1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 // Max recursion depth for collectBitParts used when detecting bswap and 108 // bitreverse idioms 109 static const unsigned BitPartRecursionMaxDepth = 64; 110 111 //===----------------------------------------------------------------------===// 112 // Local constant propagation. 113 // 114 115 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 116 /// constant value, convert it into an unconditional branch to the constant 117 /// destination. This is a nontrivial operation because the successors of this 118 /// basic block must have their PHI nodes updated. 119 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 120 /// conditions and indirectbr addresses this might make dead if 121 /// DeleteDeadConditions is true. 122 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 123 const TargetLibraryInfo *TLI, 124 DomTreeUpdater *DTU) { 125 Instruction *T = BB->getTerminator(); 126 IRBuilder<> Builder(T); 127 128 // Branch - See if we are conditional jumping on constant 129 if (auto *BI = dyn_cast<BranchInst>(T)) { 130 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 131 BasicBlock *Dest1 = BI->getSuccessor(0); 132 BasicBlock *Dest2 = BI->getSuccessor(1); 133 134 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 135 // Are we branching on constant? 136 // YES. Change to unconditional branch... 137 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 138 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 139 140 // Let the basic block know that we are letting go of it. Based on this, 141 // it will adjust it's PHI nodes. 142 OldDest->removePredecessor(BB); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Destination); 146 BI->eraseFromParent(); 147 if (DTU) 148 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 149 return true; 150 } 151 152 if (Dest2 == Dest1) { // Conditional branch to same location? 153 // This branch matches something like this: 154 // br bool %cond, label %Dest, label %Dest 155 // and changes it into: br label %Dest 156 157 // Let the basic block know that we are letting go of one copy of it. 158 assert(BI->getParent() && "Terminator not inserted in block!"); 159 Dest1->removePredecessor(BI->getParent()); 160 161 // Replace the conditional branch with an unconditional one. 162 Builder.CreateBr(Dest1); 163 Value *Cond = BI->getCondition(); 164 BI->eraseFromParent(); 165 if (DeleteDeadConditions) 166 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 167 return true; 168 } 169 return false; 170 } 171 172 if (auto *SI = dyn_cast<SwitchInst>(T)) { 173 // If we are switching on a constant, we can convert the switch to an 174 // unconditional branch. 175 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 176 BasicBlock *DefaultDest = SI->getDefaultDest(); 177 BasicBlock *TheOnlyDest = DefaultDest; 178 179 // If the default is unreachable, ignore it when searching for TheOnlyDest. 180 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 181 SI->getNumCases() > 0) { 182 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 183 } 184 185 bool Changed = false; 186 187 // Figure out which case it goes to. 188 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 189 // Found case matching a constant operand? 190 if (i->getCaseValue() == CI) { 191 TheOnlyDest = i->getCaseSuccessor(); 192 break; 193 } 194 195 // Check to see if this branch is going to the same place as the default 196 // dest. If so, eliminate it as an explicit compare. 197 if (i->getCaseSuccessor() == DefaultDest) { 198 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 199 unsigned NCases = SI->getNumCases(); 200 // Fold the case metadata into the default if there will be any branches 201 // left, unless the metadata doesn't match the switch. 202 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 203 // Collect branch weights into a vector. 204 SmallVector<uint32_t, 8> Weights; 205 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 206 ++MD_i) { 207 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 208 Weights.push_back(CI->getValue().getZExtValue()); 209 } 210 // Merge weight of this case to the default weight. 211 unsigned idx = i->getCaseIndex(); 212 Weights[0] += Weights[idx+1]; 213 // Remove weight for this case. 214 std::swap(Weights[idx+1], Weights.back()); 215 Weights.pop_back(); 216 SI->setMetadata(LLVMContext::MD_prof, 217 MDBuilder(BB->getContext()). 218 createBranchWeights(Weights)); 219 } 220 // Remove this entry. 221 BasicBlock *ParentBB = SI->getParent(); 222 DefaultDest->removePredecessor(ParentBB); 223 i = SI->removeCase(i); 224 e = SI->case_end(); 225 Changed = true; 226 if (DTU) 227 DTU->applyUpdatesPermissive( 228 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 229 continue; 230 } 231 232 // Otherwise, check to see if the switch only branches to one destination. 233 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 234 // destinations. 235 if (i->getCaseSuccessor() != TheOnlyDest) 236 TheOnlyDest = nullptr; 237 238 // Increment this iterator as we haven't removed the case. 239 ++i; 240 } 241 242 if (CI && !TheOnlyDest) { 243 // Branching on a constant, but not any of the cases, go to the default 244 // successor. 245 TheOnlyDest = SI->getDefaultDest(); 246 } 247 248 // If we found a single destination that we can fold the switch into, do so 249 // now. 250 if (TheOnlyDest) { 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 BasicBlock *BB = SI->getParent(); 254 std::vector <DominatorTree::UpdateType> Updates; 255 if (DTU) 256 Updates.reserve(SI->getNumSuccessors() - 1); 257 258 // Remove entries from PHI nodes which we no longer branch to... 259 for (BasicBlock *Succ : successors(SI)) { 260 // Found case matching a constant operand? 261 if (Succ == TheOnlyDest) { 262 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 263 } else { 264 Succ->removePredecessor(BB); 265 if (DTU) 266 Updates.push_back({DominatorTree::Delete, BB, Succ}); 267 } 268 } 269 270 // Delete the old switch. 271 Value *Cond = SI->getCondition(); 272 SI->eraseFromParent(); 273 if (DeleteDeadConditions) 274 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 275 if (DTU) 276 DTU->applyUpdatesPermissive(Updates); 277 return true; 278 } 279 280 if (SI->getNumCases() == 1) { 281 // Otherwise, we can fold this switch into a conditional branch 282 // instruction if it has only one non-default destination. 283 auto FirstCase = *SI->case_begin(); 284 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 285 FirstCase.getCaseValue(), "cond"); 286 287 // Insert the new branch. 288 BranchInst *NewBr = Builder.CreateCondBr(Cond, 289 FirstCase.getCaseSuccessor(), 290 SI->getDefaultDest()); 291 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 292 if (MD && MD->getNumOperands() == 3) { 293 ConstantInt *SICase = 294 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 295 ConstantInt *SIDef = 296 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 297 assert(SICase && SIDef); 298 // The TrueWeight should be the weight for the single case of SI. 299 NewBr->setMetadata(LLVMContext::MD_prof, 300 MDBuilder(BB->getContext()). 301 createBranchWeights(SICase->getValue().getZExtValue(), 302 SIDef->getValue().getZExtValue())); 303 } 304 305 // Update make.implicit metadata to the newly-created conditional branch. 306 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 307 if (MakeImplicitMD) 308 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 309 310 // Delete the old switch. 311 SI->eraseFromParent(); 312 return true; 313 } 314 return Changed; 315 } 316 317 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 318 // indirectbr blockaddress(@F, @BB) -> br label @BB 319 if (auto *BA = 320 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 321 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 322 std::vector <DominatorTree::UpdateType> Updates; 323 if (DTU) 324 Updates.reserve(IBI->getNumDestinations() - 1); 325 326 // Insert the new branch. 327 Builder.CreateBr(TheOnlyDest); 328 329 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 330 if (IBI->getDestination(i) == TheOnlyDest) { 331 TheOnlyDest = nullptr; 332 } else { 333 BasicBlock *ParentBB = IBI->getParent(); 334 BasicBlock *DestBB = IBI->getDestination(i); 335 DestBB->removePredecessor(ParentBB); 336 if (DTU) 337 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 338 } 339 } 340 Value *Address = IBI->getAddress(); 341 IBI->eraseFromParent(); 342 if (DeleteDeadConditions) 343 // Delete pointer cast instructions. 344 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 345 346 // Also zap the blockaddress constant if there are no users remaining, 347 // otherwise the destination is still marked as having its address taken. 348 if (BA->use_empty()) 349 BA->destroyConstant(); 350 351 // If we didn't find our destination in the IBI successor list, then we 352 // have undefined behavior. Replace the unconditional branch with an 353 // 'unreachable' instruction. 354 if (TheOnlyDest) { 355 BB->getTerminator()->eraseFromParent(); 356 new UnreachableInst(BB->getContext(), BB); 357 } 358 359 if (DTU) 360 DTU->applyUpdatesPermissive(Updates); 361 return true; 362 } 363 } 364 365 return false; 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Local dead code elimination. 370 // 371 372 /// isInstructionTriviallyDead - Return true if the result produced by the 373 /// instruction is not used, and the instruction has no side effects. 374 /// 375 bool llvm::isInstructionTriviallyDead(Instruction *I, 376 const TargetLibraryInfo *TLI) { 377 if (!I->use_empty()) 378 return false; 379 return wouldInstructionBeTriviallyDead(I, TLI); 380 } 381 382 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 383 const TargetLibraryInfo *TLI) { 384 if (I->isTerminator()) 385 return false; 386 387 // We don't want the landingpad-like instructions removed by anything this 388 // general. 389 if (I->isEHPad()) 390 return false; 391 392 // We don't want debug info removed by anything this general, unless 393 // debug info is empty. 394 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 395 if (DDI->getAddress()) 396 return false; 397 return true; 398 } 399 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 400 if (DVI->getValue()) 401 return false; 402 return true; 403 } 404 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 405 if (DLI->getLabel()) 406 return false; 407 return true; 408 } 409 410 if (!I->mayHaveSideEffects()) 411 return true; 412 413 // Special case intrinsics that "may have side effects" but can be deleted 414 // when dead. 415 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 416 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 417 if (II->getIntrinsicID() == Intrinsic::stacksave || 418 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 419 return true; 420 421 if (II->isLifetimeStartOrEnd()) { 422 auto *Arg = II->getArgOperand(1); 423 // Lifetime intrinsics are dead when their right-hand is undef. 424 if (isa<UndefValue>(Arg)) 425 return true; 426 // If the right-hand is an alloc, global, or argument and the only uses 427 // are lifetime intrinsics then the intrinsics are dead. 428 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 429 return llvm::all_of(Arg->uses(), [](Use &Use) { 430 if (IntrinsicInst *IntrinsicUse = 431 dyn_cast<IntrinsicInst>(Use.getUser())) 432 return IntrinsicUse->isLifetimeStartOrEnd(); 433 return false; 434 }); 435 return false; 436 } 437 438 // Assumptions are dead if their condition is trivially true. Guards on 439 // true are operationally no-ops. In the future we can consider more 440 // sophisticated tradeoffs for guards considering potential for check 441 // widening, but for now we keep things simple. 442 if ((II->getIntrinsicID() == Intrinsic::assume && 443 isAssumeWithEmptyBundle(*II)) || 444 II->getIntrinsicID() == Intrinsic::experimental_guard) { 445 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 446 return !Cond->isZero(); 447 448 return false; 449 } 450 } 451 452 if (isAllocLikeFn(I, TLI)) 453 return true; 454 455 if (CallInst *CI = isFreeCall(I, TLI)) 456 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 457 return C->isNullValue() || isa<UndefValue>(C); 458 459 if (auto *Call = dyn_cast<CallBase>(I)) 460 if (isMathLibCallNoop(Call, TLI)) 461 return true; 462 463 return false; 464 } 465 466 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 467 /// trivially dead instruction, delete it. If that makes any of its operands 468 /// trivially dead, delete them too, recursively. Return true if any 469 /// instructions were deleted. 470 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 471 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 472 std::function<void(Value *)> AboutToDeleteCallback) { 473 Instruction *I = dyn_cast<Instruction>(V); 474 if (!I || !isInstructionTriviallyDead(I, TLI)) 475 return false; 476 477 SmallVector<WeakTrackingVH, 16> DeadInsts; 478 DeadInsts.push_back(I); 479 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 480 AboutToDeleteCallback); 481 482 return true; 483 } 484 485 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 486 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 487 MemorySSAUpdater *MSSAU, 488 std::function<void(Value *)> AboutToDeleteCallback) { 489 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 490 for (; S != E; ++S) { 491 auto *I = cast<Instruction>(DeadInsts[S]); 492 if (!isInstructionTriviallyDead(I)) { 493 DeadInsts[S] = nullptr; 494 ++Alive; 495 } 496 } 497 if (Alive == E) 498 return false; 499 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 500 AboutToDeleteCallback); 501 return true; 502 } 503 504 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 505 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 506 MemorySSAUpdater *MSSAU, 507 std::function<void(Value *)> AboutToDeleteCallback) { 508 // Process the dead instruction list until empty. 509 while (!DeadInsts.empty()) { 510 Value *V = DeadInsts.pop_back_val(); 511 Instruction *I = cast_or_null<Instruction>(V); 512 if (!I) 513 continue; 514 assert(isInstructionTriviallyDead(I, TLI) && 515 "Live instruction found in dead worklist!"); 516 assert(I->use_empty() && "Instructions with uses are not dead."); 517 518 // Don't lose the debug info while deleting the instructions. 519 salvageDebugInfo(*I); 520 521 if (AboutToDeleteCallback) 522 AboutToDeleteCallback(I); 523 524 // Null out all of the instruction's operands to see if any operand becomes 525 // dead as we go. 526 for (Use &OpU : I->operands()) { 527 Value *OpV = OpU.get(); 528 OpU.set(nullptr); 529 530 if (!OpV->use_empty()) 531 continue; 532 533 // If the operand is an instruction that became dead as we nulled out the 534 // operand, and if it is 'trivially' dead, delete it in a future loop 535 // iteration. 536 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 537 if (isInstructionTriviallyDead(OpI, TLI)) 538 DeadInsts.push_back(OpI); 539 } 540 if (MSSAU) 541 MSSAU->removeMemoryAccess(I); 542 543 I->eraseFromParent(); 544 } 545 } 546 547 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 548 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 549 findDbgUsers(DbgUsers, I); 550 for (auto *DII : DbgUsers) { 551 Value *Undef = UndefValue::get(I->getType()); 552 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 553 ValueAsMetadata::get(Undef))); 554 } 555 return !DbgUsers.empty(); 556 } 557 558 /// areAllUsesEqual - Check whether the uses of a value are all the same. 559 /// This is similar to Instruction::hasOneUse() except this will also return 560 /// true when there are no uses or multiple uses that all refer to the same 561 /// value. 562 static bool areAllUsesEqual(Instruction *I) { 563 Value::user_iterator UI = I->user_begin(); 564 Value::user_iterator UE = I->user_end(); 565 if (UI == UE) 566 return true; 567 568 User *TheUse = *UI; 569 for (++UI; UI != UE; ++UI) { 570 if (*UI != TheUse) 571 return false; 572 } 573 return true; 574 } 575 576 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 577 /// dead PHI node, due to being a def-use chain of single-use nodes that 578 /// either forms a cycle or is terminated by a trivially dead instruction, 579 /// delete it. If that makes any of its operands trivially dead, delete them 580 /// too, recursively. Return true if a change was made. 581 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 582 const TargetLibraryInfo *TLI, 583 llvm::MemorySSAUpdater *MSSAU) { 584 SmallPtrSet<Instruction*, 4> Visited; 585 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 586 I = cast<Instruction>(*I->user_begin())) { 587 if (I->use_empty()) 588 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 589 590 // If we find an instruction more than once, we're on a cycle that 591 // won't prove fruitful. 592 if (!Visited.insert(I).second) { 593 // Break the cycle and delete the instruction and its operands. 594 I->replaceAllUsesWith(UndefValue::get(I->getType())); 595 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 596 return true; 597 } 598 } 599 return false; 600 } 601 602 static bool 603 simplifyAndDCEInstruction(Instruction *I, 604 SmallSetVector<Instruction *, 16> &WorkList, 605 const DataLayout &DL, 606 const TargetLibraryInfo *TLI) { 607 if (isInstructionTriviallyDead(I, TLI)) { 608 salvageDebugInfo(*I); 609 610 // Null out all of the instruction's operands to see if any operand becomes 611 // dead as we go. 612 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 613 Value *OpV = I->getOperand(i); 614 I->setOperand(i, nullptr); 615 616 if (!OpV->use_empty() || I == OpV) 617 continue; 618 619 // If the operand is an instruction that became dead as we nulled out the 620 // operand, and if it is 'trivially' dead, delete it in a future loop 621 // iteration. 622 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 623 if (isInstructionTriviallyDead(OpI, TLI)) 624 WorkList.insert(OpI); 625 } 626 627 I->eraseFromParent(); 628 629 return true; 630 } 631 632 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 633 // Add the users to the worklist. CAREFUL: an instruction can use itself, 634 // in the case of a phi node. 635 for (User *U : I->users()) { 636 if (U != I) { 637 WorkList.insert(cast<Instruction>(U)); 638 } 639 } 640 641 // Replace the instruction with its simplified value. 642 bool Changed = false; 643 if (!I->use_empty()) { 644 I->replaceAllUsesWith(SimpleV); 645 Changed = true; 646 } 647 if (isInstructionTriviallyDead(I, TLI)) { 648 I->eraseFromParent(); 649 Changed = true; 650 } 651 return Changed; 652 } 653 return false; 654 } 655 656 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 657 /// simplify any instructions in it and recursively delete dead instructions. 658 /// 659 /// This returns true if it changed the code, note that it can delete 660 /// instructions in other blocks as well in this block. 661 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 662 const TargetLibraryInfo *TLI) { 663 bool MadeChange = false; 664 const DataLayout &DL = BB->getModule()->getDataLayout(); 665 666 #ifndef NDEBUG 667 // In debug builds, ensure that the terminator of the block is never replaced 668 // or deleted by these simplifications. The idea of simplification is that it 669 // cannot introduce new instructions, and there is no way to replace the 670 // terminator of a block without introducing a new instruction. 671 AssertingVH<Instruction> TerminatorVH(&BB->back()); 672 #endif 673 674 SmallSetVector<Instruction *, 16> WorkList; 675 // Iterate over the original function, only adding insts to the worklist 676 // if they actually need to be revisited. This avoids having to pre-init 677 // the worklist with the entire function's worth of instructions. 678 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 679 BI != E;) { 680 assert(!BI->isTerminator()); 681 Instruction *I = &*BI; 682 ++BI; 683 684 // We're visiting this instruction now, so make sure it's not in the 685 // worklist from an earlier visit. 686 if (!WorkList.count(I)) 687 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 688 } 689 690 while (!WorkList.empty()) { 691 Instruction *I = WorkList.pop_back_val(); 692 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 693 } 694 return MadeChange; 695 } 696 697 //===----------------------------------------------------------------------===// 698 // Control Flow Graph Restructuring. 699 // 700 701 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 702 DomTreeUpdater *DTU) { 703 // This only adjusts blocks with PHI nodes. 704 if (!isa<PHINode>(BB->begin())) 705 return; 706 707 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 708 // them down. This will leave us with single entry phi nodes and other phis 709 // that can be removed. 710 BB->removePredecessor(Pred, true); 711 712 WeakTrackingVH PhiIt = &BB->front(); 713 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 714 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 715 Value *OldPhiIt = PhiIt; 716 717 if (!recursivelySimplifyInstruction(PN)) 718 continue; 719 720 // If recursive simplification ended up deleting the next PHI node we would 721 // iterate to, then our iterator is invalid, restart scanning from the top 722 // of the block. 723 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 724 } 725 if (DTU) 726 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 727 } 728 729 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 730 DomTreeUpdater *DTU) { 731 732 // If BB has single-entry PHI nodes, fold them. 733 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 734 Value *NewVal = PN->getIncomingValue(0); 735 // Replace self referencing PHI with undef, it must be dead. 736 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 737 PN->replaceAllUsesWith(NewVal); 738 PN->eraseFromParent(); 739 } 740 741 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 742 assert(PredBB && "Block doesn't have a single predecessor!"); 743 744 bool ReplaceEntryBB = false; 745 if (PredBB == &DestBB->getParent()->getEntryBlock()) 746 ReplaceEntryBB = true; 747 748 // DTU updates: Collect all the edges that enter 749 // PredBB. These dominator edges will be redirected to DestBB. 750 SmallVector<DominatorTree::UpdateType, 32> Updates; 751 752 if (DTU) { 753 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 754 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 755 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 756 // This predecessor of PredBB may already have DestBB as a successor. 757 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 758 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 759 } 760 } 761 762 // Zap anything that took the address of DestBB. Not doing this will give the 763 // address an invalid value. 764 if (DestBB->hasAddressTaken()) { 765 BlockAddress *BA = BlockAddress::get(DestBB); 766 Constant *Replacement = 767 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 768 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 769 BA->getType())); 770 BA->destroyConstant(); 771 } 772 773 // Anything that branched to PredBB now branches to DestBB. 774 PredBB->replaceAllUsesWith(DestBB); 775 776 // Splice all the instructions from PredBB to DestBB. 777 PredBB->getTerminator()->eraseFromParent(); 778 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 779 new UnreachableInst(PredBB->getContext(), PredBB); 780 781 // If the PredBB is the entry block of the function, move DestBB up to 782 // become the entry block after we erase PredBB. 783 if (ReplaceEntryBB) 784 DestBB->moveAfter(PredBB); 785 786 if (DTU) { 787 assert(PredBB->getInstList().size() == 1 && 788 isa<UnreachableInst>(PredBB->getTerminator()) && 789 "The successor list of PredBB isn't empty before " 790 "applying corresponding DTU updates."); 791 DTU->applyUpdatesPermissive(Updates); 792 DTU->deleteBB(PredBB); 793 // Recalculation of DomTree is needed when updating a forward DomTree and 794 // the Entry BB is replaced. 795 if (ReplaceEntryBB && DTU->hasDomTree()) { 796 // The entry block was removed and there is no external interface for 797 // the dominator tree to be notified of this change. In this corner-case 798 // we recalculate the entire tree. 799 DTU->recalculate(*(DestBB->getParent())); 800 } 801 } 802 803 else { 804 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 805 } 806 } 807 808 /// Return true if we can choose one of these values to use in place of the 809 /// other. Note that we will always choose the non-undef value to keep. 810 static bool CanMergeValues(Value *First, Value *Second) { 811 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 812 } 813 814 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 815 /// branch to Succ, into Succ. 816 /// 817 /// Assumption: Succ is the single successor for BB. 818 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 819 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 820 821 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 822 << Succ->getName() << "\n"); 823 // Shortcut, if there is only a single predecessor it must be BB and merging 824 // is always safe 825 if (Succ->getSinglePredecessor()) return true; 826 827 // Make a list of the predecessors of BB 828 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 829 830 // Look at all the phi nodes in Succ, to see if they present a conflict when 831 // merging these blocks 832 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 833 PHINode *PN = cast<PHINode>(I); 834 835 // If the incoming value from BB is again a PHINode in 836 // BB which has the same incoming value for *PI as PN does, we can 837 // merge the phi nodes and then the blocks can still be merged 838 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 839 if (BBPN && BBPN->getParent() == BB) { 840 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 841 BasicBlock *IBB = PN->getIncomingBlock(PI); 842 if (BBPreds.count(IBB) && 843 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 844 PN->getIncomingValue(PI))) { 845 LLVM_DEBUG(dbgs() 846 << "Can't fold, phi node " << PN->getName() << " in " 847 << Succ->getName() << " is conflicting with " 848 << BBPN->getName() << " with regard to common predecessor " 849 << IBB->getName() << "\n"); 850 return false; 851 } 852 } 853 } else { 854 Value* Val = PN->getIncomingValueForBlock(BB); 855 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 856 // See if the incoming value for the common predecessor is equal to the 857 // one for BB, in which case this phi node will not prevent the merging 858 // of the block. 859 BasicBlock *IBB = PN->getIncomingBlock(PI); 860 if (BBPreds.count(IBB) && 861 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 862 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 863 << " in " << Succ->getName() 864 << " is conflicting with regard to common " 865 << "predecessor " << IBB->getName() << "\n"); 866 return false; 867 } 868 } 869 } 870 } 871 872 return true; 873 } 874 875 using PredBlockVector = SmallVector<BasicBlock *, 16>; 876 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 877 878 /// Determines the value to use as the phi node input for a block. 879 /// 880 /// Select between \p OldVal any value that we know flows from \p BB 881 /// to a particular phi on the basis of which one (if either) is not 882 /// undef. Update IncomingValues based on the selected value. 883 /// 884 /// \param OldVal The value we are considering selecting. 885 /// \param BB The block that the value flows in from. 886 /// \param IncomingValues A map from block-to-value for other phi inputs 887 /// that we have examined. 888 /// 889 /// \returns the selected value. 890 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 891 IncomingValueMap &IncomingValues) { 892 if (!isa<UndefValue>(OldVal)) { 893 assert((!IncomingValues.count(BB) || 894 IncomingValues.find(BB)->second == OldVal) && 895 "Expected OldVal to match incoming value from BB!"); 896 897 IncomingValues.insert(std::make_pair(BB, OldVal)); 898 return OldVal; 899 } 900 901 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 902 if (It != IncomingValues.end()) return It->second; 903 904 return OldVal; 905 } 906 907 /// Create a map from block to value for the operands of a 908 /// given phi. 909 /// 910 /// Create a map from block to value for each non-undef value flowing 911 /// into \p PN. 912 /// 913 /// \param PN The phi we are collecting the map for. 914 /// \param IncomingValues [out] The map from block to value for this phi. 915 static void gatherIncomingValuesToPhi(PHINode *PN, 916 IncomingValueMap &IncomingValues) { 917 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 918 BasicBlock *BB = PN->getIncomingBlock(i); 919 Value *V = PN->getIncomingValue(i); 920 921 if (!isa<UndefValue>(V)) 922 IncomingValues.insert(std::make_pair(BB, V)); 923 } 924 } 925 926 /// Replace the incoming undef values to a phi with the values 927 /// from a block-to-value map. 928 /// 929 /// \param PN The phi we are replacing the undefs in. 930 /// \param IncomingValues A map from block to value. 931 static void replaceUndefValuesInPhi(PHINode *PN, 932 const IncomingValueMap &IncomingValues) { 933 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 934 Value *V = PN->getIncomingValue(i); 935 936 if (!isa<UndefValue>(V)) continue; 937 938 BasicBlock *BB = PN->getIncomingBlock(i); 939 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 940 if (It == IncomingValues.end()) continue; 941 942 PN->setIncomingValue(i, It->second); 943 } 944 } 945 946 /// Replace a value flowing from a block to a phi with 947 /// potentially multiple instances of that value flowing from the 948 /// block's predecessors to the phi. 949 /// 950 /// \param BB The block with the value flowing into the phi. 951 /// \param BBPreds The predecessors of BB. 952 /// \param PN The phi that we are updating. 953 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 954 const PredBlockVector &BBPreds, 955 PHINode *PN) { 956 Value *OldVal = PN->removeIncomingValue(BB, false); 957 assert(OldVal && "No entry in PHI for Pred BB!"); 958 959 IncomingValueMap IncomingValues; 960 961 // We are merging two blocks - BB, and the block containing PN - and 962 // as a result we need to redirect edges from the predecessors of BB 963 // to go to the block containing PN, and update PN 964 // accordingly. Since we allow merging blocks in the case where the 965 // predecessor and successor blocks both share some predecessors, 966 // and where some of those common predecessors might have undef 967 // values flowing into PN, we want to rewrite those values to be 968 // consistent with the non-undef values. 969 970 gatherIncomingValuesToPhi(PN, IncomingValues); 971 972 // If this incoming value is one of the PHI nodes in BB, the new entries 973 // in the PHI node are the entries from the old PHI. 974 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 975 PHINode *OldValPN = cast<PHINode>(OldVal); 976 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 977 // Note that, since we are merging phi nodes and BB and Succ might 978 // have common predecessors, we could end up with a phi node with 979 // identical incoming branches. This will be cleaned up later (and 980 // will trigger asserts if we try to clean it up now, without also 981 // simplifying the corresponding conditional branch). 982 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 983 Value *PredVal = OldValPN->getIncomingValue(i); 984 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 985 IncomingValues); 986 987 // And add a new incoming value for this predecessor for the 988 // newly retargeted branch. 989 PN->addIncoming(Selected, PredBB); 990 } 991 } else { 992 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 993 // Update existing incoming values in PN for this 994 // predecessor of BB. 995 BasicBlock *PredBB = BBPreds[i]; 996 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 997 IncomingValues); 998 999 // And add a new incoming value for this predecessor for the 1000 // newly retargeted branch. 1001 PN->addIncoming(Selected, PredBB); 1002 } 1003 } 1004 1005 replaceUndefValuesInPhi(PN, IncomingValues); 1006 } 1007 1008 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1009 DomTreeUpdater *DTU) { 1010 assert(BB != &BB->getParent()->getEntryBlock() && 1011 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1012 1013 // We can't eliminate infinite loops. 1014 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1015 if (BB == Succ) return false; 1016 1017 // Check to see if merging these blocks would cause conflicts for any of the 1018 // phi nodes in BB or Succ. If not, we can safely merge. 1019 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1020 1021 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1022 // has uses which will not disappear when the PHI nodes are merged. It is 1023 // possible to handle such cases, but difficult: it requires checking whether 1024 // BB dominates Succ, which is non-trivial to calculate in the case where 1025 // Succ has multiple predecessors. Also, it requires checking whether 1026 // constructing the necessary self-referential PHI node doesn't introduce any 1027 // conflicts; this isn't too difficult, but the previous code for doing this 1028 // was incorrect. 1029 // 1030 // Note that if this check finds a live use, BB dominates Succ, so BB is 1031 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1032 // folding the branch isn't profitable in that case anyway. 1033 if (!Succ->getSinglePredecessor()) { 1034 BasicBlock::iterator BBI = BB->begin(); 1035 while (isa<PHINode>(*BBI)) { 1036 for (Use &U : BBI->uses()) { 1037 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1038 if (PN->getIncomingBlock(U) != BB) 1039 return false; 1040 } else { 1041 return false; 1042 } 1043 } 1044 ++BBI; 1045 } 1046 } 1047 1048 // We cannot fold the block if it's a branch to an already present callbr 1049 // successor because that creates duplicate successors. 1050 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1051 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1052 if (Succ == CBI->getDefaultDest()) 1053 return false; 1054 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1055 if (Succ == CBI->getIndirectDest(i)) 1056 return false; 1057 } 1058 } 1059 1060 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1061 1062 SmallVector<DominatorTree::UpdateType, 32> Updates; 1063 if (DTU) { 1064 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1065 // All predecessors of BB will be moved to Succ. 1066 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1067 Updates.push_back({DominatorTree::Delete, *I, BB}); 1068 // This predecessor of BB may already have Succ as a successor. 1069 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1070 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1071 } 1072 } 1073 1074 if (isa<PHINode>(Succ->begin())) { 1075 // If there is more than one pred of succ, and there are PHI nodes in 1076 // the successor, then we need to add incoming edges for the PHI nodes 1077 // 1078 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1079 1080 // Loop over all of the PHI nodes in the successor of BB. 1081 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1082 PHINode *PN = cast<PHINode>(I); 1083 1084 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1085 } 1086 } 1087 1088 if (Succ->getSinglePredecessor()) { 1089 // BB is the only predecessor of Succ, so Succ will end up with exactly 1090 // the same predecessors BB had. 1091 1092 // Copy over any phi, debug or lifetime instruction. 1093 BB->getTerminator()->eraseFromParent(); 1094 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1095 BB->getInstList()); 1096 } else { 1097 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1098 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1099 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1100 PN->eraseFromParent(); 1101 } 1102 } 1103 1104 // If the unconditional branch we replaced contains llvm.loop metadata, we 1105 // add the metadata to the branch instructions in the predecessors. 1106 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1107 Instruction *TI = BB->getTerminator(); 1108 if (TI) 1109 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1110 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1111 BasicBlock *Pred = *PI; 1112 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1113 } 1114 1115 // Everything that jumped to BB now goes to Succ. 1116 BB->replaceAllUsesWith(Succ); 1117 if (!Succ->hasName()) Succ->takeName(BB); 1118 1119 // Clear the successor list of BB to match updates applying to DTU later. 1120 if (BB->getTerminator()) 1121 BB->getInstList().pop_back(); 1122 new UnreachableInst(BB->getContext(), BB); 1123 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1124 "applying corresponding DTU updates."); 1125 1126 if (DTU) { 1127 DTU->applyUpdatesPermissive(Updates); 1128 DTU->deleteBB(BB); 1129 } else { 1130 BB->eraseFromParent(); // Delete the old basic block. 1131 } 1132 return true; 1133 } 1134 1135 // WARNING: this logic must be kept in sync with 1136 // Instruction::isIdenticalToWhenDefined()! 1137 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1138 // This implementation doesn't currently consider undef operands 1139 // specially. Theoretically, two phis which are identical except for 1140 // one having an undef where the other doesn't could be collapsed. 1141 1142 struct PHIDenseMapInfo { 1143 static PHINode *getEmptyKey() { 1144 return DenseMapInfo<PHINode *>::getEmptyKey(); 1145 } 1146 1147 static PHINode *getTombstoneKey() { 1148 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1149 } 1150 1151 static bool isSentinel(PHINode *PN) { 1152 return PN == getEmptyKey() || PN == getTombstoneKey(); 1153 } 1154 1155 static unsigned getHashValueImpl(PHINode *PN) { 1156 // Compute a hash value on the operands. Instcombine will likely have 1157 // sorted them, which helps expose duplicates, but we have to check all 1158 // the operands to be safe in case instcombine hasn't run. 1159 return static_cast<unsigned>(hash_combine( 1160 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1161 hash_combine_range(PN->block_begin(), PN->block_end()))); 1162 } 1163 1164 static unsigned getHashValue(PHINode *PN) { 1165 #ifndef NDEBUG 1166 // If -phicse-debug-hash was specified, return a constant -- this 1167 // will force all hashing to collide, so we'll exhaustively search 1168 // the table for a match, and the assertion in isEqual will fire if 1169 // there's a bug causing equal keys to hash differently. 1170 if (PHICSEDebugHash) 1171 return 0; 1172 #endif 1173 return getHashValueImpl(PN); 1174 } 1175 1176 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1177 if (isSentinel(LHS) || isSentinel(RHS)) 1178 return LHS == RHS; 1179 return LHS->isIdenticalTo(RHS); 1180 } 1181 1182 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1183 // These comparisons are nontrivial, so assert that equality implies 1184 // hash equality (DenseMap demands this as an invariant). 1185 bool Result = isEqualImpl(LHS, RHS); 1186 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1187 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1188 return Result; 1189 } 1190 }; 1191 1192 // Set of unique PHINodes. 1193 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1194 1195 // Examine each PHI. 1196 bool Changed = false; 1197 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1198 auto Inserted = PHISet.insert(PN); 1199 if (!Inserted.second) { 1200 // A duplicate. Replace this PHI with its duplicate. 1201 ++NumPHICSEs; 1202 PN->replaceAllUsesWith(*Inserted.first); 1203 PN->eraseFromParent(); 1204 Changed = true; 1205 1206 // The RAUW can change PHIs that we already visited. Start over from the 1207 // beginning. 1208 PHISet.clear(); 1209 I = BB->begin(); 1210 } 1211 } 1212 1213 return Changed; 1214 } 1215 1216 /// enforceKnownAlignment - If the specified pointer points to an object that 1217 /// we control, modify the object's alignment to PrefAlign. This isn't 1218 /// often possible though. If alignment is important, a more reliable approach 1219 /// is to simply align all global variables and allocation instructions to 1220 /// their preferred alignment from the beginning. 1221 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign, 1222 const DataLayout &DL) { 1223 assert(PrefAlign > Alignment); 1224 1225 V = V->stripPointerCasts(); 1226 1227 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1228 // TODO: ideally, computeKnownBits ought to have used 1229 // AllocaInst::getAlignment() in its computation already, making 1230 // the below max redundant. But, as it turns out, 1231 // stripPointerCasts recurses through infinite layers of bitcasts, 1232 // while computeKnownBits is not allowed to traverse more than 6 1233 // levels. 1234 Alignment = std::max(AI->getAlign(), Alignment); 1235 if (PrefAlign <= Alignment) 1236 return Alignment; 1237 1238 // If the preferred alignment is greater than the natural stack alignment 1239 // then don't round up. This avoids dynamic stack realignment. 1240 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1241 return Alignment; 1242 AI->setAlignment(PrefAlign); 1243 return PrefAlign; 1244 } 1245 1246 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1247 // TODO: as above, this shouldn't be necessary. 1248 Alignment = max(GO->getAlign(), Alignment); 1249 if (PrefAlign <= Alignment) 1250 return Alignment; 1251 1252 // If there is a large requested alignment and we can, bump up the alignment 1253 // of the global. If the memory we set aside for the global may not be the 1254 // memory used by the final program then it is impossible for us to reliably 1255 // enforce the preferred alignment. 1256 if (!GO->canIncreaseAlignment()) 1257 return Alignment; 1258 1259 GO->setAlignment(PrefAlign); 1260 return PrefAlign; 1261 } 1262 1263 return Alignment; 1264 } 1265 1266 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1267 const DataLayout &DL, 1268 const Instruction *CxtI, 1269 AssumptionCache *AC, 1270 const DominatorTree *DT) { 1271 assert(V->getType()->isPointerTy() && 1272 "getOrEnforceKnownAlignment expects a pointer!"); 1273 1274 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1275 unsigned TrailZ = Known.countMinTrailingZeros(); 1276 1277 // Avoid trouble with ridiculously large TrailZ values, such as 1278 // those computed from a null pointer. 1279 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1280 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1281 1282 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1283 1284 if (PrefAlign && *PrefAlign > Alignment) 1285 Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL); 1286 1287 // We don't need to make any adjustment. 1288 return Alignment; 1289 } 1290 1291 ///===---------------------------------------------------------------------===// 1292 /// Dbg Intrinsic utilities 1293 /// 1294 1295 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1296 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1297 DIExpression *DIExpr, 1298 PHINode *APN) { 1299 // Since we can't guarantee that the original dbg.declare instrinsic 1300 // is removed by LowerDbgDeclare(), we need to make sure that we are 1301 // not inserting the same dbg.value intrinsic over and over. 1302 SmallVector<DbgValueInst *, 1> DbgValues; 1303 findDbgValues(DbgValues, APN); 1304 for (auto *DVI : DbgValues) { 1305 assert(DVI->getValue() == APN); 1306 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1307 return true; 1308 } 1309 return false; 1310 } 1311 1312 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1313 /// (or fragment of the variable) described by \p DII. 1314 /// 1315 /// This is primarily intended as a helper for the different 1316 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1317 /// converted describes an alloca'd variable, so we need to use the 1318 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1319 /// identified as covering an n-bit fragment, if the store size of i1 is at 1320 /// least n bits. 1321 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1322 const DataLayout &DL = DII->getModule()->getDataLayout(); 1323 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1324 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1325 return ValueSize >= *FragmentSize; 1326 // We can't always calculate the size of the DI variable (e.g. if it is a 1327 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1328 // intead. 1329 if (DII->isAddressOfVariable()) 1330 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1331 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1332 return ValueSize >= *FragmentSize; 1333 // Could not determine size of variable. Conservatively return false. 1334 return false; 1335 } 1336 1337 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1338 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1339 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1340 /// case this DebugLoc leaks into any adjacent instructions. 1341 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1342 // Original dbg.declare must have a location. 1343 DebugLoc DeclareLoc = DII->getDebugLoc(); 1344 MDNode *Scope = DeclareLoc.getScope(); 1345 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1346 // Produce an unknown location with the correct scope / inlinedAt fields. 1347 return DebugLoc::get(0, 0, Scope, InlinedAt); 1348 } 1349 1350 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1351 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1352 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1353 StoreInst *SI, DIBuilder &Builder) { 1354 assert(DII->isAddressOfVariable()); 1355 auto *DIVar = DII->getVariable(); 1356 assert(DIVar && "Missing variable"); 1357 auto *DIExpr = DII->getExpression(); 1358 Value *DV = SI->getValueOperand(); 1359 1360 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1361 1362 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1363 // FIXME: If storing to a part of the variable described by the dbg.declare, 1364 // then we want to insert a dbg.value for the corresponding fragment. 1365 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1366 << *DII << '\n'); 1367 // For now, when there is a store to parts of the variable (but we do not 1368 // know which part) we insert an dbg.value instrinsic to indicate that we 1369 // know nothing about the variable's content. 1370 DV = UndefValue::get(DV->getType()); 1371 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1372 return; 1373 } 1374 1375 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1376 } 1377 1378 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1379 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1380 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1381 LoadInst *LI, DIBuilder &Builder) { 1382 auto *DIVar = DII->getVariable(); 1383 auto *DIExpr = DII->getExpression(); 1384 assert(DIVar && "Missing variable"); 1385 1386 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1387 // FIXME: If only referring to a part of the variable described by the 1388 // dbg.declare, then we want to insert a dbg.value for the corresponding 1389 // fragment. 1390 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1391 << *DII << '\n'); 1392 return; 1393 } 1394 1395 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1396 1397 // We are now tracking the loaded value instead of the address. In the 1398 // future if multi-location support is added to the IR, it might be 1399 // preferable to keep tracking both the loaded value and the original 1400 // address in case the alloca can not be elided. 1401 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1402 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1403 DbgValue->insertAfter(LI); 1404 } 1405 1406 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1407 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1408 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1409 PHINode *APN, DIBuilder &Builder) { 1410 auto *DIVar = DII->getVariable(); 1411 auto *DIExpr = DII->getExpression(); 1412 assert(DIVar && "Missing variable"); 1413 1414 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1415 return; 1416 1417 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1418 // FIXME: If only referring to a part of the variable described by the 1419 // dbg.declare, then we want to insert a dbg.value for the corresponding 1420 // fragment. 1421 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1422 << *DII << '\n'); 1423 return; 1424 } 1425 1426 BasicBlock *BB = APN->getParent(); 1427 auto InsertionPt = BB->getFirstInsertionPt(); 1428 1429 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1430 1431 // The block may be a catchswitch block, which does not have a valid 1432 // insertion point. 1433 // FIXME: Insert dbg.value markers in the successors when appropriate. 1434 if (InsertionPt != BB->end()) 1435 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1436 } 1437 1438 /// Determine whether this alloca is either a VLA or an array. 1439 static bool isArray(AllocaInst *AI) { 1440 return AI->isArrayAllocation() || 1441 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1442 } 1443 1444 /// Determine whether this alloca is a structure. 1445 static bool isStructure(AllocaInst *AI) { 1446 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1447 } 1448 1449 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1450 /// of llvm.dbg.value intrinsics. 1451 bool llvm::LowerDbgDeclare(Function &F) { 1452 bool Changed = false; 1453 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1454 SmallVector<DbgDeclareInst *, 4> Dbgs; 1455 for (auto &FI : F) 1456 for (Instruction &BI : FI) 1457 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1458 Dbgs.push_back(DDI); 1459 1460 if (Dbgs.empty()) 1461 return Changed; 1462 1463 for (auto &I : Dbgs) { 1464 DbgDeclareInst *DDI = I; 1465 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1466 // If this is an alloca for a scalar variable, insert a dbg.value 1467 // at each load and store to the alloca and erase the dbg.declare. 1468 // The dbg.values allow tracking a variable even if it is not 1469 // stored on the stack, while the dbg.declare can only describe 1470 // the stack slot (and at a lexical-scope granularity). Later 1471 // passes will attempt to elide the stack slot. 1472 if (!AI || isArray(AI) || isStructure(AI)) 1473 continue; 1474 1475 // A volatile load/store means that the alloca can't be elided anyway. 1476 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1477 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1478 return LI->isVolatile(); 1479 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1480 return SI->isVolatile(); 1481 return false; 1482 })) 1483 continue; 1484 1485 SmallVector<const Value *, 8> WorkList; 1486 WorkList.push_back(AI); 1487 while (!WorkList.empty()) { 1488 const Value *V = WorkList.pop_back_val(); 1489 for (auto &AIUse : V->uses()) { 1490 User *U = AIUse.getUser(); 1491 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1492 if (AIUse.getOperandNo() == 1) 1493 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1494 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1495 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1496 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1497 // This is a call by-value or some other instruction that takes a 1498 // pointer to the variable. Insert a *value* intrinsic that describes 1499 // the variable by dereferencing the alloca. 1500 if (!CI->isLifetimeStartOrEnd()) { 1501 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1502 auto *DerefExpr = 1503 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1504 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1505 NewLoc, CI); 1506 } 1507 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1508 if (BI->getType()->isPointerTy()) 1509 WorkList.push_back(BI); 1510 } 1511 } 1512 } 1513 DDI->eraseFromParent(); 1514 Changed = true; 1515 } 1516 1517 if (Changed) 1518 for (BasicBlock &BB : F) 1519 RemoveRedundantDbgInstrs(&BB); 1520 1521 return Changed; 1522 } 1523 1524 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1525 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1526 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1527 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1528 if (InsertedPHIs.size() == 0) 1529 return; 1530 1531 // Map existing PHI nodes to their dbg.values. 1532 ValueToValueMapTy DbgValueMap; 1533 for (auto &I : *BB) { 1534 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1535 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1536 DbgValueMap.insert({Loc, DbgII}); 1537 } 1538 } 1539 if (DbgValueMap.size() == 0) 1540 return; 1541 1542 // Then iterate through the new PHIs and look to see if they use one of the 1543 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1544 // propagate the info through the new PHI. 1545 LLVMContext &C = BB->getContext(); 1546 for (auto PHI : InsertedPHIs) { 1547 BasicBlock *Parent = PHI->getParent(); 1548 // Avoid inserting an intrinsic into an EH block. 1549 if (Parent->getFirstNonPHI()->isEHPad()) 1550 continue; 1551 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1552 for (auto VI : PHI->operand_values()) { 1553 auto V = DbgValueMap.find(VI); 1554 if (V != DbgValueMap.end()) { 1555 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1556 Instruction *NewDbgII = DbgII->clone(); 1557 NewDbgII->setOperand(0, PhiMAV); 1558 auto InsertionPt = Parent->getFirstInsertionPt(); 1559 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1560 NewDbgII->insertBefore(&*InsertionPt); 1561 } 1562 } 1563 } 1564 } 1565 1566 /// Finds all intrinsics declaring local variables as living in the memory that 1567 /// 'V' points to. This may include a mix of dbg.declare and 1568 /// dbg.addr intrinsics. 1569 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1570 // This function is hot. Check whether the value has any metadata to avoid a 1571 // DenseMap lookup. 1572 if (!V->isUsedByMetadata()) 1573 return {}; 1574 auto *L = LocalAsMetadata::getIfExists(V); 1575 if (!L) 1576 return {}; 1577 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1578 if (!MDV) 1579 return {}; 1580 1581 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1582 for (User *U : MDV->users()) { 1583 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1584 if (DII->isAddressOfVariable()) 1585 Declares.push_back(DII); 1586 } 1587 1588 return Declares; 1589 } 1590 1591 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1592 TinyPtrVector<DbgDeclareInst *> DDIs; 1593 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1594 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1595 DDIs.push_back(DDI); 1596 return DDIs; 1597 } 1598 1599 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1600 // This function is hot. Check whether the value has any metadata to avoid a 1601 // DenseMap lookup. 1602 if (!V->isUsedByMetadata()) 1603 return; 1604 if (auto *L = LocalAsMetadata::getIfExists(V)) 1605 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1606 for (User *U : MDV->users()) 1607 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1608 DbgValues.push_back(DVI); 1609 } 1610 1611 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1612 Value *V) { 1613 // This function is hot. Check whether the value has any metadata to avoid a 1614 // DenseMap lookup. 1615 if (!V->isUsedByMetadata()) 1616 return; 1617 if (auto *L = LocalAsMetadata::getIfExists(V)) 1618 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1619 for (User *U : MDV->users()) 1620 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1621 DbgUsers.push_back(DII); 1622 } 1623 1624 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1625 DIBuilder &Builder, uint8_t DIExprFlags, 1626 int Offset) { 1627 auto DbgAddrs = FindDbgAddrUses(Address); 1628 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1629 DebugLoc Loc = DII->getDebugLoc(); 1630 auto *DIVar = DII->getVariable(); 1631 auto *DIExpr = DII->getExpression(); 1632 assert(DIVar && "Missing variable"); 1633 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1634 // Insert llvm.dbg.declare immediately before DII, and remove old 1635 // llvm.dbg.declare. 1636 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1637 DII->eraseFromParent(); 1638 } 1639 return !DbgAddrs.empty(); 1640 } 1641 1642 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1643 DIBuilder &Builder, int Offset) { 1644 DebugLoc Loc = DVI->getDebugLoc(); 1645 auto *DIVar = DVI->getVariable(); 1646 auto *DIExpr = DVI->getExpression(); 1647 assert(DIVar && "Missing variable"); 1648 1649 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1650 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1651 // it and give up. 1652 if (!DIExpr || DIExpr->getNumElements() < 1 || 1653 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1654 return; 1655 1656 // Insert the offset before the first deref. 1657 // We could just change the offset argument of dbg.value, but it's unsigned... 1658 if (Offset) 1659 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1660 1661 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1662 DVI->eraseFromParent(); 1663 } 1664 1665 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1666 DIBuilder &Builder, int Offset) { 1667 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1668 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1669 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1670 Use &U = *UI++; 1671 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1672 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1673 } 1674 } 1675 1676 /// Wrap \p V in a ValueAsMetadata instance. 1677 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1678 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1679 } 1680 1681 /// Where possible to salvage debug information for \p I do so 1682 /// and return True. If not possible mark undef and return False. 1683 void llvm::salvageDebugInfo(Instruction &I) { 1684 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1685 findDbgUsers(DbgUsers, &I); 1686 salvageDebugInfoForDbgValues(I, DbgUsers); 1687 } 1688 1689 void llvm::salvageDebugInfoForDbgValues( 1690 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1691 auto &Ctx = I.getContext(); 1692 bool Salvaged = false; 1693 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1694 1695 for (auto *DII : DbgUsers) { 1696 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1697 // are implicitly pointing out the value as a DWARF memory location 1698 // description. 1699 bool StackValue = isa<DbgValueInst>(DII); 1700 1701 DIExpression *DIExpr = 1702 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1703 1704 // salvageDebugInfoImpl should fail on examining the first element of 1705 // DbgUsers, or none of them. 1706 if (!DIExpr) 1707 break; 1708 1709 DII->setOperand(0, wrapMD(I.getOperand(0))); 1710 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1711 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1712 Salvaged = true; 1713 } 1714 1715 if (Salvaged) 1716 return; 1717 1718 for (auto *DII : DbgUsers) { 1719 Value *Undef = UndefValue::get(I.getType()); 1720 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1721 ValueAsMetadata::get(Undef))); 1722 } 1723 } 1724 1725 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1726 DIExpression *SrcDIExpr, 1727 bool WithStackValue) { 1728 auto &M = *I.getModule(); 1729 auto &DL = M.getDataLayout(); 1730 1731 // Apply a vector of opcodes to the source DIExpression. 1732 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1733 DIExpression *DIExpr = SrcDIExpr; 1734 if (!Ops.empty()) { 1735 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1736 } 1737 return DIExpr; 1738 }; 1739 1740 // Apply the given offset to the source DIExpression. 1741 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1742 SmallVector<uint64_t, 8> Ops; 1743 DIExpression::appendOffset(Ops, Offset); 1744 return doSalvage(Ops); 1745 }; 1746 1747 // initializer-list helper for applying operators to the source DIExpression. 1748 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1749 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1750 return doSalvage(Ops); 1751 }; 1752 1753 if (auto *CI = dyn_cast<CastInst>(&I)) { 1754 // No-op casts are irrelevant for debug info. 1755 if (CI->isNoopCast(DL)) 1756 return SrcDIExpr; 1757 1758 Type *Type = CI->getType(); 1759 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1760 if (Type->isVectorTy() || 1761 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1762 return nullptr; 1763 1764 Value *FromValue = CI->getOperand(0); 1765 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1766 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1767 1768 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1769 isa<SExtInst>(&I))); 1770 } 1771 1772 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1773 unsigned BitWidth = 1774 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1775 // Rewrite a constant GEP into a DIExpression. 1776 APInt Offset(BitWidth, 0); 1777 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1778 return applyOffset(Offset.getSExtValue()); 1779 } else { 1780 return nullptr; 1781 } 1782 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1783 // Rewrite binary operations with constant integer operands. 1784 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1785 if (!ConstInt || ConstInt->getBitWidth() > 64) 1786 return nullptr; 1787 1788 uint64_t Val = ConstInt->getSExtValue(); 1789 switch (BI->getOpcode()) { 1790 case Instruction::Add: 1791 return applyOffset(Val); 1792 case Instruction::Sub: 1793 return applyOffset(-int64_t(Val)); 1794 case Instruction::Mul: 1795 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1796 case Instruction::SDiv: 1797 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1798 case Instruction::SRem: 1799 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1800 case Instruction::Or: 1801 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1802 case Instruction::And: 1803 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1804 case Instruction::Xor: 1805 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1806 case Instruction::Shl: 1807 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1808 case Instruction::LShr: 1809 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1810 case Instruction::AShr: 1811 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1812 default: 1813 // TODO: Salvage constants from each kind of binop we know about. 1814 return nullptr; 1815 } 1816 // *Not* to do: we should not attempt to salvage load instructions, 1817 // because the validity and lifetime of a dbg.value containing 1818 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1819 } 1820 return nullptr; 1821 } 1822 1823 /// A replacement for a dbg.value expression. 1824 using DbgValReplacement = Optional<DIExpression *>; 1825 1826 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1827 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1828 /// changes are made. 1829 static bool rewriteDebugUsers( 1830 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1831 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1832 // Find debug users of From. 1833 SmallVector<DbgVariableIntrinsic *, 1> Users; 1834 findDbgUsers(Users, &From); 1835 if (Users.empty()) 1836 return false; 1837 1838 // Prevent use-before-def of To. 1839 bool Changed = false; 1840 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1841 if (isa<Instruction>(&To)) { 1842 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1843 1844 for (auto *DII : Users) { 1845 // It's common to see a debug user between From and DomPoint. Move it 1846 // after DomPoint to preserve the variable update without any reordering. 1847 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1848 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1849 DII->moveAfter(&DomPoint); 1850 Changed = true; 1851 1852 // Users which otherwise aren't dominated by the replacement value must 1853 // be salvaged or deleted. 1854 } else if (!DT.dominates(&DomPoint, DII)) { 1855 UndefOrSalvage.insert(DII); 1856 } 1857 } 1858 } 1859 1860 // Update debug users without use-before-def risk. 1861 for (auto *DII : Users) { 1862 if (UndefOrSalvage.count(DII)) 1863 continue; 1864 1865 LLVMContext &Ctx = DII->getContext(); 1866 DbgValReplacement DVR = RewriteExpr(*DII); 1867 if (!DVR) 1868 continue; 1869 1870 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1871 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1872 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1873 Changed = true; 1874 } 1875 1876 if (!UndefOrSalvage.empty()) { 1877 // Try to salvage the remaining debug users. 1878 salvageDebugInfo(From); 1879 Changed = true; 1880 } 1881 1882 return Changed; 1883 } 1884 1885 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1886 /// losslessly preserve the bits and semantics of the value. This predicate is 1887 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1888 /// 1889 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1890 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1891 /// and also does not allow lossless pointer <-> integer conversions. 1892 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1893 Type *ToTy) { 1894 // Trivially compatible types. 1895 if (FromTy == ToTy) 1896 return true; 1897 1898 // Handle compatible pointer <-> integer conversions. 1899 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1900 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1901 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1902 !DL.isNonIntegralPointerType(ToTy); 1903 return SameSize && LosslessConversion; 1904 } 1905 1906 // TODO: This is not exhaustive. 1907 return false; 1908 } 1909 1910 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1911 Instruction &DomPoint, DominatorTree &DT) { 1912 // Exit early if From has no debug users. 1913 if (!From.isUsedByMetadata()) 1914 return false; 1915 1916 assert(&From != &To && "Can't replace something with itself"); 1917 1918 Type *FromTy = From.getType(); 1919 Type *ToTy = To.getType(); 1920 1921 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1922 return DII.getExpression(); 1923 }; 1924 1925 // Handle no-op conversions. 1926 Module &M = *From.getModule(); 1927 const DataLayout &DL = M.getDataLayout(); 1928 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1929 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1930 1931 // Handle integer-to-integer widening and narrowing. 1932 // FIXME: Use DW_OP_convert when it's available everywhere. 1933 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1934 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1935 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1936 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1937 1938 // When the width of the result grows, assume that a debugger will only 1939 // access the low `FromBits` bits when inspecting the source variable. 1940 if (FromBits < ToBits) 1941 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1942 1943 // The width of the result has shrunk. Use sign/zero extension to describe 1944 // the source variable's high bits. 1945 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1946 DILocalVariable *Var = DII.getVariable(); 1947 1948 // Without knowing signedness, sign/zero extension isn't possible. 1949 auto Signedness = Var->getSignedness(); 1950 if (!Signedness) 1951 return None; 1952 1953 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1954 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1955 Signed); 1956 }; 1957 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1958 } 1959 1960 // TODO: Floating-point conversions, vectors. 1961 return false; 1962 } 1963 1964 std::pair<unsigned, unsigned> 1965 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1966 unsigned NumDeadInst = 0; 1967 unsigned NumDeadDbgInst = 0; 1968 // Delete the instructions backwards, as it has a reduced likelihood of 1969 // having to update as many def-use and use-def chains. 1970 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1971 while (EndInst != &BB->front()) { 1972 // Delete the next to last instruction. 1973 Instruction *Inst = &*--EndInst->getIterator(); 1974 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1975 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1976 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1977 EndInst = Inst; 1978 continue; 1979 } 1980 if (isa<DbgInfoIntrinsic>(Inst)) 1981 ++NumDeadDbgInst; 1982 else 1983 ++NumDeadInst; 1984 Inst->eraseFromParent(); 1985 } 1986 return {NumDeadInst, NumDeadDbgInst}; 1987 } 1988 1989 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1990 bool PreserveLCSSA, DomTreeUpdater *DTU, 1991 MemorySSAUpdater *MSSAU) { 1992 BasicBlock *BB = I->getParent(); 1993 std::vector <DominatorTree::UpdateType> Updates; 1994 1995 if (MSSAU) 1996 MSSAU->changeToUnreachable(I); 1997 1998 // Loop over all of the successors, removing BB's entry from any PHI 1999 // nodes. 2000 if (DTU) 2001 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 2002 for (BasicBlock *Successor : successors(BB)) { 2003 Successor->removePredecessor(BB, PreserveLCSSA); 2004 if (DTU) 2005 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2006 } 2007 // Insert a call to llvm.trap right before this. This turns the undefined 2008 // behavior into a hard fail instead of falling through into random code. 2009 if (UseLLVMTrap) { 2010 Function *TrapFn = 2011 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2012 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2013 CallTrap->setDebugLoc(I->getDebugLoc()); 2014 } 2015 auto *UI = new UnreachableInst(I->getContext(), I); 2016 UI->setDebugLoc(I->getDebugLoc()); 2017 2018 // All instructions after this are dead. 2019 unsigned NumInstrsRemoved = 0; 2020 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2021 while (BBI != BBE) { 2022 if (!BBI->use_empty()) 2023 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2024 BB->getInstList().erase(BBI++); 2025 ++NumInstrsRemoved; 2026 } 2027 if (DTU) 2028 DTU->applyUpdatesPermissive(Updates); 2029 return NumInstrsRemoved; 2030 } 2031 2032 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2033 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 2034 SmallVector<OperandBundleDef, 1> OpBundles; 2035 II->getOperandBundlesAsDefs(OpBundles); 2036 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2037 II->getCalledOperand(), Args, OpBundles); 2038 NewCall->setCallingConv(II->getCallingConv()); 2039 NewCall->setAttributes(II->getAttributes()); 2040 NewCall->setDebugLoc(II->getDebugLoc()); 2041 NewCall->copyMetadata(*II); 2042 2043 // If the invoke had profile metadata, try converting them for CallInst. 2044 uint64_t TotalWeight; 2045 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2046 // Set the total weight if it fits into i32, otherwise reset. 2047 MDBuilder MDB(NewCall->getContext()); 2048 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2049 ? nullptr 2050 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2051 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2052 } 2053 2054 return NewCall; 2055 } 2056 2057 /// changeToCall - Convert the specified invoke into a normal call. 2058 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2059 CallInst *NewCall = createCallMatchingInvoke(II); 2060 NewCall->takeName(II); 2061 NewCall->insertBefore(II); 2062 II->replaceAllUsesWith(NewCall); 2063 2064 // Follow the call by a branch to the normal destination. 2065 BasicBlock *NormalDestBB = II->getNormalDest(); 2066 BranchInst::Create(NormalDestBB, II); 2067 2068 // Update PHI nodes in the unwind destination 2069 BasicBlock *BB = II->getParent(); 2070 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2071 UnwindDestBB->removePredecessor(BB); 2072 II->eraseFromParent(); 2073 if (DTU) 2074 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2075 } 2076 2077 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2078 BasicBlock *UnwindEdge) { 2079 BasicBlock *BB = CI->getParent(); 2080 2081 // Convert this function call into an invoke instruction. First, split the 2082 // basic block. 2083 BasicBlock *Split = 2084 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2085 2086 // Delete the unconditional branch inserted by splitBasicBlock 2087 BB->getInstList().pop_back(); 2088 2089 // Create the new invoke instruction. 2090 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2091 SmallVector<OperandBundleDef, 1> OpBundles; 2092 2093 CI->getOperandBundlesAsDefs(OpBundles); 2094 2095 // Note: we're round tripping operand bundles through memory here, and that 2096 // can potentially be avoided with a cleverer API design that we do not have 2097 // as of this time. 2098 2099 InvokeInst *II = 2100 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2101 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2102 II->setDebugLoc(CI->getDebugLoc()); 2103 II->setCallingConv(CI->getCallingConv()); 2104 II->setAttributes(CI->getAttributes()); 2105 2106 // Make sure that anything using the call now uses the invoke! This also 2107 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2108 CI->replaceAllUsesWith(II); 2109 2110 // Delete the original call 2111 Split->getInstList().pop_front(); 2112 return Split; 2113 } 2114 2115 static bool markAliveBlocks(Function &F, 2116 SmallPtrSetImpl<BasicBlock *> &Reachable, 2117 DomTreeUpdater *DTU = nullptr) { 2118 SmallVector<BasicBlock*, 128> Worklist; 2119 BasicBlock *BB = &F.front(); 2120 Worklist.push_back(BB); 2121 Reachable.insert(BB); 2122 bool Changed = false; 2123 do { 2124 BB = Worklist.pop_back_val(); 2125 2126 // Do a quick scan of the basic block, turning any obviously unreachable 2127 // instructions into LLVM unreachable insts. The instruction combining pass 2128 // canonicalizes unreachable insts into stores to null or undef. 2129 for (Instruction &I : *BB) { 2130 if (auto *CI = dyn_cast<CallInst>(&I)) { 2131 Value *Callee = CI->getCalledOperand(); 2132 // Handle intrinsic calls. 2133 if (Function *F = dyn_cast<Function>(Callee)) { 2134 auto IntrinsicID = F->getIntrinsicID(); 2135 // Assumptions that are known to be false are equivalent to 2136 // unreachable. Also, if the condition is undefined, then we make the 2137 // choice most beneficial to the optimizer, and choose that to also be 2138 // unreachable. 2139 if (IntrinsicID == Intrinsic::assume) { 2140 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2141 // Don't insert a call to llvm.trap right before the unreachable. 2142 changeToUnreachable(CI, false, false, DTU); 2143 Changed = true; 2144 break; 2145 } 2146 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2147 // A call to the guard intrinsic bails out of the current 2148 // compilation unit if the predicate passed to it is false. If the 2149 // predicate is a constant false, then we know the guard will bail 2150 // out of the current compile unconditionally, so all code following 2151 // it is dead. 2152 // 2153 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2154 // guards to treat `undef` as `false` since a guard on `undef` can 2155 // still be useful for widening. 2156 if (match(CI->getArgOperand(0), m_Zero())) 2157 if (!isa<UnreachableInst>(CI->getNextNode())) { 2158 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2159 false, DTU); 2160 Changed = true; 2161 break; 2162 } 2163 } 2164 } else if ((isa<ConstantPointerNull>(Callee) && 2165 !NullPointerIsDefined(CI->getFunction())) || 2166 isa<UndefValue>(Callee)) { 2167 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2168 Changed = true; 2169 break; 2170 } 2171 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2172 // If we found a call to a no-return function, insert an unreachable 2173 // instruction after it. Make sure there isn't *already* one there 2174 // though. 2175 if (!isa<UnreachableInst>(CI->getNextNode())) { 2176 // Don't insert a call to llvm.trap right before the unreachable. 2177 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2178 Changed = true; 2179 } 2180 break; 2181 } 2182 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2183 // Store to undef and store to null are undefined and used to signal 2184 // that they should be changed to unreachable by passes that can't 2185 // modify the CFG. 2186 2187 // Don't touch volatile stores. 2188 if (SI->isVolatile()) continue; 2189 2190 Value *Ptr = SI->getOperand(1); 2191 2192 if (isa<UndefValue>(Ptr) || 2193 (isa<ConstantPointerNull>(Ptr) && 2194 !NullPointerIsDefined(SI->getFunction(), 2195 SI->getPointerAddressSpace()))) { 2196 changeToUnreachable(SI, true, false, DTU); 2197 Changed = true; 2198 break; 2199 } 2200 } 2201 } 2202 2203 Instruction *Terminator = BB->getTerminator(); 2204 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2205 // Turn invokes that call 'nounwind' functions into ordinary calls. 2206 Value *Callee = II->getCalledOperand(); 2207 if ((isa<ConstantPointerNull>(Callee) && 2208 !NullPointerIsDefined(BB->getParent())) || 2209 isa<UndefValue>(Callee)) { 2210 changeToUnreachable(II, true, false, DTU); 2211 Changed = true; 2212 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2213 if (II->use_empty() && II->onlyReadsMemory()) { 2214 // jump to the normal destination branch. 2215 BasicBlock *NormalDestBB = II->getNormalDest(); 2216 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2217 BranchInst::Create(NormalDestBB, II); 2218 UnwindDestBB->removePredecessor(II->getParent()); 2219 II->eraseFromParent(); 2220 if (DTU) 2221 DTU->applyUpdatesPermissive( 2222 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2223 } else 2224 changeToCall(II, DTU); 2225 Changed = true; 2226 } 2227 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2228 // Remove catchpads which cannot be reached. 2229 struct CatchPadDenseMapInfo { 2230 static CatchPadInst *getEmptyKey() { 2231 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2232 } 2233 2234 static CatchPadInst *getTombstoneKey() { 2235 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2236 } 2237 2238 static unsigned getHashValue(CatchPadInst *CatchPad) { 2239 return static_cast<unsigned>(hash_combine_range( 2240 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2241 } 2242 2243 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2244 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2245 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2246 return LHS == RHS; 2247 return LHS->isIdenticalTo(RHS); 2248 } 2249 }; 2250 2251 // Set of unique CatchPads. 2252 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2253 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2254 HandlerSet; 2255 detail::DenseSetEmpty Empty; 2256 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2257 E = CatchSwitch->handler_end(); 2258 I != E; ++I) { 2259 BasicBlock *HandlerBB = *I; 2260 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2261 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2262 CatchSwitch->removeHandler(I); 2263 --I; 2264 --E; 2265 Changed = true; 2266 } 2267 } 2268 } 2269 2270 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2271 for (BasicBlock *Successor : successors(BB)) 2272 if (Reachable.insert(Successor).second) 2273 Worklist.push_back(Successor); 2274 } while (!Worklist.empty()); 2275 return Changed; 2276 } 2277 2278 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2279 Instruction *TI = BB->getTerminator(); 2280 2281 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2282 changeToCall(II, DTU); 2283 return; 2284 } 2285 2286 Instruction *NewTI; 2287 BasicBlock *UnwindDest; 2288 2289 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2290 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2291 UnwindDest = CRI->getUnwindDest(); 2292 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2293 auto *NewCatchSwitch = CatchSwitchInst::Create( 2294 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2295 CatchSwitch->getName(), CatchSwitch); 2296 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2297 NewCatchSwitch->addHandler(PadBB); 2298 2299 NewTI = NewCatchSwitch; 2300 UnwindDest = CatchSwitch->getUnwindDest(); 2301 } else { 2302 llvm_unreachable("Could not find unwind successor"); 2303 } 2304 2305 NewTI->takeName(TI); 2306 NewTI->setDebugLoc(TI->getDebugLoc()); 2307 UnwindDest->removePredecessor(BB); 2308 TI->replaceAllUsesWith(NewTI); 2309 TI->eraseFromParent(); 2310 if (DTU) 2311 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2312 } 2313 2314 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2315 /// if they are in a dead cycle. Return true if a change was made, false 2316 /// otherwise. 2317 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2318 MemorySSAUpdater *MSSAU) { 2319 SmallPtrSet<BasicBlock *, 16> Reachable; 2320 bool Changed = markAliveBlocks(F, Reachable, DTU); 2321 2322 // If there are unreachable blocks in the CFG... 2323 if (Reachable.size() == F.size()) 2324 return Changed; 2325 2326 assert(Reachable.size() < F.size()); 2327 NumRemoved += F.size() - Reachable.size(); 2328 2329 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2330 for (BasicBlock &BB : F) { 2331 // Skip reachable basic blocks 2332 if (Reachable.count(&BB)) 2333 continue; 2334 DeadBlockSet.insert(&BB); 2335 } 2336 2337 if (MSSAU) 2338 MSSAU->removeBlocks(DeadBlockSet); 2339 2340 // Loop over all of the basic blocks that are not reachable, dropping all of 2341 // their internal references. Update DTU if available. 2342 std::vector<DominatorTree::UpdateType> Updates; 2343 for (auto *BB : DeadBlockSet) { 2344 for (BasicBlock *Successor : successors(BB)) { 2345 if (!DeadBlockSet.count(Successor)) 2346 Successor->removePredecessor(BB); 2347 if (DTU) 2348 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2349 } 2350 BB->dropAllReferences(); 2351 if (DTU) { 2352 Instruction *TI = BB->getTerminator(); 2353 assert(TI && "Basic block should have a terminator"); 2354 // Terminators like invoke can have users. We have to replace their users, 2355 // before removing them. 2356 if (!TI->use_empty()) 2357 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2358 TI->eraseFromParent(); 2359 new UnreachableInst(BB->getContext(), BB); 2360 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2361 "applying corresponding DTU updates."); 2362 } 2363 } 2364 2365 if (DTU) { 2366 DTU->applyUpdatesPermissive(Updates); 2367 bool Deleted = false; 2368 for (auto *BB : DeadBlockSet) { 2369 if (DTU->isBBPendingDeletion(BB)) 2370 --NumRemoved; 2371 else 2372 Deleted = true; 2373 DTU->deleteBB(BB); 2374 } 2375 if (!Deleted) 2376 return false; 2377 } else { 2378 for (auto *BB : DeadBlockSet) 2379 BB->eraseFromParent(); 2380 } 2381 2382 return true; 2383 } 2384 2385 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2386 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2387 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2388 K->dropUnknownNonDebugMetadata(KnownIDs); 2389 K->getAllMetadataOtherThanDebugLoc(Metadata); 2390 for (const auto &MD : Metadata) { 2391 unsigned Kind = MD.first; 2392 MDNode *JMD = J->getMetadata(Kind); 2393 MDNode *KMD = MD.second; 2394 2395 switch (Kind) { 2396 default: 2397 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2398 break; 2399 case LLVMContext::MD_dbg: 2400 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2401 case LLVMContext::MD_tbaa: 2402 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2403 break; 2404 case LLVMContext::MD_alias_scope: 2405 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2406 break; 2407 case LLVMContext::MD_noalias: 2408 case LLVMContext::MD_mem_parallel_loop_access: 2409 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2410 break; 2411 case LLVMContext::MD_access_group: 2412 K->setMetadata(LLVMContext::MD_access_group, 2413 intersectAccessGroups(K, J)); 2414 break; 2415 case LLVMContext::MD_range: 2416 2417 // If K does move, use most generic range. Otherwise keep the range of 2418 // K. 2419 if (DoesKMove) 2420 // FIXME: If K does move, we should drop the range info and nonnull. 2421 // Currently this function is used with DoesKMove in passes 2422 // doing hoisting/sinking and the current behavior of using the 2423 // most generic range is correct in those cases. 2424 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2425 break; 2426 case LLVMContext::MD_fpmath: 2427 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2428 break; 2429 case LLVMContext::MD_invariant_load: 2430 // Only set the !invariant.load if it is present in both instructions. 2431 K->setMetadata(Kind, JMD); 2432 break; 2433 case LLVMContext::MD_nonnull: 2434 // If K does move, keep nonull if it is present in both instructions. 2435 if (DoesKMove) 2436 K->setMetadata(Kind, JMD); 2437 break; 2438 case LLVMContext::MD_invariant_group: 2439 // Preserve !invariant.group in K. 2440 break; 2441 case LLVMContext::MD_align: 2442 K->setMetadata(Kind, 2443 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2444 break; 2445 case LLVMContext::MD_dereferenceable: 2446 case LLVMContext::MD_dereferenceable_or_null: 2447 K->setMetadata(Kind, 2448 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2449 break; 2450 case LLVMContext::MD_preserve_access_index: 2451 // Preserve !preserve.access.index in K. 2452 break; 2453 } 2454 } 2455 // Set !invariant.group from J if J has it. If both instructions have it 2456 // then we will just pick it from J - even when they are different. 2457 // Also make sure that K is load or store - f.e. combining bitcast with load 2458 // could produce bitcast with invariant.group metadata, which is invalid. 2459 // FIXME: we should try to preserve both invariant.group md if they are 2460 // different, but right now instruction can only have one invariant.group. 2461 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2462 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2463 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2464 } 2465 2466 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2467 bool KDominatesJ) { 2468 unsigned KnownIDs[] = { 2469 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2470 LLVMContext::MD_noalias, LLVMContext::MD_range, 2471 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2472 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2473 LLVMContext::MD_dereferenceable, 2474 LLVMContext::MD_dereferenceable_or_null, 2475 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2476 combineMetadata(K, J, KnownIDs, KDominatesJ); 2477 } 2478 2479 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2480 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2481 Source.getAllMetadata(MD); 2482 MDBuilder MDB(Dest.getContext()); 2483 Type *NewType = Dest.getType(); 2484 const DataLayout &DL = Source.getModule()->getDataLayout(); 2485 for (const auto &MDPair : MD) { 2486 unsigned ID = MDPair.first; 2487 MDNode *N = MDPair.second; 2488 // Note, essentially every kind of metadata should be preserved here! This 2489 // routine is supposed to clone a load instruction changing *only its type*. 2490 // The only metadata it makes sense to drop is metadata which is invalidated 2491 // when the pointer type changes. This should essentially never be the case 2492 // in LLVM, but we explicitly switch over only known metadata to be 2493 // conservatively correct. If you are adding metadata to LLVM which pertains 2494 // to loads, you almost certainly want to add it here. 2495 switch (ID) { 2496 case LLVMContext::MD_dbg: 2497 case LLVMContext::MD_tbaa: 2498 case LLVMContext::MD_prof: 2499 case LLVMContext::MD_fpmath: 2500 case LLVMContext::MD_tbaa_struct: 2501 case LLVMContext::MD_invariant_load: 2502 case LLVMContext::MD_alias_scope: 2503 case LLVMContext::MD_noalias: 2504 case LLVMContext::MD_nontemporal: 2505 case LLVMContext::MD_mem_parallel_loop_access: 2506 case LLVMContext::MD_access_group: 2507 // All of these directly apply. 2508 Dest.setMetadata(ID, N); 2509 break; 2510 2511 case LLVMContext::MD_nonnull: 2512 copyNonnullMetadata(Source, N, Dest); 2513 break; 2514 2515 case LLVMContext::MD_align: 2516 case LLVMContext::MD_dereferenceable: 2517 case LLVMContext::MD_dereferenceable_or_null: 2518 // These only directly apply if the new type is also a pointer. 2519 if (NewType->isPointerTy()) 2520 Dest.setMetadata(ID, N); 2521 break; 2522 2523 case LLVMContext::MD_range: 2524 copyRangeMetadata(DL, Source, N, Dest); 2525 break; 2526 } 2527 } 2528 } 2529 2530 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2531 auto *ReplInst = dyn_cast<Instruction>(Repl); 2532 if (!ReplInst) 2533 return; 2534 2535 // Patch the replacement so that it is not more restrictive than the value 2536 // being replaced. 2537 // Note that if 'I' is a load being replaced by some operation, 2538 // for example, by an arithmetic operation, then andIRFlags() 2539 // would just erase all math flags from the original arithmetic 2540 // operation, which is clearly not wanted and not needed. 2541 if (!isa<LoadInst>(I)) 2542 ReplInst->andIRFlags(I); 2543 2544 // FIXME: If both the original and replacement value are part of the 2545 // same control-flow region (meaning that the execution of one 2546 // guarantees the execution of the other), then we can combine the 2547 // noalias scopes here and do better than the general conservative 2548 // answer used in combineMetadata(). 2549 2550 // In general, GVN unifies expressions over different control-flow 2551 // regions, and so we need a conservative combination of the noalias 2552 // scopes. 2553 static const unsigned KnownIDs[] = { 2554 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2555 LLVMContext::MD_noalias, LLVMContext::MD_range, 2556 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2557 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2558 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2559 combineMetadata(ReplInst, I, KnownIDs, false); 2560 } 2561 2562 template <typename RootType, typename DominatesFn> 2563 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2564 const RootType &Root, 2565 const DominatesFn &Dominates) { 2566 assert(From->getType() == To->getType()); 2567 2568 unsigned Count = 0; 2569 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2570 UI != UE;) { 2571 Use &U = *UI++; 2572 if (!Dominates(Root, U)) 2573 continue; 2574 U.set(To); 2575 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2576 << "' as " << *To << " in " << *U << "\n"); 2577 ++Count; 2578 } 2579 return Count; 2580 } 2581 2582 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2583 assert(From->getType() == To->getType()); 2584 auto *BB = From->getParent(); 2585 unsigned Count = 0; 2586 2587 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2588 UI != UE;) { 2589 Use &U = *UI++; 2590 auto *I = cast<Instruction>(U.getUser()); 2591 if (I->getParent() == BB) 2592 continue; 2593 U.set(To); 2594 ++Count; 2595 } 2596 return Count; 2597 } 2598 2599 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2600 DominatorTree &DT, 2601 const BasicBlockEdge &Root) { 2602 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2603 return DT.dominates(Root, U); 2604 }; 2605 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2606 } 2607 2608 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2609 DominatorTree &DT, 2610 const BasicBlock *BB) { 2611 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2612 auto *I = cast<Instruction>(U.getUser())->getParent(); 2613 return DT.properlyDominates(BB, I); 2614 }; 2615 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2616 } 2617 2618 bool llvm::callsGCLeafFunction(const CallBase *Call, 2619 const TargetLibraryInfo &TLI) { 2620 // Check if the function is specifically marked as a gc leaf function. 2621 if (Call->hasFnAttr("gc-leaf-function")) 2622 return true; 2623 if (const Function *F = Call->getCalledFunction()) { 2624 if (F->hasFnAttribute("gc-leaf-function")) 2625 return true; 2626 2627 if (auto IID = F->getIntrinsicID()) 2628 // Most LLVM intrinsics do not take safepoints. 2629 return IID != Intrinsic::experimental_gc_statepoint && 2630 IID != Intrinsic::experimental_deoptimize; 2631 } 2632 2633 // Lib calls can be materialized by some passes, and won't be 2634 // marked as 'gc-leaf-function.' All available Libcalls are 2635 // GC-leaf. 2636 LibFunc LF; 2637 if (TLI.getLibFunc(*Call, LF)) { 2638 return TLI.has(LF); 2639 } 2640 2641 return false; 2642 } 2643 2644 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2645 LoadInst &NewLI) { 2646 auto *NewTy = NewLI.getType(); 2647 2648 // This only directly applies if the new type is also a pointer. 2649 if (NewTy->isPointerTy()) { 2650 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2651 return; 2652 } 2653 2654 // The only other translation we can do is to integral loads with !range 2655 // metadata. 2656 if (!NewTy->isIntegerTy()) 2657 return; 2658 2659 MDBuilder MDB(NewLI.getContext()); 2660 const Value *Ptr = OldLI.getPointerOperand(); 2661 auto *ITy = cast<IntegerType>(NewTy); 2662 auto *NullInt = ConstantExpr::getPtrToInt( 2663 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2664 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2665 NewLI.setMetadata(LLVMContext::MD_range, 2666 MDB.createRange(NonNullInt, NullInt)); 2667 } 2668 2669 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2670 MDNode *N, LoadInst &NewLI) { 2671 auto *NewTy = NewLI.getType(); 2672 2673 // Give up unless it is converted to a pointer where there is a single very 2674 // valuable mapping we can do reliably. 2675 // FIXME: It would be nice to propagate this in more ways, but the type 2676 // conversions make it hard. 2677 if (!NewTy->isPointerTy()) 2678 return; 2679 2680 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2681 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2682 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2683 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2684 } 2685 } 2686 2687 void llvm::dropDebugUsers(Instruction &I) { 2688 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2689 findDbgUsers(DbgUsers, &I); 2690 for (auto *DII : DbgUsers) 2691 DII->eraseFromParent(); 2692 } 2693 2694 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2695 BasicBlock *BB) { 2696 // Since we are moving the instructions out of its basic block, we do not 2697 // retain their original debug locations (DILocations) and debug intrinsic 2698 // instructions. 2699 // 2700 // Doing so would degrade the debugging experience and adversely affect the 2701 // accuracy of profiling information. 2702 // 2703 // Currently, when hoisting the instructions, we take the following actions: 2704 // - Remove their debug intrinsic instructions. 2705 // - Set their debug locations to the values from the insertion point. 2706 // 2707 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2708 // need to be deleted, is because there will not be any instructions with a 2709 // DILocation in either branch left after performing the transformation. We 2710 // can only insert a dbg.value after the two branches are joined again. 2711 // 2712 // See PR38762, PR39243 for more details. 2713 // 2714 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2715 // encode predicated DIExpressions that yield different results on different 2716 // code paths. 2717 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2718 Instruction *I = &*II; 2719 I->dropUnknownNonDebugMetadata(); 2720 if (I->isUsedByMetadata()) 2721 dropDebugUsers(*I); 2722 if (isa<DbgInfoIntrinsic>(I)) { 2723 // Remove DbgInfo Intrinsics. 2724 II = I->eraseFromParent(); 2725 continue; 2726 } 2727 I->setDebugLoc(InsertPt->getDebugLoc()); 2728 ++II; 2729 } 2730 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2731 BB->begin(), 2732 BB->getTerminator()->getIterator()); 2733 } 2734 2735 namespace { 2736 2737 /// A potential constituent of a bitreverse or bswap expression. See 2738 /// collectBitParts for a fuller explanation. 2739 struct BitPart { 2740 BitPart(Value *P, unsigned BW) : Provider(P) { 2741 Provenance.resize(BW); 2742 } 2743 2744 /// The Value that this is a bitreverse/bswap of. 2745 Value *Provider; 2746 2747 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2748 /// in Provider becomes bit B in the result of this expression. 2749 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2750 2751 enum { Unset = -1 }; 2752 }; 2753 2754 } // end anonymous namespace 2755 2756 /// Analyze the specified subexpression and see if it is capable of providing 2757 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2758 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2759 /// the output of the expression came from a corresponding bit in some other 2760 /// value. This function is recursive, and the end result is a mapping of 2761 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2762 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2763 /// 2764 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2765 /// that the expression deposits the low byte of %X into the high byte of the 2766 /// result and that all other bits are zero. This expression is accepted and a 2767 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2768 /// [0-7]. 2769 /// 2770 /// To avoid revisiting values, the BitPart results are memoized into the 2771 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2772 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2773 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2774 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2775 /// type instead to provide the same functionality. 2776 /// 2777 /// Because we pass around references into \c BPS, we must use a container that 2778 /// does not invalidate internal references (std::map instead of DenseMap). 2779 static const Optional<BitPart> & 2780 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2781 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2782 auto I = BPS.find(V); 2783 if (I != BPS.end()) 2784 return I->second; 2785 2786 auto &Result = BPS[V] = None; 2787 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2788 2789 // Prevent stack overflow by limiting the recursion depth 2790 if (Depth == BitPartRecursionMaxDepth) { 2791 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2792 return Result; 2793 } 2794 2795 if (Instruction *I = dyn_cast<Instruction>(V)) { 2796 // If this is an or instruction, it may be an inner node of the bswap. 2797 if (I->getOpcode() == Instruction::Or) { 2798 const auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2799 MatchBitReversals, BPS, Depth + 1); 2800 const auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2801 MatchBitReversals, BPS, Depth + 1); 2802 if (!A || !B) 2803 return Result; 2804 2805 // Try and merge the two together. 2806 if (!A->Provider || A->Provider != B->Provider) 2807 return Result; 2808 2809 Result = BitPart(A->Provider, BitWidth); 2810 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2811 if (A->Provenance[i] != BitPart::Unset && 2812 B->Provenance[i] != BitPart::Unset && 2813 A->Provenance[i] != B->Provenance[i]) 2814 return Result = None; 2815 2816 if (A->Provenance[i] == BitPart::Unset) 2817 Result->Provenance[i] = B->Provenance[i]; 2818 else 2819 Result->Provenance[i] = A->Provenance[i]; 2820 } 2821 2822 return Result; 2823 } 2824 2825 // If this is a logical shift by a constant, recurse then shift the result. 2826 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2827 unsigned BitShift = 2828 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2829 // Ensure the shift amount is defined. 2830 if (BitShift > BitWidth) 2831 return Result; 2832 2833 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2834 MatchBitReversals, BPS, Depth + 1); 2835 if (!Res) 2836 return Result; 2837 Result = Res; 2838 2839 // Perform the "shift" on BitProvenance. 2840 auto &P = Result->Provenance; 2841 if (I->getOpcode() == Instruction::Shl) { 2842 P.erase(std::prev(P.end(), BitShift), P.end()); 2843 P.insert(P.begin(), BitShift, BitPart::Unset); 2844 } else { 2845 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2846 P.insert(P.end(), BitShift, BitPart::Unset); 2847 } 2848 2849 return Result; 2850 } 2851 2852 // If this is a logical 'and' with a mask that clears bits, recurse then 2853 // unset the appropriate bits. 2854 if (I->getOpcode() == Instruction::And && 2855 isa<ConstantInt>(I->getOperand(1))) { 2856 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2857 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2858 2859 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2860 // early exit. 2861 unsigned NumMaskedBits = AndMask.countPopulation(); 2862 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2863 return Result; 2864 2865 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2866 MatchBitReversals, BPS, Depth + 1); 2867 if (!Res) 2868 return Result; 2869 Result = Res; 2870 2871 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2872 // If the AndMask is zero for this bit, clear the bit. 2873 if ((AndMask & Bit) == 0) 2874 Result->Provenance[i] = BitPart::Unset; 2875 return Result; 2876 } 2877 2878 // If this is a zext instruction zero extend the result. 2879 if (I->getOpcode() == Instruction::ZExt) { 2880 const auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2881 MatchBitReversals, BPS, Depth + 1); 2882 if (!Res) 2883 return Result; 2884 2885 Result = BitPart(Res->Provider, BitWidth); 2886 auto NarrowBitWidth = 2887 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2888 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2889 Result->Provenance[i] = Res->Provenance[i]; 2890 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2891 Result->Provenance[i] = BitPart::Unset; 2892 return Result; 2893 } 2894 } 2895 2896 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2897 // the input value to the bswap/bitreverse. 2898 Result = BitPart(V, BitWidth); 2899 for (unsigned i = 0; i < BitWidth; ++i) 2900 Result->Provenance[i] = i; 2901 return Result; 2902 } 2903 2904 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2905 unsigned BitWidth) { 2906 if (From % 8 != To % 8) 2907 return false; 2908 // Convert from bit indices to byte indices and check for a byte reversal. 2909 From >>= 3; 2910 To >>= 3; 2911 BitWidth >>= 3; 2912 return From == BitWidth - To - 1; 2913 } 2914 2915 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2916 unsigned BitWidth) { 2917 return From == BitWidth - To - 1; 2918 } 2919 2920 bool llvm::recognizeBSwapOrBitReverseIdiom( 2921 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2922 SmallVectorImpl<Instruction *> &InsertedInsts) { 2923 if (Operator::getOpcode(I) != Instruction::Or) 2924 return false; 2925 if (!MatchBSwaps && !MatchBitReversals) 2926 return false; 2927 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2928 if (!ITy || ITy->getBitWidth() > 128) 2929 return false; // Can't do vectors or integers > 128 bits. 2930 unsigned BW = ITy->getBitWidth(); 2931 2932 unsigned DemandedBW = BW; 2933 IntegerType *DemandedTy = ITy; 2934 if (I->hasOneUse()) { 2935 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2936 DemandedTy = cast<IntegerType>(Trunc->getType()); 2937 DemandedBW = DemandedTy->getBitWidth(); 2938 } 2939 } 2940 2941 // Try to find all the pieces corresponding to the bswap. 2942 std::map<Value *, Optional<BitPart>> BPS; 2943 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2944 if (!Res) 2945 return false; 2946 auto &BitProvenance = Res->Provenance; 2947 2948 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2949 // only byteswap values with an even number of bytes. 2950 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2951 for (unsigned i = 0; i < DemandedBW; ++i) { 2952 OKForBSwap &= 2953 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2954 OKForBitReverse &= 2955 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2956 } 2957 2958 Intrinsic::ID Intrin; 2959 if (OKForBSwap && MatchBSwaps) 2960 Intrin = Intrinsic::bswap; 2961 else if (OKForBitReverse && MatchBitReversals) 2962 Intrin = Intrinsic::bitreverse; 2963 else 2964 return false; 2965 2966 if (ITy != DemandedTy) { 2967 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2968 Value *Provider = Res->Provider; 2969 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2970 // We may need to truncate the provider. 2971 if (DemandedTy != ProviderTy) { 2972 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2973 "trunc", I); 2974 InsertedInsts.push_back(Trunc); 2975 Provider = Trunc; 2976 } 2977 auto *CI = CallInst::Create(F, Provider, "rev", I); 2978 InsertedInsts.push_back(CI); 2979 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2980 InsertedInsts.push_back(ExtInst); 2981 return true; 2982 } 2983 2984 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2985 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2986 return true; 2987 } 2988 2989 // CodeGen has special handling for some string functions that may replace 2990 // them with target-specific intrinsics. Since that'd skip our interceptors 2991 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2992 // we mark affected calls as NoBuiltin, which will disable optimization 2993 // in CodeGen. 2994 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2995 CallInst *CI, const TargetLibraryInfo *TLI) { 2996 Function *F = CI->getCalledFunction(); 2997 LibFunc Func; 2998 if (F && !F->hasLocalLinkage() && F->hasName() && 2999 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3000 !F->doesNotAccessMemory()) 3001 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3002 } 3003 3004 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3005 // We can't have a PHI with a metadata type. 3006 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3007 return false; 3008 3009 // Early exit. 3010 if (!isa<Constant>(I->getOperand(OpIdx))) 3011 return true; 3012 3013 switch (I->getOpcode()) { 3014 default: 3015 return true; 3016 case Instruction::Call: 3017 case Instruction::Invoke: { 3018 const auto &CB = cast<CallBase>(*I); 3019 3020 // Can't handle inline asm. Skip it. 3021 if (CB.isInlineAsm()) 3022 return false; 3023 3024 // Constant bundle operands may need to retain their constant-ness for 3025 // correctness. 3026 if (CB.isBundleOperand(OpIdx)) 3027 return false; 3028 3029 if (OpIdx < CB.getNumArgOperands()) { 3030 // Some variadic intrinsics require constants in the variadic arguments, 3031 // which currently aren't markable as immarg. 3032 if (isa<IntrinsicInst>(CB) && 3033 OpIdx >= CB.getFunctionType()->getNumParams()) { 3034 // This is known to be OK for stackmap. 3035 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3036 } 3037 3038 // gcroot is a special case, since it requires a constant argument which 3039 // isn't also required to be a simple ConstantInt. 3040 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3041 return false; 3042 3043 // Some intrinsic operands are required to be immediates. 3044 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3045 } 3046 3047 // It is never allowed to replace the call argument to an intrinsic, but it 3048 // may be possible for a call. 3049 return !isa<IntrinsicInst>(CB); 3050 } 3051 case Instruction::ShuffleVector: 3052 // Shufflevector masks are constant. 3053 return OpIdx != 2; 3054 case Instruction::Switch: 3055 case Instruction::ExtractValue: 3056 // All operands apart from the first are constant. 3057 return OpIdx == 0; 3058 case Instruction::InsertValue: 3059 // All operands apart from the first and the second are constant. 3060 return OpIdx < 2; 3061 case Instruction::Alloca: 3062 // Static allocas (constant size in the entry block) are handled by 3063 // prologue/epilogue insertion so they're free anyway. We definitely don't 3064 // want to make them non-constant. 3065 return !cast<AllocaInst>(I)->isStaticAlloca(); 3066 case Instruction::GetElementPtr: 3067 if (OpIdx == 0) 3068 return true; 3069 gep_type_iterator It = gep_type_begin(I); 3070 for (auto E = std::next(It, OpIdx); It != E; ++It) 3071 if (It.isStruct()) 3072 return false; 3073 return true; 3074 } 3075 } 3076 3077 Value *llvm::invertCondition(Value *Condition) { 3078 // First: Check if it's a constant 3079 if (Constant *C = dyn_cast<Constant>(Condition)) 3080 return ConstantExpr::getNot(C); 3081 3082 // Second: If the condition is already inverted, return the original value 3083 Value *NotCondition; 3084 if (match(Condition, m_Not(m_Value(NotCondition)))) 3085 return NotCondition; 3086 3087 BasicBlock *Parent = nullptr; 3088 Instruction *Inst = dyn_cast<Instruction>(Condition); 3089 if (Inst) 3090 Parent = Inst->getParent(); 3091 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3092 Parent = &Arg->getParent()->getEntryBlock(); 3093 assert(Parent && "Unsupported condition to invert"); 3094 3095 // Third: Check all the users for an invert 3096 for (User *U : Condition->users()) 3097 if (Instruction *I = dyn_cast<Instruction>(U)) 3098 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3099 return I; 3100 3101 // Last option: Create a new instruction 3102 auto *Inverted = 3103 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3104 if (Inst && !isa<PHINode>(Inst)) 3105 Inverted->insertAfter(Inst); 3106 else 3107 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3108 return Inverted; 3109 } 3110