1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/LazyValueInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/MDBuilder.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "local" 54 55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 56 57 //===----------------------------------------------------------------------===// 58 // Local constant propagation. 59 // 60 61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 62 /// constant value, convert it into an unconditional branch to the constant 63 /// destination. This is a nontrivial operation because the successors of this 64 /// basic block must have their PHI nodes updated. 65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 66 /// conditions and indirectbr addresses this might make dead if 67 /// DeleteDeadConditions is true. 68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 69 const TargetLibraryInfo *TLI) { 70 TerminatorInst *T = BB->getTerminator(); 71 IRBuilder<> Builder(T); 72 73 // Branch - See if we are conditional jumping on constant 74 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 75 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 76 BasicBlock *Dest1 = BI->getSuccessor(0); 77 BasicBlock *Dest2 = BI->getSuccessor(1); 78 79 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 80 // Are we branching on constant? 81 // YES. Change to unconditional branch... 82 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 83 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 84 85 //cerr << "Function: " << T->getParent()->getParent() 86 // << "\nRemoving branch from " << T->getParent() 87 // << "\n\nTo: " << OldDest << endl; 88 89 // Let the basic block know that we are letting go of it. Based on this, 90 // it will adjust it's PHI nodes. 91 OldDest->removePredecessor(BB); 92 93 // Replace the conditional branch with an unconditional one. 94 Builder.CreateBr(Destination); 95 BI->eraseFromParent(); 96 return true; 97 } 98 99 if (Dest2 == Dest1) { // Conditional branch to same location? 100 // This branch matches something like this: 101 // br bool %cond, label %Dest, label %Dest 102 // and changes it into: br label %Dest 103 104 // Let the basic block know that we are letting go of one copy of it. 105 assert(BI->getParent() && "Terminator not inserted in block!"); 106 Dest1->removePredecessor(BI->getParent()); 107 108 // Replace the conditional branch with an unconditional one. 109 Builder.CreateBr(Dest1); 110 Value *Cond = BI->getCondition(); 111 BI->eraseFromParent(); 112 if (DeleteDeadConditions) 113 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 114 return true; 115 } 116 return false; 117 } 118 119 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 120 // If we are switching on a constant, we can convert the switch to an 121 // unconditional branch. 122 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 123 BasicBlock *DefaultDest = SI->getDefaultDest(); 124 BasicBlock *TheOnlyDest = DefaultDest; 125 126 // If the default is unreachable, ignore it when searching for TheOnlyDest. 127 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 128 SI->getNumCases() > 0) { 129 TheOnlyDest = SI->case_begin().getCaseSuccessor(); 130 } 131 132 // Figure out which case it goes to. 133 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 134 i != e; ++i) { 135 // Found case matching a constant operand? 136 if (i.getCaseValue() == CI) { 137 TheOnlyDest = i.getCaseSuccessor(); 138 break; 139 } 140 141 // Check to see if this branch is going to the same place as the default 142 // dest. If so, eliminate it as an explicit compare. 143 if (i.getCaseSuccessor() == DefaultDest) { 144 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 145 unsigned NCases = SI->getNumCases(); 146 // Fold the case metadata into the default if there will be any branches 147 // left, unless the metadata doesn't match the switch. 148 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 149 // Collect branch weights into a vector. 150 SmallVector<uint32_t, 8> Weights; 151 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 152 ++MD_i) { 153 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 154 Weights.push_back(CI->getValue().getZExtValue()); 155 } 156 // Merge weight of this case to the default weight. 157 unsigned idx = i.getCaseIndex(); 158 Weights[0] += Weights[idx+1]; 159 // Remove weight for this case. 160 std::swap(Weights[idx+1], Weights.back()); 161 Weights.pop_back(); 162 SI->setMetadata(LLVMContext::MD_prof, 163 MDBuilder(BB->getContext()). 164 createBranchWeights(Weights)); 165 } 166 // Remove this entry. 167 DefaultDest->removePredecessor(SI->getParent()); 168 SI->removeCase(i); 169 --i; --e; 170 continue; 171 } 172 173 // Otherwise, check to see if the switch only branches to one destination. 174 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 175 // destinations. 176 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr; 177 } 178 179 if (CI && !TheOnlyDest) { 180 // Branching on a constant, but not any of the cases, go to the default 181 // successor. 182 TheOnlyDest = SI->getDefaultDest(); 183 } 184 185 // If we found a single destination that we can fold the switch into, do so 186 // now. 187 if (TheOnlyDest) { 188 // Insert the new branch. 189 Builder.CreateBr(TheOnlyDest); 190 BasicBlock *BB = SI->getParent(); 191 192 // Remove entries from PHI nodes which we no longer branch to... 193 for (BasicBlock *Succ : SI->successors()) { 194 // Found case matching a constant operand? 195 if (Succ == TheOnlyDest) 196 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 197 else 198 Succ->removePredecessor(BB); 199 } 200 201 // Delete the old switch. 202 Value *Cond = SI->getCondition(); 203 SI->eraseFromParent(); 204 if (DeleteDeadConditions) 205 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 206 return true; 207 } 208 209 if (SI->getNumCases() == 1) { 210 // Otherwise, we can fold this switch into a conditional branch 211 // instruction if it has only one non-default destination. 212 SwitchInst::CaseIt FirstCase = SI->case_begin(); 213 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 214 FirstCase.getCaseValue(), "cond"); 215 216 // Insert the new branch. 217 BranchInst *NewBr = Builder.CreateCondBr(Cond, 218 FirstCase.getCaseSuccessor(), 219 SI->getDefaultDest()); 220 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 221 if (MD && MD->getNumOperands() == 3) { 222 ConstantInt *SICase = 223 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 224 ConstantInt *SIDef = 225 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 226 assert(SICase && SIDef); 227 // The TrueWeight should be the weight for the single case of SI. 228 NewBr->setMetadata(LLVMContext::MD_prof, 229 MDBuilder(BB->getContext()). 230 createBranchWeights(SICase->getValue().getZExtValue(), 231 SIDef->getValue().getZExtValue())); 232 } 233 234 // Update make.implicit metadata to the newly-created conditional branch. 235 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 236 if (MakeImplicitMD) 237 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 238 239 // Delete the old switch. 240 SI->eraseFromParent(); 241 return true; 242 } 243 return false; 244 } 245 246 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 247 // indirectbr blockaddress(@F, @BB) -> br label @BB 248 if (BlockAddress *BA = 249 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 250 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 251 // Insert the new branch. 252 Builder.CreateBr(TheOnlyDest); 253 254 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 255 if (IBI->getDestination(i) == TheOnlyDest) 256 TheOnlyDest = nullptr; 257 else 258 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 259 } 260 Value *Address = IBI->getAddress(); 261 IBI->eraseFromParent(); 262 if (DeleteDeadConditions) 263 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 264 265 // If we didn't find our destination in the IBI successor list, then we 266 // have undefined behavior. Replace the unconditional branch with an 267 // 'unreachable' instruction. 268 if (TheOnlyDest) { 269 BB->getTerminator()->eraseFromParent(); 270 new UnreachableInst(BB->getContext(), BB); 271 } 272 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 281 //===----------------------------------------------------------------------===// 282 // Local dead code elimination. 283 // 284 285 /// isInstructionTriviallyDead - Return true if the result produced by the 286 /// instruction is not used, and the instruction has no side effects. 287 /// 288 bool llvm::isInstructionTriviallyDead(Instruction *I, 289 const TargetLibraryInfo *TLI) { 290 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 291 292 // We don't want the landingpad-like instructions removed by anything this 293 // general. 294 if (I->isEHPad()) 295 return false; 296 297 // We don't want debug info removed by anything this general, unless 298 // debug info is empty. 299 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 300 if (DDI->getAddress()) 301 return false; 302 return true; 303 } 304 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 305 if (DVI->getValue()) 306 return false; 307 return true; 308 } 309 310 if (!I->mayHaveSideEffects()) return true; 311 312 // Special case intrinsics that "may have side effects" but can be deleted 313 // when dead. 314 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 315 // Safe to delete llvm.stacksave if dead. 316 if (II->getIntrinsicID() == Intrinsic::stacksave) 317 return true; 318 319 // Lifetime intrinsics are dead when their right-hand is undef. 320 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 321 II->getIntrinsicID() == Intrinsic::lifetime_end) 322 return isa<UndefValue>(II->getArgOperand(1)); 323 324 // Assumptions are dead if their condition is trivially true. Guards on 325 // true are operationally no-ops. In the future we can consider more 326 // sophisticated tradeoffs for guards considering potential for check 327 // widening, but for now we keep things simple. 328 if (II->getIntrinsicID() == Intrinsic::assume || 329 II->getIntrinsicID() == Intrinsic::experimental_guard) { 330 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 331 return !Cond->isZero(); 332 333 return false; 334 } 335 } 336 337 if (isAllocLikeFn(I, TLI)) return true; 338 339 if (CallInst *CI = isFreeCall(I, TLI)) 340 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 341 return C->isNullValue() || isa<UndefValue>(C); 342 343 if (CallSite CS = CallSite(I)) 344 if (isMathLibCallNoop(CS, TLI)) 345 return true; 346 347 return false; 348 } 349 350 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 351 /// trivially dead instruction, delete it. If that makes any of its operands 352 /// trivially dead, delete them too, recursively. Return true if any 353 /// instructions were deleted. 354 bool 355 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 356 const TargetLibraryInfo *TLI) { 357 Instruction *I = dyn_cast<Instruction>(V); 358 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 359 return false; 360 361 SmallVector<Instruction*, 16> DeadInsts; 362 DeadInsts.push_back(I); 363 364 do { 365 I = DeadInsts.pop_back_val(); 366 367 // Null out all of the instruction's operands to see if any operand becomes 368 // dead as we go. 369 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 370 Value *OpV = I->getOperand(i); 371 I->setOperand(i, nullptr); 372 373 if (!OpV->use_empty()) continue; 374 375 // If the operand is an instruction that became dead as we nulled out the 376 // operand, and if it is 'trivially' dead, delete it in a future loop 377 // iteration. 378 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 379 if (isInstructionTriviallyDead(OpI, TLI)) 380 DeadInsts.push_back(OpI); 381 } 382 383 I->eraseFromParent(); 384 } while (!DeadInsts.empty()); 385 386 return true; 387 } 388 389 /// areAllUsesEqual - Check whether the uses of a value are all the same. 390 /// This is similar to Instruction::hasOneUse() except this will also return 391 /// true when there are no uses or multiple uses that all refer to the same 392 /// value. 393 static bool areAllUsesEqual(Instruction *I) { 394 Value::user_iterator UI = I->user_begin(); 395 Value::user_iterator UE = I->user_end(); 396 if (UI == UE) 397 return true; 398 399 User *TheUse = *UI; 400 for (++UI; UI != UE; ++UI) { 401 if (*UI != TheUse) 402 return false; 403 } 404 return true; 405 } 406 407 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 408 /// dead PHI node, due to being a def-use chain of single-use nodes that 409 /// either forms a cycle or is terminated by a trivially dead instruction, 410 /// delete it. If that makes any of its operands trivially dead, delete them 411 /// too, recursively. Return true if a change was made. 412 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 413 const TargetLibraryInfo *TLI) { 414 SmallPtrSet<Instruction*, 4> Visited; 415 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 416 I = cast<Instruction>(*I->user_begin())) { 417 if (I->use_empty()) 418 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 419 420 // If we find an instruction more than once, we're on a cycle that 421 // won't prove fruitful. 422 if (!Visited.insert(I).second) { 423 // Break the cycle and delete the instruction and its operands. 424 I->replaceAllUsesWith(UndefValue::get(I->getType())); 425 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 426 return true; 427 } 428 } 429 return false; 430 } 431 432 static bool 433 simplifyAndDCEInstruction(Instruction *I, 434 SmallSetVector<Instruction *, 16> &WorkList, 435 const DataLayout &DL, 436 const TargetLibraryInfo *TLI) { 437 if (isInstructionTriviallyDead(I, TLI)) { 438 // Null out all of the instruction's operands to see if any operand becomes 439 // dead as we go. 440 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 441 Value *OpV = I->getOperand(i); 442 I->setOperand(i, nullptr); 443 444 if (!OpV->use_empty() || I == OpV) 445 continue; 446 447 // If the operand is an instruction that became dead as we nulled out the 448 // operand, and if it is 'trivially' dead, delete it in a future loop 449 // iteration. 450 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 451 if (isInstructionTriviallyDead(OpI, TLI)) 452 WorkList.insert(OpI); 453 } 454 455 I->eraseFromParent(); 456 457 return true; 458 } 459 460 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 461 // Add the users to the worklist. CAREFUL: an instruction can use itself, 462 // in the case of a phi node. 463 for (User *U : I->users()) { 464 if (U != I) { 465 WorkList.insert(cast<Instruction>(U)); 466 } 467 } 468 469 // Replace the instruction with its simplified value. 470 bool Changed = false; 471 if (!I->use_empty()) { 472 I->replaceAllUsesWith(SimpleV); 473 Changed = true; 474 } 475 if (isInstructionTriviallyDead(I, TLI)) { 476 I->eraseFromParent(); 477 Changed = true; 478 } 479 return Changed; 480 } 481 return false; 482 } 483 484 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 485 /// simplify any instructions in it and recursively delete dead instructions. 486 /// 487 /// This returns true if it changed the code, note that it can delete 488 /// instructions in other blocks as well in this block. 489 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 490 const TargetLibraryInfo *TLI) { 491 bool MadeChange = false; 492 const DataLayout &DL = BB->getModule()->getDataLayout(); 493 494 #ifndef NDEBUG 495 // In debug builds, ensure that the terminator of the block is never replaced 496 // or deleted by these simplifications. The idea of simplification is that it 497 // cannot introduce new instructions, and there is no way to replace the 498 // terminator of a block without introducing a new instruction. 499 AssertingVH<Instruction> TerminatorVH(&BB->back()); 500 #endif 501 502 SmallSetVector<Instruction *, 16> WorkList; 503 // Iterate over the original function, only adding insts to the worklist 504 // if they actually need to be revisited. This avoids having to pre-init 505 // the worklist with the entire function's worth of instructions. 506 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 507 BI != E;) { 508 assert(!BI->isTerminator()); 509 Instruction *I = &*BI; 510 ++BI; 511 512 // We're visiting this instruction now, so make sure it's not in the 513 // worklist from an earlier visit. 514 if (!WorkList.count(I)) 515 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 516 } 517 518 while (!WorkList.empty()) { 519 Instruction *I = WorkList.pop_back_val(); 520 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 521 } 522 return MadeChange; 523 } 524 525 //===----------------------------------------------------------------------===// 526 // Control Flow Graph Restructuring. 527 // 528 529 530 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 531 /// method is called when we're about to delete Pred as a predecessor of BB. If 532 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 533 /// 534 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 535 /// nodes that collapse into identity values. For example, if we have: 536 /// x = phi(1, 0, 0, 0) 537 /// y = and x, z 538 /// 539 /// .. and delete the predecessor corresponding to the '1', this will attempt to 540 /// recursively fold the and to 0. 541 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) { 542 // This only adjusts blocks with PHI nodes. 543 if (!isa<PHINode>(BB->begin())) 544 return; 545 546 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 547 // them down. This will leave us with single entry phi nodes and other phis 548 // that can be removed. 549 BB->removePredecessor(Pred, true); 550 551 WeakVH PhiIt = &BB->front(); 552 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 553 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 554 Value *OldPhiIt = PhiIt; 555 556 if (!recursivelySimplifyInstruction(PN)) 557 continue; 558 559 // If recursive simplification ended up deleting the next PHI node we would 560 // iterate to, then our iterator is invalid, restart scanning from the top 561 // of the block. 562 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 563 } 564 } 565 566 567 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 568 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 569 /// between them, moving the instructions in the predecessor into DestBB and 570 /// deleting the predecessor block. 571 /// 572 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 573 // If BB has single-entry PHI nodes, fold them. 574 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 575 Value *NewVal = PN->getIncomingValue(0); 576 // Replace self referencing PHI with undef, it must be dead. 577 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 578 PN->replaceAllUsesWith(NewVal); 579 PN->eraseFromParent(); 580 } 581 582 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 583 assert(PredBB && "Block doesn't have a single predecessor!"); 584 585 // Zap anything that took the address of DestBB. Not doing this will give the 586 // address an invalid value. 587 if (DestBB->hasAddressTaken()) { 588 BlockAddress *BA = BlockAddress::get(DestBB); 589 Constant *Replacement = 590 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 591 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 592 BA->getType())); 593 BA->destroyConstant(); 594 } 595 596 // Anything that branched to PredBB now branches to DestBB. 597 PredBB->replaceAllUsesWith(DestBB); 598 599 // Splice all the instructions from PredBB to DestBB. 600 PredBB->getTerminator()->eraseFromParent(); 601 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 602 603 // If the PredBB is the entry block of the function, move DestBB up to 604 // become the entry block after we erase PredBB. 605 if (PredBB == &DestBB->getParent()->getEntryBlock()) 606 DestBB->moveAfter(PredBB); 607 608 if (DT) { 609 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 610 DT->changeImmediateDominator(DestBB, PredBBIDom); 611 DT->eraseNode(PredBB); 612 } 613 // Nuke BB. 614 PredBB->eraseFromParent(); 615 } 616 617 /// CanMergeValues - Return true if we can choose one of these values to use 618 /// in place of the other. Note that we will always choose the non-undef 619 /// value to keep. 620 static bool CanMergeValues(Value *First, Value *Second) { 621 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 622 } 623 624 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 625 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 626 /// 627 /// Assumption: Succ is the single successor for BB. 628 /// 629 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 630 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 631 632 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 633 << Succ->getName() << "\n"); 634 // Shortcut, if there is only a single predecessor it must be BB and merging 635 // is always safe 636 if (Succ->getSinglePredecessor()) return true; 637 638 // Make a list of the predecessors of BB 639 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 640 641 // Look at all the phi nodes in Succ, to see if they present a conflict when 642 // merging these blocks 643 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 644 PHINode *PN = cast<PHINode>(I); 645 646 // If the incoming value from BB is again a PHINode in 647 // BB which has the same incoming value for *PI as PN does, we can 648 // merge the phi nodes and then the blocks can still be merged 649 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 650 if (BBPN && BBPN->getParent() == BB) { 651 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 652 BasicBlock *IBB = PN->getIncomingBlock(PI); 653 if (BBPreds.count(IBB) && 654 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 655 PN->getIncomingValue(PI))) { 656 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 657 << Succ->getName() << " is conflicting with " 658 << BBPN->getName() << " with regard to common predecessor " 659 << IBB->getName() << "\n"); 660 return false; 661 } 662 } 663 } else { 664 Value* Val = PN->getIncomingValueForBlock(BB); 665 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 666 // See if the incoming value for the common predecessor is equal to the 667 // one for BB, in which case this phi node will not prevent the merging 668 // of the block. 669 BasicBlock *IBB = PN->getIncomingBlock(PI); 670 if (BBPreds.count(IBB) && 671 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 672 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 673 << Succ->getName() << " is conflicting with regard to common " 674 << "predecessor " << IBB->getName() << "\n"); 675 return false; 676 } 677 } 678 } 679 } 680 681 return true; 682 } 683 684 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 685 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 686 687 /// \brief Determines the value to use as the phi node input for a block. 688 /// 689 /// Select between \p OldVal any value that we know flows from \p BB 690 /// to a particular phi on the basis of which one (if either) is not 691 /// undef. Update IncomingValues based on the selected value. 692 /// 693 /// \param OldVal The value we are considering selecting. 694 /// \param BB The block that the value flows in from. 695 /// \param IncomingValues A map from block-to-value for other phi inputs 696 /// that we have examined. 697 /// 698 /// \returns the selected value. 699 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 700 IncomingValueMap &IncomingValues) { 701 if (!isa<UndefValue>(OldVal)) { 702 assert((!IncomingValues.count(BB) || 703 IncomingValues.find(BB)->second == OldVal) && 704 "Expected OldVal to match incoming value from BB!"); 705 706 IncomingValues.insert(std::make_pair(BB, OldVal)); 707 return OldVal; 708 } 709 710 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 711 if (It != IncomingValues.end()) return It->second; 712 713 return OldVal; 714 } 715 716 /// \brief Create a map from block to value for the operands of a 717 /// given phi. 718 /// 719 /// Create a map from block to value for each non-undef value flowing 720 /// into \p PN. 721 /// 722 /// \param PN The phi we are collecting the map for. 723 /// \param IncomingValues [out] The map from block to value for this phi. 724 static void gatherIncomingValuesToPhi(PHINode *PN, 725 IncomingValueMap &IncomingValues) { 726 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 727 BasicBlock *BB = PN->getIncomingBlock(i); 728 Value *V = PN->getIncomingValue(i); 729 730 if (!isa<UndefValue>(V)) 731 IncomingValues.insert(std::make_pair(BB, V)); 732 } 733 } 734 735 /// \brief Replace the incoming undef values to a phi with the values 736 /// from a block-to-value map. 737 /// 738 /// \param PN The phi we are replacing the undefs in. 739 /// \param IncomingValues A map from block to value. 740 static void replaceUndefValuesInPhi(PHINode *PN, 741 const IncomingValueMap &IncomingValues) { 742 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 743 Value *V = PN->getIncomingValue(i); 744 745 if (!isa<UndefValue>(V)) continue; 746 747 BasicBlock *BB = PN->getIncomingBlock(i); 748 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 749 if (It == IncomingValues.end()) continue; 750 751 PN->setIncomingValue(i, It->second); 752 } 753 } 754 755 /// \brief Replace a value flowing from a block to a phi with 756 /// potentially multiple instances of that value flowing from the 757 /// block's predecessors to the phi. 758 /// 759 /// \param BB The block with the value flowing into the phi. 760 /// \param BBPreds The predecessors of BB. 761 /// \param PN The phi that we are updating. 762 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 763 const PredBlockVector &BBPreds, 764 PHINode *PN) { 765 Value *OldVal = PN->removeIncomingValue(BB, false); 766 assert(OldVal && "No entry in PHI for Pred BB!"); 767 768 IncomingValueMap IncomingValues; 769 770 // We are merging two blocks - BB, and the block containing PN - and 771 // as a result we need to redirect edges from the predecessors of BB 772 // to go to the block containing PN, and update PN 773 // accordingly. Since we allow merging blocks in the case where the 774 // predecessor and successor blocks both share some predecessors, 775 // and where some of those common predecessors might have undef 776 // values flowing into PN, we want to rewrite those values to be 777 // consistent with the non-undef values. 778 779 gatherIncomingValuesToPhi(PN, IncomingValues); 780 781 // If this incoming value is one of the PHI nodes in BB, the new entries 782 // in the PHI node are the entries from the old PHI. 783 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 784 PHINode *OldValPN = cast<PHINode>(OldVal); 785 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 786 // Note that, since we are merging phi nodes and BB and Succ might 787 // have common predecessors, we could end up with a phi node with 788 // identical incoming branches. This will be cleaned up later (and 789 // will trigger asserts if we try to clean it up now, without also 790 // simplifying the corresponding conditional branch). 791 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 792 Value *PredVal = OldValPN->getIncomingValue(i); 793 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 794 IncomingValues); 795 796 // And add a new incoming value for this predecessor for the 797 // newly retargeted branch. 798 PN->addIncoming(Selected, PredBB); 799 } 800 } else { 801 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 802 // Update existing incoming values in PN for this 803 // predecessor of BB. 804 BasicBlock *PredBB = BBPreds[i]; 805 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 806 IncomingValues); 807 808 // And add a new incoming value for this predecessor for the 809 // newly retargeted branch. 810 PN->addIncoming(Selected, PredBB); 811 } 812 } 813 814 replaceUndefValuesInPhi(PN, IncomingValues); 815 } 816 817 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 818 /// unconditional branch, and contains no instructions other than PHI nodes, 819 /// potential side-effect free intrinsics and the branch. If possible, 820 /// eliminate BB by rewriting all the predecessors to branch to the successor 821 /// block and return true. If we can't transform, return false. 822 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 823 assert(BB != &BB->getParent()->getEntryBlock() && 824 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 825 826 // We can't eliminate infinite loops. 827 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 828 if (BB == Succ) return false; 829 830 // Check to see if merging these blocks would cause conflicts for any of the 831 // phi nodes in BB or Succ. If not, we can safely merge. 832 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 833 834 // Check for cases where Succ has multiple predecessors and a PHI node in BB 835 // has uses which will not disappear when the PHI nodes are merged. It is 836 // possible to handle such cases, but difficult: it requires checking whether 837 // BB dominates Succ, which is non-trivial to calculate in the case where 838 // Succ has multiple predecessors. Also, it requires checking whether 839 // constructing the necessary self-referential PHI node doesn't introduce any 840 // conflicts; this isn't too difficult, but the previous code for doing this 841 // was incorrect. 842 // 843 // Note that if this check finds a live use, BB dominates Succ, so BB is 844 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 845 // folding the branch isn't profitable in that case anyway. 846 if (!Succ->getSinglePredecessor()) { 847 BasicBlock::iterator BBI = BB->begin(); 848 while (isa<PHINode>(*BBI)) { 849 for (Use &U : BBI->uses()) { 850 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 851 if (PN->getIncomingBlock(U) != BB) 852 return false; 853 } else { 854 return false; 855 } 856 } 857 ++BBI; 858 } 859 } 860 861 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 862 863 if (isa<PHINode>(Succ->begin())) { 864 // If there is more than one pred of succ, and there are PHI nodes in 865 // the successor, then we need to add incoming edges for the PHI nodes 866 // 867 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 868 869 // Loop over all of the PHI nodes in the successor of BB. 870 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 871 PHINode *PN = cast<PHINode>(I); 872 873 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 874 } 875 } 876 877 if (Succ->getSinglePredecessor()) { 878 // BB is the only predecessor of Succ, so Succ will end up with exactly 879 // the same predecessors BB had. 880 881 // Copy over any phi, debug or lifetime instruction. 882 BB->getTerminator()->eraseFromParent(); 883 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 884 BB->getInstList()); 885 } else { 886 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 887 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 888 assert(PN->use_empty() && "There shouldn't be any uses here!"); 889 PN->eraseFromParent(); 890 } 891 } 892 893 // If the unconditional branch we replaced contains llvm.loop metadata, we 894 // add the metadata to the branch instructions in the predecessors. 895 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 896 Instruction *TI = BB->getTerminator(); 897 if (TI) 898 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 899 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 900 BasicBlock *Pred = *PI; 901 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 902 } 903 904 // Everything that jumped to BB now goes to Succ. 905 BB->replaceAllUsesWith(Succ); 906 if (!Succ->hasName()) Succ->takeName(BB); 907 BB->eraseFromParent(); // Delete the old basic block. 908 return true; 909 } 910 911 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 912 /// nodes in this block. This doesn't try to be clever about PHI nodes 913 /// which differ only in the order of the incoming values, but instcombine 914 /// orders them so it usually won't matter. 915 /// 916 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 917 // This implementation doesn't currently consider undef operands 918 // specially. Theoretically, two phis which are identical except for 919 // one having an undef where the other doesn't could be collapsed. 920 921 struct PHIDenseMapInfo { 922 static PHINode *getEmptyKey() { 923 return DenseMapInfo<PHINode *>::getEmptyKey(); 924 } 925 static PHINode *getTombstoneKey() { 926 return DenseMapInfo<PHINode *>::getTombstoneKey(); 927 } 928 static unsigned getHashValue(PHINode *PN) { 929 // Compute a hash value on the operands. Instcombine will likely have 930 // sorted them, which helps expose duplicates, but we have to check all 931 // the operands to be safe in case instcombine hasn't run. 932 return static_cast<unsigned>(hash_combine( 933 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 934 hash_combine_range(PN->block_begin(), PN->block_end()))); 935 } 936 static bool isEqual(PHINode *LHS, PHINode *RHS) { 937 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 938 RHS == getEmptyKey() || RHS == getTombstoneKey()) 939 return LHS == RHS; 940 return LHS->isIdenticalTo(RHS); 941 } 942 }; 943 944 // Set of unique PHINodes. 945 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 946 947 // Examine each PHI. 948 bool Changed = false; 949 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 950 auto Inserted = PHISet.insert(PN); 951 if (!Inserted.second) { 952 // A duplicate. Replace this PHI with its duplicate. 953 PN->replaceAllUsesWith(*Inserted.first); 954 PN->eraseFromParent(); 955 Changed = true; 956 957 // The RAUW can change PHIs that we already visited. Start over from the 958 // beginning. 959 PHISet.clear(); 960 I = BB->begin(); 961 } 962 } 963 964 return Changed; 965 } 966 967 /// enforceKnownAlignment - If the specified pointer points to an object that 968 /// we control, modify the object's alignment to PrefAlign. This isn't 969 /// often possible though. If alignment is important, a more reliable approach 970 /// is to simply align all global variables and allocation instructions to 971 /// their preferred alignment from the beginning. 972 /// 973 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 974 unsigned PrefAlign, 975 const DataLayout &DL) { 976 assert(PrefAlign > Align); 977 978 V = V->stripPointerCasts(); 979 980 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 981 // TODO: ideally, computeKnownBits ought to have used 982 // AllocaInst::getAlignment() in its computation already, making 983 // the below max redundant. But, as it turns out, 984 // stripPointerCasts recurses through infinite layers of bitcasts, 985 // while computeKnownBits is not allowed to traverse more than 6 986 // levels. 987 Align = std::max(AI->getAlignment(), Align); 988 if (PrefAlign <= Align) 989 return Align; 990 991 // If the preferred alignment is greater than the natural stack alignment 992 // then don't round up. This avoids dynamic stack realignment. 993 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 994 return Align; 995 AI->setAlignment(PrefAlign); 996 return PrefAlign; 997 } 998 999 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1000 // TODO: as above, this shouldn't be necessary. 1001 Align = std::max(GO->getAlignment(), Align); 1002 if (PrefAlign <= Align) 1003 return Align; 1004 1005 // If there is a large requested alignment and we can, bump up the alignment 1006 // of the global. If the memory we set aside for the global may not be the 1007 // memory used by the final program then it is impossible for us to reliably 1008 // enforce the preferred alignment. 1009 if (!GO->canIncreaseAlignment()) 1010 return Align; 1011 1012 GO->setAlignment(PrefAlign); 1013 return PrefAlign; 1014 } 1015 1016 return Align; 1017 } 1018 1019 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1020 const DataLayout &DL, 1021 const Instruction *CxtI, 1022 AssumptionCache *AC, 1023 const DominatorTree *DT) { 1024 assert(V->getType()->isPointerTy() && 1025 "getOrEnforceKnownAlignment expects a pointer!"); 1026 unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType()); 1027 1028 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 1029 computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT); 1030 unsigned TrailZ = KnownZero.countTrailingOnes(); 1031 1032 // Avoid trouble with ridiculously large TrailZ values, such as 1033 // those computed from a null pointer. 1034 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1035 1036 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 1037 1038 // LLVM doesn't support alignments larger than this currently. 1039 Align = std::min(Align, +Value::MaximumAlignment); 1040 1041 if (PrefAlign > Align) 1042 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1043 1044 // We don't need to make any adjustment. 1045 return Align; 1046 } 1047 1048 ///===---------------------------------------------------------------------===// 1049 /// Dbg Intrinsic utilities 1050 /// 1051 1052 /// See if there is a dbg.value intrinsic for DIVar before I. 1053 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1054 Instruction *I) { 1055 // Since we can't guarantee that the original dbg.declare instrinsic 1056 // is removed by LowerDbgDeclare(), we need to make sure that we are 1057 // not inserting the same dbg.value intrinsic over and over. 1058 llvm::BasicBlock::InstListType::iterator PrevI(I); 1059 if (PrevI != I->getParent()->getInstList().begin()) { 1060 --PrevI; 1061 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1062 if (DVI->getValue() == I->getOperand(0) && 1063 DVI->getOffset() == 0 && 1064 DVI->getVariable() == DIVar && 1065 DVI->getExpression() == DIExpr) 1066 return true; 1067 } 1068 return false; 1069 } 1070 1071 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1072 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1073 DIExpression *DIExpr, 1074 PHINode *APN) { 1075 // Since we can't guarantee that the original dbg.declare instrinsic 1076 // is removed by LowerDbgDeclare(), we need to make sure that we are 1077 // not inserting the same dbg.value intrinsic over and over. 1078 DbgValueList DbgValues; 1079 FindAllocaDbgValues(DbgValues, APN); 1080 for (auto DVI : DbgValues) { 1081 assert (DVI->getValue() == APN); 1082 assert (DVI->getOffset() == 0); 1083 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1084 return true; 1085 } 1086 return false; 1087 } 1088 1089 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1090 /// that has an associated llvm.dbg.decl intrinsic. 1091 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1092 StoreInst *SI, DIBuilder &Builder) { 1093 auto *DIVar = DDI->getVariable(); 1094 auto *DIExpr = DDI->getExpression(); 1095 assert(DIVar && "Missing variable"); 1096 1097 // If an argument is zero extended then use argument directly. The ZExt 1098 // may be zapped by an optimization pass in future. 1099 Argument *ExtendedArg = nullptr; 1100 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1101 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1102 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1103 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1104 if (ExtendedArg) { 1105 // We're now only describing a subset of the variable. The piece we're 1106 // describing will always be smaller than the variable size, because 1107 // VariableSize == Size of Alloca described by DDI. Since SI stores 1108 // to the alloca described by DDI, if it's first operand is an extend, 1109 // we're guaranteed that before extension, the value was narrower than 1110 // the size of the alloca, hence the size of the described variable. 1111 SmallVector<uint64_t, 3> Ops; 1112 unsigned PieceOffset = 0; 1113 // If this already is a bit piece, we drop the bit piece from the expression 1114 // and record the offset. 1115 if (DIExpr->isBitPiece()) { 1116 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3); 1117 PieceOffset = DIExpr->getBitPieceOffset(); 1118 } else { 1119 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1120 } 1121 Ops.push_back(dwarf::DW_OP_bit_piece); 1122 Ops.push_back(PieceOffset); // Offset 1123 const DataLayout &DL = DDI->getModule()->getDataLayout(); 1124 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); // Size 1125 auto NewDIExpr = Builder.createExpression(Ops); 1126 if (!LdStHasDebugValue(DIVar, NewDIExpr, SI)) 1127 Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr, 1128 DDI->getDebugLoc(), SI); 1129 } else if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1130 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr, 1131 DDI->getDebugLoc(), SI); 1132 } 1133 1134 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1135 /// that has an associated llvm.dbg.decl intrinsic. 1136 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1137 LoadInst *LI, DIBuilder &Builder) { 1138 auto *DIVar = DDI->getVariable(); 1139 auto *DIExpr = DDI->getExpression(); 1140 assert(DIVar && "Missing variable"); 1141 1142 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1143 return; 1144 1145 // We are now tracking the loaded value instead of the address. In the 1146 // future if multi-location support is added to the IR, it might be 1147 // preferable to keep tracking both the loaded value and the original 1148 // address in case the alloca can not be elided. 1149 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1150 LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr); 1151 DbgValue->insertAfter(LI); 1152 } 1153 1154 /// Inserts a llvm.dbg.value intrinsic after a phi 1155 /// that has an associated llvm.dbg.decl intrinsic. 1156 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1157 PHINode *APN, DIBuilder &Builder) { 1158 auto *DIVar = DDI->getVariable(); 1159 auto *DIExpr = DDI->getExpression(); 1160 assert(DIVar && "Missing variable"); 1161 1162 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1163 return; 1164 1165 BasicBlock *BB = APN->getParent(); 1166 auto InsertionPt = BB->getFirstInsertionPt(); 1167 1168 // The block may be a catchswitch block, which does not have a valid 1169 // insertion point. 1170 // FIXME: Insert dbg.value markers in the successors when appropriate. 1171 if (InsertionPt != BB->end()) 1172 Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(), 1173 &*InsertionPt); 1174 } 1175 1176 /// Determine whether this alloca is either a VLA or an array. 1177 static bool isArray(AllocaInst *AI) { 1178 return AI->isArrayAllocation() || 1179 AI->getType()->getElementType()->isArrayTy(); 1180 } 1181 1182 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1183 /// of llvm.dbg.value intrinsics. 1184 bool llvm::LowerDbgDeclare(Function &F) { 1185 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1186 SmallVector<DbgDeclareInst *, 4> Dbgs; 1187 for (auto &FI : F) 1188 for (Instruction &BI : FI) 1189 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1190 Dbgs.push_back(DDI); 1191 1192 if (Dbgs.empty()) 1193 return false; 1194 1195 for (auto &I : Dbgs) { 1196 DbgDeclareInst *DDI = I; 1197 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1198 // If this is an alloca for a scalar variable, insert a dbg.value 1199 // at each load and store to the alloca and erase the dbg.declare. 1200 // The dbg.values allow tracking a variable even if it is not 1201 // stored on the stack, while the dbg.declare can only describe 1202 // the stack slot (and at a lexical-scope granularity). Later 1203 // passes will attempt to elide the stack slot. 1204 if (AI && !isArray(AI)) { 1205 for (auto &AIUse : AI->uses()) { 1206 User *U = AIUse.getUser(); 1207 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1208 if (AIUse.getOperandNo() == 1) 1209 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1210 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1211 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1212 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1213 // This is a call by-value or some other instruction that 1214 // takes a pointer to the variable. Insert a *value* 1215 // intrinsic that describes the alloca. 1216 SmallVector<uint64_t, 1> NewDIExpr; 1217 auto *DIExpr = DDI->getExpression(); 1218 NewDIExpr.push_back(dwarf::DW_OP_deref); 1219 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1220 DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(), 1221 DIB.createExpression(NewDIExpr), 1222 DDI->getDebugLoc(), CI); 1223 } 1224 } 1225 DDI->eraseFromParent(); 1226 } 1227 } 1228 return true; 1229 } 1230 1231 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1232 /// alloca 'V', if any. 1233 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1234 if (auto *L = LocalAsMetadata::getIfExists(V)) 1235 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1236 for (User *U : MDV->users()) 1237 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) 1238 return DDI; 1239 1240 return nullptr; 1241 } 1242 1243 /// FindAllocaDbgValues - Finds the llvm.dbg.value intrinsics describing the 1244 /// alloca 'V', if any. 1245 void llvm::FindAllocaDbgValues(DbgValueList &DbgValues, Value *V) { 1246 if (auto *L = LocalAsMetadata::getIfExists(V)) 1247 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1248 for (User *U : MDV->users()) 1249 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1250 DbgValues.push_back(DVI); 1251 } 1252 1253 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) { 1254 Expr.push_back(dwarf::DW_OP_deref); 1255 } 1256 1257 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) { 1258 if (Offset > 0) { 1259 Expr.push_back(dwarf::DW_OP_plus); 1260 Expr.push_back(Offset); 1261 } else if (Offset < 0) { 1262 Expr.push_back(dwarf::DW_OP_minus); 1263 Expr.push_back(-Offset); 1264 } 1265 } 1266 1267 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder, 1268 DIExpression *DIExpr, bool Deref, 1269 int Offset) { 1270 if (!Deref && !Offset) 1271 return DIExpr; 1272 // Create a copy of the original DIDescriptor for user variable, prepending 1273 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1274 // will take a value storing address of the memory for variable, not 1275 // alloca itself. 1276 SmallVector<uint64_t, 4> NewDIExpr; 1277 if (Deref) 1278 DIExprAddDeref(NewDIExpr); 1279 DIExprAddOffset(NewDIExpr, Offset); 1280 if (DIExpr) 1281 NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1282 return Builder.createExpression(NewDIExpr); 1283 } 1284 1285 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1286 Instruction *InsertBefore, DIBuilder &Builder, 1287 bool Deref, int Offset) { 1288 DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address); 1289 if (!DDI) 1290 return false; 1291 DebugLoc Loc = DDI->getDebugLoc(); 1292 auto *DIVar = DDI->getVariable(); 1293 auto *DIExpr = DDI->getExpression(); 1294 assert(DIVar && "Missing variable"); 1295 1296 DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset); 1297 1298 // Insert llvm.dbg.declare immediately after the original alloca, and remove 1299 // old llvm.dbg.declare. 1300 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1301 DDI->eraseFromParent(); 1302 return true; 1303 } 1304 1305 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1306 DIBuilder &Builder, bool Deref, int Offset) { 1307 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1308 Deref, Offset); 1309 } 1310 1311 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1312 DIBuilder &Builder, int Offset) { 1313 DebugLoc Loc = DVI->getDebugLoc(); 1314 auto *DIVar = DVI->getVariable(); 1315 auto *DIExpr = DVI->getExpression(); 1316 assert(DIVar && "Missing variable"); 1317 1318 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1319 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1320 // it and give up. 1321 if (!DIExpr || DIExpr->getNumElements() < 1 || 1322 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1323 return; 1324 1325 // Insert the offset immediately after the first deref. 1326 // We could just change the offset argument of dbg.value, but it's unsigned... 1327 if (Offset) { 1328 SmallVector<uint64_t, 4> NewDIExpr; 1329 DIExprAddDeref(NewDIExpr); 1330 DIExprAddOffset(NewDIExpr, Offset); 1331 NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1332 DIExpr = Builder.createExpression(NewDIExpr); 1333 } 1334 1335 Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr, 1336 Loc, DVI); 1337 DVI->eraseFromParent(); 1338 } 1339 1340 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1341 DIBuilder &Builder, int Offset) { 1342 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1343 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1344 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1345 Use &U = *UI++; 1346 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1347 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1348 } 1349 } 1350 1351 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1352 unsigned NumDeadInst = 0; 1353 // Delete the instructions backwards, as it has a reduced likelihood of 1354 // having to update as many def-use and use-def chains. 1355 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1356 while (EndInst != &BB->front()) { 1357 // Delete the next to last instruction. 1358 Instruction *Inst = &*--EndInst->getIterator(); 1359 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1360 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1361 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1362 EndInst = Inst; 1363 continue; 1364 } 1365 if (!isa<DbgInfoIntrinsic>(Inst)) 1366 ++NumDeadInst; 1367 Inst->eraseFromParent(); 1368 } 1369 return NumDeadInst; 1370 } 1371 1372 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1373 bool PreserveLCSSA) { 1374 BasicBlock *BB = I->getParent(); 1375 // Loop over all of the successors, removing BB's entry from any PHI 1376 // nodes. 1377 for (BasicBlock *Successor : successors(BB)) 1378 Successor->removePredecessor(BB, PreserveLCSSA); 1379 1380 // Insert a call to llvm.trap right before this. This turns the undefined 1381 // behavior into a hard fail instead of falling through into random code. 1382 if (UseLLVMTrap) { 1383 Function *TrapFn = 1384 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1385 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1386 CallTrap->setDebugLoc(I->getDebugLoc()); 1387 } 1388 new UnreachableInst(I->getContext(), I); 1389 1390 // All instructions after this are dead. 1391 unsigned NumInstrsRemoved = 0; 1392 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1393 while (BBI != BBE) { 1394 if (!BBI->use_empty()) 1395 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1396 BB->getInstList().erase(BBI++); 1397 ++NumInstrsRemoved; 1398 } 1399 return NumInstrsRemoved; 1400 } 1401 1402 /// changeToCall - Convert the specified invoke into a normal call. 1403 static void changeToCall(InvokeInst *II) { 1404 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1405 SmallVector<OperandBundleDef, 1> OpBundles; 1406 II->getOperandBundlesAsDefs(OpBundles); 1407 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1408 "", II); 1409 NewCall->takeName(II); 1410 NewCall->setCallingConv(II->getCallingConv()); 1411 NewCall->setAttributes(II->getAttributes()); 1412 NewCall->setDebugLoc(II->getDebugLoc()); 1413 II->replaceAllUsesWith(NewCall); 1414 1415 // Follow the call by a branch to the normal destination. 1416 BranchInst::Create(II->getNormalDest(), II); 1417 1418 // Update PHI nodes in the unwind destination 1419 II->getUnwindDest()->removePredecessor(II->getParent()); 1420 II->eraseFromParent(); 1421 } 1422 1423 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1424 BasicBlock *UnwindEdge) { 1425 BasicBlock *BB = CI->getParent(); 1426 1427 // Convert this function call into an invoke instruction. First, split the 1428 // basic block. 1429 BasicBlock *Split = 1430 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1431 1432 // Delete the unconditional branch inserted by splitBasicBlock 1433 BB->getInstList().pop_back(); 1434 1435 // Create the new invoke instruction. 1436 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1437 SmallVector<OperandBundleDef, 1> OpBundles; 1438 1439 CI->getOperandBundlesAsDefs(OpBundles); 1440 1441 // Note: we're round tripping operand bundles through memory here, and that 1442 // can potentially be avoided with a cleverer API design that we do not have 1443 // as of this time. 1444 1445 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1446 InvokeArgs, OpBundles, CI->getName(), BB); 1447 II->setDebugLoc(CI->getDebugLoc()); 1448 II->setCallingConv(CI->getCallingConv()); 1449 II->setAttributes(CI->getAttributes()); 1450 1451 // Make sure that anything using the call now uses the invoke! This also 1452 // updates the CallGraph if present, because it uses a WeakVH. 1453 CI->replaceAllUsesWith(II); 1454 1455 // Delete the original call 1456 Split->getInstList().pop_front(); 1457 return Split; 1458 } 1459 1460 static bool markAliveBlocks(Function &F, 1461 SmallPtrSetImpl<BasicBlock*> &Reachable) { 1462 1463 SmallVector<BasicBlock*, 128> Worklist; 1464 BasicBlock *BB = &F.front(); 1465 Worklist.push_back(BB); 1466 Reachable.insert(BB); 1467 bool Changed = false; 1468 do { 1469 BB = Worklist.pop_back_val(); 1470 1471 // Do a quick scan of the basic block, turning any obviously unreachable 1472 // instructions into LLVM unreachable insts. The instruction combining pass 1473 // canonicalizes unreachable insts into stores to null or undef. 1474 for (Instruction &I : *BB) { 1475 // Assumptions that are known to be false are equivalent to unreachable. 1476 // Also, if the condition is undefined, then we make the choice most 1477 // beneficial to the optimizer, and choose that to also be unreachable. 1478 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1479 if (II->getIntrinsicID() == Intrinsic::assume) { 1480 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1481 // Don't insert a call to llvm.trap right before the unreachable. 1482 changeToUnreachable(II, false); 1483 Changed = true; 1484 break; 1485 } 1486 } 1487 1488 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1489 // A call to the guard intrinsic bails out of the current compilation 1490 // unit if the predicate passed to it is false. If the predicate is a 1491 // constant false, then we know the guard will bail out of the current 1492 // compile unconditionally, so all code following it is dead. 1493 // 1494 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1495 // guards to treat `undef` as `false` since a guard on `undef` can 1496 // still be useful for widening. 1497 if (match(II->getArgOperand(0), m_Zero())) 1498 if (!isa<UnreachableInst>(II->getNextNode())) { 1499 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false); 1500 Changed = true; 1501 break; 1502 } 1503 } 1504 } 1505 1506 if (auto *CI = dyn_cast<CallInst>(&I)) { 1507 Value *Callee = CI->getCalledValue(); 1508 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1509 changeToUnreachable(CI, /*UseLLVMTrap=*/false); 1510 Changed = true; 1511 break; 1512 } 1513 if (CI->doesNotReturn()) { 1514 // If we found a call to a no-return function, insert an unreachable 1515 // instruction after it. Make sure there isn't *already* one there 1516 // though. 1517 if (!isa<UnreachableInst>(CI->getNextNode())) { 1518 // Don't insert a call to llvm.trap right before the unreachable. 1519 changeToUnreachable(CI->getNextNode(), false); 1520 Changed = true; 1521 } 1522 break; 1523 } 1524 } 1525 1526 // Store to undef and store to null are undefined and used to signal that 1527 // they should be changed to unreachable by passes that can't modify the 1528 // CFG. 1529 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1530 // Don't touch volatile stores. 1531 if (SI->isVolatile()) continue; 1532 1533 Value *Ptr = SI->getOperand(1); 1534 1535 if (isa<UndefValue>(Ptr) || 1536 (isa<ConstantPointerNull>(Ptr) && 1537 SI->getPointerAddressSpace() == 0)) { 1538 changeToUnreachable(SI, true); 1539 Changed = true; 1540 break; 1541 } 1542 } 1543 } 1544 1545 TerminatorInst *Terminator = BB->getTerminator(); 1546 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1547 // Turn invokes that call 'nounwind' functions into ordinary calls. 1548 Value *Callee = II->getCalledValue(); 1549 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1550 changeToUnreachable(II, true); 1551 Changed = true; 1552 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1553 if (II->use_empty() && II->onlyReadsMemory()) { 1554 // jump to the normal destination branch. 1555 BranchInst::Create(II->getNormalDest(), II); 1556 II->getUnwindDest()->removePredecessor(II->getParent()); 1557 II->eraseFromParent(); 1558 } else 1559 changeToCall(II); 1560 Changed = true; 1561 } 1562 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1563 // Remove catchpads which cannot be reached. 1564 struct CatchPadDenseMapInfo { 1565 static CatchPadInst *getEmptyKey() { 1566 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1567 } 1568 static CatchPadInst *getTombstoneKey() { 1569 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1570 } 1571 static unsigned getHashValue(CatchPadInst *CatchPad) { 1572 return static_cast<unsigned>(hash_combine_range( 1573 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1574 } 1575 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1576 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1577 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1578 return LHS == RHS; 1579 return LHS->isIdenticalTo(RHS); 1580 } 1581 }; 1582 1583 // Set of unique CatchPads. 1584 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1585 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1586 HandlerSet; 1587 detail::DenseSetEmpty Empty; 1588 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1589 E = CatchSwitch->handler_end(); 1590 I != E; ++I) { 1591 BasicBlock *HandlerBB = *I; 1592 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1593 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1594 CatchSwitch->removeHandler(I); 1595 --I; 1596 --E; 1597 Changed = true; 1598 } 1599 } 1600 } 1601 1602 Changed |= ConstantFoldTerminator(BB, true); 1603 for (BasicBlock *Successor : successors(BB)) 1604 if (Reachable.insert(Successor).second) 1605 Worklist.push_back(Successor); 1606 } while (!Worklist.empty()); 1607 return Changed; 1608 } 1609 1610 void llvm::removeUnwindEdge(BasicBlock *BB) { 1611 TerminatorInst *TI = BB->getTerminator(); 1612 1613 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1614 changeToCall(II); 1615 return; 1616 } 1617 1618 TerminatorInst *NewTI; 1619 BasicBlock *UnwindDest; 1620 1621 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1622 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1623 UnwindDest = CRI->getUnwindDest(); 1624 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1625 auto *NewCatchSwitch = CatchSwitchInst::Create( 1626 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1627 CatchSwitch->getName(), CatchSwitch); 1628 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1629 NewCatchSwitch->addHandler(PadBB); 1630 1631 NewTI = NewCatchSwitch; 1632 UnwindDest = CatchSwitch->getUnwindDest(); 1633 } else { 1634 llvm_unreachable("Could not find unwind successor"); 1635 } 1636 1637 NewTI->takeName(TI); 1638 NewTI->setDebugLoc(TI->getDebugLoc()); 1639 UnwindDest->removePredecessor(BB); 1640 TI->replaceAllUsesWith(NewTI); 1641 TI->eraseFromParent(); 1642 } 1643 1644 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1645 /// if they are in a dead cycle. Return true if a change was made, false 1646 /// otherwise. 1647 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) { 1648 SmallPtrSet<BasicBlock*, 16> Reachable; 1649 bool Changed = markAliveBlocks(F, Reachable); 1650 1651 // If there are unreachable blocks in the CFG... 1652 if (Reachable.size() == F.size()) 1653 return Changed; 1654 1655 assert(Reachable.size() < F.size()); 1656 NumRemoved += F.size()-Reachable.size(); 1657 1658 // Loop over all of the basic blocks that are not reachable, dropping all of 1659 // their internal references... 1660 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1661 if (Reachable.count(&*BB)) 1662 continue; 1663 1664 for (BasicBlock *Successor : successors(&*BB)) 1665 if (Reachable.count(Successor)) 1666 Successor->removePredecessor(&*BB); 1667 if (LVI) 1668 LVI->eraseBlock(&*BB); 1669 BB->dropAllReferences(); 1670 } 1671 1672 for (Function::iterator I = ++F.begin(); I != F.end();) 1673 if (!Reachable.count(&*I)) 1674 I = F.getBasicBlockList().erase(I); 1675 else 1676 ++I; 1677 1678 return true; 1679 } 1680 1681 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1682 ArrayRef<unsigned> KnownIDs) { 1683 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1684 K->dropUnknownNonDebugMetadata(KnownIDs); 1685 K->getAllMetadataOtherThanDebugLoc(Metadata); 1686 for (const auto &MD : Metadata) { 1687 unsigned Kind = MD.first; 1688 MDNode *JMD = J->getMetadata(Kind); 1689 MDNode *KMD = MD.second; 1690 1691 switch (Kind) { 1692 default: 1693 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1694 break; 1695 case LLVMContext::MD_dbg: 1696 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1697 case LLVMContext::MD_tbaa: 1698 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1699 break; 1700 case LLVMContext::MD_alias_scope: 1701 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1702 break; 1703 case LLVMContext::MD_noalias: 1704 case LLVMContext::MD_mem_parallel_loop_access: 1705 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1706 break; 1707 case LLVMContext::MD_range: 1708 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1709 break; 1710 case LLVMContext::MD_fpmath: 1711 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1712 break; 1713 case LLVMContext::MD_invariant_load: 1714 // Only set the !invariant.load if it is present in both instructions. 1715 K->setMetadata(Kind, JMD); 1716 break; 1717 case LLVMContext::MD_nonnull: 1718 // Only set the !nonnull if it is present in both instructions. 1719 K->setMetadata(Kind, JMD); 1720 break; 1721 case LLVMContext::MD_invariant_group: 1722 // Preserve !invariant.group in K. 1723 break; 1724 case LLVMContext::MD_align: 1725 K->setMetadata(Kind, 1726 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1727 break; 1728 case LLVMContext::MD_dereferenceable: 1729 case LLVMContext::MD_dereferenceable_or_null: 1730 K->setMetadata(Kind, 1731 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1732 break; 1733 } 1734 } 1735 // Set !invariant.group from J if J has it. If both instructions have it 1736 // then we will just pick it from J - even when they are different. 1737 // Also make sure that K is load or store - f.e. combining bitcast with load 1738 // could produce bitcast with invariant.group metadata, which is invalid. 1739 // FIXME: we should try to preserve both invariant.group md if they are 1740 // different, but right now instruction can only have one invariant.group. 1741 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1742 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1743 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1744 } 1745 1746 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1747 unsigned KnownIDs[] = { 1748 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1749 LLVMContext::MD_noalias, LLVMContext::MD_range, 1750 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1751 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1752 LLVMContext::MD_dereferenceable, 1753 LLVMContext::MD_dereferenceable_or_null}; 1754 combineMetadata(K, J, KnownIDs); 1755 } 1756 1757 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1758 DominatorTree &DT, 1759 const BasicBlockEdge &Root) { 1760 assert(From->getType() == To->getType()); 1761 1762 unsigned Count = 0; 1763 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1764 UI != UE; ) { 1765 Use &U = *UI++; 1766 if (DT.dominates(Root, U)) { 1767 U.set(To); 1768 DEBUG(dbgs() << "Replace dominated use of '" 1769 << From->getName() << "' as " 1770 << *To << " in " << *U << "\n"); 1771 ++Count; 1772 } 1773 } 1774 return Count; 1775 } 1776 1777 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1778 DominatorTree &DT, 1779 const BasicBlock *BB) { 1780 assert(From->getType() == To->getType()); 1781 1782 unsigned Count = 0; 1783 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1784 UI != UE;) { 1785 Use &U = *UI++; 1786 auto *I = cast<Instruction>(U.getUser()); 1787 if (DT.properlyDominates(BB, I->getParent())) { 1788 U.set(To); 1789 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1790 << *To << " in " << *U << "\n"); 1791 ++Count; 1792 } 1793 } 1794 return Count; 1795 } 1796 1797 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) { 1798 // Check if the function is specifically marked as a gc leaf function. 1799 if (CS.hasFnAttr("gc-leaf-function")) 1800 return true; 1801 if (const Function *F = CS.getCalledFunction()) { 1802 if (F->hasFnAttribute("gc-leaf-function")) 1803 return true; 1804 1805 if (auto IID = F->getIntrinsicID()) 1806 // Most LLVM intrinsics do not take safepoints. 1807 return IID != Intrinsic::experimental_gc_statepoint && 1808 IID != Intrinsic::experimental_deoptimize; 1809 } 1810 1811 return false; 1812 } 1813 1814 namespace { 1815 /// A potential constituent of a bitreverse or bswap expression. See 1816 /// collectBitParts for a fuller explanation. 1817 struct BitPart { 1818 BitPart(Value *P, unsigned BW) : Provider(P) { 1819 Provenance.resize(BW); 1820 } 1821 1822 /// The Value that this is a bitreverse/bswap of. 1823 Value *Provider; 1824 /// The "provenance" of each bit. Provenance[A] = B means that bit A 1825 /// in Provider becomes bit B in the result of this expression. 1826 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 1827 1828 enum { Unset = -1 }; 1829 }; 1830 } // end anonymous namespace 1831 1832 /// Analyze the specified subexpression and see if it is capable of providing 1833 /// pieces of a bswap or bitreverse. The subexpression provides a potential 1834 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 1835 /// the output of the expression came from a corresponding bit in some other 1836 /// value. This function is recursive, and the end result is a mapping of 1837 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 1838 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 1839 /// 1840 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 1841 /// that the expression deposits the low byte of %X into the high byte of the 1842 /// result and that all other bits are zero. This expression is accepted and a 1843 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 1844 /// [0-7]. 1845 /// 1846 /// To avoid revisiting values, the BitPart results are memoized into the 1847 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 1848 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 1849 /// store BitParts objects, not pointers. As we need the concept of a nullptr 1850 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 1851 /// type instead to provide the same functionality. 1852 /// 1853 /// Because we pass around references into \c BPS, we must use a container that 1854 /// does not invalidate internal references (std::map instead of DenseMap). 1855 /// 1856 static const Optional<BitPart> & 1857 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 1858 std::map<Value *, Optional<BitPart>> &BPS) { 1859 auto I = BPS.find(V); 1860 if (I != BPS.end()) 1861 return I->second; 1862 1863 auto &Result = BPS[V] = None; 1864 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 1865 1866 if (Instruction *I = dyn_cast<Instruction>(V)) { 1867 // If this is an or instruction, it may be an inner node of the bswap. 1868 if (I->getOpcode() == Instruction::Or) { 1869 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 1870 MatchBitReversals, BPS); 1871 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 1872 MatchBitReversals, BPS); 1873 if (!A || !B) 1874 return Result; 1875 1876 // Try and merge the two together. 1877 if (!A->Provider || A->Provider != B->Provider) 1878 return Result; 1879 1880 Result = BitPart(A->Provider, BitWidth); 1881 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 1882 if (A->Provenance[i] != BitPart::Unset && 1883 B->Provenance[i] != BitPart::Unset && 1884 A->Provenance[i] != B->Provenance[i]) 1885 return Result = None; 1886 1887 if (A->Provenance[i] == BitPart::Unset) 1888 Result->Provenance[i] = B->Provenance[i]; 1889 else 1890 Result->Provenance[i] = A->Provenance[i]; 1891 } 1892 1893 return Result; 1894 } 1895 1896 // If this is a logical shift by a constant, recurse then shift the result. 1897 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 1898 unsigned BitShift = 1899 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 1900 // Ensure the shift amount is defined. 1901 if (BitShift > BitWidth) 1902 return Result; 1903 1904 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1905 MatchBitReversals, BPS); 1906 if (!Res) 1907 return Result; 1908 Result = Res; 1909 1910 // Perform the "shift" on BitProvenance. 1911 auto &P = Result->Provenance; 1912 if (I->getOpcode() == Instruction::Shl) { 1913 P.erase(std::prev(P.end(), BitShift), P.end()); 1914 P.insert(P.begin(), BitShift, BitPart::Unset); 1915 } else { 1916 P.erase(P.begin(), std::next(P.begin(), BitShift)); 1917 P.insert(P.end(), BitShift, BitPart::Unset); 1918 } 1919 1920 return Result; 1921 } 1922 1923 // If this is a logical 'and' with a mask that clears bits, recurse then 1924 // unset the appropriate bits. 1925 if (I->getOpcode() == Instruction::And && 1926 isa<ConstantInt>(I->getOperand(1))) { 1927 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 1928 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 1929 1930 // Check that the mask allows a multiple of 8 bits for a bswap, for an 1931 // early exit. 1932 unsigned NumMaskedBits = AndMask.countPopulation(); 1933 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 1934 return Result; 1935 1936 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1937 MatchBitReversals, BPS); 1938 if (!Res) 1939 return Result; 1940 Result = Res; 1941 1942 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 1943 // If the AndMask is zero for this bit, clear the bit. 1944 if ((AndMask & Bit) == 0) 1945 Result->Provenance[i] = BitPart::Unset; 1946 return Result; 1947 } 1948 1949 // If this is a zext instruction zero extend the result. 1950 if (I->getOpcode() == Instruction::ZExt) { 1951 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 1952 MatchBitReversals, BPS); 1953 if (!Res) 1954 return Result; 1955 1956 Result = BitPart(Res->Provider, BitWidth); 1957 auto NarrowBitWidth = 1958 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 1959 for (unsigned i = 0; i < NarrowBitWidth; ++i) 1960 Result->Provenance[i] = Res->Provenance[i]; 1961 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 1962 Result->Provenance[i] = BitPart::Unset; 1963 return Result; 1964 } 1965 } 1966 1967 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 1968 // the input value to the bswap/bitreverse. 1969 Result = BitPart(V, BitWidth); 1970 for (unsigned i = 0; i < BitWidth; ++i) 1971 Result->Provenance[i] = i; 1972 return Result; 1973 } 1974 1975 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 1976 unsigned BitWidth) { 1977 if (From % 8 != To % 8) 1978 return false; 1979 // Convert from bit indices to byte indices and check for a byte reversal. 1980 From >>= 3; 1981 To >>= 3; 1982 BitWidth >>= 3; 1983 return From == BitWidth - To - 1; 1984 } 1985 1986 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 1987 unsigned BitWidth) { 1988 return From == BitWidth - To - 1; 1989 } 1990 1991 /// Given an OR instruction, check to see if this is a bitreverse 1992 /// idiom. If so, insert the new intrinsic and return true. 1993 bool llvm::recognizeBSwapOrBitReverseIdiom( 1994 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 1995 SmallVectorImpl<Instruction *> &InsertedInsts) { 1996 if (Operator::getOpcode(I) != Instruction::Or) 1997 return false; 1998 if (!MatchBSwaps && !MatchBitReversals) 1999 return false; 2000 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2001 if (!ITy || ITy->getBitWidth() > 128) 2002 return false; // Can't do vectors or integers > 128 bits. 2003 unsigned BW = ITy->getBitWidth(); 2004 2005 unsigned DemandedBW = BW; 2006 IntegerType *DemandedTy = ITy; 2007 if (I->hasOneUse()) { 2008 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2009 DemandedTy = cast<IntegerType>(Trunc->getType()); 2010 DemandedBW = DemandedTy->getBitWidth(); 2011 } 2012 } 2013 2014 // Try to find all the pieces corresponding to the bswap. 2015 std::map<Value *, Optional<BitPart>> BPS; 2016 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2017 if (!Res) 2018 return false; 2019 auto &BitProvenance = Res->Provenance; 2020 2021 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2022 // only byteswap values with an even number of bytes. 2023 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2024 for (unsigned i = 0; i < DemandedBW; ++i) { 2025 OKForBSwap &= 2026 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2027 OKForBitReverse &= 2028 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2029 } 2030 2031 Intrinsic::ID Intrin; 2032 if (OKForBSwap && MatchBSwaps) 2033 Intrin = Intrinsic::bswap; 2034 else if (OKForBitReverse && MatchBitReversals) 2035 Intrin = Intrinsic::bitreverse; 2036 else 2037 return false; 2038 2039 if (ITy != DemandedTy) { 2040 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2041 Value *Provider = Res->Provider; 2042 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2043 // We may need to truncate the provider. 2044 if (DemandedTy != ProviderTy) { 2045 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2046 "trunc", I); 2047 InsertedInsts.push_back(Trunc); 2048 Provider = Trunc; 2049 } 2050 auto *CI = CallInst::Create(F, Provider, "rev", I); 2051 InsertedInsts.push_back(CI); 2052 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2053 InsertedInsts.push_back(ExtInst); 2054 return true; 2055 } 2056 2057 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2058 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2059 return true; 2060 } 2061 2062 // CodeGen has special handling for some string functions that may replace 2063 // them with target-specific intrinsics. Since that'd skip our interceptors 2064 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2065 // we mark affected calls as NoBuiltin, which will disable optimization 2066 // in CodeGen. 2067 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2068 CallInst *CI, const TargetLibraryInfo *TLI) { 2069 Function *F = CI->getCalledFunction(); 2070 LibFunc::Func Func; 2071 if (F && !F->hasLocalLinkage() && F->hasName() && 2072 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2073 !F->doesNotAccessMemory()) 2074 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin); 2075 } 2076