1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/DomTreeUpdater.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalObject.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 95 //===----------------------------------------------------------------------===// 96 // Local constant propagation. 97 // 98 99 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 100 /// constant value, convert it into an unconditional branch to the constant 101 /// destination. This is a nontrivial operation because the successors of this 102 /// basic block must have their PHI nodes updated. 103 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 104 /// conditions and indirectbr addresses this might make dead if 105 /// DeleteDeadConditions is true. 106 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 107 const TargetLibraryInfo *TLI, 108 DomTreeUpdater *DTU) { 109 Instruction *T = BB->getTerminator(); 110 IRBuilder<> Builder(T); 111 112 // Branch - See if we are conditional jumping on constant 113 if (auto *BI = dyn_cast<BranchInst>(T)) { 114 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 115 BasicBlock *Dest1 = BI->getSuccessor(0); 116 BasicBlock *Dest2 = BI->getSuccessor(1); 117 118 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 119 // Are we branching on constant? 120 // YES. Change to unconditional branch... 121 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 122 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 123 124 // Let the basic block know that we are letting go of it. Based on this, 125 // it will adjust it's PHI nodes. 126 OldDest->removePredecessor(BB); 127 128 // Replace the conditional branch with an unconditional one. 129 Builder.CreateBr(Destination); 130 BI->eraseFromParent(); 131 if (DTU) 132 DTU->deleteEdgeRelaxed(BB, OldDest); 133 return true; 134 } 135 136 if (Dest2 == Dest1) { // Conditional branch to same location? 137 // This branch matches something like this: 138 // br bool %cond, label %Dest, label %Dest 139 // and changes it into: br label %Dest 140 141 // Let the basic block know that we are letting go of one copy of it. 142 assert(BI->getParent() && "Terminator not inserted in block!"); 143 Dest1->removePredecessor(BI->getParent()); 144 145 // Replace the conditional branch with an unconditional one. 146 Builder.CreateBr(Dest1); 147 Value *Cond = BI->getCondition(); 148 BI->eraseFromParent(); 149 if (DeleteDeadConditions) 150 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 151 return true; 152 } 153 return false; 154 } 155 156 if (auto *SI = dyn_cast<SwitchInst>(T)) { 157 // If we are switching on a constant, we can convert the switch to an 158 // unconditional branch. 159 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 160 BasicBlock *DefaultDest = SI->getDefaultDest(); 161 BasicBlock *TheOnlyDest = DefaultDest; 162 163 // If the default is unreachable, ignore it when searching for TheOnlyDest. 164 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 165 SI->getNumCases() > 0) { 166 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 167 } 168 169 // Figure out which case it goes to. 170 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 171 // Found case matching a constant operand? 172 if (i->getCaseValue() == CI) { 173 TheOnlyDest = i->getCaseSuccessor(); 174 break; 175 } 176 177 // Check to see if this branch is going to the same place as the default 178 // dest. If so, eliminate it as an explicit compare. 179 if (i->getCaseSuccessor() == DefaultDest) { 180 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 181 unsigned NCases = SI->getNumCases(); 182 // Fold the case metadata into the default if there will be any branches 183 // left, unless the metadata doesn't match the switch. 184 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 185 // Collect branch weights into a vector. 186 SmallVector<uint32_t, 8> Weights; 187 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 188 ++MD_i) { 189 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 190 Weights.push_back(CI->getValue().getZExtValue()); 191 } 192 // Merge weight of this case to the default weight. 193 unsigned idx = i->getCaseIndex(); 194 Weights[0] += Weights[idx+1]; 195 // Remove weight for this case. 196 std::swap(Weights[idx+1], Weights.back()); 197 Weights.pop_back(); 198 SI->setMetadata(LLVMContext::MD_prof, 199 MDBuilder(BB->getContext()). 200 createBranchWeights(Weights)); 201 } 202 // Remove this entry. 203 BasicBlock *ParentBB = SI->getParent(); 204 DefaultDest->removePredecessor(ParentBB); 205 i = SI->removeCase(i); 206 e = SI->case_end(); 207 if (DTU) 208 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 209 continue; 210 } 211 212 // Otherwise, check to see if the switch only branches to one destination. 213 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 214 // destinations. 215 if (i->getCaseSuccessor() != TheOnlyDest) 216 TheOnlyDest = nullptr; 217 218 // Increment this iterator as we haven't removed the case. 219 ++i; 220 } 221 222 if (CI && !TheOnlyDest) { 223 // Branching on a constant, but not any of the cases, go to the default 224 // successor. 225 TheOnlyDest = SI->getDefaultDest(); 226 } 227 228 // If we found a single destination that we can fold the switch into, do so 229 // now. 230 if (TheOnlyDest) { 231 // Insert the new branch. 232 Builder.CreateBr(TheOnlyDest); 233 BasicBlock *BB = SI->getParent(); 234 std::vector <DominatorTree::UpdateType> Updates; 235 if (DTU) 236 Updates.reserve(SI->getNumSuccessors() - 1); 237 238 // Remove entries from PHI nodes which we no longer branch to... 239 for (BasicBlock *Succ : successors(SI)) { 240 // Found case matching a constant operand? 241 if (Succ == TheOnlyDest) { 242 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 243 } else { 244 Succ->removePredecessor(BB); 245 if (DTU) 246 Updates.push_back({DominatorTree::Delete, BB, Succ}); 247 } 248 } 249 250 // Delete the old switch. 251 Value *Cond = SI->getCondition(); 252 SI->eraseFromParent(); 253 if (DeleteDeadConditions) 254 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 255 if (DTU) 256 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 257 return true; 258 } 259 260 if (SI->getNumCases() == 1) { 261 // Otherwise, we can fold this switch into a conditional branch 262 // instruction if it has only one non-default destination. 263 auto FirstCase = *SI->case_begin(); 264 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 265 FirstCase.getCaseValue(), "cond"); 266 267 // Insert the new branch. 268 BranchInst *NewBr = Builder.CreateCondBr(Cond, 269 FirstCase.getCaseSuccessor(), 270 SI->getDefaultDest()); 271 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 272 if (MD && MD->getNumOperands() == 3) { 273 ConstantInt *SICase = 274 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 275 ConstantInt *SIDef = 276 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 277 assert(SICase && SIDef); 278 // The TrueWeight should be the weight for the single case of SI. 279 NewBr->setMetadata(LLVMContext::MD_prof, 280 MDBuilder(BB->getContext()). 281 createBranchWeights(SICase->getValue().getZExtValue(), 282 SIDef->getValue().getZExtValue())); 283 } 284 285 // Update make.implicit metadata to the newly-created conditional branch. 286 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 287 if (MakeImplicitMD) 288 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 289 290 // Delete the old switch. 291 SI->eraseFromParent(); 292 return true; 293 } 294 return false; 295 } 296 297 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 298 // indirectbr blockaddress(@F, @BB) -> br label @BB 299 if (auto *BA = 300 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 301 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 302 std::vector <DominatorTree::UpdateType> Updates; 303 if (DTU) 304 Updates.reserve(IBI->getNumDestinations() - 1); 305 306 // Insert the new branch. 307 Builder.CreateBr(TheOnlyDest); 308 309 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 310 if (IBI->getDestination(i) == TheOnlyDest) { 311 TheOnlyDest = nullptr; 312 } else { 313 BasicBlock *ParentBB = IBI->getParent(); 314 BasicBlock *DestBB = IBI->getDestination(i); 315 DestBB->removePredecessor(ParentBB); 316 if (DTU) 317 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 318 } 319 } 320 Value *Address = IBI->getAddress(); 321 IBI->eraseFromParent(); 322 if (DeleteDeadConditions) 323 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 324 325 // If we didn't find our destination in the IBI successor list, then we 326 // have undefined behavior. Replace the unconditional branch with an 327 // 'unreachable' instruction. 328 if (TheOnlyDest) { 329 BB->getTerminator()->eraseFromParent(); 330 new UnreachableInst(BB->getContext(), BB); 331 } 332 333 if (DTU) 334 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 335 return true; 336 } 337 } 338 339 return false; 340 } 341 342 //===----------------------------------------------------------------------===// 343 // Local dead code elimination. 344 // 345 346 /// isInstructionTriviallyDead - Return true if the result produced by the 347 /// instruction is not used, and the instruction has no side effects. 348 /// 349 bool llvm::isInstructionTriviallyDead(Instruction *I, 350 const TargetLibraryInfo *TLI) { 351 if (!I->use_empty()) 352 return false; 353 return wouldInstructionBeTriviallyDead(I, TLI); 354 } 355 356 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 357 const TargetLibraryInfo *TLI) { 358 if (I->isTerminator()) 359 return false; 360 361 // We don't want the landingpad-like instructions removed by anything this 362 // general. 363 if (I->isEHPad()) 364 return false; 365 366 // We don't want debug info removed by anything this general, unless 367 // debug info is empty. 368 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 369 if (DDI->getAddress()) 370 return false; 371 return true; 372 } 373 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 374 if (DVI->getValue()) 375 return false; 376 return true; 377 } 378 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 379 if (DLI->getLabel()) 380 return false; 381 return true; 382 } 383 384 if (!I->mayHaveSideEffects()) 385 return true; 386 387 // Special case intrinsics that "may have side effects" but can be deleted 388 // when dead. 389 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 390 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 391 if (II->getIntrinsicID() == Intrinsic::stacksave || 392 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 393 return true; 394 395 // Lifetime intrinsics are dead when their right-hand is undef. 396 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 397 II->getIntrinsicID() == Intrinsic::lifetime_end) 398 return isa<UndefValue>(II->getArgOperand(1)); 399 400 // Assumptions are dead if their condition is trivially true. Guards on 401 // true are operationally no-ops. In the future we can consider more 402 // sophisticated tradeoffs for guards considering potential for check 403 // widening, but for now we keep things simple. 404 if (II->getIntrinsicID() == Intrinsic::assume || 405 II->getIntrinsicID() == Intrinsic::experimental_guard) { 406 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 407 return !Cond->isZero(); 408 409 return false; 410 } 411 } 412 413 if (isAllocLikeFn(I, TLI)) 414 return true; 415 416 if (CallInst *CI = isFreeCall(I, TLI)) 417 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 418 return C->isNullValue() || isa<UndefValue>(C); 419 420 if (CallSite CS = CallSite(I)) 421 if (isMathLibCallNoop(CS, TLI)) 422 return true; 423 424 return false; 425 } 426 427 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 428 /// trivially dead instruction, delete it. If that makes any of its operands 429 /// trivially dead, delete them too, recursively. Return true if any 430 /// instructions were deleted. 431 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 432 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 433 Instruction *I = dyn_cast<Instruction>(V); 434 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 435 return false; 436 437 SmallVector<Instruction*, 16> DeadInsts; 438 DeadInsts.push_back(I); 439 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 440 441 return true; 442 } 443 444 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 445 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 446 MemorySSAUpdater *MSSAU) { 447 // Process the dead instruction list until empty. 448 while (!DeadInsts.empty()) { 449 Instruction &I = *DeadInsts.pop_back_val(); 450 assert(I.use_empty() && "Instructions with uses are not dead."); 451 assert(isInstructionTriviallyDead(&I, TLI) && 452 "Live instruction found in dead worklist!"); 453 454 // Don't lose the debug info while deleting the instructions. 455 salvageDebugInfo(I); 456 457 // Null out all of the instruction's operands to see if any operand becomes 458 // dead as we go. 459 for (Use &OpU : I.operands()) { 460 Value *OpV = OpU.get(); 461 OpU.set(nullptr); 462 463 if (!OpV->use_empty()) 464 continue; 465 466 // If the operand is an instruction that became dead as we nulled out the 467 // operand, and if it is 'trivially' dead, delete it in a future loop 468 // iteration. 469 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 470 if (isInstructionTriviallyDead(OpI, TLI)) 471 DeadInsts.push_back(OpI); 472 } 473 if (MSSAU) 474 MSSAU->removeMemoryAccess(&I); 475 476 I.eraseFromParent(); 477 } 478 } 479 480 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 481 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 482 findDbgUsers(DbgUsers, I); 483 for (auto *DII : DbgUsers) { 484 Value *Undef = UndefValue::get(I->getType()); 485 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 486 ValueAsMetadata::get(Undef))); 487 } 488 return !DbgUsers.empty(); 489 } 490 491 /// areAllUsesEqual - Check whether the uses of a value are all the same. 492 /// This is similar to Instruction::hasOneUse() except this will also return 493 /// true when there are no uses or multiple uses that all refer to the same 494 /// value. 495 static bool areAllUsesEqual(Instruction *I) { 496 Value::user_iterator UI = I->user_begin(); 497 Value::user_iterator UE = I->user_end(); 498 if (UI == UE) 499 return true; 500 501 User *TheUse = *UI; 502 for (++UI; UI != UE; ++UI) { 503 if (*UI != TheUse) 504 return false; 505 } 506 return true; 507 } 508 509 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 510 /// dead PHI node, due to being a def-use chain of single-use nodes that 511 /// either forms a cycle or is terminated by a trivially dead instruction, 512 /// delete it. If that makes any of its operands trivially dead, delete them 513 /// too, recursively. Return true if a change was made. 514 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 515 const TargetLibraryInfo *TLI) { 516 SmallPtrSet<Instruction*, 4> Visited; 517 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 518 I = cast<Instruction>(*I->user_begin())) { 519 if (I->use_empty()) 520 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 521 522 // If we find an instruction more than once, we're on a cycle that 523 // won't prove fruitful. 524 if (!Visited.insert(I).second) { 525 // Break the cycle and delete the instruction and its operands. 526 I->replaceAllUsesWith(UndefValue::get(I->getType())); 527 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 528 return true; 529 } 530 } 531 return false; 532 } 533 534 static bool 535 simplifyAndDCEInstruction(Instruction *I, 536 SmallSetVector<Instruction *, 16> &WorkList, 537 const DataLayout &DL, 538 const TargetLibraryInfo *TLI) { 539 if (isInstructionTriviallyDead(I, TLI)) { 540 salvageDebugInfo(*I); 541 542 // Null out all of the instruction's operands to see if any operand becomes 543 // dead as we go. 544 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 545 Value *OpV = I->getOperand(i); 546 I->setOperand(i, nullptr); 547 548 if (!OpV->use_empty() || I == OpV) 549 continue; 550 551 // If the operand is an instruction that became dead as we nulled out the 552 // operand, and if it is 'trivially' dead, delete it in a future loop 553 // iteration. 554 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 555 if (isInstructionTriviallyDead(OpI, TLI)) 556 WorkList.insert(OpI); 557 } 558 559 I->eraseFromParent(); 560 561 return true; 562 } 563 564 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 565 // Add the users to the worklist. CAREFUL: an instruction can use itself, 566 // in the case of a phi node. 567 for (User *U : I->users()) { 568 if (U != I) { 569 WorkList.insert(cast<Instruction>(U)); 570 } 571 } 572 573 // Replace the instruction with its simplified value. 574 bool Changed = false; 575 if (!I->use_empty()) { 576 I->replaceAllUsesWith(SimpleV); 577 Changed = true; 578 } 579 if (isInstructionTriviallyDead(I, TLI)) { 580 I->eraseFromParent(); 581 Changed = true; 582 } 583 return Changed; 584 } 585 return false; 586 } 587 588 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 589 /// simplify any instructions in it and recursively delete dead instructions. 590 /// 591 /// This returns true if it changed the code, note that it can delete 592 /// instructions in other blocks as well in this block. 593 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 594 const TargetLibraryInfo *TLI) { 595 bool MadeChange = false; 596 const DataLayout &DL = BB->getModule()->getDataLayout(); 597 598 #ifndef NDEBUG 599 // In debug builds, ensure that the terminator of the block is never replaced 600 // or deleted by these simplifications. The idea of simplification is that it 601 // cannot introduce new instructions, and there is no way to replace the 602 // terminator of a block without introducing a new instruction. 603 AssertingVH<Instruction> TerminatorVH(&BB->back()); 604 #endif 605 606 SmallSetVector<Instruction *, 16> WorkList; 607 // Iterate over the original function, only adding insts to the worklist 608 // if they actually need to be revisited. This avoids having to pre-init 609 // the worklist with the entire function's worth of instructions. 610 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 611 BI != E;) { 612 assert(!BI->isTerminator()); 613 Instruction *I = &*BI; 614 ++BI; 615 616 // We're visiting this instruction now, so make sure it's not in the 617 // worklist from an earlier visit. 618 if (!WorkList.count(I)) 619 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 620 } 621 622 while (!WorkList.empty()) { 623 Instruction *I = WorkList.pop_back_val(); 624 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 625 } 626 return MadeChange; 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Control Flow Graph Restructuring. 631 // 632 633 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 634 /// method is called when we're about to delete Pred as a predecessor of BB. If 635 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 636 /// 637 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 638 /// nodes that collapse into identity values. For example, if we have: 639 /// x = phi(1, 0, 0, 0) 640 /// y = and x, z 641 /// 642 /// .. and delete the predecessor corresponding to the '1', this will attempt to 643 /// recursively fold the and to 0. 644 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 645 DomTreeUpdater *DTU) { 646 // This only adjusts blocks with PHI nodes. 647 if (!isa<PHINode>(BB->begin())) 648 return; 649 650 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 651 // them down. This will leave us with single entry phi nodes and other phis 652 // that can be removed. 653 BB->removePredecessor(Pred, true); 654 655 WeakTrackingVH PhiIt = &BB->front(); 656 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 657 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 658 Value *OldPhiIt = PhiIt; 659 660 if (!recursivelySimplifyInstruction(PN)) 661 continue; 662 663 // If recursive simplification ended up deleting the next PHI node we would 664 // iterate to, then our iterator is invalid, restart scanning from the top 665 // of the block. 666 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 667 } 668 if (DTU) 669 DTU->deleteEdgeRelaxed(Pred, BB); 670 } 671 672 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 673 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 674 /// between them, moving the instructions in the predecessor into DestBB and 675 /// deleting the predecessor block. 676 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 677 DomTreeUpdater *DTU) { 678 679 // If BB has single-entry PHI nodes, fold them. 680 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 681 Value *NewVal = PN->getIncomingValue(0); 682 // Replace self referencing PHI with undef, it must be dead. 683 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 684 PN->replaceAllUsesWith(NewVal); 685 PN->eraseFromParent(); 686 } 687 688 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 689 assert(PredBB && "Block doesn't have a single predecessor!"); 690 691 bool ReplaceEntryBB = false; 692 if (PredBB == &DestBB->getParent()->getEntryBlock()) 693 ReplaceEntryBB = true; 694 695 // DTU updates: Collect all the edges that enter 696 // PredBB. These dominator edges will be redirected to DestBB. 697 SmallVector<DominatorTree::UpdateType, 32> Updates; 698 699 if (DTU) { 700 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 701 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 702 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 703 // This predecessor of PredBB may already have DestBB as a successor. 704 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 705 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 706 } 707 } 708 709 // Zap anything that took the address of DestBB. Not doing this will give the 710 // address an invalid value. 711 if (DestBB->hasAddressTaken()) { 712 BlockAddress *BA = BlockAddress::get(DestBB); 713 Constant *Replacement = 714 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 715 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 716 BA->getType())); 717 BA->destroyConstant(); 718 } 719 720 // Anything that branched to PredBB now branches to DestBB. 721 PredBB->replaceAllUsesWith(DestBB); 722 723 // Splice all the instructions from PredBB to DestBB. 724 PredBB->getTerminator()->eraseFromParent(); 725 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 726 new UnreachableInst(PredBB->getContext(), PredBB); 727 728 // If the PredBB is the entry block of the function, move DestBB up to 729 // become the entry block after we erase PredBB. 730 if (ReplaceEntryBB) 731 DestBB->moveAfter(PredBB); 732 733 if (DTU) { 734 assert(PredBB->getInstList().size() == 1 && 735 isa<UnreachableInst>(PredBB->getTerminator()) && 736 "The successor list of PredBB isn't empty before " 737 "applying corresponding DTU updates."); 738 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 739 DTU->deleteBB(PredBB); 740 // Recalculation of DomTree is needed when updating a forward DomTree and 741 // the Entry BB is replaced. 742 if (ReplaceEntryBB && DTU->hasDomTree()) { 743 // The entry block was removed and there is no external interface for 744 // the dominator tree to be notified of this change. In this corner-case 745 // we recalculate the entire tree. 746 DTU->recalculate(*(DestBB->getParent())); 747 } 748 } 749 750 else { 751 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 752 } 753 } 754 755 /// CanMergeValues - Return true if we can choose one of these values to use 756 /// in place of the other. Note that we will always choose the non-undef 757 /// value to keep. 758 static bool CanMergeValues(Value *First, Value *Second) { 759 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 760 } 761 762 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 763 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 764 /// 765 /// Assumption: Succ is the single successor for BB. 766 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 767 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 768 769 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 770 << Succ->getName() << "\n"); 771 // Shortcut, if there is only a single predecessor it must be BB and merging 772 // is always safe 773 if (Succ->getSinglePredecessor()) return true; 774 775 // Make a list of the predecessors of BB 776 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 777 778 // Look at all the phi nodes in Succ, to see if they present a conflict when 779 // merging these blocks 780 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 781 PHINode *PN = cast<PHINode>(I); 782 783 // If the incoming value from BB is again a PHINode in 784 // BB which has the same incoming value for *PI as PN does, we can 785 // merge the phi nodes and then the blocks can still be merged 786 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 787 if (BBPN && BBPN->getParent() == BB) { 788 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 789 BasicBlock *IBB = PN->getIncomingBlock(PI); 790 if (BBPreds.count(IBB) && 791 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 792 PN->getIncomingValue(PI))) { 793 LLVM_DEBUG(dbgs() 794 << "Can't fold, phi node " << PN->getName() << " in " 795 << Succ->getName() << " is conflicting with " 796 << BBPN->getName() << " with regard to common predecessor " 797 << IBB->getName() << "\n"); 798 return false; 799 } 800 } 801 } else { 802 Value* Val = PN->getIncomingValueForBlock(BB); 803 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 804 // See if the incoming value for the common predecessor is equal to the 805 // one for BB, in which case this phi node will not prevent the merging 806 // of the block. 807 BasicBlock *IBB = PN->getIncomingBlock(PI); 808 if (BBPreds.count(IBB) && 809 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 810 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 811 << " in " << Succ->getName() 812 << " is conflicting with regard to common " 813 << "predecessor " << IBB->getName() << "\n"); 814 return false; 815 } 816 } 817 } 818 } 819 820 return true; 821 } 822 823 using PredBlockVector = SmallVector<BasicBlock *, 16>; 824 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 825 826 /// Determines the value to use as the phi node input for a block. 827 /// 828 /// Select between \p OldVal any value that we know flows from \p BB 829 /// to a particular phi on the basis of which one (if either) is not 830 /// undef. Update IncomingValues based on the selected value. 831 /// 832 /// \param OldVal The value we are considering selecting. 833 /// \param BB The block that the value flows in from. 834 /// \param IncomingValues A map from block-to-value for other phi inputs 835 /// that we have examined. 836 /// 837 /// \returns the selected value. 838 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 839 IncomingValueMap &IncomingValues) { 840 if (!isa<UndefValue>(OldVal)) { 841 assert((!IncomingValues.count(BB) || 842 IncomingValues.find(BB)->second == OldVal) && 843 "Expected OldVal to match incoming value from BB!"); 844 845 IncomingValues.insert(std::make_pair(BB, OldVal)); 846 return OldVal; 847 } 848 849 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 850 if (It != IncomingValues.end()) return It->second; 851 852 return OldVal; 853 } 854 855 /// Create a map from block to value for the operands of a 856 /// given phi. 857 /// 858 /// Create a map from block to value for each non-undef value flowing 859 /// into \p PN. 860 /// 861 /// \param PN The phi we are collecting the map for. 862 /// \param IncomingValues [out] The map from block to value for this phi. 863 static void gatherIncomingValuesToPhi(PHINode *PN, 864 IncomingValueMap &IncomingValues) { 865 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 866 BasicBlock *BB = PN->getIncomingBlock(i); 867 Value *V = PN->getIncomingValue(i); 868 869 if (!isa<UndefValue>(V)) 870 IncomingValues.insert(std::make_pair(BB, V)); 871 } 872 } 873 874 /// Replace the incoming undef values to a phi with the values 875 /// from a block-to-value map. 876 /// 877 /// \param PN The phi we are replacing the undefs in. 878 /// \param IncomingValues A map from block to value. 879 static void replaceUndefValuesInPhi(PHINode *PN, 880 const IncomingValueMap &IncomingValues) { 881 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 882 Value *V = PN->getIncomingValue(i); 883 884 if (!isa<UndefValue>(V)) continue; 885 886 BasicBlock *BB = PN->getIncomingBlock(i); 887 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 888 if (It == IncomingValues.end()) continue; 889 890 PN->setIncomingValue(i, It->second); 891 } 892 } 893 894 /// Replace a value flowing from a block to a phi with 895 /// potentially multiple instances of that value flowing from the 896 /// block's predecessors to the phi. 897 /// 898 /// \param BB The block with the value flowing into the phi. 899 /// \param BBPreds The predecessors of BB. 900 /// \param PN The phi that we are updating. 901 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 902 const PredBlockVector &BBPreds, 903 PHINode *PN) { 904 Value *OldVal = PN->removeIncomingValue(BB, false); 905 assert(OldVal && "No entry in PHI for Pred BB!"); 906 907 IncomingValueMap IncomingValues; 908 909 // We are merging two blocks - BB, and the block containing PN - and 910 // as a result we need to redirect edges from the predecessors of BB 911 // to go to the block containing PN, and update PN 912 // accordingly. Since we allow merging blocks in the case where the 913 // predecessor and successor blocks both share some predecessors, 914 // and where some of those common predecessors might have undef 915 // values flowing into PN, we want to rewrite those values to be 916 // consistent with the non-undef values. 917 918 gatherIncomingValuesToPhi(PN, IncomingValues); 919 920 // If this incoming value is one of the PHI nodes in BB, the new entries 921 // in the PHI node are the entries from the old PHI. 922 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 923 PHINode *OldValPN = cast<PHINode>(OldVal); 924 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 925 // Note that, since we are merging phi nodes and BB and Succ might 926 // have common predecessors, we could end up with a phi node with 927 // identical incoming branches. This will be cleaned up later (and 928 // will trigger asserts if we try to clean it up now, without also 929 // simplifying the corresponding conditional branch). 930 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 931 Value *PredVal = OldValPN->getIncomingValue(i); 932 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 933 IncomingValues); 934 935 // And add a new incoming value for this predecessor for the 936 // newly retargeted branch. 937 PN->addIncoming(Selected, PredBB); 938 } 939 } else { 940 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 941 // Update existing incoming values in PN for this 942 // predecessor of BB. 943 BasicBlock *PredBB = BBPreds[i]; 944 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 945 IncomingValues); 946 947 // And add a new incoming value for this predecessor for the 948 // newly retargeted branch. 949 PN->addIncoming(Selected, PredBB); 950 } 951 } 952 953 replaceUndefValuesInPhi(PN, IncomingValues); 954 } 955 956 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 957 /// unconditional branch, and contains no instructions other than PHI nodes, 958 /// potential side-effect free intrinsics and the branch. If possible, 959 /// eliminate BB by rewriting all the predecessors to branch to the successor 960 /// block and return true. If we can't transform, return false. 961 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 962 DomTreeUpdater *DTU) { 963 assert(BB != &BB->getParent()->getEntryBlock() && 964 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 965 966 // We can't eliminate infinite loops. 967 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 968 if (BB == Succ) return false; 969 970 // Check to see if merging these blocks would cause conflicts for any of the 971 // phi nodes in BB or Succ. If not, we can safely merge. 972 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 973 974 // Check for cases where Succ has multiple predecessors and a PHI node in BB 975 // has uses which will not disappear when the PHI nodes are merged. It is 976 // possible to handle such cases, but difficult: it requires checking whether 977 // BB dominates Succ, which is non-trivial to calculate in the case where 978 // Succ has multiple predecessors. Also, it requires checking whether 979 // constructing the necessary self-referential PHI node doesn't introduce any 980 // conflicts; this isn't too difficult, but the previous code for doing this 981 // was incorrect. 982 // 983 // Note that if this check finds a live use, BB dominates Succ, so BB is 984 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 985 // folding the branch isn't profitable in that case anyway. 986 if (!Succ->getSinglePredecessor()) { 987 BasicBlock::iterator BBI = BB->begin(); 988 while (isa<PHINode>(*BBI)) { 989 for (Use &U : BBI->uses()) { 990 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 991 if (PN->getIncomingBlock(U) != BB) 992 return false; 993 } else { 994 return false; 995 } 996 } 997 ++BBI; 998 } 999 } 1000 1001 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1002 1003 SmallVector<DominatorTree::UpdateType, 32> Updates; 1004 if (DTU) { 1005 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1006 // All predecessors of BB will be moved to Succ. 1007 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1008 Updates.push_back({DominatorTree::Delete, *I, BB}); 1009 // This predecessor of BB may already have Succ as a successor. 1010 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1011 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1012 } 1013 } 1014 1015 if (isa<PHINode>(Succ->begin())) { 1016 // If there is more than one pred of succ, and there are PHI nodes in 1017 // the successor, then we need to add incoming edges for the PHI nodes 1018 // 1019 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1020 1021 // Loop over all of the PHI nodes in the successor of BB. 1022 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1023 PHINode *PN = cast<PHINode>(I); 1024 1025 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1026 } 1027 } 1028 1029 if (Succ->getSinglePredecessor()) { 1030 // BB is the only predecessor of Succ, so Succ will end up with exactly 1031 // the same predecessors BB had. 1032 1033 // Copy over any phi, debug or lifetime instruction. 1034 BB->getTerminator()->eraseFromParent(); 1035 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1036 BB->getInstList()); 1037 } else { 1038 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1039 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1040 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1041 PN->eraseFromParent(); 1042 } 1043 } 1044 1045 // If the unconditional branch we replaced contains llvm.loop metadata, we 1046 // add the metadata to the branch instructions in the predecessors. 1047 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1048 Instruction *TI = BB->getTerminator(); 1049 if (TI) 1050 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1051 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1052 BasicBlock *Pred = *PI; 1053 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1054 } 1055 1056 // Everything that jumped to BB now goes to Succ. 1057 BB->replaceAllUsesWith(Succ); 1058 if (!Succ->hasName()) Succ->takeName(BB); 1059 1060 // Clear the successor list of BB to match updates applying to DTU later. 1061 if (BB->getTerminator()) 1062 BB->getInstList().pop_back(); 1063 new UnreachableInst(BB->getContext(), BB); 1064 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1065 "applying corresponding DTU updates."); 1066 1067 if (DTU) { 1068 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1069 DTU->deleteBB(BB); 1070 } else { 1071 BB->eraseFromParent(); // Delete the old basic block. 1072 } 1073 return true; 1074 } 1075 1076 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1077 /// nodes in this block. This doesn't try to be clever about PHI nodes 1078 /// which differ only in the order of the incoming values, but instcombine 1079 /// orders them so it usually won't matter. 1080 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1081 // This implementation doesn't currently consider undef operands 1082 // specially. Theoretically, two phis which are identical except for 1083 // one having an undef where the other doesn't could be collapsed. 1084 1085 struct PHIDenseMapInfo { 1086 static PHINode *getEmptyKey() { 1087 return DenseMapInfo<PHINode *>::getEmptyKey(); 1088 } 1089 1090 static PHINode *getTombstoneKey() { 1091 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1092 } 1093 1094 static unsigned getHashValue(PHINode *PN) { 1095 // Compute a hash value on the operands. Instcombine will likely have 1096 // sorted them, which helps expose duplicates, but we have to check all 1097 // the operands to be safe in case instcombine hasn't run. 1098 return static_cast<unsigned>(hash_combine( 1099 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1100 hash_combine_range(PN->block_begin(), PN->block_end()))); 1101 } 1102 1103 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1104 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1105 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1106 return LHS == RHS; 1107 return LHS->isIdenticalTo(RHS); 1108 } 1109 }; 1110 1111 // Set of unique PHINodes. 1112 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1113 1114 // Examine each PHI. 1115 bool Changed = false; 1116 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1117 auto Inserted = PHISet.insert(PN); 1118 if (!Inserted.second) { 1119 // A duplicate. Replace this PHI with its duplicate. 1120 PN->replaceAllUsesWith(*Inserted.first); 1121 PN->eraseFromParent(); 1122 Changed = true; 1123 1124 // The RAUW can change PHIs that we already visited. Start over from the 1125 // beginning. 1126 PHISet.clear(); 1127 I = BB->begin(); 1128 } 1129 } 1130 1131 return Changed; 1132 } 1133 1134 /// enforceKnownAlignment - If the specified pointer points to an object that 1135 /// we control, modify the object's alignment to PrefAlign. This isn't 1136 /// often possible though. If alignment is important, a more reliable approach 1137 /// is to simply align all global variables and allocation instructions to 1138 /// their preferred alignment from the beginning. 1139 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1140 unsigned PrefAlign, 1141 const DataLayout &DL) { 1142 assert(PrefAlign > Align); 1143 1144 V = V->stripPointerCasts(); 1145 1146 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1147 // TODO: ideally, computeKnownBits ought to have used 1148 // AllocaInst::getAlignment() in its computation already, making 1149 // the below max redundant. But, as it turns out, 1150 // stripPointerCasts recurses through infinite layers of bitcasts, 1151 // while computeKnownBits is not allowed to traverse more than 6 1152 // levels. 1153 Align = std::max(AI->getAlignment(), Align); 1154 if (PrefAlign <= Align) 1155 return Align; 1156 1157 // If the preferred alignment is greater than the natural stack alignment 1158 // then don't round up. This avoids dynamic stack realignment. 1159 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1160 return Align; 1161 AI->setAlignment(PrefAlign); 1162 return PrefAlign; 1163 } 1164 1165 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1166 // TODO: as above, this shouldn't be necessary. 1167 Align = std::max(GO->getAlignment(), Align); 1168 if (PrefAlign <= Align) 1169 return Align; 1170 1171 // If there is a large requested alignment and we can, bump up the alignment 1172 // of the global. If the memory we set aside for the global may not be the 1173 // memory used by the final program then it is impossible for us to reliably 1174 // enforce the preferred alignment. 1175 if (!GO->canIncreaseAlignment()) 1176 return Align; 1177 1178 GO->setAlignment(PrefAlign); 1179 return PrefAlign; 1180 } 1181 1182 return Align; 1183 } 1184 1185 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1186 const DataLayout &DL, 1187 const Instruction *CxtI, 1188 AssumptionCache *AC, 1189 const DominatorTree *DT) { 1190 assert(V->getType()->isPointerTy() && 1191 "getOrEnforceKnownAlignment expects a pointer!"); 1192 1193 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1194 unsigned TrailZ = Known.countMinTrailingZeros(); 1195 1196 // Avoid trouble with ridiculously large TrailZ values, such as 1197 // those computed from a null pointer. 1198 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1199 1200 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1201 1202 // LLVM doesn't support alignments larger than this currently. 1203 Align = std::min(Align, +Value::MaximumAlignment); 1204 1205 if (PrefAlign > Align) 1206 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1207 1208 // We don't need to make any adjustment. 1209 return Align; 1210 } 1211 1212 ///===---------------------------------------------------------------------===// 1213 /// Dbg Intrinsic utilities 1214 /// 1215 1216 /// See if there is a dbg.value intrinsic for DIVar before I. 1217 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1218 Instruction *I) { 1219 // Since we can't guarantee that the original dbg.declare instrinsic 1220 // is removed by LowerDbgDeclare(), we need to make sure that we are 1221 // not inserting the same dbg.value intrinsic over and over. 1222 BasicBlock::InstListType::iterator PrevI(I); 1223 if (PrevI != I->getParent()->getInstList().begin()) { 1224 --PrevI; 1225 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1226 if (DVI->getValue() == I->getOperand(0) && 1227 DVI->getVariable() == DIVar && 1228 DVI->getExpression() == DIExpr) 1229 return true; 1230 } 1231 return false; 1232 } 1233 1234 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1235 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1236 DIExpression *DIExpr, 1237 PHINode *APN) { 1238 // Since we can't guarantee that the original dbg.declare instrinsic 1239 // is removed by LowerDbgDeclare(), we need to make sure that we are 1240 // not inserting the same dbg.value intrinsic over and over. 1241 SmallVector<DbgValueInst *, 1> DbgValues; 1242 findDbgValues(DbgValues, APN); 1243 for (auto *DVI : DbgValues) { 1244 assert(DVI->getValue() == APN); 1245 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1252 /// (or fragment of the variable) described by \p DII. 1253 /// 1254 /// This is primarily intended as a helper for the different 1255 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1256 /// converted describes an alloca'd variable, so we need to use the 1257 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1258 /// identified as covering an n-bit fragment, if the store size of i1 is at 1259 /// least n bits. 1260 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1261 const DataLayout &DL = DII->getModule()->getDataLayout(); 1262 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1263 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1264 return ValueSize >= *FragmentSize; 1265 // We can't always calculate the size of the DI variable (e.g. if it is a 1266 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1267 // intead. 1268 if (DII->isAddressOfVariable()) 1269 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1270 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1271 return ValueSize >= *FragmentSize; 1272 // Could not determine size of variable. Conservatively return false. 1273 return false; 1274 } 1275 1276 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1277 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1278 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1279 StoreInst *SI, DIBuilder &Builder) { 1280 assert(DII->isAddressOfVariable()); 1281 auto *DIVar = DII->getVariable(); 1282 assert(DIVar && "Missing variable"); 1283 auto *DIExpr = DII->getExpression(); 1284 Value *DV = SI->getOperand(0); 1285 1286 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1287 // FIXME: If storing to a part of the variable described by the dbg.declare, 1288 // then we want to insert a dbg.value for the corresponding fragment. 1289 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1290 << *DII << '\n'); 1291 // For now, when there is a store to parts of the variable (but we do not 1292 // know which part) we insert an dbg.value instrinsic to indicate that we 1293 // know nothing about the variable's content. 1294 DV = UndefValue::get(DV->getType()); 1295 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1296 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1297 SI); 1298 return; 1299 } 1300 1301 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1302 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1303 SI); 1304 } 1305 1306 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1307 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1308 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1309 LoadInst *LI, DIBuilder &Builder) { 1310 auto *DIVar = DII->getVariable(); 1311 auto *DIExpr = DII->getExpression(); 1312 assert(DIVar && "Missing variable"); 1313 1314 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1315 return; 1316 1317 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1318 // FIXME: If only referring to a part of the variable described by the 1319 // dbg.declare, then we want to insert a dbg.value for the corresponding 1320 // fragment. 1321 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1322 << *DII << '\n'); 1323 return; 1324 } 1325 1326 // We are now tracking the loaded value instead of the address. In the 1327 // future if multi-location support is added to the IR, it might be 1328 // preferable to keep tracking both the loaded value and the original 1329 // address in case the alloca can not be elided. 1330 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1331 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1332 DbgValue->insertAfter(LI); 1333 } 1334 1335 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1336 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1337 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1338 PHINode *APN, DIBuilder &Builder) { 1339 auto *DIVar = DII->getVariable(); 1340 auto *DIExpr = DII->getExpression(); 1341 assert(DIVar && "Missing variable"); 1342 1343 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1344 return; 1345 1346 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1347 // FIXME: If only referring to a part of the variable described by the 1348 // dbg.declare, then we want to insert a dbg.value for the corresponding 1349 // fragment. 1350 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1351 << *DII << '\n'); 1352 return; 1353 } 1354 1355 BasicBlock *BB = APN->getParent(); 1356 auto InsertionPt = BB->getFirstInsertionPt(); 1357 1358 // The block may be a catchswitch block, which does not have a valid 1359 // insertion point. 1360 // FIXME: Insert dbg.value markers in the successors when appropriate. 1361 if (InsertionPt != BB->end()) 1362 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1363 &*InsertionPt); 1364 } 1365 1366 /// Determine whether this alloca is either a VLA or an array. 1367 static bool isArray(AllocaInst *AI) { 1368 return AI->isArrayAllocation() || 1369 AI->getType()->getElementType()->isArrayTy(); 1370 } 1371 1372 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1373 /// of llvm.dbg.value intrinsics. 1374 bool llvm::LowerDbgDeclare(Function &F) { 1375 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1376 SmallVector<DbgDeclareInst *, 4> Dbgs; 1377 for (auto &FI : F) 1378 for (Instruction &BI : FI) 1379 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1380 Dbgs.push_back(DDI); 1381 1382 if (Dbgs.empty()) 1383 return false; 1384 1385 for (auto &I : Dbgs) { 1386 DbgDeclareInst *DDI = I; 1387 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1388 // If this is an alloca for a scalar variable, insert a dbg.value 1389 // at each load and store to the alloca and erase the dbg.declare. 1390 // The dbg.values allow tracking a variable even if it is not 1391 // stored on the stack, while the dbg.declare can only describe 1392 // the stack slot (and at a lexical-scope granularity). Later 1393 // passes will attempt to elide the stack slot. 1394 if (!AI || isArray(AI)) 1395 continue; 1396 1397 // A volatile load/store means that the alloca can't be elided anyway. 1398 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1399 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1400 return LI->isVolatile(); 1401 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1402 return SI->isVolatile(); 1403 return false; 1404 })) 1405 continue; 1406 1407 for (auto &AIUse : AI->uses()) { 1408 User *U = AIUse.getUser(); 1409 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1410 if (AIUse.getOperandNo() == 1) 1411 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1412 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1413 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1414 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1415 // This is a call by-value or some other instruction that takes a 1416 // pointer to the variable. Insert a *value* intrinsic that describes 1417 // the variable by dereferencing the alloca. 1418 auto *DerefExpr = 1419 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1420 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1421 DDI->getDebugLoc(), CI); 1422 } 1423 } 1424 DDI->eraseFromParent(); 1425 } 1426 return true; 1427 } 1428 1429 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1430 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1431 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1432 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1433 if (InsertedPHIs.size() == 0) 1434 return; 1435 1436 // Map existing PHI nodes to their dbg.values. 1437 ValueToValueMapTy DbgValueMap; 1438 for (auto &I : *BB) { 1439 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1440 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1441 DbgValueMap.insert({Loc, DbgII}); 1442 } 1443 } 1444 if (DbgValueMap.size() == 0) 1445 return; 1446 1447 // Then iterate through the new PHIs and look to see if they use one of the 1448 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1449 // propagate the info through the new PHI. 1450 LLVMContext &C = BB->getContext(); 1451 for (auto PHI : InsertedPHIs) { 1452 BasicBlock *Parent = PHI->getParent(); 1453 // Avoid inserting an intrinsic into an EH block. 1454 if (Parent->getFirstNonPHI()->isEHPad()) 1455 continue; 1456 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1457 for (auto VI : PHI->operand_values()) { 1458 auto V = DbgValueMap.find(VI); 1459 if (V != DbgValueMap.end()) { 1460 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1461 Instruction *NewDbgII = DbgII->clone(); 1462 NewDbgII->setOperand(0, PhiMAV); 1463 auto InsertionPt = Parent->getFirstInsertionPt(); 1464 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1465 NewDbgII->insertBefore(&*InsertionPt); 1466 } 1467 } 1468 } 1469 } 1470 1471 /// Finds all intrinsics declaring local variables as living in the memory that 1472 /// 'V' points to. This may include a mix of dbg.declare and 1473 /// dbg.addr intrinsics. 1474 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1475 // This function is hot. Check whether the value has any metadata to avoid a 1476 // DenseMap lookup. 1477 if (!V->isUsedByMetadata()) 1478 return {}; 1479 auto *L = LocalAsMetadata::getIfExists(V); 1480 if (!L) 1481 return {}; 1482 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1483 if (!MDV) 1484 return {}; 1485 1486 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1487 for (User *U : MDV->users()) { 1488 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1489 if (DII->isAddressOfVariable()) 1490 Declares.push_back(DII); 1491 } 1492 1493 return Declares; 1494 } 1495 1496 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1497 // This function is hot. Check whether the value has any metadata to avoid a 1498 // DenseMap lookup. 1499 if (!V->isUsedByMetadata()) 1500 return; 1501 if (auto *L = LocalAsMetadata::getIfExists(V)) 1502 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1503 for (User *U : MDV->users()) 1504 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1505 DbgValues.push_back(DVI); 1506 } 1507 1508 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1509 Value *V) { 1510 // This function is hot. Check whether the value has any metadata to avoid a 1511 // DenseMap lookup. 1512 if (!V->isUsedByMetadata()) 1513 return; 1514 if (auto *L = LocalAsMetadata::getIfExists(V)) 1515 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1516 for (User *U : MDV->users()) 1517 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1518 DbgUsers.push_back(DII); 1519 } 1520 1521 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1522 Instruction *InsertBefore, DIBuilder &Builder, 1523 bool DerefBefore, int Offset, bool DerefAfter) { 1524 auto DbgAddrs = FindDbgAddrUses(Address); 1525 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1526 DebugLoc Loc = DII->getDebugLoc(); 1527 auto *DIVar = DII->getVariable(); 1528 auto *DIExpr = DII->getExpression(); 1529 assert(DIVar && "Missing variable"); 1530 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1531 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1532 // llvm.dbg.declare. 1533 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1534 if (DII == InsertBefore) 1535 InsertBefore = InsertBefore->getNextNode(); 1536 DII->eraseFromParent(); 1537 } 1538 return !DbgAddrs.empty(); 1539 } 1540 1541 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1542 DIBuilder &Builder, bool DerefBefore, 1543 int Offset, bool DerefAfter) { 1544 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1545 DerefBefore, Offset, DerefAfter); 1546 } 1547 1548 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1549 DIBuilder &Builder, int Offset) { 1550 DebugLoc Loc = DVI->getDebugLoc(); 1551 auto *DIVar = DVI->getVariable(); 1552 auto *DIExpr = DVI->getExpression(); 1553 assert(DIVar && "Missing variable"); 1554 1555 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1556 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1557 // it and give up. 1558 if (!DIExpr || DIExpr->getNumElements() < 1 || 1559 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1560 return; 1561 1562 // Insert the offset immediately after the first deref. 1563 // We could just change the offset argument of dbg.value, but it's unsigned... 1564 if (Offset) { 1565 SmallVector<uint64_t, 4> Ops; 1566 Ops.push_back(dwarf::DW_OP_deref); 1567 DIExpression::appendOffset(Ops, Offset); 1568 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1569 DIExpr = Builder.createExpression(Ops); 1570 } 1571 1572 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1573 DVI->eraseFromParent(); 1574 } 1575 1576 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1577 DIBuilder &Builder, int Offset) { 1578 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1579 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1580 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1581 Use &U = *UI++; 1582 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1583 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1584 } 1585 } 1586 1587 /// Wrap \p V in a ValueAsMetadata instance. 1588 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1589 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1590 } 1591 1592 bool llvm::salvageDebugInfo(Instruction &I) { 1593 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1594 findDbgUsers(DbgUsers, &I); 1595 if (DbgUsers.empty()) 1596 return false; 1597 1598 auto &M = *I.getModule(); 1599 auto &DL = M.getDataLayout(); 1600 auto &Ctx = I.getContext(); 1601 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1602 1603 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1604 auto *DIExpr = DII->getExpression(); 1605 if (!Ops.empty()) { 1606 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1607 // are implicitly pointing out the value as a DWARF memory location 1608 // description. 1609 bool WithStackValue = isa<DbgValueInst>(DII); 1610 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1611 } 1612 DII->setOperand(0, wrapMD(I.getOperand(0))); 1613 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1614 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1615 }; 1616 1617 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) { 1618 SmallVector<uint64_t, 8> Ops; 1619 DIExpression::appendOffset(Ops, Offset); 1620 doSalvage(DII, Ops); 1621 }; 1622 1623 auto applyOps = [&](DbgVariableIntrinsic *DII, 1624 std::initializer_list<uint64_t> Opcodes) { 1625 SmallVector<uint64_t, 8> Ops(Opcodes); 1626 doSalvage(DII, Ops); 1627 }; 1628 1629 if (auto *CI = dyn_cast<CastInst>(&I)) { 1630 if (!CI->isNoopCast(DL)) 1631 return false; 1632 1633 // No-op casts are irrelevant for debug info. 1634 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1635 for (auto *DII : DbgUsers) { 1636 DII->setOperand(0, CastSrc); 1637 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1638 } 1639 return true; 1640 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1641 unsigned BitWidth = 1642 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1643 // Rewrite a constant GEP into a DIExpression. Since we are performing 1644 // arithmetic to compute the variable's *value* in the DIExpression, we 1645 // need to mark the expression with a DW_OP_stack_value. 1646 APInt Offset(BitWidth, 0); 1647 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1648 for (auto *DII : DbgUsers) 1649 applyOffset(DII, Offset.getSExtValue()); 1650 return true; 1651 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1652 // Rewrite binary operations with constant integer operands. 1653 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1654 if (!ConstInt || ConstInt->getBitWidth() > 64) 1655 return false; 1656 1657 uint64_t Val = ConstInt->getSExtValue(); 1658 for (auto *DII : DbgUsers) { 1659 switch (BI->getOpcode()) { 1660 case Instruction::Add: 1661 applyOffset(DII, Val); 1662 break; 1663 case Instruction::Sub: 1664 applyOffset(DII, -int64_t(Val)); 1665 break; 1666 case Instruction::Mul: 1667 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1668 break; 1669 case Instruction::SDiv: 1670 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1671 break; 1672 case Instruction::SRem: 1673 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1674 break; 1675 case Instruction::Or: 1676 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1677 break; 1678 case Instruction::And: 1679 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1680 break; 1681 case Instruction::Xor: 1682 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1683 break; 1684 case Instruction::Shl: 1685 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1686 break; 1687 case Instruction::LShr: 1688 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1689 break; 1690 case Instruction::AShr: 1691 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1692 break; 1693 default: 1694 // TODO: Salvage constants from each kind of binop we know about. 1695 return false; 1696 } 1697 } 1698 return true; 1699 } else if (isa<LoadInst>(&I)) { 1700 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1701 for (auto *DII : DbgUsers) { 1702 // Rewrite the load into DW_OP_deref. 1703 auto *DIExpr = DII->getExpression(); 1704 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1705 DII->setOperand(0, AddrMD); 1706 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1707 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1708 } 1709 return true; 1710 } 1711 return false; 1712 } 1713 1714 /// A replacement for a dbg.value expression. 1715 using DbgValReplacement = Optional<DIExpression *>; 1716 1717 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1718 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1719 /// changes are made. 1720 static bool rewriteDebugUsers( 1721 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1722 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1723 // Find debug users of From. 1724 SmallVector<DbgVariableIntrinsic *, 1> Users; 1725 findDbgUsers(Users, &From); 1726 if (Users.empty()) 1727 return false; 1728 1729 // Prevent use-before-def of To. 1730 bool Changed = false; 1731 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1732 if (isa<Instruction>(&To)) { 1733 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1734 1735 for (auto *DII : Users) { 1736 // It's common to see a debug user between From and DomPoint. Move it 1737 // after DomPoint to preserve the variable update without any reordering. 1738 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1739 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1740 DII->moveAfter(&DomPoint); 1741 Changed = true; 1742 1743 // Users which otherwise aren't dominated by the replacement value must 1744 // be salvaged or deleted. 1745 } else if (!DT.dominates(&DomPoint, DII)) { 1746 DeleteOrSalvage.insert(DII); 1747 } 1748 } 1749 } 1750 1751 // Update debug users without use-before-def risk. 1752 for (auto *DII : Users) { 1753 if (DeleteOrSalvage.count(DII)) 1754 continue; 1755 1756 LLVMContext &Ctx = DII->getContext(); 1757 DbgValReplacement DVR = RewriteExpr(*DII); 1758 if (!DVR) 1759 continue; 1760 1761 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1762 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1763 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1764 Changed = true; 1765 } 1766 1767 if (!DeleteOrSalvage.empty()) { 1768 // Try to salvage the remaining debug users. 1769 Changed |= salvageDebugInfo(From); 1770 1771 // Delete the debug users which weren't salvaged. 1772 for (auto *DII : DeleteOrSalvage) { 1773 if (DII->getVariableLocation() == &From) { 1774 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1775 DII->eraseFromParent(); 1776 Changed = true; 1777 } 1778 } 1779 } 1780 1781 return Changed; 1782 } 1783 1784 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1785 /// losslessly preserve the bits and semantics of the value. This predicate is 1786 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1787 /// 1788 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1789 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1790 /// and also does not allow lossless pointer <-> integer conversions. 1791 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1792 Type *ToTy) { 1793 // Trivially compatible types. 1794 if (FromTy == ToTy) 1795 return true; 1796 1797 // Handle compatible pointer <-> integer conversions. 1798 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1799 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1800 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1801 !DL.isNonIntegralPointerType(ToTy); 1802 return SameSize && LosslessConversion; 1803 } 1804 1805 // TODO: This is not exhaustive. 1806 return false; 1807 } 1808 1809 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1810 Instruction &DomPoint, DominatorTree &DT) { 1811 // Exit early if From has no debug users. 1812 if (!From.isUsedByMetadata()) 1813 return false; 1814 1815 assert(&From != &To && "Can't replace something with itself"); 1816 1817 Type *FromTy = From.getType(); 1818 Type *ToTy = To.getType(); 1819 1820 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1821 return DII.getExpression(); 1822 }; 1823 1824 // Handle no-op conversions. 1825 Module &M = *From.getModule(); 1826 const DataLayout &DL = M.getDataLayout(); 1827 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1828 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1829 1830 // Handle integer-to-integer widening and narrowing. 1831 // FIXME: Use DW_OP_convert when it's available everywhere. 1832 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1833 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1834 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1835 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1836 1837 // When the width of the result grows, assume that a debugger will only 1838 // access the low `FromBits` bits when inspecting the source variable. 1839 if (FromBits < ToBits) 1840 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1841 1842 // The width of the result has shrunk. Use sign/zero extension to describe 1843 // the source variable's high bits. 1844 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1845 DILocalVariable *Var = DII.getVariable(); 1846 1847 // Without knowing signedness, sign/zero extension isn't possible. 1848 auto Signedness = Var->getSignedness(); 1849 if (!Signedness) 1850 return None; 1851 1852 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1853 1854 if (!Signed) { 1855 // In the unsigned case, assume that a debugger will initialize the 1856 // high bits to 0 and do a no-op conversion. 1857 return Identity(DII); 1858 } else { 1859 // In the signed case, the high bits are given by sign extension, i.e: 1860 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1861 // Calculate the high bits and OR them together with the low bits. 1862 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1863 (ToBits - 1), dwarf::DW_OP_shr, 1864 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1865 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1866 return DIExpression::appendToStack(DII.getExpression(), Ops); 1867 } 1868 }; 1869 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1870 } 1871 1872 // TODO: Floating-point conversions, vectors. 1873 return false; 1874 } 1875 1876 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1877 unsigned NumDeadInst = 0; 1878 // Delete the instructions backwards, as it has a reduced likelihood of 1879 // having to update as many def-use and use-def chains. 1880 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1881 while (EndInst != &BB->front()) { 1882 // Delete the next to last instruction. 1883 Instruction *Inst = &*--EndInst->getIterator(); 1884 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1885 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1886 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1887 EndInst = Inst; 1888 continue; 1889 } 1890 if (!isa<DbgInfoIntrinsic>(Inst)) 1891 ++NumDeadInst; 1892 Inst->eraseFromParent(); 1893 } 1894 return NumDeadInst; 1895 } 1896 1897 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1898 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1899 BasicBlock *BB = I->getParent(); 1900 std::vector <DominatorTree::UpdateType> Updates; 1901 1902 // Loop over all of the successors, removing BB's entry from any PHI 1903 // nodes. 1904 if (DTU) 1905 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1906 for (BasicBlock *Successor : successors(BB)) { 1907 Successor->removePredecessor(BB, PreserveLCSSA); 1908 if (DTU) 1909 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1910 } 1911 // Insert a call to llvm.trap right before this. This turns the undefined 1912 // behavior into a hard fail instead of falling through into random code. 1913 if (UseLLVMTrap) { 1914 Function *TrapFn = 1915 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1916 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1917 CallTrap->setDebugLoc(I->getDebugLoc()); 1918 } 1919 auto *UI = new UnreachableInst(I->getContext(), I); 1920 UI->setDebugLoc(I->getDebugLoc()); 1921 1922 // All instructions after this are dead. 1923 unsigned NumInstrsRemoved = 0; 1924 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1925 while (BBI != BBE) { 1926 if (!BBI->use_empty()) 1927 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1928 BB->getInstList().erase(BBI++); 1929 ++NumInstrsRemoved; 1930 } 1931 if (DTU) 1932 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1933 return NumInstrsRemoved; 1934 } 1935 1936 /// changeToCall - Convert the specified invoke into a normal call. 1937 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1938 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1939 SmallVector<OperandBundleDef, 1> OpBundles; 1940 II->getOperandBundlesAsDefs(OpBundles); 1941 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1942 "", II); 1943 NewCall->takeName(II); 1944 NewCall->setCallingConv(II->getCallingConv()); 1945 NewCall->setAttributes(II->getAttributes()); 1946 NewCall->setDebugLoc(II->getDebugLoc()); 1947 NewCall->copyMetadata(*II); 1948 II->replaceAllUsesWith(NewCall); 1949 1950 // Follow the call by a branch to the normal destination. 1951 BasicBlock *NormalDestBB = II->getNormalDest(); 1952 BranchInst::Create(NormalDestBB, II); 1953 1954 // Update PHI nodes in the unwind destination 1955 BasicBlock *BB = II->getParent(); 1956 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1957 UnwindDestBB->removePredecessor(BB); 1958 II->eraseFromParent(); 1959 if (DTU) 1960 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1961 } 1962 1963 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1964 BasicBlock *UnwindEdge) { 1965 BasicBlock *BB = CI->getParent(); 1966 1967 // Convert this function call into an invoke instruction. First, split the 1968 // basic block. 1969 BasicBlock *Split = 1970 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1971 1972 // Delete the unconditional branch inserted by splitBasicBlock 1973 BB->getInstList().pop_back(); 1974 1975 // Create the new invoke instruction. 1976 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1977 SmallVector<OperandBundleDef, 1> OpBundles; 1978 1979 CI->getOperandBundlesAsDefs(OpBundles); 1980 1981 // Note: we're round tripping operand bundles through memory here, and that 1982 // can potentially be avoided with a cleverer API design that we do not have 1983 // as of this time. 1984 1985 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1986 InvokeArgs, OpBundles, CI->getName(), BB); 1987 II->setDebugLoc(CI->getDebugLoc()); 1988 II->setCallingConv(CI->getCallingConv()); 1989 II->setAttributes(CI->getAttributes()); 1990 1991 // Make sure that anything using the call now uses the invoke! This also 1992 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1993 CI->replaceAllUsesWith(II); 1994 1995 // Delete the original call 1996 Split->getInstList().pop_front(); 1997 return Split; 1998 } 1999 2000 static bool markAliveBlocks(Function &F, 2001 SmallPtrSetImpl<BasicBlock *> &Reachable, 2002 DomTreeUpdater *DTU = nullptr) { 2003 SmallVector<BasicBlock*, 128> Worklist; 2004 BasicBlock *BB = &F.front(); 2005 Worklist.push_back(BB); 2006 Reachable.insert(BB); 2007 bool Changed = false; 2008 do { 2009 BB = Worklist.pop_back_val(); 2010 2011 // Do a quick scan of the basic block, turning any obviously unreachable 2012 // instructions into LLVM unreachable insts. The instruction combining pass 2013 // canonicalizes unreachable insts into stores to null or undef. 2014 for (Instruction &I : *BB) { 2015 if (auto *CI = dyn_cast<CallInst>(&I)) { 2016 Value *Callee = CI->getCalledValue(); 2017 // Handle intrinsic calls. 2018 if (Function *F = dyn_cast<Function>(Callee)) { 2019 auto IntrinsicID = F->getIntrinsicID(); 2020 // Assumptions that are known to be false are equivalent to 2021 // unreachable. Also, if the condition is undefined, then we make the 2022 // choice most beneficial to the optimizer, and choose that to also be 2023 // unreachable. 2024 if (IntrinsicID == Intrinsic::assume) { 2025 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2026 // Don't insert a call to llvm.trap right before the unreachable. 2027 changeToUnreachable(CI, false, false, DTU); 2028 Changed = true; 2029 break; 2030 } 2031 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2032 // A call to the guard intrinsic bails out of the current 2033 // compilation unit if the predicate passed to it is false. If the 2034 // predicate is a constant false, then we know the guard will bail 2035 // out of the current compile unconditionally, so all code following 2036 // it is dead. 2037 // 2038 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2039 // guards to treat `undef` as `false` since a guard on `undef` can 2040 // still be useful for widening. 2041 if (match(CI->getArgOperand(0), m_Zero())) 2042 if (!isa<UnreachableInst>(CI->getNextNode())) { 2043 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2044 false, DTU); 2045 Changed = true; 2046 break; 2047 } 2048 } 2049 } else if ((isa<ConstantPointerNull>(Callee) && 2050 !NullPointerIsDefined(CI->getFunction())) || 2051 isa<UndefValue>(Callee)) { 2052 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2053 Changed = true; 2054 break; 2055 } 2056 if (CI->doesNotReturn()) { 2057 // If we found a call to a no-return function, insert an unreachable 2058 // instruction after it. Make sure there isn't *already* one there 2059 // though. 2060 if (!isa<UnreachableInst>(CI->getNextNode())) { 2061 // Don't insert a call to llvm.trap right before the unreachable. 2062 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2063 Changed = true; 2064 } 2065 break; 2066 } 2067 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2068 // Store to undef and store to null are undefined and used to signal 2069 // that they should be changed to unreachable by passes that can't 2070 // modify the CFG. 2071 2072 // Don't touch volatile stores. 2073 if (SI->isVolatile()) continue; 2074 2075 Value *Ptr = SI->getOperand(1); 2076 2077 if (isa<UndefValue>(Ptr) || 2078 (isa<ConstantPointerNull>(Ptr) && 2079 !NullPointerIsDefined(SI->getFunction(), 2080 SI->getPointerAddressSpace()))) { 2081 changeToUnreachable(SI, true, false, DTU); 2082 Changed = true; 2083 break; 2084 } 2085 } 2086 } 2087 2088 Instruction *Terminator = BB->getTerminator(); 2089 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2090 // Turn invokes that call 'nounwind' functions into ordinary calls. 2091 Value *Callee = II->getCalledValue(); 2092 if ((isa<ConstantPointerNull>(Callee) && 2093 !NullPointerIsDefined(BB->getParent())) || 2094 isa<UndefValue>(Callee)) { 2095 changeToUnreachable(II, true, false, DTU); 2096 Changed = true; 2097 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2098 if (II->use_empty() && II->onlyReadsMemory()) { 2099 // jump to the normal destination branch. 2100 BasicBlock *NormalDestBB = II->getNormalDest(); 2101 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2102 BranchInst::Create(NormalDestBB, II); 2103 UnwindDestBB->removePredecessor(II->getParent()); 2104 II->eraseFromParent(); 2105 if (DTU) 2106 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2107 } else 2108 changeToCall(II, DTU); 2109 Changed = true; 2110 } 2111 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2112 // Remove catchpads which cannot be reached. 2113 struct CatchPadDenseMapInfo { 2114 static CatchPadInst *getEmptyKey() { 2115 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2116 } 2117 2118 static CatchPadInst *getTombstoneKey() { 2119 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2120 } 2121 2122 static unsigned getHashValue(CatchPadInst *CatchPad) { 2123 return static_cast<unsigned>(hash_combine_range( 2124 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2125 } 2126 2127 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2128 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2129 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2130 return LHS == RHS; 2131 return LHS->isIdenticalTo(RHS); 2132 } 2133 }; 2134 2135 // Set of unique CatchPads. 2136 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2137 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2138 HandlerSet; 2139 detail::DenseSetEmpty Empty; 2140 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2141 E = CatchSwitch->handler_end(); 2142 I != E; ++I) { 2143 BasicBlock *HandlerBB = *I; 2144 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2145 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2146 CatchSwitch->removeHandler(I); 2147 --I; 2148 --E; 2149 Changed = true; 2150 } 2151 } 2152 } 2153 2154 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2155 for (BasicBlock *Successor : successors(BB)) 2156 if (Reachable.insert(Successor).second) 2157 Worklist.push_back(Successor); 2158 } while (!Worklist.empty()); 2159 return Changed; 2160 } 2161 2162 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2163 Instruction *TI = BB->getTerminator(); 2164 2165 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2166 changeToCall(II, DTU); 2167 return; 2168 } 2169 2170 Instruction *NewTI; 2171 BasicBlock *UnwindDest; 2172 2173 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2174 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2175 UnwindDest = CRI->getUnwindDest(); 2176 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2177 auto *NewCatchSwitch = CatchSwitchInst::Create( 2178 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2179 CatchSwitch->getName(), CatchSwitch); 2180 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2181 NewCatchSwitch->addHandler(PadBB); 2182 2183 NewTI = NewCatchSwitch; 2184 UnwindDest = CatchSwitch->getUnwindDest(); 2185 } else { 2186 llvm_unreachable("Could not find unwind successor"); 2187 } 2188 2189 NewTI->takeName(TI); 2190 NewTI->setDebugLoc(TI->getDebugLoc()); 2191 UnwindDest->removePredecessor(BB); 2192 TI->replaceAllUsesWith(NewTI); 2193 TI->eraseFromParent(); 2194 if (DTU) 2195 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2196 } 2197 2198 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2199 /// if they are in a dead cycle. Return true if a change was made, false 2200 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2201 /// after modifying the CFG. 2202 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2203 DomTreeUpdater *DTU, 2204 MemorySSAUpdater *MSSAU) { 2205 SmallPtrSet<BasicBlock*, 16> Reachable; 2206 bool Changed = markAliveBlocks(F, Reachable, DTU); 2207 2208 // If there are unreachable blocks in the CFG... 2209 if (Reachable.size() == F.size()) 2210 return Changed; 2211 2212 assert(Reachable.size() < F.size()); 2213 NumRemoved += F.size()-Reachable.size(); 2214 2215 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2216 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2217 auto *BB = &*I; 2218 if (Reachable.count(BB)) 2219 continue; 2220 DeadBlockSet.insert(BB); 2221 } 2222 2223 if (MSSAU) 2224 MSSAU->removeBlocks(DeadBlockSet); 2225 2226 // Loop over all of the basic blocks that are not reachable, dropping all of 2227 // their internal references. Update DTU and LVI if available. 2228 std::vector<DominatorTree::UpdateType> Updates; 2229 for (auto *BB : DeadBlockSet) { 2230 for (BasicBlock *Successor : successors(BB)) { 2231 if (!DeadBlockSet.count(Successor)) 2232 Successor->removePredecessor(BB); 2233 if (DTU) 2234 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2235 } 2236 if (LVI) 2237 LVI->eraseBlock(BB); 2238 BB->dropAllReferences(); 2239 } 2240 for (Function::iterator I = ++F.begin(); I != F.end();) { 2241 auto *BB = &*I; 2242 if (Reachable.count(BB)) { 2243 ++I; 2244 continue; 2245 } 2246 if (DTU) { 2247 // Remove the terminator of BB to clear the successor list of BB. 2248 if (BB->getTerminator()) 2249 BB->getInstList().pop_back(); 2250 new UnreachableInst(BB->getContext(), BB); 2251 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2252 "applying corresponding DTU updates."); 2253 ++I; 2254 } else { 2255 I = F.getBasicBlockList().erase(I); 2256 } 2257 } 2258 2259 if (DTU) { 2260 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2261 bool Deleted = false; 2262 for (auto *BB : DeadBlockSet) { 2263 if (DTU->isBBPendingDeletion(BB)) 2264 --NumRemoved; 2265 else 2266 Deleted = true; 2267 DTU->deleteBB(BB); 2268 } 2269 if (!Deleted) 2270 return false; 2271 } 2272 return true; 2273 } 2274 2275 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2276 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2277 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2278 K->dropUnknownNonDebugMetadata(KnownIDs); 2279 K->getAllMetadataOtherThanDebugLoc(Metadata); 2280 for (const auto &MD : Metadata) { 2281 unsigned Kind = MD.first; 2282 MDNode *JMD = J->getMetadata(Kind); 2283 MDNode *KMD = MD.second; 2284 2285 switch (Kind) { 2286 default: 2287 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2288 break; 2289 case LLVMContext::MD_dbg: 2290 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2291 case LLVMContext::MD_tbaa: 2292 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2293 break; 2294 case LLVMContext::MD_alias_scope: 2295 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2296 break; 2297 case LLVMContext::MD_noalias: 2298 case LLVMContext::MD_mem_parallel_loop_access: 2299 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2300 break; 2301 case LLVMContext::MD_access_group: 2302 K->setMetadata(LLVMContext::MD_access_group, 2303 intersectAccessGroups(K, J)); 2304 break; 2305 case LLVMContext::MD_range: 2306 2307 // If K does move, use most generic range. Otherwise keep the range of 2308 // K. 2309 if (DoesKMove) 2310 // FIXME: If K does move, we should drop the range info and nonnull. 2311 // Currently this function is used with DoesKMove in passes 2312 // doing hoisting/sinking and the current behavior of using the 2313 // most generic range is correct in those cases. 2314 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2315 break; 2316 case LLVMContext::MD_fpmath: 2317 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2318 break; 2319 case LLVMContext::MD_invariant_load: 2320 // Only set the !invariant.load if it is present in both instructions. 2321 K->setMetadata(Kind, JMD); 2322 break; 2323 case LLVMContext::MD_nonnull: 2324 // If K does move, keep nonull if it is present in both instructions. 2325 if (DoesKMove) 2326 K->setMetadata(Kind, JMD); 2327 break; 2328 case LLVMContext::MD_invariant_group: 2329 // Preserve !invariant.group in K. 2330 break; 2331 case LLVMContext::MD_align: 2332 K->setMetadata(Kind, 2333 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2334 break; 2335 case LLVMContext::MD_dereferenceable: 2336 case LLVMContext::MD_dereferenceable_or_null: 2337 K->setMetadata(Kind, 2338 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2339 break; 2340 } 2341 } 2342 // Set !invariant.group from J if J has it. If both instructions have it 2343 // then we will just pick it from J - even when they are different. 2344 // Also make sure that K is load or store - f.e. combining bitcast with load 2345 // could produce bitcast with invariant.group metadata, which is invalid. 2346 // FIXME: we should try to preserve both invariant.group md if they are 2347 // different, but right now instruction can only have one invariant.group. 2348 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2349 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2350 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2351 } 2352 2353 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2354 bool KDominatesJ) { 2355 unsigned KnownIDs[] = { 2356 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2357 LLVMContext::MD_noalias, LLVMContext::MD_range, 2358 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2359 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2360 LLVMContext::MD_dereferenceable, 2361 LLVMContext::MD_dereferenceable_or_null, 2362 LLVMContext::MD_access_group}; 2363 combineMetadata(K, J, KnownIDs, KDominatesJ); 2364 } 2365 2366 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2367 auto *ReplInst = dyn_cast<Instruction>(Repl); 2368 if (!ReplInst) 2369 return; 2370 2371 // Patch the replacement so that it is not more restrictive than the value 2372 // being replaced. 2373 // Note that if 'I' is a load being replaced by some operation, 2374 // for example, by an arithmetic operation, then andIRFlags() 2375 // would just erase all math flags from the original arithmetic 2376 // operation, which is clearly not wanted and not needed. 2377 if (!isa<LoadInst>(I)) 2378 ReplInst->andIRFlags(I); 2379 2380 // FIXME: If both the original and replacement value are part of the 2381 // same control-flow region (meaning that the execution of one 2382 // guarantees the execution of the other), then we can combine the 2383 // noalias scopes here and do better than the general conservative 2384 // answer used in combineMetadata(). 2385 2386 // In general, GVN unifies expressions over different control-flow 2387 // regions, and so we need a conservative combination of the noalias 2388 // scopes. 2389 static const unsigned KnownIDs[] = { 2390 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2391 LLVMContext::MD_noalias, LLVMContext::MD_range, 2392 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2393 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2394 LLVMContext::MD_access_group}; 2395 combineMetadata(ReplInst, I, KnownIDs, false); 2396 } 2397 2398 template <typename RootType, typename DominatesFn> 2399 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2400 const RootType &Root, 2401 const DominatesFn &Dominates) { 2402 assert(From->getType() == To->getType()); 2403 2404 unsigned Count = 0; 2405 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2406 UI != UE;) { 2407 Use &U = *UI++; 2408 if (!Dominates(Root, U)) 2409 continue; 2410 U.set(To); 2411 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2412 << "' as " << *To << " in " << *U << "\n"); 2413 ++Count; 2414 } 2415 return Count; 2416 } 2417 2418 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2419 assert(From->getType() == To->getType()); 2420 auto *BB = From->getParent(); 2421 unsigned Count = 0; 2422 2423 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2424 UI != UE;) { 2425 Use &U = *UI++; 2426 auto *I = cast<Instruction>(U.getUser()); 2427 if (I->getParent() == BB) 2428 continue; 2429 U.set(To); 2430 ++Count; 2431 } 2432 return Count; 2433 } 2434 2435 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2436 DominatorTree &DT, 2437 const BasicBlockEdge &Root) { 2438 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2439 return DT.dominates(Root, U); 2440 }; 2441 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2442 } 2443 2444 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2445 DominatorTree &DT, 2446 const BasicBlock *BB) { 2447 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2448 auto *I = cast<Instruction>(U.getUser())->getParent(); 2449 return DT.properlyDominates(BB, I); 2450 }; 2451 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2452 } 2453 2454 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2455 const TargetLibraryInfo &TLI) { 2456 // Check if the function is specifically marked as a gc leaf function. 2457 if (CS.hasFnAttr("gc-leaf-function")) 2458 return true; 2459 if (const Function *F = CS.getCalledFunction()) { 2460 if (F->hasFnAttribute("gc-leaf-function")) 2461 return true; 2462 2463 if (auto IID = F->getIntrinsicID()) 2464 // Most LLVM intrinsics do not take safepoints. 2465 return IID != Intrinsic::experimental_gc_statepoint && 2466 IID != Intrinsic::experimental_deoptimize; 2467 } 2468 2469 // Lib calls can be materialized by some passes, and won't be 2470 // marked as 'gc-leaf-function.' All available Libcalls are 2471 // GC-leaf. 2472 LibFunc LF; 2473 if (TLI.getLibFunc(CS, LF)) { 2474 return TLI.has(LF); 2475 } 2476 2477 return false; 2478 } 2479 2480 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2481 LoadInst &NewLI) { 2482 auto *NewTy = NewLI.getType(); 2483 2484 // This only directly applies if the new type is also a pointer. 2485 if (NewTy->isPointerTy()) { 2486 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2487 return; 2488 } 2489 2490 // The only other translation we can do is to integral loads with !range 2491 // metadata. 2492 if (!NewTy->isIntegerTy()) 2493 return; 2494 2495 MDBuilder MDB(NewLI.getContext()); 2496 const Value *Ptr = OldLI.getPointerOperand(); 2497 auto *ITy = cast<IntegerType>(NewTy); 2498 auto *NullInt = ConstantExpr::getPtrToInt( 2499 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2500 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2501 NewLI.setMetadata(LLVMContext::MD_range, 2502 MDB.createRange(NonNullInt, NullInt)); 2503 } 2504 2505 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2506 MDNode *N, LoadInst &NewLI) { 2507 auto *NewTy = NewLI.getType(); 2508 2509 // Give up unless it is converted to a pointer where there is a single very 2510 // valuable mapping we can do reliably. 2511 // FIXME: It would be nice to propagate this in more ways, but the type 2512 // conversions make it hard. 2513 if (!NewTy->isPointerTy()) 2514 return; 2515 2516 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2517 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2518 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2519 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2520 } 2521 } 2522 2523 void llvm::dropDebugUsers(Instruction &I) { 2524 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2525 findDbgUsers(DbgUsers, &I); 2526 for (auto *DII : DbgUsers) 2527 DII->eraseFromParent(); 2528 } 2529 2530 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2531 BasicBlock *BB) { 2532 // Since we are moving the instructions out of its basic block, we do not 2533 // retain their original debug locations (DILocations) and debug intrinsic 2534 // instructions (dbg.values). 2535 // 2536 // Doing so would degrade the debugging experience and adversely affect the 2537 // accuracy of profiling information. 2538 // 2539 // Currently, when hoisting the instructions, we take the following actions: 2540 // - Remove their dbg.values. 2541 // - Set their debug locations to the values from the insertion point. 2542 // 2543 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2544 // need to be deleted, is because there will not be any instructions with a 2545 // DILocation in either branch left after performing the transformation. We 2546 // can only insert a dbg.value after the two branches are joined again. 2547 // 2548 // See PR38762, PR39243 for more details. 2549 // 2550 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2551 // encode predicated DIExpressions that yield different results on different 2552 // code paths. 2553 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2554 Instruction *I = &*II; 2555 I->dropUnknownNonDebugMetadata(); 2556 if (I->isUsedByMetadata()) 2557 dropDebugUsers(*I); 2558 if (isa<DbgVariableIntrinsic>(I)) { 2559 // Remove DbgInfo Intrinsics. 2560 II = I->eraseFromParent(); 2561 continue; 2562 } 2563 I->setDebugLoc(InsertPt->getDebugLoc()); 2564 ++II; 2565 } 2566 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2567 BB->begin(), 2568 BB->getTerminator()->getIterator()); 2569 } 2570 2571 namespace { 2572 2573 /// A potential constituent of a bitreverse or bswap expression. See 2574 /// collectBitParts for a fuller explanation. 2575 struct BitPart { 2576 BitPart(Value *P, unsigned BW) : Provider(P) { 2577 Provenance.resize(BW); 2578 } 2579 2580 /// The Value that this is a bitreverse/bswap of. 2581 Value *Provider; 2582 2583 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2584 /// in Provider becomes bit B in the result of this expression. 2585 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2586 2587 enum { Unset = -1 }; 2588 }; 2589 2590 } // end anonymous namespace 2591 2592 /// Analyze the specified subexpression and see if it is capable of providing 2593 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2594 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2595 /// the output of the expression came from a corresponding bit in some other 2596 /// value. This function is recursive, and the end result is a mapping of 2597 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2598 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2599 /// 2600 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2601 /// that the expression deposits the low byte of %X into the high byte of the 2602 /// result and that all other bits are zero. This expression is accepted and a 2603 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2604 /// [0-7]. 2605 /// 2606 /// To avoid revisiting values, the BitPart results are memoized into the 2607 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2608 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2609 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2610 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2611 /// type instead to provide the same functionality. 2612 /// 2613 /// Because we pass around references into \c BPS, we must use a container that 2614 /// does not invalidate internal references (std::map instead of DenseMap). 2615 static const Optional<BitPart> & 2616 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2617 std::map<Value *, Optional<BitPart>> &BPS) { 2618 auto I = BPS.find(V); 2619 if (I != BPS.end()) 2620 return I->second; 2621 2622 auto &Result = BPS[V] = None; 2623 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2624 2625 if (Instruction *I = dyn_cast<Instruction>(V)) { 2626 // If this is an or instruction, it may be an inner node of the bswap. 2627 if (I->getOpcode() == Instruction::Or) { 2628 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2629 MatchBitReversals, BPS); 2630 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2631 MatchBitReversals, BPS); 2632 if (!A || !B) 2633 return Result; 2634 2635 // Try and merge the two together. 2636 if (!A->Provider || A->Provider != B->Provider) 2637 return Result; 2638 2639 Result = BitPart(A->Provider, BitWidth); 2640 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2641 if (A->Provenance[i] != BitPart::Unset && 2642 B->Provenance[i] != BitPart::Unset && 2643 A->Provenance[i] != B->Provenance[i]) 2644 return Result = None; 2645 2646 if (A->Provenance[i] == BitPart::Unset) 2647 Result->Provenance[i] = B->Provenance[i]; 2648 else 2649 Result->Provenance[i] = A->Provenance[i]; 2650 } 2651 2652 return Result; 2653 } 2654 2655 // If this is a logical shift by a constant, recurse then shift the result. 2656 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2657 unsigned BitShift = 2658 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2659 // Ensure the shift amount is defined. 2660 if (BitShift > BitWidth) 2661 return Result; 2662 2663 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2664 MatchBitReversals, BPS); 2665 if (!Res) 2666 return Result; 2667 Result = Res; 2668 2669 // Perform the "shift" on BitProvenance. 2670 auto &P = Result->Provenance; 2671 if (I->getOpcode() == Instruction::Shl) { 2672 P.erase(std::prev(P.end(), BitShift), P.end()); 2673 P.insert(P.begin(), BitShift, BitPart::Unset); 2674 } else { 2675 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2676 P.insert(P.end(), BitShift, BitPart::Unset); 2677 } 2678 2679 return Result; 2680 } 2681 2682 // If this is a logical 'and' with a mask that clears bits, recurse then 2683 // unset the appropriate bits. 2684 if (I->getOpcode() == Instruction::And && 2685 isa<ConstantInt>(I->getOperand(1))) { 2686 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2687 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2688 2689 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2690 // early exit. 2691 unsigned NumMaskedBits = AndMask.countPopulation(); 2692 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2693 return Result; 2694 2695 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2696 MatchBitReversals, BPS); 2697 if (!Res) 2698 return Result; 2699 Result = Res; 2700 2701 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2702 // If the AndMask is zero for this bit, clear the bit. 2703 if ((AndMask & Bit) == 0) 2704 Result->Provenance[i] = BitPart::Unset; 2705 return Result; 2706 } 2707 2708 // If this is a zext instruction zero extend the result. 2709 if (I->getOpcode() == Instruction::ZExt) { 2710 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2711 MatchBitReversals, BPS); 2712 if (!Res) 2713 return Result; 2714 2715 Result = BitPart(Res->Provider, BitWidth); 2716 auto NarrowBitWidth = 2717 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2718 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2719 Result->Provenance[i] = Res->Provenance[i]; 2720 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2721 Result->Provenance[i] = BitPart::Unset; 2722 return Result; 2723 } 2724 } 2725 2726 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2727 // the input value to the bswap/bitreverse. 2728 Result = BitPart(V, BitWidth); 2729 for (unsigned i = 0; i < BitWidth; ++i) 2730 Result->Provenance[i] = i; 2731 return Result; 2732 } 2733 2734 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2735 unsigned BitWidth) { 2736 if (From % 8 != To % 8) 2737 return false; 2738 // Convert from bit indices to byte indices and check for a byte reversal. 2739 From >>= 3; 2740 To >>= 3; 2741 BitWidth >>= 3; 2742 return From == BitWidth - To - 1; 2743 } 2744 2745 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2746 unsigned BitWidth) { 2747 return From == BitWidth - To - 1; 2748 } 2749 2750 bool llvm::recognizeBSwapOrBitReverseIdiom( 2751 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2752 SmallVectorImpl<Instruction *> &InsertedInsts) { 2753 if (Operator::getOpcode(I) != Instruction::Or) 2754 return false; 2755 if (!MatchBSwaps && !MatchBitReversals) 2756 return false; 2757 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2758 if (!ITy || ITy->getBitWidth() > 128) 2759 return false; // Can't do vectors or integers > 128 bits. 2760 unsigned BW = ITy->getBitWidth(); 2761 2762 unsigned DemandedBW = BW; 2763 IntegerType *DemandedTy = ITy; 2764 if (I->hasOneUse()) { 2765 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2766 DemandedTy = cast<IntegerType>(Trunc->getType()); 2767 DemandedBW = DemandedTy->getBitWidth(); 2768 } 2769 } 2770 2771 // Try to find all the pieces corresponding to the bswap. 2772 std::map<Value *, Optional<BitPart>> BPS; 2773 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2774 if (!Res) 2775 return false; 2776 auto &BitProvenance = Res->Provenance; 2777 2778 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2779 // only byteswap values with an even number of bytes. 2780 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2781 for (unsigned i = 0; i < DemandedBW; ++i) { 2782 OKForBSwap &= 2783 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2784 OKForBitReverse &= 2785 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2786 } 2787 2788 Intrinsic::ID Intrin; 2789 if (OKForBSwap && MatchBSwaps) 2790 Intrin = Intrinsic::bswap; 2791 else if (OKForBitReverse && MatchBitReversals) 2792 Intrin = Intrinsic::bitreverse; 2793 else 2794 return false; 2795 2796 if (ITy != DemandedTy) { 2797 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2798 Value *Provider = Res->Provider; 2799 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2800 // We may need to truncate the provider. 2801 if (DemandedTy != ProviderTy) { 2802 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2803 "trunc", I); 2804 InsertedInsts.push_back(Trunc); 2805 Provider = Trunc; 2806 } 2807 auto *CI = CallInst::Create(F, Provider, "rev", I); 2808 InsertedInsts.push_back(CI); 2809 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2810 InsertedInsts.push_back(ExtInst); 2811 return true; 2812 } 2813 2814 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2815 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2816 return true; 2817 } 2818 2819 // CodeGen has special handling for some string functions that may replace 2820 // them with target-specific intrinsics. Since that'd skip our interceptors 2821 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2822 // we mark affected calls as NoBuiltin, which will disable optimization 2823 // in CodeGen. 2824 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2825 CallInst *CI, const TargetLibraryInfo *TLI) { 2826 Function *F = CI->getCalledFunction(); 2827 LibFunc Func; 2828 if (F && !F->hasLocalLinkage() && F->hasName() && 2829 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2830 !F->doesNotAccessMemory()) 2831 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2832 } 2833 2834 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2835 // We can't have a PHI with a metadata type. 2836 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2837 return false; 2838 2839 // Early exit. 2840 if (!isa<Constant>(I->getOperand(OpIdx))) 2841 return true; 2842 2843 switch (I->getOpcode()) { 2844 default: 2845 return true; 2846 case Instruction::Call: 2847 case Instruction::Invoke: 2848 // Can't handle inline asm. Skip it. 2849 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2850 return false; 2851 // Many arithmetic intrinsics have no issue taking a 2852 // variable, however it's hard to distingish these from 2853 // specials such as @llvm.frameaddress that require a constant. 2854 if (isa<IntrinsicInst>(I)) 2855 return false; 2856 2857 // Constant bundle operands may need to retain their constant-ness for 2858 // correctness. 2859 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2860 return false; 2861 return true; 2862 case Instruction::ShuffleVector: 2863 // Shufflevector masks are constant. 2864 return OpIdx != 2; 2865 case Instruction::Switch: 2866 case Instruction::ExtractValue: 2867 // All operands apart from the first are constant. 2868 return OpIdx == 0; 2869 case Instruction::InsertValue: 2870 // All operands apart from the first and the second are constant. 2871 return OpIdx < 2; 2872 case Instruction::Alloca: 2873 // Static allocas (constant size in the entry block) are handled by 2874 // prologue/epilogue insertion so they're free anyway. We definitely don't 2875 // want to make them non-constant. 2876 return !cast<AllocaInst>(I)->isStaticAlloca(); 2877 case Instruction::GetElementPtr: 2878 if (OpIdx == 0) 2879 return true; 2880 gep_type_iterator It = gep_type_begin(I); 2881 for (auto E = std::next(It, OpIdx); It != E; ++It) 2882 if (It.isStruct()) 2883 return false; 2884 return true; 2885 } 2886 } 2887