1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/PseudoProbe.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms.
115 static const unsigned BitPartRecursionMaxDepth = 48;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       BranchInst *NewBI = Builder.CreateBr(Dest1);
152 
153       // Transfer the metadata to the new branch instruction.
154       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
155                                 LLVMContext::MD_annotation});
156 
157       Value *Cond = BI->getCondition();
158       BI->eraseFromParent();
159       if (DeleteDeadConditions)
160         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
161       return true;
162     }
163 
164     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
165       // Are we branching on constant?
166       // YES.  Change to unconditional branch...
167       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
168       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
169 
170       // Let the basic block know that we are letting go of it.  Based on this,
171       // it will adjust it's PHI nodes.
172       OldDest->removePredecessor(BB);
173 
174       // Replace the conditional branch with an unconditional one.
175       BranchInst *NewBI = Builder.CreateBr(Destination);
176 
177       // Transfer the metadata to the new branch instruction.
178       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
179                                 LLVMContext::MD_annotation});
180 
181       BI->eraseFromParent();
182       if (DTU)
183         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
184       return true;
185     }
186 
187     return false;
188   }
189 
190   if (auto *SI = dyn_cast<SwitchInst>(T)) {
191     // If we are switching on a constant, we can convert the switch to an
192     // unconditional branch.
193     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
194     BasicBlock *DefaultDest = SI->getDefaultDest();
195     BasicBlock *TheOnlyDest = DefaultDest;
196 
197     // If the default is unreachable, ignore it when searching for TheOnlyDest.
198     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
199         SI->getNumCases() > 0) {
200       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
201     }
202 
203     bool Changed = false;
204 
205     // Figure out which case it goes to.
206     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
207       // Found case matching a constant operand?
208       if (i->getCaseValue() == CI) {
209         TheOnlyDest = i->getCaseSuccessor();
210         break;
211       }
212 
213       // Check to see if this branch is going to the same place as the default
214       // dest.  If so, eliminate it as an explicit compare.
215       if (i->getCaseSuccessor() == DefaultDest) {
216         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
217         unsigned NCases = SI->getNumCases();
218         // Fold the case metadata into the default if there will be any branches
219         // left, unless the metadata doesn't match the switch.
220         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
221           // Collect branch weights into a vector.
222           SmallVector<uint32_t, 8> Weights;
223           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
224                ++MD_i) {
225             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
226             Weights.push_back(CI->getValue().getZExtValue());
227           }
228           // Merge weight of this case to the default weight.
229           unsigned idx = i->getCaseIndex();
230           Weights[0] += Weights[idx+1];
231           // Remove weight for this case.
232           std::swap(Weights[idx+1], Weights.back());
233           Weights.pop_back();
234           SI->setMetadata(LLVMContext::MD_prof,
235                           MDBuilder(BB->getContext()).
236                           createBranchWeights(Weights));
237         }
238         // Remove this entry.
239         BasicBlock *ParentBB = SI->getParent();
240         DefaultDest->removePredecessor(ParentBB);
241         i = SI->removeCase(i);
242         e = SI->case_end();
243         Changed = true;
244         continue;
245       }
246 
247       // Otherwise, check to see if the switch only branches to one destination.
248       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
249       // destinations.
250       if (i->getCaseSuccessor() != TheOnlyDest)
251         TheOnlyDest = nullptr;
252 
253       // Increment this iterator as we haven't removed the case.
254       ++i;
255     }
256 
257     if (CI && !TheOnlyDest) {
258       // Branching on a constant, but not any of the cases, go to the default
259       // successor.
260       TheOnlyDest = SI->getDefaultDest();
261     }
262 
263     // If we found a single destination that we can fold the switch into, do so
264     // now.
265     if (TheOnlyDest) {
266       // Insert the new branch.
267       Builder.CreateBr(TheOnlyDest);
268       BasicBlock *BB = SI->getParent();
269 
270       SmallSet<BasicBlock *, 8> RemovedSuccessors;
271 
272       // Remove entries from PHI nodes which we no longer branch to...
273       BasicBlock *SuccToKeep = TheOnlyDest;
274       for (BasicBlock *Succ : successors(SI)) {
275         if (DTU && Succ != TheOnlyDest)
276           RemovedSuccessors.insert(Succ);
277         // Found case matching a constant operand?
278         if (Succ == SuccToKeep) {
279           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
280         } else {
281           Succ->removePredecessor(BB);
282         }
283       }
284 
285       // Delete the old switch.
286       Value *Cond = SI->getCondition();
287       SI->eraseFromParent();
288       if (DeleteDeadConditions)
289         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
290       if (DTU) {
291         std::vector<DominatorTree::UpdateType> Updates;
292         Updates.reserve(RemovedSuccessors.size());
293         for (auto *RemovedSuccessor : RemovedSuccessors)
294           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
295         DTU->applyUpdates(Updates);
296       }
297       return true;
298     }
299 
300     if (SI->getNumCases() == 1) {
301       // Otherwise, we can fold this switch into a conditional branch
302       // instruction if it has only one non-default destination.
303       auto FirstCase = *SI->case_begin();
304       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
305           FirstCase.getCaseValue(), "cond");
306 
307       // Insert the new branch.
308       BranchInst *NewBr = Builder.CreateCondBr(Cond,
309                                                FirstCase.getCaseSuccessor(),
310                                                SI->getDefaultDest());
311       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
312       if (MD && MD->getNumOperands() == 3) {
313         ConstantInt *SICase =
314             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
315         ConstantInt *SIDef =
316             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
317         assert(SICase && SIDef);
318         // The TrueWeight should be the weight for the single case of SI.
319         NewBr->setMetadata(LLVMContext::MD_prof,
320                         MDBuilder(BB->getContext()).
321                         createBranchWeights(SICase->getValue().getZExtValue(),
322                                             SIDef->getValue().getZExtValue()));
323       }
324 
325       // Update make.implicit metadata to the newly-created conditional branch.
326       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
327       if (MakeImplicitMD)
328         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
329 
330       // Delete the old switch.
331       SI->eraseFromParent();
332       return true;
333     }
334     return Changed;
335   }
336 
337   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
338     // indirectbr blockaddress(@F, @BB) -> br label @BB
339     if (auto *BA =
340           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
341       BasicBlock *TheOnlyDest = BA->getBasicBlock();
342       SmallSet<BasicBlock *, 8> RemovedSuccessors;
343 
344       // Insert the new branch.
345       Builder.CreateBr(TheOnlyDest);
346 
347       BasicBlock *SuccToKeep = TheOnlyDest;
348       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
349         BasicBlock *DestBB = IBI->getDestination(i);
350         if (DTU && DestBB != TheOnlyDest)
351           RemovedSuccessors.insert(DestBB);
352         if (IBI->getDestination(i) == SuccToKeep) {
353           SuccToKeep = nullptr;
354         } else {
355           DestBB->removePredecessor(BB);
356         }
357       }
358       Value *Address = IBI->getAddress();
359       IBI->eraseFromParent();
360       if (DeleteDeadConditions)
361         // Delete pointer cast instructions.
362         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
363 
364       // Also zap the blockaddress constant if there are no users remaining,
365       // otherwise the destination is still marked as having its address taken.
366       if (BA->use_empty())
367         BA->destroyConstant();
368 
369       // If we didn't find our destination in the IBI successor list, then we
370       // have undefined behavior.  Replace the unconditional branch with an
371       // 'unreachable' instruction.
372       if (SuccToKeep) {
373         BB->getTerminator()->eraseFromParent();
374         new UnreachableInst(BB->getContext(), BB);
375       }
376 
377       if (DTU) {
378         std::vector<DominatorTree::UpdateType> Updates;
379         Updates.reserve(RemovedSuccessors.size());
380         for (auto *RemovedSuccessor : RemovedSuccessors)
381           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
382         DTU->applyUpdates(Updates);
383       }
384       return true;
385     }
386   }
387 
388   return false;
389 }
390 
391 //===----------------------------------------------------------------------===//
392 //  Local dead code elimination.
393 //
394 
395 /// isInstructionTriviallyDead - Return true if the result produced by the
396 /// instruction is not used, and the instruction has no side effects.
397 ///
398 bool llvm::isInstructionTriviallyDead(Instruction *I,
399                                       const TargetLibraryInfo *TLI) {
400   if (!I->use_empty())
401     return false;
402   return wouldInstructionBeTriviallyDead(I, TLI);
403 }
404 
405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
406                                            const TargetLibraryInfo *TLI) {
407   if (I->isTerminator())
408     return false;
409 
410   // We don't want the landingpad-like instructions removed by anything this
411   // general.
412   if (I->isEHPad())
413     return false;
414 
415   // We don't want debug info removed by anything this general, unless
416   // debug info is empty.
417   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
418     if (DDI->getAddress())
419       return false;
420     return true;
421   }
422   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
423     if (DVI->hasArgList() || DVI->getValue(0))
424       return false;
425     return true;
426   }
427   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
428     if (DLI->getLabel())
429       return false;
430     return true;
431   }
432 
433   if (!I->willReturn())
434     return false;
435 
436   if (!I->mayHaveSideEffects())
437     return true;
438 
439   // Special case intrinsics that "may have side effects" but can be deleted
440   // when dead.
441   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
442     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
443     if (II->getIntrinsicID() == Intrinsic::stacksave ||
444         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
445       return true;
446 
447     if (II->isLifetimeStartOrEnd()) {
448       auto *Arg = II->getArgOperand(1);
449       // Lifetime intrinsics are dead when their right-hand is undef.
450       if (isa<UndefValue>(Arg))
451         return true;
452       // If the right-hand is an alloc, global, or argument and the only uses
453       // are lifetime intrinsics then the intrinsics are dead.
454       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
455         return llvm::all_of(Arg->uses(), [](Use &Use) {
456           if (IntrinsicInst *IntrinsicUse =
457                   dyn_cast<IntrinsicInst>(Use.getUser()))
458             return IntrinsicUse->isLifetimeStartOrEnd();
459           return false;
460         });
461       return false;
462     }
463 
464     // Assumptions are dead if their condition is trivially true.  Guards on
465     // true are operationally no-ops.  In the future we can consider more
466     // sophisticated tradeoffs for guards considering potential for check
467     // widening, but for now we keep things simple.
468     if ((II->getIntrinsicID() == Intrinsic::assume &&
469          isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
470         II->getIntrinsicID() == Intrinsic::experimental_guard) {
471       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
472         return !Cond->isZero();
473 
474       return false;
475     }
476   }
477 
478   if (isAllocLikeFn(I, TLI))
479     return true;
480 
481   if (CallInst *CI = isFreeCall(I, TLI))
482     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
483       return C->isNullValue() || isa<UndefValue>(C);
484 
485   if (auto *Call = dyn_cast<CallBase>(I))
486     if (isMathLibCallNoop(Call, TLI))
487       return true;
488 
489   return false;
490 }
491 
492 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
493 /// trivially dead instruction, delete it.  If that makes any of its operands
494 /// trivially dead, delete them too, recursively.  Return true if any
495 /// instructions were deleted.
496 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
497     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
498     std::function<void(Value *)> AboutToDeleteCallback) {
499   Instruction *I = dyn_cast<Instruction>(V);
500   if (!I || !isInstructionTriviallyDead(I, TLI))
501     return false;
502 
503   SmallVector<WeakTrackingVH, 16> DeadInsts;
504   DeadInsts.push_back(I);
505   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
506                                              AboutToDeleteCallback);
507 
508   return true;
509 }
510 
511 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
512     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
513     MemorySSAUpdater *MSSAU,
514     std::function<void(Value *)> AboutToDeleteCallback) {
515   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
516   for (; S != E; ++S) {
517     auto *I = cast<Instruction>(DeadInsts[S]);
518     if (!isInstructionTriviallyDead(I)) {
519       DeadInsts[S] = nullptr;
520       ++Alive;
521     }
522   }
523   if (Alive == E)
524     return false;
525   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
526                                              AboutToDeleteCallback);
527   return true;
528 }
529 
530 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
531     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
532     MemorySSAUpdater *MSSAU,
533     std::function<void(Value *)> AboutToDeleteCallback) {
534   // Process the dead instruction list until empty.
535   while (!DeadInsts.empty()) {
536     Value *V = DeadInsts.pop_back_val();
537     Instruction *I = cast_or_null<Instruction>(V);
538     if (!I)
539       continue;
540     assert(isInstructionTriviallyDead(I, TLI) &&
541            "Live instruction found in dead worklist!");
542     assert(I->use_empty() && "Instructions with uses are not dead.");
543 
544     // Don't lose the debug info while deleting the instructions.
545     salvageDebugInfo(*I);
546 
547     if (AboutToDeleteCallback)
548       AboutToDeleteCallback(I);
549 
550     // Null out all of the instruction's operands to see if any operand becomes
551     // dead as we go.
552     for (Use &OpU : I->operands()) {
553       Value *OpV = OpU.get();
554       OpU.set(nullptr);
555 
556       if (!OpV->use_empty())
557         continue;
558 
559       // If the operand is an instruction that became dead as we nulled out the
560       // operand, and if it is 'trivially' dead, delete it in a future loop
561       // iteration.
562       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
563         if (isInstructionTriviallyDead(OpI, TLI))
564           DeadInsts.push_back(OpI);
565     }
566     if (MSSAU)
567       MSSAU->removeMemoryAccess(I);
568 
569     I->eraseFromParent();
570   }
571 }
572 
573 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
574   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
575   findDbgUsers(DbgUsers, I);
576   for (auto *DII : DbgUsers) {
577     Value *Undef = UndefValue::get(I->getType());
578     DII->replaceVariableLocationOp(I, Undef);
579   }
580   return !DbgUsers.empty();
581 }
582 
583 /// areAllUsesEqual - Check whether the uses of a value are all the same.
584 /// This is similar to Instruction::hasOneUse() except this will also return
585 /// true when there are no uses or multiple uses that all refer to the same
586 /// value.
587 static bool areAllUsesEqual(Instruction *I) {
588   Value::user_iterator UI = I->user_begin();
589   Value::user_iterator UE = I->user_end();
590   if (UI == UE)
591     return true;
592 
593   User *TheUse = *UI;
594   for (++UI; UI != UE; ++UI) {
595     if (*UI != TheUse)
596       return false;
597   }
598   return true;
599 }
600 
601 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
602 /// dead PHI node, due to being a def-use chain of single-use nodes that
603 /// either forms a cycle or is terminated by a trivially dead instruction,
604 /// delete it.  If that makes any of its operands trivially dead, delete them
605 /// too, recursively.  Return true if a change was made.
606 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
607                                         const TargetLibraryInfo *TLI,
608                                         llvm::MemorySSAUpdater *MSSAU) {
609   SmallPtrSet<Instruction*, 4> Visited;
610   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
611        I = cast<Instruction>(*I->user_begin())) {
612     if (I->use_empty())
613       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
614 
615     // If we find an instruction more than once, we're on a cycle that
616     // won't prove fruitful.
617     if (!Visited.insert(I).second) {
618       // Break the cycle and delete the instruction and its operands.
619       I->replaceAllUsesWith(UndefValue::get(I->getType()));
620       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
621       return true;
622     }
623   }
624   return false;
625 }
626 
627 static bool
628 simplifyAndDCEInstruction(Instruction *I,
629                           SmallSetVector<Instruction *, 16> &WorkList,
630                           const DataLayout &DL,
631                           const TargetLibraryInfo *TLI) {
632   if (isInstructionTriviallyDead(I, TLI)) {
633     salvageDebugInfo(*I);
634 
635     // Null out all of the instruction's operands to see if any operand becomes
636     // dead as we go.
637     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
638       Value *OpV = I->getOperand(i);
639       I->setOperand(i, nullptr);
640 
641       if (!OpV->use_empty() || I == OpV)
642         continue;
643 
644       // If the operand is an instruction that became dead as we nulled out the
645       // operand, and if it is 'trivially' dead, delete it in a future loop
646       // iteration.
647       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
648         if (isInstructionTriviallyDead(OpI, TLI))
649           WorkList.insert(OpI);
650     }
651 
652     I->eraseFromParent();
653 
654     return true;
655   }
656 
657   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
658     // Add the users to the worklist. CAREFUL: an instruction can use itself,
659     // in the case of a phi node.
660     for (User *U : I->users()) {
661       if (U != I) {
662         WorkList.insert(cast<Instruction>(U));
663       }
664     }
665 
666     // Replace the instruction with its simplified value.
667     bool Changed = false;
668     if (!I->use_empty()) {
669       I->replaceAllUsesWith(SimpleV);
670       Changed = true;
671     }
672     if (isInstructionTriviallyDead(I, TLI)) {
673       I->eraseFromParent();
674       Changed = true;
675     }
676     return Changed;
677   }
678   return false;
679 }
680 
681 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
682 /// simplify any instructions in it and recursively delete dead instructions.
683 ///
684 /// This returns true if it changed the code, note that it can delete
685 /// instructions in other blocks as well in this block.
686 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
687                                        const TargetLibraryInfo *TLI) {
688   bool MadeChange = false;
689   const DataLayout &DL = BB->getModule()->getDataLayout();
690 
691 #ifndef NDEBUG
692   // In debug builds, ensure that the terminator of the block is never replaced
693   // or deleted by these simplifications. The idea of simplification is that it
694   // cannot introduce new instructions, and there is no way to replace the
695   // terminator of a block without introducing a new instruction.
696   AssertingVH<Instruction> TerminatorVH(&BB->back());
697 #endif
698 
699   SmallSetVector<Instruction *, 16> WorkList;
700   // Iterate over the original function, only adding insts to the worklist
701   // if they actually need to be revisited. This avoids having to pre-init
702   // the worklist with the entire function's worth of instructions.
703   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
704        BI != E;) {
705     assert(!BI->isTerminator());
706     Instruction *I = &*BI;
707     ++BI;
708 
709     // We're visiting this instruction now, so make sure it's not in the
710     // worklist from an earlier visit.
711     if (!WorkList.count(I))
712       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
713   }
714 
715   while (!WorkList.empty()) {
716     Instruction *I = WorkList.pop_back_val();
717     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
718   }
719   return MadeChange;
720 }
721 
722 //===----------------------------------------------------------------------===//
723 //  Control Flow Graph Restructuring.
724 //
725 
726 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
727                                        DomTreeUpdater *DTU) {
728 
729   // If BB has single-entry PHI nodes, fold them.
730   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
731     Value *NewVal = PN->getIncomingValue(0);
732     // Replace self referencing PHI with undef, it must be dead.
733     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
734     PN->replaceAllUsesWith(NewVal);
735     PN->eraseFromParent();
736   }
737 
738   BasicBlock *PredBB = DestBB->getSinglePredecessor();
739   assert(PredBB && "Block doesn't have a single predecessor!");
740 
741   bool ReplaceEntryBB = PredBB->isEntryBlock();
742 
743   // DTU updates: Collect all the edges that enter
744   // PredBB. These dominator edges will be redirected to DestBB.
745   SmallVector<DominatorTree::UpdateType, 32> Updates;
746 
747   if (DTU) {
748     SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB),
749                                                pred_end(PredBB));
750     Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1);
751     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
752       // This predecessor of PredBB may already have DestBB as a successor.
753       if (PredOfPredBB != PredBB)
754         Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
755     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
756       Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
757     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
758   }
759 
760   // Zap anything that took the address of DestBB.  Not doing this will give the
761   // address an invalid value.
762   if (DestBB->hasAddressTaken()) {
763     BlockAddress *BA = BlockAddress::get(DestBB);
764     Constant *Replacement =
765       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
766     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
767                                                      BA->getType()));
768     BA->destroyConstant();
769   }
770 
771   // Anything that branched to PredBB now branches to DestBB.
772   PredBB->replaceAllUsesWith(DestBB);
773 
774   // Splice all the instructions from PredBB to DestBB.
775   PredBB->getTerminator()->eraseFromParent();
776   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
777   new UnreachableInst(PredBB->getContext(), PredBB);
778 
779   // If the PredBB is the entry block of the function, move DestBB up to
780   // become the entry block after we erase PredBB.
781   if (ReplaceEntryBB)
782     DestBB->moveAfter(PredBB);
783 
784   if (DTU) {
785     assert(PredBB->getInstList().size() == 1 &&
786            isa<UnreachableInst>(PredBB->getTerminator()) &&
787            "The successor list of PredBB isn't empty before "
788            "applying corresponding DTU updates.");
789     DTU->applyUpdatesPermissive(Updates);
790     DTU->deleteBB(PredBB);
791     // Recalculation of DomTree is needed when updating a forward DomTree and
792     // the Entry BB is replaced.
793     if (ReplaceEntryBB && DTU->hasDomTree()) {
794       // The entry block was removed and there is no external interface for
795       // the dominator tree to be notified of this change. In this corner-case
796       // we recalculate the entire tree.
797       DTU->recalculate(*(DestBB->getParent()));
798     }
799   }
800 
801   else {
802     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
803   }
804 }
805 
806 /// Return true if we can choose one of these values to use in place of the
807 /// other. Note that we will always choose the non-undef value to keep.
808 static bool CanMergeValues(Value *First, Value *Second) {
809   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
810 }
811 
812 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
813 /// branch to Succ, into Succ.
814 ///
815 /// Assumption: Succ is the single successor for BB.
816 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
817   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
818 
819   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
820                     << Succ->getName() << "\n");
821   // Shortcut, if there is only a single predecessor it must be BB and merging
822   // is always safe
823   if (Succ->getSinglePredecessor()) return true;
824 
825   // Make a list of the predecessors of BB
826   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
827 
828   // Look at all the phi nodes in Succ, to see if they present a conflict when
829   // merging these blocks
830   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
831     PHINode *PN = cast<PHINode>(I);
832 
833     // If the incoming value from BB is again a PHINode in
834     // BB which has the same incoming value for *PI as PN does, we can
835     // merge the phi nodes and then the blocks can still be merged
836     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
837     if (BBPN && BBPN->getParent() == BB) {
838       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
839         BasicBlock *IBB = PN->getIncomingBlock(PI);
840         if (BBPreds.count(IBB) &&
841             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
842                             PN->getIncomingValue(PI))) {
843           LLVM_DEBUG(dbgs()
844                      << "Can't fold, phi node " << PN->getName() << " in "
845                      << Succ->getName() << " is conflicting with "
846                      << BBPN->getName() << " with regard to common predecessor "
847                      << IBB->getName() << "\n");
848           return false;
849         }
850       }
851     } else {
852       Value* Val = PN->getIncomingValueForBlock(BB);
853       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
854         // See if the incoming value for the common predecessor is equal to the
855         // one for BB, in which case this phi node will not prevent the merging
856         // of the block.
857         BasicBlock *IBB = PN->getIncomingBlock(PI);
858         if (BBPreds.count(IBB) &&
859             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
860           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
861                             << " in " << Succ->getName()
862                             << " is conflicting with regard to common "
863                             << "predecessor " << IBB->getName() << "\n");
864           return false;
865         }
866       }
867     }
868   }
869 
870   return true;
871 }
872 
873 using PredBlockVector = SmallVector<BasicBlock *, 16>;
874 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
875 
876 /// Determines the value to use as the phi node input for a block.
877 ///
878 /// Select between \p OldVal any value that we know flows from \p BB
879 /// to a particular phi on the basis of which one (if either) is not
880 /// undef. Update IncomingValues based on the selected value.
881 ///
882 /// \param OldVal The value we are considering selecting.
883 /// \param BB The block that the value flows in from.
884 /// \param IncomingValues A map from block-to-value for other phi inputs
885 /// that we have examined.
886 ///
887 /// \returns the selected value.
888 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
889                                           IncomingValueMap &IncomingValues) {
890   if (!isa<UndefValue>(OldVal)) {
891     assert((!IncomingValues.count(BB) ||
892             IncomingValues.find(BB)->second == OldVal) &&
893            "Expected OldVal to match incoming value from BB!");
894 
895     IncomingValues.insert(std::make_pair(BB, OldVal));
896     return OldVal;
897   }
898 
899   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
900   if (It != IncomingValues.end()) return It->second;
901 
902   return OldVal;
903 }
904 
905 /// Create a map from block to value for the operands of a
906 /// given phi.
907 ///
908 /// Create a map from block to value for each non-undef value flowing
909 /// into \p PN.
910 ///
911 /// \param PN The phi we are collecting the map for.
912 /// \param IncomingValues [out] The map from block to value for this phi.
913 static void gatherIncomingValuesToPhi(PHINode *PN,
914                                       IncomingValueMap &IncomingValues) {
915   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
916     BasicBlock *BB = PN->getIncomingBlock(i);
917     Value *V = PN->getIncomingValue(i);
918 
919     if (!isa<UndefValue>(V))
920       IncomingValues.insert(std::make_pair(BB, V));
921   }
922 }
923 
924 /// Replace the incoming undef values to a phi with the values
925 /// from a block-to-value map.
926 ///
927 /// \param PN The phi we are replacing the undefs in.
928 /// \param IncomingValues A map from block to value.
929 static void replaceUndefValuesInPhi(PHINode *PN,
930                                     const IncomingValueMap &IncomingValues) {
931   SmallVector<unsigned> TrueUndefOps;
932   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
933     Value *V = PN->getIncomingValue(i);
934 
935     if (!isa<UndefValue>(V)) continue;
936 
937     BasicBlock *BB = PN->getIncomingBlock(i);
938     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
939 
940     // Keep track of undef/poison incoming values. Those must match, so we fix
941     // them up below if needed.
942     // Note: this is conservatively correct, but we could try harder and group
943     // the undef values per incoming basic block.
944     if (It == IncomingValues.end()) {
945       TrueUndefOps.push_back(i);
946       continue;
947     }
948 
949     // There is a defined value for this incoming block, so map this undef
950     // incoming value to the defined value.
951     PN->setIncomingValue(i, It->second);
952   }
953 
954   // If there are both undef and poison values incoming, then convert those
955   // values to undef. It is invalid to have different values for the same
956   // incoming block.
957   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
958     return isa<PoisonValue>(PN->getIncomingValue(i));
959   });
960   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
961     for (unsigned i : TrueUndefOps)
962       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
963   }
964 }
965 
966 /// Replace a value flowing from a block to a phi with
967 /// potentially multiple instances of that value flowing from the
968 /// block's predecessors to the phi.
969 ///
970 /// \param BB The block with the value flowing into the phi.
971 /// \param BBPreds The predecessors of BB.
972 /// \param PN The phi that we are updating.
973 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
974                                                 const PredBlockVector &BBPreds,
975                                                 PHINode *PN) {
976   Value *OldVal = PN->removeIncomingValue(BB, false);
977   assert(OldVal && "No entry in PHI for Pred BB!");
978 
979   IncomingValueMap IncomingValues;
980 
981   // We are merging two blocks - BB, and the block containing PN - and
982   // as a result we need to redirect edges from the predecessors of BB
983   // to go to the block containing PN, and update PN
984   // accordingly. Since we allow merging blocks in the case where the
985   // predecessor and successor blocks both share some predecessors,
986   // and where some of those common predecessors might have undef
987   // values flowing into PN, we want to rewrite those values to be
988   // consistent with the non-undef values.
989 
990   gatherIncomingValuesToPhi(PN, IncomingValues);
991 
992   // If this incoming value is one of the PHI nodes in BB, the new entries
993   // in the PHI node are the entries from the old PHI.
994   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
995     PHINode *OldValPN = cast<PHINode>(OldVal);
996     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
997       // Note that, since we are merging phi nodes and BB and Succ might
998       // have common predecessors, we could end up with a phi node with
999       // identical incoming branches. This will be cleaned up later (and
1000       // will trigger asserts if we try to clean it up now, without also
1001       // simplifying the corresponding conditional branch).
1002       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1003       Value *PredVal = OldValPN->getIncomingValue(i);
1004       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1005                                                     IncomingValues);
1006 
1007       // And add a new incoming value for this predecessor for the
1008       // newly retargeted branch.
1009       PN->addIncoming(Selected, PredBB);
1010     }
1011   } else {
1012     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1013       // Update existing incoming values in PN for this
1014       // predecessor of BB.
1015       BasicBlock *PredBB = BBPreds[i];
1016       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1017                                                     IncomingValues);
1018 
1019       // And add a new incoming value for this predecessor for the
1020       // newly retargeted branch.
1021       PN->addIncoming(Selected, PredBB);
1022     }
1023   }
1024 
1025   replaceUndefValuesInPhi(PN, IncomingValues);
1026 }
1027 
1028 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1029                                                    DomTreeUpdater *DTU) {
1030   assert(BB != &BB->getParent()->getEntryBlock() &&
1031          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1032 
1033   // We can't eliminate infinite loops.
1034   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1035   if (BB == Succ) return false;
1036 
1037   // Check to see if merging these blocks would cause conflicts for any of the
1038   // phi nodes in BB or Succ. If not, we can safely merge.
1039   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1040 
1041   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1042   // has uses which will not disappear when the PHI nodes are merged.  It is
1043   // possible to handle such cases, but difficult: it requires checking whether
1044   // BB dominates Succ, which is non-trivial to calculate in the case where
1045   // Succ has multiple predecessors.  Also, it requires checking whether
1046   // constructing the necessary self-referential PHI node doesn't introduce any
1047   // conflicts; this isn't too difficult, but the previous code for doing this
1048   // was incorrect.
1049   //
1050   // Note that if this check finds a live use, BB dominates Succ, so BB is
1051   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1052   // folding the branch isn't profitable in that case anyway.
1053   if (!Succ->getSinglePredecessor()) {
1054     BasicBlock::iterator BBI = BB->begin();
1055     while (isa<PHINode>(*BBI)) {
1056       for (Use &U : BBI->uses()) {
1057         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1058           if (PN->getIncomingBlock(U) != BB)
1059             return false;
1060         } else {
1061           return false;
1062         }
1063       }
1064       ++BBI;
1065     }
1066   }
1067 
1068   // We cannot fold the block if it's a branch to an already present callbr
1069   // successor because that creates duplicate successors.
1070   for (BasicBlock *PredBB : predecessors(BB)) {
1071     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1072       if (Succ == CBI->getDefaultDest())
1073         return false;
1074       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1075         if (Succ == CBI->getIndirectDest(i))
1076           return false;
1077     }
1078   }
1079 
1080   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1081 
1082   SmallVector<DominatorTree::UpdateType, 32> Updates;
1083   if (DTU) {
1084     // All predecessors of BB will be moved to Succ.
1085     SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB));
1086     SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1087     Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1);
1088     for (auto *PredOfBB : PredsOfBB)
1089       // This predecessor of BB may already have Succ as a successor.
1090       if (!PredsOfSucc.contains(PredOfBB))
1091         Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1092     for (auto *PredOfBB : PredsOfBB)
1093       Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1094     Updates.push_back({DominatorTree::Delete, BB, Succ});
1095   }
1096 
1097   if (isa<PHINode>(Succ->begin())) {
1098     // If there is more than one pred of succ, and there are PHI nodes in
1099     // the successor, then we need to add incoming edges for the PHI nodes
1100     //
1101     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1102 
1103     // Loop over all of the PHI nodes in the successor of BB.
1104     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1105       PHINode *PN = cast<PHINode>(I);
1106 
1107       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1108     }
1109   }
1110 
1111   if (Succ->getSinglePredecessor()) {
1112     // BB is the only predecessor of Succ, so Succ will end up with exactly
1113     // the same predecessors BB had.
1114 
1115     // Copy over any phi, debug or lifetime instruction.
1116     BB->getTerminator()->eraseFromParent();
1117     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1118                                BB->getInstList());
1119   } else {
1120     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1121       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1122       assert(PN->use_empty() && "There shouldn't be any uses here!");
1123       PN->eraseFromParent();
1124     }
1125   }
1126 
1127   // If the unconditional branch we replaced contains llvm.loop metadata, we
1128   // add the metadata to the branch instructions in the predecessors.
1129   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1130   Instruction *TI = BB->getTerminator();
1131   if (TI)
1132     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1133       for (BasicBlock *Pred : predecessors(BB))
1134         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1135 
1136   // For AutoFDO, since BB is going to be removed, we won't be able to sample
1137   // it. To avoid assigning a zero weight for BB, move all its pseudo probes
1138   // into Succ and mark them dangling. This should allow the counts inference a
1139   // chance to get a more reasonable weight for BB.
1140   moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt());
1141 
1142   // Everything that jumped to BB now goes to Succ.
1143   BB->replaceAllUsesWith(Succ);
1144   if (!Succ->hasName()) Succ->takeName(BB);
1145 
1146   // Clear the successor list of BB to match updates applying to DTU later.
1147   if (BB->getTerminator())
1148     BB->getInstList().pop_back();
1149   new UnreachableInst(BB->getContext(), BB);
1150   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1151                            "applying corresponding DTU updates.");
1152 
1153   if (DTU)
1154     DTU->applyUpdates(Updates);
1155 
1156   DeleteDeadBlock(BB, DTU);
1157 
1158   return true;
1159 }
1160 
1161 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1162   // This implementation doesn't currently consider undef operands
1163   // specially. Theoretically, two phis which are identical except for
1164   // one having an undef where the other doesn't could be collapsed.
1165 
1166   bool Changed = false;
1167 
1168   // Examine each PHI.
1169   // Note that increment of I must *NOT* be in the iteration_expression, since
1170   // we don't want to immediately advance when we restart from the beginning.
1171   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1172     ++I;
1173     // Is there an identical PHI node in this basic block?
1174     // Note that we only look in the upper square's triangle,
1175     // we already checked that the lower triangle PHI's aren't identical.
1176     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1177       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1178         continue;
1179       // A duplicate. Replace this PHI with the base PHI.
1180       ++NumPHICSEs;
1181       DuplicatePN->replaceAllUsesWith(PN);
1182       DuplicatePN->eraseFromParent();
1183       Changed = true;
1184 
1185       // The RAUW can change PHIs that we already visited.
1186       I = BB->begin();
1187       break; // Start over from the beginning.
1188     }
1189   }
1190   return Changed;
1191 }
1192 
1193 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1194   // This implementation doesn't currently consider undef operands
1195   // specially. Theoretically, two phis which are identical except for
1196   // one having an undef where the other doesn't could be collapsed.
1197 
1198   struct PHIDenseMapInfo {
1199     static PHINode *getEmptyKey() {
1200       return DenseMapInfo<PHINode *>::getEmptyKey();
1201     }
1202 
1203     static PHINode *getTombstoneKey() {
1204       return DenseMapInfo<PHINode *>::getTombstoneKey();
1205     }
1206 
1207     static bool isSentinel(PHINode *PN) {
1208       return PN == getEmptyKey() || PN == getTombstoneKey();
1209     }
1210 
1211     // WARNING: this logic must be kept in sync with
1212     //          Instruction::isIdenticalToWhenDefined()!
1213     static unsigned getHashValueImpl(PHINode *PN) {
1214       // Compute a hash value on the operands. Instcombine will likely have
1215       // sorted them, which helps expose duplicates, but we have to check all
1216       // the operands to be safe in case instcombine hasn't run.
1217       return static_cast<unsigned>(hash_combine(
1218           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1219           hash_combine_range(PN->block_begin(), PN->block_end())));
1220     }
1221 
1222     static unsigned getHashValue(PHINode *PN) {
1223 #ifndef NDEBUG
1224       // If -phicse-debug-hash was specified, return a constant -- this
1225       // will force all hashing to collide, so we'll exhaustively search
1226       // the table for a match, and the assertion in isEqual will fire if
1227       // there's a bug causing equal keys to hash differently.
1228       if (PHICSEDebugHash)
1229         return 0;
1230 #endif
1231       return getHashValueImpl(PN);
1232     }
1233 
1234     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1235       if (isSentinel(LHS) || isSentinel(RHS))
1236         return LHS == RHS;
1237       return LHS->isIdenticalTo(RHS);
1238     }
1239 
1240     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1241       // These comparisons are nontrivial, so assert that equality implies
1242       // hash equality (DenseMap demands this as an invariant).
1243       bool Result = isEqualImpl(LHS, RHS);
1244       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1245              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1246       return Result;
1247     }
1248   };
1249 
1250   // Set of unique PHINodes.
1251   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1252   PHISet.reserve(4 * PHICSENumPHISmallSize);
1253 
1254   // Examine each PHI.
1255   bool Changed = false;
1256   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1257     auto Inserted = PHISet.insert(PN);
1258     if (!Inserted.second) {
1259       // A duplicate. Replace this PHI with its duplicate.
1260       ++NumPHICSEs;
1261       PN->replaceAllUsesWith(*Inserted.first);
1262       PN->eraseFromParent();
1263       Changed = true;
1264 
1265       // The RAUW can change PHIs that we already visited. Start over from the
1266       // beginning.
1267       PHISet.clear();
1268       I = BB->begin();
1269     }
1270   }
1271 
1272   return Changed;
1273 }
1274 
1275 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1276   if (
1277 #ifndef NDEBUG
1278       !PHICSEDebugHash &&
1279 #endif
1280       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1281     return EliminateDuplicatePHINodesNaiveImpl(BB);
1282   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1283 }
1284 
1285 /// If the specified pointer points to an object that we control, try to modify
1286 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1287 /// the value after the operation, which may be lower than PrefAlign.
1288 ///
1289 /// Increating value alignment isn't often possible though. If alignment is
1290 /// important, a more reliable approach is to simply align all global variables
1291 /// and allocation instructions to their preferred alignment from the beginning.
1292 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1293                                  const DataLayout &DL) {
1294   V = V->stripPointerCasts();
1295 
1296   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1297     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1298     // than the current alignment, as the known bits calculation should have
1299     // already taken it into account. However, this is not always the case,
1300     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1301     // doesn't.
1302     Align CurrentAlign = AI->getAlign();
1303     if (PrefAlign <= CurrentAlign)
1304       return CurrentAlign;
1305 
1306     // If the preferred alignment is greater than the natural stack alignment
1307     // then don't round up. This avoids dynamic stack realignment.
1308     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1309       return CurrentAlign;
1310     AI->setAlignment(PrefAlign);
1311     return PrefAlign;
1312   }
1313 
1314   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1315     // TODO: as above, this shouldn't be necessary.
1316     Align CurrentAlign = GO->getPointerAlignment(DL);
1317     if (PrefAlign <= CurrentAlign)
1318       return CurrentAlign;
1319 
1320     // If there is a large requested alignment and we can, bump up the alignment
1321     // of the global.  If the memory we set aside for the global may not be the
1322     // memory used by the final program then it is impossible for us to reliably
1323     // enforce the preferred alignment.
1324     if (!GO->canIncreaseAlignment())
1325       return CurrentAlign;
1326 
1327     GO->setAlignment(PrefAlign);
1328     return PrefAlign;
1329   }
1330 
1331   return Align(1);
1332 }
1333 
1334 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1335                                        const DataLayout &DL,
1336                                        const Instruction *CxtI,
1337                                        AssumptionCache *AC,
1338                                        const DominatorTree *DT) {
1339   assert(V->getType()->isPointerTy() &&
1340          "getOrEnforceKnownAlignment expects a pointer!");
1341 
1342   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1343   unsigned TrailZ = Known.countMinTrailingZeros();
1344 
1345   // Avoid trouble with ridiculously large TrailZ values, such as
1346   // those computed from a null pointer.
1347   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1348   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1349 
1350   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1351 
1352   if (PrefAlign && *PrefAlign > Alignment)
1353     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1354 
1355   // We don't need to make any adjustment.
1356   return Alignment;
1357 }
1358 
1359 ///===---------------------------------------------------------------------===//
1360 ///  Dbg Intrinsic utilities
1361 ///
1362 
1363 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1364 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1365                              DIExpression *DIExpr,
1366                              PHINode *APN) {
1367   // Since we can't guarantee that the original dbg.declare instrinsic
1368   // is removed by LowerDbgDeclare(), we need to make sure that we are
1369   // not inserting the same dbg.value intrinsic over and over.
1370   SmallVector<DbgValueInst *, 1> DbgValues;
1371   findDbgValues(DbgValues, APN);
1372   for (auto *DVI : DbgValues) {
1373     assert(is_contained(DVI->getValues(), APN));
1374     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1375       return true;
1376   }
1377   return false;
1378 }
1379 
1380 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1381 /// (or fragment of the variable) described by \p DII.
1382 ///
1383 /// This is primarily intended as a helper for the different
1384 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1385 /// converted describes an alloca'd variable, so we need to use the
1386 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1387 /// identified as covering an n-bit fragment, if the store size of i1 is at
1388 /// least n bits.
1389 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1390   const DataLayout &DL = DII->getModule()->getDataLayout();
1391   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1392   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1393     assert(!ValueSize.isScalable() &&
1394            "Fragments don't work on scalable types.");
1395     return ValueSize.getFixedSize() >= *FragmentSize;
1396   }
1397   // We can't always calculate the size of the DI variable (e.g. if it is a
1398   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1399   // intead.
1400   if (DII->isAddressOfVariable()) {
1401     // DII should have exactly 1 location when it is an address.
1402     assert(DII->getNumVariableLocationOps() == 1 &&
1403            "address of variable must have exactly 1 location operand.");
1404     if (auto *AI =
1405             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1406       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1407         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1408                "Both sizes should agree on the scalable flag.");
1409         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1410       }
1411     }
1412   }
1413   // Could not determine size of variable. Conservatively return false.
1414   return false;
1415 }
1416 
1417 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1418 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1419 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1420 /// case this DebugLoc leaks into any adjacent instructions.
1421 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1422   // Original dbg.declare must have a location.
1423   const DebugLoc &DeclareLoc = DII->getDebugLoc();
1424   MDNode *Scope = DeclareLoc.getScope();
1425   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1426   // Produce an unknown location with the correct scope / inlinedAt fields.
1427   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1428 }
1429 
1430 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1431 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1432 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1433                                            StoreInst *SI, DIBuilder &Builder) {
1434   assert(DII->isAddressOfVariable());
1435   auto *DIVar = DII->getVariable();
1436   assert(DIVar && "Missing variable");
1437   auto *DIExpr = DII->getExpression();
1438   Value *DV = SI->getValueOperand();
1439 
1440   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1441 
1442   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1443     // FIXME: If storing to a part of the variable described by the dbg.declare,
1444     // then we want to insert a dbg.value for the corresponding fragment.
1445     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1446                       << *DII << '\n');
1447     // For now, when there is a store to parts of the variable (but we do not
1448     // know which part) we insert an dbg.value instrinsic to indicate that we
1449     // know nothing about the variable's content.
1450     DV = UndefValue::get(DV->getType());
1451     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1452     return;
1453   }
1454 
1455   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1456 }
1457 
1458 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1459 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1460 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1461                                            LoadInst *LI, DIBuilder &Builder) {
1462   auto *DIVar = DII->getVariable();
1463   auto *DIExpr = DII->getExpression();
1464   assert(DIVar && "Missing variable");
1465 
1466   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1467     // FIXME: If only referring to a part of the variable described by the
1468     // dbg.declare, then we want to insert a dbg.value for the corresponding
1469     // fragment.
1470     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1471                       << *DII << '\n');
1472     return;
1473   }
1474 
1475   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1476 
1477   // We are now tracking the loaded value instead of the address. In the
1478   // future if multi-location support is added to the IR, it might be
1479   // preferable to keep tracking both the loaded value and the original
1480   // address in case the alloca can not be elided.
1481   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1482       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1483   DbgValue->insertAfter(LI);
1484 }
1485 
1486 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1487 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1488 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1489                                            PHINode *APN, DIBuilder &Builder) {
1490   auto *DIVar = DII->getVariable();
1491   auto *DIExpr = DII->getExpression();
1492   assert(DIVar && "Missing variable");
1493 
1494   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1495     return;
1496 
1497   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1498     // FIXME: If only referring to a part of the variable described by the
1499     // dbg.declare, then we want to insert a dbg.value for the corresponding
1500     // fragment.
1501     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1502                       << *DII << '\n');
1503     return;
1504   }
1505 
1506   BasicBlock *BB = APN->getParent();
1507   auto InsertionPt = BB->getFirstInsertionPt();
1508 
1509   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1510 
1511   // The block may be a catchswitch block, which does not have a valid
1512   // insertion point.
1513   // FIXME: Insert dbg.value markers in the successors when appropriate.
1514   if (InsertionPt != BB->end())
1515     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1516 }
1517 
1518 /// Determine whether this alloca is either a VLA or an array.
1519 static bool isArray(AllocaInst *AI) {
1520   return AI->isArrayAllocation() ||
1521          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1522 }
1523 
1524 /// Determine whether this alloca is a structure.
1525 static bool isStructure(AllocaInst *AI) {
1526   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1527 }
1528 
1529 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1530 /// of llvm.dbg.value intrinsics.
1531 bool llvm::LowerDbgDeclare(Function &F) {
1532   bool Changed = false;
1533   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1534   SmallVector<DbgDeclareInst *, 4> Dbgs;
1535   for (auto &FI : F)
1536     for (Instruction &BI : FI)
1537       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1538         Dbgs.push_back(DDI);
1539 
1540   if (Dbgs.empty())
1541     return Changed;
1542 
1543   for (auto &I : Dbgs) {
1544     DbgDeclareInst *DDI = I;
1545     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1546     // If this is an alloca for a scalar variable, insert a dbg.value
1547     // at each load and store to the alloca and erase the dbg.declare.
1548     // The dbg.values allow tracking a variable even if it is not
1549     // stored on the stack, while the dbg.declare can only describe
1550     // the stack slot (and at a lexical-scope granularity). Later
1551     // passes will attempt to elide the stack slot.
1552     if (!AI || isArray(AI) || isStructure(AI))
1553       continue;
1554 
1555     // A volatile load/store means that the alloca can't be elided anyway.
1556     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1557           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1558             return LI->isVolatile();
1559           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1560             return SI->isVolatile();
1561           return false;
1562         }))
1563       continue;
1564 
1565     SmallVector<const Value *, 8> WorkList;
1566     WorkList.push_back(AI);
1567     while (!WorkList.empty()) {
1568       const Value *V = WorkList.pop_back_val();
1569       for (auto &AIUse : V->uses()) {
1570         User *U = AIUse.getUser();
1571         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1572           if (AIUse.getOperandNo() == 1)
1573             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1574         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1575           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1576         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1577           // This is a call by-value or some other instruction that takes a
1578           // pointer to the variable. Insert a *value* intrinsic that describes
1579           // the variable by dereferencing the alloca.
1580           if (!CI->isLifetimeStartOrEnd()) {
1581             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1582             auto *DerefExpr =
1583                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1584             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1585                                         NewLoc, CI);
1586           }
1587         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1588           if (BI->getType()->isPointerTy())
1589             WorkList.push_back(BI);
1590         }
1591       }
1592     }
1593     DDI->eraseFromParent();
1594     Changed = true;
1595   }
1596 
1597   if (Changed)
1598   for (BasicBlock &BB : F)
1599     RemoveRedundantDbgInstrs(&BB);
1600 
1601   return Changed;
1602 }
1603 
1604 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1605 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1606                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1607   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1608   if (InsertedPHIs.size() == 0)
1609     return;
1610 
1611   // Map existing PHI nodes to their dbg.values.
1612   ValueToValueMapTy DbgValueMap;
1613   for (auto &I : *BB) {
1614     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1615       for (Value *V : DbgII->location_ops())
1616         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1617           DbgValueMap.insert({Loc, DbgII});
1618     }
1619   }
1620   if (DbgValueMap.size() == 0)
1621     return;
1622 
1623   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1624   // so that if a dbg.value is being rewritten to use more than one of the
1625   // inserted PHIs in the same destination BB, we can update the same dbg.value
1626   // with all the new PHIs instead of creating one copy for each.
1627   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1628             DbgVariableIntrinsic *>
1629       NewDbgValueMap;
1630   // Then iterate through the new PHIs and look to see if they use one of the
1631   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1632   // propagate the info through the new PHI. If we use more than one new PHI in
1633   // a single destination BB with the same old dbg.value, merge the updates so
1634   // that we get a single new dbg.value with all the new PHIs.
1635   for (auto PHI : InsertedPHIs) {
1636     BasicBlock *Parent = PHI->getParent();
1637     // Avoid inserting an intrinsic into an EH block.
1638     if (Parent->getFirstNonPHI()->isEHPad())
1639       continue;
1640     for (auto VI : PHI->operand_values()) {
1641       auto V = DbgValueMap.find(VI);
1642       if (V != DbgValueMap.end()) {
1643         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1644         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1645         if (NewDI == NewDbgValueMap.end()) {
1646           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1647           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1648         }
1649         DbgVariableIntrinsic *NewDbgII = NewDI->second;
1650         // If PHI contains VI as an operand more than once, we may
1651         // replaced it in NewDbgII; confirm that it is present.
1652         if (is_contained(NewDbgII->location_ops(), VI))
1653           NewDbgII->replaceVariableLocationOp(VI, PHI);
1654       }
1655     }
1656   }
1657   // Insert thew new dbg.values into their destination blocks.
1658   for (auto DI : NewDbgValueMap) {
1659     BasicBlock *Parent = DI.first.first;
1660     auto *NewDbgII = DI.second;
1661     auto InsertionPt = Parent->getFirstInsertionPt();
1662     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1663     NewDbgII->insertBefore(&*InsertionPt);
1664   }
1665 }
1666 
1667 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1668                              DIBuilder &Builder, uint8_t DIExprFlags,
1669                              int Offset) {
1670   auto DbgAddrs = FindDbgAddrUses(Address);
1671   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1672     const DebugLoc &Loc = DII->getDebugLoc();
1673     auto *DIVar = DII->getVariable();
1674     auto *DIExpr = DII->getExpression();
1675     assert(DIVar && "Missing variable");
1676     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1677     // Insert llvm.dbg.declare immediately before DII, and remove old
1678     // llvm.dbg.declare.
1679     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1680     DII->eraseFromParent();
1681   }
1682   return !DbgAddrs.empty();
1683 }
1684 
1685 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1686                                         DIBuilder &Builder, int Offset) {
1687   const DebugLoc &Loc = DVI->getDebugLoc();
1688   auto *DIVar = DVI->getVariable();
1689   auto *DIExpr = DVI->getExpression();
1690   assert(DIVar && "Missing variable");
1691 
1692   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1693   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1694   // it and give up.
1695   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1696       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1697     return;
1698 
1699   // Insert the offset before the first deref.
1700   // We could just change the offset argument of dbg.value, but it's unsigned...
1701   if (Offset)
1702     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1703 
1704   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1705   DVI->eraseFromParent();
1706 }
1707 
1708 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1709                                     DIBuilder &Builder, int Offset) {
1710   if (auto *L = LocalAsMetadata::getIfExists(AI))
1711     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1712       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1713         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1714           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1715 }
1716 
1717 /// Where possible to salvage debug information for \p I do so
1718 /// and return True. If not possible mark undef and return False.
1719 void llvm::salvageDebugInfo(Instruction &I) {
1720   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1721   findDbgUsers(DbgUsers, &I);
1722   salvageDebugInfoForDbgValues(I, DbgUsers);
1723 }
1724 
1725 void llvm::salvageDebugInfoForDbgValues(
1726     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1727   bool Salvaged = false;
1728 
1729   for (auto *DII : DbgUsers) {
1730     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1731     // are implicitly pointing out the value as a DWARF memory location
1732     // description.
1733     bool StackValue = isa<DbgValueInst>(DII);
1734     auto DIILocation = DII->location_ops();
1735     assert(
1736         is_contained(DIILocation, &I) &&
1737         "DbgVariableIntrinsic must use salvaged instruction as its location");
1738     unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I));
1739 
1740     DIExpression *DIExpr =
1741         salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo);
1742 
1743     // salvageDebugInfoImpl should fail on examining the first element of
1744     // DbgUsers, or none of them.
1745     if (!DIExpr)
1746       break;
1747 
1748     DII->replaceVariableLocationOp(&I, I.getOperand(0));
1749     DII->setExpression(DIExpr);
1750     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1751     Salvaged = true;
1752   }
1753 
1754   if (Salvaged)
1755     return;
1756 
1757   for (auto *DII : DbgUsers) {
1758     Value *Undef = UndefValue::get(I.getType());
1759     DII->replaceVariableLocationOp(&I, Undef);
1760   }
1761 }
1762 
1763 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1764                          SmallVectorImpl<uint64_t> &Opcodes) {
1765   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1766   // Rewrite a constant GEP into a DIExpression.
1767   APInt ConstantOffset(BitWidth, 0);
1768   if (!GEP->accumulateConstantOffset(DL, ConstantOffset))
1769     return false;
1770   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1771   return true;
1772 }
1773 
1774 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1775   switch (Opcode) {
1776   case Instruction::Add:
1777     return dwarf::DW_OP_plus;
1778   case Instruction::Sub:
1779     return dwarf::DW_OP_minus;
1780   case Instruction::Mul:
1781     return dwarf::DW_OP_mul;
1782   case Instruction::SDiv:
1783     return dwarf::DW_OP_div;
1784   case Instruction::SRem:
1785     return dwarf::DW_OP_mod;
1786   case Instruction::Or:
1787     return dwarf::DW_OP_or;
1788   case Instruction::And:
1789     return dwarf::DW_OP_and;
1790   case Instruction::Xor:
1791     return dwarf::DW_OP_xor;
1792   case Instruction::Shl:
1793     return dwarf::DW_OP_shl;
1794   case Instruction::LShr:
1795     return dwarf::DW_OP_shr;
1796   case Instruction::AShr:
1797     return dwarf::DW_OP_shra;
1798   default:
1799     // TODO: Salvage from each kind of binop we know about.
1800     return 0;
1801   }
1802 }
1803 
1804 bool getSalvageOpsForBinOp(BinaryOperator *BI,
1805                            SmallVectorImpl<uint64_t> &Opcodes) {
1806   // Rewrite binary operations with constant integer operands.
1807   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1808   if (!ConstInt || ConstInt->getBitWidth() > 64)
1809     return false;
1810   uint64_t Val = ConstInt->getSExtValue();
1811   Instruction::BinaryOps BinOpcode = BI->getOpcode();
1812   // Add or Sub Instructions with a constant operand can potentially be
1813   // simplified.
1814   if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1815     uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1816     DIExpression::appendOffset(Opcodes, Offset);
1817     return true;
1818   }
1819   // Add constant int operand to expression stack.
1820   Opcodes.append({dwarf::DW_OP_constu, Val});
1821 
1822   // Add salvaged binary operator to expression stack, if it has a valid
1823   // representation in a DIExpression.
1824   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1825   if (!DwarfBinOp)
1826     return false;
1827   Opcodes.push_back(DwarfBinOp);
1828 
1829   return true;
1830 }
1831 
1832 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1833                                          DIExpression *SrcDIExpr,
1834                                          bool WithStackValue, unsigned LocNo) {
1835   auto &M = *I.getModule();
1836   auto &DL = M.getDataLayout();
1837 
1838   // Apply a vector of opcodes to the source DIExpression.
1839   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1840     DIExpression *DIExpr = SrcDIExpr;
1841     if (!Ops.empty()) {
1842       DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue);
1843     }
1844     return DIExpr;
1845   };
1846 
1847   // initializer-list helper for applying operators to the source DIExpression.
1848   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1849     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1850     return doSalvage(Ops);
1851   };
1852 
1853   if (auto *CI = dyn_cast<CastInst>(&I)) {
1854     // No-op casts are irrelevant for debug info.
1855     if (CI->isNoopCast(DL))
1856       return SrcDIExpr;
1857 
1858     Type *Type = CI->getType();
1859     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1860     if (Type->isVectorTy() ||
1861         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1862       return nullptr;
1863 
1864     Value *FromValue = CI->getOperand(0);
1865     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1866     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1867 
1868     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1869                                             isa<SExtInst>(&I)));
1870   }
1871 
1872   SmallVector<uint64_t, 8> Ops;
1873   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1874     if (getSalvageOpsForGEP(GEP, DL, Ops))
1875       return doSalvage(Ops);
1876   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1877     if (getSalvageOpsForBinOp(BI, Ops))
1878       return doSalvage(Ops);
1879   }
1880     // *Not* to do: we should not attempt to salvage load instructions,
1881     // because the validity and lifetime of a dbg.value containing
1882     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1883   return nullptr;
1884 }
1885 
1886 /// A replacement for a dbg.value expression.
1887 using DbgValReplacement = Optional<DIExpression *>;
1888 
1889 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1890 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1891 /// changes are made.
1892 static bool rewriteDebugUsers(
1893     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1894     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1895   // Find debug users of From.
1896   SmallVector<DbgVariableIntrinsic *, 1> Users;
1897   findDbgUsers(Users, &From);
1898   if (Users.empty())
1899     return false;
1900 
1901   // Prevent use-before-def of To.
1902   bool Changed = false;
1903   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1904   if (isa<Instruction>(&To)) {
1905     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1906 
1907     for (auto *DII : Users) {
1908       // It's common to see a debug user between From and DomPoint. Move it
1909       // after DomPoint to preserve the variable update without any reordering.
1910       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1911         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1912         DII->moveAfter(&DomPoint);
1913         Changed = true;
1914 
1915       // Users which otherwise aren't dominated by the replacement value must
1916       // be salvaged or deleted.
1917       } else if (!DT.dominates(&DomPoint, DII)) {
1918         UndefOrSalvage.insert(DII);
1919       }
1920     }
1921   }
1922 
1923   // Update debug users without use-before-def risk.
1924   for (auto *DII : Users) {
1925     if (UndefOrSalvage.count(DII))
1926       continue;
1927 
1928     DbgValReplacement DVR = RewriteExpr(*DII);
1929     if (!DVR)
1930       continue;
1931 
1932     DII->replaceVariableLocationOp(&From, &To);
1933     DII->setExpression(*DVR);
1934     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1935     Changed = true;
1936   }
1937 
1938   if (!UndefOrSalvage.empty()) {
1939     // Try to salvage the remaining debug users.
1940     salvageDebugInfo(From);
1941     Changed = true;
1942   }
1943 
1944   return Changed;
1945 }
1946 
1947 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1948 /// losslessly preserve the bits and semantics of the value. This predicate is
1949 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1950 ///
1951 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1952 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1953 /// and also does not allow lossless pointer <-> integer conversions.
1954 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1955                                          Type *ToTy) {
1956   // Trivially compatible types.
1957   if (FromTy == ToTy)
1958     return true;
1959 
1960   // Handle compatible pointer <-> integer conversions.
1961   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1962     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1963     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1964                               !DL.isNonIntegralPointerType(ToTy);
1965     return SameSize && LosslessConversion;
1966   }
1967 
1968   // TODO: This is not exhaustive.
1969   return false;
1970 }
1971 
1972 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1973                                  Instruction &DomPoint, DominatorTree &DT) {
1974   // Exit early if From has no debug users.
1975   if (!From.isUsedByMetadata())
1976     return false;
1977 
1978   assert(&From != &To && "Can't replace something with itself");
1979 
1980   Type *FromTy = From.getType();
1981   Type *ToTy = To.getType();
1982 
1983   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1984     return DII.getExpression();
1985   };
1986 
1987   // Handle no-op conversions.
1988   Module &M = *From.getModule();
1989   const DataLayout &DL = M.getDataLayout();
1990   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1991     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1992 
1993   // Handle integer-to-integer widening and narrowing.
1994   // FIXME: Use DW_OP_convert when it's available everywhere.
1995   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1996     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1997     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1998     assert(FromBits != ToBits && "Unexpected no-op conversion");
1999 
2000     // When the width of the result grows, assume that a debugger will only
2001     // access the low `FromBits` bits when inspecting the source variable.
2002     if (FromBits < ToBits)
2003       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2004 
2005     // The width of the result has shrunk. Use sign/zero extension to describe
2006     // the source variable's high bits.
2007     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2008       DILocalVariable *Var = DII.getVariable();
2009 
2010       // Without knowing signedness, sign/zero extension isn't possible.
2011       auto Signedness = Var->getSignedness();
2012       if (!Signedness)
2013         return None;
2014 
2015       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2016       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2017                                      Signed);
2018     };
2019     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2020   }
2021 
2022   // TODO: Floating-point conversions, vectors.
2023   return false;
2024 }
2025 
2026 std::pair<unsigned, unsigned>
2027 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2028   unsigned NumDeadInst = 0;
2029   unsigned NumDeadDbgInst = 0;
2030   // Delete the instructions backwards, as it has a reduced likelihood of
2031   // having to update as many def-use and use-def chains.
2032   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2033   while (EndInst != &BB->front()) {
2034     // Delete the next to last instruction.
2035     Instruction *Inst = &*--EndInst->getIterator();
2036     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2037       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2038     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2039       EndInst = Inst;
2040       continue;
2041     }
2042     if (isa<DbgInfoIntrinsic>(Inst))
2043       ++NumDeadDbgInst;
2044     else
2045       ++NumDeadInst;
2046     Inst->eraseFromParent();
2047   }
2048   return {NumDeadInst, NumDeadDbgInst};
2049 }
2050 
2051 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2052                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2053                                    MemorySSAUpdater *MSSAU) {
2054   BasicBlock *BB = I->getParent();
2055 
2056   if (MSSAU)
2057     MSSAU->changeToUnreachable(I);
2058 
2059   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2060 
2061   // Loop over all of the successors, removing BB's entry from any PHI
2062   // nodes.
2063   for (BasicBlock *Successor : successors(BB)) {
2064     Successor->removePredecessor(BB, PreserveLCSSA);
2065     if (DTU)
2066       UniqueSuccessors.insert(Successor);
2067   }
2068   // Insert a call to llvm.trap right before this.  This turns the undefined
2069   // behavior into a hard fail instead of falling through into random code.
2070   if (UseLLVMTrap) {
2071     Function *TrapFn =
2072       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2073     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2074     CallTrap->setDebugLoc(I->getDebugLoc());
2075   }
2076   auto *UI = new UnreachableInst(I->getContext(), I);
2077   UI->setDebugLoc(I->getDebugLoc());
2078 
2079   // All instructions after this are dead.
2080   unsigned NumInstrsRemoved = 0;
2081   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2082   while (BBI != BBE) {
2083     if (!BBI->use_empty())
2084       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2085     BB->getInstList().erase(BBI++);
2086     ++NumInstrsRemoved;
2087   }
2088   if (DTU) {
2089     SmallVector<DominatorTree::UpdateType, 8> Updates;
2090     Updates.reserve(UniqueSuccessors.size());
2091     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2092       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2093     DTU->applyUpdates(Updates);
2094   }
2095   return NumInstrsRemoved;
2096 }
2097 
2098 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2099   SmallVector<Value *, 8> Args(II->args());
2100   SmallVector<OperandBundleDef, 1> OpBundles;
2101   II->getOperandBundlesAsDefs(OpBundles);
2102   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2103                                        II->getCalledOperand(), Args, OpBundles);
2104   NewCall->setCallingConv(II->getCallingConv());
2105   NewCall->setAttributes(II->getAttributes());
2106   NewCall->setDebugLoc(II->getDebugLoc());
2107   NewCall->copyMetadata(*II);
2108 
2109   // If the invoke had profile metadata, try converting them for CallInst.
2110   uint64_t TotalWeight;
2111   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2112     // Set the total weight if it fits into i32, otherwise reset.
2113     MDBuilder MDB(NewCall->getContext());
2114     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2115                           ? nullptr
2116                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2117     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2118   }
2119 
2120   return NewCall;
2121 }
2122 
2123 /// changeToCall - Convert the specified invoke into a normal call.
2124 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2125   CallInst *NewCall = createCallMatchingInvoke(II);
2126   NewCall->takeName(II);
2127   NewCall->insertBefore(II);
2128   II->replaceAllUsesWith(NewCall);
2129 
2130   // Follow the call by a branch to the normal destination.
2131   BasicBlock *NormalDestBB = II->getNormalDest();
2132   BranchInst::Create(NormalDestBB, II);
2133 
2134   // Update PHI nodes in the unwind destination
2135   BasicBlock *BB = II->getParent();
2136   BasicBlock *UnwindDestBB = II->getUnwindDest();
2137   UnwindDestBB->removePredecessor(BB);
2138   II->eraseFromParent();
2139   if (DTU)
2140     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2141 }
2142 
2143 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2144                                                    BasicBlock *UnwindEdge,
2145                                                    DomTreeUpdater *DTU) {
2146   BasicBlock *BB = CI->getParent();
2147 
2148   // Convert this function call into an invoke instruction.  First, split the
2149   // basic block.
2150   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2151                                  CI->getName() + ".noexc");
2152 
2153   // Delete the unconditional branch inserted by SplitBlock
2154   BB->getInstList().pop_back();
2155 
2156   // Create the new invoke instruction.
2157   SmallVector<Value *, 8> InvokeArgs(CI->args());
2158   SmallVector<OperandBundleDef, 1> OpBundles;
2159 
2160   CI->getOperandBundlesAsDefs(OpBundles);
2161 
2162   // Note: we're round tripping operand bundles through memory here, and that
2163   // can potentially be avoided with a cleverer API design that we do not have
2164   // as of this time.
2165 
2166   InvokeInst *II =
2167       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2168                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2169   II->setDebugLoc(CI->getDebugLoc());
2170   II->setCallingConv(CI->getCallingConv());
2171   II->setAttributes(CI->getAttributes());
2172 
2173   if (DTU)
2174     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2175 
2176   // Make sure that anything using the call now uses the invoke!  This also
2177   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2178   CI->replaceAllUsesWith(II);
2179 
2180   // Delete the original call
2181   Split->getInstList().pop_front();
2182   return Split;
2183 }
2184 
2185 static bool markAliveBlocks(Function &F,
2186                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2187                             DomTreeUpdater *DTU = nullptr) {
2188   SmallVector<BasicBlock*, 128> Worklist;
2189   BasicBlock *BB = &F.front();
2190   Worklist.push_back(BB);
2191   Reachable.insert(BB);
2192   bool Changed = false;
2193   do {
2194     BB = Worklist.pop_back_val();
2195 
2196     // Do a quick scan of the basic block, turning any obviously unreachable
2197     // instructions into LLVM unreachable insts.  The instruction combining pass
2198     // canonicalizes unreachable insts into stores to null or undef.
2199     for (Instruction &I : *BB) {
2200       if (auto *CI = dyn_cast<CallInst>(&I)) {
2201         Value *Callee = CI->getCalledOperand();
2202         // Handle intrinsic calls.
2203         if (Function *F = dyn_cast<Function>(Callee)) {
2204           auto IntrinsicID = F->getIntrinsicID();
2205           // Assumptions that are known to be false are equivalent to
2206           // unreachable. Also, if the condition is undefined, then we make the
2207           // choice most beneficial to the optimizer, and choose that to also be
2208           // unreachable.
2209           if (IntrinsicID == Intrinsic::assume) {
2210             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2211               // Don't insert a call to llvm.trap right before the unreachable.
2212               changeToUnreachable(CI, false, false, DTU);
2213               Changed = true;
2214               break;
2215             }
2216           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2217             // A call to the guard intrinsic bails out of the current
2218             // compilation unit if the predicate passed to it is false. If the
2219             // predicate is a constant false, then we know the guard will bail
2220             // out of the current compile unconditionally, so all code following
2221             // it is dead.
2222             //
2223             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2224             // guards to treat `undef` as `false` since a guard on `undef` can
2225             // still be useful for widening.
2226             if (match(CI->getArgOperand(0), m_Zero()))
2227               if (!isa<UnreachableInst>(CI->getNextNode())) {
2228                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2229                                     false, DTU);
2230                 Changed = true;
2231                 break;
2232               }
2233           }
2234         } else if ((isa<ConstantPointerNull>(Callee) &&
2235                     !NullPointerIsDefined(CI->getFunction())) ||
2236                    isa<UndefValue>(Callee)) {
2237           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2238           Changed = true;
2239           break;
2240         }
2241         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2242           // If we found a call to a no-return function, insert an unreachable
2243           // instruction after it.  Make sure there isn't *already* one there
2244           // though.
2245           if (!isa<UnreachableInst>(CI->getNextNode())) {
2246             // Don't insert a call to llvm.trap right before the unreachable.
2247             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2248             Changed = true;
2249           }
2250           break;
2251         }
2252       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2253         // Store to undef and store to null are undefined and used to signal
2254         // that they should be changed to unreachable by passes that can't
2255         // modify the CFG.
2256 
2257         // Don't touch volatile stores.
2258         if (SI->isVolatile()) continue;
2259 
2260         Value *Ptr = SI->getOperand(1);
2261 
2262         if (isa<UndefValue>(Ptr) ||
2263             (isa<ConstantPointerNull>(Ptr) &&
2264              !NullPointerIsDefined(SI->getFunction(),
2265                                    SI->getPointerAddressSpace()))) {
2266           changeToUnreachable(SI, true, false, DTU);
2267           Changed = true;
2268           break;
2269         }
2270       }
2271     }
2272 
2273     Instruction *Terminator = BB->getTerminator();
2274     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2275       // Turn invokes that call 'nounwind' functions into ordinary calls.
2276       Value *Callee = II->getCalledOperand();
2277       if ((isa<ConstantPointerNull>(Callee) &&
2278            !NullPointerIsDefined(BB->getParent())) ||
2279           isa<UndefValue>(Callee)) {
2280         changeToUnreachable(II, true, false, DTU);
2281         Changed = true;
2282       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2283         if (II->use_empty() && II->onlyReadsMemory()) {
2284           // jump to the normal destination branch.
2285           BasicBlock *NormalDestBB = II->getNormalDest();
2286           BasicBlock *UnwindDestBB = II->getUnwindDest();
2287           BranchInst::Create(NormalDestBB, II);
2288           UnwindDestBB->removePredecessor(II->getParent());
2289           II->eraseFromParent();
2290           if (DTU)
2291             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2292         } else
2293           changeToCall(II, DTU);
2294         Changed = true;
2295       }
2296     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2297       // Remove catchpads which cannot be reached.
2298       struct CatchPadDenseMapInfo {
2299         static CatchPadInst *getEmptyKey() {
2300           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2301         }
2302 
2303         static CatchPadInst *getTombstoneKey() {
2304           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2305         }
2306 
2307         static unsigned getHashValue(CatchPadInst *CatchPad) {
2308           return static_cast<unsigned>(hash_combine_range(
2309               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2310         }
2311 
2312         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2313           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2314               RHS == getEmptyKey() || RHS == getTombstoneKey())
2315             return LHS == RHS;
2316           return LHS->isIdenticalTo(RHS);
2317         }
2318       };
2319 
2320       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2321       // Set of unique CatchPads.
2322       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2323                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2324           HandlerSet;
2325       detail::DenseSetEmpty Empty;
2326       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2327                                              E = CatchSwitch->handler_end();
2328            I != E; ++I) {
2329         BasicBlock *HandlerBB = *I;
2330         if (DTU)
2331           ++NumPerSuccessorCases[HandlerBB];
2332         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2333         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2334           if (DTU)
2335             --NumPerSuccessorCases[HandlerBB];
2336           CatchSwitch->removeHandler(I);
2337           --I;
2338           --E;
2339           Changed = true;
2340         }
2341       }
2342       if (DTU) {
2343         std::vector<DominatorTree::UpdateType> Updates;
2344         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2345           if (I.second == 0)
2346             Updates.push_back({DominatorTree::Delete, BB, I.first});
2347         DTU->applyUpdates(Updates);
2348       }
2349     }
2350 
2351     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2352     for (BasicBlock *Successor : successors(BB))
2353       if (Reachable.insert(Successor).second)
2354         Worklist.push_back(Successor);
2355   } while (!Worklist.empty());
2356   return Changed;
2357 }
2358 
2359 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2360   Instruction *TI = BB->getTerminator();
2361 
2362   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2363     changeToCall(II, DTU);
2364     return;
2365   }
2366 
2367   Instruction *NewTI;
2368   BasicBlock *UnwindDest;
2369 
2370   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2371     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2372     UnwindDest = CRI->getUnwindDest();
2373   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2374     auto *NewCatchSwitch = CatchSwitchInst::Create(
2375         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2376         CatchSwitch->getName(), CatchSwitch);
2377     for (BasicBlock *PadBB : CatchSwitch->handlers())
2378       NewCatchSwitch->addHandler(PadBB);
2379 
2380     NewTI = NewCatchSwitch;
2381     UnwindDest = CatchSwitch->getUnwindDest();
2382   } else {
2383     llvm_unreachable("Could not find unwind successor");
2384   }
2385 
2386   NewTI->takeName(TI);
2387   NewTI->setDebugLoc(TI->getDebugLoc());
2388   UnwindDest->removePredecessor(BB);
2389   TI->replaceAllUsesWith(NewTI);
2390   TI->eraseFromParent();
2391   if (DTU)
2392     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2393 }
2394 
2395 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2396 /// if they are in a dead cycle.  Return true if a change was made, false
2397 /// otherwise.
2398 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2399                                    MemorySSAUpdater *MSSAU) {
2400   SmallPtrSet<BasicBlock *, 16> Reachable;
2401   bool Changed = markAliveBlocks(F, Reachable, DTU);
2402 
2403   // If there are unreachable blocks in the CFG...
2404   if (Reachable.size() == F.size())
2405     return Changed;
2406 
2407   assert(Reachable.size() < F.size());
2408 
2409   // Are there any blocks left to actually delete?
2410   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2411   for (BasicBlock &BB : F) {
2412     // Skip reachable basic blocks
2413     if (Reachable.count(&BB))
2414       continue;
2415     // Skip already-deleted blocks
2416     if (DTU && DTU->isBBPendingDeletion(&BB))
2417       continue;
2418     BlocksToRemove.insert(&BB);
2419   }
2420 
2421   if (BlocksToRemove.empty())
2422     return Changed;
2423 
2424   Changed = true;
2425   NumRemoved += BlocksToRemove.size();
2426 
2427   if (MSSAU)
2428     MSSAU->removeBlocks(BlocksToRemove);
2429 
2430   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2431 
2432   return Changed;
2433 }
2434 
2435 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2436                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2437   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2438   K->dropUnknownNonDebugMetadata(KnownIDs);
2439   K->getAllMetadataOtherThanDebugLoc(Metadata);
2440   for (const auto &MD : Metadata) {
2441     unsigned Kind = MD.first;
2442     MDNode *JMD = J->getMetadata(Kind);
2443     MDNode *KMD = MD.second;
2444 
2445     switch (Kind) {
2446       default:
2447         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2448         break;
2449       case LLVMContext::MD_dbg:
2450         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2451       case LLVMContext::MD_tbaa:
2452         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2453         break;
2454       case LLVMContext::MD_alias_scope:
2455         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2456         break;
2457       case LLVMContext::MD_noalias:
2458       case LLVMContext::MD_mem_parallel_loop_access:
2459         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2460         break;
2461       case LLVMContext::MD_access_group:
2462         K->setMetadata(LLVMContext::MD_access_group,
2463                        intersectAccessGroups(K, J));
2464         break;
2465       case LLVMContext::MD_range:
2466 
2467         // If K does move, use most generic range. Otherwise keep the range of
2468         // K.
2469         if (DoesKMove)
2470           // FIXME: If K does move, we should drop the range info and nonnull.
2471           //        Currently this function is used with DoesKMove in passes
2472           //        doing hoisting/sinking and the current behavior of using the
2473           //        most generic range is correct in those cases.
2474           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2475         break;
2476       case LLVMContext::MD_fpmath:
2477         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2478         break;
2479       case LLVMContext::MD_invariant_load:
2480         // Only set the !invariant.load if it is present in both instructions.
2481         K->setMetadata(Kind, JMD);
2482         break;
2483       case LLVMContext::MD_nonnull:
2484         // If K does move, keep nonull if it is present in both instructions.
2485         if (DoesKMove)
2486           K->setMetadata(Kind, JMD);
2487         break;
2488       case LLVMContext::MD_invariant_group:
2489         // Preserve !invariant.group in K.
2490         break;
2491       case LLVMContext::MD_align:
2492         K->setMetadata(Kind,
2493           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2494         break;
2495       case LLVMContext::MD_dereferenceable:
2496       case LLVMContext::MD_dereferenceable_or_null:
2497         K->setMetadata(Kind,
2498           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2499         break;
2500       case LLVMContext::MD_preserve_access_index:
2501         // Preserve !preserve.access.index in K.
2502         break;
2503     }
2504   }
2505   // Set !invariant.group from J if J has it. If both instructions have it
2506   // then we will just pick it from J - even when they are different.
2507   // Also make sure that K is load or store - f.e. combining bitcast with load
2508   // could produce bitcast with invariant.group metadata, which is invalid.
2509   // FIXME: we should try to preserve both invariant.group md if they are
2510   // different, but right now instruction can only have one invariant.group.
2511   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2512     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2513       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2514 }
2515 
2516 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2517                                  bool KDominatesJ) {
2518   unsigned KnownIDs[] = {
2519       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2520       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2521       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2522       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2523       LLVMContext::MD_dereferenceable,
2524       LLVMContext::MD_dereferenceable_or_null,
2525       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2526   combineMetadata(K, J, KnownIDs, KDominatesJ);
2527 }
2528 
2529 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2530   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2531   Source.getAllMetadata(MD);
2532   MDBuilder MDB(Dest.getContext());
2533   Type *NewType = Dest.getType();
2534   const DataLayout &DL = Source.getModule()->getDataLayout();
2535   for (const auto &MDPair : MD) {
2536     unsigned ID = MDPair.first;
2537     MDNode *N = MDPair.second;
2538     // Note, essentially every kind of metadata should be preserved here! This
2539     // routine is supposed to clone a load instruction changing *only its type*.
2540     // The only metadata it makes sense to drop is metadata which is invalidated
2541     // when the pointer type changes. This should essentially never be the case
2542     // in LLVM, but we explicitly switch over only known metadata to be
2543     // conservatively correct. If you are adding metadata to LLVM which pertains
2544     // to loads, you almost certainly want to add it here.
2545     switch (ID) {
2546     case LLVMContext::MD_dbg:
2547     case LLVMContext::MD_tbaa:
2548     case LLVMContext::MD_prof:
2549     case LLVMContext::MD_fpmath:
2550     case LLVMContext::MD_tbaa_struct:
2551     case LLVMContext::MD_invariant_load:
2552     case LLVMContext::MD_alias_scope:
2553     case LLVMContext::MD_noalias:
2554     case LLVMContext::MD_nontemporal:
2555     case LLVMContext::MD_mem_parallel_loop_access:
2556     case LLVMContext::MD_access_group:
2557       // All of these directly apply.
2558       Dest.setMetadata(ID, N);
2559       break;
2560 
2561     case LLVMContext::MD_nonnull:
2562       copyNonnullMetadata(Source, N, Dest);
2563       break;
2564 
2565     case LLVMContext::MD_align:
2566     case LLVMContext::MD_dereferenceable:
2567     case LLVMContext::MD_dereferenceable_or_null:
2568       // These only directly apply if the new type is also a pointer.
2569       if (NewType->isPointerTy())
2570         Dest.setMetadata(ID, N);
2571       break;
2572 
2573     case LLVMContext::MD_range:
2574       copyRangeMetadata(DL, Source, N, Dest);
2575       break;
2576     }
2577   }
2578 }
2579 
2580 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2581   auto *ReplInst = dyn_cast<Instruction>(Repl);
2582   if (!ReplInst)
2583     return;
2584 
2585   // Patch the replacement so that it is not more restrictive than the value
2586   // being replaced.
2587   // Note that if 'I' is a load being replaced by some operation,
2588   // for example, by an arithmetic operation, then andIRFlags()
2589   // would just erase all math flags from the original arithmetic
2590   // operation, which is clearly not wanted and not needed.
2591   if (!isa<LoadInst>(I))
2592     ReplInst->andIRFlags(I);
2593 
2594   // FIXME: If both the original and replacement value are part of the
2595   // same control-flow region (meaning that the execution of one
2596   // guarantees the execution of the other), then we can combine the
2597   // noalias scopes here and do better than the general conservative
2598   // answer used in combineMetadata().
2599 
2600   // In general, GVN unifies expressions over different control-flow
2601   // regions, and so we need a conservative combination of the noalias
2602   // scopes.
2603   static const unsigned KnownIDs[] = {
2604       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2605       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2606       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2607       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2608       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2609   combineMetadata(ReplInst, I, KnownIDs, false);
2610 }
2611 
2612 template <typename RootType, typename DominatesFn>
2613 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2614                                          const RootType &Root,
2615                                          const DominatesFn &Dominates) {
2616   assert(From->getType() == To->getType());
2617 
2618   unsigned Count = 0;
2619   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2620        UI != UE;) {
2621     Use &U = *UI++;
2622     if (!Dominates(Root, U))
2623       continue;
2624     U.set(To);
2625     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2626                       << "' as " << *To << " in " << *U << "\n");
2627     ++Count;
2628   }
2629   return Count;
2630 }
2631 
2632 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2633    assert(From->getType() == To->getType());
2634    auto *BB = From->getParent();
2635    unsigned Count = 0;
2636 
2637   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2638        UI != UE;) {
2639     Use &U = *UI++;
2640     auto *I = cast<Instruction>(U.getUser());
2641     if (I->getParent() == BB)
2642       continue;
2643     U.set(To);
2644     ++Count;
2645   }
2646   return Count;
2647 }
2648 
2649 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2650                                         DominatorTree &DT,
2651                                         const BasicBlockEdge &Root) {
2652   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2653     return DT.dominates(Root, U);
2654   };
2655   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2656 }
2657 
2658 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2659                                         DominatorTree &DT,
2660                                         const BasicBlock *BB) {
2661   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2662     return DT.dominates(BB, U);
2663   };
2664   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2665 }
2666 
2667 bool llvm::callsGCLeafFunction(const CallBase *Call,
2668                                const TargetLibraryInfo &TLI) {
2669   // Check if the function is specifically marked as a gc leaf function.
2670   if (Call->hasFnAttr("gc-leaf-function"))
2671     return true;
2672   if (const Function *F = Call->getCalledFunction()) {
2673     if (F->hasFnAttribute("gc-leaf-function"))
2674       return true;
2675 
2676     if (auto IID = F->getIntrinsicID()) {
2677       // Most LLVM intrinsics do not take safepoints.
2678       return IID != Intrinsic::experimental_gc_statepoint &&
2679              IID != Intrinsic::experimental_deoptimize &&
2680              IID != Intrinsic::memcpy_element_unordered_atomic &&
2681              IID != Intrinsic::memmove_element_unordered_atomic;
2682     }
2683   }
2684 
2685   // Lib calls can be materialized by some passes, and won't be
2686   // marked as 'gc-leaf-function.' All available Libcalls are
2687   // GC-leaf.
2688   LibFunc LF;
2689   if (TLI.getLibFunc(*Call, LF)) {
2690     return TLI.has(LF);
2691   }
2692 
2693   return false;
2694 }
2695 
2696 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2697                                LoadInst &NewLI) {
2698   auto *NewTy = NewLI.getType();
2699 
2700   // This only directly applies if the new type is also a pointer.
2701   if (NewTy->isPointerTy()) {
2702     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2703     return;
2704   }
2705 
2706   // The only other translation we can do is to integral loads with !range
2707   // metadata.
2708   if (!NewTy->isIntegerTy())
2709     return;
2710 
2711   MDBuilder MDB(NewLI.getContext());
2712   const Value *Ptr = OldLI.getPointerOperand();
2713   auto *ITy = cast<IntegerType>(NewTy);
2714   auto *NullInt = ConstantExpr::getPtrToInt(
2715       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2716   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2717   NewLI.setMetadata(LLVMContext::MD_range,
2718                     MDB.createRange(NonNullInt, NullInt));
2719 }
2720 
2721 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2722                              MDNode *N, LoadInst &NewLI) {
2723   auto *NewTy = NewLI.getType();
2724 
2725   // Give up unless it is converted to a pointer where there is a single very
2726   // valuable mapping we can do reliably.
2727   // FIXME: It would be nice to propagate this in more ways, but the type
2728   // conversions make it hard.
2729   if (!NewTy->isPointerTy())
2730     return;
2731 
2732   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2733   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2734     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2735     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2736   }
2737 }
2738 
2739 void llvm::dropDebugUsers(Instruction &I) {
2740   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2741   findDbgUsers(DbgUsers, &I);
2742   for (auto *DII : DbgUsers)
2743     DII->eraseFromParent();
2744 }
2745 
2746 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2747                                     BasicBlock *BB) {
2748   // Since we are moving the instructions out of its basic block, we do not
2749   // retain their original debug locations (DILocations) and debug intrinsic
2750   // instructions.
2751   //
2752   // Doing so would degrade the debugging experience and adversely affect the
2753   // accuracy of profiling information.
2754   //
2755   // Currently, when hoisting the instructions, we take the following actions:
2756   // - Remove their debug intrinsic instructions.
2757   // - Set their debug locations to the values from the insertion point.
2758   //
2759   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2760   // need to be deleted, is because there will not be any instructions with a
2761   // DILocation in either branch left after performing the transformation. We
2762   // can only insert a dbg.value after the two branches are joined again.
2763   //
2764   // See PR38762, PR39243 for more details.
2765   //
2766   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2767   // encode predicated DIExpressions that yield different results on different
2768   // code paths.
2769 
2770   // A hoisted conditional probe should be treated as dangling so that it will
2771   // not be over-counted when the samples collected on the non-conditional path
2772   // are counted towards the conditional path. We leave it for the counts
2773   // inference algorithm to figure out a proper count for a danglng probe.
2774   moveAndDanglePseudoProbes(BB, InsertPt);
2775 
2776   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2777     Instruction *I = &*II;
2778     I->dropUnknownNonDebugMetadata();
2779     if (I->isUsedByMetadata())
2780       dropDebugUsers(*I);
2781     if (isa<DbgInfoIntrinsic>(I)) {
2782       // Remove DbgInfo Intrinsics.
2783       II = I->eraseFromParent();
2784       continue;
2785     }
2786     I->setDebugLoc(InsertPt->getDebugLoc());
2787     ++II;
2788   }
2789   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2790                                  BB->begin(),
2791                                  BB->getTerminator()->getIterator());
2792 }
2793 
2794 namespace {
2795 
2796 /// A potential constituent of a bitreverse or bswap expression. See
2797 /// collectBitParts for a fuller explanation.
2798 struct BitPart {
2799   BitPart(Value *P, unsigned BW) : Provider(P) {
2800     Provenance.resize(BW);
2801   }
2802 
2803   /// The Value that this is a bitreverse/bswap of.
2804   Value *Provider;
2805 
2806   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2807   /// in Provider becomes bit B in the result of this expression.
2808   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2809 
2810   enum { Unset = -1 };
2811 };
2812 
2813 } // end anonymous namespace
2814 
2815 /// Analyze the specified subexpression and see if it is capable of providing
2816 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2817 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2818 /// the output of the expression came from a corresponding bit in some other
2819 /// value. This function is recursive, and the end result is a mapping of
2820 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2821 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2822 ///
2823 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2824 /// that the expression deposits the low byte of %X into the high byte of the
2825 /// result and that all other bits are zero. This expression is accepted and a
2826 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2827 /// [0-7].
2828 ///
2829 /// For vector types, all analysis is performed at the per-element level. No
2830 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2831 /// constant masks must be splatted across all elements.
2832 ///
2833 /// To avoid revisiting values, the BitPart results are memoized into the
2834 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2835 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2836 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2837 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2838 /// type instead to provide the same functionality.
2839 ///
2840 /// Because we pass around references into \c BPS, we must use a container that
2841 /// does not invalidate internal references (std::map instead of DenseMap).
2842 static const Optional<BitPart> &
2843 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2844                 std::map<Value *, Optional<BitPart>> &BPS, int Depth,
2845                 bool &FoundRoot) {
2846   auto I = BPS.find(V);
2847   if (I != BPS.end())
2848     return I->second;
2849 
2850   auto &Result = BPS[V] = None;
2851   auto BitWidth = V->getType()->getScalarSizeInBits();
2852 
2853   // Can't do integer/elements > 128 bits.
2854   if (BitWidth > 128)
2855     return Result;
2856 
2857   // Prevent stack overflow by limiting the recursion depth
2858   if (Depth == BitPartRecursionMaxDepth) {
2859     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2860     return Result;
2861   }
2862 
2863   if (auto *I = dyn_cast<Instruction>(V)) {
2864     Value *X, *Y;
2865     const APInt *C;
2866 
2867     // If this is an or instruction, it may be an inner node of the bswap.
2868     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2869       // Check we have both sources and they are from the same provider.
2870       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2871                                       Depth + 1, FoundRoot);
2872       if (!A || !A->Provider)
2873         return Result;
2874 
2875       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
2876                                       Depth + 1, FoundRoot);
2877       if (!B || A->Provider != B->Provider)
2878         return Result;
2879 
2880       // Try and merge the two together.
2881       Result = BitPart(A->Provider, BitWidth);
2882       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2883         if (A->Provenance[BitIdx] != BitPart::Unset &&
2884             B->Provenance[BitIdx] != BitPart::Unset &&
2885             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2886           return Result = None;
2887 
2888         if (A->Provenance[BitIdx] == BitPart::Unset)
2889           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2890         else
2891           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2892       }
2893 
2894       return Result;
2895     }
2896 
2897     // If this is a logical shift by a constant, recurse then shift the result.
2898     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2899       const APInt &BitShift = *C;
2900 
2901       // Ensure the shift amount is defined.
2902       if (BitShift.uge(BitWidth))
2903         return Result;
2904 
2905       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
2906       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
2907         return Result;
2908 
2909       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2910                                         Depth + 1, FoundRoot);
2911       if (!Res)
2912         return Result;
2913       Result = Res;
2914 
2915       // Perform the "shift" on BitProvenance.
2916       auto &P = Result->Provenance;
2917       if (I->getOpcode() == Instruction::Shl) {
2918         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2919         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2920       } else {
2921         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2922         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2923       }
2924 
2925       return Result;
2926     }
2927 
2928     // If this is a logical 'and' with a mask that clears bits, recurse then
2929     // unset the appropriate bits.
2930     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2931       const APInt &AndMask = *C;
2932 
2933       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2934       // early exit.
2935       unsigned NumMaskedBits = AndMask.countPopulation();
2936       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2937         return Result;
2938 
2939       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2940                                         Depth + 1, FoundRoot);
2941       if (!Res)
2942         return Result;
2943       Result = Res;
2944 
2945       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2946         // If the AndMask is zero for this bit, clear the bit.
2947         if (AndMask[BitIdx] == 0)
2948           Result->Provenance[BitIdx] = BitPart::Unset;
2949       return Result;
2950     }
2951 
2952     // If this is a zext instruction zero extend the result.
2953     if (match(V, m_ZExt(m_Value(X)))) {
2954       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2955                                         Depth + 1, FoundRoot);
2956       if (!Res)
2957         return Result;
2958 
2959       Result = BitPart(Res->Provider, BitWidth);
2960       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2961       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2962         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2963       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2964         Result->Provenance[BitIdx] = BitPart::Unset;
2965       return Result;
2966     }
2967 
2968     // If this is a truncate instruction, extract the lower bits.
2969     if (match(V, m_Trunc(m_Value(X)))) {
2970       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2971                                         Depth + 1, FoundRoot);
2972       if (!Res)
2973         return Result;
2974 
2975       Result = BitPart(Res->Provider, BitWidth);
2976       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2977         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2978       return Result;
2979     }
2980 
2981     // BITREVERSE - most likely due to us previous matching a partial
2982     // bitreverse.
2983     if (match(V, m_BitReverse(m_Value(X)))) {
2984       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2985                                         Depth + 1, FoundRoot);
2986       if (!Res)
2987         return Result;
2988 
2989       Result = BitPart(Res->Provider, BitWidth);
2990       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2991         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
2992       return Result;
2993     }
2994 
2995     // BSWAP - most likely due to us previous matching a partial bswap.
2996     if (match(V, m_BSwap(m_Value(X)))) {
2997       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2998                                         Depth + 1, FoundRoot);
2999       if (!Res)
3000         return Result;
3001 
3002       unsigned ByteWidth = BitWidth / 8;
3003       Result = BitPart(Res->Provider, BitWidth);
3004       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3005         unsigned ByteBitOfs = ByteIdx * 8;
3006         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3007           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3008               Res->Provenance[ByteBitOfs + BitIdx];
3009       }
3010       return Result;
3011     }
3012 
3013     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3014     // amount (modulo).
3015     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3016     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3017     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3018         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3019       // We can treat fshr as a fshl by flipping the modulo amount.
3020       unsigned ModAmt = C->urem(BitWidth);
3021       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3022         ModAmt = BitWidth - ModAmt;
3023 
3024       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3025       if (!MatchBitReversals && (ModAmt % 8) != 0)
3026         return Result;
3027 
3028       // Check we have both sources and they are from the same provider.
3029       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3030                                         Depth + 1, FoundRoot);
3031       if (!LHS || !LHS->Provider)
3032         return Result;
3033 
3034       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3035                                         Depth + 1, FoundRoot);
3036       if (!RHS || LHS->Provider != RHS->Provider)
3037         return Result;
3038 
3039       unsigned StartBitRHS = BitWidth - ModAmt;
3040       Result = BitPart(LHS->Provider, BitWidth);
3041       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3042         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3043       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3044         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3045       return Result;
3046     }
3047   }
3048 
3049   // If we've already found a root input value then we're never going to merge
3050   // these back together.
3051   if (FoundRoot)
3052     return Result;
3053 
3054   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3055   // be the root input value to the bswap/bitreverse.
3056   FoundRoot = true;
3057   Result = BitPart(V, BitWidth);
3058   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3059     Result->Provenance[BitIdx] = BitIdx;
3060   return Result;
3061 }
3062 
3063 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3064                                           unsigned BitWidth) {
3065   if (From % 8 != To % 8)
3066     return false;
3067   // Convert from bit indices to byte indices and check for a byte reversal.
3068   From >>= 3;
3069   To >>= 3;
3070   BitWidth >>= 3;
3071   return From == BitWidth - To - 1;
3072 }
3073 
3074 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3075                                                unsigned BitWidth) {
3076   return From == BitWidth - To - 1;
3077 }
3078 
3079 bool llvm::recognizeBSwapOrBitReverseIdiom(
3080     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3081     SmallVectorImpl<Instruction *> &InsertedInsts) {
3082   if (!match(I, m_Or(m_Value(), m_Value())) &&
3083       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3084       !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3085     return false;
3086   if (!MatchBSwaps && !MatchBitReversals)
3087     return false;
3088   Type *ITy = I->getType();
3089   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3090     return false;  // Can't do integer/elements > 128 bits.
3091 
3092   Type *DemandedTy = ITy;
3093   if (I->hasOneUse())
3094     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3095       DemandedTy = Trunc->getType();
3096 
3097   // Try to find all the pieces corresponding to the bswap.
3098   bool FoundRoot = false;
3099   std::map<Value *, Optional<BitPart>> BPS;
3100   const auto &Res =
3101       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3102   if (!Res)
3103     return false;
3104   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3105   assert(all_of(BitProvenance,
3106                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3107          "Illegal bit provenance index");
3108 
3109   // If the upper bits are zero, then attempt to perform as a truncated op.
3110   if (BitProvenance.back() == BitPart::Unset) {
3111     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3112       BitProvenance = BitProvenance.drop_back();
3113     if (BitProvenance.empty())
3114       return false; // TODO - handle null value?
3115     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3116     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3117       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3118   }
3119 
3120   // Check BitProvenance hasn't found a source larger than the result type.
3121   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3122   if (DemandedBW > ITy->getScalarSizeInBits())
3123     return false;
3124 
3125   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3126   // only byteswap values with an even number of bytes.
3127   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3128   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3129   bool OKForBitReverse = MatchBitReversals;
3130   for (unsigned BitIdx = 0;
3131        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3132     if (BitProvenance[BitIdx] == BitPart::Unset) {
3133       DemandedMask.clearBit(BitIdx);
3134       continue;
3135     }
3136     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3137                                                 DemandedBW);
3138     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3139                                                           BitIdx, DemandedBW);
3140   }
3141 
3142   Intrinsic::ID Intrin;
3143   if (OKForBSwap)
3144     Intrin = Intrinsic::bswap;
3145   else if (OKForBitReverse)
3146     Intrin = Intrinsic::bitreverse;
3147   else
3148     return false;
3149 
3150   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3151   Value *Provider = Res->Provider;
3152 
3153   // We may need to truncate the provider.
3154   if (DemandedTy != Provider->getType()) {
3155     auto *Trunc =
3156         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3157     InsertedInsts.push_back(Trunc);
3158     Provider = Trunc;
3159   }
3160 
3161   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3162   InsertedInsts.push_back(Result);
3163 
3164   if (!DemandedMask.isAllOnesValue()) {
3165     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3166     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3167     InsertedInsts.push_back(Result);
3168   }
3169 
3170   // We may need to zeroextend back to the result type.
3171   if (ITy != Result->getType()) {
3172     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3173     InsertedInsts.push_back(ExtInst);
3174   }
3175 
3176   return true;
3177 }
3178 
3179 // CodeGen has special handling for some string functions that may replace
3180 // them with target-specific intrinsics.  Since that'd skip our interceptors
3181 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3182 // we mark affected calls as NoBuiltin, which will disable optimization
3183 // in CodeGen.
3184 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3185     CallInst *CI, const TargetLibraryInfo *TLI) {
3186   Function *F = CI->getCalledFunction();
3187   LibFunc Func;
3188   if (F && !F->hasLocalLinkage() && F->hasName() &&
3189       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3190       !F->doesNotAccessMemory())
3191     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3192 }
3193 
3194 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3195   // We can't have a PHI with a metadata type.
3196   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3197     return false;
3198 
3199   // Early exit.
3200   if (!isa<Constant>(I->getOperand(OpIdx)))
3201     return true;
3202 
3203   switch (I->getOpcode()) {
3204   default:
3205     return true;
3206   case Instruction::Call:
3207   case Instruction::Invoke: {
3208     const auto &CB = cast<CallBase>(*I);
3209 
3210     // Can't handle inline asm. Skip it.
3211     if (CB.isInlineAsm())
3212       return false;
3213 
3214     // Constant bundle operands may need to retain their constant-ness for
3215     // correctness.
3216     if (CB.isBundleOperand(OpIdx))
3217       return false;
3218 
3219     if (OpIdx < CB.getNumArgOperands()) {
3220       // Some variadic intrinsics require constants in the variadic arguments,
3221       // which currently aren't markable as immarg.
3222       if (isa<IntrinsicInst>(CB) &&
3223           OpIdx >= CB.getFunctionType()->getNumParams()) {
3224         // This is known to be OK for stackmap.
3225         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3226       }
3227 
3228       // gcroot is a special case, since it requires a constant argument which
3229       // isn't also required to be a simple ConstantInt.
3230       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3231         return false;
3232 
3233       // Some intrinsic operands are required to be immediates.
3234       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3235     }
3236 
3237     // It is never allowed to replace the call argument to an intrinsic, but it
3238     // may be possible for a call.
3239     return !isa<IntrinsicInst>(CB);
3240   }
3241   case Instruction::ShuffleVector:
3242     // Shufflevector masks are constant.
3243     return OpIdx != 2;
3244   case Instruction::Switch:
3245   case Instruction::ExtractValue:
3246     // All operands apart from the first are constant.
3247     return OpIdx == 0;
3248   case Instruction::InsertValue:
3249     // All operands apart from the first and the second are constant.
3250     return OpIdx < 2;
3251   case Instruction::Alloca:
3252     // Static allocas (constant size in the entry block) are handled by
3253     // prologue/epilogue insertion so they're free anyway. We definitely don't
3254     // want to make them non-constant.
3255     return !cast<AllocaInst>(I)->isStaticAlloca();
3256   case Instruction::GetElementPtr:
3257     if (OpIdx == 0)
3258       return true;
3259     gep_type_iterator It = gep_type_begin(I);
3260     for (auto E = std::next(It, OpIdx); It != E; ++It)
3261       if (It.isStruct())
3262         return false;
3263     return true;
3264   }
3265 }
3266 
3267 Value *llvm::invertCondition(Value *Condition) {
3268   // First: Check if it's a constant
3269   if (Constant *C = dyn_cast<Constant>(Condition))
3270     return ConstantExpr::getNot(C);
3271 
3272   // Second: If the condition is already inverted, return the original value
3273   Value *NotCondition;
3274   if (match(Condition, m_Not(m_Value(NotCondition))))
3275     return NotCondition;
3276 
3277   BasicBlock *Parent = nullptr;
3278   Instruction *Inst = dyn_cast<Instruction>(Condition);
3279   if (Inst)
3280     Parent = Inst->getParent();
3281   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3282     Parent = &Arg->getParent()->getEntryBlock();
3283   assert(Parent && "Unsupported condition to invert");
3284 
3285   // Third: Check all the users for an invert
3286   for (User *U : Condition->users())
3287     if (Instruction *I = dyn_cast<Instruction>(U))
3288       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3289         return I;
3290 
3291   // Last option: Create a new instruction
3292   auto *Inverted =
3293       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3294   if (Inst && !isa<PHINode>(Inst))
3295     Inverted->insertAfter(Inst);
3296   else
3297     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3298   return Inverted;
3299 }
3300 
3301 bool llvm::inferAttributesFromOthers(Function &F) {
3302   // Note: We explicitly check for attributes rather than using cover functions
3303   // because some of the cover functions include the logic being implemented.
3304 
3305   bool Changed = false;
3306   // readnone + not convergent implies nosync
3307   if (!F.hasFnAttribute(Attribute::NoSync) &&
3308       F.doesNotAccessMemory() && !F.isConvergent()) {
3309     F.setNoSync();
3310     Changed = true;
3311   }
3312 
3313   // readonly implies nofree
3314   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3315     F.setDoesNotFreeMemory();
3316     Changed = true;
3317   }
3318 
3319   // willreturn implies mustprogress
3320   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3321     F.setMustProgress();
3322     Changed = true;
3323   }
3324 
3325   // TODO: There are a bunch of cases of restrictive memory effects we
3326   // can infer by inspecting arguments of argmemonly-ish functions.
3327 
3328   return Changed;
3329 }
3330