1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 92 93 static cl::opt<bool> PHICSEDebugHash( 94 "phicse-debug-hash", 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true), 97 #else 98 cl::init(false), 99 #endif 100 cl::Hidden, 101 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 102 "function is well-behaved w.r.t. its isEqual predicate")); 103 104 static cl::opt<unsigned> PHICSENumPHISmallSize( 105 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 106 cl::desc( 107 "When the basic block contains not more than this number of PHI nodes, " 108 "perform a (faster!) exhaustive search instead of set-driven one.")); 109 110 // Max recursion depth for collectBitParts used when detecting bswap and 111 // bitreverse idioms. 112 static const unsigned BitPartRecursionMaxDepth = 48; 113 114 //===----------------------------------------------------------------------===// 115 // Local constant propagation. 116 // 117 118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 119 /// constant value, convert it into an unconditional branch to the constant 120 /// destination. This is a nontrivial operation because the successors of this 121 /// basic block must have their PHI nodes updated. 122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 123 /// conditions and indirectbr addresses this might make dead if 124 /// DeleteDeadConditions is true. 125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 126 const TargetLibraryInfo *TLI, 127 DomTreeUpdater *DTU) { 128 Instruction *T = BB->getTerminator(); 129 IRBuilder<> Builder(T); 130 131 // Branch - See if we are conditional jumping on constant 132 if (auto *BI = dyn_cast<BranchInst>(T)) { 133 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 134 135 BasicBlock *Dest1 = BI->getSuccessor(0); 136 BasicBlock *Dest2 = BI->getSuccessor(1); 137 138 if (Dest2 == Dest1) { // Conditional branch to same location? 139 // This branch matches something like this: 140 // br bool %cond, label %Dest, label %Dest 141 // and changes it into: br label %Dest 142 143 // Let the basic block know that we are letting go of one copy of it. 144 assert(BI->getParent() && "Terminator not inserted in block!"); 145 Dest1->removePredecessor(BI->getParent()); 146 147 // Replace the conditional branch with an unconditional one. 148 BranchInst *NewBI = Builder.CreateBr(Dest1); 149 150 // Transfer the metadata to the new branch instruction. 151 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 152 LLVMContext::MD_annotation}); 153 154 Value *Cond = BI->getCondition(); 155 BI->eraseFromParent(); 156 if (DeleteDeadConditions) 157 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 158 return true; 159 } 160 161 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 162 // Are we branching on constant? 163 // YES. Change to unconditional branch... 164 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 165 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 166 167 // Let the basic block know that we are letting go of it. Based on this, 168 // it will adjust it's PHI nodes. 169 OldDest->removePredecessor(BB); 170 171 // Replace the conditional branch with an unconditional one. 172 BranchInst *NewBI = Builder.CreateBr(Destination); 173 174 // Transfer the metadata to the new branch instruction. 175 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 176 LLVMContext::MD_annotation}); 177 178 BI->eraseFromParent(); 179 if (DTU) 180 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 181 return true; 182 } 183 184 return false; 185 } 186 187 if (auto *SI = dyn_cast<SwitchInst>(T)) { 188 // If we are switching on a constant, we can convert the switch to an 189 // unconditional branch. 190 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 191 BasicBlock *DefaultDest = SI->getDefaultDest(); 192 BasicBlock *TheOnlyDest = DefaultDest; 193 194 // If the default is unreachable, ignore it when searching for TheOnlyDest. 195 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 196 SI->getNumCases() > 0) { 197 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 198 } 199 200 bool Changed = false; 201 202 // Figure out which case it goes to. 203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 204 // Found case matching a constant operand? 205 if (i->getCaseValue() == CI) { 206 TheOnlyDest = i->getCaseSuccessor(); 207 break; 208 } 209 210 // Check to see if this branch is going to the same place as the default 211 // dest. If so, eliminate it as an explicit compare. 212 if (i->getCaseSuccessor() == DefaultDest) { 213 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 214 unsigned NCases = SI->getNumCases(); 215 // Fold the case metadata into the default if there will be any branches 216 // left, unless the metadata doesn't match the switch. 217 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 218 // Collect branch weights into a vector. 219 SmallVector<uint32_t, 8> Weights; 220 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 221 ++MD_i) { 222 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 223 Weights.push_back(CI->getValue().getZExtValue()); 224 } 225 // Merge weight of this case to the default weight. 226 unsigned idx = i->getCaseIndex(); 227 Weights[0] += Weights[idx+1]; 228 // Remove weight for this case. 229 std::swap(Weights[idx+1], Weights.back()); 230 Weights.pop_back(); 231 SI->setMetadata(LLVMContext::MD_prof, 232 MDBuilder(BB->getContext()). 233 createBranchWeights(Weights)); 234 } 235 // Remove this entry. 236 BasicBlock *ParentBB = SI->getParent(); 237 DefaultDest->removePredecessor(ParentBB); 238 i = SI->removeCase(i); 239 e = SI->case_end(); 240 Changed = true; 241 continue; 242 } 243 244 // Otherwise, check to see if the switch only branches to one destination. 245 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 246 // destinations. 247 if (i->getCaseSuccessor() != TheOnlyDest) 248 TheOnlyDest = nullptr; 249 250 // Increment this iterator as we haven't removed the case. 251 ++i; 252 } 253 254 if (CI && !TheOnlyDest) { 255 // Branching on a constant, but not any of the cases, go to the default 256 // successor. 257 TheOnlyDest = SI->getDefaultDest(); 258 } 259 260 // If we found a single destination that we can fold the switch into, do so 261 // now. 262 if (TheOnlyDest) { 263 // Insert the new branch. 264 Builder.CreateBr(TheOnlyDest); 265 BasicBlock *BB = SI->getParent(); 266 267 SmallSet<BasicBlock *, 8> RemovedSuccessors; 268 269 // Remove entries from PHI nodes which we no longer branch to... 270 BasicBlock *SuccToKeep = TheOnlyDest; 271 for (BasicBlock *Succ : successors(SI)) { 272 if (DTU && Succ != TheOnlyDest) 273 RemovedSuccessors.insert(Succ); 274 // Found case matching a constant operand? 275 if (Succ == SuccToKeep) { 276 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 277 } else { 278 Succ->removePredecessor(BB); 279 } 280 } 281 282 // Delete the old switch. 283 Value *Cond = SI->getCondition(); 284 SI->eraseFromParent(); 285 if (DeleteDeadConditions) 286 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 287 if (DTU) { 288 std::vector<DominatorTree::UpdateType> Updates; 289 Updates.reserve(RemovedSuccessors.size()); 290 for (auto *RemovedSuccessor : RemovedSuccessors) 291 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 292 DTU->applyUpdates(Updates); 293 } 294 return true; 295 } 296 297 if (SI->getNumCases() == 1) { 298 // Otherwise, we can fold this switch into a conditional branch 299 // instruction if it has only one non-default destination. 300 auto FirstCase = *SI->case_begin(); 301 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 302 FirstCase.getCaseValue(), "cond"); 303 304 // Insert the new branch. 305 BranchInst *NewBr = Builder.CreateCondBr(Cond, 306 FirstCase.getCaseSuccessor(), 307 SI->getDefaultDest()); 308 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 309 if (MD && MD->getNumOperands() == 3) { 310 ConstantInt *SICase = 311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 312 ConstantInt *SIDef = 313 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 314 assert(SICase && SIDef); 315 // The TrueWeight should be the weight for the single case of SI. 316 NewBr->setMetadata(LLVMContext::MD_prof, 317 MDBuilder(BB->getContext()). 318 createBranchWeights(SICase->getValue().getZExtValue(), 319 SIDef->getValue().getZExtValue())); 320 } 321 322 // Update make.implicit metadata to the newly-created conditional branch. 323 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 324 if (MakeImplicitMD) 325 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 326 327 // Delete the old switch. 328 SI->eraseFromParent(); 329 return true; 330 } 331 return Changed; 332 } 333 334 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 335 // indirectbr blockaddress(@F, @BB) -> br label @BB 336 if (auto *BA = 337 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 338 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 339 SmallSet<BasicBlock *, 8> RemovedSuccessors; 340 341 // Insert the new branch. 342 Builder.CreateBr(TheOnlyDest); 343 344 BasicBlock *SuccToKeep = TheOnlyDest; 345 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 346 BasicBlock *DestBB = IBI->getDestination(i); 347 if (DTU && DestBB != TheOnlyDest) 348 RemovedSuccessors.insert(DestBB); 349 if (IBI->getDestination(i) == SuccToKeep) { 350 SuccToKeep = nullptr; 351 } else { 352 DestBB->removePredecessor(BB); 353 } 354 } 355 Value *Address = IBI->getAddress(); 356 IBI->eraseFromParent(); 357 if (DeleteDeadConditions) 358 // Delete pointer cast instructions. 359 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 360 361 // Also zap the blockaddress constant if there are no users remaining, 362 // otherwise the destination is still marked as having its address taken. 363 if (BA->use_empty()) 364 BA->destroyConstant(); 365 366 // If we didn't find our destination in the IBI successor list, then we 367 // have undefined behavior. Replace the unconditional branch with an 368 // 'unreachable' instruction. 369 if (SuccToKeep) { 370 BB->getTerminator()->eraseFromParent(); 371 new UnreachableInst(BB->getContext(), BB); 372 } 373 374 if (DTU) { 375 std::vector<DominatorTree::UpdateType> Updates; 376 Updates.reserve(RemovedSuccessors.size()); 377 for (auto *RemovedSuccessor : RemovedSuccessors) 378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 379 DTU->applyUpdates(Updates); 380 } 381 return true; 382 } 383 } 384 385 return false; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Local dead code elimination. 390 // 391 392 /// isInstructionTriviallyDead - Return true if the result produced by the 393 /// instruction is not used, and the instruction has no side effects. 394 /// 395 bool llvm::isInstructionTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (!I->use_empty()) 398 return false; 399 return wouldInstructionBeTriviallyDead(I, TLI); 400 } 401 402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 403 Instruction *I, const TargetLibraryInfo *TLI) { 404 // Instructions that are "markers" and have implied meaning on code around 405 // them (without explicit uses), are not dead on unused paths. 406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 407 if (II->getIntrinsicID() == Intrinsic::stacksave || 408 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 409 II->isLifetimeStartOrEnd()) 410 return false; 411 return wouldInstructionBeTriviallyDead(I, TLI); 412 } 413 414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 415 const TargetLibraryInfo *TLI) { 416 if (I->isTerminator()) 417 return false; 418 419 // We don't want the landingpad-like instructions removed by anything this 420 // general. 421 if (I->isEHPad()) 422 return false; 423 424 // We don't want debug info removed by anything this general, unless 425 // debug info is empty. 426 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 427 if (DDI->getAddress()) 428 return false; 429 return true; 430 } 431 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 432 if (DVI->hasArgList() || DVI->getValue(0)) 433 return false; 434 return true; 435 } 436 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 437 if (DLI->getLabel()) 438 return false; 439 return true; 440 } 441 442 if (!I->willReturn()) 443 return false; 444 445 if (!I->mayHaveSideEffects()) 446 return true; 447 448 // Special case intrinsics that "may have side effects" but can be deleted 449 // when dead. 450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 451 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 452 if (II->getIntrinsicID() == Intrinsic::stacksave || 453 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 454 return true; 455 456 if (II->isLifetimeStartOrEnd()) { 457 auto *Arg = II->getArgOperand(1); 458 // Lifetime intrinsics are dead when their right-hand is undef. 459 if (isa<UndefValue>(Arg)) 460 return true; 461 // If the right-hand is an alloc, global, or argument and the only uses 462 // are lifetime intrinsics then the intrinsics are dead. 463 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 464 return llvm::all_of(Arg->uses(), [](Use &Use) { 465 if (IntrinsicInst *IntrinsicUse = 466 dyn_cast<IntrinsicInst>(Use.getUser())) 467 return IntrinsicUse->isLifetimeStartOrEnd(); 468 return false; 469 }); 470 return false; 471 } 472 473 // Assumptions are dead if their condition is trivially true. Guards on 474 // true are operationally no-ops. In the future we can consider more 475 // sophisticated tradeoffs for guards considering potential for check 476 // widening, but for now we keep things simple. 477 if ((II->getIntrinsicID() == Intrinsic::assume && 478 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 479 II->getIntrinsicID() == Intrinsic::experimental_guard) { 480 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 481 return !Cond->isZero(); 482 483 return false; 484 } 485 486 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 487 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 488 return ExBehavior.getValue() != fp::ebStrict; 489 } 490 } 491 492 if (isAllocationFn(I, TLI) && isAllocRemovable(cast<CallBase>(I), TLI)) 493 return true; 494 495 if (CallInst *CI = isFreeCall(I, TLI)) 496 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 497 return C->isNullValue() || isa<UndefValue>(C); 498 499 if (auto *Call = dyn_cast<CallBase>(I)) 500 if (isMathLibCallNoop(Call, TLI)) 501 return true; 502 503 // To express possible interaction with floating point environment constrained 504 // intrinsics are described as if they access memory. So they look like having 505 // side effect but actually do not have it unless they raise floating point 506 // exception. If FP exceptions are ignored, the intrinsic may be deleted. 507 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 508 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 509 if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) 510 return true; 511 } 512 513 return false; 514 } 515 516 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 517 /// trivially dead instruction, delete it. If that makes any of its operands 518 /// trivially dead, delete them too, recursively. Return true if any 519 /// instructions were deleted. 520 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 521 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 522 std::function<void(Value *)> AboutToDeleteCallback) { 523 Instruction *I = dyn_cast<Instruction>(V); 524 if (!I || !isInstructionTriviallyDead(I, TLI)) 525 return false; 526 527 SmallVector<WeakTrackingVH, 16> DeadInsts; 528 DeadInsts.push_back(I); 529 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 530 AboutToDeleteCallback); 531 532 return true; 533 } 534 535 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 536 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 537 MemorySSAUpdater *MSSAU, 538 std::function<void(Value *)> AboutToDeleteCallback) { 539 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 540 for (; S != E; ++S) { 541 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 542 if (!I || !isInstructionTriviallyDead(I)) { 543 DeadInsts[S] = nullptr; 544 ++Alive; 545 } 546 } 547 if (Alive == E) 548 return false; 549 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 550 AboutToDeleteCallback); 551 return true; 552 } 553 554 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 555 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 556 MemorySSAUpdater *MSSAU, 557 std::function<void(Value *)> AboutToDeleteCallback) { 558 // Process the dead instruction list until empty. 559 while (!DeadInsts.empty()) { 560 Value *V = DeadInsts.pop_back_val(); 561 Instruction *I = cast_or_null<Instruction>(V); 562 if (!I) 563 continue; 564 assert(isInstructionTriviallyDead(I, TLI) && 565 "Live instruction found in dead worklist!"); 566 assert(I->use_empty() && "Instructions with uses are not dead."); 567 568 // Don't lose the debug info while deleting the instructions. 569 salvageDebugInfo(*I); 570 571 if (AboutToDeleteCallback) 572 AboutToDeleteCallback(I); 573 574 // Null out all of the instruction's operands to see if any operand becomes 575 // dead as we go. 576 for (Use &OpU : I->operands()) { 577 Value *OpV = OpU.get(); 578 OpU.set(nullptr); 579 580 if (!OpV->use_empty()) 581 continue; 582 583 // If the operand is an instruction that became dead as we nulled out the 584 // operand, and if it is 'trivially' dead, delete it in a future loop 585 // iteration. 586 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 587 if (isInstructionTriviallyDead(OpI, TLI)) 588 DeadInsts.push_back(OpI); 589 } 590 if (MSSAU) 591 MSSAU->removeMemoryAccess(I); 592 593 I->eraseFromParent(); 594 } 595 } 596 597 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 598 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 599 findDbgUsers(DbgUsers, I); 600 for (auto *DII : DbgUsers) { 601 Value *Undef = UndefValue::get(I->getType()); 602 DII->replaceVariableLocationOp(I, Undef); 603 } 604 return !DbgUsers.empty(); 605 } 606 607 /// areAllUsesEqual - Check whether the uses of a value are all the same. 608 /// This is similar to Instruction::hasOneUse() except this will also return 609 /// true when there are no uses or multiple uses that all refer to the same 610 /// value. 611 static bool areAllUsesEqual(Instruction *I) { 612 Value::user_iterator UI = I->user_begin(); 613 Value::user_iterator UE = I->user_end(); 614 if (UI == UE) 615 return true; 616 617 User *TheUse = *UI; 618 for (++UI; UI != UE; ++UI) { 619 if (*UI != TheUse) 620 return false; 621 } 622 return true; 623 } 624 625 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 626 /// dead PHI node, due to being a def-use chain of single-use nodes that 627 /// either forms a cycle or is terminated by a trivially dead instruction, 628 /// delete it. If that makes any of its operands trivially dead, delete them 629 /// too, recursively. Return true if a change was made. 630 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 631 const TargetLibraryInfo *TLI, 632 llvm::MemorySSAUpdater *MSSAU) { 633 SmallPtrSet<Instruction*, 4> Visited; 634 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 635 I = cast<Instruction>(*I->user_begin())) { 636 if (I->use_empty()) 637 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 638 639 // If we find an instruction more than once, we're on a cycle that 640 // won't prove fruitful. 641 if (!Visited.insert(I).second) { 642 // Break the cycle and delete the instruction and its operands. 643 I->replaceAllUsesWith(UndefValue::get(I->getType())); 644 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 645 return true; 646 } 647 } 648 return false; 649 } 650 651 static bool 652 simplifyAndDCEInstruction(Instruction *I, 653 SmallSetVector<Instruction *, 16> &WorkList, 654 const DataLayout &DL, 655 const TargetLibraryInfo *TLI) { 656 if (isInstructionTriviallyDead(I, TLI)) { 657 salvageDebugInfo(*I); 658 659 // Null out all of the instruction's operands to see if any operand becomes 660 // dead as we go. 661 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 662 Value *OpV = I->getOperand(i); 663 I->setOperand(i, nullptr); 664 665 if (!OpV->use_empty() || I == OpV) 666 continue; 667 668 // If the operand is an instruction that became dead as we nulled out the 669 // operand, and if it is 'trivially' dead, delete it in a future loop 670 // iteration. 671 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 672 if (isInstructionTriviallyDead(OpI, TLI)) 673 WorkList.insert(OpI); 674 } 675 676 I->eraseFromParent(); 677 678 return true; 679 } 680 681 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 682 // Add the users to the worklist. CAREFUL: an instruction can use itself, 683 // in the case of a phi node. 684 for (User *U : I->users()) { 685 if (U != I) { 686 WorkList.insert(cast<Instruction>(U)); 687 } 688 } 689 690 // Replace the instruction with its simplified value. 691 bool Changed = false; 692 if (!I->use_empty()) { 693 I->replaceAllUsesWith(SimpleV); 694 Changed = true; 695 } 696 if (isInstructionTriviallyDead(I, TLI)) { 697 I->eraseFromParent(); 698 Changed = true; 699 } 700 return Changed; 701 } 702 return false; 703 } 704 705 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 706 /// simplify any instructions in it and recursively delete dead instructions. 707 /// 708 /// This returns true if it changed the code, note that it can delete 709 /// instructions in other blocks as well in this block. 710 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 711 const TargetLibraryInfo *TLI) { 712 bool MadeChange = false; 713 const DataLayout &DL = BB->getModule()->getDataLayout(); 714 715 #ifndef NDEBUG 716 // In debug builds, ensure that the terminator of the block is never replaced 717 // or deleted by these simplifications. The idea of simplification is that it 718 // cannot introduce new instructions, and there is no way to replace the 719 // terminator of a block without introducing a new instruction. 720 AssertingVH<Instruction> TerminatorVH(&BB->back()); 721 #endif 722 723 SmallSetVector<Instruction *, 16> WorkList; 724 // Iterate over the original function, only adding insts to the worklist 725 // if they actually need to be revisited. This avoids having to pre-init 726 // the worklist with the entire function's worth of instructions. 727 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 728 BI != E;) { 729 assert(!BI->isTerminator()); 730 Instruction *I = &*BI; 731 ++BI; 732 733 // We're visiting this instruction now, so make sure it's not in the 734 // worklist from an earlier visit. 735 if (!WorkList.count(I)) 736 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 737 } 738 739 while (!WorkList.empty()) { 740 Instruction *I = WorkList.pop_back_val(); 741 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 742 } 743 return MadeChange; 744 } 745 746 //===----------------------------------------------------------------------===// 747 // Control Flow Graph Restructuring. 748 // 749 750 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 751 DomTreeUpdater *DTU) { 752 753 // If BB has single-entry PHI nodes, fold them. 754 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 755 Value *NewVal = PN->getIncomingValue(0); 756 // Replace self referencing PHI with undef, it must be dead. 757 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 758 PN->replaceAllUsesWith(NewVal); 759 PN->eraseFromParent(); 760 } 761 762 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 763 assert(PredBB && "Block doesn't have a single predecessor!"); 764 765 bool ReplaceEntryBB = PredBB->isEntryBlock(); 766 767 // DTU updates: Collect all the edges that enter 768 // PredBB. These dominator edges will be redirected to DestBB. 769 SmallVector<DominatorTree::UpdateType, 32> Updates; 770 771 if (DTU) { 772 // To avoid processing the same predecessor more than once. 773 SmallPtrSet<BasicBlock *, 2> SeenPreds; 774 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 775 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 776 // This predecessor of PredBB may already have DestBB as a successor. 777 if (PredOfPredBB != PredBB) 778 if (SeenPreds.insert(PredOfPredBB).second) 779 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 780 SeenPreds.clear(); 781 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 782 if (SeenPreds.insert(PredOfPredBB).second) 783 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 784 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 785 } 786 787 // Zap anything that took the address of DestBB. Not doing this will give the 788 // address an invalid value. 789 if (DestBB->hasAddressTaken()) { 790 BlockAddress *BA = BlockAddress::get(DestBB); 791 Constant *Replacement = 792 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 793 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 794 BA->getType())); 795 BA->destroyConstant(); 796 } 797 798 // Anything that branched to PredBB now branches to DestBB. 799 PredBB->replaceAllUsesWith(DestBB); 800 801 // Splice all the instructions from PredBB to DestBB. 802 PredBB->getTerminator()->eraseFromParent(); 803 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 804 new UnreachableInst(PredBB->getContext(), PredBB); 805 806 // If the PredBB is the entry block of the function, move DestBB up to 807 // become the entry block after we erase PredBB. 808 if (ReplaceEntryBB) 809 DestBB->moveAfter(PredBB); 810 811 if (DTU) { 812 assert(PredBB->getInstList().size() == 1 && 813 isa<UnreachableInst>(PredBB->getTerminator()) && 814 "The successor list of PredBB isn't empty before " 815 "applying corresponding DTU updates."); 816 DTU->applyUpdatesPermissive(Updates); 817 DTU->deleteBB(PredBB); 818 // Recalculation of DomTree is needed when updating a forward DomTree and 819 // the Entry BB is replaced. 820 if (ReplaceEntryBB && DTU->hasDomTree()) { 821 // The entry block was removed and there is no external interface for 822 // the dominator tree to be notified of this change. In this corner-case 823 // we recalculate the entire tree. 824 DTU->recalculate(*(DestBB->getParent())); 825 } 826 } 827 828 else { 829 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 830 } 831 } 832 833 /// Return true if we can choose one of these values to use in place of the 834 /// other. Note that we will always choose the non-undef value to keep. 835 static bool CanMergeValues(Value *First, Value *Second) { 836 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 837 } 838 839 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 840 /// branch to Succ, into Succ. 841 /// 842 /// Assumption: Succ is the single successor for BB. 843 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 844 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 845 846 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 847 << Succ->getName() << "\n"); 848 // Shortcut, if there is only a single predecessor it must be BB and merging 849 // is always safe 850 if (Succ->getSinglePredecessor()) return true; 851 852 // Make a list of the predecessors of BB 853 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 854 855 // Look at all the phi nodes in Succ, to see if they present a conflict when 856 // merging these blocks 857 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 858 PHINode *PN = cast<PHINode>(I); 859 860 // If the incoming value from BB is again a PHINode in 861 // BB which has the same incoming value for *PI as PN does, we can 862 // merge the phi nodes and then the blocks can still be merged 863 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 864 if (BBPN && BBPN->getParent() == BB) { 865 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 866 BasicBlock *IBB = PN->getIncomingBlock(PI); 867 if (BBPreds.count(IBB) && 868 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 869 PN->getIncomingValue(PI))) { 870 LLVM_DEBUG(dbgs() 871 << "Can't fold, phi node " << PN->getName() << " in " 872 << Succ->getName() << " is conflicting with " 873 << BBPN->getName() << " with regard to common predecessor " 874 << IBB->getName() << "\n"); 875 return false; 876 } 877 } 878 } else { 879 Value* Val = PN->getIncomingValueForBlock(BB); 880 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 881 // See if the incoming value for the common predecessor is equal to the 882 // one for BB, in which case this phi node will not prevent the merging 883 // of the block. 884 BasicBlock *IBB = PN->getIncomingBlock(PI); 885 if (BBPreds.count(IBB) && 886 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 887 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 888 << " in " << Succ->getName() 889 << " is conflicting with regard to common " 890 << "predecessor " << IBB->getName() << "\n"); 891 return false; 892 } 893 } 894 } 895 } 896 897 return true; 898 } 899 900 using PredBlockVector = SmallVector<BasicBlock *, 16>; 901 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 902 903 /// Determines the value to use as the phi node input for a block. 904 /// 905 /// Select between \p OldVal any value that we know flows from \p BB 906 /// to a particular phi on the basis of which one (if either) is not 907 /// undef. Update IncomingValues based on the selected value. 908 /// 909 /// \param OldVal The value we are considering selecting. 910 /// \param BB The block that the value flows in from. 911 /// \param IncomingValues A map from block-to-value for other phi inputs 912 /// that we have examined. 913 /// 914 /// \returns the selected value. 915 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 916 IncomingValueMap &IncomingValues) { 917 if (!isa<UndefValue>(OldVal)) { 918 assert((!IncomingValues.count(BB) || 919 IncomingValues.find(BB)->second == OldVal) && 920 "Expected OldVal to match incoming value from BB!"); 921 922 IncomingValues.insert(std::make_pair(BB, OldVal)); 923 return OldVal; 924 } 925 926 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 927 if (It != IncomingValues.end()) return It->second; 928 929 return OldVal; 930 } 931 932 /// Create a map from block to value for the operands of a 933 /// given phi. 934 /// 935 /// Create a map from block to value for each non-undef value flowing 936 /// into \p PN. 937 /// 938 /// \param PN The phi we are collecting the map for. 939 /// \param IncomingValues [out] The map from block to value for this phi. 940 static void gatherIncomingValuesToPhi(PHINode *PN, 941 IncomingValueMap &IncomingValues) { 942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 943 BasicBlock *BB = PN->getIncomingBlock(i); 944 Value *V = PN->getIncomingValue(i); 945 946 if (!isa<UndefValue>(V)) 947 IncomingValues.insert(std::make_pair(BB, V)); 948 } 949 } 950 951 /// Replace the incoming undef values to a phi with the values 952 /// from a block-to-value map. 953 /// 954 /// \param PN The phi we are replacing the undefs in. 955 /// \param IncomingValues A map from block to value. 956 static void replaceUndefValuesInPhi(PHINode *PN, 957 const IncomingValueMap &IncomingValues) { 958 SmallVector<unsigned> TrueUndefOps; 959 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 960 Value *V = PN->getIncomingValue(i); 961 962 if (!isa<UndefValue>(V)) continue; 963 964 BasicBlock *BB = PN->getIncomingBlock(i); 965 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 966 967 // Keep track of undef/poison incoming values. Those must match, so we fix 968 // them up below if needed. 969 // Note: this is conservatively correct, but we could try harder and group 970 // the undef values per incoming basic block. 971 if (It == IncomingValues.end()) { 972 TrueUndefOps.push_back(i); 973 continue; 974 } 975 976 // There is a defined value for this incoming block, so map this undef 977 // incoming value to the defined value. 978 PN->setIncomingValue(i, It->second); 979 } 980 981 // If there are both undef and poison values incoming, then convert those 982 // values to undef. It is invalid to have different values for the same 983 // incoming block. 984 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 985 return isa<PoisonValue>(PN->getIncomingValue(i)); 986 }); 987 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 988 for (unsigned i : TrueUndefOps) 989 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 990 } 991 } 992 993 /// Replace a value flowing from a block to a phi with 994 /// potentially multiple instances of that value flowing from the 995 /// block's predecessors to the phi. 996 /// 997 /// \param BB The block with the value flowing into the phi. 998 /// \param BBPreds The predecessors of BB. 999 /// \param PN The phi that we are updating. 1000 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1001 const PredBlockVector &BBPreds, 1002 PHINode *PN) { 1003 Value *OldVal = PN->removeIncomingValue(BB, false); 1004 assert(OldVal && "No entry in PHI for Pred BB!"); 1005 1006 IncomingValueMap IncomingValues; 1007 1008 // We are merging two blocks - BB, and the block containing PN - and 1009 // as a result we need to redirect edges from the predecessors of BB 1010 // to go to the block containing PN, and update PN 1011 // accordingly. Since we allow merging blocks in the case where the 1012 // predecessor and successor blocks both share some predecessors, 1013 // and where some of those common predecessors might have undef 1014 // values flowing into PN, we want to rewrite those values to be 1015 // consistent with the non-undef values. 1016 1017 gatherIncomingValuesToPhi(PN, IncomingValues); 1018 1019 // If this incoming value is one of the PHI nodes in BB, the new entries 1020 // in the PHI node are the entries from the old PHI. 1021 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1022 PHINode *OldValPN = cast<PHINode>(OldVal); 1023 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1024 // Note that, since we are merging phi nodes and BB and Succ might 1025 // have common predecessors, we could end up with a phi node with 1026 // identical incoming branches. This will be cleaned up later (and 1027 // will trigger asserts if we try to clean it up now, without also 1028 // simplifying the corresponding conditional branch). 1029 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1030 Value *PredVal = OldValPN->getIncomingValue(i); 1031 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1032 IncomingValues); 1033 1034 // And add a new incoming value for this predecessor for the 1035 // newly retargeted branch. 1036 PN->addIncoming(Selected, PredBB); 1037 } 1038 } else { 1039 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1040 // Update existing incoming values in PN for this 1041 // predecessor of BB. 1042 BasicBlock *PredBB = BBPreds[i]; 1043 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1044 IncomingValues); 1045 1046 // And add a new incoming value for this predecessor for the 1047 // newly retargeted branch. 1048 PN->addIncoming(Selected, PredBB); 1049 } 1050 } 1051 1052 replaceUndefValuesInPhi(PN, IncomingValues); 1053 } 1054 1055 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1056 DomTreeUpdater *DTU) { 1057 assert(BB != &BB->getParent()->getEntryBlock() && 1058 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1059 1060 // We can't eliminate infinite loops. 1061 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1062 if (BB == Succ) return false; 1063 1064 // Check to see if merging these blocks would cause conflicts for any of the 1065 // phi nodes in BB or Succ. If not, we can safely merge. 1066 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1067 1068 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1069 // has uses which will not disappear when the PHI nodes are merged. It is 1070 // possible to handle such cases, but difficult: it requires checking whether 1071 // BB dominates Succ, which is non-trivial to calculate in the case where 1072 // Succ has multiple predecessors. Also, it requires checking whether 1073 // constructing the necessary self-referential PHI node doesn't introduce any 1074 // conflicts; this isn't too difficult, but the previous code for doing this 1075 // was incorrect. 1076 // 1077 // Note that if this check finds a live use, BB dominates Succ, so BB is 1078 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1079 // folding the branch isn't profitable in that case anyway. 1080 if (!Succ->getSinglePredecessor()) { 1081 BasicBlock::iterator BBI = BB->begin(); 1082 while (isa<PHINode>(*BBI)) { 1083 for (Use &U : BBI->uses()) { 1084 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1085 if (PN->getIncomingBlock(U) != BB) 1086 return false; 1087 } else { 1088 return false; 1089 } 1090 } 1091 ++BBI; 1092 } 1093 } 1094 1095 // We cannot fold the block if it's a branch to an already present callbr 1096 // successor because that creates duplicate successors. 1097 for (BasicBlock *PredBB : predecessors(BB)) { 1098 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1099 if (Succ == CBI->getDefaultDest()) 1100 return false; 1101 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1102 if (Succ == CBI->getIndirectDest(i)) 1103 return false; 1104 } 1105 } 1106 1107 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1108 1109 SmallVector<DominatorTree::UpdateType, 32> Updates; 1110 if (DTU) { 1111 // To avoid processing the same predecessor more than once. 1112 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1113 // All predecessors of BB will be moved to Succ. 1114 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1115 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1116 for (auto *PredOfBB : predecessors(BB)) 1117 // This predecessor of BB may already have Succ as a successor. 1118 if (!PredsOfSucc.contains(PredOfBB)) 1119 if (SeenPreds.insert(PredOfBB).second) 1120 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1121 SeenPreds.clear(); 1122 for (auto *PredOfBB : predecessors(BB)) 1123 if (SeenPreds.insert(PredOfBB).second) 1124 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1125 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1126 } 1127 1128 if (isa<PHINode>(Succ->begin())) { 1129 // If there is more than one pred of succ, and there are PHI nodes in 1130 // the successor, then we need to add incoming edges for the PHI nodes 1131 // 1132 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1133 1134 // Loop over all of the PHI nodes in the successor of BB. 1135 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1136 PHINode *PN = cast<PHINode>(I); 1137 1138 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1139 } 1140 } 1141 1142 if (Succ->getSinglePredecessor()) { 1143 // BB is the only predecessor of Succ, so Succ will end up with exactly 1144 // the same predecessors BB had. 1145 1146 // Copy over any phi, debug or lifetime instruction. 1147 BB->getTerminator()->eraseFromParent(); 1148 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1149 BB->getInstList()); 1150 } else { 1151 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1152 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1153 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1154 PN->eraseFromParent(); 1155 } 1156 } 1157 1158 // If the unconditional branch we replaced contains llvm.loop metadata, we 1159 // add the metadata to the branch instructions in the predecessors. 1160 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1161 Instruction *TI = BB->getTerminator(); 1162 if (TI) 1163 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1164 for (BasicBlock *Pred : predecessors(BB)) 1165 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1166 1167 // Everything that jumped to BB now goes to Succ. 1168 BB->replaceAllUsesWith(Succ); 1169 if (!Succ->hasName()) Succ->takeName(BB); 1170 1171 // Clear the successor list of BB to match updates applying to DTU later. 1172 if (BB->getTerminator()) 1173 BB->getInstList().pop_back(); 1174 new UnreachableInst(BB->getContext(), BB); 1175 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1176 "applying corresponding DTU updates."); 1177 1178 if (DTU) 1179 DTU->applyUpdates(Updates); 1180 1181 DeleteDeadBlock(BB, DTU); 1182 1183 return true; 1184 } 1185 1186 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1187 // This implementation doesn't currently consider undef operands 1188 // specially. Theoretically, two phis which are identical except for 1189 // one having an undef where the other doesn't could be collapsed. 1190 1191 bool Changed = false; 1192 1193 // Examine each PHI. 1194 // Note that increment of I must *NOT* be in the iteration_expression, since 1195 // we don't want to immediately advance when we restart from the beginning. 1196 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1197 ++I; 1198 // Is there an identical PHI node in this basic block? 1199 // Note that we only look in the upper square's triangle, 1200 // we already checked that the lower triangle PHI's aren't identical. 1201 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1202 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1203 continue; 1204 // A duplicate. Replace this PHI with the base PHI. 1205 ++NumPHICSEs; 1206 DuplicatePN->replaceAllUsesWith(PN); 1207 DuplicatePN->eraseFromParent(); 1208 Changed = true; 1209 1210 // The RAUW can change PHIs that we already visited. 1211 I = BB->begin(); 1212 break; // Start over from the beginning. 1213 } 1214 } 1215 return Changed; 1216 } 1217 1218 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1219 // This implementation doesn't currently consider undef operands 1220 // specially. Theoretically, two phis which are identical except for 1221 // one having an undef where the other doesn't could be collapsed. 1222 1223 struct PHIDenseMapInfo { 1224 static PHINode *getEmptyKey() { 1225 return DenseMapInfo<PHINode *>::getEmptyKey(); 1226 } 1227 1228 static PHINode *getTombstoneKey() { 1229 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1230 } 1231 1232 static bool isSentinel(PHINode *PN) { 1233 return PN == getEmptyKey() || PN == getTombstoneKey(); 1234 } 1235 1236 // WARNING: this logic must be kept in sync with 1237 // Instruction::isIdenticalToWhenDefined()! 1238 static unsigned getHashValueImpl(PHINode *PN) { 1239 // Compute a hash value on the operands. Instcombine will likely have 1240 // sorted them, which helps expose duplicates, but we have to check all 1241 // the operands to be safe in case instcombine hasn't run. 1242 return static_cast<unsigned>(hash_combine( 1243 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1244 hash_combine_range(PN->block_begin(), PN->block_end()))); 1245 } 1246 1247 static unsigned getHashValue(PHINode *PN) { 1248 #ifndef NDEBUG 1249 // If -phicse-debug-hash was specified, return a constant -- this 1250 // will force all hashing to collide, so we'll exhaustively search 1251 // the table for a match, and the assertion in isEqual will fire if 1252 // there's a bug causing equal keys to hash differently. 1253 if (PHICSEDebugHash) 1254 return 0; 1255 #endif 1256 return getHashValueImpl(PN); 1257 } 1258 1259 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1260 if (isSentinel(LHS) || isSentinel(RHS)) 1261 return LHS == RHS; 1262 return LHS->isIdenticalTo(RHS); 1263 } 1264 1265 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1266 // These comparisons are nontrivial, so assert that equality implies 1267 // hash equality (DenseMap demands this as an invariant). 1268 bool Result = isEqualImpl(LHS, RHS); 1269 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1270 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1271 return Result; 1272 } 1273 }; 1274 1275 // Set of unique PHINodes. 1276 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1277 PHISet.reserve(4 * PHICSENumPHISmallSize); 1278 1279 // Examine each PHI. 1280 bool Changed = false; 1281 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1282 auto Inserted = PHISet.insert(PN); 1283 if (!Inserted.second) { 1284 // A duplicate. Replace this PHI with its duplicate. 1285 ++NumPHICSEs; 1286 PN->replaceAllUsesWith(*Inserted.first); 1287 PN->eraseFromParent(); 1288 Changed = true; 1289 1290 // The RAUW can change PHIs that we already visited. Start over from the 1291 // beginning. 1292 PHISet.clear(); 1293 I = BB->begin(); 1294 } 1295 } 1296 1297 return Changed; 1298 } 1299 1300 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1301 if ( 1302 #ifndef NDEBUG 1303 !PHICSEDebugHash && 1304 #endif 1305 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1306 return EliminateDuplicatePHINodesNaiveImpl(BB); 1307 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1308 } 1309 1310 /// If the specified pointer points to an object that we control, try to modify 1311 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1312 /// the value after the operation, which may be lower than PrefAlign. 1313 /// 1314 /// Increating value alignment isn't often possible though. If alignment is 1315 /// important, a more reliable approach is to simply align all global variables 1316 /// and allocation instructions to their preferred alignment from the beginning. 1317 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1318 const DataLayout &DL) { 1319 V = V->stripPointerCasts(); 1320 1321 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1322 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1323 // than the current alignment, as the known bits calculation should have 1324 // already taken it into account. However, this is not always the case, 1325 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1326 // doesn't. 1327 Align CurrentAlign = AI->getAlign(); 1328 if (PrefAlign <= CurrentAlign) 1329 return CurrentAlign; 1330 1331 // If the preferred alignment is greater than the natural stack alignment 1332 // then don't round up. This avoids dynamic stack realignment. 1333 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1334 return CurrentAlign; 1335 AI->setAlignment(PrefAlign); 1336 return PrefAlign; 1337 } 1338 1339 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1340 // TODO: as above, this shouldn't be necessary. 1341 Align CurrentAlign = GO->getPointerAlignment(DL); 1342 if (PrefAlign <= CurrentAlign) 1343 return CurrentAlign; 1344 1345 // If there is a large requested alignment and we can, bump up the alignment 1346 // of the global. If the memory we set aside for the global may not be the 1347 // memory used by the final program then it is impossible for us to reliably 1348 // enforce the preferred alignment. 1349 if (!GO->canIncreaseAlignment()) 1350 return CurrentAlign; 1351 1352 GO->setAlignment(PrefAlign); 1353 return PrefAlign; 1354 } 1355 1356 return Align(1); 1357 } 1358 1359 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1360 const DataLayout &DL, 1361 const Instruction *CxtI, 1362 AssumptionCache *AC, 1363 const DominatorTree *DT) { 1364 assert(V->getType()->isPointerTy() && 1365 "getOrEnforceKnownAlignment expects a pointer!"); 1366 1367 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1368 unsigned TrailZ = Known.countMinTrailingZeros(); 1369 1370 // Avoid trouble with ridiculously large TrailZ values, such as 1371 // those computed from a null pointer. 1372 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1373 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1374 1375 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1376 1377 if (PrefAlign && *PrefAlign > Alignment) 1378 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1379 1380 // We don't need to make any adjustment. 1381 return Alignment; 1382 } 1383 1384 ///===---------------------------------------------------------------------===// 1385 /// Dbg Intrinsic utilities 1386 /// 1387 1388 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1389 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1390 DIExpression *DIExpr, 1391 PHINode *APN) { 1392 // Since we can't guarantee that the original dbg.declare instrinsic 1393 // is removed by LowerDbgDeclare(), we need to make sure that we are 1394 // not inserting the same dbg.value intrinsic over and over. 1395 SmallVector<DbgValueInst *, 1> DbgValues; 1396 findDbgValues(DbgValues, APN); 1397 for (auto *DVI : DbgValues) { 1398 assert(is_contained(DVI->getValues(), APN)); 1399 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1400 return true; 1401 } 1402 return false; 1403 } 1404 1405 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1406 /// (or fragment of the variable) described by \p DII. 1407 /// 1408 /// This is primarily intended as a helper for the different 1409 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1410 /// converted describes an alloca'd variable, so we need to use the 1411 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1412 /// identified as covering an n-bit fragment, if the store size of i1 is at 1413 /// least n bits. 1414 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1415 const DataLayout &DL = DII->getModule()->getDataLayout(); 1416 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1417 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1418 assert(!ValueSize.isScalable() && 1419 "Fragments don't work on scalable types."); 1420 return ValueSize.getFixedSize() >= *FragmentSize; 1421 } 1422 // We can't always calculate the size of the DI variable (e.g. if it is a 1423 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1424 // intead. 1425 if (DII->isAddressOfVariable()) { 1426 // DII should have exactly 1 location when it is an address. 1427 assert(DII->getNumVariableLocationOps() == 1 && 1428 "address of variable must have exactly 1 location operand."); 1429 if (auto *AI = 1430 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1431 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1432 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1433 } 1434 } 1435 } 1436 // Could not determine size of variable. Conservatively return false. 1437 return false; 1438 } 1439 1440 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1441 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1442 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1443 /// case this DebugLoc leaks into any adjacent instructions. 1444 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1445 // Original dbg.declare must have a location. 1446 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1447 MDNode *Scope = DeclareLoc.getScope(); 1448 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1449 // Produce an unknown location with the correct scope / inlinedAt fields. 1450 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1451 } 1452 1453 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1454 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1455 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1456 StoreInst *SI, DIBuilder &Builder) { 1457 assert(DII->isAddressOfVariable()); 1458 auto *DIVar = DII->getVariable(); 1459 assert(DIVar && "Missing variable"); 1460 auto *DIExpr = DII->getExpression(); 1461 Value *DV = SI->getValueOperand(); 1462 1463 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1464 1465 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1466 // FIXME: If storing to a part of the variable described by the dbg.declare, 1467 // then we want to insert a dbg.value for the corresponding fragment. 1468 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1469 << *DII << '\n'); 1470 // For now, when there is a store to parts of the variable (but we do not 1471 // know which part) we insert an dbg.value instrinsic to indicate that we 1472 // know nothing about the variable's content. 1473 DV = UndefValue::get(DV->getType()); 1474 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1475 return; 1476 } 1477 1478 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1479 } 1480 1481 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1482 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1483 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1484 LoadInst *LI, DIBuilder &Builder) { 1485 auto *DIVar = DII->getVariable(); 1486 auto *DIExpr = DII->getExpression(); 1487 assert(DIVar && "Missing variable"); 1488 1489 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1490 // FIXME: If only referring to a part of the variable described by the 1491 // dbg.declare, then we want to insert a dbg.value for the corresponding 1492 // fragment. 1493 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1494 << *DII << '\n'); 1495 return; 1496 } 1497 1498 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1499 1500 // We are now tracking the loaded value instead of the address. In the 1501 // future if multi-location support is added to the IR, it might be 1502 // preferable to keep tracking both the loaded value and the original 1503 // address in case the alloca can not be elided. 1504 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1505 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1506 DbgValue->insertAfter(LI); 1507 } 1508 1509 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1510 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1511 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1512 PHINode *APN, DIBuilder &Builder) { 1513 auto *DIVar = DII->getVariable(); 1514 auto *DIExpr = DII->getExpression(); 1515 assert(DIVar && "Missing variable"); 1516 1517 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1518 return; 1519 1520 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1521 // FIXME: If only referring to a part of the variable described by the 1522 // dbg.declare, then we want to insert a dbg.value for the corresponding 1523 // fragment. 1524 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1525 << *DII << '\n'); 1526 return; 1527 } 1528 1529 BasicBlock *BB = APN->getParent(); 1530 auto InsertionPt = BB->getFirstInsertionPt(); 1531 1532 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1533 1534 // The block may be a catchswitch block, which does not have a valid 1535 // insertion point. 1536 // FIXME: Insert dbg.value markers in the successors when appropriate. 1537 if (InsertionPt != BB->end()) 1538 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1539 } 1540 1541 /// Determine whether this alloca is either a VLA or an array. 1542 static bool isArray(AllocaInst *AI) { 1543 return AI->isArrayAllocation() || 1544 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1545 } 1546 1547 /// Determine whether this alloca is a structure. 1548 static bool isStructure(AllocaInst *AI) { 1549 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1550 } 1551 1552 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1553 /// of llvm.dbg.value intrinsics. 1554 bool llvm::LowerDbgDeclare(Function &F) { 1555 bool Changed = false; 1556 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1557 SmallVector<DbgDeclareInst *, 4> Dbgs; 1558 for (auto &FI : F) 1559 for (Instruction &BI : FI) 1560 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1561 Dbgs.push_back(DDI); 1562 1563 if (Dbgs.empty()) 1564 return Changed; 1565 1566 for (auto &I : Dbgs) { 1567 DbgDeclareInst *DDI = I; 1568 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1569 // If this is an alloca for a scalar variable, insert a dbg.value 1570 // at each load and store to the alloca and erase the dbg.declare. 1571 // The dbg.values allow tracking a variable even if it is not 1572 // stored on the stack, while the dbg.declare can only describe 1573 // the stack slot (and at a lexical-scope granularity). Later 1574 // passes will attempt to elide the stack slot. 1575 if (!AI || isArray(AI) || isStructure(AI)) 1576 continue; 1577 1578 // A volatile load/store means that the alloca can't be elided anyway. 1579 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1580 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1581 return LI->isVolatile(); 1582 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1583 return SI->isVolatile(); 1584 return false; 1585 })) 1586 continue; 1587 1588 SmallVector<const Value *, 8> WorkList; 1589 WorkList.push_back(AI); 1590 while (!WorkList.empty()) { 1591 const Value *V = WorkList.pop_back_val(); 1592 for (auto &AIUse : V->uses()) { 1593 User *U = AIUse.getUser(); 1594 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1595 if (AIUse.getOperandNo() == 1) 1596 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1597 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1598 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1599 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1600 // This is a call by-value or some other instruction that takes a 1601 // pointer to the variable. Insert a *value* intrinsic that describes 1602 // the variable by dereferencing the alloca. 1603 if (!CI->isLifetimeStartOrEnd()) { 1604 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1605 auto *DerefExpr = 1606 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1607 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1608 NewLoc, CI); 1609 } 1610 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1611 if (BI->getType()->isPointerTy()) 1612 WorkList.push_back(BI); 1613 } 1614 } 1615 } 1616 DDI->eraseFromParent(); 1617 Changed = true; 1618 } 1619 1620 if (Changed) 1621 for (BasicBlock &BB : F) 1622 RemoveRedundantDbgInstrs(&BB); 1623 1624 return Changed; 1625 } 1626 1627 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1628 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1629 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1630 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1631 if (InsertedPHIs.size() == 0) 1632 return; 1633 1634 // Map existing PHI nodes to their dbg.values. 1635 ValueToValueMapTy DbgValueMap; 1636 for (auto &I : *BB) { 1637 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1638 for (Value *V : DbgII->location_ops()) 1639 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1640 DbgValueMap.insert({Loc, DbgII}); 1641 } 1642 } 1643 if (DbgValueMap.size() == 0) 1644 return; 1645 1646 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1647 // so that if a dbg.value is being rewritten to use more than one of the 1648 // inserted PHIs in the same destination BB, we can update the same dbg.value 1649 // with all the new PHIs instead of creating one copy for each. 1650 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1651 DbgVariableIntrinsic *> 1652 NewDbgValueMap; 1653 // Then iterate through the new PHIs and look to see if they use one of the 1654 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1655 // propagate the info through the new PHI. If we use more than one new PHI in 1656 // a single destination BB with the same old dbg.value, merge the updates so 1657 // that we get a single new dbg.value with all the new PHIs. 1658 for (auto PHI : InsertedPHIs) { 1659 BasicBlock *Parent = PHI->getParent(); 1660 // Avoid inserting an intrinsic into an EH block. 1661 if (Parent->getFirstNonPHI()->isEHPad()) 1662 continue; 1663 for (auto VI : PHI->operand_values()) { 1664 auto V = DbgValueMap.find(VI); 1665 if (V != DbgValueMap.end()) { 1666 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1667 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1668 if (NewDI == NewDbgValueMap.end()) { 1669 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1670 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1671 } 1672 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1673 // If PHI contains VI as an operand more than once, we may 1674 // replaced it in NewDbgII; confirm that it is present. 1675 if (is_contained(NewDbgII->location_ops(), VI)) 1676 NewDbgII->replaceVariableLocationOp(VI, PHI); 1677 } 1678 } 1679 } 1680 // Insert thew new dbg.values into their destination blocks. 1681 for (auto DI : NewDbgValueMap) { 1682 BasicBlock *Parent = DI.first.first; 1683 auto *NewDbgII = DI.second; 1684 auto InsertionPt = Parent->getFirstInsertionPt(); 1685 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1686 NewDbgII->insertBefore(&*InsertionPt); 1687 } 1688 } 1689 1690 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1691 DIBuilder &Builder, uint8_t DIExprFlags, 1692 int Offset) { 1693 auto DbgAddrs = FindDbgAddrUses(Address); 1694 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1695 const DebugLoc &Loc = DII->getDebugLoc(); 1696 auto *DIVar = DII->getVariable(); 1697 auto *DIExpr = DII->getExpression(); 1698 assert(DIVar && "Missing variable"); 1699 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1700 // Insert llvm.dbg.declare immediately before DII, and remove old 1701 // llvm.dbg.declare. 1702 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1703 DII->eraseFromParent(); 1704 } 1705 return !DbgAddrs.empty(); 1706 } 1707 1708 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1709 DIBuilder &Builder, int Offset) { 1710 const DebugLoc &Loc = DVI->getDebugLoc(); 1711 auto *DIVar = DVI->getVariable(); 1712 auto *DIExpr = DVI->getExpression(); 1713 assert(DIVar && "Missing variable"); 1714 1715 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1716 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1717 // it and give up. 1718 if (!DIExpr || DIExpr->getNumElements() < 1 || 1719 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1720 return; 1721 1722 // Insert the offset before the first deref. 1723 // We could just change the offset argument of dbg.value, but it's unsigned... 1724 if (Offset) 1725 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1726 1727 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1728 DVI->eraseFromParent(); 1729 } 1730 1731 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1732 DIBuilder &Builder, int Offset) { 1733 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1734 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1735 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1736 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1737 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1738 } 1739 1740 /// Where possible to salvage debug information for \p I do so 1741 /// and return True. If not possible mark undef and return False. 1742 void llvm::salvageDebugInfo(Instruction &I) { 1743 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1744 findDbgUsers(DbgUsers, &I); 1745 salvageDebugInfoForDbgValues(I, DbgUsers); 1746 } 1747 1748 void llvm::salvageDebugInfoForDbgValues( 1749 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1750 // These are arbitrary chosen limits on the maximum number of values and the 1751 // maximum size of a debug expression we can salvage up to, used for 1752 // performance reasons. 1753 const unsigned MaxDebugArgs = 16; 1754 const unsigned MaxExpressionSize = 128; 1755 bool Salvaged = false; 1756 1757 for (auto *DII : DbgUsers) { 1758 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1759 // are implicitly pointing out the value as a DWARF memory location 1760 // description. 1761 bool StackValue = isa<DbgValueInst>(DII); 1762 auto DIILocation = DII->location_ops(); 1763 assert( 1764 is_contained(DIILocation, &I) && 1765 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1766 SmallVector<Value *, 4> AdditionalValues; 1767 // `I` may appear more than once in DII's location ops, and each use of `I` 1768 // must be updated in the DIExpression and potentially have additional 1769 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1770 // DIILocation. 1771 Value *Op0 = nullptr; 1772 DIExpression *SalvagedExpr = DII->getExpression(); 1773 auto LocItr = find(DIILocation, &I); 1774 while (SalvagedExpr && LocItr != DIILocation.end()) { 1775 SmallVector<uint64_t, 16> Ops; 1776 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1777 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1778 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1779 if (!Op0) 1780 break; 1781 SalvagedExpr = 1782 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1783 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1784 } 1785 // salvageDebugInfoImpl should fail on examining the first element of 1786 // DbgUsers, or none of them. 1787 if (!Op0) 1788 break; 1789 1790 DII->replaceVariableLocationOp(&I, Op0); 1791 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1792 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1793 DII->setExpression(SalvagedExpr); 1794 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1795 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1796 MaxDebugArgs) { 1797 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1798 } else { 1799 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1800 // currently only valid for stack value expressions. 1801 // Also do not salvage if the resulting DIArgList would contain an 1802 // unreasonably large number of values. 1803 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1804 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1805 } 1806 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1807 Salvaged = true; 1808 } 1809 1810 if (Salvaged) 1811 return; 1812 1813 for (auto *DII : DbgUsers) { 1814 Value *Undef = UndefValue::get(I.getType()); 1815 DII->replaceVariableLocationOp(&I, Undef); 1816 } 1817 } 1818 1819 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1820 uint64_t CurrentLocOps, 1821 SmallVectorImpl<uint64_t> &Opcodes, 1822 SmallVectorImpl<Value *> &AdditionalValues) { 1823 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1824 // Rewrite a GEP into a DIExpression. 1825 MapVector<Value *, APInt> VariableOffsets; 1826 APInt ConstantOffset(BitWidth, 0); 1827 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1828 return nullptr; 1829 if (!VariableOffsets.empty() && !CurrentLocOps) { 1830 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1831 CurrentLocOps = 1; 1832 } 1833 for (auto Offset : VariableOffsets) { 1834 AdditionalValues.push_back(Offset.first); 1835 assert(Offset.second.isStrictlyPositive() && 1836 "Expected strictly positive multiplier for offset."); 1837 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1838 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1839 dwarf::DW_OP_plus}); 1840 } 1841 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1842 return GEP->getOperand(0); 1843 } 1844 1845 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1846 switch (Opcode) { 1847 case Instruction::Add: 1848 return dwarf::DW_OP_plus; 1849 case Instruction::Sub: 1850 return dwarf::DW_OP_minus; 1851 case Instruction::Mul: 1852 return dwarf::DW_OP_mul; 1853 case Instruction::SDiv: 1854 return dwarf::DW_OP_div; 1855 case Instruction::SRem: 1856 return dwarf::DW_OP_mod; 1857 case Instruction::Or: 1858 return dwarf::DW_OP_or; 1859 case Instruction::And: 1860 return dwarf::DW_OP_and; 1861 case Instruction::Xor: 1862 return dwarf::DW_OP_xor; 1863 case Instruction::Shl: 1864 return dwarf::DW_OP_shl; 1865 case Instruction::LShr: 1866 return dwarf::DW_OP_shr; 1867 case Instruction::AShr: 1868 return dwarf::DW_OP_shra; 1869 default: 1870 // TODO: Salvage from each kind of binop we know about. 1871 return 0; 1872 } 1873 } 1874 1875 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1876 SmallVectorImpl<uint64_t> &Opcodes, 1877 SmallVectorImpl<Value *> &AdditionalValues) { 1878 // Handle binary operations with constant integer operands as a special case. 1879 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1880 // Values wider than 64 bits cannot be represented within a DIExpression. 1881 if (ConstInt && ConstInt->getBitWidth() > 64) 1882 return nullptr; 1883 1884 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1885 // Push any Constant Int operand onto the expression stack. 1886 if (ConstInt) { 1887 uint64_t Val = ConstInt->getSExtValue(); 1888 // Add or Sub Instructions with a constant operand can potentially be 1889 // simplified. 1890 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1891 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1892 DIExpression::appendOffset(Opcodes, Offset); 1893 return BI->getOperand(0); 1894 } 1895 Opcodes.append({dwarf::DW_OP_constu, Val}); 1896 } else { 1897 if (!CurrentLocOps) { 1898 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1899 CurrentLocOps = 1; 1900 } 1901 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1902 AdditionalValues.push_back(BI->getOperand(1)); 1903 } 1904 1905 // Add salvaged binary operator to expression stack, if it has a valid 1906 // representation in a DIExpression. 1907 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1908 if (!DwarfBinOp) 1909 return nullptr; 1910 Opcodes.push_back(DwarfBinOp); 1911 return BI->getOperand(0); 1912 } 1913 1914 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1915 SmallVectorImpl<uint64_t> &Ops, 1916 SmallVectorImpl<Value *> &AdditionalValues) { 1917 auto &M = *I.getModule(); 1918 auto &DL = M.getDataLayout(); 1919 1920 if (auto *CI = dyn_cast<CastInst>(&I)) { 1921 Value *FromValue = CI->getOperand(0); 1922 // No-op casts are irrelevant for debug info. 1923 if (CI->isNoopCast(DL)) { 1924 return FromValue; 1925 } 1926 1927 Type *Type = CI->getType(); 1928 if (Type->isPointerTy()) 1929 Type = DL.getIntPtrType(Type); 1930 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1931 if (Type->isVectorTy() || 1932 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1933 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1934 return nullptr; 1935 1936 llvm::Type *FromType = FromValue->getType(); 1937 if (FromType->isPointerTy()) 1938 FromType = DL.getIntPtrType(FromType); 1939 1940 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1941 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1942 1943 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1944 isa<SExtInst>(&I)); 1945 Ops.append(ExtOps.begin(), ExtOps.end()); 1946 return FromValue; 1947 } 1948 1949 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1950 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1951 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1952 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1953 1954 // *Not* to do: we should not attempt to salvage load instructions, 1955 // because the validity and lifetime of a dbg.value containing 1956 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1957 return nullptr; 1958 } 1959 1960 /// A replacement for a dbg.value expression. 1961 using DbgValReplacement = Optional<DIExpression *>; 1962 1963 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1964 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1965 /// changes are made. 1966 static bool rewriteDebugUsers( 1967 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1968 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1969 // Find debug users of From. 1970 SmallVector<DbgVariableIntrinsic *, 1> Users; 1971 findDbgUsers(Users, &From); 1972 if (Users.empty()) 1973 return false; 1974 1975 // Prevent use-before-def of To. 1976 bool Changed = false; 1977 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1978 if (isa<Instruction>(&To)) { 1979 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1980 1981 for (auto *DII : Users) { 1982 // It's common to see a debug user between From and DomPoint. Move it 1983 // after DomPoint to preserve the variable update without any reordering. 1984 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1985 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1986 DII->moveAfter(&DomPoint); 1987 Changed = true; 1988 1989 // Users which otherwise aren't dominated by the replacement value must 1990 // be salvaged or deleted. 1991 } else if (!DT.dominates(&DomPoint, DII)) { 1992 UndefOrSalvage.insert(DII); 1993 } 1994 } 1995 } 1996 1997 // Update debug users without use-before-def risk. 1998 for (auto *DII : Users) { 1999 if (UndefOrSalvage.count(DII)) 2000 continue; 2001 2002 DbgValReplacement DVR = RewriteExpr(*DII); 2003 if (!DVR) 2004 continue; 2005 2006 DII->replaceVariableLocationOp(&From, &To); 2007 DII->setExpression(*DVR); 2008 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2009 Changed = true; 2010 } 2011 2012 if (!UndefOrSalvage.empty()) { 2013 // Try to salvage the remaining debug users. 2014 salvageDebugInfo(From); 2015 Changed = true; 2016 } 2017 2018 return Changed; 2019 } 2020 2021 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2022 /// losslessly preserve the bits and semantics of the value. This predicate is 2023 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2024 /// 2025 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2026 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2027 /// and also does not allow lossless pointer <-> integer conversions. 2028 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2029 Type *ToTy) { 2030 // Trivially compatible types. 2031 if (FromTy == ToTy) 2032 return true; 2033 2034 // Handle compatible pointer <-> integer conversions. 2035 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2036 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2037 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2038 !DL.isNonIntegralPointerType(ToTy); 2039 return SameSize && LosslessConversion; 2040 } 2041 2042 // TODO: This is not exhaustive. 2043 return false; 2044 } 2045 2046 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2047 Instruction &DomPoint, DominatorTree &DT) { 2048 // Exit early if From has no debug users. 2049 if (!From.isUsedByMetadata()) 2050 return false; 2051 2052 assert(&From != &To && "Can't replace something with itself"); 2053 2054 Type *FromTy = From.getType(); 2055 Type *ToTy = To.getType(); 2056 2057 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2058 return DII.getExpression(); 2059 }; 2060 2061 // Handle no-op conversions. 2062 Module &M = *From.getModule(); 2063 const DataLayout &DL = M.getDataLayout(); 2064 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2065 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2066 2067 // Handle integer-to-integer widening and narrowing. 2068 // FIXME: Use DW_OP_convert when it's available everywhere. 2069 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2070 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2071 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2072 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2073 2074 // When the width of the result grows, assume that a debugger will only 2075 // access the low `FromBits` bits when inspecting the source variable. 2076 if (FromBits < ToBits) 2077 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2078 2079 // The width of the result has shrunk. Use sign/zero extension to describe 2080 // the source variable's high bits. 2081 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2082 DILocalVariable *Var = DII.getVariable(); 2083 2084 // Without knowing signedness, sign/zero extension isn't possible. 2085 auto Signedness = Var->getSignedness(); 2086 if (!Signedness) 2087 return None; 2088 2089 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2090 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2091 Signed); 2092 }; 2093 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2094 } 2095 2096 // TODO: Floating-point conversions, vectors. 2097 return false; 2098 } 2099 2100 std::pair<unsigned, unsigned> 2101 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2102 unsigned NumDeadInst = 0; 2103 unsigned NumDeadDbgInst = 0; 2104 // Delete the instructions backwards, as it has a reduced likelihood of 2105 // having to update as many def-use and use-def chains. 2106 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2107 while (EndInst != &BB->front()) { 2108 // Delete the next to last instruction. 2109 Instruction *Inst = &*--EndInst->getIterator(); 2110 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2111 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2112 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2113 EndInst = Inst; 2114 continue; 2115 } 2116 if (isa<DbgInfoIntrinsic>(Inst)) 2117 ++NumDeadDbgInst; 2118 else 2119 ++NumDeadInst; 2120 Inst->eraseFromParent(); 2121 } 2122 return {NumDeadInst, NumDeadDbgInst}; 2123 } 2124 2125 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2126 DomTreeUpdater *DTU, 2127 MemorySSAUpdater *MSSAU) { 2128 BasicBlock *BB = I->getParent(); 2129 2130 if (MSSAU) 2131 MSSAU->changeToUnreachable(I); 2132 2133 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2134 2135 // Loop over all of the successors, removing BB's entry from any PHI 2136 // nodes. 2137 for (BasicBlock *Successor : successors(BB)) { 2138 Successor->removePredecessor(BB, PreserveLCSSA); 2139 if (DTU) 2140 UniqueSuccessors.insert(Successor); 2141 } 2142 auto *UI = new UnreachableInst(I->getContext(), I); 2143 UI->setDebugLoc(I->getDebugLoc()); 2144 2145 // All instructions after this are dead. 2146 unsigned NumInstrsRemoved = 0; 2147 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2148 while (BBI != BBE) { 2149 if (!BBI->use_empty()) 2150 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2151 BB->getInstList().erase(BBI++); 2152 ++NumInstrsRemoved; 2153 } 2154 if (DTU) { 2155 SmallVector<DominatorTree::UpdateType, 8> Updates; 2156 Updates.reserve(UniqueSuccessors.size()); 2157 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2158 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2159 DTU->applyUpdates(Updates); 2160 } 2161 return NumInstrsRemoved; 2162 } 2163 2164 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2165 SmallVector<Value *, 8> Args(II->args()); 2166 SmallVector<OperandBundleDef, 1> OpBundles; 2167 II->getOperandBundlesAsDefs(OpBundles); 2168 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2169 II->getCalledOperand(), Args, OpBundles); 2170 NewCall->setCallingConv(II->getCallingConv()); 2171 NewCall->setAttributes(II->getAttributes()); 2172 NewCall->setDebugLoc(II->getDebugLoc()); 2173 NewCall->copyMetadata(*II); 2174 2175 // If the invoke had profile metadata, try converting them for CallInst. 2176 uint64_t TotalWeight; 2177 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2178 // Set the total weight if it fits into i32, otherwise reset. 2179 MDBuilder MDB(NewCall->getContext()); 2180 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2181 ? nullptr 2182 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2183 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2184 } 2185 2186 return NewCall; 2187 } 2188 2189 // changeToCall - Convert the specified invoke into a normal call. 2190 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2191 CallInst *NewCall = createCallMatchingInvoke(II); 2192 NewCall->takeName(II); 2193 NewCall->insertBefore(II); 2194 II->replaceAllUsesWith(NewCall); 2195 2196 // Follow the call by a branch to the normal destination. 2197 BasicBlock *NormalDestBB = II->getNormalDest(); 2198 BranchInst::Create(NormalDestBB, II); 2199 2200 // Update PHI nodes in the unwind destination 2201 BasicBlock *BB = II->getParent(); 2202 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2203 UnwindDestBB->removePredecessor(BB); 2204 II->eraseFromParent(); 2205 if (DTU) 2206 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2207 return NewCall; 2208 } 2209 2210 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2211 BasicBlock *UnwindEdge, 2212 DomTreeUpdater *DTU) { 2213 BasicBlock *BB = CI->getParent(); 2214 2215 // Convert this function call into an invoke instruction. First, split the 2216 // basic block. 2217 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2218 CI->getName() + ".noexc"); 2219 2220 // Delete the unconditional branch inserted by SplitBlock 2221 BB->getInstList().pop_back(); 2222 2223 // Create the new invoke instruction. 2224 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2225 SmallVector<OperandBundleDef, 1> OpBundles; 2226 2227 CI->getOperandBundlesAsDefs(OpBundles); 2228 2229 // Note: we're round tripping operand bundles through memory here, and that 2230 // can potentially be avoided with a cleverer API design that we do not have 2231 // as of this time. 2232 2233 InvokeInst *II = 2234 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2235 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2236 II->setDebugLoc(CI->getDebugLoc()); 2237 II->setCallingConv(CI->getCallingConv()); 2238 II->setAttributes(CI->getAttributes()); 2239 2240 if (DTU) 2241 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2242 2243 // Make sure that anything using the call now uses the invoke! This also 2244 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2245 CI->replaceAllUsesWith(II); 2246 2247 // Delete the original call 2248 Split->getInstList().pop_front(); 2249 return Split; 2250 } 2251 2252 static bool markAliveBlocks(Function &F, 2253 SmallPtrSetImpl<BasicBlock *> &Reachable, 2254 DomTreeUpdater *DTU = nullptr) { 2255 SmallVector<BasicBlock*, 128> Worklist; 2256 BasicBlock *BB = &F.front(); 2257 Worklist.push_back(BB); 2258 Reachable.insert(BB); 2259 bool Changed = false; 2260 do { 2261 BB = Worklist.pop_back_val(); 2262 2263 // Do a quick scan of the basic block, turning any obviously unreachable 2264 // instructions into LLVM unreachable insts. The instruction combining pass 2265 // canonicalizes unreachable insts into stores to null or undef. 2266 for (Instruction &I : *BB) { 2267 if (auto *CI = dyn_cast<CallInst>(&I)) { 2268 Value *Callee = CI->getCalledOperand(); 2269 // Handle intrinsic calls. 2270 if (Function *F = dyn_cast<Function>(Callee)) { 2271 auto IntrinsicID = F->getIntrinsicID(); 2272 // Assumptions that are known to be false are equivalent to 2273 // unreachable. Also, if the condition is undefined, then we make the 2274 // choice most beneficial to the optimizer, and choose that to also be 2275 // unreachable. 2276 if (IntrinsicID == Intrinsic::assume) { 2277 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2278 // Don't insert a call to llvm.trap right before the unreachable. 2279 changeToUnreachable(CI, false, DTU); 2280 Changed = true; 2281 break; 2282 } 2283 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2284 // A call to the guard intrinsic bails out of the current 2285 // compilation unit if the predicate passed to it is false. If the 2286 // predicate is a constant false, then we know the guard will bail 2287 // out of the current compile unconditionally, so all code following 2288 // it is dead. 2289 // 2290 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2291 // guards to treat `undef` as `false` since a guard on `undef` can 2292 // still be useful for widening. 2293 if (match(CI->getArgOperand(0), m_Zero())) 2294 if (!isa<UnreachableInst>(CI->getNextNode())) { 2295 changeToUnreachable(CI->getNextNode(), false, DTU); 2296 Changed = true; 2297 break; 2298 } 2299 } 2300 } else if ((isa<ConstantPointerNull>(Callee) && 2301 !NullPointerIsDefined(CI->getFunction())) || 2302 isa<UndefValue>(Callee)) { 2303 changeToUnreachable(CI, false, DTU); 2304 Changed = true; 2305 break; 2306 } 2307 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2308 // If we found a call to a no-return function, insert an unreachable 2309 // instruction after it. Make sure there isn't *already* one there 2310 // though. 2311 if (!isa<UnreachableInst>(CI->getNextNode())) { 2312 // Don't insert a call to llvm.trap right before the unreachable. 2313 changeToUnreachable(CI->getNextNode(), false, DTU); 2314 Changed = true; 2315 } 2316 break; 2317 } 2318 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2319 // Store to undef and store to null are undefined and used to signal 2320 // that they should be changed to unreachable by passes that can't 2321 // modify the CFG. 2322 2323 // Don't touch volatile stores. 2324 if (SI->isVolatile()) continue; 2325 2326 Value *Ptr = SI->getOperand(1); 2327 2328 if (isa<UndefValue>(Ptr) || 2329 (isa<ConstantPointerNull>(Ptr) && 2330 !NullPointerIsDefined(SI->getFunction(), 2331 SI->getPointerAddressSpace()))) { 2332 changeToUnreachable(SI, false, DTU); 2333 Changed = true; 2334 break; 2335 } 2336 } 2337 } 2338 2339 Instruction *Terminator = BB->getTerminator(); 2340 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2341 // Turn invokes that call 'nounwind' functions into ordinary calls. 2342 Value *Callee = II->getCalledOperand(); 2343 if ((isa<ConstantPointerNull>(Callee) && 2344 !NullPointerIsDefined(BB->getParent())) || 2345 isa<UndefValue>(Callee)) { 2346 changeToUnreachable(II, false, DTU); 2347 Changed = true; 2348 } else { 2349 if (II->doesNotReturn() && 2350 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2351 // If we found an invoke of a no-return function, 2352 // create a new empty basic block with an `unreachable` terminator, 2353 // and set it as the normal destination for the invoke, 2354 // unless that is already the case. 2355 // Note that the original normal destination could have other uses. 2356 BasicBlock *OrigNormalDest = II->getNormalDest(); 2357 OrigNormalDest->removePredecessor(II->getParent()); 2358 LLVMContext &Ctx = II->getContext(); 2359 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2360 Ctx, OrigNormalDest->getName() + ".unreachable", 2361 II->getFunction(), OrigNormalDest); 2362 new UnreachableInst(Ctx, UnreachableNormalDest); 2363 II->setNormalDest(UnreachableNormalDest); 2364 if (DTU) 2365 DTU->applyUpdates( 2366 {{DominatorTree::Delete, BB, OrigNormalDest}, 2367 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2368 Changed = true; 2369 } 2370 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2371 if (II->use_empty() && II->onlyReadsMemory()) { 2372 // jump to the normal destination branch. 2373 BasicBlock *NormalDestBB = II->getNormalDest(); 2374 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2375 BranchInst::Create(NormalDestBB, II); 2376 UnwindDestBB->removePredecessor(II->getParent()); 2377 II->eraseFromParent(); 2378 if (DTU) 2379 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2380 } else 2381 changeToCall(II, DTU); 2382 Changed = true; 2383 } 2384 } 2385 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2386 // Remove catchpads which cannot be reached. 2387 struct CatchPadDenseMapInfo { 2388 static CatchPadInst *getEmptyKey() { 2389 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2390 } 2391 2392 static CatchPadInst *getTombstoneKey() { 2393 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2394 } 2395 2396 static unsigned getHashValue(CatchPadInst *CatchPad) { 2397 return static_cast<unsigned>(hash_combine_range( 2398 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2399 } 2400 2401 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2402 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2403 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2404 return LHS == RHS; 2405 return LHS->isIdenticalTo(RHS); 2406 } 2407 }; 2408 2409 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2410 // Set of unique CatchPads. 2411 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2412 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2413 HandlerSet; 2414 detail::DenseSetEmpty Empty; 2415 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2416 E = CatchSwitch->handler_end(); 2417 I != E; ++I) { 2418 BasicBlock *HandlerBB = *I; 2419 if (DTU) 2420 ++NumPerSuccessorCases[HandlerBB]; 2421 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2422 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2423 if (DTU) 2424 --NumPerSuccessorCases[HandlerBB]; 2425 CatchSwitch->removeHandler(I); 2426 --I; 2427 --E; 2428 Changed = true; 2429 } 2430 } 2431 if (DTU) { 2432 std::vector<DominatorTree::UpdateType> Updates; 2433 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2434 if (I.second == 0) 2435 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2436 DTU->applyUpdates(Updates); 2437 } 2438 } 2439 2440 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2441 for (BasicBlock *Successor : successors(BB)) 2442 if (Reachable.insert(Successor).second) 2443 Worklist.push_back(Successor); 2444 } while (!Worklist.empty()); 2445 return Changed; 2446 } 2447 2448 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2449 Instruction *TI = BB->getTerminator(); 2450 2451 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2452 changeToCall(II, DTU); 2453 return; 2454 } 2455 2456 Instruction *NewTI; 2457 BasicBlock *UnwindDest; 2458 2459 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2460 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2461 UnwindDest = CRI->getUnwindDest(); 2462 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2463 auto *NewCatchSwitch = CatchSwitchInst::Create( 2464 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2465 CatchSwitch->getName(), CatchSwitch); 2466 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2467 NewCatchSwitch->addHandler(PadBB); 2468 2469 NewTI = NewCatchSwitch; 2470 UnwindDest = CatchSwitch->getUnwindDest(); 2471 } else { 2472 llvm_unreachable("Could not find unwind successor"); 2473 } 2474 2475 NewTI->takeName(TI); 2476 NewTI->setDebugLoc(TI->getDebugLoc()); 2477 UnwindDest->removePredecessor(BB); 2478 TI->replaceAllUsesWith(NewTI); 2479 TI->eraseFromParent(); 2480 if (DTU) 2481 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2482 } 2483 2484 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2485 /// if they are in a dead cycle. Return true if a change was made, false 2486 /// otherwise. 2487 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2488 MemorySSAUpdater *MSSAU) { 2489 SmallPtrSet<BasicBlock *, 16> Reachable; 2490 bool Changed = markAliveBlocks(F, Reachable, DTU); 2491 2492 // If there are unreachable blocks in the CFG... 2493 if (Reachable.size() == F.size()) 2494 return Changed; 2495 2496 assert(Reachable.size() < F.size()); 2497 2498 // Are there any blocks left to actually delete? 2499 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2500 for (BasicBlock &BB : F) { 2501 // Skip reachable basic blocks 2502 if (Reachable.count(&BB)) 2503 continue; 2504 // Skip already-deleted blocks 2505 if (DTU && DTU->isBBPendingDeletion(&BB)) 2506 continue; 2507 BlocksToRemove.insert(&BB); 2508 } 2509 2510 if (BlocksToRemove.empty()) 2511 return Changed; 2512 2513 Changed = true; 2514 NumRemoved += BlocksToRemove.size(); 2515 2516 if (MSSAU) 2517 MSSAU->removeBlocks(BlocksToRemove); 2518 2519 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2520 2521 return Changed; 2522 } 2523 2524 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2525 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2526 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2527 K->dropUnknownNonDebugMetadata(KnownIDs); 2528 K->getAllMetadataOtherThanDebugLoc(Metadata); 2529 for (const auto &MD : Metadata) { 2530 unsigned Kind = MD.first; 2531 MDNode *JMD = J->getMetadata(Kind); 2532 MDNode *KMD = MD.second; 2533 2534 switch (Kind) { 2535 default: 2536 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2537 break; 2538 case LLVMContext::MD_dbg: 2539 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2540 case LLVMContext::MD_tbaa: 2541 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2542 break; 2543 case LLVMContext::MD_alias_scope: 2544 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2545 break; 2546 case LLVMContext::MD_noalias: 2547 case LLVMContext::MD_mem_parallel_loop_access: 2548 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2549 break; 2550 case LLVMContext::MD_access_group: 2551 K->setMetadata(LLVMContext::MD_access_group, 2552 intersectAccessGroups(K, J)); 2553 break; 2554 case LLVMContext::MD_range: 2555 2556 // If K does move, use most generic range. Otherwise keep the range of 2557 // K. 2558 if (DoesKMove) 2559 // FIXME: If K does move, we should drop the range info and nonnull. 2560 // Currently this function is used with DoesKMove in passes 2561 // doing hoisting/sinking and the current behavior of using the 2562 // most generic range is correct in those cases. 2563 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2564 break; 2565 case LLVMContext::MD_fpmath: 2566 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2567 break; 2568 case LLVMContext::MD_invariant_load: 2569 // Only set the !invariant.load if it is present in both instructions. 2570 K->setMetadata(Kind, JMD); 2571 break; 2572 case LLVMContext::MD_nonnull: 2573 // If K does move, keep nonull if it is present in both instructions. 2574 if (DoesKMove) 2575 K->setMetadata(Kind, JMD); 2576 break; 2577 case LLVMContext::MD_invariant_group: 2578 // Preserve !invariant.group in K. 2579 break; 2580 case LLVMContext::MD_align: 2581 K->setMetadata(Kind, 2582 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2583 break; 2584 case LLVMContext::MD_dereferenceable: 2585 case LLVMContext::MD_dereferenceable_or_null: 2586 K->setMetadata(Kind, 2587 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2588 break; 2589 case LLVMContext::MD_preserve_access_index: 2590 // Preserve !preserve.access.index in K. 2591 break; 2592 } 2593 } 2594 // Set !invariant.group from J if J has it. If both instructions have it 2595 // then we will just pick it from J - even when they are different. 2596 // Also make sure that K is load or store - f.e. combining bitcast with load 2597 // could produce bitcast with invariant.group metadata, which is invalid. 2598 // FIXME: we should try to preserve both invariant.group md if they are 2599 // different, but right now instruction can only have one invariant.group. 2600 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2601 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2602 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2603 } 2604 2605 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2606 bool KDominatesJ) { 2607 unsigned KnownIDs[] = { 2608 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2609 LLVMContext::MD_noalias, LLVMContext::MD_range, 2610 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2611 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2612 LLVMContext::MD_dereferenceable, 2613 LLVMContext::MD_dereferenceable_or_null, 2614 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2615 combineMetadata(K, J, KnownIDs, KDominatesJ); 2616 } 2617 2618 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2619 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2620 Source.getAllMetadata(MD); 2621 MDBuilder MDB(Dest.getContext()); 2622 Type *NewType = Dest.getType(); 2623 const DataLayout &DL = Source.getModule()->getDataLayout(); 2624 for (const auto &MDPair : MD) { 2625 unsigned ID = MDPair.first; 2626 MDNode *N = MDPair.second; 2627 // Note, essentially every kind of metadata should be preserved here! This 2628 // routine is supposed to clone a load instruction changing *only its type*. 2629 // The only metadata it makes sense to drop is metadata which is invalidated 2630 // when the pointer type changes. This should essentially never be the case 2631 // in LLVM, but we explicitly switch over only known metadata to be 2632 // conservatively correct. If you are adding metadata to LLVM which pertains 2633 // to loads, you almost certainly want to add it here. 2634 switch (ID) { 2635 case LLVMContext::MD_dbg: 2636 case LLVMContext::MD_tbaa: 2637 case LLVMContext::MD_prof: 2638 case LLVMContext::MD_fpmath: 2639 case LLVMContext::MD_tbaa_struct: 2640 case LLVMContext::MD_invariant_load: 2641 case LLVMContext::MD_alias_scope: 2642 case LLVMContext::MD_noalias: 2643 case LLVMContext::MD_nontemporal: 2644 case LLVMContext::MD_mem_parallel_loop_access: 2645 case LLVMContext::MD_access_group: 2646 // All of these directly apply. 2647 Dest.setMetadata(ID, N); 2648 break; 2649 2650 case LLVMContext::MD_nonnull: 2651 copyNonnullMetadata(Source, N, Dest); 2652 break; 2653 2654 case LLVMContext::MD_align: 2655 case LLVMContext::MD_dereferenceable: 2656 case LLVMContext::MD_dereferenceable_or_null: 2657 // These only directly apply if the new type is also a pointer. 2658 if (NewType->isPointerTy()) 2659 Dest.setMetadata(ID, N); 2660 break; 2661 2662 case LLVMContext::MD_range: 2663 copyRangeMetadata(DL, Source, N, Dest); 2664 break; 2665 } 2666 } 2667 } 2668 2669 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2670 auto *ReplInst = dyn_cast<Instruction>(Repl); 2671 if (!ReplInst) 2672 return; 2673 2674 // Patch the replacement so that it is not more restrictive than the value 2675 // being replaced. 2676 // Note that if 'I' is a load being replaced by some operation, 2677 // for example, by an arithmetic operation, then andIRFlags() 2678 // would just erase all math flags from the original arithmetic 2679 // operation, which is clearly not wanted and not needed. 2680 if (!isa<LoadInst>(I)) 2681 ReplInst->andIRFlags(I); 2682 2683 // FIXME: If both the original and replacement value are part of the 2684 // same control-flow region (meaning that the execution of one 2685 // guarantees the execution of the other), then we can combine the 2686 // noalias scopes here and do better than the general conservative 2687 // answer used in combineMetadata(). 2688 2689 // In general, GVN unifies expressions over different control-flow 2690 // regions, and so we need a conservative combination of the noalias 2691 // scopes. 2692 static const unsigned KnownIDs[] = { 2693 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2694 LLVMContext::MD_noalias, LLVMContext::MD_range, 2695 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2696 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2697 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2698 combineMetadata(ReplInst, I, KnownIDs, false); 2699 } 2700 2701 template <typename RootType, typename DominatesFn> 2702 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2703 const RootType &Root, 2704 const DominatesFn &Dominates) { 2705 assert(From->getType() == To->getType()); 2706 2707 unsigned Count = 0; 2708 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2709 if (!Dominates(Root, U)) 2710 continue; 2711 U.set(To); 2712 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2713 << "' as " << *To << " in " << *U << "\n"); 2714 ++Count; 2715 } 2716 return Count; 2717 } 2718 2719 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2720 assert(From->getType() == To->getType()); 2721 auto *BB = From->getParent(); 2722 unsigned Count = 0; 2723 2724 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2725 auto *I = cast<Instruction>(U.getUser()); 2726 if (I->getParent() == BB) 2727 continue; 2728 U.set(To); 2729 ++Count; 2730 } 2731 return Count; 2732 } 2733 2734 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2735 DominatorTree &DT, 2736 const BasicBlockEdge &Root) { 2737 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2738 return DT.dominates(Root, U); 2739 }; 2740 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2741 } 2742 2743 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2744 DominatorTree &DT, 2745 const BasicBlock *BB) { 2746 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2747 return DT.dominates(BB, U); 2748 }; 2749 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2750 } 2751 2752 bool llvm::callsGCLeafFunction(const CallBase *Call, 2753 const TargetLibraryInfo &TLI) { 2754 // Check if the function is specifically marked as a gc leaf function. 2755 if (Call->hasFnAttr("gc-leaf-function")) 2756 return true; 2757 if (const Function *F = Call->getCalledFunction()) { 2758 if (F->hasFnAttribute("gc-leaf-function")) 2759 return true; 2760 2761 if (auto IID = F->getIntrinsicID()) { 2762 // Most LLVM intrinsics do not take safepoints. 2763 return IID != Intrinsic::experimental_gc_statepoint && 2764 IID != Intrinsic::experimental_deoptimize && 2765 IID != Intrinsic::memcpy_element_unordered_atomic && 2766 IID != Intrinsic::memmove_element_unordered_atomic; 2767 } 2768 } 2769 2770 // Lib calls can be materialized by some passes, and won't be 2771 // marked as 'gc-leaf-function.' All available Libcalls are 2772 // GC-leaf. 2773 LibFunc LF; 2774 if (TLI.getLibFunc(*Call, LF)) { 2775 return TLI.has(LF); 2776 } 2777 2778 return false; 2779 } 2780 2781 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2782 LoadInst &NewLI) { 2783 auto *NewTy = NewLI.getType(); 2784 2785 // This only directly applies if the new type is also a pointer. 2786 if (NewTy->isPointerTy()) { 2787 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2788 return; 2789 } 2790 2791 // The only other translation we can do is to integral loads with !range 2792 // metadata. 2793 if (!NewTy->isIntegerTy()) 2794 return; 2795 2796 MDBuilder MDB(NewLI.getContext()); 2797 const Value *Ptr = OldLI.getPointerOperand(); 2798 auto *ITy = cast<IntegerType>(NewTy); 2799 auto *NullInt = ConstantExpr::getPtrToInt( 2800 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2801 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2802 NewLI.setMetadata(LLVMContext::MD_range, 2803 MDB.createRange(NonNullInt, NullInt)); 2804 } 2805 2806 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2807 MDNode *N, LoadInst &NewLI) { 2808 auto *NewTy = NewLI.getType(); 2809 2810 // Give up unless it is converted to a pointer where there is a single very 2811 // valuable mapping we can do reliably. 2812 // FIXME: It would be nice to propagate this in more ways, but the type 2813 // conversions make it hard. 2814 if (!NewTy->isPointerTy()) 2815 return; 2816 2817 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2818 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2819 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2820 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2821 } 2822 } 2823 2824 void llvm::dropDebugUsers(Instruction &I) { 2825 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2826 findDbgUsers(DbgUsers, &I); 2827 for (auto *DII : DbgUsers) 2828 DII->eraseFromParent(); 2829 } 2830 2831 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2832 BasicBlock *BB) { 2833 // Since we are moving the instructions out of its basic block, we do not 2834 // retain their original debug locations (DILocations) and debug intrinsic 2835 // instructions. 2836 // 2837 // Doing so would degrade the debugging experience and adversely affect the 2838 // accuracy of profiling information. 2839 // 2840 // Currently, when hoisting the instructions, we take the following actions: 2841 // - Remove their debug intrinsic instructions. 2842 // - Set their debug locations to the values from the insertion point. 2843 // 2844 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2845 // need to be deleted, is because there will not be any instructions with a 2846 // DILocation in either branch left after performing the transformation. We 2847 // can only insert a dbg.value after the two branches are joined again. 2848 // 2849 // See PR38762, PR39243 for more details. 2850 // 2851 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2852 // encode predicated DIExpressions that yield different results on different 2853 // code paths. 2854 2855 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2856 Instruction *I = &*II; 2857 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2858 if (I->isUsedByMetadata()) 2859 dropDebugUsers(*I); 2860 if (I->isDebugOrPseudoInst()) { 2861 // Remove DbgInfo and pseudo probe Intrinsics. 2862 II = I->eraseFromParent(); 2863 continue; 2864 } 2865 I->setDebugLoc(InsertPt->getDebugLoc()); 2866 ++II; 2867 } 2868 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2869 BB->begin(), 2870 BB->getTerminator()->getIterator()); 2871 } 2872 2873 namespace { 2874 2875 /// A potential constituent of a bitreverse or bswap expression. See 2876 /// collectBitParts for a fuller explanation. 2877 struct BitPart { 2878 BitPart(Value *P, unsigned BW) : Provider(P) { 2879 Provenance.resize(BW); 2880 } 2881 2882 /// The Value that this is a bitreverse/bswap of. 2883 Value *Provider; 2884 2885 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2886 /// in Provider becomes bit B in the result of this expression. 2887 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2888 2889 enum { Unset = -1 }; 2890 }; 2891 2892 } // end anonymous namespace 2893 2894 /// Analyze the specified subexpression and see if it is capable of providing 2895 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2896 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2897 /// the output of the expression came from a corresponding bit in some other 2898 /// value. This function is recursive, and the end result is a mapping of 2899 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2900 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2901 /// 2902 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2903 /// that the expression deposits the low byte of %X into the high byte of the 2904 /// result and that all other bits are zero. This expression is accepted and a 2905 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2906 /// [0-7]. 2907 /// 2908 /// For vector types, all analysis is performed at the per-element level. No 2909 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2910 /// constant masks must be splatted across all elements. 2911 /// 2912 /// To avoid revisiting values, the BitPart results are memoized into the 2913 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2914 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2915 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2916 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2917 /// type instead to provide the same functionality. 2918 /// 2919 /// Because we pass around references into \c BPS, we must use a container that 2920 /// does not invalidate internal references (std::map instead of DenseMap). 2921 static const Optional<BitPart> & 2922 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2923 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2924 bool &FoundRoot) { 2925 auto I = BPS.find(V); 2926 if (I != BPS.end()) 2927 return I->second; 2928 2929 auto &Result = BPS[V] = None; 2930 auto BitWidth = V->getType()->getScalarSizeInBits(); 2931 2932 // Can't do integer/elements > 128 bits. 2933 if (BitWidth > 128) 2934 return Result; 2935 2936 // Prevent stack overflow by limiting the recursion depth 2937 if (Depth == BitPartRecursionMaxDepth) { 2938 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2939 return Result; 2940 } 2941 2942 if (auto *I = dyn_cast<Instruction>(V)) { 2943 Value *X, *Y; 2944 const APInt *C; 2945 2946 // If this is an or instruction, it may be an inner node of the bswap. 2947 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2948 // Check we have both sources and they are from the same provider. 2949 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2950 Depth + 1, FoundRoot); 2951 if (!A || !A->Provider) 2952 return Result; 2953 2954 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2955 Depth + 1, FoundRoot); 2956 if (!B || A->Provider != B->Provider) 2957 return Result; 2958 2959 // Try and merge the two together. 2960 Result = BitPart(A->Provider, BitWidth); 2961 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2962 if (A->Provenance[BitIdx] != BitPart::Unset && 2963 B->Provenance[BitIdx] != BitPart::Unset && 2964 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2965 return Result = None; 2966 2967 if (A->Provenance[BitIdx] == BitPart::Unset) 2968 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2969 else 2970 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2971 } 2972 2973 return Result; 2974 } 2975 2976 // If this is a logical shift by a constant, recurse then shift the result. 2977 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2978 const APInt &BitShift = *C; 2979 2980 // Ensure the shift amount is defined. 2981 if (BitShift.uge(BitWidth)) 2982 return Result; 2983 2984 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2985 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2986 return Result; 2987 2988 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2989 Depth + 1, FoundRoot); 2990 if (!Res) 2991 return Result; 2992 Result = Res; 2993 2994 // Perform the "shift" on BitProvenance. 2995 auto &P = Result->Provenance; 2996 if (I->getOpcode() == Instruction::Shl) { 2997 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2998 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2999 } else { 3000 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3001 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3002 } 3003 3004 return Result; 3005 } 3006 3007 // If this is a logical 'and' with a mask that clears bits, recurse then 3008 // unset the appropriate bits. 3009 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3010 const APInt &AndMask = *C; 3011 3012 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3013 // early exit. 3014 unsigned NumMaskedBits = AndMask.countPopulation(); 3015 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3016 return Result; 3017 3018 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3019 Depth + 1, FoundRoot); 3020 if (!Res) 3021 return Result; 3022 Result = Res; 3023 3024 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3025 // If the AndMask is zero for this bit, clear the bit. 3026 if (AndMask[BitIdx] == 0) 3027 Result->Provenance[BitIdx] = BitPart::Unset; 3028 return Result; 3029 } 3030 3031 // If this is a zext instruction zero extend the result. 3032 if (match(V, m_ZExt(m_Value(X)))) { 3033 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3034 Depth + 1, FoundRoot); 3035 if (!Res) 3036 return Result; 3037 3038 Result = BitPart(Res->Provider, BitWidth); 3039 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3040 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3041 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3042 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3043 Result->Provenance[BitIdx] = BitPart::Unset; 3044 return Result; 3045 } 3046 3047 // If this is a truncate instruction, extract the lower bits. 3048 if (match(V, m_Trunc(m_Value(X)))) { 3049 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3050 Depth + 1, FoundRoot); 3051 if (!Res) 3052 return Result; 3053 3054 Result = BitPart(Res->Provider, BitWidth); 3055 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3056 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3057 return Result; 3058 } 3059 3060 // BITREVERSE - most likely due to us previous matching a partial 3061 // bitreverse. 3062 if (match(V, m_BitReverse(m_Value(X)))) { 3063 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3064 Depth + 1, FoundRoot); 3065 if (!Res) 3066 return Result; 3067 3068 Result = BitPart(Res->Provider, BitWidth); 3069 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3070 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3071 return Result; 3072 } 3073 3074 // BSWAP - most likely due to us previous matching a partial bswap. 3075 if (match(V, m_BSwap(m_Value(X)))) { 3076 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3077 Depth + 1, FoundRoot); 3078 if (!Res) 3079 return Result; 3080 3081 unsigned ByteWidth = BitWidth / 8; 3082 Result = BitPart(Res->Provider, BitWidth); 3083 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3084 unsigned ByteBitOfs = ByteIdx * 8; 3085 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3086 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3087 Res->Provenance[ByteBitOfs + BitIdx]; 3088 } 3089 return Result; 3090 } 3091 3092 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3093 // amount (modulo). 3094 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3095 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3096 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3097 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3098 // We can treat fshr as a fshl by flipping the modulo amount. 3099 unsigned ModAmt = C->urem(BitWidth); 3100 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3101 ModAmt = BitWidth - ModAmt; 3102 3103 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3104 if (!MatchBitReversals && (ModAmt % 8) != 0) 3105 return Result; 3106 3107 // Check we have both sources and they are from the same provider. 3108 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3109 Depth + 1, FoundRoot); 3110 if (!LHS || !LHS->Provider) 3111 return Result; 3112 3113 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3114 Depth + 1, FoundRoot); 3115 if (!RHS || LHS->Provider != RHS->Provider) 3116 return Result; 3117 3118 unsigned StartBitRHS = BitWidth - ModAmt; 3119 Result = BitPart(LHS->Provider, BitWidth); 3120 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3121 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3122 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3123 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3124 return Result; 3125 } 3126 } 3127 3128 // If we've already found a root input value then we're never going to merge 3129 // these back together. 3130 if (FoundRoot) 3131 return Result; 3132 3133 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3134 // be the root input value to the bswap/bitreverse. 3135 FoundRoot = true; 3136 Result = BitPart(V, BitWidth); 3137 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3138 Result->Provenance[BitIdx] = BitIdx; 3139 return Result; 3140 } 3141 3142 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3143 unsigned BitWidth) { 3144 if (From % 8 != To % 8) 3145 return false; 3146 // Convert from bit indices to byte indices and check for a byte reversal. 3147 From >>= 3; 3148 To >>= 3; 3149 BitWidth >>= 3; 3150 return From == BitWidth - To - 1; 3151 } 3152 3153 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3154 unsigned BitWidth) { 3155 return From == BitWidth - To - 1; 3156 } 3157 3158 bool llvm::recognizeBSwapOrBitReverseIdiom( 3159 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3160 SmallVectorImpl<Instruction *> &InsertedInsts) { 3161 if (!match(I, m_Or(m_Value(), m_Value())) && 3162 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3163 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3164 return false; 3165 if (!MatchBSwaps && !MatchBitReversals) 3166 return false; 3167 Type *ITy = I->getType(); 3168 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3169 return false; // Can't do integer/elements > 128 bits. 3170 3171 // Try to find all the pieces corresponding to the bswap. 3172 bool FoundRoot = false; 3173 std::map<Value *, Optional<BitPart>> BPS; 3174 const auto &Res = 3175 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3176 if (!Res) 3177 return false; 3178 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3179 assert(all_of(BitProvenance, 3180 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3181 "Illegal bit provenance index"); 3182 3183 // If the upper bits are zero, then attempt to perform as a truncated op. 3184 Type *DemandedTy = ITy; 3185 if (BitProvenance.back() == BitPart::Unset) { 3186 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3187 BitProvenance = BitProvenance.drop_back(); 3188 if (BitProvenance.empty()) 3189 return false; // TODO - handle null value? 3190 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3191 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3192 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3193 } 3194 3195 // Check BitProvenance hasn't found a source larger than the result type. 3196 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3197 if (DemandedBW > ITy->getScalarSizeInBits()) 3198 return false; 3199 3200 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3201 // only byteswap values with an even number of bytes. 3202 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3203 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3204 bool OKForBitReverse = MatchBitReversals; 3205 for (unsigned BitIdx = 0; 3206 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3207 if (BitProvenance[BitIdx] == BitPart::Unset) { 3208 DemandedMask.clearBit(BitIdx); 3209 continue; 3210 } 3211 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3212 DemandedBW); 3213 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3214 BitIdx, DemandedBW); 3215 } 3216 3217 Intrinsic::ID Intrin; 3218 if (OKForBSwap) 3219 Intrin = Intrinsic::bswap; 3220 else if (OKForBitReverse) 3221 Intrin = Intrinsic::bitreverse; 3222 else 3223 return false; 3224 3225 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3226 Value *Provider = Res->Provider; 3227 3228 // We may need to truncate the provider. 3229 if (DemandedTy != Provider->getType()) { 3230 auto *Trunc = 3231 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3232 InsertedInsts.push_back(Trunc); 3233 Provider = Trunc; 3234 } 3235 3236 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3237 InsertedInsts.push_back(Result); 3238 3239 if (!DemandedMask.isAllOnes()) { 3240 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3241 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3242 InsertedInsts.push_back(Result); 3243 } 3244 3245 // We may need to zeroextend back to the result type. 3246 if (ITy != Result->getType()) { 3247 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3248 InsertedInsts.push_back(ExtInst); 3249 } 3250 3251 return true; 3252 } 3253 3254 // CodeGen has special handling for some string functions that may replace 3255 // them with target-specific intrinsics. Since that'd skip our interceptors 3256 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3257 // we mark affected calls as NoBuiltin, which will disable optimization 3258 // in CodeGen. 3259 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3260 CallInst *CI, const TargetLibraryInfo *TLI) { 3261 Function *F = CI->getCalledFunction(); 3262 LibFunc Func; 3263 if (F && !F->hasLocalLinkage() && F->hasName() && 3264 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3265 !F->doesNotAccessMemory()) 3266 CI->addFnAttr(Attribute::NoBuiltin); 3267 } 3268 3269 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3270 // We can't have a PHI with a metadata type. 3271 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3272 return false; 3273 3274 // Early exit. 3275 if (!isa<Constant>(I->getOperand(OpIdx))) 3276 return true; 3277 3278 switch (I->getOpcode()) { 3279 default: 3280 return true; 3281 case Instruction::Call: 3282 case Instruction::Invoke: { 3283 const auto &CB = cast<CallBase>(*I); 3284 3285 // Can't handle inline asm. Skip it. 3286 if (CB.isInlineAsm()) 3287 return false; 3288 3289 // Constant bundle operands may need to retain their constant-ness for 3290 // correctness. 3291 if (CB.isBundleOperand(OpIdx)) 3292 return false; 3293 3294 if (OpIdx < CB.arg_size()) { 3295 // Some variadic intrinsics require constants in the variadic arguments, 3296 // which currently aren't markable as immarg. 3297 if (isa<IntrinsicInst>(CB) && 3298 OpIdx >= CB.getFunctionType()->getNumParams()) { 3299 // This is known to be OK for stackmap. 3300 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3301 } 3302 3303 // gcroot is a special case, since it requires a constant argument which 3304 // isn't also required to be a simple ConstantInt. 3305 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3306 return false; 3307 3308 // Some intrinsic operands are required to be immediates. 3309 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3310 } 3311 3312 // It is never allowed to replace the call argument to an intrinsic, but it 3313 // may be possible for a call. 3314 return !isa<IntrinsicInst>(CB); 3315 } 3316 case Instruction::ShuffleVector: 3317 // Shufflevector masks are constant. 3318 return OpIdx != 2; 3319 case Instruction::Switch: 3320 case Instruction::ExtractValue: 3321 // All operands apart from the first are constant. 3322 return OpIdx == 0; 3323 case Instruction::InsertValue: 3324 // All operands apart from the first and the second are constant. 3325 return OpIdx < 2; 3326 case Instruction::Alloca: 3327 // Static allocas (constant size in the entry block) are handled by 3328 // prologue/epilogue insertion so they're free anyway. We definitely don't 3329 // want to make them non-constant. 3330 return !cast<AllocaInst>(I)->isStaticAlloca(); 3331 case Instruction::GetElementPtr: 3332 if (OpIdx == 0) 3333 return true; 3334 gep_type_iterator It = gep_type_begin(I); 3335 for (auto E = std::next(It, OpIdx); It != E; ++It) 3336 if (It.isStruct()) 3337 return false; 3338 return true; 3339 } 3340 } 3341 3342 Value *llvm::invertCondition(Value *Condition) { 3343 // First: Check if it's a constant 3344 if (Constant *C = dyn_cast<Constant>(Condition)) 3345 return ConstantExpr::getNot(C); 3346 3347 // Second: If the condition is already inverted, return the original value 3348 Value *NotCondition; 3349 if (match(Condition, m_Not(m_Value(NotCondition)))) 3350 return NotCondition; 3351 3352 BasicBlock *Parent = nullptr; 3353 Instruction *Inst = dyn_cast<Instruction>(Condition); 3354 if (Inst) 3355 Parent = Inst->getParent(); 3356 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3357 Parent = &Arg->getParent()->getEntryBlock(); 3358 assert(Parent && "Unsupported condition to invert"); 3359 3360 // Third: Check all the users for an invert 3361 for (User *U : Condition->users()) 3362 if (Instruction *I = dyn_cast<Instruction>(U)) 3363 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3364 return I; 3365 3366 // Last option: Create a new instruction 3367 auto *Inverted = 3368 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3369 if (Inst && !isa<PHINode>(Inst)) 3370 Inverted->insertAfter(Inst); 3371 else 3372 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3373 return Inverted; 3374 } 3375 3376 bool llvm::inferAttributesFromOthers(Function &F) { 3377 // Note: We explicitly check for attributes rather than using cover functions 3378 // because some of the cover functions include the logic being implemented. 3379 3380 bool Changed = false; 3381 // readnone + not convergent implies nosync 3382 if (!F.hasFnAttribute(Attribute::NoSync) && 3383 F.doesNotAccessMemory() && !F.isConvergent()) { 3384 F.setNoSync(); 3385 Changed = true; 3386 } 3387 3388 // readonly implies nofree 3389 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3390 F.setDoesNotFreeMemory(); 3391 Changed = true; 3392 } 3393 3394 // willreturn implies mustprogress 3395 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3396 F.setMustProgress(); 3397 Changed = true; 3398 } 3399 3400 // TODO: There are a bunch of cases of restrictive memory effects we 3401 // can infer by inspecting arguments of argmemonly-ish functions. 3402 3403 return Changed; 3404 } 3405