1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "local" 56 57 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 58 59 //===----------------------------------------------------------------------===// 60 // Local constant propagation. 61 // 62 63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 64 /// constant value, convert it into an unconditional branch to the constant 65 /// destination. This is a nontrivial operation because the successors of this 66 /// basic block must have their PHI nodes updated. 67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 68 /// conditions and indirectbr addresses this might make dead if 69 /// DeleteDeadConditions is true. 70 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 71 const TargetLibraryInfo *TLI) { 72 TerminatorInst *T = BB->getTerminator(); 73 IRBuilder<> Builder(T); 74 75 // Branch - See if we are conditional jumping on constant 76 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 77 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 78 BasicBlock *Dest1 = BI->getSuccessor(0); 79 BasicBlock *Dest2 = BI->getSuccessor(1); 80 81 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 82 // Are we branching on constant? 83 // YES. Change to unconditional branch... 84 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 85 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 86 87 //cerr << "Function: " << T->getParent()->getParent() 88 // << "\nRemoving branch from " << T->getParent() 89 // << "\n\nTo: " << OldDest << endl; 90 91 // Let the basic block know that we are letting go of it. Based on this, 92 // it will adjust it's PHI nodes. 93 OldDest->removePredecessor(BB); 94 95 // Replace the conditional branch with an unconditional one. 96 Builder.CreateBr(Destination); 97 BI->eraseFromParent(); 98 return true; 99 } 100 101 if (Dest2 == Dest1) { // Conditional branch to same location? 102 // This branch matches something like this: 103 // br bool %cond, label %Dest, label %Dest 104 // and changes it into: br label %Dest 105 106 // Let the basic block know that we are letting go of one copy of it. 107 assert(BI->getParent() && "Terminator not inserted in block!"); 108 Dest1->removePredecessor(BI->getParent()); 109 110 // Replace the conditional branch with an unconditional one. 111 Builder.CreateBr(Dest1); 112 Value *Cond = BI->getCondition(); 113 BI->eraseFromParent(); 114 if (DeleteDeadConditions) 115 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 116 return true; 117 } 118 return false; 119 } 120 121 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 122 // If we are switching on a constant, we can convert the switch to an 123 // unconditional branch. 124 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 125 BasicBlock *DefaultDest = SI->getDefaultDest(); 126 BasicBlock *TheOnlyDest = DefaultDest; 127 128 // If the default is unreachable, ignore it when searching for TheOnlyDest. 129 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 130 SI->getNumCases() > 0) { 131 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 132 } 133 134 // Figure out which case it goes to. 135 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 136 // Found case matching a constant operand? 137 if (i->getCaseValue() == CI) { 138 TheOnlyDest = i->getCaseSuccessor(); 139 break; 140 } 141 142 // Check to see if this branch is going to the same place as the default 143 // dest. If so, eliminate it as an explicit compare. 144 if (i->getCaseSuccessor() == DefaultDest) { 145 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 146 unsigned NCases = SI->getNumCases(); 147 // Fold the case metadata into the default if there will be any branches 148 // left, unless the metadata doesn't match the switch. 149 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 150 // Collect branch weights into a vector. 151 SmallVector<uint32_t, 8> Weights; 152 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 153 ++MD_i) { 154 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 155 Weights.push_back(CI->getValue().getZExtValue()); 156 } 157 // Merge weight of this case to the default weight. 158 unsigned idx = i->getCaseIndex(); 159 Weights[0] += Weights[idx+1]; 160 // Remove weight for this case. 161 std::swap(Weights[idx+1], Weights.back()); 162 Weights.pop_back(); 163 SI->setMetadata(LLVMContext::MD_prof, 164 MDBuilder(BB->getContext()). 165 createBranchWeights(Weights)); 166 } 167 // Remove this entry. 168 DefaultDest->removePredecessor(SI->getParent()); 169 i = SI->removeCase(i); 170 e = SI->case_end(); 171 continue; 172 } 173 174 // Otherwise, check to see if the switch only branches to one destination. 175 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 176 // destinations. 177 if (i->getCaseSuccessor() != TheOnlyDest) 178 TheOnlyDest = nullptr; 179 180 // Increment this iterator as we haven't removed the case. 181 ++i; 182 } 183 184 if (CI && !TheOnlyDest) { 185 // Branching on a constant, but not any of the cases, go to the default 186 // successor. 187 TheOnlyDest = SI->getDefaultDest(); 188 } 189 190 // If we found a single destination that we can fold the switch into, do so 191 // now. 192 if (TheOnlyDest) { 193 // Insert the new branch. 194 Builder.CreateBr(TheOnlyDest); 195 BasicBlock *BB = SI->getParent(); 196 197 // Remove entries from PHI nodes which we no longer branch to... 198 for (BasicBlock *Succ : SI->successors()) { 199 // Found case matching a constant operand? 200 if (Succ == TheOnlyDest) 201 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 202 else 203 Succ->removePredecessor(BB); 204 } 205 206 // Delete the old switch. 207 Value *Cond = SI->getCondition(); 208 SI->eraseFromParent(); 209 if (DeleteDeadConditions) 210 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 211 return true; 212 } 213 214 if (SI->getNumCases() == 1) { 215 // Otherwise, we can fold this switch into a conditional branch 216 // instruction if it has only one non-default destination. 217 auto FirstCase = *SI->case_begin(); 218 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 219 FirstCase.getCaseValue(), "cond"); 220 221 // Insert the new branch. 222 BranchInst *NewBr = Builder.CreateCondBr(Cond, 223 FirstCase.getCaseSuccessor(), 224 SI->getDefaultDest()); 225 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 226 if (MD && MD->getNumOperands() == 3) { 227 ConstantInt *SICase = 228 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 229 ConstantInt *SIDef = 230 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 231 assert(SICase && SIDef); 232 // The TrueWeight should be the weight for the single case of SI. 233 NewBr->setMetadata(LLVMContext::MD_prof, 234 MDBuilder(BB->getContext()). 235 createBranchWeights(SICase->getValue().getZExtValue(), 236 SIDef->getValue().getZExtValue())); 237 } 238 239 // Update make.implicit metadata to the newly-created conditional branch. 240 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 241 if (MakeImplicitMD) 242 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 243 244 // Delete the old switch. 245 SI->eraseFromParent(); 246 return true; 247 } 248 return false; 249 } 250 251 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 252 // indirectbr blockaddress(@F, @BB) -> br label @BB 253 if (BlockAddress *BA = 254 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 255 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 259 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 260 if (IBI->getDestination(i) == TheOnlyDest) 261 TheOnlyDest = nullptr; 262 else 263 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 264 } 265 Value *Address = IBI->getAddress(); 266 IBI->eraseFromParent(); 267 if (DeleteDeadConditions) 268 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 269 270 // If we didn't find our destination in the IBI successor list, then we 271 // have undefined behavior. Replace the unconditional branch with an 272 // 'unreachable' instruction. 273 if (TheOnlyDest) { 274 BB->getTerminator()->eraseFromParent(); 275 new UnreachableInst(BB->getContext(), BB); 276 } 277 278 return true; 279 } 280 } 281 282 return false; 283 } 284 285 286 //===----------------------------------------------------------------------===// 287 // Local dead code elimination. 288 // 289 290 /// isInstructionTriviallyDead - Return true if the result produced by the 291 /// instruction is not used, and the instruction has no side effects. 292 /// 293 bool llvm::isInstructionTriviallyDead(Instruction *I, 294 const TargetLibraryInfo *TLI) { 295 if (!I->use_empty()) 296 return false; 297 return wouldInstructionBeTriviallyDead(I, TLI); 298 } 299 300 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 301 const TargetLibraryInfo *TLI) { 302 if (isa<TerminatorInst>(I)) 303 return false; 304 305 // We don't want the landingpad-like instructions removed by anything this 306 // general. 307 if (I->isEHPad()) 308 return false; 309 310 // We don't want debug info removed by anything this general, unless 311 // debug info is empty. 312 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 313 if (DDI->getAddress()) 314 return false; 315 return true; 316 } 317 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 318 if (DVI->getValue()) 319 return false; 320 return true; 321 } 322 323 if (!I->mayHaveSideEffects()) 324 return true; 325 326 // Special case intrinsics that "may have side effects" but can be deleted 327 // when dead. 328 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 329 // Safe to delete llvm.stacksave if dead. 330 if (II->getIntrinsicID() == Intrinsic::stacksave) 331 return true; 332 333 // Lifetime intrinsics are dead when their right-hand is undef. 334 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 335 II->getIntrinsicID() == Intrinsic::lifetime_end) 336 return isa<UndefValue>(II->getArgOperand(1)); 337 338 // Assumptions are dead if their condition is trivially true. Guards on 339 // true are operationally no-ops. In the future we can consider more 340 // sophisticated tradeoffs for guards considering potential for check 341 // widening, but for now we keep things simple. 342 if (II->getIntrinsicID() == Intrinsic::assume || 343 II->getIntrinsicID() == Intrinsic::experimental_guard) { 344 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 345 return !Cond->isZero(); 346 347 return false; 348 } 349 } 350 351 if (isAllocLikeFn(I, TLI)) 352 return true; 353 354 if (CallInst *CI = isFreeCall(I, TLI)) 355 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 356 return C->isNullValue() || isa<UndefValue>(C); 357 358 if (CallSite CS = CallSite(I)) 359 if (isMathLibCallNoop(CS, TLI)) 360 return true; 361 362 return false; 363 } 364 365 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 366 /// trivially dead instruction, delete it. If that makes any of its operands 367 /// trivially dead, delete them too, recursively. Return true if any 368 /// instructions were deleted. 369 bool 370 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 371 const TargetLibraryInfo *TLI) { 372 Instruction *I = dyn_cast<Instruction>(V); 373 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 374 return false; 375 376 SmallVector<Instruction*, 16> DeadInsts; 377 DeadInsts.push_back(I); 378 379 do { 380 I = DeadInsts.pop_back_val(); 381 382 // Null out all of the instruction's operands to see if any operand becomes 383 // dead as we go. 384 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 385 Value *OpV = I->getOperand(i); 386 I->setOperand(i, nullptr); 387 388 if (!OpV->use_empty()) continue; 389 390 // If the operand is an instruction that became dead as we nulled out the 391 // operand, and if it is 'trivially' dead, delete it in a future loop 392 // iteration. 393 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 394 if (isInstructionTriviallyDead(OpI, TLI)) 395 DeadInsts.push_back(OpI); 396 } 397 398 I->eraseFromParent(); 399 } while (!DeadInsts.empty()); 400 401 return true; 402 } 403 404 /// areAllUsesEqual - Check whether the uses of a value are all the same. 405 /// This is similar to Instruction::hasOneUse() except this will also return 406 /// true when there are no uses or multiple uses that all refer to the same 407 /// value. 408 static bool areAllUsesEqual(Instruction *I) { 409 Value::user_iterator UI = I->user_begin(); 410 Value::user_iterator UE = I->user_end(); 411 if (UI == UE) 412 return true; 413 414 User *TheUse = *UI; 415 for (++UI; UI != UE; ++UI) { 416 if (*UI != TheUse) 417 return false; 418 } 419 return true; 420 } 421 422 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 423 /// dead PHI node, due to being a def-use chain of single-use nodes that 424 /// either forms a cycle or is terminated by a trivially dead instruction, 425 /// delete it. If that makes any of its operands trivially dead, delete them 426 /// too, recursively. Return true if a change was made. 427 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 428 const TargetLibraryInfo *TLI) { 429 SmallPtrSet<Instruction*, 4> Visited; 430 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 431 I = cast<Instruction>(*I->user_begin())) { 432 if (I->use_empty()) 433 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 434 435 // If we find an instruction more than once, we're on a cycle that 436 // won't prove fruitful. 437 if (!Visited.insert(I).second) { 438 // Break the cycle and delete the instruction and its operands. 439 I->replaceAllUsesWith(UndefValue::get(I->getType())); 440 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 441 return true; 442 } 443 } 444 return false; 445 } 446 447 static bool 448 simplifyAndDCEInstruction(Instruction *I, 449 SmallSetVector<Instruction *, 16> &WorkList, 450 const DataLayout &DL, 451 const TargetLibraryInfo *TLI) { 452 if (isInstructionTriviallyDead(I, TLI)) { 453 // Null out all of the instruction's operands to see if any operand becomes 454 // dead as we go. 455 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 456 Value *OpV = I->getOperand(i); 457 I->setOperand(i, nullptr); 458 459 if (!OpV->use_empty() || I == OpV) 460 continue; 461 462 // If the operand is an instruction that became dead as we nulled out the 463 // operand, and if it is 'trivially' dead, delete it in a future loop 464 // iteration. 465 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 466 if (isInstructionTriviallyDead(OpI, TLI)) 467 WorkList.insert(OpI); 468 } 469 470 I->eraseFromParent(); 471 472 return true; 473 } 474 475 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 476 // Add the users to the worklist. CAREFUL: an instruction can use itself, 477 // in the case of a phi node. 478 for (User *U : I->users()) { 479 if (U != I) { 480 WorkList.insert(cast<Instruction>(U)); 481 } 482 } 483 484 // Replace the instruction with its simplified value. 485 bool Changed = false; 486 if (!I->use_empty()) { 487 I->replaceAllUsesWith(SimpleV); 488 Changed = true; 489 } 490 if (isInstructionTriviallyDead(I, TLI)) { 491 I->eraseFromParent(); 492 Changed = true; 493 } 494 return Changed; 495 } 496 return false; 497 } 498 499 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 500 /// simplify any instructions in it and recursively delete dead instructions. 501 /// 502 /// This returns true if it changed the code, note that it can delete 503 /// instructions in other blocks as well in this block. 504 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 505 const TargetLibraryInfo *TLI) { 506 bool MadeChange = false; 507 const DataLayout &DL = BB->getModule()->getDataLayout(); 508 509 #ifndef NDEBUG 510 // In debug builds, ensure that the terminator of the block is never replaced 511 // or deleted by these simplifications. The idea of simplification is that it 512 // cannot introduce new instructions, and there is no way to replace the 513 // terminator of a block without introducing a new instruction. 514 AssertingVH<Instruction> TerminatorVH(&BB->back()); 515 #endif 516 517 SmallSetVector<Instruction *, 16> WorkList; 518 // Iterate over the original function, only adding insts to the worklist 519 // if they actually need to be revisited. This avoids having to pre-init 520 // the worklist with the entire function's worth of instructions. 521 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 522 BI != E;) { 523 assert(!BI->isTerminator()); 524 Instruction *I = &*BI; 525 ++BI; 526 527 // We're visiting this instruction now, so make sure it's not in the 528 // worklist from an earlier visit. 529 if (!WorkList.count(I)) 530 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 531 } 532 533 while (!WorkList.empty()) { 534 Instruction *I = WorkList.pop_back_val(); 535 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 536 } 537 return MadeChange; 538 } 539 540 //===----------------------------------------------------------------------===// 541 // Control Flow Graph Restructuring. 542 // 543 544 545 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 546 /// method is called when we're about to delete Pred as a predecessor of BB. If 547 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 548 /// 549 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 550 /// nodes that collapse into identity values. For example, if we have: 551 /// x = phi(1, 0, 0, 0) 552 /// y = and x, z 553 /// 554 /// .. and delete the predecessor corresponding to the '1', this will attempt to 555 /// recursively fold the and to 0. 556 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 557 // This only adjusts blocks with PHI nodes. 558 if (!isa<PHINode>(BB->begin())) 559 return; 560 561 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 562 // them down. This will leave us with single entry phi nodes and other phis 563 // that can be removed. 564 BB->removePredecessor(Pred, true); 565 566 WeakTrackingVH PhiIt = &BB->front(); 567 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 568 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 569 Value *OldPhiIt = PhiIt; 570 571 if (!recursivelySimplifyInstruction(PN)) 572 continue; 573 574 // If recursive simplification ended up deleting the next PHI node we would 575 // iterate to, then our iterator is invalid, restart scanning from the top 576 // of the block. 577 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 578 } 579 } 580 581 582 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 583 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 584 /// between them, moving the instructions in the predecessor into DestBB and 585 /// deleting the predecessor block. 586 /// 587 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 588 // If BB has single-entry PHI nodes, fold them. 589 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 590 Value *NewVal = PN->getIncomingValue(0); 591 // Replace self referencing PHI with undef, it must be dead. 592 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 593 PN->replaceAllUsesWith(NewVal); 594 PN->eraseFromParent(); 595 } 596 597 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 598 assert(PredBB && "Block doesn't have a single predecessor!"); 599 600 // Zap anything that took the address of DestBB. Not doing this will give the 601 // address an invalid value. 602 if (DestBB->hasAddressTaken()) { 603 BlockAddress *BA = BlockAddress::get(DestBB); 604 Constant *Replacement = 605 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 606 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 607 BA->getType())); 608 BA->destroyConstant(); 609 } 610 611 // Anything that branched to PredBB now branches to DestBB. 612 PredBB->replaceAllUsesWith(DestBB); 613 614 // Splice all the instructions from PredBB to DestBB. 615 PredBB->getTerminator()->eraseFromParent(); 616 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 617 618 // If the PredBB is the entry block of the function, move DestBB up to 619 // become the entry block after we erase PredBB. 620 if (PredBB == &DestBB->getParent()->getEntryBlock()) 621 DestBB->moveAfter(PredBB); 622 623 if (DT) { 624 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 625 DT->changeImmediateDominator(DestBB, PredBBIDom); 626 DT->eraseNode(PredBB); 627 } 628 // Nuke BB. 629 PredBB->eraseFromParent(); 630 } 631 632 /// CanMergeValues - Return true if we can choose one of these values to use 633 /// in place of the other. Note that we will always choose the non-undef 634 /// value to keep. 635 static bool CanMergeValues(Value *First, Value *Second) { 636 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 637 } 638 639 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 640 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 641 /// 642 /// Assumption: Succ is the single successor for BB. 643 /// 644 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 645 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 646 647 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 648 << Succ->getName() << "\n"); 649 // Shortcut, if there is only a single predecessor it must be BB and merging 650 // is always safe 651 if (Succ->getSinglePredecessor()) return true; 652 653 // Make a list of the predecessors of BB 654 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 655 656 // Look at all the phi nodes in Succ, to see if they present a conflict when 657 // merging these blocks 658 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 659 PHINode *PN = cast<PHINode>(I); 660 661 // If the incoming value from BB is again a PHINode in 662 // BB which has the same incoming value for *PI as PN does, we can 663 // merge the phi nodes and then the blocks can still be merged 664 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 665 if (BBPN && BBPN->getParent() == BB) { 666 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 667 BasicBlock *IBB = PN->getIncomingBlock(PI); 668 if (BBPreds.count(IBB) && 669 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 670 PN->getIncomingValue(PI))) { 671 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 672 << Succ->getName() << " is conflicting with " 673 << BBPN->getName() << " with regard to common predecessor " 674 << IBB->getName() << "\n"); 675 return false; 676 } 677 } 678 } else { 679 Value* Val = PN->getIncomingValueForBlock(BB); 680 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 681 // See if the incoming value for the common predecessor is equal to the 682 // one for BB, in which case this phi node will not prevent the merging 683 // of the block. 684 BasicBlock *IBB = PN->getIncomingBlock(PI); 685 if (BBPreds.count(IBB) && 686 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 687 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 688 << Succ->getName() << " is conflicting with regard to common " 689 << "predecessor " << IBB->getName() << "\n"); 690 return false; 691 } 692 } 693 } 694 } 695 696 return true; 697 } 698 699 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 700 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 701 702 /// \brief Determines the value to use as the phi node input for a block. 703 /// 704 /// Select between \p OldVal any value that we know flows from \p BB 705 /// to a particular phi on the basis of which one (if either) is not 706 /// undef. Update IncomingValues based on the selected value. 707 /// 708 /// \param OldVal The value we are considering selecting. 709 /// \param BB The block that the value flows in from. 710 /// \param IncomingValues A map from block-to-value for other phi inputs 711 /// that we have examined. 712 /// 713 /// \returns the selected value. 714 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 715 IncomingValueMap &IncomingValues) { 716 if (!isa<UndefValue>(OldVal)) { 717 assert((!IncomingValues.count(BB) || 718 IncomingValues.find(BB)->second == OldVal) && 719 "Expected OldVal to match incoming value from BB!"); 720 721 IncomingValues.insert(std::make_pair(BB, OldVal)); 722 return OldVal; 723 } 724 725 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 726 if (It != IncomingValues.end()) return It->second; 727 728 return OldVal; 729 } 730 731 /// \brief Create a map from block to value for the operands of a 732 /// given phi. 733 /// 734 /// Create a map from block to value for each non-undef value flowing 735 /// into \p PN. 736 /// 737 /// \param PN The phi we are collecting the map for. 738 /// \param IncomingValues [out] The map from block to value for this phi. 739 static void gatherIncomingValuesToPhi(PHINode *PN, 740 IncomingValueMap &IncomingValues) { 741 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 742 BasicBlock *BB = PN->getIncomingBlock(i); 743 Value *V = PN->getIncomingValue(i); 744 745 if (!isa<UndefValue>(V)) 746 IncomingValues.insert(std::make_pair(BB, V)); 747 } 748 } 749 750 /// \brief Replace the incoming undef values to a phi with the values 751 /// from a block-to-value map. 752 /// 753 /// \param PN The phi we are replacing the undefs in. 754 /// \param IncomingValues A map from block to value. 755 static void replaceUndefValuesInPhi(PHINode *PN, 756 const IncomingValueMap &IncomingValues) { 757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 758 Value *V = PN->getIncomingValue(i); 759 760 if (!isa<UndefValue>(V)) continue; 761 762 BasicBlock *BB = PN->getIncomingBlock(i); 763 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 764 if (It == IncomingValues.end()) continue; 765 766 PN->setIncomingValue(i, It->second); 767 } 768 } 769 770 /// \brief Replace a value flowing from a block to a phi with 771 /// potentially multiple instances of that value flowing from the 772 /// block's predecessors to the phi. 773 /// 774 /// \param BB The block with the value flowing into the phi. 775 /// \param BBPreds The predecessors of BB. 776 /// \param PN The phi that we are updating. 777 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 778 const PredBlockVector &BBPreds, 779 PHINode *PN) { 780 Value *OldVal = PN->removeIncomingValue(BB, false); 781 assert(OldVal && "No entry in PHI for Pred BB!"); 782 783 IncomingValueMap IncomingValues; 784 785 // We are merging two blocks - BB, and the block containing PN - and 786 // as a result we need to redirect edges from the predecessors of BB 787 // to go to the block containing PN, and update PN 788 // accordingly. Since we allow merging blocks in the case where the 789 // predecessor and successor blocks both share some predecessors, 790 // and where some of those common predecessors might have undef 791 // values flowing into PN, we want to rewrite those values to be 792 // consistent with the non-undef values. 793 794 gatherIncomingValuesToPhi(PN, IncomingValues); 795 796 // If this incoming value is one of the PHI nodes in BB, the new entries 797 // in the PHI node are the entries from the old PHI. 798 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 799 PHINode *OldValPN = cast<PHINode>(OldVal); 800 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 801 // Note that, since we are merging phi nodes and BB and Succ might 802 // have common predecessors, we could end up with a phi node with 803 // identical incoming branches. This will be cleaned up later (and 804 // will trigger asserts if we try to clean it up now, without also 805 // simplifying the corresponding conditional branch). 806 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 807 Value *PredVal = OldValPN->getIncomingValue(i); 808 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 809 IncomingValues); 810 811 // And add a new incoming value for this predecessor for the 812 // newly retargeted branch. 813 PN->addIncoming(Selected, PredBB); 814 } 815 } else { 816 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 817 // Update existing incoming values in PN for this 818 // predecessor of BB. 819 BasicBlock *PredBB = BBPreds[i]; 820 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 821 IncomingValues); 822 823 // And add a new incoming value for this predecessor for the 824 // newly retargeted branch. 825 PN->addIncoming(Selected, PredBB); 826 } 827 } 828 829 replaceUndefValuesInPhi(PN, IncomingValues); 830 } 831 832 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 833 /// unconditional branch, and contains no instructions other than PHI nodes, 834 /// potential side-effect free intrinsics and the branch. If possible, 835 /// eliminate BB by rewriting all the predecessors to branch to the successor 836 /// block and return true. If we can't transform, return false. 837 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 838 assert(BB != &BB->getParent()->getEntryBlock() && 839 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 840 841 // We can't eliminate infinite loops. 842 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 843 if (BB == Succ) return false; 844 845 // Check to see if merging these blocks would cause conflicts for any of the 846 // phi nodes in BB or Succ. If not, we can safely merge. 847 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 848 849 // Check for cases where Succ has multiple predecessors and a PHI node in BB 850 // has uses which will not disappear when the PHI nodes are merged. It is 851 // possible to handle such cases, but difficult: it requires checking whether 852 // BB dominates Succ, which is non-trivial to calculate in the case where 853 // Succ has multiple predecessors. Also, it requires checking whether 854 // constructing the necessary self-referential PHI node doesn't introduce any 855 // conflicts; this isn't too difficult, but the previous code for doing this 856 // was incorrect. 857 // 858 // Note that if this check finds a live use, BB dominates Succ, so BB is 859 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 860 // folding the branch isn't profitable in that case anyway. 861 if (!Succ->getSinglePredecessor()) { 862 BasicBlock::iterator BBI = BB->begin(); 863 while (isa<PHINode>(*BBI)) { 864 for (Use &U : BBI->uses()) { 865 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 866 if (PN->getIncomingBlock(U) != BB) 867 return false; 868 } else { 869 return false; 870 } 871 } 872 ++BBI; 873 } 874 } 875 876 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 877 878 if (isa<PHINode>(Succ->begin())) { 879 // If there is more than one pred of succ, and there are PHI nodes in 880 // the successor, then we need to add incoming edges for the PHI nodes 881 // 882 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 883 884 // Loop over all of the PHI nodes in the successor of BB. 885 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 886 PHINode *PN = cast<PHINode>(I); 887 888 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 889 } 890 } 891 892 if (Succ->getSinglePredecessor()) { 893 // BB is the only predecessor of Succ, so Succ will end up with exactly 894 // the same predecessors BB had. 895 896 // Copy over any phi, debug or lifetime instruction. 897 BB->getTerminator()->eraseFromParent(); 898 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 899 BB->getInstList()); 900 } else { 901 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 902 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 903 assert(PN->use_empty() && "There shouldn't be any uses here!"); 904 PN->eraseFromParent(); 905 } 906 } 907 908 // If the unconditional branch we replaced contains llvm.loop metadata, we 909 // add the metadata to the branch instructions in the predecessors. 910 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 911 Instruction *TI = BB->getTerminator(); 912 if (TI) 913 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 914 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 915 BasicBlock *Pred = *PI; 916 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 917 } 918 919 // Everything that jumped to BB now goes to Succ. 920 BB->replaceAllUsesWith(Succ); 921 if (!Succ->hasName()) Succ->takeName(BB); 922 BB->eraseFromParent(); // Delete the old basic block. 923 return true; 924 } 925 926 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 927 /// nodes in this block. This doesn't try to be clever about PHI nodes 928 /// which differ only in the order of the incoming values, but instcombine 929 /// orders them so it usually won't matter. 930 /// 931 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 932 // This implementation doesn't currently consider undef operands 933 // specially. Theoretically, two phis which are identical except for 934 // one having an undef where the other doesn't could be collapsed. 935 936 struct PHIDenseMapInfo { 937 static PHINode *getEmptyKey() { 938 return DenseMapInfo<PHINode *>::getEmptyKey(); 939 } 940 static PHINode *getTombstoneKey() { 941 return DenseMapInfo<PHINode *>::getTombstoneKey(); 942 } 943 static unsigned getHashValue(PHINode *PN) { 944 // Compute a hash value on the operands. Instcombine will likely have 945 // sorted them, which helps expose duplicates, but we have to check all 946 // the operands to be safe in case instcombine hasn't run. 947 return static_cast<unsigned>(hash_combine( 948 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 949 hash_combine_range(PN->block_begin(), PN->block_end()))); 950 } 951 static bool isEqual(PHINode *LHS, PHINode *RHS) { 952 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 953 RHS == getEmptyKey() || RHS == getTombstoneKey()) 954 return LHS == RHS; 955 return LHS->isIdenticalTo(RHS); 956 } 957 }; 958 959 // Set of unique PHINodes. 960 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 961 962 // Examine each PHI. 963 bool Changed = false; 964 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 965 auto Inserted = PHISet.insert(PN); 966 if (!Inserted.second) { 967 // A duplicate. Replace this PHI with its duplicate. 968 PN->replaceAllUsesWith(*Inserted.first); 969 PN->eraseFromParent(); 970 Changed = true; 971 972 // The RAUW can change PHIs that we already visited. Start over from the 973 // beginning. 974 PHISet.clear(); 975 I = BB->begin(); 976 } 977 } 978 979 return Changed; 980 } 981 982 /// enforceKnownAlignment - If the specified pointer points to an object that 983 /// we control, modify the object's alignment to PrefAlign. This isn't 984 /// often possible though. If alignment is important, a more reliable approach 985 /// is to simply align all global variables and allocation instructions to 986 /// their preferred alignment from the beginning. 987 /// 988 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 989 unsigned PrefAlign, 990 const DataLayout &DL) { 991 assert(PrefAlign > Align); 992 993 V = V->stripPointerCasts(); 994 995 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 996 // TODO: ideally, computeKnownBits ought to have used 997 // AllocaInst::getAlignment() in its computation already, making 998 // the below max redundant. But, as it turns out, 999 // stripPointerCasts recurses through infinite layers of bitcasts, 1000 // while computeKnownBits is not allowed to traverse more than 6 1001 // levels. 1002 Align = std::max(AI->getAlignment(), Align); 1003 if (PrefAlign <= Align) 1004 return Align; 1005 1006 // If the preferred alignment is greater than the natural stack alignment 1007 // then don't round up. This avoids dynamic stack realignment. 1008 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1009 return Align; 1010 AI->setAlignment(PrefAlign); 1011 return PrefAlign; 1012 } 1013 1014 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1015 // TODO: as above, this shouldn't be necessary. 1016 Align = std::max(GO->getAlignment(), Align); 1017 if (PrefAlign <= Align) 1018 return Align; 1019 1020 // If there is a large requested alignment and we can, bump up the alignment 1021 // of the global. If the memory we set aside for the global may not be the 1022 // memory used by the final program then it is impossible for us to reliably 1023 // enforce the preferred alignment. 1024 if (!GO->canIncreaseAlignment()) 1025 return Align; 1026 1027 GO->setAlignment(PrefAlign); 1028 return PrefAlign; 1029 } 1030 1031 return Align; 1032 } 1033 1034 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1035 const DataLayout &DL, 1036 const Instruction *CxtI, 1037 AssumptionCache *AC, 1038 const DominatorTree *DT) { 1039 assert(V->getType()->isPointerTy() && 1040 "getOrEnforceKnownAlignment expects a pointer!"); 1041 1042 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1043 unsigned TrailZ = Known.countMinTrailingZeros(); 1044 1045 // Avoid trouble with ridiculously large TrailZ values, such as 1046 // those computed from a null pointer. 1047 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1048 1049 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1050 1051 // LLVM doesn't support alignments larger than this currently. 1052 Align = std::min(Align, +Value::MaximumAlignment); 1053 1054 if (PrefAlign > Align) 1055 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1056 1057 // We don't need to make any adjustment. 1058 return Align; 1059 } 1060 1061 ///===---------------------------------------------------------------------===// 1062 /// Dbg Intrinsic utilities 1063 /// 1064 1065 /// See if there is a dbg.value intrinsic for DIVar before I. 1066 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1067 Instruction *I) { 1068 // Since we can't guarantee that the original dbg.declare instrinsic 1069 // is removed by LowerDbgDeclare(), we need to make sure that we are 1070 // not inserting the same dbg.value intrinsic over and over. 1071 llvm::BasicBlock::InstListType::iterator PrevI(I); 1072 if (PrevI != I->getParent()->getInstList().begin()) { 1073 --PrevI; 1074 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1075 if (DVI->getValue() == I->getOperand(0) && 1076 DVI->getVariable() == DIVar && 1077 DVI->getExpression() == DIExpr) 1078 return true; 1079 } 1080 return false; 1081 } 1082 1083 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1084 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1085 DIExpression *DIExpr, 1086 PHINode *APN) { 1087 // Since we can't guarantee that the original dbg.declare instrinsic 1088 // is removed by LowerDbgDeclare(), we need to make sure that we are 1089 // not inserting the same dbg.value intrinsic over and over. 1090 SmallVector<DbgValueInst *, 1> DbgValues; 1091 findDbgValues(DbgValues, APN); 1092 for (auto *DVI : DbgValues) { 1093 assert(DVI->getValue() == APN); 1094 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1095 return true; 1096 } 1097 return false; 1098 } 1099 1100 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1101 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1102 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1103 StoreInst *SI, DIBuilder &Builder) { 1104 assert(DII->isAddressOfVariable()); 1105 auto *DIVar = DII->getVariable(); 1106 assert(DIVar && "Missing variable"); 1107 auto *DIExpr = DII->getExpression(); 1108 Value *DV = SI->getOperand(0); 1109 1110 // If an argument is zero extended then use argument directly. The ZExt 1111 // may be zapped by an optimization pass in future. 1112 Argument *ExtendedArg = nullptr; 1113 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1114 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1115 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1116 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1117 if (ExtendedArg) { 1118 // If this DII was already describing only a fragment of a variable, ensure 1119 // that fragment is appropriately narrowed here. 1120 // But if a fragment wasn't used, describe the value as the original 1121 // argument (rather than the zext or sext) so that it remains described even 1122 // if the sext/zext is optimized away. This widens the variable description, 1123 // leaving it up to the consumer to know how the smaller value may be 1124 // represented in a larger register. 1125 if (auto Fragment = DIExpr->getFragmentInfo()) { 1126 unsigned FragmentOffset = Fragment->OffsetInBits; 1127 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1128 DIExpr->elements_end() - 3); 1129 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1130 Ops.push_back(FragmentOffset); 1131 const DataLayout &DL = DII->getModule()->getDataLayout(); 1132 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1133 DIExpr = Builder.createExpression(Ops); 1134 } 1135 DV = ExtendedArg; 1136 } 1137 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1138 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1139 SI); 1140 } 1141 1142 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1143 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1144 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1145 LoadInst *LI, DIBuilder &Builder) { 1146 auto *DIVar = DII->getVariable(); 1147 auto *DIExpr = DII->getExpression(); 1148 assert(DIVar && "Missing variable"); 1149 1150 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1151 return; 1152 1153 // We are now tracking the loaded value instead of the address. In the 1154 // future if multi-location support is added to the IR, it might be 1155 // preferable to keep tracking both the loaded value and the original 1156 // address in case the alloca can not be elided. 1157 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1158 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1159 DbgValue->insertAfter(LI); 1160 } 1161 1162 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1163 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1164 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1165 PHINode *APN, DIBuilder &Builder) { 1166 auto *DIVar = DII->getVariable(); 1167 auto *DIExpr = DII->getExpression(); 1168 assert(DIVar && "Missing variable"); 1169 1170 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1171 return; 1172 1173 BasicBlock *BB = APN->getParent(); 1174 auto InsertionPt = BB->getFirstInsertionPt(); 1175 1176 // The block may be a catchswitch block, which does not have a valid 1177 // insertion point. 1178 // FIXME: Insert dbg.value markers in the successors when appropriate. 1179 if (InsertionPt != BB->end()) 1180 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1181 &*InsertionPt); 1182 } 1183 1184 /// Determine whether this alloca is either a VLA or an array. 1185 static bool isArray(AllocaInst *AI) { 1186 return AI->isArrayAllocation() || 1187 AI->getType()->getElementType()->isArrayTy(); 1188 } 1189 1190 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1191 /// of llvm.dbg.value intrinsics. 1192 bool llvm::LowerDbgDeclare(Function &F) { 1193 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1194 SmallVector<DbgDeclareInst *, 4> Dbgs; 1195 for (auto &FI : F) 1196 for (Instruction &BI : FI) 1197 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1198 Dbgs.push_back(DDI); 1199 1200 if (Dbgs.empty()) 1201 return false; 1202 1203 for (auto &I : Dbgs) { 1204 DbgDeclareInst *DDI = I; 1205 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1206 // If this is an alloca for a scalar variable, insert a dbg.value 1207 // at each load and store to the alloca and erase the dbg.declare. 1208 // The dbg.values allow tracking a variable even if it is not 1209 // stored on the stack, while the dbg.declare can only describe 1210 // the stack slot (and at a lexical-scope granularity). Later 1211 // passes will attempt to elide the stack slot. 1212 if (AI && !isArray(AI)) { 1213 for (auto &AIUse : AI->uses()) { 1214 User *U = AIUse.getUser(); 1215 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1216 if (AIUse.getOperandNo() == 1) 1217 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1218 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1219 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1220 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1221 // This is a call by-value or some other instruction that 1222 // takes a pointer to the variable. Insert a *value* 1223 // intrinsic that describes the alloca. 1224 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1225 DDI->getExpression(), DDI->getDebugLoc(), 1226 CI); 1227 } 1228 } 1229 DDI->eraseFromParent(); 1230 } 1231 } 1232 return true; 1233 } 1234 1235 /// Finds all intrinsics declaring local variables as living in the memory that 1236 /// 'V' points to. This may include a mix of dbg.declare and 1237 /// dbg.addr intrinsics. 1238 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1239 auto *L = LocalAsMetadata::getIfExists(V); 1240 if (!L) 1241 return {}; 1242 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1243 if (!MDV) 1244 return {}; 1245 1246 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1247 for (User *U : MDV->users()) { 1248 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1249 if (DII->isAddressOfVariable()) 1250 Declares.push_back(DII); 1251 } 1252 1253 return Declares; 1254 } 1255 1256 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1257 if (auto *L = LocalAsMetadata::getIfExists(V)) 1258 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1259 for (User *U : MDV->users()) 1260 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1261 DbgValues.push_back(DVI); 1262 } 1263 1264 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1265 Instruction *InsertBefore, DIBuilder &Builder, 1266 bool Deref, int Offset) { 1267 auto DbgAddrs = FindDbgAddrUses(Address); 1268 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1269 DebugLoc Loc = DII->getDebugLoc(); 1270 auto *DIVar = DII->getVariable(); 1271 auto *DIExpr = DII->getExpression(); 1272 assert(DIVar && "Missing variable"); 1273 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1274 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1275 // llvm.dbg.declare. 1276 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1277 if (DII == InsertBefore) 1278 InsertBefore = &*std::next(InsertBefore->getIterator()); 1279 DII->eraseFromParent(); 1280 } 1281 return !DbgAddrs.empty(); 1282 } 1283 1284 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1285 DIBuilder &Builder, bool Deref, int Offset) { 1286 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1287 Deref, Offset); 1288 } 1289 1290 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1291 DIBuilder &Builder, int Offset) { 1292 DebugLoc Loc = DVI->getDebugLoc(); 1293 auto *DIVar = DVI->getVariable(); 1294 auto *DIExpr = DVI->getExpression(); 1295 assert(DIVar && "Missing variable"); 1296 1297 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1298 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1299 // it and give up. 1300 if (!DIExpr || DIExpr->getNumElements() < 1 || 1301 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1302 return; 1303 1304 // Insert the offset immediately after the first deref. 1305 // We could just change the offset argument of dbg.value, but it's unsigned... 1306 if (Offset) { 1307 SmallVector<uint64_t, 4> Ops; 1308 Ops.push_back(dwarf::DW_OP_deref); 1309 DIExpression::appendOffset(Ops, Offset); 1310 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1311 DIExpr = Builder.createExpression(Ops); 1312 } 1313 1314 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1315 DVI->eraseFromParent(); 1316 } 1317 1318 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1319 DIBuilder &Builder, int Offset) { 1320 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1321 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1322 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1323 Use &U = *UI++; 1324 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1325 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1326 } 1327 } 1328 1329 void llvm::salvageDebugInfo(Instruction &I) { 1330 SmallVector<DbgValueInst *, 1> DbgValues; 1331 auto &M = *I.getModule(); 1332 1333 auto MDWrap = [&](Value *V) { 1334 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1335 }; 1336 1337 if (isa<BitCastInst>(&I)) { 1338 findDbgValues(DbgValues, &I); 1339 for (auto *DVI : DbgValues) { 1340 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1341 // to use the cast's source. 1342 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1343 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1344 } 1345 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1346 findDbgValues(DbgValues, &I); 1347 for (auto *DVI : DbgValues) { 1348 unsigned BitWidth = 1349 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1350 APInt Offset(BitWidth, 0); 1351 // Rewrite a constant GEP into a DIExpression. Since we are performing 1352 // arithmetic to compute the variable's *value* in the DIExpression, we 1353 // need to mark the expression with a DW_OP_stack_value. 1354 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1355 auto *DIExpr = DVI->getExpression(); 1356 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1357 // GEP offsets are i32 and thus always fit into an int64_t. 1358 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1359 Offset.getSExtValue(), 1360 DIExpression::WithStackValue); 1361 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1362 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1363 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1364 } 1365 } 1366 } else if (isa<LoadInst>(&I)) { 1367 findDbgValues(DbgValues, &I); 1368 for (auto *DVI : DbgValues) { 1369 // Rewrite the load into DW_OP_deref. 1370 auto *DIExpr = DVI->getExpression(); 1371 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1372 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1373 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1374 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1375 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1376 } 1377 } 1378 } 1379 1380 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1381 unsigned NumDeadInst = 0; 1382 // Delete the instructions backwards, as it has a reduced likelihood of 1383 // having to update as many def-use and use-def chains. 1384 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1385 while (EndInst != &BB->front()) { 1386 // Delete the next to last instruction. 1387 Instruction *Inst = &*--EndInst->getIterator(); 1388 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1389 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1390 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1391 EndInst = Inst; 1392 continue; 1393 } 1394 if (!isa<DbgInfoIntrinsic>(Inst)) 1395 ++NumDeadInst; 1396 Inst->eraseFromParent(); 1397 } 1398 return NumDeadInst; 1399 } 1400 1401 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1402 bool PreserveLCSSA) { 1403 BasicBlock *BB = I->getParent(); 1404 // Loop over all of the successors, removing BB's entry from any PHI 1405 // nodes. 1406 for (BasicBlock *Successor : successors(BB)) 1407 Successor->removePredecessor(BB, PreserveLCSSA); 1408 1409 // Insert a call to llvm.trap right before this. This turns the undefined 1410 // behavior into a hard fail instead of falling through into random code. 1411 if (UseLLVMTrap) { 1412 Function *TrapFn = 1413 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1414 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1415 CallTrap->setDebugLoc(I->getDebugLoc()); 1416 } 1417 new UnreachableInst(I->getContext(), I); 1418 1419 // All instructions after this are dead. 1420 unsigned NumInstrsRemoved = 0; 1421 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1422 while (BBI != BBE) { 1423 if (!BBI->use_empty()) 1424 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1425 BB->getInstList().erase(BBI++); 1426 ++NumInstrsRemoved; 1427 } 1428 return NumInstrsRemoved; 1429 } 1430 1431 /// changeToCall - Convert the specified invoke into a normal call. 1432 static void changeToCall(InvokeInst *II) { 1433 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1434 SmallVector<OperandBundleDef, 1> OpBundles; 1435 II->getOperandBundlesAsDefs(OpBundles); 1436 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1437 "", II); 1438 NewCall->takeName(II); 1439 NewCall->setCallingConv(II->getCallingConv()); 1440 NewCall->setAttributes(II->getAttributes()); 1441 NewCall->setDebugLoc(II->getDebugLoc()); 1442 II->replaceAllUsesWith(NewCall); 1443 1444 // Follow the call by a branch to the normal destination. 1445 BranchInst::Create(II->getNormalDest(), II); 1446 1447 // Update PHI nodes in the unwind destination 1448 II->getUnwindDest()->removePredecessor(II->getParent()); 1449 II->eraseFromParent(); 1450 } 1451 1452 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1453 BasicBlock *UnwindEdge) { 1454 BasicBlock *BB = CI->getParent(); 1455 1456 // Convert this function call into an invoke instruction. First, split the 1457 // basic block. 1458 BasicBlock *Split = 1459 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1460 1461 // Delete the unconditional branch inserted by splitBasicBlock 1462 BB->getInstList().pop_back(); 1463 1464 // Create the new invoke instruction. 1465 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1466 SmallVector<OperandBundleDef, 1> OpBundles; 1467 1468 CI->getOperandBundlesAsDefs(OpBundles); 1469 1470 // Note: we're round tripping operand bundles through memory here, and that 1471 // can potentially be avoided with a cleverer API design that we do not have 1472 // as of this time. 1473 1474 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1475 InvokeArgs, OpBundles, CI->getName(), BB); 1476 II->setDebugLoc(CI->getDebugLoc()); 1477 II->setCallingConv(CI->getCallingConv()); 1478 II->setAttributes(CI->getAttributes()); 1479 1480 // Make sure that anything using the call now uses the invoke! This also 1481 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1482 CI->replaceAllUsesWith(II); 1483 1484 // Delete the original call 1485 Split->getInstList().pop_front(); 1486 return Split; 1487 } 1488 1489 static bool markAliveBlocks(Function &F, 1490 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1491 1492 SmallVector<BasicBlock*, 128> Worklist; 1493 BasicBlock *BB = &F.front(); 1494 Worklist.push_back(BB); 1495 Reachable.insert(BB); 1496 bool Changed = false; 1497 do { 1498 BB = Worklist.pop_back_val(); 1499 1500 // Do a quick scan of the basic block, turning any obviously unreachable 1501 // instructions into LLVM unreachable insts. The instruction combining pass 1502 // canonicalizes unreachable insts into stores to null or undef. 1503 for (Instruction &I : *BB) { 1504 // Assumptions that are known to be false are equivalent to unreachable. 1505 // Also, if the condition is undefined, then we make the choice most 1506 // beneficial to the optimizer, and choose that to also be unreachable. 1507 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1508 if (II->getIntrinsicID() == Intrinsic::assume) { 1509 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1510 // Don't insert a call to llvm.trap right before the unreachable. 1511 changeToUnreachable(II, false); 1512 Changed = true; 1513 break; 1514 } 1515 } 1516 1517 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1518 // A call to the guard intrinsic bails out of the current compilation 1519 // unit if the predicate passed to it is false. If the predicate is a 1520 // constant false, then we know the guard will bail out of the current 1521 // compile unconditionally, so all code following it is dead. 1522 // 1523 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1524 // guards to treat `undef` as `false` since a guard on `undef` can 1525 // still be useful for widening. 1526 if (match(II->getArgOperand(0), m_Zero())) 1527 if (!isa<UnreachableInst>(II->getNextNode())) { 1528 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1529 Changed = true; 1530 break; 1531 } 1532 } 1533 } 1534 1535 if (auto *CI = dyn_cast<CallInst>(&I)) { 1536 Value *Callee = CI->getCalledValue(); 1537 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1538 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1539 Changed = true; 1540 break; 1541 } 1542 if (CI->doesNotReturn()) { 1543 // If we found a call to a no-return function, insert an unreachable 1544 // instruction after it. Make sure there isn't *already* one there 1545 // though. 1546 if (!isa<UnreachableInst>(CI->getNextNode())) { 1547 // Don't insert a call to llvm.trap right before the unreachable. 1548 changeToUnreachable(CI->getNextNode(), false); 1549 Changed = true; 1550 } 1551 break; 1552 } 1553 } 1554 1555 // Store to undef and store to null are undefined and used to signal that 1556 // they should be changed to unreachable by passes that can't modify the 1557 // CFG. 1558 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1559 // Don't touch volatile stores. 1560 if (SI->isVolatile()) continue; 1561 1562 Value *Ptr = SI->getOperand(1); 1563 1564 if (isa<UndefValue>(Ptr) || 1565 (isa<ConstantPointerNull>(Ptr) && 1566 SI->getPointerAddressSpace() == 0)) { 1567 changeToUnreachable(SI, true); 1568 Changed = true; 1569 break; 1570 } 1571 } 1572 } 1573 1574 TerminatorInst *Terminator = BB->getTerminator(); 1575 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1576 // Turn invokes that call 'nounwind' functions into ordinary calls. 1577 Value *Callee = II->getCalledValue(); 1578 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1579 changeToUnreachable(II, true); 1580 Changed = true; 1581 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1582 if (II->use_empty() && II->onlyReadsMemory()) { 1583 // jump to the normal destination branch. 1584 BranchInst::Create(II->getNormalDest(), II); 1585 II->getUnwindDest()->removePredecessor(II->getParent()); 1586 II->eraseFromParent(); 1587 } else 1588 changeToCall(II); 1589 Changed = true; 1590 } 1591 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1592 // Remove catchpads which cannot be reached. 1593 struct CatchPadDenseMapInfo { 1594 static CatchPadInst *getEmptyKey() { 1595 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1596 } 1597 static CatchPadInst *getTombstoneKey() { 1598 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1599 } 1600 static unsigned getHashValue(CatchPadInst *CatchPad) { 1601 return static_cast<unsigned>(hash_combine_range( 1602 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1603 } 1604 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1605 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1606 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1607 return LHS == RHS; 1608 return LHS->isIdenticalTo(RHS); 1609 } 1610 }; 1611 1612 // Set of unique CatchPads. 1613 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1614 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1615 HandlerSet; 1616 detail::DenseSetEmpty Empty; 1617 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1618 E = CatchSwitch->handler_end(); 1619 I != E; ++I) { 1620 BasicBlock *HandlerBB = *I; 1621 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1622 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1623 CatchSwitch->removeHandler(I); 1624 --I; 1625 --E; 1626 Changed = true; 1627 } 1628 } 1629 } 1630 1631 Changed |= ConstantFoldTerminator(BB, true); 1632 for (BasicBlock *Successor : successors(BB)) 1633 if (Reachable.insert(Successor).second) 1634 Worklist.push_back(Successor); 1635 } while (!Worklist.empty()); 1636 return Changed; 1637 } 1638 1639 void llvm::removeUnwindEdge(BasicBlock *BB) { 1640 TerminatorInst *TI = BB->getTerminator(); 1641 1642 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1643 changeToCall(II); 1644 return; 1645 } 1646 1647 TerminatorInst *NewTI; 1648 BasicBlock *UnwindDest; 1649 1650 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1651 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1652 UnwindDest = CRI->getUnwindDest(); 1653 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1654 auto *NewCatchSwitch = CatchSwitchInst::Create( 1655 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1656 CatchSwitch->getName(), CatchSwitch); 1657 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1658 NewCatchSwitch->addHandler(PadBB); 1659 1660 NewTI = NewCatchSwitch; 1661 UnwindDest = CatchSwitch->getUnwindDest(); 1662 } else { 1663 llvm_unreachable("Could not find unwind successor"); 1664 } 1665 1666 NewTI->takeName(TI); 1667 NewTI->setDebugLoc(TI->getDebugLoc()); 1668 UnwindDest->removePredecessor(BB); 1669 TI->replaceAllUsesWith(NewTI); 1670 TI->eraseFromParent(); 1671 } 1672 1673 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1674 /// if they are in a dead cycle. Return true if a change was made, false 1675 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1676 /// after modifying the CFG. 1677 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1678 SmallPtrSet<BasicBlock*, 16> Reachable; 1679 bool Changed = markAliveBlocks(F, Reachable); 1680 1681 // If there are unreachable blocks in the CFG... 1682 if (Reachable.size() == F.size()) 1683 return Changed; 1684 1685 assert(Reachable.size() < F.size()); 1686 NumRemoved += F.size()-Reachable.size(); 1687 1688 // Loop over all of the basic blocks that are not reachable, dropping all of 1689 // their internal references... 1690 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1691 if (Reachable.count(&*BB)) 1692 continue; 1693 1694 for (BasicBlock *Successor : successors(&*BB)) 1695 if (Reachable.count(Successor)) 1696 Successor->removePredecessor(&*BB); 1697 if (LVI) 1698 LVI->eraseBlock(&*BB); 1699 BB->dropAllReferences(); 1700 } 1701 1702 for (Function::iterator I = ++F.begin(); I != F.end();) 1703 if (!Reachable.count(&*I)) 1704 I = F.getBasicBlockList().erase(I); 1705 else 1706 ++I; 1707 1708 return true; 1709 } 1710 1711 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1712 ArrayRef<unsigned> KnownIDs) { 1713 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1714 K->dropUnknownNonDebugMetadata(KnownIDs); 1715 K->getAllMetadataOtherThanDebugLoc(Metadata); 1716 for (const auto &MD : Metadata) { 1717 unsigned Kind = MD.first; 1718 MDNode *JMD = J->getMetadata(Kind); 1719 MDNode *KMD = MD.second; 1720 1721 switch (Kind) { 1722 default: 1723 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1724 break; 1725 case LLVMContext::MD_dbg: 1726 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1727 case LLVMContext::MD_tbaa: 1728 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1729 break; 1730 case LLVMContext::MD_alias_scope: 1731 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1732 break; 1733 case LLVMContext::MD_noalias: 1734 case LLVMContext::MD_mem_parallel_loop_access: 1735 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1736 break; 1737 case LLVMContext::MD_range: 1738 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1739 break; 1740 case LLVMContext::MD_fpmath: 1741 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1742 break; 1743 case LLVMContext::MD_invariant_load: 1744 // Only set the !invariant.load if it is present in both instructions. 1745 K->setMetadata(Kind, JMD); 1746 break; 1747 case LLVMContext::MD_nonnull: 1748 // Only set the !nonnull if it is present in both instructions. 1749 K->setMetadata(Kind, JMD); 1750 break; 1751 case LLVMContext::MD_invariant_group: 1752 // Preserve !invariant.group in K. 1753 break; 1754 case LLVMContext::MD_align: 1755 K->setMetadata(Kind, 1756 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1757 break; 1758 case LLVMContext::MD_dereferenceable: 1759 case LLVMContext::MD_dereferenceable_or_null: 1760 K->setMetadata(Kind, 1761 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1762 break; 1763 } 1764 } 1765 // Set !invariant.group from J if J has it. If both instructions have it 1766 // then we will just pick it from J - even when they are different. 1767 // Also make sure that K is load or store - f.e. combining bitcast with load 1768 // could produce bitcast with invariant.group metadata, which is invalid. 1769 // FIXME: we should try to preserve both invariant.group md if they are 1770 // different, but right now instruction can only have one invariant.group. 1771 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1772 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1773 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1774 } 1775 1776 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1777 unsigned KnownIDs[] = { 1778 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1779 LLVMContext::MD_noalias, LLVMContext::MD_range, 1780 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1781 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1782 LLVMContext::MD_dereferenceable, 1783 LLVMContext::MD_dereferenceable_or_null}; 1784 combineMetadata(K, J, KnownIDs); 1785 } 1786 1787 template <typename RootType, typename DominatesFn> 1788 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1789 const RootType &Root, 1790 const DominatesFn &Dominates) { 1791 assert(From->getType() == To->getType()); 1792 1793 unsigned Count = 0; 1794 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1795 UI != UE;) { 1796 Use &U = *UI++; 1797 if (!Dominates(Root, U)) 1798 continue; 1799 U.set(To); 1800 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1801 << *To << " in " << *U << "\n"); 1802 ++Count; 1803 } 1804 return Count; 1805 } 1806 1807 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1808 assert(From->getType() == To->getType()); 1809 auto *BB = From->getParent(); 1810 unsigned Count = 0; 1811 1812 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1813 UI != UE;) { 1814 Use &U = *UI++; 1815 auto *I = cast<Instruction>(U.getUser()); 1816 if (I->getParent() == BB) 1817 continue; 1818 U.set(To); 1819 ++Count; 1820 } 1821 return Count; 1822 } 1823 1824 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1825 DominatorTree &DT, 1826 const BasicBlockEdge &Root) { 1827 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1828 return DT.dominates(Root, U); 1829 }; 1830 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1831 } 1832 1833 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1834 DominatorTree &DT, 1835 const BasicBlock *BB) { 1836 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1837 auto *I = cast<Instruction>(U.getUser())->getParent(); 1838 return DT.properlyDominates(BB, I); 1839 }; 1840 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1841 } 1842 1843 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 1844 const TargetLibraryInfo &TLI) { 1845 // Check if the function is specifically marked as a gc leaf function. 1846 if (CS.hasFnAttr("gc-leaf-function")) 1847 return true; 1848 if (const Function *F = CS.getCalledFunction()) { 1849 if (F->hasFnAttribute("gc-leaf-function")) 1850 return true; 1851 1852 if (auto IID = F->getIntrinsicID()) 1853 // Most LLVM intrinsics do not take safepoints. 1854 return IID != Intrinsic::experimental_gc_statepoint && 1855 IID != Intrinsic::experimental_deoptimize; 1856 } 1857 1858 // Lib calls can be materialized by some passes, and won't be 1859 // marked as 'gc-leaf-function.' All available Libcalls are 1860 // GC-leaf. 1861 LibFunc LF; 1862 if (TLI.getLibFunc(CS, LF)) { 1863 return TLI.has(LF); 1864 } 1865 1866 return false; 1867 } 1868 1869 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 1870 LoadInst &NewLI) { 1871 auto *NewTy = NewLI.getType(); 1872 1873 // This only directly applies if the new type is also a pointer. 1874 if (NewTy->isPointerTy()) { 1875 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 1876 return; 1877 } 1878 1879 // The only other translation we can do is to integral loads with !range 1880 // metadata. 1881 if (!NewTy->isIntegerTy()) 1882 return; 1883 1884 MDBuilder MDB(NewLI.getContext()); 1885 const Value *Ptr = OldLI.getPointerOperand(); 1886 auto *ITy = cast<IntegerType>(NewTy); 1887 auto *NullInt = ConstantExpr::getPtrToInt( 1888 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 1889 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 1890 NewLI.setMetadata(LLVMContext::MD_range, 1891 MDB.createRange(NonNullInt, NullInt)); 1892 } 1893 1894 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 1895 MDNode *N, LoadInst &NewLI) { 1896 auto *NewTy = NewLI.getType(); 1897 1898 // Give up unless it is converted to a pointer where there is a single very 1899 // valuable mapping we can do reliably. 1900 // FIXME: It would be nice to propagate this in more ways, but the type 1901 // conversions make it hard. 1902 if (!NewTy->isPointerTy()) 1903 return; 1904 1905 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 1906 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 1907 MDNode *NN = MDNode::get(OldLI.getContext(), None); 1908 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 1909 } 1910 } 1911 1912 namespace { 1913 /// A potential constituent of a bitreverse or bswap expression. See 1914 /// collectBitParts for a fuller explanation. 1915 struct BitPart { 1916 BitPart(Value *P, unsigned BW) : Provider(P) { 1917 Provenance.resize(BW); 1918 } 1919 1920 /// The Value that this is a bitreverse/bswap of. 1921 Value *Provider; 1922 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1923 /// in Provider becomes bit B in the result of this expression. 1924 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1925 1926 enum { Unset = -1 }; 1927 }; 1928 } // end anonymous namespace 1929 1930 /// Analyze the specified subexpression and see if it is capable of providing 1931 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1932 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1933 /// the output of the expression came from a corresponding bit in some other 1934 /// value. This function is recursive, and the end result is a mapping of 1935 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1936 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1937 /// 1938 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1939 /// that the expression deposits the low byte of %X into the high byte of the 1940 /// result and that all other bits are zero. This expression is accepted and a 1941 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1942 /// [0-7]. 1943 /// 1944 /// To avoid revisiting values, the BitPart results are memoized into the 1945 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1946 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1947 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1948 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1949 /// type instead to provide the same functionality. 1950 /// 1951 /// Because we pass around references into \c BPS, we must use a container that 1952 /// does not invalidate internal references (std::map instead of DenseMap). 1953 /// 1954 static const Optional<BitPart> & 1955 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1956 std::map<Value *, Optional<BitPart>> &BPS) { 1957 auto I = BPS.find(V); 1958 if (I != BPS.end()) 1959 return I->second; 1960 1961 auto &Result = BPS[V] = None; 1962 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1963 1964 if (Instruction *I = dyn_cast<Instruction>(V)) { 1965 // If this is an or instruction, it may be an inner node of the bswap. 1966 if (I->getOpcode() == Instruction::Or) { 1967 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1968 MatchBitReversals, BPS); 1969 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1970 MatchBitReversals, BPS); 1971 if (!A || !B) 1972 return Result; 1973 1974 // Try and merge the two together. 1975 if (!A->Provider || A->Provider != B->Provider) 1976 return Result; 1977 1978 Result = BitPart(A->Provider, BitWidth); 1979 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1980 if (A->Provenance[i] != BitPart::Unset && 1981 B->Provenance[i] != BitPart::Unset && 1982 A->Provenance[i] != B->Provenance[i]) 1983 return Result = None; 1984 1985 if (A->Provenance[i] == BitPart::Unset) 1986 Result->Provenance[i] = B->Provenance[i]; 1987 else 1988 Result->Provenance[i] = A->Provenance[i]; 1989 } 1990 1991 return Result; 1992 } 1993 1994 // If this is a logical shift by a constant, recurse then shift the result. 1995 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1996 unsigned BitShift = 1997 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1998 // Ensure the shift amount is defined. 1999 if (BitShift > BitWidth) 2000 return Result; 2001 2002 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2003 MatchBitReversals, BPS); 2004 if (!Res) 2005 return Result; 2006 Result = Res; 2007 2008 // Perform the "shift" on BitProvenance. 2009 auto &P = Result->Provenance; 2010 if (I->getOpcode() == Instruction::Shl) { 2011 P.erase(std::prev(P.end(), BitShift), P.end()); 2012 P.insert(P.begin(), BitShift, BitPart::Unset); 2013 } else { 2014 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2015 P.insert(P.end(), BitShift, BitPart::Unset); 2016 } 2017 2018 return Result; 2019 } 2020 2021 // If this is a logical 'and' with a mask that clears bits, recurse then 2022 // unset the appropriate bits. 2023 if (I->getOpcode() == Instruction::And && 2024 isa<ConstantInt>(I->getOperand(1))) { 2025 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2026 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2027 2028 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2029 // early exit. 2030 unsigned NumMaskedBits = AndMask.countPopulation(); 2031 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2032 return Result; 2033 2034 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2035 MatchBitReversals, BPS); 2036 if (!Res) 2037 return Result; 2038 Result = Res; 2039 2040 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2041 // If the AndMask is zero for this bit, clear the bit. 2042 if ((AndMask & Bit) == 0) 2043 Result->Provenance[i] = BitPart::Unset; 2044 return Result; 2045 } 2046 2047 // If this is a zext instruction zero extend the result. 2048 if (I->getOpcode() == Instruction::ZExt) { 2049 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2050 MatchBitReversals, BPS); 2051 if (!Res) 2052 return Result; 2053 2054 Result = BitPart(Res->Provider, BitWidth); 2055 auto NarrowBitWidth = 2056 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2057 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2058 Result->Provenance[i] = Res->Provenance[i]; 2059 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2060 Result->Provenance[i] = BitPart::Unset; 2061 return Result; 2062 } 2063 } 2064 2065 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2066 // the input value to the bswap/bitreverse. 2067 Result = BitPart(V, BitWidth); 2068 for (unsigned i = 0; i < BitWidth; ++i) 2069 Result->Provenance[i] = i; 2070 return Result; 2071 } 2072 2073 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2074 unsigned BitWidth) { 2075 if (From % 8 != To % 8) 2076 return false; 2077 // Convert from bit indices to byte indices and check for a byte reversal. 2078 From >>= 3; 2079 To >>= 3; 2080 BitWidth >>= 3; 2081 return From == BitWidth - To - 1; 2082 } 2083 2084 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2085 unsigned BitWidth) { 2086 return From == BitWidth - To - 1; 2087 } 2088 2089 /// Given an OR instruction, check to see if this is a bitreverse 2090 /// idiom. If so, insert the new intrinsic and return true. 2091 bool llvm::recognizeBSwapOrBitReverseIdiom( 2092 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2093 SmallVectorImpl<Instruction *> &InsertedInsts) { 2094 if (Operator::getOpcode(I) != Instruction::Or) 2095 return false; 2096 if (!MatchBSwaps && !MatchBitReversals) 2097 return false; 2098 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2099 if (!ITy || ITy->getBitWidth() > 128) 2100 return false; // Can't do vectors or integers > 128 bits. 2101 unsigned BW = ITy->getBitWidth(); 2102 2103 unsigned DemandedBW = BW; 2104 IntegerType *DemandedTy = ITy; 2105 if (I->hasOneUse()) { 2106 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2107 DemandedTy = cast<IntegerType>(Trunc->getType()); 2108 DemandedBW = DemandedTy->getBitWidth(); 2109 } 2110 } 2111 2112 // Try to find all the pieces corresponding to the bswap. 2113 std::map<Value *, Optional<BitPart>> BPS; 2114 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2115 if (!Res) 2116 return false; 2117 auto &BitProvenance = Res->Provenance; 2118 2119 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2120 // only byteswap values with an even number of bytes. 2121 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2122 for (unsigned i = 0; i < DemandedBW; ++i) { 2123 OKForBSwap &= 2124 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2125 OKForBitReverse &= 2126 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2127 } 2128 2129 Intrinsic::ID Intrin; 2130 if (OKForBSwap && MatchBSwaps) 2131 Intrin = Intrinsic::bswap; 2132 else if (OKForBitReverse && MatchBitReversals) 2133 Intrin = Intrinsic::bitreverse; 2134 else 2135 return false; 2136 2137 if (ITy != DemandedTy) { 2138 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2139 Value *Provider = Res->Provider; 2140 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2141 // We may need to truncate the provider. 2142 if (DemandedTy != ProviderTy) { 2143 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2144 "trunc", I); 2145 InsertedInsts.push_back(Trunc); 2146 Provider = Trunc; 2147 } 2148 auto *CI = CallInst::Create(F, Provider, "rev", I); 2149 InsertedInsts.push_back(CI); 2150 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2151 InsertedInsts.push_back(ExtInst); 2152 return true; 2153 } 2154 2155 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2156 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2157 return true; 2158 } 2159 2160 // CodeGen has special handling for some string functions that may replace 2161 // them with target-specific intrinsics. Since that'd skip our interceptors 2162 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2163 // we mark affected calls as NoBuiltin, which will disable optimization 2164 // in CodeGen. 2165 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2166 CallInst *CI, const TargetLibraryInfo *TLI) { 2167 Function *F = CI->getCalledFunction(); 2168 LibFunc Func; 2169 if (F && !F->hasLocalLinkage() && F->hasName() && 2170 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2171 !F->doesNotAccessMemory()) 2172 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2173 } 2174 2175 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2176 // We can't have a PHI with a metadata type. 2177 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2178 return false; 2179 2180 // Early exit. 2181 if (!isa<Constant>(I->getOperand(OpIdx))) 2182 return true; 2183 2184 switch (I->getOpcode()) { 2185 default: 2186 return true; 2187 case Instruction::Call: 2188 case Instruction::Invoke: 2189 // Can't handle inline asm. Skip it. 2190 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2191 return false; 2192 // Many arithmetic intrinsics have no issue taking a 2193 // variable, however it's hard to distingish these from 2194 // specials such as @llvm.frameaddress that require a constant. 2195 if (isa<IntrinsicInst>(I)) 2196 return false; 2197 2198 // Constant bundle operands may need to retain their constant-ness for 2199 // correctness. 2200 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2201 return false; 2202 return true; 2203 case Instruction::ShuffleVector: 2204 // Shufflevector masks are constant. 2205 return OpIdx != 2; 2206 case Instruction::Switch: 2207 case Instruction::ExtractValue: 2208 // All operands apart from the first are constant. 2209 return OpIdx == 0; 2210 case Instruction::InsertValue: 2211 // All operands apart from the first and the second are constant. 2212 return OpIdx < 2; 2213 case Instruction::Alloca: 2214 // Static allocas (constant size in the entry block) are handled by 2215 // prologue/epilogue insertion so they're free anyway. We definitely don't 2216 // want to make them non-constant. 2217 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2218 case Instruction::GetElementPtr: 2219 if (OpIdx == 0) 2220 return true; 2221 gep_type_iterator It = gep_type_begin(I); 2222 for (auto E = std::next(It, OpIdx); It != E; ++It) 2223 if (It.isStruct()) 2224 return false; 2225 return true; 2226 } 2227 } 2228