: If storing to a part of the variable described by the dbg.declare, 1275 // then we want to insert a dbg.value for the corresponding fragment. 1276 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1277 << *DII << '\n'); 1278 // For now, when there is a store to parts of the variable (but we do not 1279 // know which part) we insert an dbg.value instrinsic to indicate that we 1280 // know nothing about the variable's content. 1281 DV = UndefValue::get(DV->getType()); 1282 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1283 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1284 SI); 1285 return; 1286 } 1287 1288 // If an argument is zero extended then use argument directly. The ZExt 1289 // may be zapped by an optimization pass in future. 1290 Argument *ExtendedArg = nullptr; 1291 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1292 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1293 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1294 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1295 if (ExtendedArg) { 1296 // If this DII was already describing only a fragment of a variable, ensure 1297 // that fragment is appropriately narrowed here. 1298 // But if a fragment wasn't used, describe the value as the original 1299 // argument (rather than the zext or sext) so that it remains described even 1300 // if the sext/zext is optimized away. This widens the variable description, 1301 // leaving it up to the consumer to know how the smaller value may be 1302 // represented in a larger register. 1303 if (auto Fragment = DIExpr->getFragmentInfo()) { 1304 unsigned FragmentOffset = Fragment->OffsetInBits; 1305 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1306 DIExpr->elements_end() - 3); 1307 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1308 Ops.push_back(FragmentOffset); 1309 const DataLayout &DL = DII->getModule()->getDataLayout(); 1310 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1311 DIExpr = Builder.createExpression(Ops); 1312 } 1313 DV = ExtendedArg; 1314 } 1315 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1316 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1317 SI); 1318 } 1319 1320 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1321 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1322 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1323 LoadInst *LI, DIBuilder &Builder) { 1324 auto *DIVar = DII->getVariable(); 1325 auto *DIExpr = DII->getExpression(); 1326 assert(DIVar && "Missing variable"); 1327 1328 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1329 return; 1330 1331 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1332 // FIXME: If only referring to a part of the variable described by the 1333 // dbg.declare, then we want to insert a dbg.value for the corresponding 1334 // fragment. 1335 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1336 << *DII << '\n'); 1337 return; 1338 } 1339 1340 // We are now tracking the loaded value instead of the address. In the 1341 // future if multi-location support is added to the IR, it might be 1342 // preferable to keep tracking both the loaded value and the original 1343 // address in case the alloca can not be elided. 1344 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1345 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1346 DbgValue->insertAfter(LI); 1347 } 1348 1349 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1350 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1351 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1352 PHINode *APN, DIBuilder &Builder) { 1353 auto *DIVar = DII->getVariable(); 1354 auto *DIExpr = DII->getExpression(); 1355 assert(DIVar && "Missing variable"); 1356 1357 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1358 return; 1359 1360 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1361 // FIXME: If only referring to a part of the variable described by the 1362 // dbg.declare, then we want to insert a dbg.value for the corresponding 1363 // fragment. 1364 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1365 << *DII << '\n'); 1366 return; 1367 } 1368 1369 BasicBlock *BB = APN->getParent(); 1370 auto InsertionPt = BB->getFirstInsertionPt(); 1371 1372 // The block may be a catchswitch block, which does not have a valid 1373 // insertion point. 1374 // FIXME: Insert dbg.value markers in the successors when appropriate. 1375 if (InsertionPt != BB->end()) 1376 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1377 &*InsertionPt); 1378 } 1379 1380 /// Determine whether this alloca is either a VLA or an array. 1381 static bool isArray(AllocaInst *AI) { 1382 return AI->isArrayAllocation() || 1383 AI->getType()->getElementType()->isArrayTy(); 1384 } 1385 1386 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1387 /// of llvm.dbg.value intrinsics. 1388 bool llvm::LowerDbgDeclare(Function &F) { 1389 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1390 SmallVector<DbgDeclareInst *, 4> Dbgs; 1391 for (auto &FI : F) 1392 for (Instruction &BI : FI) 1393 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1394 Dbgs.push_back(DDI); 1395 1396 if (Dbgs.empty()) 1397 return false; 1398 1399 for (auto &I : Dbgs) { 1400 DbgDeclareInst *DDI = I; 1401 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1402 // If this is an alloca for a scalar variable, insert a dbg.value 1403 // at each load and store to the alloca and erase the dbg.declare. 1404 // The dbg.values allow tracking a variable even if it is not 1405 // stored on the stack, while the dbg.declare can only describe 1406 // the stack slot (and at a lexical-scope granularity). Later 1407 // passes will attempt to elide the stack slot. 1408 if (!AI || isArray(AI)) 1409 continue; 1410 1411 // A volatile load/store means that the alloca can't be elided anyway. 1412 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1413 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1414 return LI->isVolatile(); 1415 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1416 return SI->isVolatile(); 1417 return false; 1418 })) 1419 continue; 1420 1421 for (auto &AIUse : AI->uses()) { 1422 User *U = AIUse.getUser(); 1423 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1424 if (AIUse.getOperandNo() == 1) 1425 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1426 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1427 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1428 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1429 // This is a call by-value or some other instruction that takes a 1430 // pointer to the variable. Insert a *value* intrinsic that describes 1431 // the variable by dereferencing the alloca. 1432 auto *DerefExpr = 1433 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1434 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1435 DDI->getDebugLoc(), CI); 1436 } 1437 } 1438 DDI->eraseFromParent(); 1439 } 1440 return true; 1441 } 1442 1443 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1444 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1445 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1446 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1447 if (InsertedPHIs.size() == 0) 1448 return; 1449 1450 // Map existing PHI nodes to their dbg.values. 1451 ValueToValueMapTy DbgValueMap; 1452 for (auto &I : *BB) { 1453 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1454 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1455 DbgValueMap.insert({Loc, DbgII}); 1456 } 1457 } 1458 if (DbgValueMap.size() == 0) 1459 return; 1460 1461 // Then iterate through the new PHIs and look to see if they use one of the 1462 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1463 // propagate the info through the new PHI. 1464 LLVMContext &C = BB->getContext(); 1465 for (auto PHI : InsertedPHIs) { 1466 BasicBlock *Parent = PHI->getParent(); 1467 // Avoid inserting an intrinsic into an EH block. 1468 if (Parent->getFirstNonPHI()->isEHPad()) 1469 continue; 1470 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1471 for (auto VI : PHI->operand_values()) { 1472 auto V = DbgValueMap.find(VI); 1473 if (V != DbgValueMap.end()) { 1474 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1475 Instruction *NewDbgII = DbgII->clone(); 1476 NewDbgII->setOperand(0, PhiMAV); 1477 auto InsertionPt = Parent->getFirstInsertionPt(); 1478 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1479 NewDbgII->insertBefore(&*InsertionPt); 1480 } 1481 } 1482 } 1483 } 1484 1485 /// Finds all intrinsics declaring local variables as living in the memory that 1486 /// 'V' points to. This may include a mix of dbg.declare and 1487 /// dbg.addr intrinsics. 1488 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1489 // This function is hot. Check whether the value has any metadata to avoid a 1490 // DenseMap lookup. 1491 if (!V->isUsedByMetadata()) 1492 return {}; 1493 auto *L = LocalAsMetadata::getIfExists(V); 1494 if (!L) 1495 return {}; 1496 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1497 if (!MDV) 1498 return {}; 1499 1500 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1501 for (User *U : MDV->users()) { 1502 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1503 if (DII->isAddressOfVariable()) 1504 Declares.push_back(DII); 1505 } 1506 1507 return Declares; 1508 } 1509 1510 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1511 // This function is hot. Check whether the value has any metadata to avoid a 1512 // DenseMap lookup. 1513 if (!V->isUsedByMetadata()) 1514 return; 1515 if (auto *L = LocalAsMetadata::getIfExists(V)) 1516 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1517 for (User *U : MDV->users()) 1518 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1519 DbgValues.push_back(DVI); 1520 } 1521 1522 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1523 Value *V) { 1524 // This function is hot. Check whether the value has any metadata to avoid a 1525 // DenseMap lookup. 1526 if (!V->isUsedByMetadata()) 1527 return; 1528 if (auto *L = LocalAsMetadata::getIfExists(V)) 1529 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1530 for (User *U : MDV->users()) 1531 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1532 DbgUsers.push_back(DII); 1533 } 1534 1535 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1536 Instruction *InsertBefore, DIBuilder &Builder, 1537 bool DerefBefore, int Offset, bool DerefAfter) { 1538 auto DbgAddrs = FindDbgAddrUses(Address); 1539 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1540 DebugLoc Loc = DII->getDebugLoc(); 1541 auto *DIVar = DII->getVariable(); 1542 auto *DIExpr = DII->getExpression(); 1543 assert(DIVar && "Missing variable"); 1544 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1545 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1546 // llvm.dbg.declare. 1547 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1548 if (DII == InsertBefore) 1549 InsertBefore = InsertBefore->getNextNode(); 1550 DII->eraseFromParent(); 1551 } 1552 return !DbgAddrs.empty(); 1553 } 1554 1555 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1556 DIBuilder &Builder, bool DerefBefore, 1557 int Offset, bool DerefAfter) { 1558 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1559 DerefBefore, Offset, DerefAfter); 1560 } 1561 1562 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1563 DIBuilder &Builder, int Offset) { 1564 DebugLoc Loc = DVI->getDebugLoc(); 1565 auto *DIVar = DVI->getVariable(); 1566 auto *DIExpr = DVI->getExpression(); 1567 assert(DIVar && "Missing variable"); 1568 1569 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1570 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1571 // it and give up. 1572 if (!DIExpr || DIExpr->getNumElements() < 1 || 1573 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1574 return; 1575 1576 // Insert the offset immediately after the first deref. 1577 // We could just change the offset argument of dbg.value, but it's unsigned... 1578 if (Offset) { 1579 SmallVector<uint64_t, 4> Ops; 1580 Ops.push_back(dwarf::DW_OP_deref); 1581 DIExpression::appendOffset(Ops, Offset); 1582 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1583 DIExpr = Builder.createExpression(Ops); 1584 } 1585 1586 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1587 DVI->eraseFromParent(); 1588 } 1589 1590 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1591 DIBuilder &Builder, int Offset) { 1592 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1593 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1594 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1595 Use &U = *UI++; 1596 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1597 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1598 } 1599 } 1600 1601 /// Wrap \p V in a ValueAsMetadata instance. 1602 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1603 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1604 } 1605 1606 bool llvm::salvageDebugInfo(Instruction &I) { 1607 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1608 findDbgUsers(DbgUsers, &I); 1609 if (DbgUsers.empty()) 1610 return false; 1611 1612 auto &M = *I.getModule(); 1613 auto &DL = M.getDataLayout(); 1614 auto &Ctx = I.getContext(); 1615 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1616 1617 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1618 auto *DIExpr = DII->getExpression(); 1619 if (!Ops.empty()) { 1620 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1621 // are implicitly pointing out the value as a DWARF memory location 1622 // description. 1623 bool WithStackValue = isa<DbgValueInst>(DII); 1624 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1625 } 1626 DII->setOperand(0, wrapMD(I.getOperand(0))); 1627 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1628 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1629 }; 1630 1631 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) { 1632 SmallVector<uint64_t, 8> Ops; 1633 DIExpression::appendOffset(Ops, Offset); 1634 doSalvage(DII, Ops); 1635 }; 1636 1637 auto applyOps = [&](DbgVariableIntrinsic *DII, 1638 std::initializer_list<uint64_t> Opcodes) { 1639 SmallVector<uint64_t, 8> Ops(Opcodes); 1640 doSalvage(DII, Ops); 1641 }; 1642 1643 if (auto *CI = dyn_cast<CastInst>(&I)) { 1644 if (!CI->isNoopCast(DL)) 1645 return false; 1646 1647 // No-op casts are irrelevant for debug info. 1648 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1649 for (auto *DII : DbgUsers) { 1650 DII->setOperand(0, CastSrc); 1651 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1652 } 1653 return true; 1654 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1655 unsigned BitWidth = 1656 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1657 // Rewrite a constant GEP into a DIExpression. Since we are performing 1658 // arithmetic to compute the variable's *value* in the DIExpression, we 1659 // need to mark the expression with a DW_OP_stack_value. 1660 APInt Offset(BitWidth, 0); 1661 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1662 for (auto *DII : DbgUsers) 1663 applyOffset(DII, Offset.getSExtValue()); 1664 return true; 1665 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1666 // Rewrite binary operations with constant integer operands. 1667 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1668 if (!ConstInt || ConstInt->getBitWidth() > 64) 1669 return false; 1670 1671 uint64_t Val = ConstInt->getSExtValue(); 1672 for (auto *DII : DbgUsers) { 1673 switch (BI->getOpcode()) { 1674 case Instruction::Add: 1675 applyOffset(DII, Val); 1676 break; 1677 case Instruction::Sub: 1678 applyOffset(DII, -int64_t(Val)); 1679 break; 1680 case Instruction::Mul: 1681 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1682 break; 1683 case Instruction::SDiv: 1684 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1685 break; 1686 case Instruction::SRem: 1687 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1688 break; 1689 case Instruction::Or: 1690 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1691 break; 1692 case Instruction::And: 1693 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1694 break; 1695 case Instruction::Xor: 1696 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1697 break; 1698 case Instruction::Shl: 1699 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1700 break; 1701 case Instruction::LShr: 1702 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1703 break; 1704 case Instruction::AShr: 1705 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1706 break; 1707 default: 1708 // TODO: Salvage constants from each kind of binop we know about. 1709 return false; 1710 } 1711 } 1712 return true; 1713 } else if (isa<LoadInst>(&I)) { 1714 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1715 for (auto *DII : DbgUsers) { 1716 // Rewrite the load into DW_OP_deref. 1717 auto *DIExpr = DII->getExpression(); 1718 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1719 DII->setOperand(0, AddrMD); 1720 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1721 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1722 } 1723 return true; 1724 } 1725 return false; 1726 } 1727 1728 /// A replacement for a dbg.value expression. 1729 using DbgValReplacement = Optional<DIExpression *>; 1730 1731 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1732 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1733 /// changes are made. 1734 static bool rewriteDebugUsers( 1735 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1736 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1737 // Find debug users of From. 1738 SmallVector<DbgVariableIntrinsic *, 1> Users; 1739 findDbgUsers(Users, &From); 1740 if (Users.empty()) 1741 return false; 1742 1743 // Prevent use-before-def of To. 1744 bool Changed = false; 1745 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1746 if (isa<Instruction>(&To)) { 1747 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1748 1749 for (auto *DII : Users) { 1750 // It's common to see a debug user between From and DomPoint. Move it 1751 // after DomPoint to preserve the variable update without any reordering. 1752 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1753 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1754 DII->moveAfter(&DomPoint); 1755 Changed = true; 1756 1757 // Users which otherwise aren't dominated by the replacement value must 1758 // be salvaged or deleted. 1759 } else if (!DT.dominates(&DomPoint, DII)) { 1760 DeleteOrSalvage.insert(DII); 1761 } 1762 } 1763 } 1764 1765 // Update debug users without use-before-def risk. 1766 for (auto *DII : Users) { 1767 if (DeleteOrSalvage.count(DII)) 1768 continue; 1769 1770 LLVMContext &Ctx = DII->getContext(); 1771 DbgValReplacement DVR = RewriteExpr(*DII); 1772 if (!DVR) 1773 continue; 1774 1775 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1776 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1777 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1778 Changed = true; 1779 } 1780 1781 if (!DeleteOrSalvage.empty()) { 1782 // Try to salvage the remaining debug users. 1783 Changed |= salvageDebugInfo(From); 1784 1785 // Delete the debug users which weren't salvaged. 1786 for (auto *DII : DeleteOrSalvage) { 1787 if (DII->getVariableLocation() == &From) { 1788 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1789 DII->eraseFromParent(); 1790 Changed = true; 1791 } 1792 } 1793 } 1794 1795 return Changed; 1796 } 1797 1798 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1799 /// losslessly preserve the bits and semantics of the value. This predicate is 1800 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1801 /// 1802 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1803 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1804 /// and also does not allow lossless pointer <-> integer conversions. 1805 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1806 Type *ToTy) { 1807 // Trivially compatible types. 1808 if (FromTy == ToTy) 1809 return true; 1810 1811 // Handle compatible pointer <-> integer conversions. 1812 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1813 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1814 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1815 !DL.isNonIntegralPointerType(ToTy); 1816 return SameSize && LosslessConversion; 1817 } 1818 1819 // TODO: This is not exhaustive. 1820 return false; 1821 } 1822 1823 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1824 Instruction &DomPoint, DominatorTree &DT) { 1825 // Exit early if From has no debug users. 1826 if (!From.isUsedByMetadata()) 1827 return false; 1828 1829 assert(&From != &To && "Can't replace something with itself"); 1830 1831 Type *FromTy = From.getType(); 1832 Type *ToTy = To.getType(); 1833 1834 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1835 return DII.getExpression(); 1836 }; 1837 1838 // Handle no-op conversions. 1839 Module &M = *From.getModule(); 1840 const DataLayout &DL = M.getDataLayout(); 1841 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1842 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1843 1844 // Handle integer-to-integer widening and narrowing. 1845 // FIXME: Use DW_OP_convert when it's available everywhere. 1846 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1847 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1848 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1849 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1850 1851 // When the width of the result grows, assume that a debugger will only 1852 // access the low `FromBits` bits when inspecting the source variable. 1853 if (FromBits < ToBits) 1854 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1855 1856 // The width of the result has shrunk. Use sign/zero extension to describe 1857 // the source variable's high bits. 1858 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1859 DILocalVariable *Var = DII.getVariable(); 1860 1861 // Without knowing signedness, sign/zero extension isn't possible. 1862 auto Signedness = Var->getSignedness(); 1863 if (!Signedness) 1864 return None; 1865 1866 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1867 1868 if (!Signed) { 1869 // In the unsigned case, assume that a debugger will initialize the 1870 // high bits to 0 and do a no-op conversion. 1871 return Identity(DII); 1872 } else { 1873 // In the signed case, the high bits are given by sign extension, i.e: 1874 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1875 // Calculate the high bits and OR them together with the low bits. 1876 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1877 (ToBits - 1), dwarf::DW_OP_shr, 1878 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1879 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1880 return DIExpression::appendToStack(DII.getExpression(), Ops); 1881 } 1882 }; 1883 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1884 } 1885 1886 // TODO: Floating-point conversions, vectors. 1887 return false; 1888 } 1889 1890 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1891 unsigned NumDeadInst = 0; 1892 // Delete the instructions backwards, as it has a reduced likelihood of 1893 // having to update as many def-use and use-def chains. 1894 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1895 while (EndInst != &BB->front()) { 1896 // Delete the next to last instruction. 1897 Instruction *Inst = &*--EndInst->getIterator(); 1898 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1899 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1900 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1901 EndInst = Inst; 1902 continue; 1903 } 1904 if (!isa<DbgInfoIntrinsic>(Inst)) 1905 ++NumDeadInst; 1906 Inst->eraseFromParent(); 1907 } 1908 return NumDeadInst; 1909 } 1910 1911 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1912 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1913 BasicBlock *BB = I->getParent(); 1914 std::vector <DominatorTree::UpdateType> Updates; 1915 1916 // Loop over all of the successors, removing BB's entry from any PHI 1917 // nodes. 1918 if (DTU) 1919 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1920 for (BasicBlock *Successor : successors(BB)) { 1921 Successor->removePredecessor(BB, PreserveLCSSA); 1922 if (DTU) 1923 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1924 } 1925 // Insert a call to llvm.trap right before this. This turns the undefined 1926 // behavior into a hard fail instead of falling through into random code. 1927 if (UseLLVMTrap) { 1928 Function *TrapFn = 1929 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1930 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1931 CallTrap->setDebugLoc(I->getDebugLoc()); 1932 } 1933 auto *UI = new UnreachableInst(I->getContext(), I); 1934 UI->setDebugLoc(I->getDebugLoc()); 1935 1936 // All instructions after this are dead. 1937 unsigned NumInstrsRemoved = 0; 1938 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1939 while (BBI != BBE) { 1940 if (!BBI->use_empty()) 1941 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1942 BB->getInstList().erase(BBI++); 1943 ++NumInstrsRemoved; 1944 } 1945 if (DTU) 1946 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1947 return NumInstrsRemoved; 1948 } 1949 1950 /// changeToCall - Convert the specified invoke into a normal call. 1951 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1952 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1953 SmallVector<OperandBundleDef, 1> OpBundles; 1954 II->getOperandBundlesAsDefs(OpBundles); 1955 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1956 "", II); 1957 NewCall->takeName(II); 1958 NewCall->setCallingConv(II->getCallingConv()); 1959 NewCall->setAttributes(II->getAttributes()); 1960 NewCall->setDebugLoc(II->getDebugLoc()); 1961 II->replaceAllUsesWith(NewCall); 1962 1963 // Follow the call by a branch to the normal destination. 1964 BasicBlock *NormalDestBB = II->getNormalDest(); 1965 BranchInst::Create(NormalDestBB, II); 1966 1967 // Update PHI nodes in the unwind destination 1968 BasicBlock *BB = II->getParent(); 1969 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1970 UnwindDestBB->removePredecessor(BB); 1971 II->eraseFromParent(); 1972 if (DTU) 1973 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1974 } 1975 1976 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1977 BasicBlock *UnwindEdge) { 1978 BasicBlock *BB = CI->getParent(); 1979 1980 // Convert this function call into an invoke instruction. First, split the 1981 // basic block. 1982 BasicBlock *Split = 1983 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1984 1985 // Delete the unconditional branch inserted by splitBasicBlock 1986 BB->getInstList().pop_back(); 1987 1988 // Create the new invoke instruction. 1989 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1990 SmallVector<OperandBundleDef, 1> OpBundles; 1991 1992 CI->getOperandBundlesAsDefs(OpBundles); 1993 1994 // Note: we're round tripping operand bundles through memory here, and that 1995 // can potentially be avoided with a cleverer API design that we do not have 1996 // as of this time. 1997 1998 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1999 InvokeArgs, OpBundles, CI->getName(), BB); 2000 II->setDebugLoc(CI->getDebugLoc()); 2001 II->setCallingConv(CI->getCallingConv()); 2002 II->setAttributes(CI->getAttributes()); 2003 2004 // Make sure that anything using the call now uses the invoke! This also 2005 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2006 CI->replaceAllUsesWith(II); 2007 2008 // Delete the original call 2009 Split->getInstList().pop_front(); 2010 return Split; 2011 } 2012 2013 static bool markAliveBlocks(Function &F, 2014 SmallPtrSetImpl<BasicBlock *> &Reachable, 2015 DomTreeUpdater *DTU = nullptr) { 2016 SmallVector<BasicBlock*, 128> Worklist; 2017 BasicBlock *BB = &F.front(); 2018 Worklist.push_back(BB); 2019 Reachable.insert(BB); 2020 bool Changed = false; 2021 do { 2022 BB = Worklist.pop_back_val(); 2023 2024 // Do a quick scan of the basic block, turning any obviously unreachable 2025 // instructions into LLVM unreachable insts. The instruction combining pass 2026 // canonicalizes unreachable insts into stores to null or undef. 2027 for (Instruction &I : *BB) { 2028 if (auto *CI = dyn_cast<CallInst>(&I)) { 2029 Value *Callee = CI->getCalledValue(); 2030 // Handle intrinsic calls. 2031 if (Function *F = dyn_cast<Function>(Callee)) { 2032 auto IntrinsicID = F->getIntrinsicID(); 2033 // Assumptions that are known to be false are equivalent to 2034 // unreachable. Also, if the condition is undefined, then we make the 2035 // choice most beneficial to the optimizer, and choose that to also be 2036 // unreachable. 2037 if (IntrinsicID == Intrinsic::assume) { 2038 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2039 // Don't insert a call to llvm.trap right before the unreachable. 2040 changeToUnreachable(CI, false, false, DTU); 2041 Changed = true; 2042 break; 2043 } 2044 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2045 // A call to the guard intrinsic bails out of the current 2046 // compilation unit if the predicate passed to it is false. If the 2047 // predicate is a constant false, then we know the guard will bail 2048 // out of the current compile unconditionally, so all code following 2049 // it is dead. 2050 // 2051 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2052 // guards to treat `undef` as `false` since a guard on `undef` can 2053 // still be useful for widening. 2054 if (match(CI->getArgOperand(0), m_Zero())) 2055 if (!isa<UnreachableInst>(CI->getNextNode())) { 2056 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2057 false, DTU); 2058 Changed = true; 2059 break; 2060 } 2061 } 2062 } else if ((isa<ConstantPointerNull>(Callee) && 2063 !NullPointerIsDefined(CI->getFunction())) || 2064 isa<UndefValue>(Callee)) { 2065 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2066 Changed = true; 2067 break; 2068 } 2069 if (CI->doesNotReturn()) { 2070 // If we found a call to a no-return function, insert an unreachable 2071 // instruction after it. Make sure there isn't *already* one there 2072 // though. 2073 if (!isa<UnreachableInst>(CI->getNextNode())) { 2074 // Don't insert a call to llvm.trap right before the unreachable. 2075 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2076 Changed = true; 2077 } 2078 break; 2079 } 2080 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2081 // Store to undef and store to null are undefined and used to signal 2082 // that they should be changed to unreachable by passes that can't 2083 // modify the CFG. 2084 2085 // Don't touch volatile stores. 2086 if (SI->isVolatile()) continue; 2087 2088 Value *Ptr = SI->getOperand(1); 2089 2090 if (isa<UndefValue>(Ptr) || 2091 (isa<ConstantPointerNull>(Ptr) && 2092 !NullPointerIsDefined(SI->getFunction(), 2093 SI->getPointerAddressSpace()))) { 2094 changeToUnreachable(SI, true, false, DTU); 2095 Changed = true; 2096 break; 2097 } 2098 } 2099 } 2100 2101 TerminatorInst *Terminator = BB->getTerminator(); 2102 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2103 // Turn invokes that call 'nounwind' functions into ordinary calls. 2104 Value *Callee = II->getCalledValue(); 2105 if ((isa<ConstantPointerNull>(Callee) && 2106 !NullPointerIsDefined(BB->getParent())) || 2107 isa<UndefValue>(Callee)) { 2108 changeToUnreachable(II, true, false, DTU); 2109 Changed = true; 2110 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2111 if (II->use_empty() && II->onlyReadsMemory()) { 2112 // jump to the normal destination branch. 2113 BasicBlock *NormalDestBB = II->getNormalDest(); 2114 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2115 BranchInst::Create(NormalDestBB, II); 2116 UnwindDestBB->removePredecessor(II->getParent()); 2117 II->eraseFromParent(); 2118 if (DTU) 2119 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2120 } else 2121 changeToCall(II, DTU); 2122 Changed = true; 2123 } 2124 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2125 // Remove catchpads which cannot be reached. 2126 struct CatchPadDenseMapInfo { 2127 static CatchPadInst *getEmptyKey() { 2128 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2129 } 2130 2131 static CatchPadInst *getTombstoneKey() { 2132 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2133 } 2134 2135 static unsigned getHashValue(CatchPadInst *CatchPad) { 2136 return static_cast<unsigned>(hash_combine_range( 2137 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2138 } 2139 2140 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2141 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2142 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2143 return LHS == RHS; 2144 return LHS->isIdenticalTo(RHS); 2145 } 2146 }; 2147 2148 // Set of unique CatchPads. 2149 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2150 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2151 HandlerSet; 2152 detail::DenseSetEmpty Empty; 2153 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2154 E = CatchSwitch->handler_end(); 2155 I != E; ++I) { 2156 BasicBlock *HandlerBB = *I; 2157 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2158 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2159 CatchSwitch->removeHandler(I); 2160 --I; 2161 --E; 2162 Changed = true; 2163 } 2164 } 2165 } 2166 2167 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2168 for (BasicBlock *Successor : successors(BB)) 2169 if (Reachable.insert(Successor).second) 2170 Worklist.push_back(Successor); 2171 } while (!Worklist.empty()); 2172 return Changed; 2173 } 2174 2175 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2176 TerminatorInst *TI = BB->getTerminator(); 2177 2178 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2179 changeToCall(II, DTU); 2180 return; 2181 } 2182 2183 TerminatorInst *NewTI; 2184 BasicBlock *UnwindDest; 2185 2186 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2187 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2188 UnwindDest = CRI->getUnwindDest(); 2189 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2190 auto *NewCatchSwitch = CatchSwitchInst::Create( 2191 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2192 CatchSwitch->getName(), CatchSwitch); 2193 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2194 NewCatchSwitch->addHandler(PadBB); 2195 2196 NewTI = NewCatchSwitch; 2197 UnwindDest = CatchSwitch->getUnwindDest(); 2198 } else { 2199 llvm_unreachable("Could not find unwind successor"); 2200 } 2201 2202 NewTI->takeName(TI); 2203 NewTI->setDebugLoc(TI->getDebugLoc()); 2204 UnwindDest->removePredecessor(BB); 2205 TI->replaceAllUsesWith(NewTI); 2206 TI->eraseFromParent(); 2207 if (DTU) 2208 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2209 } 2210 2211 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2212 /// if they are in a dead cycle. Return true if a change was made, false 2213 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2214 /// after modifying the CFG. 2215 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2216 DomTreeUpdater *DTU) { 2217 SmallPtrSet<BasicBlock*, 16> Reachable; 2218 bool Changed = markAliveBlocks(F, Reachable, DTU); 2219 2220 // If there are unreachable blocks in the CFG... 2221 if (Reachable.size() == F.size()) 2222 return Changed; 2223 2224 assert(Reachable.size() < F.size()); 2225 NumRemoved += F.size()-Reachable.size(); 2226 2227 // Loop over all of the basic blocks that are not reachable, dropping all of 2228 // their internal references. Update DTU and LVI if available. 2229 std::vector <DominatorTree::UpdateType> Updates; 2230 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2231 auto *BB = &*I; 2232 if (Reachable.count(BB)) 2233 continue; 2234 for (BasicBlock *Successor : successors(BB)) { 2235 if (Reachable.count(Successor)) 2236 Successor->removePredecessor(BB); 2237 if (DTU) 2238 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2239 } 2240 if (LVI) 2241 LVI->eraseBlock(BB); 2242 BB->dropAllReferences(); 2243 } 2244 SmallVector<BasicBlock *, 8> ToDeleteBBs; 2245 for (Function::iterator I = ++F.begin(); I != F.end();) { 2246 auto *BB = &*I; 2247 if (Reachable.count(BB)) { 2248 ++I; 2249 continue; 2250 } 2251 if (DTU) { 2252 ToDeleteBBs.push_back(BB); 2253 2254 // Remove the TerminatorInst of BB to clear the successor list of BB. 2255 if (BB->getTerminator()) 2256 BB->getInstList().pop_back(); 2257 new UnreachableInst(BB->getContext(), BB); 2258 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2259 "applying corresponding DTU updates."); 2260 ++I; 2261 } else { 2262 I = F.getBasicBlockList().erase(I); 2263 } 2264 } 2265 2266 if (DTU) { 2267 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2268 bool Deleted = false; 2269 for (auto *BB : ToDeleteBBs) { 2270 if (DTU->isBBPendingDeletion(BB)) 2271 --NumRemoved; 2272 else 2273 Deleted = true; 2274 DTU->deleteBB(BB); 2275 } 2276 if (!Deleted) 2277 return false; 2278 } 2279 return true; 2280 } 2281 2282 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2283 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2284 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2285 K->dropUnknownNonDebugMetadata(KnownIDs); 2286 K->getAllMetadataOtherThanDebugLoc(Metadata); 2287 for (const auto &MD : Metadata) { 2288 unsigned Kind = MD.first; 2289 MDNode *JMD = J->getMetadata(Kind); 2290 MDNode *KMD = MD.second; 2291 2292 switch (Kind) { 2293 default: 2294 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2295 break; 2296 case LLVMContext::MD_dbg: 2297 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2298 case LLVMContext::MD_tbaa: 2299 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2300 break; 2301 case LLVMContext::MD_alias_scope: 2302 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2303 break; 2304 case LLVMContext::MD_noalias: 2305 case LLVMContext::MD_mem_parallel_loop_access: 2306 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2307 break; 2308 case LLVMContext::MD_range: 2309 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2310 break; 2311 case LLVMContext::MD_fpmath: 2312 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2313 break; 2314 case LLVMContext::MD_invariant_load: 2315 // Only set the !invariant.load if it is present in both instructions. 2316 K->setMetadata(Kind, JMD); 2317 break; 2318 case LLVMContext::MD_nonnull: 2319 // If K does move, keep nonull if it is present in both instructions. 2320 if (DoesKMove) 2321 K->setMetadata(Kind, JMD); 2322 break; 2323 case LLVMContext::MD_invariant_group: 2324 // Preserve !invariant.group in K. 2325 break; 2326 case LLVMContext::MD_align: 2327 K->setMetadata(Kind, 2328 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2329 break; 2330 case LLVMContext::MD_dereferenceable: 2331 case LLVMContext::MD_dereferenceable_or_null: 2332 K->setMetadata(Kind, 2333 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2334 break; 2335 } 2336 } 2337 // Set !invariant.group from J if J has it. If both instructions have it 2338 // then we will just pick it from J - even when they are different. 2339 // Also make sure that K is load or store - f.e. combining bitcast with load 2340 // could produce bitcast with invariant.group metadata, which is invalid. 2341 // FIXME: we should try to preserve both invariant.group md if they are 2342 // different, but right now instruction can only have one invariant.group. 2343 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2344 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2345 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2346 } 2347 2348 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 2349 unsigned KnownIDs[] = { 2350 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2351 LLVMContext::MD_noalias, LLVMContext::MD_range, 2352 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2353 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2354 LLVMContext::MD_dereferenceable, 2355 LLVMContext::MD_dereferenceable_or_null}; 2356 combineMetadata(K, J, KnownIDs); 2357 } 2358 2359 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2360 auto *ReplInst = dyn_cast<Instruction>(Repl); 2361 if (!ReplInst) 2362 return; 2363 2364 // Patch the replacement so that it is not more restrictive than the value 2365 // being replaced. 2366 // Note that if 'I' is a load being replaced by some operation, 2367 // for example, by an arithmetic operation, then andIRFlags() 2368 // would just erase all math flags from the original arithmetic 2369 // operation, which is clearly not wanted and not needed. 2370 if (!isa<LoadInst>(I)) 2371 ReplInst->andIRFlags(I); 2372 2373 // FIXME: If both the original and replacement value are part of the 2374 // same control-flow region (meaning that the execution of one 2375 // guarantees the execution of the other), then we can combine the 2376 // noalias scopes here and do better than the general conservative 2377 // answer used in combineMetadata(). 2378 2379 // In general, GVN unifies expressions over different control-flow 2380 // regions, and so we need a conservative combination of the noalias 2381 // scopes. 2382 static const unsigned KnownIDs[] = { 2383 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2384 LLVMContext::MD_noalias, LLVMContext::MD_range, 2385 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2386 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull}; 2387 combineMetadata(ReplInst, I, KnownIDs, false); 2388 } 2389 2390 template <typename RootType, typename DominatesFn> 2391 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2392 const RootType &Root, 2393 const DominatesFn &Dominates) { 2394 assert(From->getType() == To->getType()); 2395 2396 unsigned Count = 0; 2397 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2398 UI != UE;) { 2399 Use &U = *UI++; 2400 if (!Dominates(Root, U)) 2401 continue; 2402 U.set(To); 2403 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2404 << "' as " << *To << " in " << *U << "\n"); 2405 ++Count; 2406 } 2407 return Count; 2408 } 2409 2410 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2411 assert(From->getType() == To->getType()); 2412 auto *BB = From->getParent(); 2413 unsigned Count = 0; 2414 2415 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2416 UI != UE;) { 2417 Use &U = *UI++; 2418 auto *I = cast<Instruction>(U.getUser()); 2419 if (I->getParent() == BB) 2420 continue; 2421 U.set(To); 2422 ++Count; 2423 } 2424 return Count; 2425 } 2426 2427 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2428 DominatorTree &DT, 2429 const BasicBlockEdge &Root) { 2430 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2431 return DT.dominates(Root, U); 2432 }; 2433 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2434 } 2435 2436 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2437 DominatorTree &DT, 2438 const BasicBlock *BB) { 2439 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2440 auto *I = cast<Instruction>(U.getUser())->getParent(); 2441 return DT.properlyDominates(BB, I); 2442 }; 2443 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2444 } 2445 2446 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2447 const TargetLibraryInfo &TLI) { 2448 // Check if the function is specifically marked as a gc leaf function. 2449 if (CS.hasFnAttr("gc-leaf-function")) 2450 return true; 2451 if (const Function *F = CS.getCalledFunction()) { 2452 if (F->hasFnAttribute("gc-leaf-function")) 2453 return true; 2454 2455 if (auto IID = F->getIntrinsicID()) 2456 // Most LLVM intrinsics do not take safepoints. 2457 return IID != Intrinsic::experimental_gc_statepoint && 2458 IID != Intrinsic::experimental_deoptimize; 2459 } 2460 2461 // Lib calls can be materialized by some passes, and won't be 2462 // marked as 'gc-leaf-function.' All available Libcalls are 2463 // GC-leaf. 2464 LibFunc LF; 2465 if (TLI.getLibFunc(CS, LF)) { 2466 return TLI.has(LF); 2467 } 2468 2469 return false; 2470 } 2471 2472 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2473 LoadInst &NewLI) { 2474 auto *NewTy = NewLI.getType(); 2475 2476 // This only directly applies if the new type is also a pointer. 2477 if (NewTy->isPointerTy()) { 2478 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2479 return; 2480 } 2481 2482 // The only other translation we can do is to integral loads with !range 2483 // metadata. 2484 if (!NewTy->isIntegerTy()) 2485 return; 2486 2487 MDBuilder MDB(NewLI.getContext()); 2488 const Value *Ptr = OldLI.getPointerOperand(); 2489 auto *ITy = cast<IntegerType>(NewTy); 2490 auto *NullInt = ConstantExpr::getPtrToInt( 2491 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2492 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2493 NewLI.setMetadata(LLVMContext::MD_range, 2494 MDB.createRange(NonNullInt, NullInt)); 2495 } 2496 2497 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2498 MDNode *N, LoadInst &NewLI) { 2499 auto *NewTy = NewLI.getType(); 2500 2501 // Give up unless it is converted to a pointer where there is a single very 2502 // valuable mapping we can do reliably. 2503 // FIXME: It would be nice to propagate this in more ways, but the type 2504 // conversions make it hard. 2505 if (!NewTy->isPointerTy()) 2506 return; 2507 2508 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2509 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2510 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2511 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2512 } 2513 } 2514 2515 namespace { 2516 2517 /// A potential constituent of a bitreverse or bswap expression. See 2518 /// collectBitParts for a fuller explanation. 2519 struct BitPart { 2520 BitPart(Value *P, unsigned BW) : Provider(P) { 2521 Provenance.resize(BW); 2522 } 2523 2524 /// The Value that this is a bitreverse/bswap of. 2525 Value *Provider; 2526 2527 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2528 /// in Provider becomes bit B in the result of this expression. 2529 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2530 2531 enum { Unset = -1 }; 2532 }; 2533 2534 } // end anonymous namespace 2535 2536 /// Analyze the specified subexpression and see if it is capable of providing 2537 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2538 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2539 /// the output of the expression came from a corresponding bit in some other 2540 /// value. This function is recursive, and the end result is a mapping of 2541 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2542 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2543 /// 2544 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2545 /// that the expression deposits the low byte of %X into the high byte of the 2546 /// result and that all other bits are zero. This expression is accepted and a 2547 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2548 /// [0-7]. 2549 /// 2550 /// To avoid revisiting values, the BitPart results are memoized into the 2551 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2552 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2553 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2554 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2555 /// type instead to provide the same functionality. 2556 /// 2557 /// Because we pass around references into \c BPS, we must use a container that 2558 /// does not invalidate internal references (std::map instead of DenseMap). 2559 static const Optional<BitPart> & 2560 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2561 std::map<Value *, Optional<BitPart>> &BPS) { 2562 auto I = BPS.find(V); 2563 if (I != BPS.end()) 2564 return I->second; 2565 2566 auto &Result = BPS[V] = None; 2567 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2568 2569 if (Instruction *I = dyn_cast<Instruction>(V)) { 2570 // If this is an or instruction, it may be an inner node of the bswap. 2571 if (I->getOpcode() == Instruction::Or) { 2572 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2573 MatchBitReversals, BPS); 2574 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2575 MatchBitReversals, BPS); 2576 if (!A || !B) 2577 return Result; 2578 2579 // Try and merge the two together. 2580 if (!A->Provider || A->Provider != B->Provider) 2581 return Result; 2582 2583 Result = BitPart(A->Provider, BitWidth); 2584 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2585 if (A->Provenance[i] != BitPart::Unset && 2586 B->Provenance[i] != BitPart::Unset && 2587 A->Provenance[i] != B->Provenance[i]) 2588 return Result = None; 2589 2590 if (A->Provenance[i] == BitPart::Unset) 2591 Result->Provenance[i] = B->Provenance[i]; 2592 else 2593 Result->Provenance[i] = A->Provenance[i]; 2594 } 2595 2596 return Result; 2597 } 2598 2599 // If this is a logical shift by a constant, recurse then shift the result. 2600 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2601 unsigned BitShift = 2602 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2603 // Ensure the shift amount is defined. 2604 if (BitShift > BitWidth) 2605 return Result; 2606 2607 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2608 MatchBitReversals, BPS); 2609 if (!Res) 2610 return Result; 2611 Result = Res; 2612 2613 // Perform the "shift" on BitProvenance. 2614 auto &P = Result->Provenance; 2615 if (I->getOpcode() == Instruction::Shl) { 2616 P.erase(std::prev(P.end(), BitShift), P.end()); 2617 P.insert(P.begin(), BitShift, BitPart::Unset); 2618 } else { 2619 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2620 P.insert(P.end(), BitShift, BitPart::Unset); 2621 } 2622 2623 return Result; 2624 } 2625 2626 // If this is a logical 'and' with a mask that clears bits, recurse then 2627 // unset the appropriate bits. 2628 if (I->getOpcode() == Instruction::And && 2629 isa<ConstantInt>(I->getOperand(1))) { 2630 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2631 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2632 2633 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2634 // early exit. 2635 unsigned NumMaskedBits = AndMask.countPopulation(); 2636 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2637 return Result; 2638 2639 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2640 MatchBitReversals, BPS); 2641 if (!Res) 2642 return Result; 2643 Result = Res; 2644 2645 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2646 // If the AndMask is zero for this bit, clear the bit. 2647 if ((AndMask & Bit) == 0) 2648 Result->Provenance[i] = BitPart::Unset; 2649 return Result; 2650 } 2651 2652 // If this is a zext instruction zero extend the result. 2653 if (I->getOpcode() == Instruction::ZExt) { 2654 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2655 MatchBitReversals, BPS); 2656 if (!Res) 2657 return Result; 2658 2659 Result = BitPart(Res->Provider, BitWidth); 2660 auto NarrowBitWidth = 2661 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2662 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2663 Result->Provenance[i] = Res->Provenance[i]; 2664 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2665 Result->Provenance[i] = BitPart::Unset; 2666 return Result; 2667 } 2668 } 2669 2670 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2671 // the input value to the bswap/bitreverse. 2672 Result = BitPart(V, BitWidth); 2673 for (unsigned i = 0; i < BitWidth; ++i) 2674 Result->Provenance[i] = i; 2675 return Result; 2676 } 2677 2678 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2679 unsigned BitWidth) { 2680 if (From % 8 != To % 8) 2681 return false; 2682 // Convert from bit indices to byte indices and check for a byte reversal. 2683 From >>= 3; 2684 To >>= 3; 2685 BitWidth >>= 3; 2686 return From == BitWidth - To - 1; 2687 } 2688 2689 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2690 unsigned BitWidth) { 2691 return From == BitWidth - To - 1; 2692 } 2693 2694 bool llvm::recognizeBSwapOrBitReverseIdiom( 2695 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2696 SmallVectorImpl<Instruction *> &InsertedInsts) { 2697 if (Operator::getOpcode(I) != Instruction::Or) 2698 return false; 2699 if (!MatchBSwaps && !MatchBitReversals) 2700 return false; 2701 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2702 if (!ITy || ITy->getBitWidth() > 128) 2703 return false; // Can't do vectors or integers > 128 bits. 2704 unsigned BW = ITy->getBitWidth(); 2705 2706 unsigned DemandedBW = BW; 2707 IntegerType *DemandedTy = ITy; 2708 if (I->hasOneUse()) { 2709 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2710 DemandedTy = cast<IntegerType>(Trunc->getType()); 2711 DemandedBW = DemandedTy->getBitWidth(); 2712 } 2713 } 2714 2715 // Try to find all the pieces corresponding to the bswap. 2716 std::map<Value *, Optional<BitPart>> BPS; 2717 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2718 if (!Res) 2719 return false; 2720 auto &BitProvenance = Res->Provenance; 2721 2722 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2723 // only byteswap values with an even number of bytes. 2724 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2725 for (unsigned i = 0; i < DemandedBW; ++i) { 2726 OKForBSwap &= 2727 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2728 OKForBitReverse &= 2729 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2730 } 2731 2732 Intrinsic::ID Intrin; 2733 if (OKForBSwap && MatchBSwaps) 2734 Intrin = Intrinsic::bswap; 2735 else if (OKForBitReverse && MatchBitReversals) 2736 Intrin = Intrinsic::bitreverse; 2737 else 2738 return false; 2739 2740 if (ITy != DemandedTy) { 2741 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2742 Value *Provider = Res->Provider; 2743 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2744 // We may need to truncate the provider. 2745 if (DemandedTy != ProviderTy) { 2746 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2747 "trunc", I); 2748 InsertedInsts.push_back(Trunc); 2749 Provider = Trunc; 2750 } 2751 auto *CI = CallInst::Create(F, Provider, "rev", I); 2752 InsertedInsts.push_back(CI); 2753 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2754 InsertedInsts.push_back(ExtInst); 2755 return true; 2756 } 2757 2758 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2759 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2760 return true; 2761 } 2762 2763 // CodeGen has special handling for some string functions that may replace 2764 // them with target-specific intrinsics. Since that'd skip our interceptors 2765 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2766 // we mark affected calls as NoBuiltin, which will disable optimization 2767 // in CodeGen. 2768 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2769 CallInst *CI, const TargetLibraryInfo *TLI) { 2770 Function *F = CI->getCalledFunction(); 2771 LibFunc Func; 2772 if (F && !F->hasLocalLinkage() && F->hasName() && 2773 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2774 !F->doesNotAccessMemory()) 2775 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2776 } 2777 2778 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2779 // We can't have a PHI with a metadata type. 2780 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2781 return false; 2782 2783 // Early exit. 2784 if (!isa<Constant>(I->getOperand(OpIdx))) 2785 return true; 2786 2787 switch (I->getOpcode()) { 2788 default: 2789 return true; 2790 case Instruction::Call: 2791 case Instruction::Invoke: 2792 // Can't handle inline asm. Skip it. 2793 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2794 return false; 2795 // Many arithmetic intrinsics have no issue taking a 2796 // variable, however it's hard to distingish these from 2797 // specials such as @llvm.frameaddress that require a constant. 2798 if (isa<IntrinsicInst>(I)) 2799 return false; 2800 2801 // Constant bundle operands may need to retain their constant-ness for 2802 // correctness. 2803 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2804 return false; 2805 return true; 2806 case Instruction::ShuffleVector: 2807 // Shufflevector masks are constant. 2808 return OpIdx != 2; 2809 case Instruction::Switch: 2810 case Instruction::ExtractValue: 2811 // All operands apart from the first are constant. 2812 return OpIdx == 0; 2813 case Instruction::InsertValue: 2814 // All operands apart from the first and the second are constant. 2815 return OpIdx < 2; 2816 case Instruction::Alloca: 2817 // Static allocas (constant size in the entry block) are handled by 2818 // prologue/epilogue insertion so they're free anyway. We definitely don't 2819 // want to make them non-constant. 2820 return !cast<AllocaInst>(I)->isStaticAlloca(); 2821 case Instruction::GetElementPtr: 2822 if (OpIdx == 0) 2823 return true; 2824 gep_type_iterator It = gep_type_begin(I); 2825 for (auto E = std::next(It, OpIdx); It != E; ++It) 2826 if (It.isStruct()) 2827 return false; 2828 return true; 2829 } 2830 } 2831