1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/CallSite.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/DomTreeUpdater.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 //===----------------------------------------------------------------------===// 95 // Local constant propagation. 96 // 97 98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 99 /// constant value, convert it into an unconditional branch to the constant 100 /// destination. This is a nontrivial operation because the successors of this 101 /// basic block must have their PHI nodes updated. 102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 103 /// conditions and indirectbr addresses this might make dead if 104 /// DeleteDeadConditions is true. 105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 106 const TargetLibraryInfo *TLI, 107 DomTreeUpdater *DTU) { 108 Instruction *T = BB->getTerminator(); 109 IRBuilder<> Builder(T); 110 111 // Branch - See if we are conditional jumping on constant 112 if (auto *BI = dyn_cast<BranchInst>(T)) { 113 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 114 BasicBlock *Dest1 = BI->getSuccessor(0); 115 BasicBlock *Dest2 = BI->getSuccessor(1); 116 117 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 118 // Are we branching on constant? 119 // YES. Change to unconditional branch... 120 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 121 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 122 123 // Let the basic block know that we are letting go of it. Based on this, 124 // it will adjust it's PHI nodes. 125 OldDest->removePredecessor(BB); 126 127 // Replace the conditional branch with an unconditional one. 128 Builder.CreateBr(Destination); 129 BI->eraseFromParent(); 130 if (DTU) 131 DTU->deleteEdgeRelaxed(BB, OldDest); 132 return true; 133 } 134 135 if (Dest2 == Dest1) { // Conditional branch to same location? 136 // This branch matches something like this: 137 // br bool %cond, label %Dest, label %Dest 138 // and changes it into: br label %Dest 139 140 // Let the basic block know that we are letting go of one copy of it. 141 assert(BI->getParent() && "Terminator not inserted in block!"); 142 Dest1->removePredecessor(BI->getParent()); 143 144 // Replace the conditional branch with an unconditional one. 145 Builder.CreateBr(Dest1); 146 Value *Cond = BI->getCondition(); 147 BI->eraseFromParent(); 148 if (DeleteDeadConditions) 149 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 150 return true; 151 } 152 return false; 153 } 154 155 if (auto *SI = dyn_cast<SwitchInst>(T)) { 156 // If we are switching on a constant, we can convert the switch to an 157 // unconditional branch. 158 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 159 BasicBlock *DefaultDest = SI->getDefaultDest(); 160 BasicBlock *TheOnlyDest = DefaultDest; 161 162 // If the default is unreachable, ignore it when searching for TheOnlyDest. 163 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 164 SI->getNumCases() > 0) { 165 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 166 } 167 168 // Figure out which case it goes to. 169 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 170 // Found case matching a constant operand? 171 if (i->getCaseValue() == CI) { 172 TheOnlyDest = i->getCaseSuccessor(); 173 break; 174 } 175 176 // Check to see if this branch is going to the same place as the default 177 // dest. If so, eliminate it as an explicit compare. 178 if (i->getCaseSuccessor() == DefaultDest) { 179 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 180 unsigned NCases = SI->getNumCases(); 181 // Fold the case metadata into the default if there will be any branches 182 // left, unless the metadata doesn't match the switch. 183 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 184 // Collect branch weights into a vector. 185 SmallVector<uint32_t, 8> Weights; 186 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 187 ++MD_i) { 188 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 189 Weights.push_back(CI->getValue().getZExtValue()); 190 } 191 // Merge weight of this case to the default weight. 192 unsigned idx = i->getCaseIndex(); 193 Weights[0] += Weights[idx+1]; 194 // Remove weight for this case. 195 std::swap(Weights[idx+1], Weights.back()); 196 Weights.pop_back(); 197 SI->setMetadata(LLVMContext::MD_prof, 198 MDBuilder(BB->getContext()). 199 createBranchWeights(Weights)); 200 } 201 // Remove this entry. 202 BasicBlock *ParentBB = SI->getParent(); 203 DefaultDest->removePredecessor(ParentBB); 204 i = SI->removeCase(i); 205 e = SI->case_end(); 206 if (DTU) 207 DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); 208 continue; 209 } 210 211 // Otherwise, check to see if the switch only branches to one destination. 212 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 213 // destinations. 214 if (i->getCaseSuccessor() != TheOnlyDest) 215 TheOnlyDest = nullptr; 216 217 // Increment this iterator as we haven't removed the case. 218 ++i; 219 } 220 221 if (CI && !TheOnlyDest) { 222 // Branching on a constant, but not any of the cases, go to the default 223 // successor. 224 TheOnlyDest = SI->getDefaultDest(); 225 } 226 227 // If we found a single destination that we can fold the switch into, do so 228 // now. 229 if (TheOnlyDest) { 230 // Insert the new branch. 231 Builder.CreateBr(TheOnlyDest); 232 BasicBlock *BB = SI->getParent(); 233 std::vector <DominatorTree::UpdateType> Updates; 234 if (DTU) 235 Updates.reserve(SI->getNumSuccessors() - 1); 236 237 // Remove entries from PHI nodes which we no longer branch to... 238 for (BasicBlock *Succ : successors(SI)) { 239 // Found case matching a constant operand? 240 if (Succ == TheOnlyDest) { 241 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 242 } else { 243 Succ->removePredecessor(BB); 244 if (DTU) 245 Updates.push_back({DominatorTree::Delete, BB, Succ}); 246 } 247 } 248 249 // Delete the old switch. 250 Value *Cond = SI->getCondition(); 251 SI->eraseFromParent(); 252 if (DeleteDeadConditions) 253 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 254 if (DTU) 255 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 256 return true; 257 } 258 259 if (SI->getNumCases() == 1) { 260 // Otherwise, we can fold this switch into a conditional branch 261 // instruction if it has only one non-default destination. 262 auto FirstCase = *SI->case_begin(); 263 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 264 FirstCase.getCaseValue(), "cond"); 265 266 // Insert the new branch. 267 BranchInst *NewBr = Builder.CreateCondBr(Cond, 268 FirstCase.getCaseSuccessor(), 269 SI->getDefaultDest()); 270 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 271 if (MD && MD->getNumOperands() == 3) { 272 ConstantInt *SICase = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 274 ConstantInt *SIDef = 275 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 276 assert(SICase && SIDef); 277 // The TrueWeight should be the weight for the single case of SI. 278 NewBr->setMetadata(LLVMContext::MD_prof, 279 MDBuilder(BB->getContext()). 280 createBranchWeights(SICase->getValue().getZExtValue(), 281 SIDef->getValue().getZExtValue())); 282 } 283 284 // Update make.implicit metadata to the newly-created conditional branch. 285 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 286 if (MakeImplicitMD) 287 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 288 289 // Delete the old switch. 290 SI->eraseFromParent(); 291 return true; 292 } 293 return false; 294 } 295 296 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 297 // indirectbr blockaddress(@F, @BB) -> br label @BB 298 if (auto *BA = 299 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 300 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 301 std::vector <DominatorTree::UpdateType> Updates; 302 if (DTU) 303 Updates.reserve(IBI->getNumDestinations() - 1); 304 305 // Insert the new branch. 306 Builder.CreateBr(TheOnlyDest); 307 308 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 309 if (IBI->getDestination(i) == TheOnlyDest) { 310 TheOnlyDest = nullptr; 311 } else { 312 BasicBlock *ParentBB = IBI->getParent(); 313 BasicBlock *DestBB = IBI->getDestination(i); 314 DestBB->removePredecessor(ParentBB); 315 if (DTU) 316 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 317 } 318 } 319 Value *Address = IBI->getAddress(); 320 IBI->eraseFromParent(); 321 if (DeleteDeadConditions) 322 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 323 324 // If we didn't find our destination in the IBI successor list, then we 325 // have undefined behavior. Replace the unconditional branch with an 326 // 'unreachable' instruction. 327 if (TheOnlyDest) { 328 BB->getTerminator()->eraseFromParent(); 329 new UnreachableInst(BB->getContext(), BB); 330 } 331 332 if (DTU) 333 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 334 return true; 335 } 336 } 337 338 return false; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Local dead code elimination. 343 // 344 345 /// isInstructionTriviallyDead - Return true if the result produced by the 346 /// instruction is not used, and the instruction has no side effects. 347 /// 348 bool llvm::isInstructionTriviallyDead(Instruction *I, 349 const TargetLibraryInfo *TLI) { 350 if (!I->use_empty()) 351 return false; 352 return wouldInstructionBeTriviallyDead(I, TLI); 353 } 354 355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 356 const TargetLibraryInfo *TLI) { 357 if (I->isTerminator()) 358 return false; 359 360 // We don't want the landingpad-like instructions removed by anything this 361 // general. 362 if (I->isEHPad()) 363 return false; 364 365 // We don't want debug info removed by anything this general, unless 366 // debug info is empty. 367 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 368 if (DDI->getAddress()) 369 return false; 370 return true; 371 } 372 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 373 if (DVI->getValue()) 374 return false; 375 return true; 376 } 377 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 378 if (DLI->getLabel()) 379 return false; 380 return true; 381 } 382 383 if (!I->mayHaveSideEffects()) 384 return true; 385 386 // Special case intrinsics that "may have side effects" but can be deleted 387 // when dead. 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 389 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 390 if (II->getIntrinsicID() == Intrinsic::stacksave || 391 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 392 return true; 393 394 // Lifetime intrinsics are dead when their right-hand is undef. 395 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 396 II->getIntrinsicID() == Intrinsic::lifetime_end) 397 return isa<UndefValue>(II->getArgOperand(1)); 398 399 // Assumptions are dead if their condition is trivially true. Guards on 400 // true are operationally no-ops. In the future we can consider more 401 // sophisticated tradeoffs for guards considering potential for check 402 // widening, but for now we keep things simple. 403 if (II->getIntrinsicID() == Intrinsic::assume || 404 II->getIntrinsicID() == Intrinsic::experimental_guard) { 405 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 406 return !Cond->isZero(); 407 408 return false; 409 } 410 } 411 412 if (isAllocLikeFn(I, TLI)) 413 return true; 414 415 if (CallInst *CI = isFreeCall(I, TLI)) 416 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 417 return C->isNullValue() || isa<UndefValue>(C); 418 419 if (CallSite CS = CallSite(I)) 420 if (isMathLibCallNoop(CS, TLI)) 421 return true; 422 423 return false; 424 } 425 426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 427 /// trivially dead instruction, delete it. If that makes any of its operands 428 /// trivially dead, delete them too, recursively. Return true if any 429 /// instructions were deleted. 430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 431 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 432 Instruction *I = dyn_cast<Instruction>(V); 433 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 434 return false; 435 436 SmallVector<Instruction*, 16> DeadInsts; 437 DeadInsts.push_back(I); 438 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 439 440 return true; 441 } 442 443 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 445 MemorySSAUpdater *MSSAU) { 446 // Process the dead instruction list until empty. 447 while (!DeadInsts.empty()) { 448 Instruction &I = *DeadInsts.pop_back_val(); 449 assert(I.use_empty() && "Instructions with uses are not dead."); 450 assert(isInstructionTriviallyDead(&I, TLI) && 451 "Live instruction found in dead worklist!"); 452 453 // Don't lose the debug info while deleting the instructions. 454 salvageDebugInfo(I); 455 456 // Null out all of the instruction's operands to see if any operand becomes 457 // dead as we go. 458 for (Use &OpU : I.operands()) { 459 Value *OpV = OpU.get(); 460 OpU.set(nullptr); 461 462 if (!OpV->use_empty()) 463 continue; 464 465 // If the operand is an instruction that became dead as we nulled out the 466 // operand, and if it is 'trivially' dead, delete it in a future loop 467 // iteration. 468 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 469 if (isInstructionTriviallyDead(OpI, TLI)) 470 DeadInsts.push_back(OpI); 471 } 472 if (MSSAU) 473 MSSAU->removeMemoryAccess(&I); 474 475 I.eraseFromParent(); 476 } 477 } 478 479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 480 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 481 findDbgUsers(DbgUsers, I); 482 for (auto *DII : DbgUsers) { 483 Value *Undef = UndefValue::get(I->getType()); 484 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 485 ValueAsMetadata::get(Undef))); 486 } 487 return !DbgUsers.empty(); 488 } 489 490 /// areAllUsesEqual - Check whether the uses of a value are all the same. 491 /// This is similar to Instruction::hasOneUse() except this will also return 492 /// true when there are no uses or multiple uses that all refer to the same 493 /// value. 494 static bool areAllUsesEqual(Instruction *I) { 495 Value::user_iterator UI = I->user_begin(); 496 Value::user_iterator UE = I->user_end(); 497 if (UI == UE) 498 return true; 499 500 User *TheUse = *UI; 501 for (++UI; UI != UE; ++UI) { 502 if (*UI != TheUse) 503 return false; 504 } 505 return true; 506 } 507 508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 509 /// dead PHI node, due to being a def-use chain of single-use nodes that 510 /// either forms a cycle or is terminated by a trivially dead instruction, 511 /// delete it. If that makes any of its operands trivially dead, delete them 512 /// too, recursively. Return true if a change was made. 513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 514 const TargetLibraryInfo *TLI) { 515 SmallPtrSet<Instruction*, 4> Visited; 516 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 517 I = cast<Instruction>(*I->user_begin())) { 518 if (I->use_empty()) 519 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 520 521 // If we find an instruction more than once, we're on a cycle that 522 // won't prove fruitful. 523 if (!Visited.insert(I).second) { 524 // Break the cycle and delete the instruction and its operands. 525 I->replaceAllUsesWith(UndefValue::get(I->getType())); 526 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 527 return true; 528 } 529 } 530 return false; 531 } 532 533 static bool 534 simplifyAndDCEInstruction(Instruction *I, 535 SmallSetVector<Instruction *, 16> &WorkList, 536 const DataLayout &DL, 537 const TargetLibraryInfo *TLI) { 538 if (isInstructionTriviallyDead(I, TLI)) { 539 salvageDebugInfo(*I); 540 541 // Null out all of the instruction's operands to see if any operand becomes 542 // dead as we go. 543 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 544 Value *OpV = I->getOperand(i); 545 I->setOperand(i, nullptr); 546 547 if (!OpV->use_empty() || I == OpV) 548 continue; 549 550 // If the operand is an instruction that became dead as we nulled out the 551 // operand, and if it is 'trivially' dead, delete it in a future loop 552 // iteration. 553 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 554 if (isInstructionTriviallyDead(OpI, TLI)) 555 WorkList.insert(OpI); 556 } 557 558 I->eraseFromParent(); 559 560 return true; 561 } 562 563 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 564 // Add the users to the worklist. CAREFUL: an instruction can use itself, 565 // in the case of a phi node. 566 for (User *U : I->users()) { 567 if (U != I) { 568 WorkList.insert(cast<Instruction>(U)); 569 } 570 } 571 572 // Replace the instruction with its simplified value. 573 bool Changed = false; 574 if (!I->use_empty()) { 575 I->replaceAllUsesWith(SimpleV); 576 Changed = true; 577 } 578 if (isInstructionTriviallyDead(I, TLI)) { 579 I->eraseFromParent(); 580 Changed = true; 581 } 582 return Changed; 583 } 584 return false; 585 } 586 587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 588 /// simplify any instructions in it and recursively delete dead instructions. 589 /// 590 /// This returns true if it changed the code, note that it can delete 591 /// instructions in other blocks as well in this block. 592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 593 const TargetLibraryInfo *TLI) { 594 bool MadeChange = false; 595 const DataLayout &DL = BB->getModule()->getDataLayout(); 596 597 #ifndef NDEBUG 598 // In debug builds, ensure that the terminator of the block is never replaced 599 // or deleted by these simplifications. The idea of simplification is that it 600 // cannot introduce new instructions, and there is no way to replace the 601 // terminator of a block without introducing a new instruction. 602 AssertingVH<Instruction> TerminatorVH(&BB->back()); 603 #endif 604 605 SmallSetVector<Instruction *, 16> WorkList; 606 // Iterate over the original function, only adding insts to the worklist 607 // if they actually need to be revisited. This avoids having to pre-init 608 // the worklist with the entire function's worth of instructions. 609 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 610 BI != E;) { 611 assert(!BI->isTerminator()); 612 Instruction *I = &*BI; 613 ++BI; 614 615 // We're visiting this instruction now, so make sure it's not in the 616 // worklist from an earlier visit. 617 if (!WorkList.count(I)) 618 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 619 } 620 621 while (!WorkList.empty()) { 622 Instruction *I = WorkList.pop_back_val(); 623 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 624 } 625 return MadeChange; 626 } 627 628 //===----------------------------------------------------------------------===// 629 // Control Flow Graph Restructuring. 630 // 631 632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 633 /// method is called when we're about to delete Pred as a predecessor of BB. If 634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 635 /// 636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 637 /// nodes that collapse into identity values. For example, if we have: 638 /// x = phi(1, 0, 0, 0) 639 /// y = and x, z 640 /// 641 /// .. and delete the predecessor corresponding to the '1', this will attempt to 642 /// recursively fold the and to 0. 643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 644 DomTreeUpdater *DTU) { 645 // This only adjusts blocks with PHI nodes. 646 if (!isa<PHINode>(BB->begin())) 647 return; 648 649 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 650 // them down. This will leave us with single entry phi nodes and other phis 651 // that can be removed. 652 BB->removePredecessor(Pred, true); 653 654 WeakTrackingVH PhiIt = &BB->front(); 655 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 656 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 657 Value *OldPhiIt = PhiIt; 658 659 if (!recursivelySimplifyInstruction(PN)) 660 continue; 661 662 // If recursive simplification ended up deleting the next PHI node we would 663 // iterate to, then our iterator is invalid, restart scanning from the top 664 // of the block. 665 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 666 } 667 if (DTU) 668 DTU->deleteEdgeRelaxed(Pred, BB); 669 } 670 671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 673 /// between them, moving the instructions in the predecessor into DestBB and 674 /// deleting the predecessor block. 675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 676 DomTreeUpdater *DTU) { 677 678 // If BB has single-entry PHI nodes, fold them. 679 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 680 Value *NewVal = PN->getIncomingValue(0); 681 // Replace self referencing PHI with undef, it must be dead. 682 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 683 PN->replaceAllUsesWith(NewVal); 684 PN->eraseFromParent(); 685 } 686 687 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 688 assert(PredBB && "Block doesn't have a single predecessor!"); 689 690 bool ReplaceEntryBB = false; 691 if (PredBB == &DestBB->getParent()->getEntryBlock()) 692 ReplaceEntryBB = true; 693 694 // DTU updates: Collect all the edges that enter 695 // PredBB. These dominator edges will be redirected to DestBB. 696 SmallVector<DominatorTree::UpdateType, 32> Updates; 697 698 if (DTU) { 699 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 700 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 701 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 702 // This predecessor of PredBB may already have DestBB as a successor. 703 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 704 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 705 } 706 } 707 708 // Zap anything that took the address of DestBB. Not doing this will give the 709 // address an invalid value. 710 if (DestBB->hasAddressTaken()) { 711 BlockAddress *BA = BlockAddress::get(DestBB); 712 Constant *Replacement = 713 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 714 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 715 BA->getType())); 716 BA->destroyConstant(); 717 } 718 719 // Anything that branched to PredBB now branches to DestBB. 720 PredBB->replaceAllUsesWith(DestBB); 721 722 // Splice all the instructions from PredBB to DestBB. 723 PredBB->getTerminator()->eraseFromParent(); 724 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 725 new UnreachableInst(PredBB->getContext(), PredBB); 726 727 // If the PredBB is the entry block of the function, move DestBB up to 728 // become the entry block after we erase PredBB. 729 if (ReplaceEntryBB) 730 DestBB->moveAfter(PredBB); 731 732 if (DTU) { 733 assert(PredBB->getInstList().size() == 1 && 734 isa<UnreachableInst>(PredBB->getTerminator()) && 735 "The successor list of PredBB isn't empty before " 736 "applying corresponding DTU updates."); 737 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 738 DTU->deleteBB(PredBB); 739 // Recalculation of DomTree is needed when updating a forward DomTree and 740 // the Entry BB is replaced. 741 if (ReplaceEntryBB && DTU->hasDomTree()) { 742 // The entry block was removed and there is no external interface for 743 // the dominator tree to be notified of this change. In this corner-case 744 // we recalculate the entire tree. 745 DTU->recalculate(*(DestBB->getParent())); 746 } 747 } 748 749 else { 750 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 751 } 752 } 753 754 /// CanMergeValues - Return true if we can choose one of these values to use 755 /// in place of the other. Note that we will always choose the non-undef 756 /// value to keep. 757 static bool CanMergeValues(Value *First, Value *Second) { 758 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 759 } 760 761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 763 /// 764 /// Assumption: Succ is the single successor for BB. 765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 766 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 767 768 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 769 << Succ->getName() << "\n"); 770 // Shortcut, if there is only a single predecessor it must be BB and merging 771 // is always safe 772 if (Succ->getSinglePredecessor()) return true; 773 774 // Make a list of the predecessors of BB 775 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 776 777 // Look at all the phi nodes in Succ, to see if they present a conflict when 778 // merging these blocks 779 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 780 PHINode *PN = cast<PHINode>(I); 781 782 // If the incoming value from BB is again a PHINode in 783 // BB which has the same incoming value for *PI as PN does, we can 784 // merge the phi nodes and then the blocks can still be merged 785 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 786 if (BBPN && BBPN->getParent() == BB) { 787 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 788 BasicBlock *IBB = PN->getIncomingBlock(PI); 789 if (BBPreds.count(IBB) && 790 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 791 PN->getIncomingValue(PI))) { 792 LLVM_DEBUG(dbgs() 793 << "Can't fold, phi node " << PN->getName() << " in " 794 << Succ->getName() << " is conflicting with " 795 << BBPN->getName() << " with regard to common predecessor " 796 << IBB->getName() << "\n"); 797 return false; 798 } 799 } 800 } else { 801 Value* Val = PN->getIncomingValueForBlock(BB); 802 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 803 // See if the incoming value for the common predecessor is equal to the 804 // one for BB, in which case this phi node will not prevent the merging 805 // of the block. 806 BasicBlock *IBB = PN->getIncomingBlock(PI); 807 if (BBPreds.count(IBB) && 808 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 809 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 810 << " in " << Succ->getName() 811 << " is conflicting with regard to common " 812 << "predecessor " << IBB->getName() << "\n"); 813 return false; 814 } 815 } 816 } 817 } 818 819 return true; 820 } 821 822 using PredBlockVector = SmallVector<BasicBlock *, 16>; 823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 824 825 /// Determines the value to use as the phi node input for a block. 826 /// 827 /// Select between \p OldVal any value that we know flows from \p BB 828 /// to a particular phi on the basis of which one (if either) is not 829 /// undef. Update IncomingValues based on the selected value. 830 /// 831 /// \param OldVal The value we are considering selecting. 832 /// \param BB The block that the value flows in from. 833 /// \param IncomingValues A map from block-to-value for other phi inputs 834 /// that we have examined. 835 /// 836 /// \returns the selected value. 837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 838 IncomingValueMap &IncomingValues) { 839 if (!isa<UndefValue>(OldVal)) { 840 assert((!IncomingValues.count(BB) || 841 IncomingValues.find(BB)->second == OldVal) && 842 "Expected OldVal to match incoming value from BB!"); 843 844 IncomingValues.insert(std::make_pair(BB, OldVal)); 845 return OldVal; 846 } 847 848 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 849 if (It != IncomingValues.end()) return It->second; 850 851 return OldVal; 852 } 853 854 /// Create a map from block to value for the operands of a 855 /// given phi. 856 /// 857 /// Create a map from block to value for each non-undef value flowing 858 /// into \p PN. 859 /// 860 /// \param PN The phi we are collecting the map for. 861 /// \param IncomingValues [out] The map from block to value for this phi. 862 static void gatherIncomingValuesToPhi(PHINode *PN, 863 IncomingValueMap &IncomingValues) { 864 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 865 BasicBlock *BB = PN->getIncomingBlock(i); 866 Value *V = PN->getIncomingValue(i); 867 868 if (!isa<UndefValue>(V)) 869 IncomingValues.insert(std::make_pair(BB, V)); 870 } 871 } 872 873 /// Replace the incoming undef values to a phi with the values 874 /// from a block-to-value map. 875 /// 876 /// \param PN The phi we are replacing the undefs in. 877 /// \param IncomingValues A map from block to value. 878 static void replaceUndefValuesInPhi(PHINode *PN, 879 const IncomingValueMap &IncomingValues) { 880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 881 Value *V = PN->getIncomingValue(i); 882 883 if (!isa<UndefValue>(V)) continue; 884 885 BasicBlock *BB = PN->getIncomingBlock(i); 886 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 887 if (It == IncomingValues.end()) continue; 888 889 PN->setIncomingValue(i, It->second); 890 } 891 } 892 893 /// Replace a value flowing from a block to a phi with 894 /// potentially multiple instances of that value flowing from the 895 /// block's predecessors to the phi. 896 /// 897 /// \param BB The block with the value flowing into the phi. 898 /// \param BBPreds The predecessors of BB. 899 /// \param PN The phi that we are updating. 900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 901 const PredBlockVector &BBPreds, 902 PHINode *PN) { 903 Value *OldVal = PN->removeIncomingValue(BB, false); 904 assert(OldVal && "No entry in PHI for Pred BB!"); 905 906 IncomingValueMap IncomingValues; 907 908 // We are merging two blocks - BB, and the block containing PN - and 909 // as a result we need to redirect edges from the predecessors of BB 910 // to go to the block containing PN, and update PN 911 // accordingly. Since we allow merging blocks in the case where the 912 // predecessor and successor blocks both share some predecessors, 913 // and where some of those common predecessors might have undef 914 // values flowing into PN, we want to rewrite those values to be 915 // consistent with the non-undef values. 916 917 gatherIncomingValuesToPhi(PN, IncomingValues); 918 919 // If this incoming value is one of the PHI nodes in BB, the new entries 920 // in the PHI node are the entries from the old PHI. 921 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 922 PHINode *OldValPN = cast<PHINode>(OldVal); 923 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 924 // Note that, since we are merging phi nodes and BB and Succ might 925 // have common predecessors, we could end up with a phi node with 926 // identical incoming branches. This will be cleaned up later (and 927 // will trigger asserts if we try to clean it up now, without also 928 // simplifying the corresponding conditional branch). 929 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 930 Value *PredVal = OldValPN->getIncomingValue(i); 931 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 932 IncomingValues); 933 934 // And add a new incoming value for this predecessor for the 935 // newly retargeted branch. 936 PN->addIncoming(Selected, PredBB); 937 } 938 } else { 939 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 940 // Update existing incoming values in PN for this 941 // predecessor of BB. 942 BasicBlock *PredBB = BBPreds[i]; 943 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 944 IncomingValues); 945 946 // And add a new incoming value for this predecessor for the 947 // newly retargeted branch. 948 PN->addIncoming(Selected, PredBB); 949 } 950 } 951 952 replaceUndefValuesInPhi(PN, IncomingValues); 953 } 954 955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 956 /// unconditional branch, and contains no instructions other than PHI nodes, 957 /// potential side-effect free intrinsics and the branch. If possible, 958 /// eliminate BB by rewriting all the predecessors to branch to the successor 959 /// block and return true. If we can't transform, return false. 960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 961 DomTreeUpdater *DTU) { 962 assert(BB != &BB->getParent()->getEntryBlock() && 963 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 964 965 // We can't eliminate infinite loops. 966 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 967 if (BB == Succ) return false; 968 969 // Check to see if merging these blocks would cause conflicts for any of the 970 // phi nodes in BB or Succ. If not, we can safely merge. 971 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 972 973 // Check for cases where Succ has multiple predecessors and a PHI node in BB 974 // has uses which will not disappear when the PHI nodes are merged. It is 975 // possible to handle such cases, but difficult: it requires checking whether 976 // BB dominates Succ, which is non-trivial to calculate in the case where 977 // Succ has multiple predecessors. Also, it requires checking whether 978 // constructing the necessary self-referential PHI node doesn't introduce any 979 // conflicts; this isn't too difficult, but the previous code for doing this 980 // was incorrect. 981 // 982 // Note that if this check finds a live use, BB dominates Succ, so BB is 983 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 984 // folding the branch isn't profitable in that case anyway. 985 if (!Succ->getSinglePredecessor()) { 986 BasicBlock::iterator BBI = BB->begin(); 987 while (isa<PHINode>(*BBI)) { 988 for (Use &U : BBI->uses()) { 989 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 990 if (PN->getIncomingBlock(U) != BB) 991 return false; 992 } else { 993 return false; 994 } 995 } 996 ++BBI; 997 } 998 } 999 1000 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1001 1002 SmallVector<DominatorTree::UpdateType, 32> Updates; 1003 if (DTU) { 1004 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1005 // All predecessors of BB will be moved to Succ. 1006 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1007 Updates.push_back({DominatorTree::Delete, *I, BB}); 1008 // This predecessor of BB may already have Succ as a successor. 1009 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1010 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1011 } 1012 } 1013 1014 if (isa<PHINode>(Succ->begin())) { 1015 // If there is more than one pred of succ, and there are PHI nodes in 1016 // the successor, then we need to add incoming edges for the PHI nodes 1017 // 1018 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1019 1020 // Loop over all of the PHI nodes in the successor of BB. 1021 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1022 PHINode *PN = cast<PHINode>(I); 1023 1024 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1025 } 1026 } 1027 1028 if (Succ->getSinglePredecessor()) { 1029 // BB is the only predecessor of Succ, so Succ will end up with exactly 1030 // the same predecessors BB had. 1031 1032 // Copy over any phi, debug or lifetime instruction. 1033 BB->getTerminator()->eraseFromParent(); 1034 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1035 BB->getInstList()); 1036 } else { 1037 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1038 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1039 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1040 PN->eraseFromParent(); 1041 } 1042 } 1043 1044 // If the unconditional branch we replaced contains llvm.loop metadata, we 1045 // add the metadata to the branch instructions in the predecessors. 1046 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1047 Instruction *TI = BB->getTerminator(); 1048 if (TI) 1049 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1050 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1051 BasicBlock *Pred = *PI; 1052 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1053 } 1054 1055 // Everything that jumped to BB now goes to Succ. 1056 BB->replaceAllUsesWith(Succ); 1057 if (!Succ->hasName()) Succ->takeName(BB); 1058 1059 // Clear the successor list of BB to match updates applying to DTU later. 1060 if (BB->getTerminator()) 1061 BB->getInstList().pop_back(); 1062 new UnreachableInst(BB->getContext(), BB); 1063 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1064 "applying corresponding DTU updates."); 1065 1066 if (DTU) { 1067 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1068 DTU->deleteBB(BB); 1069 } else { 1070 BB->eraseFromParent(); // Delete the old basic block. 1071 } 1072 return true; 1073 } 1074 1075 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1076 /// nodes in this block. This doesn't try to be clever about PHI nodes 1077 /// which differ only in the order of the incoming values, but instcombine 1078 /// orders them so it usually won't matter. 1079 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1080 // This implementation doesn't currently consider undef operands 1081 // specially. Theoretically, two phis which are identical except for 1082 // one having an undef where the other doesn't could be collapsed. 1083 1084 struct PHIDenseMapInfo { 1085 static PHINode *getEmptyKey() { 1086 return DenseMapInfo<PHINode *>::getEmptyKey(); 1087 } 1088 1089 static PHINode *getTombstoneKey() { 1090 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1091 } 1092 1093 static unsigned getHashValue(PHINode *PN) { 1094 // Compute a hash value on the operands. Instcombine will likely have 1095 // sorted them, which helps expose duplicates, but we have to check all 1096 // the operands to be safe in case instcombine hasn't run. 1097 return static_cast<unsigned>(hash_combine( 1098 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1099 hash_combine_range(PN->block_begin(), PN->block_end()))); 1100 } 1101 1102 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1103 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1104 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1105 return LHS == RHS; 1106 return LHS->isIdenticalTo(RHS); 1107 } 1108 }; 1109 1110 // Set of unique PHINodes. 1111 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1112 1113 // Examine each PHI. 1114 bool Changed = false; 1115 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1116 auto Inserted = PHISet.insert(PN); 1117 if (!Inserted.second) { 1118 // A duplicate. Replace this PHI with its duplicate. 1119 PN->replaceAllUsesWith(*Inserted.first); 1120 PN->eraseFromParent(); 1121 Changed = true; 1122 1123 // The RAUW can change PHIs that we already visited. Start over from the 1124 // beginning. 1125 PHISet.clear(); 1126 I = BB->begin(); 1127 } 1128 } 1129 1130 return Changed; 1131 } 1132 1133 /// enforceKnownAlignment - If the specified pointer points to an object that 1134 /// we control, modify the object's alignment to PrefAlign. This isn't 1135 /// often possible though. If alignment is important, a more reliable approach 1136 /// is to simply align all global variables and allocation instructions to 1137 /// their preferred alignment from the beginning. 1138 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1139 unsigned PrefAlign, 1140 const DataLayout &DL) { 1141 assert(PrefAlign > Align); 1142 1143 V = V->stripPointerCasts(); 1144 1145 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1146 // TODO: ideally, computeKnownBits ought to have used 1147 // AllocaInst::getAlignment() in its computation already, making 1148 // the below max redundant. But, as it turns out, 1149 // stripPointerCasts recurses through infinite layers of bitcasts, 1150 // while computeKnownBits is not allowed to traverse more than 6 1151 // levels. 1152 Align = std::max(AI->getAlignment(), Align); 1153 if (PrefAlign <= Align) 1154 return Align; 1155 1156 // If the preferred alignment is greater than the natural stack alignment 1157 // then don't round up. This avoids dynamic stack realignment. 1158 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1159 return Align; 1160 AI->setAlignment(PrefAlign); 1161 return PrefAlign; 1162 } 1163 1164 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1165 // TODO: as above, this shouldn't be necessary. 1166 Align = std::max(GO->getAlignment(), Align); 1167 if (PrefAlign <= Align) 1168 return Align; 1169 1170 // If there is a large requested alignment and we can, bump up the alignment 1171 // of the global. If the memory we set aside for the global may not be the 1172 // memory used by the final program then it is impossible for us to reliably 1173 // enforce the preferred alignment. 1174 if (!GO->canIncreaseAlignment()) 1175 return Align; 1176 1177 GO->setAlignment(PrefAlign); 1178 return PrefAlign; 1179 } 1180 1181 return Align; 1182 } 1183 1184 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1185 const DataLayout &DL, 1186 const Instruction *CxtI, 1187 AssumptionCache *AC, 1188 const DominatorTree *DT) { 1189 assert(V->getType()->isPointerTy() && 1190 "getOrEnforceKnownAlignment expects a pointer!"); 1191 1192 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1193 unsigned TrailZ = Known.countMinTrailingZeros(); 1194 1195 // Avoid trouble with ridiculously large TrailZ values, such as 1196 // those computed from a null pointer. 1197 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1198 1199 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1200 1201 // LLVM doesn't support alignments larger than this currently. 1202 Align = std::min(Align, +Value::MaximumAlignment); 1203 1204 if (PrefAlign > Align) 1205 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1206 1207 // We don't need to make any adjustment. 1208 return Align; 1209 } 1210 1211 ///===---------------------------------------------------------------------===// 1212 /// Dbg Intrinsic utilities 1213 /// 1214 1215 /// See if there is a dbg.value intrinsic for DIVar before I. 1216 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1217 Instruction *I) { 1218 // Since we can't guarantee that the original dbg.declare instrinsic 1219 // is removed by LowerDbgDeclare(), we need to make sure that we are 1220 // not inserting the same dbg.value intrinsic over and over. 1221 BasicBlock::InstListType::iterator PrevI(I); 1222 if (PrevI != I->getParent()->getInstList().begin()) { 1223 --PrevI; 1224 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1225 if (DVI->getValue() == I->getOperand(0) && 1226 DVI->getVariable() == DIVar && 1227 DVI->getExpression() == DIExpr) 1228 return true; 1229 } 1230 return false; 1231 } 1232 1233 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1234 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1235 DIExpression *DIExpr, 1236 PHINode *APN) { 1237 // Since we can't guarantee that the original dbg.declare instrinsic 1238 // is removed by LowerDbgDeclare(), we need to make sure that we are 1239 // not inserting the same dbg.value intrinsic over and over. 1240 SmallVector<DbgValueInst *, 1> DbgValues; 1241 findDbgValues(DbgValues, APN); 1242 for (auto *DVI : DbgValues) { 1243 assert(DVI->getValue() == APN); 1244 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1245 return true; 1246 } 1247 return false; 1248 } 1249 1250 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1251 /// (or fragment of the variable) described by \p DII. 1252 /// 1253 /// This is primarily intended as a helper for the different 1254 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1255 /// converted describes an alloca'd variable, so we need to use the 1256 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1257 /// identified as covering an n-bit fragment, if the store size of i1 is at 1258 /// least n bits. 1259 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1260 const DataLayout &DL = DII->getModule()->getDataLayout(); 1261 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1262 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1263 return ValueSize >= *FragmentSize; 1264 // We can't always calculate the size of the DI variable (e.g. if it is a 1265 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1266 // intead. 1267 if (DII->isAddressOfVariable()) 1268 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1269 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1270 return ValueSize >= *FragmentSize; 1271 // Could not determine size of variable. Conservatively return false. 1272 return false; 1273 } 1274 1275 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1276 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1277 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1278 StoreInst *SI, DIBuilder &Builder) { 1279 assert(DII->isAddressOfVariable()); 1280 auto *DIVar = DII->getVariable(); 1281 assert(DIVar && "Missing variable"); 1282 auto *DIExpr = DII->getExpression(); 1283 Value *DV = SI->getOperand(0); 1284 1285 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1286 // FIXME: If storing to a part of the variable described by the dbg.declare, 1287 // then we want to insert a dbg.value for the corresponding fragment. 1288 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1289 << *DII << '\n'); 1290 // For now, when there is a store to parts of the variable (but we do not 1291 // know which part) we insert an dbg.value instrinsic to indicate that we 1292 // know nothing about the variable's content. 1293 DV = UndefValue::get(DV->getType()); 1294 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1295 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1296 SI); 1297 return; 1298 } 1299 1300 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1301 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1302 SI); 1303 } 1304 1305 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1306 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1307 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1308 LoadInst *LI, DIBuilder &Builder) { 1309 auto *DIVar = DII->getVariable(); 1310 auto *DIExpr = DII->getExpression(); 1311 assert(DIVar && "Missing variable"); 1312 1313 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1314 return; 1315 1316 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1317 // FIXME: If only referring to a part of the variable described by the 1318 // dbg.declare, then we want to insert a dbg.value for the corresponding 1319 // fragment. 1320 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1321 << *DII << '\n'); 1322 return; 1323 } 1324 1325 // We are now tracking the loaded value instead of the address. In the 1326 // future if multi-location support is added to the IR, it might be 1327 // preferable to keep tracking both the loaded value and the original 1328 // address in case the alloca can not be elided. 1329 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1330 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1331 DbgValue->insertAfter(LI); 1332 } 1333 1334 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1335 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1337 PHINode *APN, DIBuilder &Builder) { 1338 auto *DIVar = DII->getVariable(); 1339 auto *DIExpr = DII->getExpression(); 1340 assert(DIVar && "Missing variable"); 1341 1342 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1343 return; 1344 1345 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1346 // FIXME: If only referring to a part of the variable described by the 1347 // dbg.declare, then we want to insert a dbg.value for the corresponding 1348 // fragment. 1349 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1350 << *DII << '\n'); 1351 return; 1352 } 1353 1354 BasicBlock *BB = APN->getParent(); 1355 auto InsertionPt = BB->getFirstInsertionPt(); 1356 1357 // The block may be a catchswitch block, which does not have a valid 1358 // insertion point. 1359 // FIXME: Insert dbg.value markers in the successors when appropriate. 1360 if (InsertionPt != BB->end()) 1361 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1362 &*InsertionPt); 1363 } 1364 1365 /// Determine whether this alloca is either a VLA or an array. 1366 static bool isArray(AllocaInst *AI) { 1367 return AI->isArrayAllocation() || 1368 AI->getType()->getElementType()->isArrayTy(); 1369 } 1370 1371 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1372 /// of llvm.dbg.value intrinsics. 1373 bool llvm::LowerDbgDeclare(Function &F) { 1374 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1375 SmallVector<DbgDeclareInst *, 4> Dbgs; 1376 for (auto &FI : F) 1377 for (Instruction &BI : FI) 1378 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1379 Dbgs.push_back(DDI); 1380 1381 if (Dbgs.empty()) 1382 return false; 1383 1384 for (auto &I : Dbgs) { 1385 DbgDeclareInst *DDI = I; 1386 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1387 // If this is an alloca for a scalar variable, insert a dbg.value 1388 // at each load and store to the alloca and erase the dbg.declare. 1389 // The dbg.values allow tracking a variable even if it is not 1390 // stored on the stack, while the dbg.declare can only describe 1391 // the stack slot (and at a lexical-scope granularity). Later 1392 // passes will attempt to elide the stack slot. 1393 if (!AI || isArray(AI)) 1394 continue; 1395 1396 // A volatile load/store means that the alloca can't be elided anyway. 1397 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1398 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1399 return LI->isVolatile(); 1400 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1401 return SI->isVolatile(); 1402 return false; 1403 })) 1404 continue; 1405 1406 for (auto &AIUse : AI->uses()) { 1407 User *U = AIUse.getUser(); 1408 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1409 if (AIUse.getOperandNo() == 1) 1410 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1411 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1412 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1413 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1414 // This is a call by-value or some other instruction that takes a 1415 // pointer to the variable. Insert a *value* intrinsic that describes 1416 // the variable by dereferencing the alloca. 1417 auto *DerefExpr = 1418 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1419 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1420 DDI->getDebugLoc(), CI); 1421 } 1422 } 1423 DDI->eraseFromParent(); 1424 } 1425 return true; 1426 } 1427 1428 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1429 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1430 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1431 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1432 if (InsertedPHIs.size() == 0) 1433 return; 1434 1435 // Map existing PHI nodes to their dbg.values. 1436 ValueToValueMapTy DbgValueMap; 1437 for (auto &I : *BB) { 1438 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1439 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1440 DbgValueMap.insert({Loc, DbgII}); 1441 } 1442 } 1443 if (DbgValueMap.size() == 0) 1444 return; 1445 1446 // Then iterate through the new PHIs and look to see if they use one of the 1447 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1448 // propagate the info through the new PHI. 1449 LLVMContext &C = BB->getContext(); 1450 for (auto PHI : InsertedPHIs) { 1451 BasicBlock *Parent = PHI->getParent(); 1452 // Avoid inserting an intrinsic into an EH block. 1453 if (Parent->getFirstNonPHI()->isEHPad()) 1454 continue; 1455 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1456 for (auto VI : PHI->operand_values()) { 1457 auto V = DbgValueMap.find(VI); 1458 if (V != DbgValueMap.end()) { 1459 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1460 Instruction *NewDbgII = DbgII->clone(); 1461 NewDbgII->setOperand(0, PhiMAV); 1462 auto InsertionPt = Parent->getFirstInsertionPt(); 1463 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1464 NewDbgII->insertBefore(&*InsertionPt); 1465 } 1466 } 1467 } 1468 } 1469 1470 /// Finds all intrinsics declaring local variables as living in the memory that 1471 /// 'V' points to. This may include a mix of dbg.declare and 1472 /// dbg.addr intrinsics. 1473 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1474 // This function is hot. Check whether the value has any metadata to avoid a 1475 // DenseMap lookup. 1476 if (!V->isUsedByMetadata()) 1477 return {}; 1478 auto *L = LocalAsMetadata::getIfExists(V); 1479 if (!L) 1480 return {}; 1481 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1482 if (!MDV) 1483 return {}; 1484 1485 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1486 for (User *U : MDV->users()) { 1487 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1488 if (DII->isAddressOfVariable()) 1489 Declares.push_back(DII); 1490 } 1491 1492 return Declares; 1493 } 1494 1495 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1496 // This function is hot. Check whether the value has any metadata to avoid a 1497 // DenseMap lookup. 1498 if (!V->isUsedByMetadata()) 1499 return; 1500 if (auto *L = LocalAsMetadata::getIfExists(V)) 1501 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1502 for (User *U : MDV->users()) 1503 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1504 DbgValues.push_back(DVI); 1505 } 1506 1507 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1508 Value *V) { 1509 // This function is hot. Check whether the value has any metadata to avoid a 1510 // DenseMap lookup. 1511 if (!V->isUsedByMetadata()) 1512 return; 1513 if (auto *L = LocalAsMetadata::getIfExists(V)) 1514 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1515 for (User *U : MDV->users()) 1516 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1517 DbgUsers.push_back(DII); 1518 } 1519 1520 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1521 Instruction *InsertBefore, DIBuilder &Builder, 1522 bool DerefBefore, int Offset, bool DerefAfter) { 1523 auto DbgAddrs = FindDbgAddrUses(Address); 1524 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1525 DebugLoc Loc = DII->getDebugLoc(); 1526 auto *DIVar = DII->getVariable(); 1527 auto *DIExpr = DII->getExpression(); 1528 assert(DIVar && "Missing variable"); 1529 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1530 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1531 // llvm.dbg.declare. 1532 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1533 if (DII == InsertBefore) 1534 InsertBefore = InsertBefore->getNextNode(); 1535 DII->eraseFromParent(); 1536 } 1537 return !DbgAddrs.empty(); 1538 } 1539 1540 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1541 DIBuilder &Builder, bool DerefBefore, 1542 int Offset, bool DerefAfter) { 1543 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1544 DerefBefore, Offset, DerefAfter); 1545 } 1546 1547 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1548 DIBuilder &Builder, int Offset) { 1549 DebugLoc Loc = DVI->getDebugLoc(); 1550 auto *DIVar = DVI->getVariable(); 1551 auto *DIExpr = DVI->getExpression(); 1552 assert(DIVar && "Missing variable"); 1553 1554 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1555 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1556 // it and give up. 1557 if (!DIExpr || DIExpr->getNumElements() < 1 || 1558 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1559 return; 1560 1561 // Insert the offset immediately after the first deref. 1562 // We could just change the offset argument of dbg.value, but it's unsigned... 1563 if (Offset) { 1564 SmallVector<uint64_t, 4> Ops; 1565 Ops.push_back(dwarf::DW_OP_deref); 1566 DIExpression::appendOffset(Ops, Offset); 1567 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1568 DIExpr = Builder.createExpression(Ops); 1569 } 1570 1571 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1572 DVI->eraseFromParent(); 1573 } 1574 1575 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1576 DIBuilder &Builder, int Offset) { 1577 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1578 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1579 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1580 Use &U = *UI++; 1581 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1582 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1583 } 1584 } 1585 1586 /// Wrap \p V in a ValueAsMetadata instance. 1587 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1588 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1589 } 1590 1591 bool llvm::salvageDebugInfo(Instruction &I) { 1592 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1593 findDbgUsers(DbgUsers, &I); 1594 if (DbgUsers.empty()) 1595 return false; 1596 1597 auto &M = *I.getModule(); 1598 auto &DL = M.getDataLayout(); 1599 auto &Ctx = I.getContext(); 1600 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1601 1602 auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1603 auto *DIExpr = DII->getExpression(); 1604 if (!Ops.empty()) { 1605 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1606 // are implicitly pointing out the value as a DWARF memory location 1607 // description. 1608 bool WithStackValue = isa<DbgValueInst>(DII); 1609 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1610 } 1611 DII->setOperand(0, wrapMD(I.getOperand(0))); 1612 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1613 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1614 }; 1615 1616 auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) { 1617 SmallVector<uint64_t, 8> Ops; 1618 DIExpression::appendOffset(Ops, Offset); 1619 doSalvage(DII, Ops); 1620 }; 1621 1622 auto applyOps = [&](DbgVariableIntrinsic *DII, 1623 std::initializer_list<uint64_t> Opcodes) { 1624 SmallVector<uint64_t, 8> Ops(Opcodes); 1625 doSalvage(DII, Ops); 1626 }; 1627 1628 if (auto *CI = dyn_cast<CastInst>(&I)) { 1629 if (!CI->isNoopCast(DL)) 1630 return false; 1631 1632 // No-op casts are irrelevant for debug info. 1633 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1634 for (auto *DII : DbgUsers) { 1635 DII->setOperand(0, CastSrc); 1636 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1637 } 1638 return true; 1639 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1640 unsigned BitWidth = 1641 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1642 // Rewrite a constant GEP into a DIExpression. Since we are performing 1643 // arithmetic to compute the variable's *value* in the DIExpression, we 1644 // need to mark the expression with a DW_OP_stack_value. 1645 APInt Offset(BitWidth, 0); 1646 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1647 for (auto *DII : DbgUsers) 1648 applyOffset(DII, Offset.getSExtValue()); 1649 return true; 1650 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1651 // Rewrite binary operations with constant integer operands. 1652 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1653 if (!ConstInt || ConstInt->getBitWidth() > 64) 1654 return false; 1655 1656 uint64_t Val = ConstInt->getSExtValue(); 1657 for (auto *DII : DbgUsers) { 1658 switch (BI->getOpcode()) { 1659 case Instruction::Add: 1660 applyOffset(DII, Val); 1661 break; 1662 case Instruction::Sub: 1663 applyOffset(DII, -int64_t(Val)); 1664 break; 1665 case Instruction::Mul: 1666 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1667 break; 1668 case Instruction::SDiv: 1669 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1670 break; 1671 case Instruction::SRem: 1672 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1673 break; 1674 case Instruction::Or: 1675 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1676 break; 1677 case Instruction::And: 1678 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1679 break; 1680 case Instruction::Xor: 1681 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1682 break; 1683 case Instruction::Shl: 1684 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1685 break; 1686 case Instruction::LShr: 1687 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1688 break; 1689 case Instruction::AShr: 1690 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1691 break; 1692 default: 1693 // TODO: Salvage constants from each kind of binop we know about. 1694 return false; 1695 } 1696 } 1697 return true; 1698 } else if (isa<LoadInst>(&I)) { 1699 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1700 for (auto *DII : DbgUsers) { 1701 // Rewrite the load into DW_OP_deref. 1702 auto *DIExpr = DII->getExpression(); 1703 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1704 DII->setOperand(0, AddrMD); 1705 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1706 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1707 } 1708 return true; 1709 } 1710 return false; 1711 } 1712 1713 /// A replacement for a dbg.value expression. 1714 using DbgValReplacement = Optional<DIExpression *>; 1715 1716 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1717 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1718 /// changes are made. 1719 static bool rewriteDebugUsers( 1720 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1721 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1722 // Find debug users of From. 1723 SmallVector<DbgVariableIntrinsic *, 1> Users; 1724 findDbgUsers(Users, &From); 1725 if (Users.empty()) 1726 return false; 1727 1728 // Prevent use-before-def of To. 1729 bool Changed = false; 1730 SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; 1731 if (isa<Instruction>(&To)) { 1732 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1733 1734 for (auto *DII : Users) { 1735 // It's common to see a debug user between From and DomPoint. Move it 1736 // after DomPoint to preserve the variable update without any reordering. 1737 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1738 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1739 DII->moveAfter(&DomPoint); 1740 Changed = true; 1741 1742 // Users which otherwise aren't dominated by the replacement value must 1743 // be salvaged or deleted. 1744 } else if (!DT.dominates(&DomPoint, DII)) { 1745 DeleteOrSalvage.insert(DII); 1746 } 1747 } 1748 } 1749 1750 // Update debug users without use-before-def risk. 1751 for (auto *DII : Users) { 1752 if (DeleteOrSalvage.count(DII)) 1753 continue; 1754 1755 LLVMContext &Ctx = DII->getContext(); 1756 DbgValReplacement DVR = RewriteExpr(*DII); 1757 if (!DVR) 1758 continue; 1759 1760 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1761 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1762 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1763 Changed = true; 1764 } 1765 1766 if (!DeleteOrSalvage.empty()) { 1767 // Try to salvage the remaining debug users. 1768 Changed |= salvageDebugInfo(From); 1769 1770 // Delete the debug users which weren't salvaged. 1771 for (auto *DII : DeleteOrSalvage) { 1772 if (DII->getVariableLocation() == &From) { 1773 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1774 DII->eraseFromParent(); 1775 Changed = true; 1776 } 1777 } 1778 } 1779 1780 return Changed; 1781 } 1782 1783 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1784 /// losslessly preserve the bits and semantics of the value. This predicate is 1785 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1786 /// 1787 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1788 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1789 /// and also does not allow lossless pointer <-> integer conversions. 1790 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1791 Type *ToTy) { 1792 // Trivially compatible types. 1793 if (FromTy == ToTy) 1794 return true; 1795 1796 // Handle compatible pointer <-> integer conversions. 1797 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1798 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1799 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1800 !DL.isNonIntegralPointerType(ToTy); 1801 return SameSize && LosslessConversion; 1802 } 1803 1804 // TODO: This is not exhaustive. 1805 return false; 1806 } 1807 1808 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1809 Instruction &DomPoint, DominatorTree &DT) { 1810 // Exit early if From has no debug users. 1811 if (!From.isUsedByMetadata()) 1812 return false; 1813 1814 assert(&From != &To && "Can't replace something with itself"); 1815 1816 Type *FromTy = From.getType(); 1817 Type *ToTy = To.getType(); 1818 1819 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1820 return DII.getExpression(); 1821 }; 1822 1823 // Handle no-op conversions. 1824 Module &M = *From.getModule(); 1825 const DataLayout &DL = M.getDataLayout(); 1826 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1827 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1828 1829 // Handle integer-to-integer widening and narrowing. 1830 // FIXME: Use DW_OP_convert when it's available everywhere. 1831 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1832 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1833 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1834 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1835 1836 // When the width of the result grows, assume that a debugger will only 1837 // access the low `FromBits` bits when inspecting the source variable. 1838 if (FromBits < ToBits) 1839 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1840 1841 // The width of the result has shrunk. Use sign/zero extension to describe 1842 // the source variable's high bits. 1843 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1844 DILocalVariable *Var = DII.getVariable(); 1845 1846 // Without knowing signedness, sign/zero extension isn't possible. 1847 auto Signedness = Var->getSignedness(); 1848 if (!Signedness) 1849 return None; 1850 1851 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1852 1853 if (!Signed) { 1854 // In the unsigned case, assume that a debugger will initialize the 1855 // high bits to 0 and do a no-op conversion. 1856 return Identity(DII); 1857 } else { 1858 // In the signed case, the high bits are given by sign extension, i.e: 1859 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1860 // Calculate the high bits and OR them together with the low bits. 1861 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1862 (ToBits - 1), dwarf::DW_OP_shr, 1863 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1864 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1865 return DIExpression::appendToStack(DII.getExpression(), Ops); 1866 } 1867 }; 1868 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1869 } 1870 1871 // TODO: Floating-point conversions, vectors. 1872 return false; 1873 } 1874 1875 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1876 unsigned NumDeadInst = 0; 1877 // Delete the instructions backwards, as it has a reduced likelihood of 1878 // having to update as many def-use and use-def chains. 1879 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1880 while (EndInst != &BB->front()) { 1881 // Delete the next to last instruction. 1882 Instruction *Inst = &*--EndInst->getIterator(); 1883 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1884 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1885 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1886 EndInst = Inst; 1887 continue; 1888 } 1889 if (!isa<DbgInfoIntrinsic>(Inst)) 1890 ++NumDeadInst; 1891 Inst->eraseFromParent(); 1892 } 1893 return NumDeadInst; 1894 } 1895 1896 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1897 bool PreserveLCSSA, DomTreeUpdater *DTU) { 1898 BasicBlock *BB = I->getParent(); 1899 std::vector <DominatorTree::UpdateType> Updates; 1900 1901 // Loop over all of the successors, removing BB's entry from any PHI 1902 // nodes. 1903 if (DTU) 1904 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1905 for (BasicBlock *Successor : successors(BB)) { 1906 Successor->removePredecessor(BB, PreserveLCSSA); 1907 if (DTU) 1908 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1909 } 1910 // Insert a call to llvm.trap right before this. This turns the undefined 1911 // behavior into a hard fail instead of falling through into random code. 1912 if (UseLLVMTrap) { 1913 Function *TrapFn = 1914 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1915 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1916 CallTrap->setDebugLoc(I->getDebugLoc()); 1917 } 1918 auto *UI = new UnreachableInst(I->getContext(), I); 1919 UI->setDebugLoc(I->getDebugLoc()); 1920 1921 // All instructions after this are dead. 1922 unsigned NumInstrsRemoved = 0; 1923 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1924 while (BBI != BBE) { 1925 if (!BBI->use_empty()) 1926 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1927 BB->getInstList().erase(BBI++); 1928 ++NumInstrsRemoved; 1929 } 1930 if (DTU) 1931 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 1932 return NumInstrsRemoved; 1933 } 1934 1935 /// changeToCall - Convert the specified invoke into a normal call. 1936 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { 1937 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1938 SmallVector<OperandBundleDef, 1> OpBundles; 1939 II->getOperandBundlesAsDefs(OpBundles); 1940 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1941 "", II); 1942 NewCall->takeName(II); 1943 NewCall->setCallingConv(II->getCallingConv()); 1944 NewCall->setAttributes(II->getAttributes()); 1945 NewCall->setDebugLoc(II->getDebugLoc()); 1946 NewCall->copyMetadata(*II); 1947 II->replaceAllUsesWith(NewCall); 1948 1949 // Follow the call by a branch to the normal destination. 1950 BasicBlock *NormalDestBB = II->getNormalDest(); 1951 BranchInst::Create(NormalDestBB, II); 1952 1953 // Update PHI nodes in the unwind destination 1954 BasicBlock *BB = II->getParent(); 1955 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1956 UnwindDestBB->removePredecessor(BB); 1957 II->eraseFromParent(); 1958 if (DTU) 1959 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 1960 } 1961 1962 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1963 BasicBlock *UnwindEdge) { 1964 BasicBlock *BB = CI->getParent(); 1965 1966 // Convert this function call into an invoke instruction. First, split the 1967 // basic block. 1968 BasicBlock *Split = 1969 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1970 1971 // Delete the unconditional branch inserted by splitBasicBlock 1972 BB->getInstList().pop_back(); 1973 1974 // Create the new invoke instruction. 1975 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1976 SmallVector<OperandBundleDef, 1> OpBundles; 1977 1978 CI->getOperandBundlesAsDefs(OpBundles); 1979 1980 // Note: we're round tripping operand bundles through memory here, and that 1981 // can potentially be avoided with a cleverer API design that we do not have 1982 // as of this time. 1983 1984 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1985 InvokeArgs, OpBundles, CI->getName(), BB); 1986 II->setDebugLoc(CI->getDebugLoc()); 1987 II->setCallingConv(CI->getCallingConv()); 1988 II->setAttributes(CI->getAttributes()); 1989 1990 // Make sure that anything using the call now uses the invoke! This also 1991 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1992 CI->replaceAllUsesWith(II); 1993 1994 // Delete the original call 1995 Split->getInstList().pop_front(); 1996 return Split; 1997 } 1998 1999 static bool markAliveBlocks(Function &F, 2000 SmallPtrSetImpl<BasicBlock *> &Reachable, 2001 DomTreeUpdater *DTU = nullptr) { 2002 SmallVector<BasicBlock*, 128> Worklist; 2003 BasicBlock *BB = &F.front(); 2004 Worklist.push_back(BB); 2005 Reachable.insert(BB); 2006 bool Changed = false; 2007 do { 2008 BB = Worklist.pop_back_val(); 2009 2010 // Do a quick scan of the basic block, turning any obviously unreachable 2011 // instructions into LLVM unreachable insts. The instruction combining pass 2012 // canonicalizes unreachable insts into stores to null or undef. 2013 for (Instruction &I : *BB) { 2014 if (auto *CI = dyn_cast<CallInst>(&I)) { 2015 Value *Callee = CI->getCalledValue(); 2016 // Handle intrinsic calls. 2017 if (Function *F = dyn_cast<Function>(Callee)) { 2018 auto IntrinsicID = F->getIntrinsicID(); 2019 // Assumptions that are known to be false are equivalent to 2020 // unreachable. Also, if the condition is undefined, then we make the 2021 // choice most beneficial to the optimizer, and choose that to also be 2022 // unreachable. 2023 if (IntrinsicID == Intrinsic::assume) { 2024 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2025 // Don't insert a call to llvm.trap right before the unreachable. 2026 changeToUnreachable(CI, false, false, DTU); 2027 Changed = true; 2028 break; 2029 } 2030 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2031 // A call to the guard intrinsic bails out of the current 2032 // compilation unit if the predicate passed to it is false. If the 2033 // predicate is a constant false, then we know the guard will bail 2034 // out of the current compile unconditionally, so all code following 2035 // it is dead. 2036 // 2037 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2038 // guards to treat `undef` as `false` since a guard on `undef` can 2039 // still be useful for widening. 2040 if (match(CI->getArgOperand(0), m_Zero())) 2041 if (!isa<UnreachableInst>(CI->getNextNode())) { 2042 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2043 false, DTU); 2044 Changed = true; 2045 break; 2046 } 2047 } 2048 } else if ((isa<ConstantPointerNull>(Callee) && 2049 !NullPointerIsDefined(CI->getFunction())) || 2050 isa<UndefValue>(Callee)) { 2051 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2052 Changed = true; 2053 break; 2054 } 2055 if (CI->doesNotReturn()) { 2056 // If we found a call to a no-return function, insert an unreachable 2057 // instruction after it. Make sure there isn't *already* one there 2058 // though. 2059 if (!isa<UnreachableInst>(CI->getNextNode())) { 2060 // Don't insert a call to llvm.trap right before the unreachable. 2061 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2062 Changed = true; 2063 } 2064 break; 2065 } 2066 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2067 // Store to undef and store to null are undefined and used to signal 2068 // that they should be changed to unreachable by passes that can't 2069 // modify the CFG. 2070 2071 // Don't touch volatile stores. 2072 if (SI->isVolatile()) continue; 2073 2074 Value *Ptr = SI->getOperand(1); 2075 2076 if (isa<UndefValue>(Ptr) || 2077 (isa<ConstantPointerNull>(Ptr) && 2078 !NullPointerIsDefined(SI->getFunction(), 2079 SI->getPointerAddressSpace()))) { 2080 changeToUnreachable(SI, true, false, DTU); 2081 Changed = true; 2082 break; 2083 } 2084 } 2085 } 2086 2087 Instruction *Terminator = BB->getTerminator(); 2088 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2089 // Turn invokes that call 'nounwind' functions into ordinary calls. 2090 Value *Callee = II->getCalledValue(); 2091 if ((isa<ConstantPointerNull>(Callee) && 2092 !NullPointerIsDefined(BB->getParent())) || 2093 isa<UndefValue>(Callee)) { 2094 changeToUnreachable(II, true, false, DTU); 2095 Changed = true; 2096 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2097 if (II->use_empty() && II->onlyReadsMemory()) { 2098 // jump to the normal destination branch. 2099 BasicBlock *NormalDestBB = II->getNormalDest(); 2100 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2101 BranchInst::Create(NormalDestBB, II); 2102 UnwindDestBB->removePredecessor(II->getParent()); 2103 II->eraseFromParent(); 2104 if (DTU) 2105 DTU->deleteEdgeRelaxed(BB, UnwindDestBB); 2106 } else 2107 changeToCall(II, DTU); 2108 Changed = true; 2109 } 2110 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2111 // Remove catchpads which cannot be reached. 2112 struct CatchPadDenseMapInfo { 2113 static CatchPadInst *getEmptyKey() { 2114 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2115 } 2116 2117 static CatchPadInst *getTombstoneKey() { 2118 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2119 } 2120 2121 static unsigned getHashValue(CatchPadInst *CatchPad) { 2122 return static_cast<unsigned>(hash_combine_range( 2123 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2124 } 2125 2126 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2127 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2128 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2129 return LHS == RHS; 2130 return LHS->isIdenticalTo(RHS); 2131 } 2132 }; 2133 2134 // Set of unique CatchPads. 2135 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2136 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2137 HandlerSet; 2138 detail::DenseSetEmpty Empty; 2139 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2140 E = CatchSwitch->handler_end(); 2141 I != E; ++I) { 2142 BasicBlock *HandlerBB = *I; 2143 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2144 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2145 CatchSwitch->removeHandler(I); 2146 --I; 2147 --E; 2148 Changed = true; 2149 } 2150 } 2151 } 2152 2153 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2154 for (BasicBlock *Successor : successors(BB)) 2155 if (Reachable.insert(Successor).second) 2156 Worklist.push_back(Successor); 2157 } while (!Worklist.empty()); 2158 return Changed; 2159 } 2160 2161 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2162 Instruction *TI = BB->getTerminator(); 2163 2164 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2165 changeToCall(II, DTU); 2166 return; 2167 } 2168 2169 Instruction *NewTI; 2170 BasicBlock *UnwindDest; 2171 2172 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2173 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2174 UnwindDest = CRI->getUnwindDest(); 2175 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2176 auto *NewCatchSwitch = CatchSwitchInst::Create( 2177 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2178 CatchSwitch->getName(), CatchSwitch); 2179 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2180 NewCatchSwitch->addHandler(PadBB); 2181 2182 NewTI = NewCatchSwitch; 2183 UnwindDest = CatchSwitch->getUnwindDest(); 2184 } else { 2185 llvm_unreachable("Could not find unwind successor"); 2186 } 2187 2188 NewTI->takeName(TI); 2189 NewTI->setDebugLoc(TI->getDebugLoc()); 2190 UnwindDest->removePredecessor(BB); 2191 TI->replaceAllUsesWith(NewTI); 2192 TI->eraseFromParent(); 2193 if (DTU) 2194 DTU->deleteEdgeRelaxed(BB, UnwindDest); 2195 } 2196 2197 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2198 /// if they are in a dead cycle. Return true if a change was made, false 2199 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2200 /// after modifying the CFG. 2201 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2202 DomTreeUpdater *DTU, 2203 MemorySSAUpdater *MSSAU) { 2204 SmallPtrSet<BasicBlock*, 16> Reachable; 2205 bool Changed = markAliveBlocks(F, Reachable, DTU); 2206 2207 // If there are unreachable blocks in the CFG... 2208 if (Reachable.size() == F.size()) 2209 return Changed; 2210 2211 assert(Reachable.size() < F.size()); 2212 NumRemoved += F.size()-Reachable.size(); 2213 2214 SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 2215 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2216 auto *BB = &*I; 2217 if (Reachable.count(BB)) 2218 continue; 2219 DeadBlockSet.insert(BB); 2220 } 2221 2222 if (MSSAU) 2223 MSSAU->removeBlocks(DeadBlockSet); 2224 2225 // Loop over all of the basic blocks that are not reachable, dropping all of 2226 // their internal references. Update DTU and LVI if available. 2227 std::vector<DominatorTree::UpdateType> Updates; 2228 for (auto *BB : DeadBlockSet) { 2229 for (BasicBlock *Successor : successors(BB)) { 2230 if (!DeadBlockSet.count(Successor)) 2231 Successor->removePredecessor(BB); 2232 if (DTU) 2233 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2234 } 2235 if (LVI) 2236 LVI->eraseBlock(BB); 2237 BB->dropAllReferences(); 2238 } 2239 for (Function::iterator I = ++F.begin(); I != F.end();) { 2240 auto *BB = &*I; 2241 if (Reachable.count(BB)) { 2242 ++I; 2243 continue; 2244 } 2245 if (DTU) { 2246 // Remove the terminator of BB to clear the successor list of BB. 2247 if (BB->getTerminator()) 2248 BB->getInstList().pop_back(); 2249 new UnreachableInst(BB->getContext(), BB); 2250 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2251 "applying corresponding DTU updates."); 2252 ++I; 2253 } else { 2254 I = F.getBasicBlockList().erase(I); 2255 } 2256 } 2257 2258 if (DTU) { 2259 DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); 2260 bool Deleted = false; 2261 for (auto *BB : DeadBlockSet) { 2262 if (DTU->isBBPendingDeletion(BB)) 2263 --NumRemoved; 2264 else 2265 Deleted = true; 2266 DTU->deleteBB(BB); 2267 } 2268 if (!Deleted) 2269 return false; 2270 } 2271 return true; 2272 } 2273 2274 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2275 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2276 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2277 K->dropUnknownNonDebugMetadata(KnownIDs); 2278 K->getAllMetadataOtherThanDebugLoc(Metadata); 2279 for (const auto &MD : Metadata) { 2280 unsigned Kind = MD.first; 2281 MDNode *JMD = J->getMetadata(Kind); 2282 MDNode *KMD = MD.second; 2283 2284 switch (Kind) { 2285 default: 2286 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2287 break; 2288 case LLVMContext::MD_dbg: 2289 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2290 case LLVMContext::MD_tbaa: 2291 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2292 break; 2293 case LLVMContext::MD_alias_scope: 2294 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2295 break; 2296 case LLVMContext::MD_noalias: 2297 case LLVMContext::MD_mem_parallel_loop_access: 2298 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2299 break; 2300 case LLVMContext::MD_range: 2301 2302 // If K does move, use most generic range. Otherwise keep the range of 2303 // K. 2304 if (DoesKMove) 2305 // FIXME: If K does move, we should drop the range info and nonnull. 2306 // Currently this function is used with DoesKMove in passes 2307 // doing hoisting/sinking and the current behavior of using the 2308 // most generic range is correct in those cases. 2309 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2310 break; 2311 case LLVMContext::MD_fpmath: 2312 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2313 break; 2314 case LLVMContext::MD_invariant_load: 2315 // Only set the !invariant.load if it is present in both instructions. 2316 K->setMetadata(Kind, JMD); 2317 break; 2318 case LLVMContext::MD_nonnull: 2319 // If K does move, keep nonull if it is present in both instructions. 2320 if (DoesKMove) 2321 K->setMetadata(Kind, JMD); 2322 break; 2323 case LLVMContext::MD_invariant_group: 2324 // Preserve !invariant.group in K. 2325 break; 2326 case LLVMContext::MD_align: 2327 K->setMetadata(Kind, 2328 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2329 break; 2330 case LLVMContext::MD_dereferenceable: 2331 case LLVMContext::MD_dereferenceable_or_null: 2332 K->setMetadata(Kind, 2333 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2334 break; 2335 } 2336 } 2337 // Set !invariant.group from J if J has it. If both instructions have it 2338 // then we will just pick it from J - even when they are different. 2339 // Also make sure that K is load or store - f.e. combining bitcast with load 2340 // could produce bitcast with invariant.group metadata, which is invalid. 2341 // FIXME: we should try to preserve both invariant.group md if they are 2342 // different, but right now instruction can only have one invariant.group. 2343 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2344 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2345 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2346 } 2347 2348 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2349 bool KDominatesJ) { 2350 unsigned KnownIDs[] = { 2351 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2352 LLVMContext::MD_noalias, LLVMContext::MD_range, 2353 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2354 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2355 LLVMContext::MD_dereferenceable, 2356 LLVMContext::MD_dereferenceable_or_null}; 2357 combineMetadata(K, J, KnownIDs, KDominatesJ); 2358 } 2359 2360 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2361 auto *ReplInst = dyn_cast<Instruction>(Repl); 2362 if (!ReplInst) 2363 return; 2364 2365 // Patch the replacement so that it is not more restrictive than the value 2366 // being replaced. 2367 // Note that if 'I' is a load being replaced by some operation, 2368 // for example, by an arithmetic operation, then andIRFlags() 2369 // would just erase all math flags from the original arithmetic 2370 // operation, which is clearly not wanted and not needed. 2371 if (!isa<LoadInst>(I)) 2372 ReplInst->andIRFlags(I); 2373 2374 // FIXME: If both the original and replacement value are part of the 2375 // same control-flow region (meaning that the execution of one 2376 // guarantees the execution of the other), then we can combine the 2377 // noalias scopes here and do better than the general conservative 2378 // answer used in combineMetadata(). 2379 2380 // In general, GVN unifies expressions over different control-flow 2381 // regions, and so we need a conservative combination of the noalias 2382 // scopes. 2383 static const unsigned KnownIDs[] = { 2384 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2385 LLVMContext::MD_noalias, LLVMContext::MD_range, 2386 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2387 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull}; 2388 combineMetadata(ReplInst, I, KnownIDs, false); 2389 } 2390 2391 template <typename RootType, typename DominatesFn> 2392 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2393 const RootType &Root, 2394 const DominatesFn &Dominates) { 2395 assert(From->getType() == To->getType()); 2396 2397 unsigned Count = 0; 2398 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2399 UI != UE;) { 2400 Use &U = *UI++; 2401 if (!Dominates(Root, U)) 2402 continue; 2403 U.set(To); 2404 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2405 << "' as " << *To << " in " << *U << "\n"); 2406 ++Count; 2407 } 2408 return Count; 2409 } 2410 2411 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2412 assert(From->getType() == To->getType()); 2413 auto *BB = From->getParent(); 2414 unsigned Count = 0; 2415 2416 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2417 UI != UE;) { 2418 Use &U = *UI++; 2419 auto *I = cast<Instruction>(U.getUser()); 2420 if (I->getParent() == BB) 2421 continue; 2422 U.set(To); 2423 ++Count; 2424 } 2425 return Count; 2426 } 2427 2428 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2429 DominatorTree &DT, 2430 const BasicBlockEdge &Root) { 2431 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2432 return DT.dominates(Root, U); 2433 }; 2434 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2435 } 2436 2437 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2438 DominatorTree &DT, 2439 const BasicBlock *BB) { 2440 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2441 auto *I = cast<Instruction>(U.getUser())->getParent(); 2442 return DT.properlyDominates(BB, I); 2443 }; 2444 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2445 } 2446 2447 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2448 const TargetLibraryInfo &TLI) { 2449 // Check if the function is specifically marked as a gc leaf function. 2450 if (CS.hasFnAttr("gc-leaf-function")) 2451 return true; 2452 if (const Function *F = CS.getCalledFunction()) { 2453 if (F->hasFnAttribute("gc-leaf-function")) 2454 return true; 2455 2456 if (auto IID = F->getIntrinsicID()) 2457 // Most LLVM intrinsics do not take safepoints. 2458 return IID != Intrinsic::experimental_gc_statepoint && 2459 IID != Intrinsic::experimental_deoptimize; 2460 } 2461 2462 // Lib calls can be materialized by some passes, and won't be 2463 // marked as 'gc-leaf-function.' All available Libcalls are 2464 // GC-leaf. 2465 LibFunc LF; 2466 if (TLI.getLibFunc(CS, LF)) { 2467 return TLI.has(LF); 2468 } 2469 2470 return false; 2471 } 2472 2473 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2474 LoadInst &NewLI) { 2475 auto *NewTy = NewLI.getType(); 2476 2477 // This only directly applies if the new type is also a pointer. 2478 if (NewTy->isPointerTy()) { 2479 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2480 return; 2481 } 2482 2483 // The only other translation we can do is to integral loads with !range 2484 // metadata. 2485 if (!NewTy->isIntegerTy()) 2486 return; 2487 2488 MDBuilder MDB(NewLI.getContext()); 2489 const Value *Ptr = OldLI.getPointerOperand(); 2490 auto *ITy = cast<IntegerType>(NewTy); 2491 auto *NullInt = ConstantExpr::getPtrToInt( 2492 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2493 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2494 NewLI.setMetadata(LLVMContext::MD_range, 2495 MDB.createRange(NonNullInt, NullInt)); 2496 } 2497 2498 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2499 MDNode *N, LoadInst &NewLI) { 2500 auto *NewTy = NewLI.getType(); 2501 2502 // Give up unless it is converted to a pointer where there is a single very 2503 // valuable mapping we can do reliably. 2504 // FIXME: It would be nice to propagate this in more ways, but the type 2505 // conversions make it hard. 2506 if (!NewTy->isPointerTy()) 2507 return; 2508 2509 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2510 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2511 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2512 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2513 } 2514 } 2515 2516 void llvm::dropDebugUsers(Instruction &I) { 2517 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2518 findDbgUsers(DbgUsers, &I); 2519 for (auto *DII : DbgUsers) 2520 DII->eraseFromParent(); 2521 } 2522 2523 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2524 BasicBlock *BB) { 2525 // Since we are moving the instructions out of its basic block, we do not 2526 // retain their original debug locations (DILocations) and debug intrinsic 2527 // instructions (dbg.values). 2528 // 2529 // Doing so would degrade the debugging experience and adversely affect the 2530 // accuracy of profiling information. 2531 // 2532 // Currently, when hoisting the instructions, we take the following actions: 2533 // - Remove their dbg.values. 2534 // - Set their debug locations to the values from the insertion point. 2535 // 2536 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2537 // need to be deleted, is because there will not be any instructions with a 2538 // DILocation in either branch left after performing the transformation. We 2539 // can only insert a dbg.value after the two branches are joined again. 2540 // 2541 // See PR38762, PR39243 for more details. 2542 // 2543 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2544 // encode predicated DIExpressions that yield different results on different 2545 // code paths. 2546 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2547 Instruction *I = &*II; 2548 I->dropUnknownNonDebugMetadata(); 2549 if (I->isUsedByMetadata()) 2550 dropDebugUsers(*I); 2551 if (isa<DbgVariableIntrinsic>(I)) { 2552 // Remove DbgInfo Intrinsics. 2553 II = I->eraseFromParent(); 2554 continue; 2555 } 2556 I->setDebugLoc(InsertPt->getDebugLoc()); 2557 ++II; 2558 } 2559 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2560 BB->begin(), 2561 BB->getTerminator()->getIterator()); 2562 } 2563 2564 namespace { 2565 2566 /// A potential constituent of a bitreverse or bswap expression. See 2567 /// collectBitParts for a fuller explanation. 2568 struct BitPart { 2569 BitPart(Value *P, unsigned BW) : Provider(P) { 2570 Provenance.resize(BW); 2571 } 2572 2573 /// The Value that this is a bitreverse/bswap of. 2574 Value *Provider; 2575 2576 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2577 /// in Provider becomes bit B in the result of this expression. 2578 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2579 2580 enum { Unset = -1 }; 2581 }; 2582 2583 } // end anonymous namespace 2584 2585 /// Analyze the specified subexpression and see if it is capable of providing 2586 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2587 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2588 /// the output of the expression came from a corresponding bit in some other 2589 /// value. This function is recursive, and the end result is a mapping of 2590 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2591 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2592 /// 2593 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2594 /// that the expression deposits the low byte of %X into the high byte of the 2595 /// result and that all other bits are zero. This expression is accepted and a 2596 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2597 /// [0-7]. 2598 /// 2599 /// To avoid revisiting values, the BitPart results are memoized into the 2600 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2601 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2602 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2603 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2604 /// type instead to provide the same functionality. 2605 /// 2606 /// Because we pass around references into \c BPS, we must use a container that 2607 /// does not invalidate internal references (std::map instead of DenseMap). 2608 static const Optional<BitPart> & 2609 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2610 std::map<Value *, Optional<BitPart>> &BPS) { 2611 auto I = BPS.find(V); 2612 if (I != BPS.end()) 2613 return I->second; 2614 2615 auto &Result = BPS[V] = None; 2616 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2617 2618 if (Instruction *I = dyn_cast<Instruction>(V)) { 2619 // If this is an or instruction, it may be an inner node of the bswap. 2620 if (I->getOpcode() == Instruction::Or) { 2621 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2622 MatchBitReversals, BPS); 2623 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2624 MatchBitReversals, BPS); 2625 if (!A || !B) 2626 return Result; 2627 2628 // Try and merge the two together. 2629 if (!A->Provider || A->Provider != B->Provider) 2630 return Result; 2631 2632 Result = BitPart(A->Provider, BitWidth); 2633 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2634 if (A->Provenance[i] != BitPart::Unset && 2635 B->Provenance[i] != BitPart::Unset && 2636 A->Provenance[i] != B->Provenance[i]) 2637 return Result = None; 2638 2639 if (A->Provenance[i] == BitPart::Unset) 2640 Result->Provenance[i] = B->Provenance[i]; 2641 else 2642 Result->Provenance[i] = A->Provenance[i]; 2643 } 2644 2645 return Result; 2646 } 2647 2648 // If this is a logical shift by a constant, recurse then shift the result. 2649 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2650 unsigned BitShift = 2651 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2652 // Ensure the shift amount is defined. 2653 if (BitShift > BitWidth) 2654 return Result; 2655 2656 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2657 MatchBitReversals, BPS); 2658 if (!Res) 2659 return Result; 2660 Result = Res; 2661 2662 // Perform the "shift" on BitProvenance. 2663 auto &P = Result->Provenance; 2664 if (I->getOpcode() == Instruction::Shl) { 2665 P.erase(std::prev(P.end(), BitShift), P.end()); 2666 P.insert(P.begin(), BitShift, BitPart::Unset); 2667 } else { 2668 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2669 P.insert(P.end(), BitShift, BitPart::Unset); 2670 } 2671 2672 return Result; 2673 } 2674 2675 // If this is a logical 'and' with a mask that clears bits, recurse then 2676 // unset the appropriate bits. 2677 if (I->getOpcode() == Instruction::And && 2678 isa<ConstantInt>(I->getOperand(1))) { 2679 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2680 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2681 2682 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2683 // early exit. 2684 unsigned NumMaskedBits = AndMask.countPopulation(); 2685 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2686 return Result; 2687 2688 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2689 MatchBitReversals, BPS); 2690 if (!Res) 2691 return Result; 2692 Result = Res; 2693 2694 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2695 // If the AndMask is zero for this bit, clear the bit. 2696 if ((AndMask & Bit) == 0) 2697 Result->Provenance[i] = BitPart::Unset; 2698 return Result; 2699 } 2700 2701 // If this is a zext instruction zero extend the result. 2702 if (I->getOpcode() == Instruction::ZExt) { 2703 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2704 MatchBitReversals, BPS); 2705 if (!Res) 2706 return Result; 2707 2708 Result = BitPart(Res->Provider, BitWidth); 2709 auto NarrowBitWidth = 2710 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2711 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2712 Result->Provenance[i] = Res->Provenance[i]; 2713 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2714 Result->Provenance[i] = BitPart::Unset; 2715 return Result; 2716 } 2717 } 2718 2719 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2720 // the input value to the bswap/bitreverse. 2721 Result = BitPart(V, BitWidth); 2722 for (unsigned i = 0; i < BitWidth; ++i) 2723 Result->Provenance[i] = i; 2724 return Result; 2725 } 2726 2727 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2728 unsigned BitWidth) { 2729 if (From % 8 != To % 8) 2730 return false; 2731 // Convert from bit indices to byte indices and check for a byte reversal. 2732 From >>= 3; 2733 To >>= 3; 2734 BitWidth >>= 3; 2735 return From == BitWidth - To - 1; 2736 } 2737 2738 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2739 unsigned BitWidth) { 2740 return From == BitWidth - To - 1; 2741 } 2742 2743 bool llvm::recognizeBSwapOrBitReverseIdiom( 2744 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2745 SmallVectorImpl<Instruction *> &InsertedInsts) { 2746 if (Operator::getOpcode(I) != Instruction::Or) 2747 return false; 2748 if (!MatchBSwaps && !MatchBitReversals) 2749 return false; 2750 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2751 if (!ITy || ITy->getBitWidth() > 128) 2752 return false; // Can't do vectors or integers > 128 bits. 2753 unsigned BW = ITy->getBitWidth(); 2754 2755 unsigned DemandedBW = BW; 2756 IntegerType *DemandedTy = ITy; 2757 if (I->hasOneUse()) { 2758 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2759 DemandedTy = cast<IntegerType>(Trunc->getType()); 2760 DemandedBW = DemandedTy->getBitWidth(); 2761 } 2762 } 2763 2764 // Try to find all the pieces corresponding to the bswap. 2765 std::map<Value *, Optional<BitPart>> BPS; 2766 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2767 if (!Res) 2768 return false; 2769 auto &BitProvenance = Res->Provenance; 2770 2771 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2772 // only byteswap values with an even number of bytes. 2773 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2774 for (unsigned i = 0; i < DemandedBW; ++i) { 2775 OKForBSwap &= 2776 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2777 OKForBitReverse &= 2778 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2779 } 2780 2781 Intrinsic::ID Intrin; 2782 if (OKForBSwap && MatchBSwaps) 2783 Intrin = Intrinsic::bswap; 2784 else if (OKForBitReverse && MatchBitReversals) 2785 Intrin = Intrinsic::bitreverse; 2786 else 2787 return false; 2788 2789 if (ITy != DemandedTy) { 2790 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2791 Value *Provider = Res->Provider; 2792 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2793 // We may need to truncate the provider. 2794 if (DemandedTy != ProviderTy) { 2795 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2796 "trunc", I); 2797 InsertedInsts.push_back(Trunc); 2798 Provider = Trunc; 2799 } 2800 auto *CI = CallInst::Create(F, Provider, "rev", I); 2801 InsertedInsts.push_back(CI); 2802 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2803 InsertedInsts.push_back(ExtInst); 2804 return true; 2805 } 2806 2807 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2808 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2809 return true; 2810 } 2811 2812 // CodeGen has special handling for some string functions that may replace 2813 // them with target-specific intrinsics. Since that'd skip our interceptors 2814 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2815 // we mark affected calls as NoBuiltin, which will disable optimization 2816 // in CodeGen. 2817 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2818 CallInst *CI, const TargetLibraryInfo *TLI) { 2819 Function *F = CI->getCalledFunction(); 2820 LibFunc Func; 2821 if (F && !F->hasLocalLinkage() && F->hasName() && 2822 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2823 !F->doesNotAccessMemory()) 2824 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2825 } 2826 2827 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2828 // We can't have a PHI with a metadata type. 2829 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2830 return false; 2831 2832 // Early exit. 2833 if (!isa<Constant>(I->getOperand(OpIdx))) 2834 return true; 2835 2836 switch (I->getOpcode()) { 2837 default: 2838 return true; 2839 case Instruction::Call: 2840 case Instruction::Invoke: 2841 // Can't handle inline asm. Skip it. 2842 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2843 return false; 2844 // Many arithmetic intrinsics have no issue taking a 2845 // variable, however it's hard to distingish these from 2846 // specials such as @llvm.frameaddress that require a constant. 2847 if (isa<IntrinsicInst>(I)) 2848 return false; 2849 2850 // Constant bundle operands may need to retain their constant-ness for 2851 // correctness. 2852 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2853 return false; 2854 return true; 2855 case Instruction::ShuffleVector: 2856 // Shufflevector masks are constant. 2857 return OpIdx != 2; 2858 case Instruction::Switch: 2859 case Instruction::ExtractValue: 2860 // All operands apart from the first are constant. 2861 return OpIdx == 0; 2862 case Instruction::InsertValue: 2863 // All operands apart from the first and the second are constant. 2864 return OpIdx < 2; 2865 case Instruction::Alloca: 2866 // Static allocas (constant size in the entry block) are handled by 2867 // prologue/epilogue insertion so they're free anyway. We definitely don't 2868 // want to make them non-constant. 2869 return !cast<AllocaInst>(I)->isStaticAlloca(); 2870 case Instruction::GetElementPtr: 2871 if (OpIdx == 0) 2872 return true; 2873 gep_type_iterator It = gep_type_begin(I); 2874 for (auto E = std::next(It, OpIdx); It != E; ++It) 2875 if (It.isStruct()) 2876 return false; 2877 return true; 2878 } 2879 } 2880