1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/CFG.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DIBuilder.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "local" 47 48 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 49 50 //===----------------------------------------------------------------------===// 51 // Local constant propagation. 52 // 53 54 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 55 /// constant value, convert it into an unconditional branch to the constant 56 /// destination. This is a nontrivial operation because the successors of this 57 /// basic block must have their PHI nodes updated. 58 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 59 /// conditions and indirectbr addresses this might make dead if 60 /// DeleteDeadConditions is true. 61 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 62 const TargetLibraryInfo *TLI) { 63 TerminatorInst *T = BB->getTerminator(); 64 IRBuilder<> Builder(T); 65 66 // Branch - See if we are conditional jumping on constant 67 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 68 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 69 BasicBlock *Dest1 = BI->getSuccessor(0); 70 BasicBlock *Dest2 = BI->getSuccessor(1); 71 72 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 73 // Are we branching on constant? 74 // YES. Change to unconditional branch... 75 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 76 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 77 78 //cerr << "Function: " << T->getParent()->getParent() 79 // << "\nRemoving branch from " << T->getParent() 80 // << "\n\nTo: " << OldDest << endl; 81 82 // Let the basic block know that we are letting go of it. Based on this, 83 // it will adjust it's PHI nodes. 84 OldDest->removePredecessor(BB); 85 86 // Replace the conditional branch with an unconditional one. 87 Builder.CreateBr(Destination); 88 BI->eraseFromParent(); 89 return true; 90 } 91 92 if (Dest2 == Dest1) { // Conditional branch to same location? 93 // This branch matches something like this: 94 // br bool %cond, label %Dest, label %Dest 95 // and changes it into: br label %Dest 96 97 // Let the basic block know that we are letting go of one copy of it. 98 assert(BI->getParent() && "Terminator not inserted in block!"); 99 Dest1->removePredecessor(BI->getParent()); 100 101 // Replace the conditional branch with an unconditional one. 102 Builder.CreateBr(Dest1); 103 Value *Cond = BI->getCondition(); 104 BI->eraseFromParent(); 105 if (DeleteDeadConditions) 106 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 107 return true; 108 } 109 return false; 110 } 111 112 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 113 // If we are switching on a constant, we can convert the switch into a 114 // single branch instruction! 115 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 116 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 117 BasicBlock *DefaultDest = TheOnlyDest; 118 119 // Figure out which case it goes to. 120 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 121 i != e; ++i) { 122 // Found case matching a constant operand? 123 if (i.getCaseValue() == CI) { 124 TheOnlyDest = i.getCaseSuccessor(); 125 break; 126 } 127 128 // Check to see if this branch is going to the same place as the default 129 // dest. If so, eliminate it as an explicit compare. 130 if (i.getCaseSuccessor() == DefaultDest) { 131 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 132 unsigned NCases = SI->getNumCases(); 133 // Fold the case metadata into the default if there will be any branches 134 // left, unless the metadata doesn't match the switch. 135 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 136 // Collect branch weights into a vector. 137 SmallVector<uint32_t, 8> Weights; 138 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 139 ++MD_i) { 140 ConstantInt *CI = 141 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i)); 142 assert(CI); 143 Weights.push_back(CI->getValue().getZExtValue()); 144 } 145 // Merge weight of this case to the default weight. 146 unsigned idx = i.getCaseIndex(); 147 Weights[0] += Weights[idx+1]; 148 // Remove weight for this case. 149 std::swap(Weights[idx+1], Weights.back()); 150 Weights.pop_back(); 151 SI->setMetadata(LLVMContext::MD_prof, 152 MDBuilder(BB->getContext()). 153 createBranchWeights(Weights)); 154 } 155 // Remove this entry. 156 DefaultDest->removePredecessor(SI->getParent()); 157 SI->removeCase(i); 158 --i; --e; 159 continue; 160 } 161 162 // Otherwise, check to see if the switch only branches to one destination. 163 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 164 // destinations. 165 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 166 } 167 168 if (CI && !TheOnlyDest) { 169 // Branching on a constant, but not any of the cases, go to the default 170 // successor. 171 TheOnlyDest = SI->getDefaultDest(); 172 } 173 174 // If we found a single destination that we can fold the switch into, do so 175 // now. 176 if (TheOnlyDest) { 177 // Insert the new branch. 178 Builder.CreateBr(TheOnlyDest); 179 BasicBlock *BB = SI->getParent(); 180 181 // Remove entries from PHI nodes which we no longer branch to... 182 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 183 // Found case matching a constant operand? 184 BasicBlock *Succ = SI->getSuccessor(i); 185 if (Succ == TheOnlyDest) 186 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 187 else 188 Succ->removePredecessor(BB); 189 } 190 191 // Delete the old switch. 192 Value *Cond = SI->getCondition(); 193 SI->eraseFromParent(); 194 if (DeleteDeadConditions) 195 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 196 return true; 197 } 198 199 if (SI->getNumCases() == 1) { 200 // Otherwise, we can fold this switch into a conditional branch 201 // instruction if it has only one non-default destination. 202 SwitchInst::CaseIt FirstCase = SI->case_begin(); 203 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 204 FirstCase.getCaseValue(), "cond"); 205 206 // Insert the new branch. 207 BranchInst *NewBr = Builder.CreateCondBr(Cond, 208 FirstCase.getCaseSuccessor(), 209 SI->getDefaultDest()); 210 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 211 if (MD && MD->getNumOperands() == 3) { 212 ConstantInt *SICase = 213 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 214 ConstantInt *SIDef = 215 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 216 assert(SICase && SIDef); 217 // The TrueWeight should be the weight for the single case of SI. 218 NewBr->setMetadata(LLVMContext::MD_prof, 219 MDBuilder(BB->getContext()). 220 createBranchWeights(SICase->getValue().getZExtValue(), 221 SIDef->getValue().getZExtValue())); 222 } 223 224 // Delete the old switch. 225 SI->eraseFromParent(); 226 return true; 227 } 228 return false; 229 } 230 231 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 232 // indirectbr blockaddress(@F, @BB) -> br label @BB 233 if (BlockAddress *BA = 234 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 235 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 236 // Insert the new branch. 237 Builder.CreateBr(TheOnlyDest); 238 239 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 240 if (IBI->getDestination(i) == TheOnlyDest) 241 TheOnlyDest = nullptr; 242 else 243 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 244 } 245 Value *Address = IBI->getAddress(); 246 IBI->eraseFromParent(); 247 if (DeleteDeadConditions) 248 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 249 250 // If we didn't find our destination in the IBI successor list, then we 251 // have undefined behavior. Replace the unconditional branch with an 252 // 'unreachable' instruction. 253 if (TheOnlyDest) { 254 BB->getTerminator()->eraseFromParent(); 255 new UnreachableInst(BB->getContext(), BB); 256 } 257 258 return true; 259 } 260 } 261 262 return false; 263 } 264 265 266 //===----------------------------------------------------------------------===// 267 // Local dead code elimination. 268 // 269 270 /// isInstructionTriviallyDead - Return true if the result produced by the 271 /// instruction is not used, and the instruction has no side effects. 272 /// 273 bool llvm::isInstructionTriviallyDead(Instruction *I, 274 const TargetLibraryInfo *TLI) { 275 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 276 277 // We don't want the landingpad instruction removed by anything this general. 278 if (isa<LandingPadInst>(I)) 279 return false; 280 281 // We don't want debug info removed by anything this general, unless 282 // debug info is empty. 283 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 284 if (DDI->getAddress()) 285 return false; 286 return true; 287 } 288 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 289 if (DVI->getValue()) 290 return false; 291 return true; 292 } 293 294 if (!I->mayHaveSideEffects()) return true; 295 296 // Special case intrinsics that "may have side effects" but can be deleted 297 // when dead. 298 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 299 // Safe to delete llvm.stacksave if dead. 300 if (II->getIntrinsicID() == Intrinsic::stacksave) 301 return true; 302 303 // Lifetime intrinsics are dead when their right-hand is undef. 304 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 305 II->getIntrinsicID() == Intrinsic::lifetime_end) 306 return isa<UndefValue>(II->getArgOperand(1)); 307 308 // Assumptions are dead if their condition is trivially true. 309 if (II->getIntrinsicID() == Intrinsic::assume) { 310 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 311 return !Cond->isZero(); 312 313 return false; 314 } 315 } 316 317 if (isAllocLikeFn(I, TLI)) return true; 318 319 if (CallInst *CI = isFreeCall(I, TLI)) 320 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 321 return C->isNullValue() || isa<UndefValue>(C); 322 323 return false; 324 } 325 326 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 327 /// trivially dead instruction, delete it. If that makes any of its operands 328 /// trivially dead, delete them too, recursively. Return true if any 329 /// instructions were deleted. 330 bool 331 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 332 const TargetLibraryInfo *TLI) { 333 Instruction *I = dyn_cast<Instruction>(V); 334 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 335 return false; 336 337 SmallVector<Instruction*, 16> DeadInsts; 338 DeadInsts.push_back(I); 339 340 do { 341 I = DeadInsts.pop_back_val(); 342 343 // Null out all of the instruction's operands to see if any operand becomes 344 // dead as we go. 345 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 346 Value *OpV = I->getOperand(i); 347 I->setOperand(i, nullptr); 348 349 if (!OpV->use_empty()) continue; 350 351 // If the operand is an instruction that became dead as we nulled out the 352 // operand, and if it is 'trivially' dead, delete it in a future loop 353 // iteration. 354 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 355 if (isInstructionTriviallyDead(OpI, TLI)) 356 DeadInsts.push_back(OpI); 357 } 358 359 I->eraseFromParent(); 360 } while (!DeadInsts.empty()); 361 362 return true; 363 } 364 365 /// areAllUsesEqual - Check whether the uses of a value are all the same. 366 /// This is similar to Instruction::hasOneUse() except this will also return 367 /// true when there are no uses or multiple uses that all refer to the same 368 /// value. 369 static bool areAllUsesEqual(Instruction *I) { 370 Value::user_iterator UI = I->user_begin(); 371 Value::user_iterator UE = I->user_end(); 372 if (UI == UE) 373 return true; 374 375 User *TheUse = *UI; 376 for (++UI; UI != UE; ++UI) { 377 if (*UI != TheUse) 378 return false; 379 } 380 return true; 381 } 382 383 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 384 /// dead PHI node, due to being a def-use chain of single-use nodes that 385 /// either forms a cycle or is terminated by a trivially dead instruction, 386 /// delete it. If that makes any of its operands trivially dead, delete them 387 /// too, recursively. Return true if a change was made. 388 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 389 const TargetLibraryInfo *TLI) { 390 SmallPtrSet<Instruction*, 4> Visited; 391 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 392 I = cast<Instruction>(*I->user_begin())) { 393 if (I->use_empty()) 394 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 395 396 // If we find an instruction more than once, we're on a cycle that 397 // won't prove fruitful. 398 if (!Visited.insert(I).second) { 399 // Break the cycle and delete the instruction and its operands. 400 I->replaceAllUsesWith(UndefValue::get(I->getType())); 401 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 402 return true; 403 } 404 } 405 return false; 406 } 407 408 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 409 /// simplify any instructions in it and recursively delete dead instructions. 410 /// 411 /// This returns true if it changed the code, note that it can delete 412 /// instructions in other blocks as well in this block. 413 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 414 const TargetLibraryInfo *TLI) { 415 bool MadeChange = false; 416 417 #ifndef NDEBUG 418 // In debug builds, ensure that the terminator of the block is never replaced 419 // or deleted by these simplifications. The idea of simplification is that it 420 // cannot introduce new instructions, and there is no way to replace the 421 // terminator of a block without introducing a new instruction. 422 AssertingVH<Instruction> TerminatorVH(--BB->end()); 423 #endif 424 425 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 426 assert(!BI->isTerminator()); 427 Instruction *Inst = BI++; 428 429 WeakVH BIHandle(BI); 430 if (recursivelySimplifyInstruction(Inst, TD, TLI)) { 431 MadeChange = true; 432 if (BIHandle != BI) 433 BI = BB->begin(); 434 continue; 435 } 436 437 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 438 if (BIHandle != BI) 439 BI = BB->begin(); 440 } 441 return MadeChange; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Control Flow Graph Restructuring. 446 // 447 448 449 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 450 /// method is called when we're about to delete Pred as a predecessor of BB. If 451 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 452 /// 453 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 454 /// nodes that collapse into identity values. For example, if we have: 455 /// x = phi(1, 0, 0, 0) 456 /// y = and x, z 457 /// 458 /// .. and delete the predecessor corresponding to the '1', this will attempt to 459 /// recursively fold the and to 0. 460 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 461 DataLayout *TD) { 462 // This only adjusts blocks with PHI nodes. 463 if (!isa<PHINode>(BB->begin())) 464 return; 465 466 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 467 // them down. This will leave us with single entry phi nodes and other phis 468 // that can be removed. 469 BB->removePredecessor(Pred, true); 470 471 WeakVH PhiIt = &BB->front(); 472 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 473 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 474 Value *OldPhiIt = PhiIt; 475 476 if (!recursivelySimplifyInstruction(PN, TD)) 477 continue; 478 479 // If recursive simplification ended up deleting the next PHI node we would 480 // iterate to, then our iterator is invalid, restart scanning from the top 481 // of the block. 482 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 483 } 484 } 485 486 487 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 488 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 489 /// between them, moving the instructions in the predecessor into DestBB and 490 /// deleting the predecessor block. 491 /// 492 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 493 // If BB has single-entry PHI nodes, fold them. 494 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 495 Value *NewVal = PN->getIncomingValue(0); 496 // Replace self referencing PHI with undef, it must be dead. 497 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 498 PN->replaceAllUsesWith(NewVal); 499 PN->eraseFromParent(); 500 } 501 502 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 503 assert(PredBB && "Block doesn't have a single predecessor!"); 504 505 // Zap anything that took the address of DestBB. Not doing this will give the 506 // address an invalid value. 507 if (DestBB->hasAddressTaken()) { 508 BlockAddress *BA = BlockAddress::get(DestBB); 509 Constant *Replacement = 510 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 511 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 512 BA->getType())); 513 BA->destroyConstant(); 514 } 515 516 // Anything that branched to PredBB now branches to DestBB. 517 PredBB->replaceAllUsesWith(DestBB); 518 519 // Splice all the instructions from PredBB to DestBB. 520 PredBB->getTerminator()->eraseFromParent(); 521 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 522 523 // If the PredBB is the entry block of the function, move DestBB up to 524 // become the entry block after we erase PredBB. 525 if (PredBB == &DestBB->getParent()->getEntryBlock()) 526 DestBB->moveAfter(PredBB); 527 528 if (P) { 529 if (DominatorTreeWrapperPass *DTWP = 530 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { 531 DominatorTree &DT = DTWP->getDomTree(); 532 BasicBlock *PredBBIDom = DT.getNode(PredBB)->getIDom()->getBlock(); 533 DT.changeImmediateDominator(DestBB, PredBBIDom); 534 DT.eraseNode(PredBB); 535 } 536 } 537 // Nuke BB. 538 PredBB->eraseFromParent(); 539 } 540 541 /// CanMergeValues - Return true if we can choose one of these values to use 542 /// in place of the other. Note that we will always choose the non-undef 543 /// value to keep. 544 static bool CanMergeValues(Value *First, Value *Second) { 545 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 546 } 547 548 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 549 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 550 /// 551 /// Assumption: Succ is the single successor for BB. 552 /// 553 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 554 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 555 556 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 557 << Succ->getName() << "\n"); 558 // Shortcut, if there is only a single predecessor it must be BB and merging 559 // is always safe 560 if (Succ->getSinglePredecessor()) return true; 561 562 // Make a list of the predecessors of BB 563 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 564 565 // Look at all the phi nodes in Succ, to see if they present a conflict when 566 // merging these blocks 567 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 568 PHINode *PN = cast<PHINode>(I); 569 570 // If the incoming value from BB is again a PHINode in 571 // BB which has the same incoming value for *PI as PN does, we can 572 // merge the phi nodes and then the blocks can still be merged 573 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 574 if (BBPN && BBPN->getParent() == BB) { 575 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 576 BasicBlock *IBB = PN->getIncomingBlock(PI); 577 if (BBPreds.count(IBB) && 578 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 579 PN->getIncomingValue(PI))) { 580 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 581 << Succ->getName() << " is conflicting with " 582 << BBPN->getName() << " with regard to common predecessor " 583 << IBB->getName() << "\n"); 584 return false; 585 } 586 } 587 } else { 588 Value* Val = PN->getIncomingValueForBlock(BB); 589 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 590 // See if the incoming value for the common predecessor is equal to the 591 // one for BB, in which case this phi node will not prevent the merging 592 // of the block. 593 BasicBlock *IBB = PN->getIncomingBlock(PI); 594 if (BBPreds.count(IBB) && 595 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 596 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 597 << Succ->getName() << " is conflicting with regard to common " 598 << "predecessor " << IBB->getName() << "\n"); 599 return false; 600 } 601 } 602 } 603 } 604 605 return true; 606 } 607 608 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 609 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 610 611 /// \brief Determines the value to use as the phi node input for a block. 612 /// 613 /// Select between \p OldVal any value that we know flows from \p BB 614 /// to a particular phi on the basis of which one (if either) is not 615 /// undef. Update IncomingValues based on the selected value. 616 /// 617 /// \param OldVal The value we are considering selecting. 618 /// \param BB The block that the value flows in from. 619 /// \param IncomingValues A map from block-to-value for other phi inputs 620 /// that we have examined. 621 /// 622 /// \returns the selected value. 623 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 624 IncomingValueMap &IncomingValues) { 625 if (!isa<UndefValue>(OldVal)) { 626 assert((!IncomingValues.count(BB) || 627 IncomingValues.find(BB)->second == OldVal) && 628 "Expected OldVal to match incoming value from BB!"); 629 630 IncomingValues.insert(std::make_pair(BB, OldVal)); 631 return OldVal; 632 } 633 634 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 635 if (It != IncomingValues.end()) return It->second; 636 637 return OldVal; 638 } 639 640 /// \brief Create a map from block to value for the operands of a 641 /// given phi. 642 /// 643 /// Create a map from block to value for each non-undef value flowing 644 /// into \p PN. 645 /// 646 /// \param PN The phi we are collecting the map for. 647 /// \param IncomingValues [out] The map from block to value for this phi. 648 static void gatherIncomingValuesToPhi(PHINode *PN, 649 IncomingValueMap &IncomingValues) { 650 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 651 BasicBlock *BB = PN->getIncomingBlock(i); 652 Value *V = PN->getIncomingValue(i); 653 654 if (!isa<UndefValue>(V)) 655 IncomingValues.insert(std::make_pair(BB, V)); 656 } 657 } 658 659 /// \brief Replace the incoming undef values to a phi with the values 660 /// from a block-to-value map. 661 /// 662 /// \param PN The phi we are replacing the undefs in. 663 /// \param IncomingValues A map from block to value. 664 static void replaceUndefValuesInPhi(PHINode *PN, 665 const IncomingValueMap &IncomingValues) { 666 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 667 Value *V = PN->getIncomingValue(i); 668 669 if (!isa<UndefValue>(V)) continue; 670 671 BasicBlock *BB = PN->getIncomingBlock(i); 672 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 673 if (It == IncomingValues.end()) continue; 674 675 PN->setIncomingValue(i, It->second); 676 } 677 } 678 679 /// \brief Replace a value flowing from a block to a phi with 680 /// potentially multiple instances of that value flowing from the 681 /// block's predecessors to the phi. 682 /// 683 /// \param BB The block with the value flowing into the phi. 684 /// \param BBPreds The predecessors of BB. 685 /// \param PN The phi that we are updating. 686 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 687 const PredBlockVector &BBPreds, 688 PHINode *PN) { 689 Value *OldVal = PN->removeIncomingValue(BB, false); 690 assert(OldVal && "No entry in PHI for Pred BB!"); 691 692 IncomingValueMap IncomingValues; 693 694 // We are merging two blocks - BB, and the block containing PN - and 695 // as a result we need to redirect edges from the predecessors of BB 696 // to go to the block containing PN, and update PN 697 // accordingly. Since we allow merging blocks in the case where the 698 // predecessor and successor blocks both share some predecessors, 699 // and where some of those common predecessors might have undef 700 // values flowing into PN, we want to rewrite those values to be 701 // consistent with the non-undef values. 702 703 gatherIncomingValuesToPhi(PN, IncomingValues); 704 705 // If this incoming value is one of the PHI nodes in BB, the new entries 706 // in the PHI node are the entries from the old PHI. 707 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 708 PHINode *OldValPN = cast<PHINode>(OldVal); 709 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 710 // Note that, since we are merging phi nodes and BB and Succ might 711 // have common predecessors, we could end up with a phi node with 712 // identical incoming branches. This will be cleaned up later (and 713 // will trigger asserts if we try to clean it up now, without also 714 // simplifying the corresponding conditional branch). 715 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 716 Value *PredVal = OldValPN->getIncomingValue(i); 717 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 718 IncomingValues); 719 720 // And add a new incoming value for this predecessor for the 721 // newly retargeted branch. 722 PN->addIncoming(Selected, PredBB); 723 } 724 } else { 725 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 726 // Update existing incoming values in PN for this 727 // predecessor of BB. 728 BasicBlock *PredBB = BBPreds[i]; 729 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 730 IncomingValues); 731 732 // And add a new incoming value for this predecessor for the 733 // newly retargeted branch. 734 PN->addIncoming(Selected, PredBB); 735 } 736 } 737 738 replaceUndefValuesInPhi(PN, IncomingValues); 739 } 740 741 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 742 /// unconditional branch, and contains no instructions other than PHI nodes, 743 /// potential side-effect free intrinsics and the branch. If possible, 744 /// eliminate BB by rewriting all the predecessors to branch to the successor 745 /// block and return true. If we can't transform, return false. 746 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 747 assert(BB != &BB->getParent()->getEntryBlock() && 748 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 749 750 // We can't eliminate infinite loops. 751 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 752 if (BB == Succ) return false; 753 754 // Check to see if merging these blocks would cause conflicts for any of the 755 // phi nodes in BB or Succ. If not, we can safely merge. 756 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 757 758 // Check for cases where Succ has multiple predecessors and a PHI node in BB 759 // has uses which will not disappear when the PHI nodes are merged. It is 760 // possible to handle such cases, but difficult: it requires checking whether 761 // BB dominates Succ, which is non-trivial to calculate in the case where 762 // Succ has multiple predecessors. Also, it requires checking whether 763 // constructing the necessary self-referential PHI node doesn't introduce any 764 // conflicts; this isn't too difficult, but the previous code for doing this 765 // was incorrect. 766 // 767 // Note that if this check finds a live use, BB dominates Succ, so BB is 768 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 769 // folding the branch isn't profitable in that case anyway. 770 if (!Succ->getSinglePredecessor()) { 771 BasicBlock::iterator BBI = BB->begin(); 772 while (isa<PHINode>(*BBI)) { 773 for (Use &U : BBI->uses()) { 774 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 775 if (PN->getIncomingBlock(U) != BB) 776 return false; 777 } else { 778 return false; 779 } 780 } 781 ++BBI; 782 } 783 } 784 785 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 786 787 if (isa<PHINode>(Succ->begin())) { 788 // If there is more than one pred of succ, and there are PHI nodes in 789 // the successor, then we need to add incoming edges for the PHI nodes 790 // 791 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 792 793 // Loop over all of the PHI nodes in the successor of BB. 794 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 795 PHINode *PN = cast<PHINode>(I); 796 797 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 798 } 799 } 800 801 if (Succ->getSinglePredecessor()) { 802 // BB is the only predecessor of Succ, so Succ will end up with exactly 803 // the same predecessors BB had. 804 805 // Copy over any phi, debug or lifetime instruction. 806 BB->getTerminator()->eraseFromParent(); 807 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 808 } else { 809 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 810 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 811 assert(PN->use_empty() && "There shouldn't be any uses here!"); 812 PN->eraseFromParent(); 813 } 814 } 815 816 // Everything that jumped to BB now goes to Succ. 817 BB->replaceAllUsesWith(Succ); 818 if (!Succ->hasName()) Succ->takeName(BB); 819 BB->eraseFromParent(); // Delete the old basic block. 820 return true; 821 } 822 823 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 824 /// nodes in this block. This doesn't try to be clever about PHI nodes 825 /// which differ only in the order of the incoming values, but instcombine 826 /// orders them so it usually won't matter. 827 /// 828 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 829 bool Changed = false; 830 831 // This implementation doesn't currently consider undef operands 832 // specially. Theoretically, two phis which are identical except for 833 // one having an undef where the other doesn't could be collapsed. 834 835 // Map from PHI hash values to PHI nodes. If multiple PHIs have 836 // the same hash value, the element is the first PHI in the 837 // linked list in CollisionMap. 838 DenseMap<uintptr_t, PHINode *> HashMap; 839 840 // Maintain linked lists of PHI nodes with common hash values. 841 DenseMap<PHINode *, PHINode *> CollisionMap; 842 843 // Examine each PHI. 844 for (BasicBlock::iterator I = BB->begin(); 845 PHINode *PN = dyn_cast<PHINode>(I++); ) { 846 // Compute a hash value on the operands. Instcombine will likely have sorted 847 // them, which helps expose duplicates, but we have to check all the 848 // operands to be safe in case instcombine hasn't run. 849 uintptr_t Hash = 0; 850 // This hash algorithm is quite weak as hash functions go, but it seems 851 // to do a good enough job for this particular purpose, and is very quick. 852 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 853 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 854 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 855 } 856 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 857 I != E; ++I) { 858 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 859 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 860 } 861 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 862 Hash >>= 1; 863 // If we've never seen this hash value before, it's a unique PHI. 864 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 865 HashMap.insert(std::make_pair(Hash, PN)); 866 if (Pair.second) continue; 867 // Otherwise it's either a duplicate or a hash collision. 868 for (PHINode *OtherPN = Pair.first->second; ; ) { 869 if (OtherPN->isIdenticalTo(PN)) { 870 // A duplicate. Replace this PHI with its duplicate. 871 PN->replaceAllUsesWith(OtherPN); 872 PN->eraseFromParent(); 873 Changed = true; 874 break; 875 } 876 // A non-duplicate hash collision. 877 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 878 if (I == CollisionMap.end()) { 879 // Set this PHI to be the head of the linked list of colliding PHIs. 880 PHINode *Old = Pair.first->second; 881 Pair.first->second = PN; 882 CollisionMap[PN] = Old; 883 break; 884 } 885 // Proceed to the next PHI in the list. 886 OtherPN = I->second; 887 } 888 } 889 890 return Changed; 891 } 892 893 /// enforceKnownAlignment - If the specified pointer points to an object that 894 /// we control, modify the object's alignment to PrefAlign. This isn't 895 /// often possible though. If alignment is important, a more reliable approach 896 /// is to simply align all global variables and allocation instructions to 897 /// their preferred alignment from the beginning. 898 /// 899 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 900 unsigned PrefAlign, const DataLayout *TD) { 901 V = V->stripPointerCasts(); 902 903 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 904 // If the preferred alignment is greater than the natural stack alignment 905 // then don't round up. This avoids dynamic stack realignment. 906 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 907 return Align; 908 // If there is a requested alignment and if this is an alloca, round up. 909 if (AI->getAlignment() >= PrefAlign) 910 return AI->getAlignment(); 911 AI->setAlignment(PrefAlign); 912 return PrefAlign; 913 } 914 915 if (auto *GO = dyn_cast<GlobalObject>(V)) { 916 // If there is a large requested alignment and we can, bump up the alignment 917 // of the global. 918 if (GO->isDeclaration()) 919 return Align; 920 // If the memory we set aside for the global may not be the memory used by 921 // the final program then it is impossible for us to reliably enforce the 922 // preferred alignment. 923 if (GO->isWeakForLinker()) 924 return Align; 925 926 if (GO->getAlignment() >= PrefAlign) 927 return GO->getAlignment(); 928 // We can only increase the alignment of the global if it has no alignment 929 // specified or if it is not assigned a section. If it is assigned a 930 // section, the global could be densely packed with other objects in the 931 // section, increasing the alignment could cause padding issues. 932 if (!GO->hasSection() || GO->getAlignment() == 0) 933 GO->setAlignment(PrefAlign); 934 return GO->getAlignment(); 935 } 936 937 return Align; 938 } 939 940 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 941 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 942 /// and it is more than the alignment of the ultimate object, see if we can 943 /// increase the alignment of the ultimate object, making this check succeed. 944 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 945 const DataLayout *DL, 946 AssumptionCache *AC, 947 const Instruction *CxtI, 948 const DominatorTree *DT) { 949 assert(V->getType()->isPointerTy() && 950 "getOrEnforceKnownAlignment expects a pointer!"); 951 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 952 953 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 954 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 955 unsigned TrailZ = KnownZero.countTrailingOnes(); 956 957 // Avoid trouble with ridiculously large TrailZ values, such as 958 // those computed from a null pointer. 959 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 960 961 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 962 963 // LLVM doesn't support alignments larger than this currently. 964 Align = std::min(Align, +Value::MaximumAlignment); 965 966 if (PrefAlign > Align) 967 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 968 969 // We don't need to make any adjustment. 970 return Align; 971 } 972 973 ///===---------------------------------------------------------------------===// 974 /// Dbg Intrinsic utilities 975 /// 976 977 /// See if there is a dbg.value intrinsic for DIVar before I. 978 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 979 // Since we can't guarantee that the original dbg.declare instrinsic 980 // is removed by LowerDbgDeclare(), we need to make sure that we are 981 // not inserting the same dbg.value intrinsic over and over. 982 llvm::BasicBlock::InstListType::iterator PrevI(I); 983 if (PrevI != I->getParent()->getInstList().begin()) { 984 --PrevI; 985 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 986 if (DVI->getValue() == I->getOperand(0) && 987 DVI->getOffset() == 0 && 988 DVI->getVariable() == DIVar) 989 return true; 990 } 991 return false; 992 } 993 994 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 995 /// that has an associated llvm.dbg.decl intrinsic. 996 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 997 StoreInst *SI, DIBuilder &Builder) { 998 DIVariable DIVar(DDI->getVariable()); 999 DIExpression DIExpr(DDI->getExpression()); 1000 assert((!DIVar || DIVar.isVariable()) && 1001 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1002 if (!DIVar) 1003 return false; 1004 1005 if (LdStHasDebugValue(DIVar, SI)) 1006 return true; 1007 1008 Instruction *DbgVal = nullptr; 1009 // If an argument is zero extended then use argument directly. The ZExt 1010 // may be zapped by an optimization pass in future. 1011 Argument *ExtendedArg = nullptr; 1012 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1013 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1014 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1015 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1016 if (ExtendedArg) 1017 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI); 1018 else 1019 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, 1020 DIExpr, SI); 1021 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1022 return true; 1023 } 1024 1025 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1026 /// that has an associated llvm.dbg.decl intrinsic. 1027 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1028 LoadInst *LI, DIBuilder &Builder) { 1029 DIVariable DIVar(DDI->getVariable()); 1030 DIExpression DIExpr(DDI->getExpression()); 1031 assert((!DIVar || DIVar.isVariable()) && 1032 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1033 if (!DIVar) 1034 return false; 1035 1036 if (LdStHasDebugValue(DIVar, LI)) 1037 return true; 1038 1039 Instruction *DbgVal = 1040 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI); 1041 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1042 return true; 1043 } 1044 1045 /// Determine whether this alloca is either a VLA or an array. 1046 static bool isArray(AllocaInst *AI) { 1047 return AI->isArrayAllocation() || 1048 AI->getType()->getElementType()->isArrayTy(); 1049 } 1050 1051 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1052 /// of llvm.dbg.value intrinsics. 1053 bool llvm::LowerDbgDeclare(Function &F) { 1054 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1055 SmallVector<DbgDeclareInst *, 4> Dbgs; 1056 for (auto &FI : F) 1057 for (BasicBlock::iterator BI : FI) 1058 if (auto DDI = dyn_cast<DbgDeclareInst>(BI)) 1059 Dbgs.push_back(DDI); 1060 1061 if (Dbgs.empty()) 1062 return false; 1063 1064 for (auto &I : Dbgs) { 1065 DbgDeclareInst *DDI = I; 1066 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1067 // If this is an alloca for a scalar variable, insert a dbg.value 1068 // at each load and store to the alloca and erase the dbg.declare. 1069 // The dbg.values allow tracking a variable even if it is not 1070 // stored on the stack, while the dbg.declare can only describe 1071 // the stack slot (and at a lexical-scope granularity). Later 1072 // passes will attempt to elide the stack slot. 1073 if (AI && !isArray(AI)) { 1074 for (User *U : AI->users()) 1075 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1076 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1077 else if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1078 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1079 else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1080 // This is a call by-value or some other instruction that 1081 // takes a pointer to the variable. Insert a *value* 1082 // intrinsic that describes the alloca. 1083 auto DbgVal = DIB.insertDbgValueIntrinsic( 1084 AI, 0, DIVariable(DDI->getVariable()), 1085 DIExpression(DDI->getExpression()), CI); 1086 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1087 } 1088 DDI->eraseFromParent(); 1089 } 1090 } 1091 return true; 1092 } 1093 1094 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1095 /// alloca 'V', if any. 1096 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1097 if (auto *L = LocalAsMetadata::getIfExists(V)) 1098 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1099 for (User *U : MDV->users()) 1100 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1101 return DDI; 1102 1103 return nullptr; 1104 } 1105 1106 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1107 DIBuilder &Builder) { 1108 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1109 if (!DDI) 1110 return false; 1111 DIVariable DIVar(DDI->getVariable()); 1112 DIExpression DIExpr(DDI->getExpression()); 1113 assert((!DIVar || DIVar.isVariable()) && 1114 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1115 if (!DIVar) 1116 return false; 1117 1118 // Create a copy of the original DIDescriptor for user variable, prepending 1119 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1120 // will take a value storing address of the memory for variable, not 1121 // alloca itself. 1122 SmallVector<int64_t, 4> NewDIExpr; 1123 NewDIExpr.push_back(dwarf::DW_OP_deref); 1124 if (DIExpr) 1125 for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i) 1126 NewDIExpr.push_back(DIExpr.getElement(i)); 1127 1128 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1129 // and remove old llvm.dbg.declare. 1130 BasicBlock *BB = AI->getParent(); 1131 Builder.insertDeclare(NewAllocaAddress, DIVar, 1132 Builder.createExpression(NewDIExpr), BB); 1133 DDI->eraseFromParent(); 1134 return true; 1135 } 1136 1137 /// changeToUnreachable - Insert an unreachable instruction before the specified 1138 /// instruction, making it and the rest of the code in the block dead. 1139 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1140 BasicBlock *BB = I->getParent(); 1141 // Loop over all of the successors, removing BB's entry from any PHI 1142 // nodes. 1143 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1144 (*SI)->removePredecessor(BB); 1145 1146 // Insert a call to llvm.trap right before this. This turns the undefined 1147 // behavior into a hard fail instead of falling through into random code. 1148 if (UseLLVMTrap) { 1149 Function *TrapFn = 1150 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1151 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1152 CallTrap->setDebugLoc(I->getDebugLoc()); 1153 } 1154 new UnreachableInst(I->getContext(), I); 1155 1156 // All instructions after this are dead. 1157 BasicBlock::iterator BBI = I, BBE = BB->end(); 1158 while (BBI != BBE) { 1159 if (!BBI->use_empty()) 1160 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1161 BB->getInstList().erase(BBI++); 1162 } 1163 } 1164 1165 /// changeToCall - Convert the specified invoke into a normal call. 1166 static void changeToCall(InvokeInst *II) { 1167 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1168 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1169 NewCall->takeName(II); 1170 NewCall->setCallingConv(II->getCallingConv()); 1171 NewCall->setAttributes(II->getAttributes()); 1172 NewCall->setDebugLoc(II->getDebugLoc()); 1173 II->replaceAllUsesWith(NewCall); 1174 1175 // Follow the call by a branch to the normal destination. 1176 BranchInst::Create(II->getNormalDest(), II); 1177 1178 // Update PHI nodes in the unwind destination 1179 II->getUnwindDest()->removePredecessor(II->getParent()); 1180 II->eraseFromParent(); 1181 } 1182 1183 static bool markAliveBlocks(BasicBlock *BB, 1184 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1185 1186 SmallVector<BasicBlock*, 128> Worklist; 1187 Worklist.push_back(BB); 1188 Reachable.insert(BB); 1189 bool Changed = false; 1190 do { 1191 BB = Worklist.pop_back_val(); 1192 1193 // Do a quick scan of the basic block, turning any obviously unreachable 1194 // instructions into LLVM unreachable insts. The instruction combining pass 1195 // canonicalizes unreachable insts into stores to null or undef. 1196 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1197 // Assumptions that are known to be false are equivalent to unreachable. 1198 // Also, if the condition is undefined, then we make the choice most 1199 // beneficial to the optimizer, and choose that to also be unreachable. 1200 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 1201 if (II->getIntrinsicID() == Intrinsic::assume) { 1202 bool MakeUnreachable = false; 1203 if (isa<UndefValue>(II->getArgOperand(0))) 1204 MakeUnreachable = true; 1205 else if (ConstantInt *Cond = 1206 dyn_cast<ConstantInt>(II->getArgOperand(0))) 1207 MakeUnreachable = Cond->isZero(); 1208 1209 if (MakeUnreachable) { 1210 // Don't insert a call to llvm.trap right before the unreachable. 1211 changeToUnreachable(BBI, false); 1212 Changed = true; 1213 break; 1214 } 1215 } 1216 1217 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1218 if (CI->doesNotReturn()) { 1219 // If we found a call to a no-return function, insert an unreachable 1220 // instruction after it. Make sure there isn't *already* one there 1221 // though. 1222 ++BBI; 1223 if (!isa<UnreachableInst>(BBI)) { 1224 // Don't insert a call to llvm.trap right before the unreachable. 1225 changeToUnreachable(BBI, false); 1226 Changed = true; 1227 } 1228 break; 1229 } 1230 } 1231 1232 // Store to undef and store to null are undefined and used to signal that 1233 // they should be changed to unreachable by passes that can't modify the 1234 // CFG. 1235 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1236 // Don't touch volatile stores. 1237 if (SI->isVolatile()) continue; 1238 1239 Value *Ptr = SI->getOperand(1); 1240 1241 if (isa<UndefValue>(Ptr) || 1242 (isa<ConstantPointerNull>(Ptr) && 1243 SI->getPointerAddressSpace() == 0)) { 1244 changeToUnreachable(SI, true); 1245 Changed = true; 1246 break; 1247 } 1248 } 1249 } 1250 1251 // Turn invokes that call 'nounwind' functions into ordinary calls. 1252 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1253 Value *Callee = II->getCalledValue(); 1254 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1255 changeToUnreachable(II, true); 1256 Changed = true; 1257 } else if (II->doesNotThrow()) { 1258 if (II->use_empty() && II->onlyReadsMemory()) { 1259 // jump to the normal destination branch. 1260 BranchInst::Create(II->getNormalDest(), II); 1261 II->getUnwindDest()->removePredecessor(II->getParent()); 1262 II->eraseFromParent(); 1263 } else 1264 changeToCall(II); 1265 Changed = true; 1266 } 1267 } 1268 1269 Changed |= ConstantFoldTerminator(BB, true); 1270 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1271 if (Reachable.insert(*SI).second) 1272 Worklist.push_back(*SI); 1273 } while (!Worklist.empty()); 1274 return Changed; 1275 } 1276 1277 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1278 /// if they are in a dead cycle. Return true if a change was made, false 1279 /// otherwise. 1280 bool llvm::removeUnreachableBlocks(Function &F) { 1281 SmallPtrSet<BasicBlock*, 128> Reachable; 1282 bool Changed = markAliveBlocks(F.begin(), Reachable); 1283 1284 // If there are unreachable blocks in the CFG... 1285 if (Reachable.size() == F.size()) 1286 return Changed; 1287 1288 assert(Reachable.size() < F.size()); 1289 NumRemoved += F.size()-Reachable.size(); 1290 1291 // Loop over all of the basic blocks that are not reachable, dropping all of 1292 // their internal references... 1293 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1294 if (Reachable.count(BB)) 1295 continue; 1296 1297 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1298 if (Reachable.count(*SI)) 1299 (*SI)->removePredecessor(BB); 1300 BB->dropAllReferences(); 1301 } 1302 1303 for (Function::iterator I = ++F.begin(); I != F.end();) 1304 if (!Reachable.count(I)) 1305 I = F.getBasicBlockList().erase(I); 1306 else 1307 ++I; 1308 1309 return true; 1310 } 1311 1312 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) { 1313 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1314 K->dropUnknownMetadata(KnownIDs); 1315 K->getAllMetadataOtherThanDebugLoc(Metadata); 1316 for (unsigned i = 0, n = Metadata.size(); i < n; ++i) { 1317 unsigned Kind = Metadata[i].first; 1318 MDNode *JMD = J->getMetadata(Kind); 1319 MDNode *KMD = Metadata[i].second; 1320 1321 switch (Kind) { 1322 default: 1323 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1324 break; 1325 case LLVMContext::MD_dbg: 1326 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1327 case LLVMContext::MD_tbaa: 1328 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1329 break; 1330 case LLVMContext::MD_alias_scope: 1331 case LLVMContext::MD_noalias: 1332 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1333 break; 1334 case LLVMContext::MD_range: 1335 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1336 break; 1337 case LLVMContext::MD_fpmath: 1338 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1339 break; 1340 case LLVMContext::MD_invariant_load: 1341 // Only set the !invariant.load if it is present in both instructions. 1342 K->setMetadata(Kind, JMD); 1343 break; 1344 case LLVMContext::MD_nonnull: 1345 // Only set the !nonnull if it is present in both instructions. 1346 K->setMetadata(Kind, JMD); 1347 break; 1348 } 1349 } 1350 } 1351