1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSet<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSet<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->hasArgList() || DVI->getValue(0)) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (!I->willReturn()) 424 return false; 425 426 if (!I->mayHaveSideEffects()) 427 return true; 428 429 // Special case intrinsics that "may have side effects" but can be deleted 430 // when dead. 431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 432 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 433 if (II->getIntrinsicID() == Intrinsic::stacksave || 434 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 435 return true; 436 437 if (II->isLifetimeStartOrEnd()) { 438 auto *Arg = II->getArgOperand(1); 439 // Lifetime intrinsics are dead when their right-hand is undef. 440 if (isa<UndefValue>(Arg)) 441 return true; 442 // If the right-hand is an alloc, global, or argument and the only uses 443 // are lifetime intrinsics then the intrinsics are dead. 444 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 445 return llvm::all_of(Arg->uses(), [](Use &Use) { 446 if (IntrinsicInst *IntrinsicUse = 447 dyn_cast<IntrinsicInst>(Use.getUser())) 448 return IntrinsicUse->isLifetimeStartOrEnd(); 449 return false; 450 }); 451 return false; 452 } 453 454 // Assumptions are dead if their condition is trivially true. Guards on 455 // true are operationally no-ops. In the future we can consider more 456 // sophisticated tradeoffs for guards considering potential for check 457 // widening, but for now we keep things simple. 458 if ((II->getIntrinsicID() == Intrinsic::assume && 459 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 460 II->getIntrinsicID() == Intrinsic::experimental_guard) { 461 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 462 return !Cond->isZero(); 463 464 return false; 465 } 466 } 467 468 if (isAllocLikeFn(I, TLI)) 469 return true; 470 471 if (CallInst *CI = isFreeCall(I, TLI)) 472 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 473 return C->isNullValue() || isa<UndefValue>(C); 474 475 if (auto *Call = dyn_cast<CallBase>(I)) 476 if (isMathLibCallNoop(Call, TLI)) 477 return true; 478 479 return false; 480 } 481 482 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 483 /// trivially dead instruction, delete it. If that makes any of its operands 484 /// trivially dead, delete them too, recursively. Return true if any 485 /// instructions were deleted. 486 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 487 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 488 std::function<void(Value *)> AboutToDeleteCallback) { 489 Instruction *I = dyn_cast<Instruction>(V); 490 if (!I || !isInstructionTriviallyDead(I, TLI)) 491 return false; 492 493 SmallVector<WeakTrackingVH, 16> DeadInsts; 494 DeadInsts.push_back(I); 495 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 496 AboutToDeleteCallback); 497 498 return true; 499 } 500 501 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 502 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 503 MemorySSAUpdater *MSSAU, 504 std::function<void(Value *)> AboutToDeleteCallback) { 505 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 506 for (; S != E; ++S) { 507 auto *I = cast<Instruction>(DeadInsts[S]); 508 if (!isInstructionTriviallyDead(I)) { 509 DeadInsts[S] = nullptr; 510 ++Alive; 511 } 512 } 513 if (Alive == E) 514 return false; 515 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 516 AboutToDeleteCallback); 517 return true; 518 } 519 520 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 521 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 522 MemorySSAUpdater *MSSAU, 523 std::function<void(Value *)> AboutToDeleteCallback) { 524 // Process the dead instruction list until empty. 525 while (!DeadInsts.empty()) { 526 Value *V = DeadInsts.pop_back_val(); 527 Instruction *I = cast_or_null<Instruction>(V); 528 if (!I) 529 continue; 530 assert(isInstructionTriviallyDead(I, TLI) && 531 "Live instruction found in dead worklist!"); 532 assert(I->use_empty() && "Instructions with uses are not dead."); 533 534 // Don't lose the debug info while deleting the instructions. 535 salvageDebugInfo(*I); 536 537 if (AboutToDeleteCallback) 538 AboutToDeleteCallback(I); 539 540 // Null out all of the instruction's operands to see if any operand becomes 541 // dead as we go. 542 for (Use &OpU : I->operands()) { 543 Value *OpV = OpU.get(); 544 OpU.set(nullptr); 545 546 if (!OpV->use_empty()) 547 continue; 548 549 // If the operand is an instruction that became dead as we nulled out the 550 // operand, and if it is 'trivially' dead, delete it in a future loop 551 // iteration. 552 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 553 if (isInstructionTriviallyDead(OpI, TLI)) 554 DeadInsts.push_back(OpI); 555 } 556 if (MSSAU) 557 MSSAU->removeMemoryAccess(I); 558 559 I->eraseFromParent(); 560 } 561 } 562 563 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 564 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 565 findDbgUsers(DbgUsers, I); 566 for (auto *DII : DbgUsers) { 567 Value *Undef = UndefValue::get(I->getType()); 568 DII->replaceVariableLocationOp(I, Undef); 569 } 570 return !DbgUsers.empty(); 571 } 572 573 /// areAllUsesEqual - Check whether the uses of a value are all the same. 574 /// This is similar to Instruction::hasOneUse() except this will also return 575 /// true when there are no uses or multiple uses that all refer to the same 576 /// value. 577 static bool areAllUsesEqual(Instruction *I) { 578 Value::user_iterator UI = I->user_begin(); 579 Value::user_iterator UE = I->user_end(); 580 if (UI == UE) 581 return true; 582 583 User *TheUse = *UI; 584 for (++UI; UI != UE; ++UI) { 585 if (*UI != TheUse) 586 return false; 587 } 588 return true; 589 } 590 591 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 592 /// dead PHI node, due to being a def-use chain of single-use nodes that 593 /// either forms a cycle or is terminated by a trivially dead instruction, 594 /// delete it. If that makes any of its operands trivially dead, delete them 595 /// too, recursively. Return true if a change was made. 596 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 597 const TargetLibraryInfo *TLI, 598 llvm::MemorySSAUpdater *MSSAU) { 599 SmallPtrSet<Instruction*, 4> Visited; 600 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 601 I = cast<Instruction>(*I->user_begin())) { 602 if (I->use_empty()) 603 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 604 605 // If we find an instruction more than once, we're on a cycle that 606 // won't prove fruitful. 607 if (!Visited.insert(I).second) { 608 // Break the cycle and delete the instruction and its operands. 609 I->replaceAllUsesWith(UndefValue::get(I->getType())); 610 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 611 return true; 612 } 613 } 614 return false; 615 } 616 617 static bool 618 simplifyAndDCEInstruction(Instruction *I, 619 SmallSetVector<Instruction *, 16> &WorkList, 620 const DataLayout &DL, 621 const TargetLibraryInfo *TLI) { 622 if (isInstructionTriviallyDead(I, TLI)) { 623 salvageDebugInfo(*I); 624 625 // Null out all of the instruction's operands to see if any operand becomes 626 // dead as we go. 627 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 628 Value *OpV = I->getOperand(i); 629 I->setOperand(i, nullptr); 630 631 if (!OpV->use_empty() || I == OpV) 632 continue; 633 634 // If the operand is an instruction that became dead as we nulled out the 635 // operand, and if it is 'trivially' dead, delete it in a future loop 636 // iteration. 637 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 638 if (isInstructionTriviallyDead(OpI, TLI)) 639 WorkList.insert(OpI); 640 } 641 642 I->eraseFromParent(); 643 644 return true; 645 } 646 647 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 648 // Add the users to the worklist. CAREFUL: an instruction can use itself, 649 // in the case of a phi node. 650 for (User *U : I->users()) { 651 if (U != I) { 652 WorkList.insert(cast<Instruction>(U)); 653 } 654 } 655 656 // Replace the instruction with its simplified value. 657 bool Changed = false; 658 if (!I->use_empty()) { 659 I->replaceAllUsesWith(SimpleV); 660 Changed = true; 661 } 662 if (isInstructionTriviallyDead(I, TLI)) { 663 I->eraseFromParent(); 664 Changed = true; 665 } 666 return Changed; 667 } 668 return false; 669 } 670 671 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 672 /// simplify any instructions in it and recursively delete dead instructions. 673 /// 674 /// This returns true if it changed the code, note that it can delete 675 /// instructions in other blocks as well in this block. 676 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 677 const TargetLibraryInfo *TLI) { 678 bool MadeChange = false; 679 const DataLayout &DL = BB->getModule()->getDataLayout(); 680 681 #ifndef NDEBUG 682 // In debug builds, ensure that the terminator of the block is never replaced 683 // or deleted by these simplifications. The idea of simplification is that it 684 // cannot introduce new instructions, and there is no way to replace the 685 // terminator of a block without introducing a new instruction. 686 AssertingVH<Instruction> TerminatorVH(&BB->back()); 687 #endif 688 689 SmallSetVector<Instruction *, 16> WorkList; 690 // Iterate over the original function, only adding insts to the worklist 691 // if they actually need to be revisited. This avoids having to pre-init 692 // the worklist with the entire function's worth of instructions. 693 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 694 BI != E;) { 695 assert(!BI->isTerminator()); 696 Instruction *I = &*BI; 697 ++BI; 698 699 // We're visiting this instruction now, so make sure it's not in the 700 // worklist from an earlier visit. 701 if (!WorkList.count(I)) 702 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 703 } 704 705 while (!WorkList.empty()) { 706 Instruction *I = WorkList.pop_back_val(); 707 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 708 } 709 return MadeChange; 710 } 711 712 //===----------------------------------------------------------------------===// 713 // Control Flow Graph Restructuring. 714 // 715 716 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 717 DomTreeUpdater *DTU) { 718 719 // If BB has single-entry PHI nodes, fold them. 720 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 721 Value *NewVal = PN->getIncomingValue(0); 722 // Replace self referencing PHI with undef, it must be dead. 723 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 724 PN->replaceAllUsesWith(NewVal); 725 PN->eraseFromParent(); 726 } 727 728 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 729 assert(PredBB && "Block doesn't have a single predecessor!"); 730 731 bool ReplaceEntryBB = false; 732 if (PredBB == &DestBB->getParent()->getEntryBlock()) 733 ReplaceEntryBB = true; 734 735 // DTU updates: Collect all the edges that enter 736 // PredBB. These dominator edges will be redirected to DestBB. 737 SmallVector<DominatorTree::UpdateType, 32> Updates; 738 739 if (DTU) { 740 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 741 pred_end(PredBB)); 742 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 743 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 744 // This predecessor of PredBB may already have DestBB as a successor. 745 if (PredOfPredBB != PredBB) 746 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 747 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 748 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 749 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 750 } 751 752 // Zap anything that took the address of DestBB. Not doing this will give the 753 // address an invalid value. 754 if (DestBB->hasAddressTaken()) { 755 BlockAddress *BA = BlockAddress::get(DestBB); 756 Constant *Replacement = 757 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 758 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 759 BA->getType())); 760 BA->destroyConstant(); 761 } 762 763 // Anything that branched to PredBB now branches to DestBB. 764 PredBB->replaceAllUsesWith(DestBB); 765 766 // Splice all the instructions from PredBB to DestBB. 767 PredBB->getTerminator()->eraseFromParent(); 768 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 769 new UnreachableInst(PredBB->getContext(), PredBB); 770 771 // If the PredBB is the entry block of the function, move DestBB up to 772 // become the entry block after we erase PredBB. 773 if (ReplaceEntryBB) 774 DestBB->moveAfter(PredBB); 775 776 if (DTU) { 777 assert(PredBB->getInstList().size() == 1 && 778 isa<UnreachableInst>(PredBB->getTerminator()) && 779 "The successor list of PredBB isn't empty before " 780 "applying corresponding DTU updates."); 781 DTU->applyUpdatesPermissive(Updates); 782 DTU->deleteBB(PredBB); 783 // Recalculation of DomTree is needed when updating a forward DomTree and 784 // the Entry BB is replaced. 785 if (ReplaceEntryBB && DTU->hasDomTree()) { 786 // The entry block was removed and there is no external interface for 787 // the dominator tree to be notified of this change. In this corner-case 788 // we recalculate the entire tree. 789 DTU->recalculate(*(DestBB->getParent())); 790 } 791 } 792 793 else { 794 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 795 } 796 } 797 798 /// Return true if we can choose one of these values to use in place of the 799 /// other. Note that we will always choose the non-undef value to keep. 800 static bool CanMergeValues(Value *First, Value *Second) { 801 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 802 } 803 804 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 805 /// branch to Succ, into Succ. 806 /// 807 /// Assumption: Succ is the single successor for BB. 808 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 809 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 810 811 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 812 << Succ->getName() << "\n"); 813 // Shortcut, if there is only a single predecessor it must be BB and merging 814 // is always safe 815 if (Succ->getSinglePredecessor()) return true; 816 817 // Make a list of the predecessors of BB 818 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 819 820 // Look at all the phi nodes in Succ, to see if they present a conflict when 821 // merging these blocks 822 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 823 PHINode *PN = cast<PHINode>(I); 824 825 // If the incoming value from BB is again a PHINode in 826 // BB which has the same incoming value for *PI as PN does, we can 827 // merge the phi nodes and then the blocks can still be merged 828 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 829 if (BBPN && BBPN->getParent() == BB) { 830 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 831 BasicBlock *IBB = PN->getIncomingBlock(PI); 832 if (BBPreds.count(IBB) && 833 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 834 PN->getIncomingValue(PI))) { 835 LLVM_DEBUG(dbgs() 836 << "Can't fold, phi node " << PN->getName() << " in " 837 << Succ->getName() << " is conflicting with " 838 << BBPN->getName() << " with regard to common predecessor " 839 << IBB->getName() << "\n"); 840 return false; 841 } 842 } 843 } else { 844 Value* Val = PN->getIncomingValueForBlock(BB); 845 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 846 // See if the incoming value for the common predecessor is equal to the 847 // one for BB, in which case this phi node will not prevent the merging 848 // of the block. 849 BasicBlock *IBB = PN->getIncomingBlock(PI); 850 if (BBPreds.count(IBB) && 851 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 852 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 853 << " in " << Succ->getName() 854 << " is conflicting with regard to common " 855 << "predecessor " << IBB->getName() << "\n"); 856 return false; 857 } 858 } 859 } 860 } 861 862 return true; 863 } 864 865 using PredBlockVector = SmallVector<BasicBlock *, 16>; 866 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 867 868 /// Determines the value to use as the phi node input for a block. 869 /// 870 /// Select between \p OldVal any value that we know flows from \p BB 871 /// to a particular phi on the basis of which one (if either) is not 872 /// undef. Update IncomingValues based on the selected value. 873 /// 874 /// \param OldVal The value we are considering selecting. 875 /// \param BB The block that the value flows in from. 876 /// \param IncomingValues A map from block-to-value for other phi inputs 877 /// that we have examined. 878 /// 879 /// \returns the selected value. 880 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 881 IncomingValueMap &IncomingValues) { 882 if (!isa<UndefValue>(OldVal)) { 883 assert((!IncomingValues.count(BB) || 884 IncomingValues.find(BB)->second == OldVal) && 885 "Expected OldVal to match incoming value from BB!"); 886 887 IncomingValues.insert(std::make_pair(BB, OldVal)); 888 return OldVal; 889 } 890 891 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 892 if (It != IncomingValues.end()) return It->second; 893 894 return OldVal; 895 } 896 897 /// Create a map from block to value for the operands of a 898 /// given phi. 899 /// 900 /// Create a map from block to value for each non-undef value flowing 901 /// into \p PN. 902 /// 903 /// \param PN The phi we are collecting the map for. 904 /// \param IncomingValues [out] The map from block to value for this phi. 905 static void gatherIncomingValuesToPhi(PHINode *PN, 906 IncomingValueMap &IncomingValues) { 907 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 908 BasicBlock *BB = PN->getIncomingBlock(i); 909 Value *V = PN->getIncomingValue(i); 910 911 if (!isa<UndefValue>(V)) 912 IncomingValues.insert(std::make_pair(BB, V)); 913 } 914 } 915 916 /// Replace the incoming undef values to a phi with the values 917 /// from a block-to-value map. 918 /// 919 /// \param PN The phi we are replacing the undefs in. 920 /// \param IncomingValues A map from block to value. 921 static void replaceUndefValuesInPhi(PHINode *PN, 922 const IncomingValueMap &IncomingValues) { 923 SmallVector<unsigned> TrueUndefOps; 924 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 925 Value *V = PN->getIncomingValue(i); 926 927 if (!isa<UndefValue>(V)) continue; 928 929 BasicBlock *BB = PN->getIncomingBlock(i); 930 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 931 932 // Keep track of undef/poison incoming values. Those must match, so we fix 933 // them up below if needed. 934 // Note: this is conservatively correct, but we could try harder and group 935 // the undef values per incoming basic block. 936 if (It == IncomingValues.end()) { 937 TrueUndefOps.push_back(i); 938 continue; 939 } 940 941 // There is a defined value for this incoming block, so map this undef 942 // incoming value to the defined value. 943 PN->setIncomingValue(i, It->second); 944 } 945 946 // If there are both undef and poison values incoming, then convert those 947 // values to undef. It is invalid to have different values for the same 948 // incoming block. 949 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 950 return isa<PoisonValue>(PN->getIncomingValue(i)); 951 }); 952 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 953 for (unsigned i : TrueUndefOps) 954 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 955 } 956 } 957 958 /// Replace a value flowing from a block to a phi with 959 /// potentially multiple instances of that value flowing from the 960 /// block's predecessors to the phi. 961 /// 962 /// \param BB The block with the value flowing into the phi. 963 /// \param BBPreds The predecessors of BB. 964 /// \param PN The phi that we are updating. 965 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 966 const PredBlockVector &BBPreds, 967 PHINode *PN) { 968 Value *OldVal = PN->removeIncomingValue(BB, false); 969 assert(OldVal && "No entry in PHI for Pred BB!"); 970 971 IncomingValueMap IncomingValues; 972 973 // We are merging two blocks - BB, and the block containing PN - and 974 // as a result we need to redirect edges from the predecessors of BB 975 // to go to the block containing PN, and update PN 976 // accordingly. Since we allow merging blocks in the case where the 977 // predecessor and successor blocks both share some predecessors, 978 // and where some of those common predecessors might have undef 979 // values flowing into PN, we want to rewrite those values to be 980 // consistent with the non-undef values. 981 982 gatherIncomingValuesToPhi(PN, IncomingValues); 983 984 // If this incoming value is one of the PHI nodes in BB, the new entries 985 // in the PHI node are the entries from the old PHI. 986 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 987 PHINode *OldValPN = cast<PHINode>(OldVal); 988 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 989 // Note that, since we are merging phi nodes and BB and Succ might 990 // have common predecessors, we could end up with a phi node with 991 // identical incoming branches. This will be cleaned up later (and 992 // will trigger asserts if we try to clean it up now, without also 993 // simplifying the corresponding conditional branch). 994 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 995 Value *PredVal = OldValPN->getIncomingValue(i); 996 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 997 IncomingValues); 998 999 // And add a new incoming value for this predecessor for the 1000 // newly retargeted branch. 1001 PN->addIncoming(Selected, PredBB); 1002 } 1003 } else { 1004 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1005 // Update existing incoming values in PN for this 1006 // predecessor of BB. 1007 BasicBlock *PredBB = BBPreds[i]; 1008 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1009 IncomingValues); 1010 1011 // And add a new incoming value for this predecessor for the 1012 // newly retargeted branch. 1013 PN->addIncoming(Selected, PredBB); 1014 } 1015 } 1016 1017 replaceUndefValuesInPhi(PN, IncomingValues); 1018 } 1019 1020 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1021 DomTreeUpdater *DTU) { 1022 assert(BB != &BB->getParent()->getEntryBlock() && 1023 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1024 1025 // We can't eliminate infinite loops. 1026 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1027 if (BB == Succ) return false; 1028 1029 // Check to see if merging these blocks would cause conflicts for any of the 1030 // phi nodes in BB or Succ. If not, we can safely merge. 1031 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1032 1033 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1034 // has uses which will not disappear when the PHI nodes are merged. It is 1035 // possible to handle such cases, but difficult: it requires checking whether 1036 // BB dominates Succ, which is non-trivial to calculate in the case where 1037 // Succ has multiple predecessors. Also, it requires checking whether 1038 // constructing the necessary self-referential PHI node doesn't introduce any 1039 // conflicts; this isn't too difficult, but the previous code for doing this 1040 // was incorrect. 1041 // 1042 // Note that if this check finds a live use, BB dominates Succ, so BB is 1043 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1044 // folding the branch isn't profitable in that case anyway. 1045 if (!Succ->getSinglePredecessor()) { 1046 BasicBlock::iterator BBI = BB->begin(); 1047 while (isa<PHINode>(*BBI)) { 1048 for (Use &U : BBI->uses()) { 1049 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1050 if (PN->getIncomingBlock(U) != BB) 1051 return false; 1052 } else { 1053 return false; 1054 } 1055 } 1056 ++BBI; 1057 } 1058 } 1059 1060 // We cannot fold the block if it's a branch to an already present callbr 1061 // successor because that creates duplicate successors. 1062 for (BasicBlock *PredBB : predecessors(BB)) { 1063 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1064 if (Succ == CBI->getDefaultDest()) 1065 return false; 1066 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1067 if (Succ == CBI->getIndirectDest(i)) 1068 return false; 1069 } 1070 } 1071 1072 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1073 1074 SmallVector<DominatorTree::UpdateType, 32> Updates; 1075 if (DTU) { 1076 // All predecessors of BB will be moved to Succ. 1077 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1078 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1079 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1080 for (auto *PredOfBB : PredsOfBB) 1081 // This predecessor of BB may already have Succ as a successor. 1082 if (!PredsOfSucc.contains(PredOfBB)) 1083 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1084 for (auto *PredOfBB : PredsOfBB) 1085 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1086 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1087 } 1088 1089 if (isa<PHINode>(Succ->begin())) { 1090 // If there is more than one pred of succ, and there are PHI nodes in 1091 // the successor, then we need to add incoming edges for the PHI nodes 1092 // 1093 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1094 1095 // Loop over all of the PHI nodes in the successor of BB. 1096 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1097 PHINode *PN = cast<PHINode>(I); 1098 1099 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1100 } 1101 } 1102 1103 if (Succ->getSinglePredecessor()) { 1104 // BB is the only predecessor of Succ, so Succ will end up with exactly 1105 // the same predecessors BB had. 1106 1107 // Copy over any phi, debug or lifetime instruction. 1108 BB->getTerminator()->eraseFromParent(); 1109 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1110 BB->getInstList()); 1111 } else { 1112 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1113 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1114 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1115 PN->eraseFromParent(); 1116 } 1117 } 1118 1119 // If the unconditional branch we replaced contains llvm.loop metadata, we 1120 // add the metadata to the branch instructions in the predecessors. 1121 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1122 Instruction *TI = BB->getTerminator(); 1123 if (TI) 1124 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1125 for (BasicBlock *Pred : predecessors(BB)) 1126 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1127 1128 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1129 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1130 // into Succ and mark them dangling. This should allow the counts inference a 1131 // chance to get a more reasonable weight for BB. 1132 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1133 1134 // Everything that jumped to BB now goes to Succ. 1135 BB->replaceAllUsesWith(Succ); 1136 if (!Succ->hasName()) Succ->takeName(BB); 1137 1138 // Clear the successor list of BB to match updates applying to DTU later. 1139 if (BB->getTerminator()) 1140 BB->getInstList().pop_back(); 1141 new UnreachableInst(BB->getContext(), BB); 1142 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1143 "applying corresponding DTU updates."); 1144 1145 if (DTU) { 1146 DTU->applyUpdates(Updates); 1147 DTU->deleteBB(BB); 1148 } else { 1149 BB->eraseFromParent(); // Delete the old basic block. 1150 } 1151 return true; 1152 } 1153 1154 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1155 // This implementation doesn't currently consider undef operands 1156 // specially. Theoretically, two phis which are identical except for 1157 // one having an undef where the other doesn't could be collapsed. 1158 1159 bool Changed = false; 1160 1161 // Examine each PHI. 1162 // Note that increment of I must *NOT* be in the iteration_expression, since 1163 // we don't want to immediately advance when we restart from the beginning. 1164 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1165 ++I; 1166 // Is there an identical PHI node in this basic block? 1167 // Note that we only look in the upper square's triangle, 1168 // we already checked that the lower triangle PHI's aren't identical. 1169 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1170 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1171 continue; 1172 // A duplicate. Replace this PHI with the base PHI. 1173 ++NumPHICSEs; 1174 DuplicatePN->replaceAllUsesWith(PN); 1175 DuplicatePN->eraseFromParent(); 1176 Changed = true; 1177 1178 // The RAUW can change PHIs that we already visited. 1179 I = BB->begin(); 1180 break; // Start over from the beginning. 1181 } 1182 } 1183 return Changed; 1184 } 1185 1186 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1187 // This implementation doesn't currently consider undef operands 1188 // specially. Theoretically, two phis which are identical except for 1189 // one having an undef where the other doesn't could be collapsed. 1190 1191 struct PHIDenseMapInfo { 1192 static PHINode *getEmptyKey() { 1193 return DenseMapInfo<PHINode *>::getEmptyKey(); 1194 } 1195 1196 static PHINode *getTombstoneKey() { 1197 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1198 } 1199 1200 static bool isSentinel(PHINode *PN) { 1201 return PN == getEmptyKey() || PN == getTombstoneKey(); 1202 } 1203 1204 // WARNING: this logic must be kept in sync with 1205 // Instruction::isIdenticalToWhenDefined()! 1206 static unsigned getHashValueImpl(PHINode *PN) { 1207 // Compute a hash value on the operands. Instcombine will likely have 1208 // sorted them, which helps expose duplicates, but we have to check all 1209 // the operands to be safe in case instcombine hasn't run. 1210 return static_cast<unsigned>(hash_combine( 1211 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1212 hash_combine_range(PN->block_begin(), PN->block_end()))); 1213 } 1214 1215 static unsigned getHashValue(PHINode *PN) { 1216 #ifndef NDEBUG 1217 // If -phicse-debug-hash was specified, return a constant -- this 1218 // will force all hashing to collide, so we'll exhaustively search 1219 // the table for a match, and the assertion in isEqual will fire if 1220 // there's a bug causing equal keys to hash differently. 1221 if (PHICSEDebugHash) 1222 return 0; 1223 #endif 1224 return getHashValueImpl(PN); 1225 } 1226 1227 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1228 if (isSentinel(LHS) || isSentinel(RHS)) 1229 return LHS == RHS; 1230 return LHS->isIdenticalTo(RHS); 1231 } 1232 1233 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1234 // These comparisons are nontrivial, so assert that equality implies 1235 // hash equality (DenseMap demands this as an invariant). 1236 bool Result = isEqualImpl(LHS, RHS); 1237 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1238 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1239 return Result; 1240 } 1241 }; 1242 1243 // Set of unique PHINodes. 1244 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1245 PHISet.reserve(4 * PHICSENumPHISmallSize); 1246 1247 // Examine each PHI. 1248 bool Changed = false; 1249 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1250 auto Inserted = PHISet.insert(PN); 1251 if (!Inserted.second) { 1252 // A duplicate. Replace this PHI with its duplicate. 1253 ++NumPHICSEs; 1254 PN->replaceAllUsesWith(*Inserted.first); 1255 PN->eraseFromParent(); 1256 Changed = true; 1257 1258 // The RAUW can change PHIs that we already visited. Start over from the 1259 // beginning. 1260 PHISet.clear(); 1261 I = BB->begin(); 1262 } 1263 } 1264 1265 return Changed; 1266 } 1267 1268 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1269 if ( 1270 #ifndef NDEBUG 1271 !PHICSEDebugHash && 1272 #endif 1273 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1274 return EliminateDuplicatePHINodesNaiveImpl(BB); 1275 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1276 } 1277 1278 /// If the specified pointer points to an object that we control, try to modify 1279 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1280 /// the value after the operation, which may be lower than PrefAlign. 1281 /// 1282 /// Increating value alignment isn't often possible though. If alignment is 1283 /// important, a more reliable approach is to simply align all global variables 1284 /// and allocation instructions to their preferred alignment from the beginning. 1285 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1286 const DataLayout &DL) { 1287 V = V->stripPointerCasts(); 1288 1289 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1290 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1291 // than the current alignment, as the known bits calculation should have 1292 // already taken it into account. However, this is not always the case, 1293 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1294 // doesn't. 1295 Align CurrentAlign = AI->getAlign(); 1296 if (PrefAlign <= CurrentAlign) 1297 return CurrentAlign; 1298 1299 // If the preferred alignment is greater than the natural stack alignment 1300 // then don't round up. This avoids dynamic stack realignment. 1301 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1302 return CurrentAlign; 1303 AI->setAlignment(PrefAlign); 1304 return PrefAlign; 1305 } 1306 1307 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1308 // TODO: as above, this shouldn't be necessary. 1309 Align CurrentAlign = GO->getPointerAlignment(DL); 1310 if (PrefAlign <= CurrentAlign) 1311 return CurrentAlign; 1312 1313 // If there is a large requested alignment and we can, bump up the alignment 1314 // of the global. If the memory we set aside for the global may not be the 1315 // memory used by the final program then it is impossible for us to reliably 1316 // enforce the preferred alignment. 1317 if (!GO->canIncreaseAlignment()) 1318 return CurrentAlign; 1319 1320 GO->setAlignment(PrefAlign); 1321 return PrefAlign; 1322 } 1323 1324 return Align(1); 1325 } 1326 1327 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1328 const DataLayout &DL, 1329 const Instruction *CxtI, 1330 AssumptionCache *AC, 1331 const DominatorTree *DT) { 1332 assert(V->getType()->isPointerTy() && 1333 "getOrEnforceKnownAlignment expects a pointer!"); 1334 1335 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1336 unsigned TrailZ = Known.countMinTrailingZeros(); 1337 1338 // Avoid trouble with ridiculously large TrailZ values, such as 1339 // those computed from a null pointer. 1340 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1341 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1342 1343 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1344 1345 if (PrefAlign && *PrefAlign > Alignment) 1346 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1347 1348 // We don't need to make any adjustment. 1349 return Alignment; 1350 } 1351 1352 ///===---------------------------------------------------------------------===// 1353 /// Dbg Intrinsic utilities 1354 /// 1355 1356 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1357 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1358 DIExpression *DIExpr, 1359 PHINode *APN) { 1360 // Since we can't guarantee that the original dbg.declare instrinsic 1361 // is removed by LowerDbgDeclare(), we need to make sure that we are 1362 // not inserting the same dbg.value intrinsic over and over. 1363 SmallVector<DbgValueInst *, 1> DbgValues; 1364 findDbgValues(DbgValues, APN); 1365 for (auto *DVI : DbgValues) { 1366 assert(is_contained(DVI->getValues(), APN)); 1367 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1368 return true; 1369 } 1370 return false; 1371 } 1372 1373 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1374 /// (or fragment of the variable) described by \p DII. 1375 /// 1376 /// This is primarily intended as a helper for the different 1377 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1378 /// converted describes an alloca'd variable, so we need to use the 1379 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1380 /// identified as covering an n-bit fragment, if the store size of i1 is at 1381 /// least n bits. 1382 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1383 const DataLayout &DL = DII->getModule()->getDataLayout(); 1384 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1385 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1386 assert(!ValueSize.isScalable() && 1387 "Fragments don't work on scalable types."); 1388 return ValueSize.getFixedSize() >= *FragmentSize; 1389 } 1390 // We can't always calculate the size of the DI variable (e.g. if it is a 1391 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1392 // intead. 1393 if (DII->isAddressOfVariable()) { 1394 // DII should have exactly 1 location when it is an address. 1395 assert(DII->getNumVariableLocationOps() == 1 && 1396 "address of variable must have exactly 1 location operand."); 1397 if (auto *AI = 1398 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1399 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1400 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1401 "Both sizes should agree on the scalable flag."); 1402 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1403 } 1404 } 1405 } 1406 // Could not determine size of variable. Conservatively return false. 1407 return false; 1408 } 1409 1410 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1411 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1412 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1413 /// case this DebugLoc leaks into any adjacent instructions. 1414 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1415 // Original dbg.declare must have a location. 1416 DebugLoc DeclareLoc = DII->getDebugLoc(); 1417 MDNode *Scope = DeclareLoc.getScope(); 1418 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1419 // Produce an unknown location with the correct scope / inlinedAt fields. 1420 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1421 } 1422 1423 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1424 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1425 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1426 StoreInst *SI, DIBuilder &Builder) { 1427 assert(DII->isAddressOfVariable()); 1428 auto *DIVar = DII->getVariable(); 1429 assert(DIVar && "Missing variable"); 1430 auto *DIExpr = DII->getExpression(); 1431 Value *DV = SI->getValueOperand(); 1432 1433 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1434 1435 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1436 // FIXME: If storing to a part of the variable described by the dbg.declare, 1437 // then we want to insert a dbg.value for the corresponding fragment. 1438 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1439 << *DII << '\n'); 1440 // For now, when there is a store to parts of the variable (but we do not 1441 // know which part) we insert an dbg.value instrinsic to indicate that we 1442 // know nothing about the variable's content. 1443 DV = UndefValue::get(DV->getType()); 1444 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1445 return; 1446 } 1447 1448 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1449 } 1450 1451 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1452 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1453 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1454 LoadInst *LI, DIBuilder &Builder) { 1455 auto *DIVar = DII->getVariable(); 1456 auto *DIExpr = DII->getExpression(); 1457 assert(DIVar && "Missing variable"); 1458 1459 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1460 // FIXME: If only referring to a part of the variable described by the 1461 // dbg.declare, then we want to insert a dbg.value for the corresponding 1462 // fragment. 1463 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1464 << *DII << '\n'); 1465 return; 1466 } 1467 1468 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1469 1470 // We are now tracking the loaded value instead of the address. In the 1471 // future if multi-location support is added to the IR, it might be 1472 // preferable to keep tracking both the loaded value and the original 1473 // address in case the alloca can not be elided. 1474 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1475 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1476 DbgValue->insertAfter(LI); 1477 } 1478 1479 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1480 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1481 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1482 PHINode *APN, DIBuilder &Builder) { 1483 auto *DIVar = DII->getVariable(); 1484 auto *DIExpr = DII->getExpression(); 1485 assert(DIVar && "Missing variable"); 1486 1487 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1488 return; 1489 1490 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1491 // FIXME: If only referring to a part of the variable described by the 1492 // dbg.declare, then we want to insert a dbg.value for the corresponding 1493 // fragment. 1494 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1495 << *DII << '\n'); 1496 return; 1497 } 1498 1499 BasicBlock *BB = APN->getParent(); 1500 auto InsertionPt = BB->getFirstInsertionPt(); 1501 1502 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1503 1504 // The block may be a catchswitch block, which does not have a valid 1505 // insertion point. 1506 // FIXME: Insert dbg.value markers in the successors when appropriate. 1507 if (InsertionPt != BB->end()) 1508 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1509 } 1510 1511 /// Determine whether this alloca is either a VLA or an array. 1512 static bool isArray(AllocaInst *AI) { 1513 return AI->isArrayAllocation() || 1514 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1515 } 1516 1517 /// Determine whether this alloca is a structure. 1518 static bool isStructure(AllocaInst *AI) { 1519 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1520 } 1521 1522 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1523 /// of llvm.dbg.value intrinsics. 1524 bool llvm::LowerDbgDeclare(Function &F) { 1525 bool Changed = false; 1526 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1527 SmallVector<DbgDeclareInst *, 4> Dbgs; 1528 for (auto &FI : F) 1529 for (Instruction &BI : FI) 1530 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1531 Dbgs.push_back(DDI); 1532 1533 if (Dbgs.empty()) 1534 return Changed; 1535 1536 for (auto &I : Dbgs) { 1537 DbgDeclareInst *DDI = I; 1538 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1539 // If this is an alloca for a scalar variable, insert a dbg.value 1540 // at each load and store to the alloca and erase the dbg.declare. 1541 // The dbg.values allow tracking a variable even if it is not 1542 // stored on the stack, while the dbg.declare can only describe 1543 // the stack slot (and at a lexical-scope granularity). Later 1544 // passes will attempt to elide the stack slot. 1545 if (!AI || isArray(AI) || isStructure(AI)) 1546 continue; 1547 1548 // A volatile load/store means that the alloca can't be elided anyway. 1549 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1550 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1551 return LI->isVolatile(); 1552 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1553 return SI->isVolatile(); 1554 return false; 1555 })) 1556 continue; 1557 1558 SmallVector<const Value *, 8> WorkList; 1559 WorkList.push_back(AI); 1560 while (!WorkList.empty()) { 1561 const Value *V = WorkList.pop_back_val(); 1562 for (auto &AIUse : V->uses()) { 1563 User *U = AIUse.getUser(); 1564 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1565 if (AIUse.getOperandNo() == 1) 1566 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1567 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1568 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1569 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1570 // This is a call by-value or some other instruction that takes a 1571 // pointer to the variable. Insert a *value* intrinsic that describes 1572 // the variable by dereferencing the alloca. 1573 if (!CI->isLifetimeStartOrEnd()) { 1574 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1575 auto *DerefExpr = 1576 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1577 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1578 NewLoc, CI); 1579 } 1580 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1581 if (BI->getType()->isPointerTy()) 1582 WorkList.push_back(BI); 1583 } 1584 } 1585 } 1586 DDI->eraseFromParent(); 1587 Changed = true; 1588 } 1589 1590 if (Changed) 1591 for (BasicBlock &BB : F) 1592 RemoveRedundantDbgInstrs(&BB); 1593 1594 return Changed; 1595 } 1596 1597 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1598 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1599 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1600 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1601 if (InsertedPHIs.size() == 0) 1602 return; 1603 1604 // Map existing PHI nodes to their dbg.values. 1605 ValueToValueMapTy DbgValueMap; 1606 for (auto &I : *BB) { 1607 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1608 for (Value *V : DbgII->location_ops()) 1609 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1610 DbgValueMap.insert({Loc, DbgII}); 1611 } 1612 } 1613 if (DbgValueMap.size() == 0) 1614 return; 1615 1616 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1617 // so that if a dbg.value is being rewritten to use more than one of the 1618 // inserted PHIs in the same destination BB, we can update the same dbg.value 1619 // with all the new PHIs instead of creating one copy for each. 1620 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1621 DbgVariableIntrinsic *> 1622 NewDbgValueMap; 1623 // Then iterate through the new PHIs and look to see if they use one of the 1624 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1625 // propagate the info through the new PHI. If we use more than one new PHI in 1626 // a single destination BB with the same old dbg.value, merge the updates so 1627 // that we get a single new dbg.value with all the new PHIs. 1628 for (auto PHI : InsertedPHIs) { 1629 BasicBlock *Parent = PHI->getParent(); 1630 // Avoid inserting an intrinsic into an EH block. 1631 if (Parent->getFirstNonPHI()->isEHPad()) 1632 continue; 1633 for (auto VI : PHI->operand_values()) { 1634 auto V = DbgValueMap.find(VI); 1635 if (V != DbgValueMap.end()) { 1636 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1637 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1638 if (NewDI == NewDbgValueMap.end()) { 1639 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1640 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1641 } 1642 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1643 // If PHI contains VI as an operand more than once, we may 1644 // replaced it in NewDbgII; confirm that it is present. 1645 if (is_contained(NewDbgII->location_ops(), VI)) 1646 NewDbgII->replaceVariableLocationOp(VI, PHI); 1647 } 1648 } 1649 } 1650 // Insert thew new dbg.values into their destination blocks. 1651 for (auto DI : NewDbgValueMap) { 1652 BasicBlock *Parent = DI.first.first; 1653 auto *NewDbgII = DI.second; 1654 auto InsertionPt = Parent->getFirstInsertionPt(); 1655 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1656 NewDbgII->insertBefore(&*InsertionPt); 1657 } 1658 } 1659 1660 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1661 DIBuilder &Builder, uint8_t DIExprFlags, 1662 int Offset) { 1663 auto DbgAddrs = FindDbgAddrUses(Address); 1664 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1665 DebugLoc Loc = DII->getDebugLoc(); 1666 auto *DIVar = DII->getVariable(); 1667 auto *DIExpr = DII->getExpression(); 1668 assert(DIVar && "Missing variable"); 1669 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1670 // Insert llvm.dbg.declare immediately before DII, and remove old 1671 // llvm.dbg.declare. 1672 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1673 DII->eraseFromParent(); 1674 } 1675 return !DbgAddrs.empty(); 1676 } 1677 1678 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1679 DIBuilder &Builder, int Offset) { 1680 DebugLoc Loc = DVI->getDebugLoc(); 1681 auto *DIVar = DVI->getVariable(); 1682 auto *DIExpr = DVI->getExpression(); 1683 assert(DIVar && "Missing variable"); 1684 1685 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1686 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1687 // it and give up. 1688 if (!DIExpr || DIExpr->getNumElements() < 1 || 1689 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1690 return; 1691 1692 // Insert the offset before the first deref. 1693 // We could just change the offset argument of dbg.value, but it's unsigned... 1694 if (Offset) 1695 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1696 1697 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1698 DVI->eraseFromParent(); 1699 } 1700 1701 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1702 DIBuilder &Builder, int Offset) { 1703 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1704 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1705 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1706 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1707 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1708 } 1709 1710 /// Where possible to salvage debug information for \p I do so 1711 /// and return True. If not possible mark undef and return False. 1712 void llvm::salvageDebugInfo(Instruction &I) { 1713 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1714 findDbgUsers(DbgUsers, &I); 1715 salvageDebugInfoForDbgValues(I, DbgUsers); 1716 } 1717 1718 void llvm::salvageDebugInfoForDbgValues( 1719 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1720 bool Salvaged = false; 1721 1722 for (auto *DII : DbgUsers) { 1723 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1724 // are implicitly pointing out the value as a DWARF memory location 1725 // description. 1726 bool StackValue = isa<DbgValueInst>(DII); 1727 auto DIILocation = DII->location_ops(); 1728 assert( 1729 is_contained(DIILocation, &I) && 1730 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1731 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1732 1733 DIExpression *DIExpr = 1734 salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo); 1735 1736 // salvageDebugInfoImpl should fail on examining the first element of 1737 // DbgUsers, or none of them. 1738 if (!DIExpr) 1739 break; 1740 1741 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1742 DII->setExpression(DIExpr); 1743 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1744 Salvaged = true; 1745 } 1746 1747 if (Salvaged) 1748 return; 1749 1750 for (auto *DII : DbgUsers) { 1751 Value *Undef = UndefValue::get(I.getType()); 1752 DII->replaceVariableLocationOp(&I, Undef); 1753 } 1754 } 1755 1756 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1757 SmallVectorImpl<uint64_t> &Opcodes) { 1758 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1759 // Rewrite a constant GEP into a DIExpression. 1760 APInt ConstantOffset(BitWidth, 0); 1761 if (!GEP->accumulateConstantOffset(DL, ConstantOffset)) 1762 return false; 1763 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1764 return true; 1765 } 1766 1767 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1768 switch (Opcode) { 1769 case Instruction::Add: 1770 return dwarf::DW_OP_plus; 1771 case Instruction::Sub: 1772 return dwarf::DW_OP_minus; 1773 case Instruction::Mul: 1774 return dwarf::DW_OP_mul; 1775 case Instruction::SDiv: 1776 return dwarf::DW_OP_div; 1777 case Instruction::SRem: 1778 return dwarf::DW_OP_mod; 1779 case Instruction::Or: 1780 return dwarf::DW_OP_or; 1781 case Instruction::And: 1782 return dwarf::DW_OP_and; 1783 case Instruction::Xor: 1784 return dwarf::DW_OP_xor; 1785 case Instruction::Shl: 1786 return dwarf::DW_OP_shl; 1787 case Instruction::LShr: 1788 return dwarf::DW_OP_shr; 1789 case Instruction::AShr: 1790 return dwarf::DW_OP_shra; 1791 default: 1792 // TODO: Salvage from each kind of binop we know about. 1793 return 0; 1794 } 1795 } 1796 1797 bool getSalvageOpsForBinOp(BinaryOperator *BI, 1798 SmallVectorImpl<uint64_t> &Opcodes) { 1799 // Rewrite binary operations with constant integer operands. 1800 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1801 if (!ConstInt || ConstInt->getBitWidth() > 64) 1802 return false; 1803 uint64_t Val = ConstInt->getSExtValue(); 1804 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1805 // Add or Sub Instructions with a constant operand can potentially be 1806 // simplified. 1807 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1808 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1809 DIExpression::appendOffset(Opcodes, Offset); 1810 return true; 1811 } 1812 // Add constant int operand to expression stack. 1813 Opcodes.append({dwarf::DW_OP_constu, Val}); 1814 1815 // Add salvaged binary operator to expression stack, if it has a valid 1816 // representation in a DIExpression. 1817 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1818 if (!DwarfBinOp) 1819 return false; 1820 Opcodes.push_back(DwarfBinOp); 1821 1822 return true; 1823 } 1824 1825 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1826 DIExpression *SrcDIExpr, 1827 bool WithStackValue, unsigned LocNo) { 1828 auto &M = *I.getModule(); 1829 auto &DL = M.getDataLayout(); 1830 1831 // Apply a vector of opcodes to the source DIExpression. 1832 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1833 DIExpression *DIExpr = SrcDIExpr; 1834 if (!Ops.empty()) { 1835 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1836 } 1837 return DIExpr; 1838 }; 1839 1840 // initializer-list helper for applying operators to the source DIExpression. 1841 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1842 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1843 return doSalvage(Ops); 1844 }; 1845 1846 if (auto *CI = dyn_cast<CastInst>(&I)) { 1847 // No-op casts are irrelevant for debug info. 1848 if (CI->isNoopCast(DL)) 1849 return SrcDIExpr; 1850 1851 Type *Type = CI->getType(); 1852 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1853 if (Type->isVectorTy() || 1854 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1855 return nullptr; 1856 1857 Value *FromValue = CI->getOperand(0); 1858 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1859 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1860 1861 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1862 isa<SExtInst>(&I))); 1863 } 1864 1865 SmallVector<uint64_t, 8> Ops; 1866 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1867 if (getSalvageOpsForGEP(GEP, DL, Ops)) 1868 return doSalvage(Ops); 1869 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1870 if (getSalvageOpsForBinOp(BI, Ops)) 1871 return doSalvage(Ops); 1872 } 1873 // *Not* to do: we should not attempt to salvage load instructions, 1874 // because the validity and lifetime of a dbg.value containing 1875 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1876 return nullptr; 1877 } 1878 1879 /// A replacement for a dbg.value expression. 1880 using DbgValReplacement = Optional<DIExpression *>; 1881 1882 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1883 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1884 /// changes are made. 1885 static bool rewriteDebugUsers( 1886 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1887 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1888 // Find debug users of From. 1889 SmallVector<DbgVariableIntrinsic *, 1> Users; 1890 findDbgUsers(Users, &From); 1891 if (Users.empty()) 1892 return false; 1893 1894 // Prevent use-before-def of To. 1895 bool Changed = false; 1896 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1897 if (isa<Instruction>(&To)) { 1898 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1899 1900 for (auto *DII : Users) { 1901 // It's common to see a debug user between From and DomPoint. Move it 1902 // after DomPoint to preserve the variable update without any reordering. 1903 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1904 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1905 DII->moveAfter(&DomPoint); 1906 Changed = true; 1907 1908 // Users which otherwise aren't dominated by the replacement value must 1909 // be salvaged or deleted. 1910 } else if (!DT.dominates(&DomPoint, DII)) { 1911 UndefOrSalvage.insert(DII); 1912 } 1913 } 1914 } 1915 1916 // Update debug users without use-before-def risk. 1917 for (auto *DII : Users) { 1918 if (UndefOrSalvage.count(DII)) 1919 continue; 1920 1921 DbgValReplacement DVR = RewriteExpr(*DII); 1922 if (!DVR) 1923 continue; 1924 1925 DII->replaceVariableLocationOp(&From, &To); 1926 DII->setExpression(*DVR); 1927 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1928 Changed = true; 1929 } 1930 1931 if (!UndefOrSalvage.empty()) { 1932 // Try to salvage the remaining debug users. 1933 salvageDebugInfo(From); 1934 Changed = true; 1935 } 1936 1937 return Changed; 1938 } 1939 1940 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1941 /// losslessly preserve the bits and semantics of the value. This predicate is 1942 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1943 /// 1944 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1945 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1946 /// and also does not allow lossless pointer <-> integer conversions. 1947 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1948 Type *ToTy) { 1949 // Trivially compatible types. 1950 if (FromTy == ToTy) 1951 return true; 1952 1953 // Handle compatible pointer <-> integer conversions. 1954 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1955 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1956 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1957 !DL.isNonIntegralPointerType(ToTy); 1958 return SameSize && LosslessConversion; 1959 } 1960 1961 // TODO: This is not exhaustive. 1962 return false; 1963 } 1964 1965 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1966 Instruction &DomPoint, DominatorTree &DT) { 1967 // Exit early if From has no debug users. 1968 if (!From.isUsedByMetadata()) 1969 return false; 1970 1971 assert(&From != &To && "Can't replace something with itself"); 1972 1973 Type *FromTy = From.getType(); 1974 Type *ToTy = To.getType(); 1975 1976 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1977 return DII.getExpression(); 1978 }; 1979 1980 // Handle no-op conversions. 1981 Module &M = *From.getModule(); 1982 const DataLayout &DL = M.getDataLayout(); 1983 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1984 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1985 1986 // Handle integer-to-integer widening and narrowing. 1987 // FIXME: Use DW_OP_convert when it's available everywhere. 1988 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1989 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1990 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1991 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1992 1993 // When the width of the result grows, assume that a debugger will only 1994 // access the low `FromBits` bits when inspecting the source variable. 1995 if (FromBits < ToBits) 1996 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1997 1998 // The width of the result has shrunk. Use sign/zero extension to describe 1999 // the source variable's high bits. 2000 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2001 DILocalVariable *Var = DII.getVariable(); 2002 2003 // Without knowing signedness, sign/zero extension isn't possible. 2004 auto Signedness = Var->getSignedness(); 2005 if (!Signedness) 2006 return None; 2007 2008 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2009 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2010 Signed); 2011 }; 2012 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2013 } 2014 2015 // TODO: Floating-point conversions, vectors. 2016 return false; 2017 } 2018 2019 std::pair<unsigned, unsigned> 2020 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2021 unsigned NumDeadInst = 0; 2022 unsigned NumDeadDbgInst = 0; 2023 // Delete the instructions backwards, as it has a reduced likelihood of 2024 // having to update as many def-use and use-def chains. 2025 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2026 while (EndInst != &BB->front()) { 2027 // Delete the next to last instruction. 2028 Instruction *Inst = &*--EndInst->getIterator(); 2029 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2030 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2031 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2032 EndInst = Inst; 2033 continue; 2034 } 2035 if (isa<DbgInfoIntrinsic>(Inst)) 2036 ++NumDeadDbgInst; 2037 else 2038 ++NumDeadInst; 2039 Inst->eraseFromParent(); 2040 } 2041 return {NumDeadInst, NumDeadDbgInst}; 2042 } 2043 2044 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2045 bool PreserveLCSSA, DomTreeUpdater *DTU, 2046 MemorySSAUpdater *MSSAU) { 2047 BasicBlock *BB = I->getParent(); 2048 2049 if (MSSAU) 2050 MSSAU->changeToUnreachable(I); 2051 2052 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2053 2054 // Loop over all of the successors, removing BB's entry from any PHI 2055 // nodes. 2056 for (BasicBlock *Successor : successors(BB)) { 2057 Successor->removePredecessor(BB, PreserveLCSSA); 2058 if (DTU) 2059 UniqueSuccessors.insert(Successor); 2060 } 2061 // Insert a call to llvm.trap right before this. This turns the undefined 2062 // behavior into a hard fail instead of falling through into random code. 2063 if (UseLLVMTrap) { 2064 Function *TrapFn = 2065 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2066 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2067 CallTrap->setDebugLoc(I->getDebugLoc()); 2068 } 2069 auto *UI = new UnreachableInst(I->getContext(), I); 2070 UI->setDebugLoc(I->getDebugLoc()); 2071 2072 // All instructions after this are dead. 2073 unsigned NumInstrsRemoved = 0; 2074 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2075 while (BBI != BBE) { 2076 if (!BBI->use_empty()) 2077 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2078 BB->getInstList().erase(BBI++); 2079 ++NumInstrsRemoved; 2080 } 2081 if (DTU) { 2082 SmallVector<DominatorTree::UpdateType, 8> Updates; 2083 Updates.reserve(UniqueSuccessors.size()); 2084 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2085 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2086 DTU->applyUpdates(Updates); 2087 } 2088 return NumInstrsRemoved; 2089 } 2090 2091 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2092 SmallVector<Value *, 8> Args(II->args()); 2093 SmallVector<OperandBundleDef, 1> OpBundles; 2094 II->getOperandBundlesAsDefs(OpBundles); 2095 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2096 II->getCalledOperand(), Args, OpBundles); 2097 NewCall->setCallingConv(II->getCallingConv()); 2098 NewCall->setAttributes(II->getAttributes()); 2099 NewCall->setDebugLoc(II->getDebugLoc()); 2100 NewCall->copyMetadata(*II); 2101 2102 // If the invoke had profile metadata, try converting them for CallInst. 2103 uint64_t TotalWeight; 2104 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2105 // Set the total weight if it fits into i32, otherwise reset. 2106 MDBuilder MDB(NewCall->getContext()); 2107 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2108 ? nullptr 2109 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2110 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2111 } 2112 2113 return NewCall; 2114 } 2115 2116 /// changeToCall - Convert the specified invoke into a normal call. 2117 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2118 CallInst *NewCall = createCallMatchingInvoke(II); 2119 NewCall->takeName(II); 2120 NewCall->insertBefore(II); 2121 II->replaceAllUsesWith(NewCall); 2122 2123 // Follow the call by a branch to the normal destination. 2124 BasicBlock *NormalDestBB = II->getNormalDest(); 2125 BranchInst::Create(NormalDestBB, II); 2126 2127 // Update PHI nodes in the unwind destination 2128 BasicBlock *BB = II->getParent(); 2129 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2130 UnwindDestBB->removePredecessor(BB); 2131 II->eraseFromParent(); 2132 if (DTU) 2133 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2134 } 2135 2136 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2137 BasicBlock *UnwindEdge, 2138 DomTreeUpdater *DTU) { 2139 BasicBlock *BB = CI->getParent(); 2140 2141 // Convert this function call into an invoke instruction. First, split the 2142 // basic block. 2143 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2144 CI->getName() + ".noexc"); 2145 2146 // Delete the unconditional branch inserted by SplitBlock 2147 BB->getInstList().pop_back(); 2148 2149 // Create the new invoke instruction. 2150 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2151 SmallVector<OperandBundleDef, 1> OpBundles; 2152 2153 CI->getOperandBundlesAsDefs(OpBundles); 2154 2155 // Note: we're round tripping operand bundles through memory here, and that 2156 // can potentially be avoided with a cleverer API design that we do not have 2157 // as of this time. 2158 2159 InvokeInst *II = 2160 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2161 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2162 II->setDebugLoc(CI->getDebugLoc()); 2163 II->setCallingConv(CI->getCallingConv()); 2164 II->setAttributes(CI->getAttributes()); 2165 2166 if (DTU) 2167 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2168 2169 // Make sure that anything using the call now uses the invoke! This also 2170 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2171 CI->replaceAllUsesWith(II); 2172 2173 // Delete the original call 2174 Split->getInstList().pop_front(); 2175 return Split; 2176 } 2177 2178 static bool markAliveBlocks(Function &F, 2179 SmallPtrSetImpl<BasicBlock *> &Reachable, 2180 DomTreeUpdater *DTU = nullptr) { 2181 SmallVector<BasicBlock*, 128> Worklist; 2182 BasicBlock *BB = &F.front(); 2183 Worklist.push_back(BB); 2184 Reachable.insert(BB); 2185 bool Changed = false; 2186 do { 2187 BB = Worklist.pop_back_val(); 2188 2189 // Do a quick scan of the basic block, turning any obviously unreachable 2190 // instructions into LLVM unreachable insts. The instruction combining pass 2191 // canonicalizes unreachable insts into stores to null or undef. 2192 for (Instruction &I : *BB) { 2193 if (auto *CI = dyn_cast<CallInst>(&I)) { 2194 Value *Callee = CI->getCalledOperand(); 2195 // Handle intrinsic calls. 2196 if (Function *F = dyn_cast<Function>(Callee)) { 2197 auto IntrinsicID = F->getIntrinsicID(); 2198 // Assumptions that are known to be false are equivalent to 2199 // unreachable. Also, if the condition is undefined, then we make the 2200 // choice most beneficial to the optimizer, and choose that to also be 2201 // unreachable. 2202 if (IntrinsicID == Intrinsic::assume) { 2203 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2204 // Don't insert a call to llvm.trap right before the unreachable. 2205 changeToUnreachable(CI, false, false, DTU); 2206 Changed = true; 2207 break; 2208 } 2209 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2210 // A call to the guard intrinsic bails out of the current 2211 // compilation unit if the predicate passed to it is false. If the 2212 // predicate is a constant false, then we know the guard will bail 2213 // out of the current compile unconditionally, so all code following 2214 // it is dead. 2215 // 2216 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2217 // guards to treat `undef` as `false` since a guard on `undef` can 2218 // still be useful for widening. 2219 if (match(CI->getArgOperand(0), m_Zero())) 2220 if (!isa<UnreachableInst>(CI->getNextNode())) { 2221 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2222 false, DTU); 2223 Changed = true; 2224 break; 2225 } 2226 } 2227 } else if ((isa<ConstantPointerNull>(Callee) && 2228 !NullPointerIsDefined(CI->getFunction())) || 2229 isa<UndefValue>(Callee)) { 2230 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2231 Changed = true; 2232 break; 2233 } 2234 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2235 // If we found a call to a no-return function, insert an unreachable 2236 // instruction after it. Make sure there isn't *already* one there 2237 // though. 2238 if (!isa<UnreachableInst>(CI->getNextNode())) { 2239 // Don't insert a call to llvm.trap right before the unreachable. 2240 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2241 Changed = true; 2242 } 2243 break; 2244 } 2245 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2246 // Store to undef and store to null are undefined and used to signal 2247 // that they should be changed to unreachable by passes that can't 2248 // modify the CFG. 2249 2250 // Don't touch volatile stores. 2251 if (SI->isVolatile()) continue; 2252 2253 Value *Ptr = SI->getOperand(1); 2254 2255 if (isa<UndefValue>(Ptr) || 2256 (isa<ConstantPointerNull>(Ptr) && 2257 !NullPointerIsDefined(SI->getFunction(), 2258 SI->getPointerAddressSpace()))) { 2259 changeToUnreachable(SI, true, false, DTU); 2260 Changed = true; 2261 break; 2262 } 2263 } 2264 } 2265 2266 Instruction *Terminator = BB->getTerminator(); 2267 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2268 // Turn invokes that call 'nounwind' functions into ordinary calls. 2269 Value *Callee = II->getCalledOperand(); 2270 if ((isa<ConstantPointerNull>(Callee) && 2271 !NullPointerIsDefined(BB->getParent())) || 2272 isa<UndefValue>(Callee)) { 2273 changeToUnreachable(II, true, false, DTU); 2274 Changed = true; 2275 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2276 if (II->use_empty() && II->onlyReadsMemory()) { 2277 // jump to the normal destination branch. 2278 BasicBlock *NormalDestBB = II->getNormalDest(); 2279 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2280 BranchInst::Create(NormalDestBB, II); 2281 UnwindDestBB->removePredecessor(II->getParent()); 2282 II->eraseFromParent(); 2283 if (DTU) 2284 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2285 } else 2286 changeToCall(II, DTU); 2287 Changed = true; 2288 } 2289 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2290 // Remove catchpads which cannot be reached. 2291 struct CatchPadDenseMapInfo { 2292 static CatchPadInst *getEmptyKey() { 2293 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2294 } 2295 2296 static CatchPadInst *getTombstoneKey() { 2297 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2298 } 2299 2300 static unsigned getHashValue(CatchPadInst *CatchPad) { 2301 return static_cast<unsigned>(hash_combine_range( 2302 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2303 } 2304 2305 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2306 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2307 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2308 return LHS == RHS; 2309 return LHS->isIdenticalTo(RHS); 2310 } 2311 }; 2312 2313 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2314 // Set of unique CatchPads. 2315 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2316 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2317 HandlerSet; 2318 detail::DenseSetEmpty Empty; 2319 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2320 E = CatchSwitch->handler_end(); 2321 I != E; ++I) { 2322 BasicBlock *HandlerBB = *I; 2323 if (DTU) 2324 ++NumPerSuccessorCases[HandlerBB]; 2325 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2326 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2327 if (DTU) 2328 --NumPerSuccessorCases[HandlerBB]; 2329 CatchSwitch->removeHandler(I); 2330 --I; 2331 --E; 2332 Changed = true; 2333 } 2334 } 2335 if (DTU) { 2336 std::vector<DominatorTree::UpdateType> Updates; 2337 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2338 if (I.second == 0) 2339 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2340 DTU->applyUpdates(Updates); 2341 } 2342 } 2343 2344 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2345 for (BasicBlock *Successor : successors(BB)) 2346 if (Reachable.insert(Successor).second) 2347 Worklist.push_back(Successor); 2348 } while (!Worklist.empty()); 2349 return Changed; 2350 } 2351 2352 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2353 Instruction *TI = BB->getTerminator(); 2354 2355 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2356 changeToCall(II, DTU); 2357 return; 2358 } 2359 2360 Instruction *NewTI; 2361 BasicBlock *UnwindDest; 2362 2363 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2364 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2365 UnwindDest = CRI->getUnwindDest(); 2366 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2367 auto *NewCatchSwitch = CatchSwitchInst::Create( 2368 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2369 CatchSwitch->getName(), CatchSwitch); 2370 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2371 NewCatchSwitch->addHandler(PadBB); 2372 2373 NewTI = NewCatchSwitch; 2374 UnwindDest = CatchSwitch->getUnwindDest(); 2375 } else { 2376 llvm_unreachable("Could not find unwind successor"); 2377 } 2378 2379 NewTI->takeName(TI); 2380 NewTI->setDebugLoc(TI->getDebugLoc()); 2381 UnwindDest->removePredecessor(BB); 2382 TI->replaceAllUsesWith(NewTI); 2383 TI->eraseFromParent(); 2384 if (DTU) 2385 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2386 } 2387 2388 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2389 /// if they are in a dead cycle. Return true if a change was made, false 2390 /// otherwise. 2391 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2392 MemorySSAUpdater *MSSAU) { 2393 SmallPtrSet<BasicBlock *, 16> Reachable; 2394 bool Changed = markAliveBlocks(F, Reachable, DTU); 2395 2396 // If there are unreachable blocks in the CFG... 2397 if (Reachable.size() == F.size()) 2398 return Changed; 2399 2400 assert(Reachable.size() < F.size()); 2401 2402 // Are there any blocks left to actually delete? 2403 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2404 for (BasicBlock &BB : F) { 2405 // Skip reachable basic blocks 2406 if (Reachable.count(&BB)) 2407 continue; 2408 // Skip already-deleted blocks 2409 if (DTU && DTU->isBBPendingDeletion(&BB)) 2410 continue; 2411 BlocksToRemove.insert(&BB); 2412 } 2413 2414 if (BlocksToRemove.empty()) 2415 return Changed; 2416 2417 Changed = true; 2418 NumRemoved += BlocksToRemove.size(); 2419 2420 if (MSSAU) 2421 MSSAU->removeBlocks(BlocksToRemove); 2422 2423 // Loop over all of the basic blocks that are up for removal, dropping all of 2424 // their internal references. Update DTU if available. 2425 std::vector<DominatorTree::UpdateType> Updates; 2426 for (auto *BB : BlocksToRemove) { 2427 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2428 for (BasicBlock *Successor : successors(BB)) { 2429 // Only remove references to BB in reachable successors of BB. 2430 if (Reachable.count(Successor)) 2431 Successor->removePredecessor(BB); 2432 if (DTU) 2433 UniqueSuccessors.insert(Successor); 2434 } 2435 BB->dropAllReferences(); 2436 if (DTU) { 2437 Instruction *TI = BB->getTerminator(); 2438 assert(TI && "Basic block should have a terminator"); 2439 // Terminators like invoke can have users. We have to replace their users, 2440 // before removing them. 2441 if (!TI->use_empty()) 2442 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2443 TI->eraseFromParent(); 2444 new UnreachableInst(BB->getContext(), BB); 2445 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2446 "applying corresponding DTU updates."); 2447 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2448 for (auto *UniqueSuccessor : UniqueSuccessors) 2449 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2450 } 2451 } 2452 2453 if (DTU) { 2454 DTU->applyUpdates(Updates); 2455 for (auto *BB : BlocksToRemove) 2456 DTU->deleteBB(BB); 2457 } else { 2458 for (auto *BB : BlocksToRemove) 2459 BB->eraseFromParent(); 2460 } 2461 2462 return Changed; 2463 } 2464 2465 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2466 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2467 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2468 K->dropUnknownNonDebugMetadata(KnownIDs); 2469 K->getAllMetadataOtherThanDebugLoc(Metadata); 2470 for (const auto &MD : Metadata) { 2471 unsigned Kind = MD.first; 2472 MDNode *JMD = J->getMetadata(Kind); 2473 MDNode *KMD = MD.second; 2474 2475 switch (Kind) { 2476 default: 2477 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2478 break; 2479 case LLVMContext::MD_dbg: 2480 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2481 case LLVMContext::MD_tbaa: 2482 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2483 break; 2484 case LLVMContext::MD_alias_scope: 2485 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2486 break; 2487 case LLVMContext::MD_noalias: 2488 case LLVMContext::MD_mem_parallel_loop_access: 2489 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2490 break; 2491 case LLVMContext::MD_access_group: 2492 K->setMetadata(LLVMContext::MD_access_group, 2493 intersectAccessGroups(K, J)); 2494 break; 2495 case LLVMContext::MD_range: 2496 2497 // If K does move, use most generic range. Otherwise keep the range of 2498 // K. 2499 if (DoesKMove) 2500 // FIXME: If K does move, we should drop the range info and nonnull. 2501 // Currently this function is used with DoesKMove in passes 2502 // doing hoisting/sinking and the current behavior of using the 2503 // most generic range is correct in those cases. 2504 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2505 break; 2506 case LLVMContext::MD_fpmath: 2507 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2508 break; 2509 case LLVMContext::MD_invariant_load: 2510 // Only set the !invariant.load if it is present in both instructions. 2511 K->setMetadata(Kind, JMD); 2512 break; 2513 case LLVMContext::MD_nonnull: 2514 // If K does move, keep nonull if it is present in both instructions. 2515 if (DoesKMove) 2516 K->setMetadata(Kind, JMD); 2517 break; 2518 case LLVMContext::MD_invariant_group: 2519 // Preserve !invariant.group in K. 2520 break; 2521 case LLVMContext::MD_align: 2522 K->setMetadata(Kind, 2523 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2524 break; 2525 case LLVMContext::MD_dereferenceable: 2526 case LLVMContext::MD_dereferenceable_or_null: 2527 K->setMetadata(Kind, 2528 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2529 break; 2530 case LLVMContext::MD_preserve_access_index: 2531 // Preserve !preserve.access.index in K. 2532 break; 2533 } 2534 } 2535 // Set !invariant.group from J if J has it. If both instructions have it 2536 // then we will just pick it from J - even when they are different. 2537 // Also make sure that K is load or store - f.e. combining bitcast with load 2538 // could produce bitcast with invariant.group metadata, which is invalid. 2539 // FIXME: we should try to preserve both invariant.group md if they are 2540 // different, but right now instruction can only have one invariant.group. 2541 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2542 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2543 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2544 } 2545 2546 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2547 bool KDominatesJ) { 2548 unsigned KnownIDs[] = { 2549 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2550 LLVMContext::MD_noalias, LLVMContext::MD_range, 2551 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2552 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2553 LLVMContext::MD_dereferenceable, 2554 LLVMContext::MD_dereferenceable_or_null, 2555 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2556 combineMetadata(K, J, KnownIDs, KDominatesJ); 2557 } 2558 2559 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2560 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2561 Source.getAllMetadata(MD); 2562 MDBuilder MDB(Dest.getContext()); 2563 Type *NewType = Dest.getType(); 2564 const DataLayout &DL = Source.getModule()->getDataLayout(); 2565 for (const auto &MDPair : MD) { 2566 unsigned ID = MDPair.first; 2567 MDNode *N = MDPair.second; 2568 // Note, essentially every kind of metadata should be preserved here! This 2569 // routine is supposed to clone a load instruction changing *only its type*. 2570 // The only metadata it makes sense to drop is metadata which is invalidated 2571 // when the pointer type changes. This should essentially never be the case 2572 // in LLVM, but we explicitly switch over only known metadata to be 2573 // conservatively correct. If you are adding metadata to LLVM which pertains 2574 // to loads, you almost certainly want to add it here. 2575 switch (ID) { 2576 case LLVMContext::MD_dbg: 2577 case LLVMContext::MD_tbaa: 2578 case LLVMContext::MD_prof: 2579 case LLVMContext::MD_fpmath: 2580 case LLVMContext::MD_tbaa_struct: 2581 case LLVMContext::MD_invariant_load: 2582 case LLVMContext::MD_alias_scope: 2583 case LLVMContext::MD_noalias: 2584 case LLVMContext::MD_nontemporal: 2585 case LLVMContext::MD_mem_parallel_loop_access: 2586 case LLVMContext::MD_access_group: 2587 // All of these directly apply. 2588 Dest.setMetadata(ID, N); 2589 break; 2590 2591 case LLVMContext::MD_nonnull: 2592 copyNonnullMetadata(Source, N, Dest); 2593 break; 2594 2595 case LLVMContext::MD_align: 2596 case LLVMContext::MD_dereferenceable: 2597 case LLVMContext::MD_dereferenceable_or_null: 2598 // These only directly apply if the new type is also a pointer. 2599 if (NewType->isPointerTy()) 2600 Dest.setMetadata(ID, N); 2601 break; 2602 2603 case LLVMContext::MD_range: 2604 copyRangeMetadata(DL, Source, N, Dest); 2605 break; 2606 } 2607 } 2608 } 2609 2610 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2611 auto *ReplInst = dyn_cast<Instruction>(Repl); 2612 if (!ReplInst) 2613 return; 2614 2615 // Patch the replacement so that it is not more restrictive than the value 2616 // being replaced. 2617 // Note that if 'I' is a load being replaced by some operation, 2618 // for example, by an arithmetic operation, then andIRFlags() 2619 // would just erase all math flags from the original arithmetic 2620 // operation, which is clearly not wanted and not needed. 2621 if (!isa<LoadInst>(I)) 2622 ReplInst->andIRFlags(I); 2623 2624 // FIXME: If both the original and replacement value are part of the 2625 // same control-flow region (meaning that the execution of one 2626 // guarantees the execution of the other), then we can combine the 2627 // noalias scopes here and do better than the general conservative 2628 // answer used in combineMetadata(). 2629 2630 // In general, GVN unifies expressions over different control-flow 2631 // regions, and so we need a conservative combination of the noalias 2632 // scopes. 2633 static const unsigned KnownIDs[] = { 2634 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2635 LLVMContext::MD_noalias, LLVMContext::MD_range, 2636 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2637 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2638 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2639 combineMetadata(ReplInst, I, KnownIDs, false); 2640 } 2641 2642 template <typename RootType, typename DominatesFn> 2643 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2644 const RootType &Root, 2645 const DominatesFn &Dominates) { 2646 assert(From->getType() == To->getType()); 2647 2648 unsigned Count = 0; 2649 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2650 UI != UE;) { 2651 Use &U = *UI++; 2652 if (!Dominates(Root, U)) 2653 continue; 2654 U.set(To); 2655 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2656 << "' as " << *To << " in " << *U << "\n"); 2657 ++Count; 2658 } 2659 return Count; 2660 } 2661 2662 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2663 assert(From->getType() == To->getType()); 2664 auto *BB = From->getParent(); 2665 unsigned Count = 0; 2666 2667 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2668 UI != UE;) { 2669 Use &U = *UI++; 2670 auto *I = cast<Instruction>(U.getUser()); 2671 if (I->getParent() == BB) 2672 continue; 2673 U.set(To); 2674 ++Count; 2675 } 2676 return Count; 2677 } 2678 2679 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2680 DominatorTree &DT, 2681 const BasicBlockEdge &Root) { 2682 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2683 return DT.dominates(Root, U); 2684 }; 2685 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2686 } 2687 2688 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2689 DominatorTree &DT, 2690 const BasicBlock *BB) { 2691 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2692 return DT.dominates(BB, U); 2693 }; 2694 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2695 } 2696 2697 bool llvm::callsGCLeafFunction(const CallBase *Call, 2698 const TargetLibraryInfo &TLI) { 2699 // Check if the function is specifically marked as a gc leaf function. 2700 if (Call->hasFnAttr("gc-leaf-function")) 2701 return true; 2702 if (const Function *F = Call->getCalledFunction()) { 2703 if (F->hasFnAttribute("gc-leaf-function")) 2704 return true; 2705 2706 if (auto IID = F->getIntrinsicID()) { 2707 // Most LLVM intrinsics do not take safepoints. 2708 return IID != Intrinsic::experimental_gc_statepoint && 2709 IID != Intrinsic::experimental_deoptimize && 2710 IID != Intrinsic::memcpy_element_unordered_atomic && 2711 IID != Intrinsic::memmove_element_unordered_atomic; 2712 } 2713 } 2714 2715 // Lib calls can be materialized by some passes, and won't be 2716 // marked as 'gc-leaf-function.' All available Libcalls are 2717 // GC-leaf. 2718 LibFunc LF; 2719 if (TLI.getLibFunc(*Call, LF)) { 2720 return TLI.has(LF); 2721 } 2722 2723 return false; 2724 } 2725 2726 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2727 LoadInst &NewLI) { 2728 auto *NewTy = NewLI.getType(); 2729 2730 // This only directly applies if the new type is also a pointer. 2731 if (NewTy->isPointerTy()) { 2732 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2733 return; 2734 } 2735 2736 // The only other translation we can do is to integral loads with !range 2737 // metadata. 2738 if (!NewTy->isIntegerTy()) 2739 return; 2740 2741 MDBuilder MDB(NewLI.getContext()); 2742 const Value *Ptr = OldLI.getPointerOperand(); 2743 auto *ITy = cast<IntegerType>(NewTy); 2744 auto *NullInt = ConstantExpr::getPtrToInt( 2745 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2746 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2747 NewLI.setMetadata(LLVMContext::MD_range, 2748 MDB.createRange(NonNullInt, NullInt)); 2749 } 2750 2751 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2752 MDNode *N, LoadInst &NewLI) { 2753 auto *NewTy = NewLI.getType(); 2754 2755 // Give up unless it is converted to a pointer where there is a single very 2756 // valuable mapping we can do reliably. 2757 // FIXME: It would be nice to propagate this in more ways, but the type 2758 // conversions make it hard. 2759 if (!NewTy->isPointerTy()) 2760 return; 2761 2762 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2763 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2764 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2765 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2766 } 2767 } 2768 2769 void llvm::dropDebugUsers(Instruction &I) { 2770 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2771 findDbgUsers(DbgUsers, &I); 2772 for (auto *DII : DbgUsers) 2773 DII->eraseFromParent(); 2774 } 2775 2776 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2777 BasicBlock *BB) { 2778 // Since we are moving the instructions out of its basic block, we do not 2779 // retain their original debug locations (DILocations) and debug intrinsic 2780 // instructions. 2781 // 2782 // Doing so would degrade the debugging experience and adversely affect the 2783 // accuracy of profiling information. 2784 // 2785 // Currently, when hoisting the instructions, we take the following actions: 2786 // - Remove their debug intrinsic instructions. 2787 // - Set their debug locations to the values from the insertion point. 2788 // 2789 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2790 // need to be deleted, is because there will not be any instructions with a 2791 // DILocation in either branch left after performing the transformation. We 2792 // can only insert a dbg.value after the two branches are joined again. 2793 // 2794 // See PR38762, PR39243 for more details. 2795 // 2796 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2797 // encode predicated DIExpressions that yield different results on different 2798 // code paths. 2799 2800 // A hoisted conditional probe should be treated as dangling so that it will 2801 // not be over-counted when the samples collected on the non-conditional path 2802 // are counted towards the conditional path. We leave it for the counts 2803 // inference algorithm to figure out a proper count for a danglng probe. 2804 moveAndDanglePseudoProbes(BB, InsertPt); 2805 2806 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2807 Instruction *I = &*II; 2808 I->dropUnknownNonDebugMetadata(); 2809 if (I->isUsedByMetadata()) 2810 dropDebugUsers(*I); 2811 if (isa<DbgInfoIntrinsic>(I)) { 2812 // Remove DbgInfo Intrinsics. 2813 II = I->eraseFromParent(); 2814 continue; 2815 } 2816 I->setDebugLoc(InsertPt->getDebugLoc()); 2817 ++II; 2818 } 2819 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2820 BB->begin(), 2821 BB->getTerminator()->getIterator()); 2822 } 2823 2824 namespace { 2825 2826 /// A potential constituent of a bitreverse or bswap expression. See 2827 /// collectBitParts for a fuller explanation. 2828 struct BitPart { 2829 BitPart(Value *P, unsigned BW) : Provider(P) { 2830 Provenance.resize(BW); 2831 } 2832 2833 /// The Value that this is a bitreverse/bswap of. 2834 Value *Provider; 2835 2836 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2837 /// in Provider becomes bit B in the result of this expression. 2838 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2839 2840 enum { Unset = -1 }; 2841 }; 2842 2843 } // end anonymous namespace 2844 2845 /// Analyze the specified subexpression and see if it is capable of providing 2846 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2847 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2848 /// the output of the expression came from a corresponding bit in some other 2849 /// value. This function is recursive, and the end result is a mapping of 2850 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2851 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2852 /// 2853 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2854 /// that the expression deposits the low byte of %X into the high byte of the 2855 /// result and that all other bits are zero. This expression is accepted and a 2856 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2857 /// [0-7]. 2858 /// 2859 /// For vector types, all analysis is performed at the per-element level. No 2860 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2861 /// constant masks must be splatted across all elements. 2862 /// 2863 /// To avoid revisiting values, the BitPart results are memoized into the 2864 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2865 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2866 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2867 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2868 /// type instead to provide the same functionality. 2869 /// 2870 /// Because we pass around references into \c BPS, we must use a container that 2871 /// does not invalidate internal references (std::map instead of DenseMap). 2872 static const Optional<BitPart> & 2873 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2874 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2875 auto I = BPS.find(V); 2876 if (I != BPS.end()) 2877 return I->second; 2878 2879 auto &Result = BPS[V] = None; 2880 auto BitWidth = V->getType()->getScalarSizeInBits(); 2881 2882 // Can't do integer/elements > 128 bits. 2883 if (BitWidth > 128) 2884 return Result; 2885 2886 // Prevent stack overflow by limiting the recursion depth 2887 if (Depth == BitPartRecursionMaxDepth) { 2888 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2889 return Result; 2890 } 2891 2892 if (auto *I = dyn_cast<Instruction>(V)) { 2893 Value *X, *Y; 2894 const APInt *C; 2895 2896 // If this is an or instruction, it may be an inner node of the bswap. 2897 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2898 const auto &A = 2899 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2900 const auto &B = 2901 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2902 if (!A || !B) 2903 return Result; 2904 2905 // Try and merge the two together. 2906 if (!A->Provider || A->Provider != B->Provider) 2907 return Result; 2908 2909 Result = BitPart(A->Provider, BitWidth); 2910 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2911 if (A->Provenance[BitIdx] != BitPart::Unset && 2912 B->Provenance[BitIdx] != BitPart::Unset && 2913 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2914 return Result = None; 2915 2916 if (A->Provenance[BitIdx] == BitPart::Unset) 2917 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2918 else 2919 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2920 } 2921 2922 return Result; 2923 } 2924 2925 // If this is a logical shift by a constant, recurse then shift the result. 2926 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2927 const APInt &BitShift = *C; 2928 2929 // Ensure the shift amount is defined. 2930 if (BitShift.uge(BitWidth)) 2931 return Result; 2932 2933 const auto &Res = 2934 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2935 if (!Res) 2936 return Result; 2937 Result = Res; 2938 2939 // Perform the "shift" on BitProvenance. 2940 auto &P = Result->Provenance; 2941 if (I->getOpcode() == Instruction::Shl) { 2942 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2943 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2944 } else { 2945 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2946 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2947 } 2948 2949 return Result; 2950 } 2951 2952 // If this is a logical 'and' with a mask that clears bits, recurse then 2953 // unset the appropriate bits. 2954 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2955 const APInt &AndMask = *C; 2956 2957 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2958 // early exit. 2959 unsigned NumMaskedBits = AndMask.countPopulation(); 2960 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2961 return Result; 2962 2963 const auto &Res = 2964 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2965 if (!Res) 2966 return Result; 2967 Result = Res; 2968 2969 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2970 // If the AndMask is zero for this bit, clear the bit. 2971 if (AndMask[BitIdx] == 0) 2972 Result->Provenance[BitIdx] = BitPart::Unset; 2973 return Result; 2974 } 2975 2976 // If this is a zext instruction zero extend the result. 2977 if (match(V, m_ZExt(m_Value(X)))) { 2978 const auto &Res = 2979 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2980 if (!Res) 2981 return Result; 2982 2983 Result = BitPart(Res->Provider, BitWidth); 2984 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2985 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2986 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2987 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2988 Result->Provenance[BitIdx] = BitPart::Unset; 2989 return Result; 2990 } 2991 2992 // If this is a truncate instruction, extract the lower bits. 2993 if (match(V, m_Trunc(m_Value(X)))) { 2994 const auto &Res = 2995 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2996 if (!Res) 2997 return Result; 2998 2999 Result = BitPart(Res->Provider, BitWidth); 3000 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3001 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3002 return Result; 3003 } 3004 3005 // BITREVERSE - most likely due to us previous matching a partial 3006 // bitreverse. 3007 if (match(V, m_BitReverse(m_Value(X)))) { 3008 const auto &Res = 3009 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3010 if (!Res) 3011 return Result; 3012 3013 Result = BitPart(Res->Provider, BitWidth); 3014 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3015 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3016 return Result; 3017 } 3018 3019 // BSWAP - most likely due to us previous matching a partial bswap. 3020 if (match(V, m_BSwap(m_Value(X)))) { 3021 const auto &Res = 3022 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3023 if (!Res) 3024 return Result; 3025 3026 unsigned ByteWidth = BitWidth / 8; 3027 Result = BitPart(Res->Provider, BitWidth); 3028 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3029 unsigned ByteBitOfs = ByteIdx * 8; 3030 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3031 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3032 Res->Provenance[ByteBitOfs + BitIdx]; 3033 } 3034 return Result; 3035 } 3036 3037 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3038 // amount (modulo). 3039 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3040 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3041 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3042 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3043 // We can treat fshr as a fshl by flipping the modulo amount. 3044 unsigned ModAmt = C->urem(BitWidth); 3045 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3046 ModAmt = BitWidth - ModAmt; 3047 3048 const auto &LHS = 3049 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3050 const auto &RHS = 3051 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3052 3053 // Check we have both sources and they are from the same provider. 3054 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3055 return Result; 3056 3057 unsigned StartBitRHS = BitWidth - ModAmt; 3058 Result = BitPart(LHS->Provider, BitWidth); 3059 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3060 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3061 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3062 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3063 return Result; 3064 } 3065 } 3066 3067 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3068 // the input value to the bswap/bitreverse. 3069 Result = BitPart(V, BitWidth); 3070 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3071 Result->Provenance[BitIdx] = BitIdx; 3072 return Result; 3073 } 3074 3075 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3076 unsigned BitWidth) { 3077 if (From % 8 != To % 8) 3078 return false; 3079 // Convert from bit indices to byte indices and check for a byte reversal. 3080 From >>= 3; 3081 To >>= 3; 3082 BitWidth >>= 3; 3083 return From == BitWidth - To - 1; 3084 } 3085 3086 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3087 unsigned BitWidth) { 3088 return From == BitWidth - To - 1; 3089 } 3090 3091 bool llvm::recognizeBSwapOrBitReverseIdiom( 3092 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3093 SmallVectorImpl<Instruction *> &InsertedInsts) { 3094 if (Operator::getOpcode(I) != Instruction::Or) 3095 return false; 3096 if (!MatchBSwaps && !MatchBitReversals) 3097 return false; 3098 Type *ITy = I->getType(); 3099 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3100 return false; // Can't do integer/elements > 128 bits. 3101 3102 Type *DemandedTy = ITy; 3103 if (I->hasOneUse()) 3104 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3105 DemandedTy = Trunc->getType(); 3106 3107 // Try to find all the pieces corresponding to the bswap. 3108 std::map<Value *, Optional<BitPart>> BPS; 3109 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3110 if (!Res) 3111 return false; 3112 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3113 assert(all_of(BitProvenance, 3114 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3115 "Illegal bit provenance index"); 3116 3117 // If the upper bits are zero, then attempt to perform as a truncated op. 3118 if (BitProvenance.back() == BitPart::Unset) { 3119 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3120 BitProvenance = BitProvenance.drop_back(); 3121 if (BitProvenance.empty()) 3122 return false; // TODO - handle null value? 3123 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3124 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3125 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3126 } 3127 3128 // Check BitProvenance hasn't found a source larger than the result type. 3129 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3130 if (DemandedBW > ITy->getScalarSizeInBits()) 3131 return false; 3132 3133 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3134 // only byteswap values with an even number of bytes. 3135 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3136 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3137 bool OKForBitReverse = MatchBitReversals; 3138 for (unsigned BitIdx = 0; 3139 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3140 if (BitProvenance[BitIdx] == BitPart::Unset) { 3141 DemandedMask.clearBit(BitIdx); 3142 continue; 3143 } 3144 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3145 DemandedBW); 3146 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3147 BitIdx, DemandedBW); 3148 } 3149 3150 Intrinsic::ID Intrin; 3151 if (OKForBSwap) 3152 Intrin = Intrinsic::bswap; 3153 else if (OKForBitReverse) 3154 Intrin = Intrinsic::bitreverse; 3155 else 3156 return false; 3157 3158 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3159 Value *Provider = Res->Provider; 3160 3161 // We may need to truncate the provider. 3162 if (DemandedTy != Provider->getType()) { 3163 auto *Trunc = 3164 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3165 InsertedInsts.push_back(Trunc); 3166 Provider = Trunc; 3167 } 3168 3169 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3170 InsertedInsts.push_back(Result); 3171 3172 if (!DemandedMask.isAllOnesValue()) { 3173 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3174 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3175 InsertedInsts.push_back(Result); 3176 } 3177 3178 // We may need to zeroextend back to the result type. 3179 if (ITy != Result->getType()) { 3180 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3181 InsertedInsts.push_back(ExtInst); 3182 } 3183 3184 return true; 3185 } 3186 3187 // CodeGen has special handling for some string functions that may replace 3188 // them with target-specific intrinsics. Since that'd skip our interceptors 3189 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3190 // we mark affected calls as NoBuiltin, which will disable optimization 3191 // in CodeGen. 3192 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3193 CallInst *CI, const TargetLibraryInfo *TLI) { 3194 Function *F = CI->getCalledFunction(); 3195 LibFunc Func; 3196 if (F && !F->hasLocalLinkage() && F->hasName() && 3197 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3198 !F->doesNotAccessMemory()) 3199 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3200 } 3201 3202 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3203 // We can't have a PHI with a metadata type. 3204 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3205 return false; 3206 3207 // Early exit. 3208 if (!isa<Constant>(I->getOperand(OpIdx))) 3209 return true; 3210 3211 switch (I->getOpcode()) { 3212 default: 3213 return true; 3214 case Instruction::Call: 3215 case Instruction::Invoke: { 3216 const auto &CB = cast<CallBase>(*I); 3217 3218 // Can't handle inline asm. Skip it. 3219 if (CB.isInlineAsm()) 3220 return false; 3221 3222 // Constant bundle operands may need to retain their constant-ness for 3223 // correctness. 3224 if (CB.isBundleOperand(OpIdx)) 3225 return false; 3226 3227 if (OpIdx < CB.getNumArgOperands()) { 3228 // Some variadic intrinsics require constants in the variadic arguments, 3229 // which currently aren't markable as immarg. 3230 if (isa<IntrinsicInst>(CB) && 3231 OpIdx >= CB.getFunctionType()->getNumParams()) { 3232 // This is known to be OK for stackmap. 3233 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3234 } 3235 3236 // gcroot is a special case, since it requires a constant argument which 3237 // isn't also required to be a simple ConstantInt. 3238 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3239 return false; 3240 3241 // Some intrinsic operands are required to be immediates. 3242 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3243 } 3244 3245 // It is never allowed to replace the call argument to an intrinsic, but it 3246 // may be possible for a call. 3247 return !isa<IntrinsicInst>(CB); 3248 } 3249 case Instruction::ShuffleVector: 3250 // Shufflevector masks are constant. 3251 return OpIdx != 2; 3252 case Instruction::Switch: 3253 case Instruction::ExtractValue: 3254 // All operands apart from the first are constant. 3255 return OpIdx == 0; 3256 case Instruction::InsertValue: 3257 // All operands apart from the first and the second are constant. 3258 return OpIdx < 2; 3259 case Instruction::Alloca: 3260 // Static allocas (constant size in the entry block) are handled by 3261 // prologue/epilogue insertion so they're free anyway. We definitely don't 3262 // want to make them non-constant. 3263 return !cast<AllocaInst>(I)->isStaticAlloca(); 3264 case Instruction::GetElementPtr: 3265 if (OpIdx == 0) 3266 return true; 3267 gep_type_iterator It = gep_type_begin(I); 3268 for (auto E = std::next(It, OpIdx); It != E; ++It) 3269 if (It.isStruct()) 3270 return false; 3271 return true; 3272 } 3273 } 3274 3275 Value *llvm::invertCondition(Value *Condition) { 3276 // First: Check if it's a constant 3277 if (Constant *C = dyn_cast<Constant>(Condition)) 3278 return ConstantExpr::getNot(C); 3279 3280 // Second: If the condition is already inverted, return the original value 3281 Value *NotCondition; 3282 if (match(Condition, m_Not(m_Value(NotCondition)))) 3283 return NotCondition; 3284 3285 BasicBlock *Parent = nullptr; 3286 Instruction *Inst = dyn_cast<Instruction>(Condition); 3287 if (Inst) 3288 Parent = Inst->getParent(); 3289 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3290 Parent = &Arg->getParent()->getEntryBlock(); 3291 assert(Parent && "Unsupported condition to invert"); 3292 3293 // Third: Check all the users for an invert 3294 for (User *U : Condition->users()) 3295 if (Instruction *I = dyn_cast<Instruction>(U)) 3296 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3297 return I; 3298 3299 // Last option: Create a new instruction 3300 auto *Inverted = 3301 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3302 if (Inst && !isa<PHINode>(Inst)) 3303 Inverted->insertAfter(Inst); 3304 else 3305 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3306 return Inverted; 3307 } 3308 3309 bool llvm::inferAttributesFromOthers(Function &F) { 3310 // Note: We explicitly check for attributes rather than using cover functions 3311 // because some of the cover functions include the logic being implemented. 3312 3313 bool Changed = false; 3314 // readnone + not convergent implies nosync 3315 if (!F.hasFnAttribute(Attribute::NoSync) && 3316 F.doesNotAccessMemory() && !F.isConvergent()) { 3317 F.setNoSync(); 3318 Changed = true; 3319 } 3320 3321 // readonly implies nofree 3322 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3323 F.setDoesNotFreeMemory(); 3324 Changed = true; 3325 } 3326 3327 // willreturn implies mustprogress 3328 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3329 F.setMustProgress(); 3330 Changed = true; 3331 } 3332 3333 // TODO: There are a bunch of cases of restrictive memory effects we 3334 // can infer by inspecting arguments of argmemonly-ish functions. 3335 3336 return Changed; 3337 } 3338