1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/GlobalAlias.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Intrinsics.h" 22 #include "llvm/IntrinsicInst.h" 23 #include "llvm/Metadata.h" 24 #include "llvm/Operator.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/Analysis/DebugInfo.h" 28 #include "llvm/Analysis/DIBuilder.h" 29 #include "llvm/Analysis/Dominators.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ProfileInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/CFG.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include "llvm/Support/IRBuilder.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/ValueHandle.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // Local constant propagation. 45 // 46 47 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 48 /// constant value, convert it into an unconditional branch to the constant 49 /// destination. This is a nontrivial operation because the successors of this 50 /// basic block must have their PHI nodes updated. 51 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 52 /// conditions and indirectbr addresses this might make dead if 53 /// DeleteDeadConditions is true. 54 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) { 55 TerminatorInst *T = BB->getTerminator(); 56 IRBuilder<> Builder(T); 57 58 // Branch - See if we are conditional jumping on constant 59 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 60 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 61 BasicBlock *Dest1 = BI->getSuccessor(0); 62 BasicBlock *Dest2 = BI->getSuccessor(1); 63 64 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 65 // Are we branching on constant? 66 // YES. Change to unconditional branch... 67 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 68 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 69 70 //cerr << "Function: " << T->getParent()->getParent() 71 // << "\nRemoving branch from " << T->getParent() 72 // << "\n\nTo: " << OldDest << endl; 73 74 // Let the basic block know that we are letting go of it. Based on this, 75 // it will adjust it's PHI nodes. 76 OldDest->removePredecessor(BB); 77 78 // Replace the conditional branch with an unconditional one. 79 Builder.CreateBr(Destination); 80 BI->eraseFromParent(); 81 return true; 82 } 83 84 if (Dest2 == Dest1) { // Conditional branch to same location? 85 // This branch matches something like this: 86 // br bool %cond, label %Dest, label %Dest 87 // and changes it into: br label %Dest 88 89 // Let the basic block know that we are letting go of one copy of it. 90 assert(BI->getParent() && "Terminator not inserted in block!"); 91 Dest1->removePredecessor(BI->getParent()); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Dest1); 95 Value *Cond = BI->getCondition(); 96 BI->eraseFromParent(); 97 if (DeleteDeadConditions) 98 RecursivelyDeleteTriviallyDeadInstructions(Cond); 99 return true; 100 } 101 return false; 102 } 103 104 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 105 // If we are switching on a constant, we can convert the switch into a 106 // single branch instruction! 107 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 108 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest 109 BasicBlock *DefaultDest = TheOnlyDest; 110 assert(TheOnlyDest == SI->getDefaultDest() && 111 "Default destination is not successor #0?"); 112 113 // Figure out which case it goes to. 114 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { 115 // Found case matching a constant operand? 116 if (SI->getSuccessorValue(i) == CI) { 117 TheOnlyDest = SI->getSuccessor(i); 118 break; 119 } 120 121 // Check to see if this branch is going to the same place as the default 122 // dest. If so, eliminate it as an explicit compare. 123 if (SI->getSuccessor(i) == DefaultDest) { 124 // Remove this entry. 125 DefaultDest->removePredecessor(SI->getParent()); 126 SI->removeCase(i); 127 --i; --e; // Don't skip an entry... 128 continue; 129 } 130 131 // Otherwise, check to see if the switch only branches to one destination. 132 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 133 // destinations. 134 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; 135 } 136 137 if (CI && !TheOnlyDest) { 138 // Branching on a constant, but not any of the cases, go to the default 139 // successor. 140 TheOnlyDest = SI->getDefaultDest(); 141 } 142 143 // If we found a single destination that we can fold the switch into, do so 144 // now. 145 if (TheOnlyDest) { 146 // Insert the new branch. 147 Builder.CreateBr(TheOnlyDest); 148 BasicBlock *BB = SI->getParent(); 149 150 // Remove entries from PHI nodes which we no longer branch to... 151 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 152 // Found case matching a constant operand? 153 BasicBlock *Succ = SI->getSuccessor(i); 154 if (Succ == TheOnlyDest) 155 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 156 else 157 Succ->removePredecessor(BB); 158 } 159 160 // Delete the old switch. 161 Value *Cond = SI->getCondition(); 162 SI->eraseFromParent(); 163 if (DeleteDeadConditions) 164 RecursivelyDeleteTriviallyDeadInstructions(Cond); 165 return true; 166 } 167 168 if (SI->getNumSuccessors() == 2) { 169 // Otherwise, we can fold this switch into a conditional branch 170 // instruction if it has only one non-default destination. 171 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 172 SI->getSuccessorValue(1), "cond"); 173 174 // Insert the new branch. 175 Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0)); 176 177 // Delete the old switch. 178 SI->eraseFromParent(); 179 return true; 180 } 181 return false; 182 } 183 184 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 185 // indirectbr blockaddress(@F, @BB) -> br label @BB 186 if (BlockAddress *BA = 187 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 188 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 189 // Insert the new branch. 190 Builder.CreateBr(TheOnlyDest); 191 192 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 193 if (IBI->getDestination(i) == TheOnlyDest) 194 TheOnlyDest = 0; 195 else 196 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 197 } 198 Value *Address = IBI->getAddress(); 199 IBI->eraseFromParent(); 200 if (DeleteDeadConditions) 201 RecursivelyDeleteTriviallyDeadInstructions(Address); 202 203 // If we didn't find our destination in the IBI successor list, then we 204 // have undefined behavior. Replace the unconditional branch with an 205 // 'unreachable' instruction. 206 if (TheOnlyDest) { 207 BB->getTerminator()->eraseFromParent(); 208 new UnreachableInst(BB->getContext(), BB); 209 } 210 211 return true; 212 } 213 } 214 215 return false; 216 } 217 218 219 //===----------------------------------------------------------------------===// 220 // Local dead code elimination. 221 // 222 223 /// isInstructionTriviallyDead - Return true if the result produced by the 224 /// instruction is not used, and the instruction has no side effects. 225 /// 226 bool llvm::isInstructionTriviallyDead(Instruction *I) { 227 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 228 229 // We don't want debug info removed by anything this general, unless 230 // debug info is empty. 231 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 232 if (DDI->getAddress()) 233 return false; 234 return true; 235 } 236 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 237 if (DVI->getValue()) 238 return false; 239 return true; 240 } 241 242 if (!I->mayHaveSideEffects()) return true; 243 244 // Special case intrinsics that "may have side effects" but can be deleted 245 // when dead. 246 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 247 // Safe to delete llvm.stacksave if dead. 248 if (II->getIntrinsicID() == Intrinsic::stacksave) 249 return true; 250 251 // Lifetime intrinsics are dead when their right-hand is undef. 252 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 253 II->getIntrinsicID() == Intrinsic::lifetime_end) 254 return isa<UndefValue>(II->getArgOperand(1)); 255 } 256 return false; 257 } 258 259 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 260 /// trivially dead instruction, delete it. If that makes any of its operands 261 /// trivially dead, delete them too, recursively. Return true if any 262 /// instructions were deleted. 263 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { 264 Instruction *I = dyn_cast<Instruction>(V); 265 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) 266 return false; 267 268 SmallVector<Instruction*, 16> DeadInsts; 269 DeadInsts.push_back(I); 270 271 do { 272 I = DeadInsts.pop_back_val(); 273 274 // Null out all of the instruction's operands to see if any operand becomes 275 // dead as we go. 276 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 277 Value *OpV = I->getOperand(i); 278 I->setOperand(i, 0); 279 280 if (!OpV->use_empty()) continue; 281 282 // If the operand is an instruction that became dead as we nulled out the 283 // operand, and if it is 'trivially' dead, delete it in a future loop 284 // iteration. 285 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 286 if (isInstructionTriviallyDead(OpI)) 287 DeadInsts.push_back(OpI); 288 } 289 290 I->eraseFromParent(); 291 } while (!DeadInsts.empty()); 292 293 return true; 294 } 295 296 /// areAllUsesEqual - Check whether the uses of a value are all the same. 297 /// This is similar to Instruction::hasOneUse() except this will also return 298 /// true when there are no uses or multiple uses that all refer to the same 299 /// value. 300 static bool areAllUsesEqual(Instruction *I) { 301 Value::use_iterator UI = I->use_begin(); 302 Value::use_iterator UE = I->use_end(); 303 if (UI == UE) 304 return true; 305 306 User *TheUse = *UI; 307 for (++UI; UI != UE; ++UI) { 308 if (*UI != TheUse) 309 return false; 310 } 311 return true; 312 } 313 314 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 315 /// dead PHI node, due to being a def-use chain of single-use nodes that 316 /// either forms a cycle or is terminated by a trivially dead instruction, 317 /// delete it. If that makes any of its operands trivially dead, delete them 318 /// too, recursively. Return true if a change was made. 319 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { 320 SmallPtrSet<Instruction*, 4> Visited; 321 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 322 I = cast<Instruction>(*I->use_begin())) { 323 if (I->use_empty()) 324 return RecursivelyDeleteTriviallyDeadInstructions(I); 325 326 // If we find an instruction more than once, we're on a cycle that 327 // won't prove fruitful. 328 if (!Visited.insert(I)) { 329 // Break the cycle and delete the instruction and its operands. 330 I->replaceAllUsesWith(UndefValue::get(I->getType())); 331 (void)RecursivelyDeleteTriviallyDeadInstructions(I); 332 return true; 333 } 334 } 335 return false; 336 } 337 338 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 339 /// simplify any instructions in it and recursively delete dead instructions. 340 /// 341 /// This returns true if it changed the code, note that it can delete 342 /// instructions in other blocks as well in this block. 343 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) { 344 bool MadeChange = false; 345 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 346 Instruction *Inst = BI++; 347 348 if (Value *V = SimplifyInstruction(Inst, TD)) { 349 WeakVH BIHandle(BI); 350 ReplaceAndSimplifyAllUses(Inst, V, TD); 351 MadeChange = true; 352 if (BIHandle != BI) 353 BI = BB->begin(); 354 continue; 355 } 356 357 if (Inst->isTerminator()) 358 break; 359 360 WeakVH BIHandle(BI); 361 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst); 362 if (BIHandle != BI) 363 BI = BB->begin(); 364 } 365 return MadeChange; 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Control Flow Graph Restructuring. 370 // 371 372 373 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 374 /// method is called when we're about to delete Pred as a predecessor of BB. If 375 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 376 /// 377 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 378 /// nodes that collapse into identity values. For example, if we have: 379 /// x = phi(1, 0, 0, 0) 380 /// y = and x, z 381 /// 382 /// .. and delete the predecessor corresponding to the '1', this will attempt to 383 /// recursively fold the and to 0. 384 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 385 TargetData *TD) { 386 // This only adjusts blocks with PHI nodes. 387 if (!isa<PHINode>(BB->begin())) 388 return; 389 390 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 391 // them down. This will leave us with single entry phi nodes and other phis 392 // that can be removed. 393 BB->removePredecessor(Pred, true); 394 395 WeakVH PhiIt = &BB->front(); 396 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 397 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 398 399 Value *PNV = SimplifyInstruction(PN, TD); 400 if (PNV == 0) continue; 401 402 // If we're able to simplify the phi to a single value, substitute the new 403 // value into all of its uses. 404 assert(PNV != PN && "SimplifyInstruction broken!"); 405 406 Value *OldPhiIt = PhiIt; 407 ReplaceAndSimplifyAllUses(PN, PNV, TD); 408 409 // If recursive simplification ended up deleting the next PHI node we would 410 // iterate to, then our iterator is invalid, restart scanning from the top 411 // of the block. 412 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 413 } 414 } 415 416 417 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 418 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 419 /// between them, moving the instructions in the predecessor into DestBB and 420 /// deleting the predecessor block. 421 /// 422 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 423 // If BB has single-entry PHI nodes, fold them. 424 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 425 Value *NewVal = PN->getIncomingValue(0); 426 // Replace self referencing PHI with undef, it must be dead. 427 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 428 PN->replaceAllUsesWith(NewVal); 429 PN->eraseFromParent(); 430 } 431 432 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 433 assert(PredBB && "Block doesn't have a single predecessor!"); 434 435 // Zap anything that took the address of DestBB. Not doing this will give the 436 // address an invalid value. 437 if (DestBB->hasAddressTaken()) { 438 BlockAddress *BA = BlockAddress::get(DestBB); 439 Constant *Replacement = 440 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 441 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 442 BA->getType())); 443 BA->destroyConstant(); 444 } 445 446 // Anything that branched to PredBB now branches to DestBB. 447 PredBB->replaceAllUsesWith(DestBB); 448 449 // Splice all the instructions from PredBB to DestBB. 450 PredBB->getTerminator()->eraseFromParent(); 451 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 452 453 if (P) { 454 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 455 if (DT) { 456 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 457 DT->changeImmediateDominator(DestBB, PredBBIDom); 458 DT->eraseNode(PredBB); 459 } 460 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); 461 if (PI) { 462 PI->replaceAllUses(PredBB, DestBB); 463 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); 464 } 465 } 466 // Nuke BB. 467 PredBB->eraseFromParent(); 468 } 469 470 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 471 /// almost-empty BB ending in an unconditional branch to Succ, into succ. 472 /// 473 /// Assumption: Succ is the single successor for BB. 474 /// 475 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 476 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 477 478 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 479 << Succ->getName() << "\n"); 480 // Shortcut, if there is only a single predecessor it must be BB and merging 481 // is always safe 482 if (Succ->getSinglePredecessor()) return true; 483 484 // Make a list of the predecessors of BB 485 typedef SmallPtrSet<BasicBlock*, 16> BlockSet; 486 BlockSet BBPreds(pred_begin(BB), pred_end(BB)); 487 488 // Use that list to make another list of common predecessors of BB and Succ 489 BlockSet CommonPreds; 490 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); 491 PI != PE; ++PI) { 492 BasicBlock *P = *PI; 493 if (BBPreds.count(P)) 494 CommonPreds.insert(P); 495 } 496 497 // Shortcut, if there are no common predecessors, merging is always safe 498 if (CommonPreds.empty()) 499 return true; 500 501 // Look at all the phi nodes in Succ, to see if they present a conflict when 502 // merging these blocks 503 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 504 PHINode *PN = cast<PHINode>(I); 505 506 // If the incoming value from BB is again a PHINode in 507 // BB which has the same incoming value for *PI as PN does, we can 508 // merge the phi nodes and then the blocks can still be merged 509 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 510 if (BBPN && BBPN->getParent() == BB) { 511 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); 512 PI != PE; PI++) { 513 if (BBPN->getIncomingValueForBlock(*PI) 514 != PN->getIncomingValueForBlock(*PI)) { 515 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 516 << Succ->getName() << " is conflicting with " 517 << BBPN->getName() << " with regard to common predecessor " 518 << (*PI)->getName() << "\n"); 519 return false; 520 } 521 } 522 } else { 523 Value* Val = PN->getIncomingValueForBlock(BB); 524 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); 525 PI != PE; PI++) { 526 // See if the incoming value for the common predecessor is equal to the 527 // one for BB, in which case this phi node will not prevent the merging 528 // of the block. 529 if (Val != PN->getIncomingValueForBlock(*PI)) { 530 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 531 << Succ->getName() << " is conflicting with regard to common " 532 << "predecessor " << (*PI)->getName() << "\n"); 533 return false; 534 } 535 } 536 } 537 } 538 539 return true; 540 } 541 542 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 543 /// unconditional branch, and contains no instructions other than PHI nodes, 544 /// potential side-effect free intrinsics and the branch. If possible, 545 /// eliminate BB by rewriting all the predecessors to branch to the successor 546 /// block and return true. If we can't transform, return false. 547 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 548 assert(BB != &BB->getParent()->getEntryBlock() && 549 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 550 551 // We can't eliminate infinite loops. 552 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 553 if (BB == Succ) return false; 554 555 // Check to see if merging these blocks would cause conflicts for any of the 556 // phi nodes in BB or Succ. If not, we can safely merge. 557 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 558 559 // Check for cases where Succ has multiple predecessors and a PHI node in BB 560 // has uses which will not disappear when the PHI nodes are merged. It is 561 // possible to handle such cases, but difficult: it requires checking whether 562 // BB dominates Succ, which is non-trivial to calculate in the case where 563 // Succ has multiple predecessors. Also, it requires checking whether 564 // constructing the necessary self-referential PHI node doesn't intoduce any 565 // conflicts; this isn't too difficult, but the previous code for doing this 566 // was incorrect. 567 // 568 // Note that if this check finds a live use, BB dominates Succ, so BB is 569 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 570 // folding the branch isn't profitable in that case anyway. 571 if (!Succ->getSinglePredecessor()) { 572 BasicBlock::iterator BBI = BB->begin(); 573 while (isa<PHINode>(*BBI)) { 574 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 575 UI != E; ++UI) { 576 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 577 if (PN->getIncomingBlock(UI) != BB) 578 return false; 579 } else { 580 return false; 581 } 582 } 583 ++BBI; 584 } 585 } 586 587 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 588 589 if (isa<PHINode>(Succ->begin())) { 590 // If there is more than one pred of succ, and there are PHI nodes in 591 // the successor, then we need to add incoming edges for the PHI nodes 592 // 593 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 594 595 // Loop over all of the PHI nodes in the successor of BB. 596 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 597 PHINode *PN = cast<PHINode>(I); 598 Value *OldVal = PN->removeIncomingValue(BB, false); 599 assert(OldVal && "No entry in PHI for Pred BB!"); 600 601 // If this incoming value is one of the PHI nodes in BB, the new entries 602 // in the PHI node are the entries from the old PHI. 603 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 604 PHINode *OldValPN = cast<PHINode>(OldVal); 605 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) 606 // Note that, since we are merging phi nodes and BB and Succ might 607 // have common predecessors, we could end up with a phi node with 608 // identical incoming branches. This will be cleaned up later (and 609 // will trigger asserts if we try to clean it up now, without also 610 // simplifying the corresponding conditional branch). 611 PN->addIncoming(OldValPN->getIncomingValue(i), 612 OldValPN->getIncomingBlock(i)); 613 } else { 614 // Add an incoming value for each of the new incoming values. 615 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) 616 PN->addIncoming(OldVal, BBPreds[i]); 617 } 618 } 619 } 620 621 if (Succ->getSinglePredecessor()) { 622 // BB is the only predecessor of Succ, so Succ will end up with exactly 623 // the same predecessors BB had. 624 625 // Copy over any phi, debug or lifetime instruction. 626 BB->getTerminator()->eraseFromParent(); 627 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 628 } else { 629 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 630 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 631 assert(PN->use_empty() && "There shouldn't be any uses here!"); 632 PN->eraseFromParent(); 633 } 634 } 635 636 // Everything that jumped to BB now goes to Succ. 637 BB->replaceAllUsesWith(Succ); 638 if (!Succ->hasName()) Succ->takeName(BB); 639 BB->eraseFromParent(); // Delete the old basic block. 640 return true; 641 } 642 643 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 644 /// nodes in this block. This doesn't try to be clever about PHI nodes 645 /// which differ only in the order of the incoming values, but instcombine 646 /// orders them so it usually won't matter. 647 /// 648 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 649 bool Changed = false; 650 651 // This implementation doesn't currently consider undef operands 652 // specially. Theoretically, two phis which are identical except for 653 // one having an undef where the other doesn't could be collapsed. 654 655 // Map from PHI hash values to PHI nodes. If multiple PHIs have 656 // the same hash value, the element is the first PHI in the 657 // linked list in CollisionMap. 658 DenseMap<uintptr_t, PHINode *> HashMap; 659 660 // Maintain linked lists of PHI nodes with common hash values. 661 DenseMap<PHINode *, PHINode *> CollisionMap; 662 663 // Examine each PHI. 664 for (BasicBlock::iterator I = BB->begin(); 665 PHINode *PN = dyn_cast<PHINode>(I++); ) { 666 // Compute a hash value on the operands. Instcombine will likely have sorted 667 // them, which helps expose duplicates, but we have to check all the 668 // operands to be safe in case instcombine hasn't run. 669 uintptr_t Hash = 0; 670 // This hash algorithm is quite weak as hash functions go, but it seems 671 // to do a good enough job for this particular purpose, and is very quick. 672 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 673 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 674 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 675 } 676 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 677 I != E; ++I) { 678 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 679 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 680 } 681 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 682 Hash >>= 1; 683 // If we've never seen this hash value before, it's a unique PHI. 684 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 685 HashMap.insert(std::make_pair(Hash, PN)); 686 if (Pair.second) continue; 687 // Otherwise it's either a duplicate or a hash collision. 688 for (PHINode *OtherPN = Pair.first->second; ; ) { 689 if (OtherPN->isIdenticalTo(PN)) { 690 // A duplicate. Replace this PHI with its duplicate. 691 PN->replaceAllUsesWith(OtherPN); 692 PN->eraseFromParent(); 693 Changed = true; 694 break; 695 } 696 // A non-duplicate hash collision. 697 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 698 if (I == CollisionMap.end()) { 699 // Set this PHI to be the head of the linked list of colliding PHIs. 700 PHINode *Old = Pair.first->second; 701 Pair.first->second = PN; 702 CollisionMap[PN] = Old; 703 break; 704 } 705 // Procede to the next PHI in the list. 706 OtherPN = I->second; 707 } 708 } 709 710 return Changed; 711 } 712 713 /// enforceKnownAlignment - If the specified pointer points to an object that 714 /// we control, modify the object's alignment to PrefAlign. This isn't 715 /// often possible though. If alignment is important, a more reliable approach 716 /// is to simply align all global variables and allocation instructions to 717 /// their preferred alignment from the beginning. 718 /// 719 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 720 unsigned PrefAlign) { 721 V = V->stripPointerCasts(); 722 723 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 724 // If there is a requested alignment and if this is an alloca, round up. 725 if (AI->getAlignment() >= PrefAlign) 726 return AI->getAlignment(); 727 AI->setAlignment(PrefAlign); 728 return PrefAlign; 729 } 730 731 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 732 // If there is a large requested alignment and we can, bump up the alignment 733 // of the global. 734 if (GV->isDeclaration()) return Align; 735 736 if (GV->getAlignment() >= PrefAlign) 737 return GV->getAlignment(); 738 // We can only increase the alignment of the global if it has no alignment 739 // specified or if it is not assigned a section. If it is assigned a 740 // section, the global could be densely packed with other objects in the 741 // section, increasing the alignment could cause padding issues. 742 if (!GV->hasSection() || GV->getAlignment() == 0) 743 GV->setAlignment(PrefAlign); 744 return GV->getAlignment(); 745 } 746 747 return Align; 748 } 749 750 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 751 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 752 /// and it is more than the alignment of the ultimate object, see if we can 753 /// increase the alignment of the ultimate object, making this check succeed. 754 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 755 const TargetData *TD) { 756 assert(V->getType()->isPointerTy() && 757 "getOrEnforceKnownAlignment expects a pointer!"); 758 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; 759 APInt Mask = APInt::getAllOnesValue(BitWidth); 760 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 761 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); 762 unsigned TrailZ = KnownZero.countTrailingOnes(); 763 764 // Avoid trouble with rediculously large TrailZ values, such as 765 // those computed from a null pointer. 766 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 767 768 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 769 770 // LLVM doesn't support alignments larger than this currently. 771 Align = std::min(Align, +Value::MaximumAlignment); 772 773 if (PrefAlign > Align) 774 Align = enforceKnownAlignment(V, Align, PrefAlign); 775 776 // We don't need to make any adjustment. 777 return Align; 778 } 779 780 ///===---------------------------------------------------------------------===// 781 /// Dbg Intrinsic utilities 782 /// 783 784 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 785 /// that has an associated llvm.dbg.decl intrinsic. 786 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 787 StoreInst *SI, DIBuilder &Builder) { 788 DIVariable DIVar(DDI->getVariable()); 789 if (!DIVar.Verify()) 790 return false; 791 792 Instruction *DbgVal = NULL; 793 // If an argument is zero extended then use argument directly. The ZExt 794 // may be zapped by an optimization pass in future. 795 Argument *ExtendedArg = NULL; 796 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 797 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 798 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 799 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 800 if (ExtendedArg) 801 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 802 else 803 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 804 805 // Propagate any debug metadata from the store onto the dbg.value. 806 DebugLoc SIDL = SI->getDebugLoc(); 807 if (!SIDL.isUnknown()) 808 DbgVal->setDebugLoc(SIDL); 809 // Otherwise propagate debug metadata from dbg.declare. 810 else 811 DbgVal->setDebugLoc(DDI->getDebugLoc()); 812 return true; 813 } 814 815 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value 816 /// that has an associated llvm.dbg.decl intrinsic. 817 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 818 LoadInst *LI, DIBuilder &Builder) { 819 DIVariable DIVar(DDI->getVariable()); 820 if (!DIVar.Verify()) 821 return false; 822 823 Instruction *DbgVal = 824 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 825 DIVar, LI); 826 827 // Propagate any debug metadata from the store onto the dbg.value. 828 DebugLoc LIDL = LI->getDebugLoc(); 829 if (!LIDL.isUnknown()) 830 DbgVal->setDebugLoc(LIDL); 831 // Otherwise propagate debug metadata from dbg.declare. 832 else 833 DbgVal->setDebugLoc(DDI->getDebugLoc()); 834 return true; 835 } 836 837 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 838 /// of llvm.dbg.value intrinsics. 839 bool llvm::LowerDbgDeclare(Function &F) { 840 DIBuilder DIB(*F.getParent()); 841 SmallVector<DbgDeclareInst *, 4> Dbgs; 842 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 843 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 844 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 845 Dbgs.push_back(DDI); 846 } 847 if (Dbgs.empty()) 848 return false; 849 850 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), 851 E = Dbgs.end(); I != E; ++I) { 852 DbgDeclareInst *DDI = *I; 853 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { 854 bool RemoveDDI = true; 855 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 856 UI != E; ++UI) 857 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 858 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 859 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 860 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 861 else 862 RemoveDDI = false; 863 if (RemoveDDI) 864 DDI->eraseFromParent(); 865 } 866 } 867 return true; 868 } 869 870 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 871 /// alloca 'V', if any. 872 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 873 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 874 for (Value::use_iterator UI = DebugNode->use_begin(), 875 E = DebugNode->use_end(); UI != E; ++UI) 876 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 877 return DDI; 878 879 return 0; 880 } 881