1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemoryBuiltins.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87 
88 #define DEBUG_TYPE "local"
89 
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
92 
93 static cl::opt<bool> PHICSEDebugHash(
94     "phicse-debug-hash",
95 #ifdef EXPENSIVE_CHECKS
96     cl::init(true),
97 #else
98     cl::init(false),
99 #endif
100     cl::Hidden,
101     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
102              "function is well-behaved w.r.t. its isEqual predicate"));
103 
104 static cl::opt<unsigned> PHICSENumPHISmallSize(
105     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
106     cl::desc(
107         "When the basic block contains not more than this number of PHI nodes, "
108         "perform a (faster!) exhaustive search instead of set-driven one."));
109 
110 // Max recursion depth for collectBitParts used when detecting bswap and
111 // bitreverse idioms.
112 static const unsigned BitPartRecursionMaxDepth = 48;
113 
114 //===----------------------------------------------------------------------===//
115 //  Local constant propagation.
116 //
117 
118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
119 /// constant value, convert it into an unconditional branch to the constant
120 /// destination.  This is a nontrivial operation because the successors of this
121 /// basic block must have their PHI nodes updated.
122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
123 /// conditions and indirectbr addresses this might make dead if
124 /// DeleteDeadConditions is true.
125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
126                                   const TargetLibraryInfo *TLI,
127                                   DomTreeUpdater *DTU) {
128   Instruction *T = BB->getTerminator();
129   IRBuilder<> Builder(T);
130 
131   // Branch - See if we are conditional jumping on constant
132   if (auto *BI = dyn_cast<BranchInst>(T)) {
133     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
134 
135     BasicBlock *Dest1 = BI->getSuccessor(0);
136     BasicBlock *Dest2 = BI->getSuccessor(1);
137 
138     if (Dest2 == Dest1) {       // Conditional branch to same location?
139       // This branch matches something like this:
140       //     br bool %cond, label %Dest, label %Dest
141       // and changes it into:  br label %Dest
142 
143       // Let the basic block know that we are letting go of one copy of it.
144       assert(BI->getParent() && "Terminator not inserted in block!");
145       Dest1->removePredecessor(BI->getParent());
146 
147       // Replace the conditional branch with an unconditional one.
148       BranchInst *NewBI = Builder.CreateBr(Dest1);
149 
150       // Transfer the metadata to the new branch instruction.
151       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
152                                 LLVMContext::MD_annotation});
153 
154       Value *Cond = BI->getCondition();
155       BI->eraseFromParent();
156       if (DeleteDeadConditions)
157         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
158       return true;
159     }
160 
161     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
162       // Are we branching on constant?
163       // YES.  Change to unconditional branch...
164       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
165       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
166 
167       // Let the basic block know that we are letting go of it.  Based on this,
168       // it will adjust it's PHI nodes.
169       OldDest->removePredecessor(BB);
170 
171       // Replace the conditional branch with an unconditional one.
172       BranchInst *NewBI = Builder.CreateBr(Destination);
173 
174       // Transfer the metadata to the new branch instruction.
175       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
176                                 LLVMContext::MD_annotation});
177 
178       BI->eraseFromParent();
179       if (DTU)
180         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
181       return true;
182     }
183 
184     return false;
185   }
186 
187   if (auto *SI = dyn_cast<SwitchInst>(T)) {
188     // If we are switching on a constant, we can convert the switch to an
189     // unconditional branch.
190     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
191     BasicBlock *DefaultDest = SI->getDefaultDest();
192     BasicBlock *TheOnlyDest = DefaultDest;
193 
194     // If the default is unreachable, ignore it when searching for TheOnlyDest.
195     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
196         SI->getNumCases() > 0) {
197       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
198     }
199 
200     bool Changed = false;
201 
202     // Figure out which case it goes to.
203     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
204       // Found case matching a constant operand?
205       if (i->getCaseValue() == CI) {
206         TheOnlyDest = i->getCaseSuccessor();
207         break;
208       }
209 
210       // Check to see if this branch is going to the same place as the default
211       // dest.  If so, eliminate it as an explicit compare.
212       if (i->getCaseSuccessor() == DefaultDest) {
213         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
214         unsigned NCases = SI->getNumCases();
215         // Fold the case metadata into the default if there will be any branches
216         // left, unless the metadata doesn't match the switch.
217         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
218           // Collect branch weights into a vector.
219           SmallVector<uint32_t, 8> Weights;
220           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
221                ++MD_i) {
222             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
223             Weights.push_back(CI->getValue().getZExtValue());
224           }
225           // Merge weight of this case to the default weight.
226           unsigned idx = i->getCaseIndex();
227           Weights[0] += Weights[idx+1];
228           // Remove weight for this case.
229           std::swap(Weights[idx+1], Weights.back());
230           Weights.pop_back();
231           SI->setMetadata(LLVMContext::MD_prof,
232                           MDBuilder(BB->getContext()).
233                           createBranchWeights(Weights));
234         }
235         // Remove this entry.
236         BasicBlock *ParentBB = SI->getParent();
237         DefaultDest->removePredecessor(ParentBB);
238         i = SI->removeCase(i);
239         e = SI->case_end();
240         Changed = true;
241         continue;
242       }
243 
244       // Otherwise, check to see if the switch only branches to one destination.
245       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
246       // destinations.
247       if (i->getCaseSuccessor() != TheOnlyDest)
248         TheOnlyDest = nullptr;
249 
250       // Increment this iterator as we haven't removed the case.
251       ++i;
252     }
253 
254     if (CI && !TheOnlyDest) {
255       // Branching on a constant, but not any of the cases, go to the default
256       // successor.
257       TheOnlyDest = SI->getDefaultDest();
258     }
259 
260     // If we found a single destination that we can fold the switch into, do so
261     // now.
262     if (TheOnlyDest) {
263       // Insert the new branch.
264       Builder.CreateBr(TheOnlyDest);
265       BasicBlock *BB = SI->getParent();
266 
267       SmallSet<BasicBlock *, 8> RemovedSuccessors;
268 
269       // Remove entries from PHI nodes which we no longer branch to...
270       BasicBlock *SuccToKeep = TheOnlyDest;
271       for (BasicBlock *Succ : successors(SI)) {
272         if (DTU && Succ != TheOnlyDest)
273           RemovedSuccessors.insert(Succ);
274         // Found case matching a constant operand?
275         if (Succ == SuccToKeep) {
276           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
277         } else {
278           Succ->removePredecessor(BB);
279         }
280       }
281 
282       // Delete the old switch.
283       Value *Cond = SI->getCondition();
284       SI->eraseFromParent();
285       if (DeleteDeadConditions)
286         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
287       if (DTU) {
288         std::vector<DominatorTree::UpdateType> Updates;
289         Updates.reserve(RemovedSuccessors.size());
290         for (auto *RemovedSuccessor : RemovedSuccessors)
291           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
292         DTU->applyUpdates(Updates);
293       }
294       return true;
295     }
296 
297     if (SI->getNumCases() == 1) {
298       // Otherwise, we can fold this switch into a conditional branch
299       // instruction if it has only one non-default destination.
300       auto FirstCase = *SI->case_begin();
301       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
302           FirstCase.getCaseValue(), "cond");
303 
304       // Insert the new branch.
305       BranchInst *NewBr = Builder.CreateCondBr(Cond,
306                                                FirstCase.getCaseSuccessor(),
307                                                SI->getDefaultDest());
308       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
309       if (MD && MD->getNumOperands() == 3) {
310         ConstantInt *SICase =
311             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
312         ConstantInt *SIDef =
313             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
314         assert(SICase && SIDef);
315         // The TrueWeight should be the weight for the single case of SI.
316         NewBr->setMetadata(LLVMContext::MD_prof,
317                         MDBuilder(BB->getContext()).
318                         createBranchWeights(SICase->getValue().getZExtValue(),
319                                             SIDef->getValue().getZExtValue()));
320       }
321 
322       // Update make.implicit metadata to the newly-created conditional branch.
323       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
324       if (MakeImplicitMD)
325         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
326 
327       // Delete the old switch.
328       SI->eraseFromParent();
329       return true;
330     }
331     return Changed;
332   }
333 
334   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
335     // indirectbr blockaddress(@F, @BB) -> br label @BB
336     if (auto *BA =
337           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
338       BasicBlock *TheOnlyDest = BA->getBasicBlock();
339       SmallSet<BasicBlock *, 8> RemovedSuccessors;
340 
341       // Insert the new branch.
342       Builder.CreateBr(TheOnlyDest);
343 
344       BasicBlock *SuccToKeep = TheOnlyDest;
345       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
346         BasicBlock *DestBB = IBI->getDestination(i);
347         if (DTU && DestBB != TheOnlyDest)
348           RemovedSuccessors.insert(DestBB);
349         if (IBI->getDestination(i) == SuccToKeep) {
350           SuccToKeep = nullptr;
351         } else {
352           DestBB->removePredecessor(BB);
353         }
354       }
355       Value *Address = IBI->getAddress();
356       IBI->eraseFromParent();
357       if (DeleteDeadConditions)
358         // Delete pointer cast instructions.
359         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
360 
361       // Also zap the blockaddress constant if there are no users remaining,
362       // otherwise the destination is still marked as having its address taken.
363       if (BA->use_empty())
364         BA->destroyConstant();
365 
366       // If we didn't find our destination in the IBI successor list, then we
367       // have undefined behavior.  Replace the unconditional branch with an
368       // 'unreachable' instruction.
369       if (SuccToKeep) {
370         BB->getTerminator()->eraseFromParent();
371         new UnreachableInst(BB->getContext(), BB);
372       }
373 
374       if (DTU) {
375         std::vector<DominatorTree::UpdateType> Updates;
376         Updates.reserve(RemovedSuccessors.size());
377         for (auto *RemovedSuccessor : RemovedSuccessors)
378           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
379         DTU->applyUpdates(Updates);
380       }
381       return true;
382     }
383   }
384 
385   return false;
386 }
387 
388 //===----------------------------------------------------------------------===//
389 //  Local dead code elimination.
390 //
391 
392 /// isInstructionTriviallyDead - Return true if the result produced by the
393 /// instruction is not used, and the instruction has no side effects.
394 ///
395 bool llvm::isInstructionTriviallyDead(Instruction *I,
396                                       const TargetLibraryInfo *TLI) {
397   if (!I->use_empty())
398     return false;
399   return wouldInstructionBeTriviallyDead(I, TLI);
400 }
401 
402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
403     Instruction *I, const TargetLibraryInfo *TLI) {
404   // Instructions that are "markers" and have implied meaning on code around
405   // them (without explicit uses), are not dead on unused paths.
406   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
407     if (II->getIntrinsicID() == Intrinsic::stacksave ||
408         II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
409         II->isLifetimeStartOrEnd())
410       return false;
411   return wouldInstructionBeTriviallyDead(I, TLI);
412 }
413 
414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
415                                            const TargetLibraryInfo *TLI) {
416   if (I->isTerminator())
417     return false;
418 
419   // We don't want the landingpad-like instructions removed by anything this
420   // general.
421   if (I->isEHPad())
422     return false;
423 
424   // We don't want debug info removed by anything this general, unless
425   // debug info is empty.
426   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
427     if (DDI->getAddress())
428       return false;
429     return true;
430   }
431   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
432     if (DVI->hasArgList() || DVI->getValue(0))
433       return false;
434     return true;
435   }
436   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
437     if (DLI->getLabel())
438       return false;
439     return true;
440   }
441 
442   if (!I->willReturn())
443     return false;
444 
445   if (!I->mayHaveSideEffects())
446     return true;
447 
448   // Special case intrinsics that "may have side effects" but can be deleted
449   // when dead.
450   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
451     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
452     if (II->getIntrinsicID() == Intrinsic::stacksave ||
453         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
454       return true;
455 
456     if (II->isLifetimeStartOrEnd()) {
457       auto *Arg = II->getArgOperand(1);
458       // Lifetime intrinsics are dead when their right-hand is undef.
459       if (isa<UndefValue>(Arg))
460         return true;
461       // If the right-hand is an alloc, global, or argument and the only uses
462       // are lifetime intrinsics then the intrinsics are dead.
463       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
464         return llvm::all_of(Arg->uses(), [](Use &Use) {
465           if (IntrinsicInst *IntrinsicUse =
466                   dyn_cast<IntrinsicInst>(Use.getUser()))
467             return IntrinsicUse->isLifetimeStartOrEnd();
468           return false;
469         });
470       return false;
471     }
472 
473     // Assumptions are dead if their condition is trivially true.  Guards on
474     // true are operationally no-ops.  In the future we can consider more
475     // sophisticated tradeoffs for guards considering potential for check
476     // widening, but for now we keep things simple.
477     if ((II->getIntrinsicID() == Intrinsic::assume &&
478          isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
479         II->getIntrinsicID() == Intrinsic::experimental_guard) {
480       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
481         return !Cond->isZero();
482 
483       return false;
484     }
485 
486     if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
487       Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior();
488       return ExBehavior.getValue() != fp::ebStrict;
489     }
490   }
491 
492   if (isAllocationFn(I, TLI) && isAllocRemovable(cast<CallBase>(I), TLI))
493     return true;
494 
495   if (CallInst *CI = isFreeCall(I, TLI))
496     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
497       return C->isNullValue() || isa<UndefValue>(C);
498 
499   if (auto *Call = dyn_cast<CallBase>(I))
500     if (isMathLibCallNoop(Call, TLI))
501       return true;
502 
503   // To express possible interaction with floating point environment constrained
504   // intrinsics are described as if they access memory. So they look like having
505   // side effect but actually do not have it unless they raise floating point
506   // exception. If FP exceptions are ignored, the intrinsic may be deleted.
507   if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
508     Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
509     if (!EB || *EB == fp::ExceptionBehavior::ebIgnore)
510       return true;
511   }
512 
513   return false;
514 }
515 
516 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
517 /// trivially dead instruction, delete it.  If that makes any of its operands
518 /// trivially dead, delete them too, recursively.  Return true if any
519 /// instructions were deleted.
520 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
521     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
522     std::function<void(Value *)> AboutToDeleteCallback) {
523   Instruction *I = dyn_cast<Instruction>(V);
524   if (!I || !isInstructionTriviallyDead(I, TLI))
525     return false;
526 
527   SmallVector<WeakTrackingVH, 16> DeadInsts;
528   DeadInsts.push_back(I);
529   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
530                                              AboutToDeleteCallback);
531 
532   return true;
533 }
534 
535 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
536     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
537     MemorySSAUpdater *MSSAU,
538     std::function<void(Value *)> AboutToDeleteCallback) {
539   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
540   for (; S != E; ++S) {
541     auto *I = dyn_cast<Instruction>(DeadInsts[S]);
542     if (!I || !isInstructionTriviallyDead(I)) {
543       DeadInsts[S] = nullptr;
544       ++Alive;
545     }
546   }
547   if (Alive == E)
548     return false;
549   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
550                                              AboutToDeleteCallback);
551   return true;
552 }
553 
554 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
555     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
556     MemorySSAUpdater *MSSAU,
557     std::function<void(Value *)> AboutToDeleteCallback) {
558   // Process the dead instruction list until empty.
559   while (!DeadInsts.empty()) {
560     Value *V = DeadInsts.pop_back_val();
561     Instruction *I = cast_or_null<Instruction>(V);
562     if (!I)
563       continue;
564     assert(isInstructionTriviallyDead(I, TLI) &&
565            "Live instruction found in dead worklist!");
566     assert(I->use_empty() && "Instructions with uses are not dead.");
567 
568     // Don't lose the debug info while deleting the instructions.
569     salvageDebugInfo(*I);
570 
571     if (AboutToDeleteCallback)
572       AboutToDeleteCallback(I);
573 
574     // Null out all of the instruction's operands to see if any operand becomes
575     // dead as we go.
576     for (Use &OpU : I->operands()) {
577       Value *OpV = OpU.get();
578       OpU.set(nullptr);
579 
580       if (!OpV->use_empty())
581         continue;
582 
583       // If the operand is an instruction that became dead as we nulled out the
584       // operand, and if it is 'trivially' dead, delete it in a future loop
585       // iteration.
586       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
587         if (isInstructionTriviallyDead(OpI, TLI))
588           DeadInsts.push_back(OpI);
589     }
590     if (MSSAU)
591       MSSAU->removeMemoryAccess(I);
592 
593     I->eraseFromParent();
594   }
595 }
596 
597 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
598   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
599   findDbgUsers(DbgUsers, I);
600   for (auto *DII : DbgUsers) {
601     Value *Undef = UndefValue::get(I->getType());
602     DII->replaceVariableLocationOp(I, Undef);
603   }
604   return !DbgUsers.empty();
605 }
606 
607 /// areAllUsesEqual - Check whether the uses of a value are all the same.
608 /// This is similar to Instruction::hasOneUse() except this will also return
609 /// true when there are no uses or multiple uses that all refer to the same
610 /// value.
611 static bool areAllUsesEqual(Instruction *I) {
612   Value::user_iterator UI = I->user_begin();
613   Value::user_iterator UE = I->user_end();
614   if (UI == UE)
615     return true;
616 
617   User *TheUse = *UI;
618   for (++UI; UI != UE; ++UI) {
619     if (*UI != TheUse)
620       return false;
621   }
622   return true;
623 }
624 
625 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
626 /// dead PHI node, due to being a def-use chain of single-use nodes that
627 /// either forms a cycle or is terminated by a trivially dead instruction,
628 /// delete it.  If that makes any of its operands trivially dead, delete them
629 /// too, recursively.  Return true if a change was made.
630 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
631                                         const TargetLibraryInfo *TLI,
632                                         llvm::MemorySSAUpdater *MSSAU) {
633   SmallPtrSet<Instruction*, 4> Visited;
634   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
635        I = cast<Instruction>(*I->user_begin())) {
636     if (I->use_empty())
637       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
638 
639     // If we find an instruction more than once, we're on a cycle that
640     // won't prove fruitful.
641     if (!Visited.insert(I).second) {
642       // Break the cycle and delete the instruction and its operands.
643       I->replaceAllUsesWith(UndefValue::get(I->getType()));
644       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
645       return true;
646     }
647   }
648   return false;
649 }
650 
651 static bool
652 simplifyAndDCEInstruction(Instruction *I,
653                           SmallSetVector<Instruction *, 16> &WorkList,
654                           const DataLayout &DL,
655                           const TargetLibraryInfo *TLI) {
656   if (isInstructionTriviallyDead(I, TLI)) {
657     salvageDebugInfo(*I);
658 
659     // Null out all of the instruction's operands to see if any operand becomes
660     // dead as we go.
661     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
662       Value *OpV = I->getOperand(i);
663       I->setOperand(i, nullptr);
664 
665       if (!OpV->use_empty() || I == OpV)
666         continue;
667 
668       // If the operand is an instruction that became dead as we nulled out the
669       // operand, and if it is 'trivially' dead, delete it in a future loop
670       // iteration.
671       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
672         if (isInstructionTriviallyDead(OpI, TLI))
673           WorkList.insert(OpI);
674     }
675 
676     I->eraseFromParent();
677 
678     return true;
679   }
680 
681   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
682     // Add the users to the worklist. CAREFUL: an instruction can use itself,
683     // in the case of a phi node.
684     for (User *U : I->users()) {
685       if (U != I) {
686         WorkList.insert(cast<Instruction>(U));
687       }
688     }
689 
690     // Replace the instruction with its simplified value.
691     bool Changed = false;
692     if (!I->use_empty()) {
693       I->replaceAllUsesWith(SimpleV);
694       Changed = true;
695     }
696     if (isInstructionTriviallyDead(I, TLI)) {
697       I->eraseFromParent();
698       Changed = true;
699     }
700     return Changed;
701   }
702   return false;
703 }
704 
705 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
706 /// simplify any instructions in it and recursively delete dead instructions.
707 ///
708 /// This returns true if it changed the code, note that it can delete
709 /// instructions in other blocks as well in this block.
710 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
711                                        const TargetLibraryInfo *TLI) {
712   bool MadeChange = false;
713   const DataLayout &DL = BB->getModule()->getDataLayout();
714 
715 #ifndef NDEBUG
716   // In debug builds, ensure that the terminator of the block is never replaced
717   // or deleted by these simplifications. The idea of simplification is that it
718   // cannot introduce new instructions, and there is no way to replace the
719   // terminator of a block without introducing a new instruction.
720   AssertingVH<Instruction> TerminatorVH(&BB->back());
721 #endif
722 
723   SmallSetVector<Instruction *, 16> WorkList;
724   // Iterate over the original function, only adding insts to the worklist
725   // if they actually need to be revisited. This avoids having to pre-init
726   // the worklist with the entire function's worth of instructions.
727   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
728        BI != E;) {
729     assert(!BI->isTerminator());
730     Instruction *I = &*BI;
731     ++BI;
732 
733     // We're visiting this instruction now, so make sure it's not in the
734     // worklist from an earlier visit.
735     if (!WorkList.count(I))
736       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
737   }
738 
739   while (!WorkList.empty()) {
740     Instruction *I = WorkList.pop_back_val();
741     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
742   }
743   return MadeChange;
744 }
745 
746 //===----------------------------------------------------------------------===//
747 //  Control Flow Graph Restructuring.
748 //
749 
750 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
751                                        DomTreeUpdater *DTU) {
752 
753   // If BB has single-entry PHI nodes, fold them.
754   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
755     Value *NewVal = PN->getIncomingValue(0);
756     // Replace self referencing PHI with undef, it must be dead.
757     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
758     PN->replaceAllUsesWith(NewVal);
759     PN->eraseFromParent();
760   }
761 
762   BasicBlock *PredBB = DestBB->getSinglePredecessor();
763   assert(PredBB && "Block doesn't have a single predecessor!");
764 
765   bool ReplaceEntryBB = PredBB->isEntryBlock();
766 
767   // DTU updates: Collect all the edges that enter
768   // PredBB. These dominator edges will be redirected to DestBB.
769   SmallVector<DominatorTree::UpdateType, 32> Updates;
770 
771   if (DTU) {
772     // To avoid processing the same predecessor more than once.
773     SmallPtrSet<BasicBlock *, 2> SeenPreds;
774     Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
775     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
776       // This predecessor of PredBB may already have DestBB as a successor.
777       if (PredOfPredBB != PredBB)
778         if (SeenPreds.insert(PredOfPredBB).second)
779           Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
780     SeenPreds.clear();
781     for (BasicBlock *PredOfPredBB : predecessors(PredBB))
782       if (SeenPreds.insert(PredOfPredBB).second)
783         Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
784     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
785   }
786 
787   // Zap anything that took the address of DestBB.  Not doing this will give the
788   // address an invalid value.
789   if (DestBB->hasAddressTaken()) {
790     BlockAddress *BA = BlockAddress::get(DestBB);
791     Constant *Replacement =
792       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
793     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
794                                                      BA->getType()));
795     BA->destroyConstant();
796   }
797 
798   // Anything that branched to PredBB now branches to DestBB.
799   PredBB->replaceAllUsesWith(DestBB);
800 
801   // Splice all the instructions from PredBB to DestBB.
802   PredBB->getTerminator()->eraseFromParent();
803   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
804   new UnreachableInst(PredBB->getContext(), PredBB);
805 
806   // If the PredBB is the entry block of the function, move DestBB up to
807   // become the entry block after we erase PredBB.
808   if (ReplaceEntryBB)
809     DestBB->moveAfter(PredBB);
810 
811   if (DTU) {
812     assert(PredBB->getInstList().size() == 1 &&
813            isa<UnreachableInst>(PredBB->getTerminator()) &&
814            "The successor list of PredBB isn't empty before "
815            "applying corresponding DTU updates.");
816     DTU->applyUpdatesPermissive(Updates);
817     DTU->deleteBB(PredBB);
818     // Recalculation of DomTree is needed when updating a forward DomTree and
819     // the Entry BB is replaced.
820     if (ReplaceEntryBB && DTU->hasDomTree()) {
821       // The entry block was removed and there is no external interface for
822       // the dominator tree to be notified of this change. In this corner-case
823       // we recalculate the entire tree.
824       DTU->recalculate(*(DestBB->getParent()));
825     }
826   }
827 
828   else {
829     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
830   }
831 }
832 
833 /// Return true if we can choose one of these values to use in place of the
834 /// other. Note that we will always choose the non-undef value to keep.
835 static bool CanMergeValues(Value *First, Value *Second) {
836   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
837 }
838 
839 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
840 /// branch to Succ, into Succ.
841 ///
842 /// Assumption: Succ is the single successor for BB.
843 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
844   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
845 
846   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
847                     << Succ->getName() << "\n");
848   // Shortcut, if there is only a single predecessor it must be BB and merging
849   // is always safe
850   if (Succ->getSinglePredecessor()) return true;
851 
852   // Make a list of the predecessors of BB
853   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
854 
855   // Look at all the phi nodes in Succ, to see if they present a conflict when
856   // merging these blocks
857   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
858     PHINode *PN = cast<PHINode>(I);
859 
860     // If the incoming value from BB is again a PHINode in
861     // BB which has the same incoming value for *PI as PN does, we can
862     // merge the phi nodes and then the blocks can still be merged
863     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
864     if (BBPN && BBPN->getParent() == BB) {
865       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
866         BasicBlock *IBB = PN->getIncomingBlock(PI);
867         if (BBPreds.count(IBB) &&
868             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
869                             PN->getIncomingValue(PI))) {
870           LLVM_DEBUG(dbgs()
871                      << "Can't fold, phi node " << PN->getName() << " in "
872                      << Succ->getName() << " is conflicting with "
873                      << BBPN->getName() << " with regard to common predecessor "
874                      << IBB->getName() << "\n");
875           return false;
876         }
877       }
878     } else {
879       Value* Val = PN->getIncomingValueForBlock(BB);
880       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
881         // See if the incoming value for the common predecessor is equal to the
882         // one for BB, in which case this phi node will not prevent the merging
883         // of the block.
884         BasicBlock *IBB = PN->getIncomingBlock(PI);
885         if (BBPreds.count(IBB) &&
886             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
887           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
888                             << " in " << Succ->getName()
889                             << " is conflicting with regard to common "
890                             << "predecessor " << IBB->getName() << "\n");
891           return false;
892         }
893       }
894     }
895   }
896 
897   return true;
898 }
899 
900 using PredBlockVector = SmallVector<BasicBlock *, 16>;
901 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
902 
903 /// Determines the value to use as the phi node input for a block.
904 ///
905 /// Select between \p OldVal any value that we know flows from \p BB
906 /// to a particular phi on the basis of which one (if either) is not
907 /// undef. Update IncomingValues based on the selected value.
908 ///
909 /// \param OldVal The value we are considering selecting.
910 /// \param BB The block that the value flows in from.
911 /// \param IncomingValues A map from block-to-value for other phi inputs
912 /// that we have examined.
913 ///
914 /// \returns the selected value.
915 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
916                                           IncomingValueMap &IncomingValues) {
917   if (!isa<UndefValue>(OldVal)) {
918     assert((!IncomingValues.count(BB) ||
919             IncomingValues.find(BB)->second == OldVal) &&
920            "Expected OldVal to match incoming value from BB!");
921 
922     IncomingValues.insert(std::make_pair(BB, OldVal));
923     return OldVal;
924   }
925 
926   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
927   if (It != IncomingValues.end()) return It->second;
928 
929   return OldVal;
930 }
931 
932 /// Create a map from block to value for the operands of a
933 /// given phi.
934 ///
935 /// Create a map from block to value for each non-undef value flowing
936 /// into \p PN.
937 ///
938 /// \param PN The phi we are collecting the map for.
939 /// \param IncomingValues [out] The map from block to value for this phi.
940 static void gatherIncomingValuesToPhi(PHINode *PN,
941                                       IncomingValueMap &IncomingValues) {
942   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
943     BasicBlock *BB = PN->getIncomingBlock(i);
944     Value *V = PN->getIncomingValue(i);
945 
946     if (!isa<UndefValue>(V))
947       IncomingValues.insert(std::make_pair(BB, V));
948   }
949 }
950 
951 /// Replace the incoming undef values to a phi with the values
952 /// from a block-to-value map.
953 ///
954 /// \param PN The phi we are replacing the undefs in.
955 /// \param IncomingValues A map from block to value.
956 static void replaceUndefValuesInPhi(PHINode *PN,
957                                     const IncomingValueMap &IncomingValues) {
958   SmallVector<unsigned> TrueUndefOps;
959   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
960     Value *V = PN->getIncomingValue(i);
961 
962     if (!isa<UndefValue>(V)) continue;
963 
964     BasicBlock *BB = PN->getIncomingBlock(i);
965     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
966 
967     // Keep track of undef/poison incoming values. Those must match, so we fix
968     // them up below if needed.
969     // Note: this is conservatively correct, but we could try harder and group
970     // the undef values per incoming basic block.
971     if (It == IncomingValues.end()) {
972       TrueUndefOps.push_back(i);
973       continue;
974     }
975 
976     // There is a defined value for this incoming block, so map this undef
977     // incoming value to the defined value.
978     PN->setIncomingValue(i, It->second);
979   }
980 
981   // If there are both undef and poison values incoming, then convert those
982   // values to undef. It is invalid to have different values for the same
983   // incoming block.
984   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
985     return isa<PoisonValue>(PN->getIncomingValue(i));
986   });
987   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
988     for (unsigned i : TrueUndefOps)
989       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
990   }
991 }
992 
993 /// Replace a value flowing from a block to a phi with
994 /// potentially multiple instances of that value flowing from the
995 /// block's predecessors to the phi.
996 ///
997 /// \param BB The block with the value flowing into the phi.
998 /// \param BBPreds The predecessors of BB.
999 /// \param PN The phi that we are updating.
1000 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1001                                                 const PredBlockVector &BBPreds,
1002                                                 PHINode *PN) {
1003   Value *OldVal = PN->removeIncomingValue(BB, false);
1004   assert(OldVal && "No entry in PHI for Pred BB!");
1005 
1006   IncomingValueMap IncomingValues;
1007 
1008   // We are merging two blocks - BB, and the block containing PN - and
1009   // as a result we need to redirect edges from the predecessors of BB
1010   // to go to the block containing PN, and update PN
1011   // accordingly. Since we allow merging blocks in the case where the
1012   // predecessor and successor blocks both share some predecessors,
1013   // and where some of those common predecessors might have undef
1014   // values flowing into PN, we want to rewrite those values to be
1015   // consistent with the non-undef values.
1016 
1017   gatherIncomingValuesToPhi(PN, IncomingValues);
1018 
1019   // If this incoming value is one of the PHI nodes in BB, the new entries
1020   // in the PHI node are the entries from the old PHI.
1021   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1022     PHINode *OldValPN = cast<PHINode>(OldVal);
1023     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1024       // Note that, since we are merging phi nodes and BB and Succ might
1025       // have common predecessors, we could end up with a phi node with
1026       // identical incoming branches. This will be cleaned up later (and
1027       // will trigger asserts if we try to clean it up now, without also
1028       // simplifying the corresponding conditional branch).
1029       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1030       Value *PredVal = OldValPN->getIncomingValue(i);
1031       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1032                                                     IncomingValues);
1033 
1034       // And add a new incoming value for this predecessor for the
1035       // newly retargeted branch.
1036       PN->addIncoming(Selected, PredBB);
1037     }
1038   } else {
1039     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1040       // Update existing incoming values in PN for this
1041       // predecessor of BB.
1042       BasicBlock *PredBB = BBPreds[i];
1043       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1044                                                     IncomingValues);
1045 
1046       // And add a new incoming value for this predecessor for the
1047       // newly retargeted branch.
1048       PN->addIncoming(Selected, PredBB);
1049     }
1050   }
1051 
1052   replaceUndefValuesInPhi(PN, IncomingValues);
1053 }
1054 
1055 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1056                                                    DomTreeUpdater *DTU) {
1057   assert(BB != &BB->getParent()->getEntryBlock() &&
1058          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1059 
1060   // We can't eliminate infinite loops.
1061   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1062   if (BB == Succ) return false;
1063 
1064   // Check to see if merging these blocks would cause conflicts for any of the
1065   // phi nodes in BB or Succ. If not, we can safely merge.
1066   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1067 
1068   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1069   // has uses which will not disappear when the PHI nodes are merged.  It is
1070   // possible to handle such cases, but difficult: it requires checking whether
1071   // BB dominates Succ, which is non-trivial to calculate in the case where
1072   // Succ has multiple predecessors.  Also, it requires checking whether
1073   // constructing the necessary self-referential PHI node doesn't introduce any
1074   // conflicts; this isn't too difficult, but the previous code for doing this
1075   // was incorrect.
1076   //
1077   // Note that if this check finds a live use, BB dominates Succ, so BB is
1078   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1079   // folding the branch isn't profitable in that case anyway.
1080   if (!Succ->getSinglePredecessor()) {
1081     BasicBlock::iterator BBI = BB->begin();
1082     while (isa<PHINode>(*BBI)) {
1083       for (Use &U : BBI->uses()) {
1084         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1085           if (PN->getIncomingBlock(U) != BB)
1086             return false;
1087         } else {
1088           return false;
1089         }
1090       }
1091       ++BBI;
1092     }
1093   }
1094 
1095   // We cannot fold the block if it's a branch to an already present callbr
1096   // successor because that creates duplicate successors.
1097   for (BasicBlock *PredBB : predecessors(BB)) {
1098     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1099       if (Succ == CBI->getDefaultDest())
1100         return false;
1101       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1102         if (Succ == CBI->getIndirectDest(i))
1103           return false;
1104     }
1105   }
1106 
1107   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1108 
1109   SmallVector<DominatorTree::UpdateType, 32> Updates;
1110   if (DTU) {
1111     // To avoid processing the same predecessor more than once.
1112     SmallPtrSet<BasicBlock *, 8> SeenPreds;
1113     // All predecessors of BB will be moved to Succ.
1114     SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1115     Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1116     for (auto *PredOfBB : predecessors(BB))
1117       // This predecessor of BB may already have Succ as a successor.
1118       if (!PredsOfSucc.contains(PredOfBB))
1119         if (SeenPreds.insert(PredOfBB).second)
1120           Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1121     SeenPreds.clear();
1122     for (auto *PredOfBB : predecessors(BB))
1123       if (SeenPreds.insert(PredOfBB).second)
1124         Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1125     Updates.push_back({DominatorTree::Delete, BB, Succ});
1126   }
1127 
1128   if (isa<PHINode>(Succ->begin())) {
1129     // If there is more than one pred of succ, and there are PHI nodes in
1130     // the successor, then we need to add incoming edges for the PHI nodes
1131     //
1132     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1133 
1134     // Loop over all of the PHI nodes in the successor of BB.
1135     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1136       PHINode *PN = cast<PHINode>(I);
1137 
1138       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1139     }
1140   }
1141 
1142   if (Succ->getSinglePredecessor()) {
1143     // BB is the only predecessor of Succ, so Succ will end up with exactly
1144     // the same predecessors BB had.
1145 
1146     // Copy over any phi, debug or lifetime instruction.
1147     BB->getTerminator()->eraseFromParent();
1148     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1149                                BB->getInstList());
1150   } else {
1151     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1152       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1153       assert(PN->use_empty() && "There shouldn't be any uses here!");
1154       PN->eraseFromParent();
1155     }
1156   }
1157 
1158   // If the unconditional branch we replaced contains llvm.loop metadata, we
1159   // add the metadata to the branch instructions in the predecessors.
1160   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1161   Instruction *TI = BB->getTerminator();
1162   if (TI)
1163     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1164       for (BasicBlock *Pred : predecessors(BB))
1165         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1166 
1167   // Everything that jumped to BB now goes to Succ.
1168   BB->replaceAllUsesWith(Succ);
1169   if (!Succ->hasName()) Succ->takeName(BB);
1170 
1171   // Clear the successor list of BB to match updates applying to DTU later.
1172   if (BB->getTerminator())
1173     BB->getInstList().pop_back();
1174   new UnreachableInst(BB->getContext(), BB);
1175   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1176                            "applying corresponding DTU updates.");
1177 
1178   if (DTU)
1179     DTU->applyUpdates(Updates);
1180 
1181   DeleteDeadBlock(BB, DTU);
1182 
1183   return true;
1184 }
1185 
1186 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1187   // This implementation doesn't currently consider undef operands
1188   // specially. Theoretically, two phis which are identical except for
1189   // one having an undef where the other doesn't could be collapsed.
1190 
1191   bool Changed = false;
1192 
1193   // Examine each PHI.
1194   // Note that increment of I must *NOT* be in the iteration_expression, since
1195   // we don't want to immediately advance when we restart from the beginning.
1196   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1197     ++I;
1198     // Is there an identical PHI node in this basic block?
1199     // Note that we only look in the upper square's triangle,
1200     // we already checked that the lower triangle PHI's aren't identical.
1201     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1202       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1203         continue;
1204       // A duplicate. Replace this PHI with the base PHI.
1205       ++NumPHICSEs;
1206       DuplicatePN->replaceAllUsesWith(PN);
1207       DuplicatePN->eraseFromParent();
1208       Changed = true;
1209 
1210       // The RAUW can change PHIs that we already visited.
1211       I = BB->begin();
1212       break; // Start over from the beginning.
1213     }
1214   }
1215   return Changed;
1216 }
1217 
1218 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1219   // This implementation doesn't currently consider undef operands
1220   // specially. Theoretically, two phis which are identical except for
1221   // one having an undef where the other doesn't could be collapsed.
1222 
1223   struct PHIDenseMapInfo {
1224     static PHINode *getEmptyKey() {
1225       return DenseMapInfo<PHINode *>::getEmptyKey();
1226     }
1227 
1228     static PHINode *getTombstoneKey() {
1229       return DenseMapInfo<PHINode *>::getTombstoneKey();
1230     }
1231 
1232     static bool isSentinel(PHINode *PN) {
1233       return PN == getEmptyKey() || PN == getTombstoneKey();
1234     }
1235 
1236     // WARNING: this logic must be kept in sync with
1237     //          Instruction::isIdenticalToWhenDefined()!
1238     static unsigned getHashValueImpl(PHINode *PN) {
1239       // Compute a hash value on the operands. Instcombine will likely have
1240       // sorted them, which helps expose duplicates, but we have to check all
1241       // the operands to be safe in case instcombine hasn't run.
1242       return static_cast<unsigned>(hash_combine(
1243           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1244           hash_combine_range(PN->block_begin(), PN->block_end())));
1245     }
1246 
1247     static unsigned getHashValue(PHINode *PN) {
1248 #ifndef NDEBUG
1249       // If -phicse-debug-hash was specified, return a constant -- this
1250       // will force all hashing to collide, so we'll exhaustively search
1251       // the table for a match, and the assertion in isEqual will fire if
1252       // there's a bug causing equal keys to hash differently.
1253       if (PHICSEDebugHash)
1254         return 0;
1255 #endif
1256       return getHashValueImpl(PN);
1257     }
1258 
1259     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1260       if (isSentinel(LHS) || isSentinel(RHS))
1261         return LHS == RHS;
1262       return LHS->isIdenticalTo(RHS);
1263     }
1264 
1265     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1266       // These comparisons are nontrivial, so assert that equality implies
1267       // hash equality (DenseMap demands this as an invariant).
1268       bool Result = isEqualImpl(LHS, RHS);
1269       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1270              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1271       return Result;
1272     }
1273   };
1274 
1275   // Set of unique PHINodes.
1276   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1277   PHISet.reserve(4 * PHICSENumPHISmallSize);
1278 
1279   // Examine each PHI.
1280   bool Changed = false;
1281   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1282     auto Inserted = PHISet.insert(PN);
1283     if (!Inserted.second) {
1284       // A duplicate. Replace this PHI with its duplicate.
1285       ++NumPHICSEs;
1286       PN->replaceAllUsesWith(*Inserted.first);
1287       PN->eraseFromParent();
1288       Changed = true;
1289 
1290       // The RAUW can change PHIs that we already visited. Start over from the
1291       // beginning.
1292       PHISet.clear();
1293       I = BB->begin();
1294     }
1295   }
1296 
1297   return Changed;
1298 }
1299 
1300 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1301   if (
1302 #ifndef NDEBUG
1303       !PHICSEDebugHash &&
1304 #endif
1305       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1306     return EliminateDuplicatePHINodesNaiveImpl(BB);
1307   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1308 }
1309 
1310 /// If the specified pointer points to an object that we control, try to modify
1311 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1312 /// the value after the operation, which may be lower than PrefAlign.
1313 ///
1314 /// Increating value alignment isn't often possible though. If alignment is
1315 /// important, a more reliable approach is to simply align all global variables
1316 /// and allocation instructions to their preferred alignment from the beginning.
1317 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1318                                  const DataLayout &DL) {
1319   V = V->stripPointerCasts();
1320 
1321   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1322     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1323     // than the current alignment, as the known bits calculation should have
1324     // already taken it into account. However, this is not always the case,
1325     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1326     // doesn't.
1327     Align CurrentAlign = AI->getAlign();
1328     if (PrefAlign <= CurrentAlign)
1329       return CurrentAlign;
1330 
1331     // If the preferred alignment is greater than the natural stack alignment
1332     // then don't round up. This avoids dynamic stack realignment.
1333     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1334       return CurrentAlign;
1335     AI->setAlignment(PrefAlign);
1336     return PrefAlign;
1337   }
1338 
1339   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1340     // TODO: as above, this shouldn't be necessary.
1341     Align CurrentAlign = GO->getPointerAlignment(DL);
1342     if (PrefAlign <= CurrentAlign)
1343       return CurrentAlign;
1344 
1345     // If there is a large requested alignment and we can, bump up the alignment
1346     // of the global.  If the memory we set aside for the global may not be the
1347     // memory used by the final program then it is impossible for us to reliably
1348     // enforce the preferred alignment.
1349     if (!GO->canIncreaseAlignment())
1350       return CurrentAlign;
1351 
1352     GO->setAlignment(PrefAlign);
1353     return PrefAlign;
1354   }
1355 
1356   return Align(1);
1357 }
1358 
1359 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1360                                        const DataLayout &DL,
1361                                        const Instruction *CxtI,
1362                                        AssumptionCache *AC,
1363                                        const DominatorTree *DT) {
1364   assert(V->getType()->isPointerTy() &&
1365          "getOrEnforceKnownAlignment expects a pointer!");
1366 
1367   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1368   unsigned TrailZ = Known.countMinTrailingZeros();
1369 
1370   // Avoid trouble with ridiculously large TrailZ values, such as
1371   // those computed from a null pointer.
1372   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1373   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1374 
1375   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1376 
1377   if (PrefAlign && *PrefAlign > Alignment)
1378     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1379 
1380   // We don't need to make any adjustment.
1381   return Alignment;
1382 }
1383 
1384 ///===---------------------------------------------------------------------===//
1385 ///  Dbg Intrinsic utilities
1386 ///
1387 
1388 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1389 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1390                              DIExpression *DIExpr,
1391                              PHINode *APN) {
1392   // Since we can't guarantee that the original dbg.declare instrinsic
1393   // is removed by LowerDbgDeclare(), we need to make sure that we are
1394   // not inserting the same dbg.value intrinsic over and over.
1395   SmallVector<DbgValueInst *, 1> DbgValues;
1396   findDbgValues(DbgValues, APN);
1397   for (auto *DVI : DbgValues) {
1398     assert(is_contained(DVI->getValues(), APN));
1399     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1400       return true;
1401   }
1402   return false;
1403 }
1404 
1405 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1406 /// (or fragment of the variable) described by \p DII.
1407 ///
1408 /// This is primarily intended as a helper for the different
1409 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1410 /// converted describes an alloca'd variable, so we need to use the
1411 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1412 /// identified as covering an n-bit fragment, if the store size of i1 is at
1413 /// least n bits.
1414 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1415   const DataLayout &DL = DII->getModule()->getDataLayout();
1416   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1417   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1418     assert(!ValueSize.isScalable() &&
1419            "Fragments don't work on scalable types.");
1420     return ValueSize.getFixedSize() >= *FragmentSize;
1421   }
1422   // We can't always calculate the size of the DI variable (e.g. if it is a
1423   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1424   // intead.
1425   if (DII->isAddressOfVariable()) {
1426     // DII should have exactly 1 location when it is an address.
1427     assert(DII->getNumVariableLocationOps() == 1 &&
1428            "address of variable must have exactly 1 location operand.");
1429     if (auto *AI =
1430             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1431       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1432         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1433       }
1434     }
1435   }
1436   // Could not determine size of variable. Conservatively return false.
1437   return false;
1438 }
1439 
1440 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1441 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1442 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1443 /// case this DebugLoc leaks into any adjacent instructions.
1444 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1445   // Original dbg.declare must have a location.
1446   const DebugLoc &DeclareLoc = DII->getDebugLoc();
1447   MDNode *Scope = DeclareLoc.getScope();
1448   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1449   // Produce an unknown location with the correct scope / inlinedAt fields.
1450   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1451 }
1452 
1453 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1454 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1455 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1456                                            StoreInst *SI, DIBuilder &Builder) {
1457   assert(DII->isAddressOfVariable());
1458   auto *DIVar = DII->getVariable();
1459   assert(DIVar && "Missing variable");
1460   auto *DIExpr = DII->getExpression();
1461   Value *DV = SI->getValueOperand();
1462 
1463   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1464 
1465   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1466     // FIXME: If storing to a part of the variable described by the dbg.declare,
1467     // then we want to insert a dbg.value for the corresponding fragment.
1468     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1469                       << *DII << '\n');
1470     // For now, when there is a store to parts of the variable (but we do not
1471     // know which part) we insert an dbg.value instrinsic to indicate that we
1472     // know nothing about the variable's content.
1473     DV = UndefValue::get(DV->getType());
1474     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1475     return;
1476   }
1477 
1478   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1479 }
1480 
1481 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1482 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1483 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1484                                            LoadInst *LI, DIBuilder &Builder) {
1485   auto *DIVar = DII->getVariable();
1486   auto *DIExpr = DII->getExpression();
1487   assert(DIVar && "Missing variable");
1488 
1489   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1490     // FIXME: If only referring to a part of the variable described by the
1491     // dbg.declare, then we want to insert a dbg.value for the corresponding
1492     // fragment.
1493     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1494                       << *DII << '\n');
1495     return;
1496   }
1497 
1498   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1499 
1500   // We are now tracking the loaded value instead of the address. In the
1501   // future if multi-location support is added to the IR, it might be
1502   // preferable to keep tracking both the loaded value and the original
1503   // address in case the alloca can not be elided.
1504   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1505       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1506   DbgValue->insertAfter(LI);
1507 }
1508 
1509 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1510 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1511 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1512                                            PHINode *APN, DIBuilder &Builder) {
1513   auto *DIVar = DII->getVariable();
1514   auto *DIExpr = DII->getExpression();
1515   assert(DIVar && "Missing variable");
1516 
1517   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1518     return;
1519 
1520   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1521     // FIXME: If only referring to a part of the variable described by the
1522     // dbg.declare, then we want to insert a dbg.value for the corresponding
1523     // fragment.
1524     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1525                       << *DII << '\n');
1526     return;
1527   }
1528 
1529   BasicBlock *BB = APN->getParent();
1530   auto InsertionPt = BB->getFirstInsertionPt();
1531 
1532   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1533 
1534   // The block may be a catchswitch block, which does not have a valid
1535   // insertion point.
1536   // FIXME: Insert dbg.value markers in the successors when appropriate.
1537   if (InsertionPt != BB->end())
1538     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1539 }
1540 
1541 /// Determine whether this alloca is either a VLA or an array.
1542 static bool isArray(AllocaInst *AI) {
1543   return AI->isArrayAllocation() ||
1544          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1545 }
1546 
1547 /// Determine whether this alloca is a structure.
1548 static bool isStructure(AllocaInst *AI) {
1549   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1550 }
1551 
1552 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1553 /// of llvm.dbg.value intrinsics.
1554 bool llvm::LowerDbgDeclare(Function &F) {
1555   bool Changed = false;
1556   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1557   SmallVector<DbgDeclareInst *, 4> Dbgs;
1558   for (auto &FI : F)
1559     for (Instruction &BI : FI)
1560       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1561         Dbgs.push_back(DDI);
1562 
1563   if (Dbgs.empty())
1564     return Changed;
1565 
1566   for (auto &I : Dbgs) {
1567     DbgDeclareInst *DDI = I;
1568     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1569     // If this is an alloca for a scalar variable, insert a dbg.value
1570     // at each load and store to the alloca and erase the dbg.declare.
1571     // The dbg.values allow tracking a variable even if it is not
1572     // stored on the stack, while the dbg.declare can only describe
1573     // the stack slot (and at a lexical-scope granularity). Later
1574     // passes will attempt to elide the stack slot.
1575     if (!AI || isArray(AI) || isStructure(AI))
1576       continue;
1577 
1578     // A volatile load/store means that the alloca can't be elided anyway.
1579     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1580           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1581             return LI->isVolatile();
1582           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1583             return SI->isVolatile();
1584           return false;
1585         }))
1586       continue;
1587 
1588     SmallVector<const Value *, 8> WorkList;
1589     WorkList.push_back(AI);
1590     while (!WorkList.empty()) {
1591       const Value *V = WorkList.pop_back_val();
1592       for (auto &AIUse : V->uses()) {
1593         User *U = AIUse.getUser();
1594         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1595           if (AIUse.getOperandNo() == 1)
1596             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1597         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1598           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1599         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1600           // This is a call by-value or some other instruction that takes a
1601           // pointer to the variable. Insert a *value* intrinsic that describes
1602           // the variable by dereferencing the alloca.
1603           if (!CI->isLifetimeStartOrEnd()) {
1604             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1605             auto *DerefExpr =
1606                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1607             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1608                                         NewLoc, CI);
1609           }
1610         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1611           if (BI->getType()->isPointerTy())
1612             WorkList.push_back(BI);
1613         }
1614       }
1615     }
1616     DDI->eraseFromParent();
1617     Changed = true;
1618   }
1619 
1620   if (Changed)
1621   for (BasicBlock &BB : F)
1622     RemoveRedundantDbgInstrs(&BB);
1623 
1624   return Changed;
1625 }
1626 
1627 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1628 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1629                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1630   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1631   if (InsertedPHIs.size() == 0)
1632     return;
1633 
1634   // Map existing PHI nodes to their dbg.values.
1635   ValueToValueMapTy DbgValueMap;
1636   for (auto &I : *BB) {
1637     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1638       for (Value *V : DbgII->location_ops())
1639         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1640           DbgValueMap.insert({Loc, DbgII});
1641     }
1642   }
1643   if (DbgValueMap.size() == 0)
1644     return;
1645 
1646   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1647   // so that if a dbg.value is being rewritten to use more than one of the
1648   // inserted PHIs in the same destination BB, we can update the same dbg.value
1649   // with all the new PHIs instead of creating one copy for each.
1650   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1651             DbgVariableIntrinsic *>
1652       NewDbgValueMap;
1653   // Then iterate through the new PHIs and look to see if they use one of the
1654   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1655   // propagate the info through the new PHI. If we use more than one new PHI in
1656   // a single destination BB with the same old dbg.value, merge the updates so
1657   // that we get a single new dbg.value with all the new PHIs.
1658   for (auto PHI : InsertedPHIs) {
1659     BasicBlock *Parent = PHI->getParent();
1660     // Avoid inserting an intrinsic into an EH block.
1661     if (Parent->getFirstNonPHI()->isEHPad())
1662       continue;
1663     for (auto VI : PHI->operand_values()) {
1664       auto V = DbgValueMap.find(VI);
1665       if (V != DbgValueMap.end()) {
1666         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1667         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1668         if (NewDI == NewDbgValueMap.end()) {
1669           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1670           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1671         }
1672         DbgVariableIntrinsic *NewDbgII = NewDI->second;
1673         // If PHI contains VI as an operand more than once, we may
1674         // replaced it in NewDbgII; confirm that it is present.
1675         if (is_contained(NewDbgII->location_ops(), VI))
1676           NewDbgII->replaceVariableLocationOp(VI, PHI);
1677       }
1678     }
1679   }
1680   // Insert thew new dbg.values into their destination blocks.
1681   for (auto DI : NewDbgValueMap) {
1682     BasicBlock *Parent = DI.first.first;
1683     auto *NewDbgII = DI.second;
1684     auto InsertionPt = Parent->getFirstInsertionPt();
1685     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1686     NewDbgII->insertBefore(&*InsertionPt);
1687   }
1688 }
1689 
1690 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1691                              DIBuilder &Builder, uint8_t DIExprFlags,
1692                              int Offset) {
1693   auto DbgAddrs = FindDbgAddrUses(Address);
1694   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1695     const DebugLoc &Loc = DII->getDebugLoc();
1696     auto *DIVar = DII->getVariable();
1697     auto *DIExpr = DII->getExpression();
1698     assert(DIVar && "Missing variable");
1699     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1700     // Insert llvm.dbg.declare immediately before DII, and remove old
1701     // llvm.dbg.declare.
1702     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1703     DII->eraseFromParent();
1704   }
1705   return !DbgAddrs.empty();
1706 }
1707 
1708 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1709                                         DIBuilder &Builder, int Offset) {
1710   const DebugLoc &Loc = DVI->getDebugLoc();
1711   auto *DIVar = DVI->getVariable();
1712   auto *DIExpr = DVI->getExpression();
1713   assert(DIVar && "Missing variable");
1714 
1715   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1716   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1717   // it and give up.
1718   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1719       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1720     return;
1721 
1722   // Insert the offset before the first deref.
1723   // We could just change the offset argument of dbg.value, but it's unsigned...
1724   if (Offset)
1725     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1726 
1727   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1728   DVI->eraseFromParent();
1729 }
1730 
1731 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1732                                     DIBuilder &Builder, int Offset) {
1733   if (auto *L = LocalAsMetadata::getIfExists(AI))
1734     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1735       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1736         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1737           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1738 }
1739 
1740 /// Where possible to salvage debug information for \p I do so
1741 /// and return True. If not possible mark undef and return False.
1742 void llvm::salvageDebugInfo(Instruction &I) {
1743   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1744   findDbgUsers(DbgUsers, &I);
1745   salvageDebugInfoForDbgValues(I, DbgUsers);
1746 }
1747 
1748 void llvm::salvageDebugInfoForDbgValues(
1749     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1750   // These are arbitrary chosen limits on the maximum number of values and the
1751   // maximum size of a debug expression we can salvage up to, used for
1752   // performance reasons.
1753   const unsigned MaxDebugArgs = 16;
1754   const unsigned MaxExpressionSize = 128;
1755   bool Salvaged = false;
1756 
1757   for (auto *DII : DbgUsers) {
1758     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1759     // are implicitly pointing out the value as a DWARF memory location
1760     // description.
1761     bool StackValue = isa<DbgValueInst>(DII);
1762     auto DIILocation = DII->location_ops();
1763     assert(
1764         is_contained(DIILocation, &I) &&
1765         "DbgVariableIntrinsic must use salvaged instruction as its location");
1766     SmallVector<Value *, 4> AdditionalValues;
1767     // `I` may appear more than once in DII's location ops, and each use of `I`
1768     // must be updated in the DIExpression and potentially have additional
1769     // values added; thus we call salvageDebugInfoImpl for each `I` instance in
1770     // DIILocation.
1771     Value *Op0 = nullptr;
1772     DIExpression *SalvagedExpr = DII->getExpression();
1773     auto LocItr = find(DIILocation, &I);
1774     while (SalvagedExpr && LocItr != DIILocation.end()) {
1775       SmallVector<uint64_t, 16> Ops;
1776       unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
1777       uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
1778       Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
1779       if (!Op0)
1780         break;
1781       SalvagedExpr =
1782           DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
1783       LocItr = std::find(++LocItr, DIILocation.end(), &I);
1784     }
1785     // salvageDebugInfoImpl should fail on examining the first element of
1786     // DbgUsers, or none of them.
1787     if (!Op0)
1788       break;
1789 
1790     DII->replaceVariableLocationOp(&I, Op0);
1791     bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
1792     if (AdditionalValues.empty() && IsValidSalvageExpr) {
1793       DII->setExpression(SalvagedExpr);
1794     } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
1795                DII->getNumVariableLocationOps() + AdditionalValues.size() <=
1796                    MaxDebugArgs) {
1797       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1798     } else {
1799       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1800       // currently only valid for stack value expressions.
1801       // Also do not salvage if the resulting DIArgList would contain an
1802       // unreasonably large number of values.
1803       Value *Undef = UndefValue::get(I.getOperand(0)->getType());
1804       DII->replaceVariableLocationOp(I.getOperand(0), Undef);
1805     }
1806     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1807     Salvaged = true;
1808   }
1809 
1810   if (Salvaged)
1811     return;
1812 
1813   for (auto *DII : DbgUsers) {
1814     Value *Undef = UndefValue::get(I.getType());
1815     DII->replaceVariableLocationOp(&I, Undef);
1816   }
1817 }
1818 
1819 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1820                            uint64_t CurrentLocOps,
1821                            SmallVectorImpl<uint64_t> &Opcodes,
1822                            SmallVectorImpl<Value *> &AdditionalValues) {
1823   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1824   // Rewrite a GEP into a DIExpression.
1825   MapVector<Value *, APInt> VariableOffsets;
1826   APInt ConstantOffset(BitWidth, 0);
1827   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1828     return nullptr;
1829   if (!VariableOffsets.empty() && !CurrentLocOps) {
1830     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1831     CurrentLocOps = 1;
1832   }
1833   for (auto Offset : VariableOffsets) {
1834     AdditionalValues.push_back(Offset.first);
1835     assert(Offset.second.isStrictlyPositive() &&
1836            "Expected strictly positive multiplier for offset.");
1837     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1838                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1839                     dwarf::DW_OP_plus});
1840   }
1841   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1842   return GEP->getOperand(0);
1843 }
1844 
1845 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1846   switch (Opcode) {
1847   case Instruction::Add:
1848     return dwarf::DW_OP_plus;
1849   case Instruction::Sub:
1850     return dwarf::DW_OP_minus;
1851   case Instruction::Mul:
1852     return dwarf::DW_OP_mul;
1853   case Instruction::SDiv:
1854     return dwarf::DW_OP_div;
1855   case Instruction::SRem:
1856     return dwarf::DW_OP_mod;
1857   case Instruction::Or:
1858     return dwarf::DW_OP_or;
1859   case Instruction::And:
1860     return dwarf::DW_OP_and;
1861   case Instruction::Xor:
1862     return dwarf::DW_OP_xor;
1863   case Instruction::Shl:
1864     return dwarf::DW_OP_shl;
1865   case Instruction::LShr:
1866     return dwarf::DW_OP_shr;
1867   case Instruction::AShr:
1868     return dwarf::DW_OP_shra;
1869   default:
1870     // TODO: Salvage from each kind of binop we know about.
1871     return 0;
1872   }
1873 }
1874 
1875 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1876                              SmallVectorImpl<uint64_t> &Opcodes,
1877                              SmallVectorImpl<Value *> &AdditionalValues) {
1878   // Handle binary operations with constant integer operands as a special case.
1879   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1880   // Values wider than 64 bits cannot be represented within a DIExpression.
1881   if (ConstInt && ConstInt->getBitWidth() > 64)
1882     return nullptr;
1883 
1884   Instruction::BinaryOps BinOpcode = BI->getOpcode();
1885   // Push any Constant Int operand onto the expression stack.
1886   if (ConstInt) {
1887     uint64_t Val = ConstInt->getSExtValue();
1888     // Add or Sub Instructions with a constant operand can potentially be
1889     // simplified.
1890     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1891       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1892       DIExpression::appendOffset(Opcodes, Offset);
1893       return BI->getOperand(0);
1894     }
1895     Opcodes.append({dwarf::DW_OP_constu, Val});
1896   } else {
1897     if (!CurrentLocOps) {
1898       Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
1899       CurrentLocOps = 1;
1900     }
1901     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
1902     AdditionalValues.push_back(BI->getOperand(1));
1903   }
1904 
1905   // Add salvaged binary operator to expression stack, if it has a valid
1906   // representation in a DIExpression.
1907   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1908   if (!DwarfBinOp)
1909     return nullptr;
1910   Opcodes.push_back(DwarfBinOp);
1911   return BI->getOperand(0);
1912 }
1913 
1914 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
1915                                   SmallVectorImpl<uint64_t> &Ops,
1916                                   SmallVectorImpl<Value *> &AdditionalValues) {
1917   auto &M = *I.getModule();
1918   auto &DL = M.getDataLayout();
1919 
1920   if (auto *CI = dyn_cast<CastInst>(&I)) {
1921     Value *FromValue = CI->getOperand(0);
1922     // No-op casts are irrelevant for debug info.
1923     if (CI->isNoopCast(DL)) {
1924       return FromValue;
1925     }
1926 
1927     Type *Type = CI->getType();
1928     if (Type->isPointerTy())
1929       Type = DL.getIntPtrType(Type);
1930     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1931     if (Type->isVectorTy() ||
1932         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
1933           isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
1934       return nullptr;
1935 
1936     llvm::Type *FromType = FromValue->getType();
1937     if (FromType->isPointerTy())
1938       FromType = DL.getIntPtrType(FromType);
1939 
1940     unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
1941     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1942 
1943     auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1944                                           isa<SExtInst>(&I));
1945     Ops.append(ExtOps.begin(), ExtOps.end());
1946     return FromValue;
1947   }
1948 
1949   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
1950     return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
1951   if (auto *BI = dyn_cast<BinaryOperator>(&I))
1952     return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
1953 
1954   // *Not* to do: we should not attempt to salvage load instructions,
1955   // because the validity and lifetime of a dbg.value containing
1956   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1957   return nullptr;
1958 }
1959 
1960 /// A replacement for a dbg.value expression.
1961 using DbgValReplacement = Optional<DIExpression *>;
1962 
1963 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1964 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1965 /// changes are made.
1966 static bool rewriteDebugUsers(
1967     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1968     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1969   // Find debug users of From.
1970   SmallVector<DbgVariableIntrinsic *, 1> Users;
1971   findDbgUsers(Users, &From);
1972   if (Users.empty())
1973     return false;
1974 
1975   // Prevent use-before-def of To.
1976   bool Changed = false;
1977   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1978   if (isa<Instruction>(&To)) {
1979     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1980 
1981     for (auto *DII : Users) {
1982       // It's common to see a debug user between From and DomPoint. Move it
1983       // after DomPoint to preserve the variable update without any reordering.
1984       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1985         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1986         DII->moveAfter(&DomPoint);
1987         Changed = true;
1988 
1989       // Users which otherwise aren't dominated by the replacement value must
1990       // be salvaged or deleted.
1991       } else if (!DT.dominates(&DomPoint, DII)) {
1992         UndefOrSalvage.insert(DII);
1993       }
1994     }
1995   }
1996 
1997   // Update debug users without use-before-def risk.
1998   for (auto *DII : Users) {
1999     if (UndefOrSalvage.count(DII))
2000       continue;
2001 
2002     DbgValReplacement DVR = RewriteExpr(*DII);
2003     if (!DVR)
2004       continue;
2005 
2006     DII->replaceVariableLocationOp(&From, &To);
2007     DII->setExpression(*DVR);
2008     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
2009     Changed = true;
2010   }
2011 
2012   if (!UndefOrSalvage.empty()) {
2013     // Try to salvage the remaining debug users.
2014     salvageDebugInfo(From);
2015     Changed = true;
2016   }
2017 
2018   return Changed;
2019 }
2020 
2021 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2022 /// losslessly preserve the bits and semantics of the value. This predicate is
2023 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2024 ///
2025 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2026 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2027 /// and also does not allow lossless pointer <-> integer conversions.
2028 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2029                                          Type *ToTy) {
2030   // Trivially compatible types.
2031   if (FromTy == ToTy)
2032     return true;
2033 
2034   // Handle compatible pointer <-> integer conversions.
2035   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2036     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2037     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2038                               !DL.isNonIntegralPointerType(ToTy);
2039     return SameSize && LosslessConversion;
2040   }
2041 
2042   // TODO: This is not exhaustive.
2043   return false;
2044 }
2045 
2046 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2047                                  Instruction &DomPoint, DominatorTree &DT) {
2048   // Exit early if From has no debug users.
2049   if (!From.isUsedByMetadata())
2050     return false;
2051 
2052   assert(&From != &To && "Can't replace something with itself");
2053 
2054   Type *FromTy = From.getType();
2055   Type *ToTy = To.getType();
2056 
2057   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2058     return DII.getExpression();
2059   };
2060 
2061   // Handle no-op conversions.
2062   Module &M = *From.getModule();
2063   const DataLayout &DL = M.getDataLayout();
2064   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2065     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2066 
2067   // Handle integer-to-integer widening and narrowing.
2068   // FIXME: Use DW_OP_convert when it's available everywhere.
2069   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2070     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2071     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2072     assert(FromBits != ToBits && "Unexpected no-op conversion");
2073 
2074     // When the width of the result grows, assume that a debugger will only
2075     // access the low `FromBits` bits when inspecting the source variable.
2076     if (FromBits < ToBits)
2077       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2078 
2079     // The width of the result has shrunk. Use sign/zero extension to describe
2080     // the source variable's high bits.
2081     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2082       DILocalVariable *Var = DII.getVariable();
2083 
2084       // Without knowing signedness, sign/zero extension isn't possible.
2085       auto Signedness = Var->getSignedness();
2086       if (!Signedness)
2087         return None;
2088 
2089       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2090       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2091                                      Signed);
2092     };
2093     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2094   }
2095 
2096   // TODO: Floating-point conversions, vectors.
2097   return false;
2098 }
2099 
2100 std::pair<unsigned, unsigned>
2101 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2102   unsigned NumDeadInst = 0;
2103   unsigned NumDeadDbgInst = 0;
2104   // Delete the instructions backwards, as it has a reduced likelihood of
2105   // having to update as many def-use and use-def chains.
2106   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2107   while (EndInst != &BB->front()) {
2108     // Delete the next to last instruction.
2109     Instruction *Inst = &*--EndInst->getIterator();
2110     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2111       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2112     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2113       EndInst = Inst;
2114       continue;
2115     }
2116     if (isa<DbgInfoIntrinsic>(Inst))
2117       ++NumDeadDbgInst;
2118     else
2119       ++NumDeadInst;
2120     Inst->eraseFromParent();
2121   }
2122   return {NumDeadInst, NumDeadDbgInst};
2123 }
2124 
2125 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2126                                    DomTreeUpdater *DTU,
2127                                    MemorySSAUpdater *MSSAU) {
2128   BasicBlock *BB = I->getParent();
2129 
2130   if (MSSAU)
2131     MSSAU->changeToUnreachable(I);
2132 
2133   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2134 
2135   // Loop over all of the successors, removing BB's entry from any PHI
2136   // nodes.
2137   for (BasicBlock *Successor : successors(BB)) {
2138     Successor->removePredecessor(BB, PreserveLCSSA);
2139     if (DTU)
2140       UniqueSuccessors.insert(Successor);
2141   }
2142   auto *UI = new UnreachableInst(I->getContext(), I);
2143   UI->setDebugLoc(I->getDebugLoc());
2144 
2145   // All instructions after this are dead.
2146   unsigned NumInstrsRemoved = 0;
2147   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2148   while (BBI != BBE) {
2149     if (!BBI->use_empty())
2150       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2151     BB->getInstList().erase(BBI++);
2152     ++NumInstrsRemoved;
2153   }
2154   if (DTU) {
2155     SmallVector<DominatorTree::UpdateType, 8> Updates;
2156     Updates.reserve(UniqueSuccessors.size());
2157     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2158       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2159     DTU->applyUpdates(Updates);
2160   }
2161   return NumInstrsRemoved;
2162 }
2163 
2164 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2165   SmallVector<Value *, 8> Args(II->args());
2166   SmallVector<OperandBundleDef, 1> OpBundles;
2167   II->getOperandBundlesAsDefs(OpBundles);
2168   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2169                                        II->getCalledOperand(), Args, OpBundles);
2170   NewCall->setCallingConv(II->getCallingConv());
2171   NewCall->setAttributes(II->getAttributes());
2172   NewCall->setDebugLoc(II->getDebugLoc());
2173   NewCall->copyMetadata(*II);
2174 
2175   // If the invoke had profile metadata, try converting them for CallInst.
2176   uint64_t TotalWeight;
2177   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2178     // Set the total weight if it fits into i32, otherwise reset.
2179     MDBuilder MDB(NewCall->getContext());
2180     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2181                           ? nullptr
2182                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2183     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2184   }
2185 
2186   return NewCall;
2187 }
2188 
2189 // changeToCall - Convert the specified invoke into a normal call.
2190 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2191   CallInst *NewCall = createCallMatchingInvoke(II);
2192   NewCall->takeName(II);
2193   NewCall->insertBefore(II);
2194   II->replaceAllUsesWith(NewCall);
2195 
2196   // Follow the call by a branch to the normal destination.
2197   BasicBlock *NormalDestBB = II->getNormalDest();
2198   BranchInst::Create(NormalDestBB, II);
2199 
2200   // Update PHI nodes in the unwind destination
2201   BasicBlock *BB = II->getParent();
2202   BasicBlock *UnwindDestBB = II->getUnwindDest();
2203   UnwindDestBB->removePredecessor(BB);
2204   II->eraseFromParent();
2205   if (DTU)
2206     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2207   return NewCall;
2208 }
2209 
2210 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2211                                                    BasicBlock *UnwindEdge,
2212                                                    DomTreeUpdater *DTU) {
2213   BasicBlock *BB = CI->getParent();
2214 
2215   // Convert this function call into an invoke instruction.  First, split the
2216   // basic block.
2217   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2218                                  CI->getName() + ".noexc");
2219 
2220   // Delete the unconditional branch inserted by SplitBlock
2221   BB->getInstList().pop_back();
2222 
2223   // Create the new invoke instruction.
2224   SmallVector<Value *, 8> InvokeArgs(CI->args());
2225   SmallVector<OperandBundleDef, 1> OpBundles;
2226 
2227   CI->getOperandBundlesAsDefs(OpBundles);
2228 
2229   // Note: we're round tripping operand bundles through memory here, and that
2230   // can potentially be avoided with a cleverer API design that we do not have
2231   // as of this time.
2232 
2233   InvokeInst *II =
2234       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2235                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2236   II->setDebugLoc(CI->getDebugLoc());
2237   II->setCallingConv(CI->getCallingConv());
2238   II->setAttributes(CI->getAttributes());
2239 
2240   if (DTU)
2241     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2242 
2243   // Make sure that anything using the call now uses the invoke!  This also
2244   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2245   CI->replaceAllUsesWith(II);
2246 
2247   // Delete the original call
2248   Split->getInstList().pop_front();
2249   return Split;
2250 }
2251 
2252 static bool markAliveBlocks(Function &F,
2253                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2254                             DomTreeUpdater *DTU = nullptr) {
2255   SmallVector<BasicBlock*, 128> Worklist;
2256   BasicBlock *BB = &F.front();
2257   Worklist.push_back(BB);
2258   Reachable.insert(BB);
2259   bool Changed = false;
2260   do {
2261     BB = Worklist.pop_back_val();
2262 
2263     // Do a quick scan of the basic block, turning any obviously unreachable
2264     // instructions into LLVM unreachable insts.  The instruction combining pass
2265     // canonicalizes unreachable insts into stores to null or undef.
2266     for (Instruction &I : *BB) {
2267       if (auto *CI = dyn_cast<CallInst>(&I)) {
2268         Value *Callee = CI->getCalledOperand();
2269         // Handle intrinsic calls.
2270         if (Function *F = dyn_cast<Function>(Callee)) {
2271           auto IntrinsicID = F->getIntrinsicID();
2272           // Assumptions that are known to be false are equivalent to
2273           // unreachable. Also, if the condition is undefined, then we make the
2274           // choice most beneficial to the optimizer, and choose that to also be
2275           // unreachable.
2276           if (IntrinsicID == Intrinsic::assume) {
2277             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2278               // Don't insert a call to llvm.trap right before the unreachable.
2279               changeToUnreachable(CI, false, DTU);
2280               Changed = true;
2281               break;
2282             }
2283           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2284             // A call to the guard intrinsic bails out of the current
2285             // compilation unit if the predicate passed to it is false. If the
2286             // predicate is a constant false, then we know the guard will bail
2287             // out of the current compile unconditionally, so all code following
2288             // it is dead.
2289             //
2290             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2291             // guards to treat `undef` as `false` since a guard on `undef` can
2292             // still be useful for widening.
2293             if (match(CI->getArgOperand(0), m_Zero()))
2294               if (!isa<UnreachableInst>(CI->getNextNode())) {
2295                 changeToUnreachable(CI->getNextNode(), false, DTU);
2296                 Changed = true;
2297                 break;
2298               }
2299           }
2300         } else if ((isa<ConstantPointerNull>(Callee) &&
2301                     !NullPointerIsDefined(CI->getFunction())) ||
2302                    isa<UndefValue>(Callee)) {
2303           changeToUnreachable(CI, false, DTU);
2304           Changed = true;
2305           break;
2306         }
2307         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2308           // If we found a call to a no-return function, insert an unreachable
2309           // instruction after it.  Make sure there isn't *already* one there
2310           // though.
2311           if (!isa<UnreachableInst>(CI->getNextNode())) {
2312             // Don't insert a call to llvm.trap right before the unreachable.
2313             changeToUnreachable(CI->getNextNode(), false, DTU);
2314             Changed = true;
2315           }
2316           break;
2317         }
2318       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2319         // Store to undef and store to null are undefined and used to signal
2320         // that they should be changed to unreachable by passes that can't
2321         // modify the CFG.
2322 
2323         // Don't touch volatile stores.
2324         if (SI->isVolatile()) continue;
2325 
2326         Value *Ptr = SI->getOperand(1);
2327 
2328         if (isa<UndefValue>(Ptr) ||
2329             (isa<ConstantPointerNull>(Ptr) &&
2330              !NullPointerIsDefined(SI->getFunction(),
2331                                    SI->getPointerAddressSpace()))) {
2332           changeToUnreachable(SI, false, DTU);
2333           Changed = true;
2334           break;
2335         }
2336       }
2337     }
2338 
2339     Instruction *Terminator = BB->getTerminator();
2340     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2341       // Turn invokes that call 'nounwind' functions into ordinary calls.
2342       Value *Callee = II->getCalledOperand();
2343       if ((isa<ConstantPointerNull>(Callee) &&
2344            !NullPointerIsDefined(BB->getParent())) ||
2345           isa<UndefValue>(Callee)) {
2346         changeToUnreachable(II, false, DTU);
2347         Changed = true;
2348       } else {
2349         if (II->doesNotReturn() &&
2350             !isa<UnreachableInst>(II->getNormalDest()->front())) {
2351           // If we found an invoke of a no-return function,
2352           // create a new empty basic block with an `unreachable` terminator,
2353           // and set it as the normal destination for the invoke,
2354           // unless that is already the case.
2355           // Note that the original normal destination could have other uses.
2356           BasicBlock *OrigNormalDest = II->getNormalDest();
2357           OrigNormalDest->removePredecessor(II->getParent());
2358           LLVMContext &Ctx = II->getContext();
2359           BasicBlock *UnreachableNormalDest = BasicBlock::Create(
2360               Ctx, OrigNormalDest->getName() + ".unreachable",
2361               II->getFunction(), OrigNormalDest);
2362           new UnreachableInst(Ctx, UnreachableNormalDest);
2363           II->setNormalDest(UnreachableNormalDest);
2364           if (DTU)
2365             DTU->applyUpdates(
2366                 {{DominatorTree::Delete, BB, OrigNormalDest},
2367                  {DominatorTree::Insert, BB, UnreachableNormalDest}});
2368           Changed = true;
2369         }
2370         if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2371           if (II->use_empty() && II->onlyReadsMemory()) {
2372             // jump to the normal destination branch.
2373             BasicBlock *NormalDestBB = II->getNormalDest();
2374             BasicBlock *UnwindDestBB = II->getUnwindDest();
2375             BranchInst::Create(NormalDestBB, II);
2376             UnwindDestBB->removePredecessor(II->getParent());
2377             II->eraseFromParent();
2378             if (DTU)
2379               DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2380           } else
2381             changeToCall(II, DTU);
2382           Changed = true;
2383         }
2384       }
2385     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2386       // Remove catchpads which cannot be reached.
2387       struct CatchPadDenseMapInfo {
2388         static CatchPadInst *getEmptyKey() {
2389           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2390         }
2391 
2392         static CatchPadInst *getTombstoneKey() {
2393           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2394         }
2395 
2396         static unsigned getHashValue(CatchPadInst *CatchPad) {
2397           return static_cast<unsigned>(hash_combine_range(
2398               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2399         }
2400 
2401         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2402           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2403               RHS == getEmptyKey() || RHS == getTombstoneKey())
2404             return LHS == RHS;
2405           return LHS->isIdenticalTo(RHS);
2406         }
2407       };
2408 
2409       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2410       // Set of unique CatchPads.
2411       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2412                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2413           HandlerSet;
2414       detail::DenseSetEmpty Empty;
2415       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2416                                              E = CatchSwitch->handler_end();
2417            I != E; ++I) {
2418         BasicBlock *HandlerBB = *I;
2419         if (DTU)
2420           ++NumPerSuccessorCases[HandlerBB];
2421         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2422         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2423           if (DTU)
2424             --NumPerSuccessorCases[HandlerBB];
2425           CatchSwitch->removeHandler(I);
2426           --I;
2427           --E;
2428           Changed = true;
2429         }
2430       }
2431       if (DTU) {
2432         std::vector<DominatorTree::UpdateType> Updates;
2433         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2434           if (I.second == 0)
2435             Updates.push_back({DominatorTree::Delete, BB, I.first});
2436         DTU->applyUpdates(Updates);
2437       }
2438     }
2439 
2440     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2441     for (BasicBlock *Successor : successors(BB))
2442       if (Reachable.insert(Successor).second)
2443         Worklist.push_back(Successor);
2444   } while (!Worklist.empty());
2445   return Changed;
2446 }
2447 
2448 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2449   Instruction *TI = BB->getTerminator();
2450 
2451   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2452     changeToCall(II, DTU);
2453     return;
2454   }
2455 
2456   Instruction *NewTI;
2457   BasicBlock *UnwindDest;
2458 
2459   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2460     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2461     UnwindDest = CRI->getUnwindDest();
2462   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2463     auto *NewCatchSwitch = CatchSwitchInst::Create(
2464         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2465         CatchSwitch->getName(), CatchSwitch);
2466     for (BasicBlock *PadBB : CatchSwitch->handlers())
2467       NewCatchSwitch->addHandler(PadBB);
2468 
2469     NewTI = NewCatchSwitch;
2470     UnwindDest = CatchSwitch->getUnwindDest();
2471   } else {
2472     llvm_unreachable("Could not find unwind successor");
2473   }
2474 
2475   NewTI->takeName(TI);
2476   NewTI->setDebugLoc(TI->getDebugLoc());
2477   UnwindDest->removePredecessor(BB);
2478   TI->replaceAllUsesWith(NewTI);
2479   TI->eraseFromParent();
2480   if (DTU)
2481     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2482 }
2483 
2484 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2485 /// if they are in a dead cycle.  Return true if a change was made, false
2486 /// otherwise.
2487 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2488                                    MemorySSAUpdater *MSSAU) {
2489   SmallPtrSet<BasicBlock *, 16> Reachable;
2490   bool Changed = markAliveBlocks(F, Reachable, DTU);
2491 
2492   // If there are unreachable blocks in the CFG...
2493   if (Reachable.size() == F.size())
2494     return Changed;
2495 
2496   assert(Reachable.size() < F.size());
2497 
2498   // Are there any blocks left to actually delete?
2499   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2500   for (BasicBlock &BB : F) {
2501     // Skip reachable basic blocks
2502     if (Reachable.count(&BB))
2503       continue;
2504     // Skip already-deleted blocks
2505     if (DTU && DTU->isBBPendingDeletion(&BB))
2506       continue;
2507     BlocksToRemove.insert(&BB);
2508   }
2509 
2510   if (BlocksToRemove.empty())
2511     return Changed;
2512 
2513   Changed = true;
2514   NumRemoved += BlocksToRemove.size();
2515 
2516   if (MSSAU)
2517     MSSAU->removeBlocks(BlocksToRemove);
2518 
2519   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2520 
2521   return Changed;
2522 }
2523 
2524 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2525                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2526   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2527   K->dropUnknownNonDebugMetadata(KnownIDs);
2528   K->getAllMetadataOtherThanDebugLoc(Metadata);
2529   for (const auto &MD : Metadata) {
2530     unsigned Kind = MD.first;
2531     MDNode *JMD = J->getMetadata(Kind);
2532     MDNode *KMD = MD.second;
2533 
2534     switch (Kind) {
2535       default:
2536         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2537         break;
2538       case LLVMContext::MD_dbg:
2539         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2540       case LLVMContext::MD_tbaa:
2541         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2542         break;
2543       case LLVMContext::MD_alias_scope:
2544         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2545         break;
2546       case LLVMContext::MD_noalias:
2547       case LLVMContext::MD_mem_parallel_loop_access:
2548         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2549         break;
2550       case LLVMContext::MD_access_group:
2551         K->setMetadata(LLVMContext::MD_access_group,
2552                        intersectAccessGroups(K, J));
2553         break;
2554       case LLVMContext::MD_range:
2555 
2556         // If K does move, use most generic range. Otherwise keep the range of
2557         // K.
2558         if (DoesKMove)
2559           // FIXME: If K does move, we should drop the range info and nonnull.
2560           //        Currently this function is used with DoesKMove in passes
2561           //        doing hoisting/sinking and the current behavior of using the
2562           //        most generic range is correct in those cases.
2563           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2564         break;
2565       case LLVMContext::MD_fpmath:
2566         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2567         break;
2568       case LLVMContext::MD_invariant_load:
2569         // Only set the !invariant.load if it is present in both instructions.
2570         K->setMetadata(Kind, JMD);
2571         break;
2572       case LLVMContext::MD_nonnull:
2573         // If K does move, keep nonull if it is present in both instructions.
2574         if (DoesKMove)
2575           K->setMetadata(Kind, JMD);
2576         break;
2577       case LLVMContext::MD_invariant_group:
2578         // Preserve !invariant.group in K.
2579         break;
2580       case LLVMContext::MD_align:
2581         K->setMetadata(Kind,
2582           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2583         break;
2584       case LLVMContext::MD_dereferenceable:
2585       case LLVMContext::MD_dereferenceable_or_null:
2586         K->setMetadata(Kind,
2587           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2588         break;
2589       case LLVMContext::MD_preserve_access_index:
2590         // Preserve !preserve.access.index in K.
2591         break;
2592     }
2593   }
2594   // Set !invariant.group from J if J has it. If both instructions have it
2595   // then we will just pick it from J - even when they are different.
2596   // Also make sure that K is load or store - f.e. combining bitcast with load
2597   // could produce bitcast with invariant.group metadata, which is invalid.
2598   // FIXME: we should try to preserve both invariant.group md if they are
2599   // different, but right now instruction can only have one invariant.group.
2600   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2601     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2602       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2603 }
2604 
2605 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2606                                  bool KDominatesJ) {
2607   unsigned KnownIDs[] = {
2608       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2609       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2610       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2611       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2612       LLVMContext::MD_dereferenceable,
2613       LLVMContext::MD_dereferenceable_or_null,
2614       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2615   combineMetadata(K, J, KnownIDs, KDominatesJ);
2616 }
2617 
2618 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2619   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2620   Source.getAllMetadata(MD);
2621   MDBuilder MDB(Dest.getContext());
2622   Type *NewType = Dest.getType();
2623   const DataLayout &DL = Source.getModule()->getDataLayout();
2624   for (const auto &MDPair : MD) {
2625     unsigned ID = MDPair.first;
2626     MDNode *N = MDPair.second;
2627     // Note, essentially every kind of metadata should be preserved here! This
2628     // routine is supposed to clone a load instruction changing *only its type*.
2629     // The only metadata it makes sense to drop is metadata which is invalidated
2630     // when the pointer type changes. This should essentially never be the case
2631     // in LLVM, but we explicitly switch over only known metadata to be
2632     // conservatively correct. If you are adding metadata to LLVM which pertains
2633     // to loads, you almost certainly want to add it here.
2634     switch (ID) {
2635     case LLVMContext::MD_dbg:
2636     case LLVMContext::MD_tbaa:
2637     case LLVMContext::MD_prof:
2638     case LLVMContext::MD_fpmath:
2639     case LLVMContext::MD_tbaa_struct:
2640     case LLVMContext::MD_invariant_load:
2641     case LLVMContext::MD_alias_scope:
2642     case LLVMContext::MD_noalias:
2643     case LLVMContext::MD_nontemporal:
2644     case LLVMContext::MD_mem_parallel_loop_access:
2645     case LLVMContext::MD_access_group:
2646       // All of these directly apply.
2647       Dest.setMetadata(ID, N);
2648       break;
2649 
2650     case LLVMContext::MD_nonnull:
2651       copyNonnullMetadata(Source, N, Dest);
2652       break;
2653 
2654     case LLVMContext::MD_align:
2655     case LLVMContext::MD_dereferenceable:
2656     case LLVMContext::MD_dereferenceable_or_null:
2657       // These only directly apply if the new type is also a pointer.
2658       if (NewType->isPointerTy())
2659         Dest.setMetadata(ID, N);
2660       break;
2661 
2662     case LLVMContext::MD_range:
2663       copyRangeMetadata(DL, Source, N, Dest);
2664       break;
2665     }
2666   }
2667 }
2668 
2669 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2670   auto *ReplInst = dyn_cast<Instruction>(Repl);
2671   if (!ReplInst)
2672     return;
2673 
2674   // Patch the replacement so that it is not more restrictive than the value
2675   // being replaced.
2676   // Note that if 'I' is a load being replaced by some operation,
2677   // for example, by an arithmetic operation, then andIRFlags()
2678   // would just erase all math flags from the original arithmetic
2679   // operation, which is clearly not wanted and not needed.
2680   if (!isa<LoadInst>(I))
2681     ReplInst->andIRFlags(I);
2682 
2683   // FIXME: If both the original and replacement value are part of the
2684   // same control-flow region (meaning that the execution of one
2685   // guarantees the execution of the other), then we can combine the
2686   // noalias scopes here and do better than the general conservative
2687   // answer used in combineMetadata().
2688 
2689   // In general, GVN unifies expressions over different control-flow
2690   // regions, and so we need a conservative combination of the noalias
2691   // scopes.
2692   static const unsigned KnownIDs[] = {
2693       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2694       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2695       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2696       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2697       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2698   combineMetadata(ReplInst, I, KnownIDs, false);
2699 }
2700 
2701 template <typename RootType, typename DominatesFn>
2702 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2703                                          const RootType &Root,
2704                                          const DominatesFn &Dominates) {
2705   assert(From->getType() == To->getType());
2706 
2707   unsigned Count = 0;
2708   for (Use &U : llvm::make_early_inc_range(From->uses())) {
2709     if (!Dominates(Root, U))
2710       continue;
2711     U.set(To);
2712     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2713                       << "' as " << *To << " in " << *U << "\n");
2714     ++Count;
2715   }
2716   return Count;
2717 }
2718 
2719 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2720    assert(From->getType() == To->getType());
2721    auto *BB = From->getParent();
2722    unsigned Count = 0;
2723 
2724    for (Use &U : llvm::make_early_inc_range(From->uses())) {
2725     auto *I = cast<Instruction>(U.getUser());
2726     if (I->getParent() == BB)
2727       continue;
2728     U.set(To);
2729     ++Count;
2730   }
2731   return Count;
2732 }
2733 
2734 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2735                                         DominatorTree &DT,
2736                                         const BasicBlockEdge &Root) {
2737   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2738     return DT.dominates(Root, U);
2739   };
2740   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2741 }
2742 
2743 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2744                                         DominatorTree &DT,
2745                                         const BasicBlock *BB) {
2746   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2747     return DT.dominates(BB, U);
2748   };
2749   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2750 }
2751 
2752 bool llvm::callsGCLeafFunction(const CallBase *Call,
2753                                const TargetLibraryInfo &TLI) {
2754   // Check if the function is specifically marked as a gc leaf function.
2755   if (Call->hasFnAttr("gc-leaf-function"))
2756     return true;
2757   if (const Function *F = Call->getCalledFunction()) {
2758     if (F->hasFnAttribute("gc-leaf-function"))
2759       return true;
2760 
2761     if (auto IID = F->getIntrinsicID()) {
2762       // Most LLVM intrinsics do not take safepoints.
2763       return IID != Intrinsic::experimental_gc_statepoint &&
2764              IID != Intrinsic::experimental_deoptimize &&
2765              IID != Intrinsic::memcpy_element_unordered_atomic &&
2766              IID != Intrinsic::memmove_element_unordered_atomic;
2767     }
2768   }
2769 
2770   // Lib calls can be materialized by some passes, and won't be
2771   // marked as 'gc-leaf-function.' All available Libcalls are
2772   // GC-leaf.
2773   LibFunc LF;
2774   if (TLI.getLibFunc(*Call, LF)) {
2775     return TLI.has(LF);
2776   }
2777 
2778   return false;
2779 }
2780 
2781 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2782                                LoadInst &NewLI) {
2783   auto *NewTy = NewLI.getType();
2784 
2785   // This only directly applies if the new type is also a pointer.
2786   if (NewTy->isPointerTy()) {
2787     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2788     return;
2789   }
2790 
2791   // The only other translation we can do is to integral loads with !range
2792   // metadata.
2793   if (!NewTy->isIntegerTy())
2794     return;
2795 
2796   MDBuilder MDB(NewLI.getContext());
2797   const Value *Ptr = OldLI.getPointerOperand();
2798   auto *ITy = cast<IntegerType>(NewTy);
2799   auto *NullInt = ConstantExpr::getPtrToInt(
2800       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2801   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2802   NewLI.setMetadata(LLVMContext::MD_range,
2803                     MDB.createRange(NonNullInt, NullInt));
2804 }
2805 
2806 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2807                              MDNode *N, LoadInst &NewLI) {
2808   auto *NewTy = NewLI.getType();
2809 
2810   // Give up unless it is converted to a pointer where there is a single very
2811   // valuable mapping we can do reliably.
2812   // FIXME: It would be nice to propagate this in more ways, but the type
2813   // conversions make it hard.
2814   if (!NewTy->isPointerTy())
2815     return;
2816 
2817   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2818   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2819     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2820     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2821   }
2822 }
2823 
2824 void llvm::dropDebugUsers(Instruction &I) {
2825   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2826   findDbgUsers(DbgUsers, &I);
2827   for (auto *DII : DbgUsers)
2828     DII->eraseFromParent();
2829 }
2830 
2831 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2832                                     BasicBlock *BB) {
2833   // Since we are moving the instructions out of its basic block, we do not
2834   // retain their original debug locations (DILocations) and debug intrinsic
2835   // instructions.
2836   //
2837   // Doing so would degrade the debugging experience and adversely affect the
2838   // accuracy of profiling information.
2839   //
2840   // Currently, when hoisting the instructions, we take the following actions:
2841   // - Remove their debug intrinsic instructions.
2842   // - Set their debug locations to the values from the insertion point.
2843   //
2844   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2845   // need to be deleted, is because there will not be any instructions with a
2846   // DILocation in either branch left after performing the transformation. We
2847   // can only insert a dbg.value after the two branches are joined again.
2848   //
2849   // See PR38762, PR39243 for more details.
2850   //
2851   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2852   // encode predicated DIExpressions that yield different results on different
2853   // code paths.
2854 
2855   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2856     Instruction *I = &*II;
2857     I->dropUndefImplyingAttrsAndUnknownMetadata();
2858     if (I->isUsedByMetadata())
2859       dropDebugUsers(*I);
2860     if (I->isDebugOrPseudoInst()) {
2861       // Remove DbgInfo and pseudo probe Intrinsics.
2862       II = I->eraseFromParent();
2863       continue;
2864     }
2865     I->setDebugLoc(InsertPt->getDebugLoc());
2866     ++II;
2867   }
2868   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2869                                  BB->begin(),
2870                                  BB->getTerminator()->getIterator());
2871 }
2872 
2873 namespace {
2874 
2875 /// A potential constituent of a bitreverse or bswap expression. See
2876 /// collectBitParts for a fuller explanation.
2877 struct BitPart {
2878   BitPart(Value *P, unsigned BW) : Provider(P) {
2879     Provenance.resize(BW);
2880   }
2881 
2882   /// The Value that this is a bitreverse/bswap of.
2883   Value *Provider;
2884 
2885   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2886   /// in Provider becomes bit B in the result of this expression.
2887   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2888 
2889   enum { Unset = -1 };
2890 };
2891 
2892 } // end anonymous namespace
2893 
2894 /// Analyze the specified subexpression and see if it is capable of providing
2895 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2896 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2897 /// the output of the expression came from a corresponding bit in some other
2898 /// value. This function is recursive, and the end result is a mapping of
2899 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2900 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2901 ///
2902 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2903 /// that the expression deposits the low byte of %X into the high byte of the
2904 /// result and that all other bits are zero. This expression is accepted and a
2905 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2906 /// [0-7].
2907 ///
2908 /// For vector types, all analysis is performed at the per-element level. No
2909 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2910 /// constant masks must be splatted across all elements.
2911 ///
2912 /// To avoid revisiting values, the BitPart results are memoized into the
2913 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2914 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2915 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2916 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2917 /// type instead to provide the same functionality.
2918 ///
2919 /// Because we pass around references into \c BPS, we must use a container that
2920 /// does not invalidate internal references (std::map instead of DenseMap).
2921 static const Optional<BitPart> &
2922 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2923                 std::map<Value *, Optional<BitPart>> &BPS, int Depth,
2924                 bool &FoundRoot) {
2925   auto I = BPS.find(V);
2926   if (I != BPS.end())
2927     return I->second;
2928 
2929   auto &Result = BPS[V] = None;
2930   auto BitWidth = V->getType()->getScalarSizeInBits();
2931 
2932   // Can't do integer/elements > 128 bits.
2933   if (BitWidth > 128)
2934     return Result;
2935 
2936   // Prevent stack overflow by limiting the recursion depth
2937   if (Depth == BitPartRecursionMaxDepth) {
2938     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2939     return Result;
2940   }
2941 
2942   if (auto *I = dyn_cast<Instruction>(V)) {
2943     Value *X, *Y;
2944     const APInt *C;
2945 
2946     // If this is an or instruction, it may be an inner node of the bswap.
2947     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2948       // Check we have both sources and they are from the same provider.
2949       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2950                                       Depth + 1, FoundRoot);
2951       if (!A || !A->Provider)
2952         return Result;
2953 
2954       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
2955                                       Depth + 1, FoundRoot);
2956       if (!B || A->Provider != B->Provider)
2957         return Result;
2958 
2959       // Try and merge the two together.
2960       Result = BitPart(A->Provider, BitWidth);
2961       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2962         if (A->Provenance[BitIdx] != BitPart::Unset &&
2963             B->Provenance[BitIdx] != BitPart::Unset &&
2964             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2965           return Result = None;
2966 
2967         if (A->Provenance[BitIdx] == BitPart::Unset)
2968           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2969         else
2970           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2971       }
2972 
2973       return Result;
2974     }
2975 
2976     // If this is a logical shift by a constant, recurse then shift the result.
2977     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2978       const APInt &BitShift = *C;
2979 
2980       // Ensure the shift amount is defined.
2981       if (BitShift.uge(BitWidth))
2982         return Result;
2983 
2984       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
2985       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
2986         return Result;
2987 
2988       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2989                                         Depth + 1, FoundRoot);
2990       if (!Res)
2991         return Result;
2992       Result = Res;
2993 
2994       // Perform the "shift" on BitProvenance.
2995       auto &P = Result->Provenance;
2996       if (I->getOpcode() == Instruction::Shl) {
2997         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2998         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2999       } else {
3000         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3001         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3002       }
3003 
3004       return Result;
3005     }
3006 
3007     // If this is a logical 'and' with a mask that clears bits, recurse then
3008     // unset the appropriate bits.
3009     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3010       const APInt &AndMask = *C;
3011 
3012       // Check that the mask allows a multiple of 8 bits for a bswap, for an
3013       // early exit.
3014       unsigned NumMaskedBits = AndMask.countPopulation();
3015       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3016         return Result;
3017 
3018       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3019                                         Depth + 1, FoundRoot);
3020       if (!Res)
3021         return Result;
3022       Result = Res;
3023 
3024       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3025         // If the AndMask is zero for this bit, clear the bit.
3026         if (AndMask[BitIdx] == 0)
3027           Result->Provenance[BitIdx] = BitPart::Unset;
3028       return Result;
3029     }
3030 
3031     // If this is a zext instruction zero extend the result.
3032     if (match(V, m_ZExt(m_Value(X)))) {
3033       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3034                                         Depth + 1, FoundRoot);
3035       if (!Res)
3036         return Result;
3037 
3038       Result = BitPart(Res->Provider, BitWidth);
3039       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3040       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3041         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3042       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3043         Result->Provenance[BitIdx] = BitPart::Unset;
3044       return Result;
3045     }
3046 
3047     // If this is a truncate instruction, extract the lower bits.
3048     if (match(V, m_Trunc(m_Value(X)))) {
3049       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3050                                         Depth + 1, FoundRoot);
3051       if (!Res)
3052         return Result;
3053 
3054       Result = BitPart(Res->Provider, BitWidth);
3055       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3056         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3057       return Result;
3058     }
3059 
3060     // BITREVERSE - most likely due to us previous matching a partial
3061     // bitreverse.
3062     if (match(V, m_BitReverse(m_Value(X)))) {
3063       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3064                                         Depth + 1, FoundRoot);
3065       if (!Res)
3066         return Result;
3067 
3068       Result = BitPart(Res->Provider, BitWidth);
3069       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3070         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3071       return Result;
3072     }
3073 
3074     // BSWAP - most likely due to us previous matching a partial bswap.
3075     if (match(V, m_BSwap(m_Value(X)))) {
3076       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3077                                         Depth + 1, FoundRoot);
3078       if (!Res)
3079         return Result;
3080 
3081       unsigned ByteWidth = BitWidth / 8;
3082       Result = BitPart(Res->Provider, BitWidth);
3083       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3084         unsigned ByteBitOfs = ByteIdx * 8;
3085         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3086           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3087               Res->Provenance[ByteBitOfs + BitIdx];
3088       }
3089       return Result;
3090     }
3091 
3092     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3093     // amount (modulo).
3094     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3095     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3096     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3097         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3098       // We can treat fshr as a fshl by flipping the modulo amount.
3099       unsigned ModAmt = C->urem(BitWidth);
3100       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3101         ModAmt = BitWidth - ModAmt;
3102 
3103       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3104       if (!MatchBitReversals && (ModAmt % 8) != 0)
3105         return Result;
3106 
3107       // Check we have both sources and they are from the same provider.
3108       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3109                                         Depth + 1, FoundRoot);
3110       if (!LHS || !LHS->Provider)
3111         return Result;
3112 
3113       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3114                                         Depth + 1, FoundRoot);
3115       if (!RHS || LHS->Provider != RHS->Provider)
3116         return Result;
3117 
3118       unsigned StartBitRHS = BitWidth - ModAmt;
3119       Result = BitPart(LHS->Provider, BitWidth);
3120       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3121         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3122       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3123         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3124       return Result;
3125     }
3126   }
3127 
3128   // If we've already found a root input value then we're never going to merge
3129   // these back together.
3130   if (FoundRoot)
3131     return Result;
3132 
3133   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3134   // be the root input value to the bswap/bitreverse.
3135   FoundRoot = true;
3136   Result = BitPart(V, BitWidth);
3137   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3138     Result->Provenance[BitIdx] = BitIdx;
3139   return Result;
3140 }
3141 
3142 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3143                                           unsigned BitWidth) {
3144   if (From % 8 != To % 8)
3145     return false;
3146   // Convert from bit indices to byte indices and check for a byte reversal.
3147   From >>= 3;
3148   To >>= 3;
3149   BitWidth >>= 3;
3150   return From == BitWidth - To - 1;
3151 }
3152 
3153 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3154                                                unsigned BitWidth) {
3155   return From == BitWidth - To - 1;
3156 }
3157 
3158 bool llvm::recognizeBSwapOrBitReverseIdiom(
3159     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3160     SmallVectorImpl<Instruction *> &InsertedInsts) {
3161   if (!match(I, m_Or(m_Value(), m_Value())) &&
3162       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3163       !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3164     return false;
3165   if (!MatchBSwaps && !MatchBitReversals)
3166     return false;
3167   Type *ITy = I->getType();
3168   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3169     return false;  // Can't do integer/elements > 128 bits.
3170 
3171   // Try to find all the pieces corresponding to the bswap.
3172   bool FoundRoot = false;
3173   std::map<Value *, Optional<BitPart>> BPS;
3174   const auto &Res =
3175       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3176   if (!Res)
3177     return false;
3178   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3179   assert(all_of(BitProvenance,
3180                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3181          "Illegal bit provenance index");
3182 
3183   // If the upper bits are zero, then attempt to perform as a truncated op.
3184   Type *DemandedTy = ITy;
3185   if (BitProvenance.back() == BitPart::Unset) {
3186     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3187       BitProvenance = BitProvenance.drop_back();
3188     if (BitProvenance.empty())
3189       return false; // TODO - handle null value?
3190     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3191     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3192       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3193   }
3194 
3195   // Check BitProvenance hasn't found a source larger than the result type.
3196   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3197   if (DemandedBW > ITy->getScalarSizeInBits())
3198     return false;
3199 
3200   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3201   // only byteswap values with an even number of bytes.
3202   APInt DemandedMask = APInt::getAllOnes(DemandedBW);
3203   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3204   bool OKForBitReverse = MatchBitReversals;
3205   for (unsigned BitIdx = 0;
3206        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3207     if (BitProvenance[BitIdx] == BitPart::Unset) {
3208       DemandedMask.clearBit(BitIdx);
3209       continue;
3210     }
3211     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3212                                                 DemandedBW);
3213     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3214                                                           BitIdx, DemandedBW);
3215   }
3216 
3217   Intrinsic::ID Intrin;
3218   if (OKForBSwap)
3219     Intrin = Intrinsic::bswap;
3220   else if (OKForBitReverse)
3221     Intrin = Intrinsic::bitreverse;
3222   else
3223     return false;
3224 
3225   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3226   Value *Provider = Res->Provider;
3227 
3228   // We may need to truncate the provider.
3229   if (DemandedTy != Provider->getType()) {
3230     auto *Trunc =
3231         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3232     InsertedInsts.push_back(Trunc);
3233     Provider = Trunc;
3234   }
3235 
3236   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3237   InsertedInsts.push_back(Result);
3238 
3239   if (!DemandedMask.isAllOnes()) {
3240     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3241     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3242     InsertedInsts.push_back(Result);
3243   }
3244 
3245   // We may need to zeroextend back to the result type.
3246   if (ITy != Result->getType()) {
3247     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3248     InsertedInsts.push_back(ExtInst);
3249   }
3250 
3251   return true;
3252 }
3253 
3254 // CodeGen has special handling for some string functions that may replace
3255 // them with target-specific intrinsics.  Since that'd skip our interceptors
3256 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3257 // we mark affected calls as NoBuiltin, which will disable optimization
3258 // in CodeGen.
3259 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3260     CallInst *CI, const TargetLibraryInfo *TLI) {
3261   Function *F = CI->getCalledFunction();
3262   LibFunc Func;
3263   if (F && !F->hasLocalLinkage() && F->hasName() &&
3264       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3265       !F->doesNotAccessMemory())
3266     CI->addFnAttr(Attribute::NoBuiltin);
3267 }
3268 
3269 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3270   // We can't have a PHI with a metadata type.
3271   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3272     return false;
3273 
3274   // Early exit.
3275   if (!isa<Constant>(I->getOperand(OpIdx)))
3276     return true;
3277 
3278   switch (I->getOpcode()) {
3279   default:
3280     return true;
3281   case Instruction::Call:
3282   case Instruction::Invoke: {
3283     const auto &CB = cast<CallBase>(*I);
3284 
3285     // Can't handle inline asm. Skip it.
3286     if (CB.isInlineAsm())
3287       return false;
3288 
3289     // Constant bundle operands may need to retain their constant-ness for
3290     // correctness.
3291     if (CB.isBundleOperand(OpIdx))
3292       return false;
3293 
3294     if (OpIdx < CB.arg_size()) {
3295       // Some variadic intrinsics require constants in the variadic arguments,
3296       // which currently aren't markable as immarg.
3297       if (isa<IntrinsicInst>(CB) &&
3298           OpIdx >= CB.getFunctionType()->getNumParams()) {
3299         // This is known to be OK for stackmap.
3300         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3301       }
3302 
3303       // gcroot is a special case, since it requires a constant argument which
3304       // isn't also required to be a simple ConstantInt.
3305       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3306         return false;
3307 
3308       // Some intrinsic operands are required to be immediates.
3309       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3310     }
3311 
3312     // It is never allowed to replace the call argument to an intrinsic, but it
3313     // may be possible for a call.
3314     return !isa<IntrinsicInst>(CB);
3315   }
3316   case Instruction::ShuffleVector:
3317     // Shufflevector masks are constant.
3318     return OpIdx != 2;
3319   case Instruction::Switch:
3320   case Instruction::ExtractValue:
3321     // All operands apart from the first are constant.
3322     return OpIdx == 0;
3323   case Instruction::InsertValue:
3324     // All operands apart from the first and the second are constant.
3325     return OpIdx < 2;
3326   case Instruction::Alloca:
3327     // Static allocas (constant size in the entry block) are handled by
3328     // prologue/epilogue insertion so they're free anyway. We definitely don't
3329     // want to make them non-constant.
3330     return !cast<AllocaInst>(I)->isStaticAlloca();
3331   case Instruction::GetElementPtr:
3332     if (OpIdx == 0)
3333       return true;
3334     gep_type_iterator It = gep_type_begin(I);
3335     for (auto E = std::next(It, OpIdx); It != E; ++It)
3336       if (It.isStruct())
3337         return false;
3338     return true;
3339   }
3340 }
3341 
3342 Value *llvm::invertCondition(Value *Condition) {
3343   // First: Check if it's a constant
3344   if (Constant *C = dyn_cast<Constant>(Condition))
3345     return ConstantExpr::getNot(C);
3346 
3347   // Second: If the condition is already inverted, return the original value
3348   Value *NotCondition;
3349   if (match(Condition, m_Not(m_Value(NotCondition))))
3350     return NotCondition;
3351 
3352   BasicBlock *Parent = nullptr;
3353   Instruction *Inst = dyn_cast<Instruction>(Condition);
3354   if (Inst)
3355     Parent = Inst->getParent();
3356   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3357     Parent = &Arg->getParent()->getEntryBlock();
3358   assert(Parent && "Unsupported condition to invert");
3359 
3360   // Third: Check all the users for an invert
3361   for (User *U : Condition->users())
3362     if (Instruction *I = dyn_cast<Instruction>(U))
3363       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3364         return I;
3365 
3366   // Last option: Create a new instruction
3367   auto *Inverted =
3368       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3369   if (Inst && !isa<PHINode>(Inst))
3370     Inverted->insertAfter(Inst);
3371   else
3372     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3373   return Inverted;
3374 }
3375 
3376 bool llvm::inferAttributesFromOthers(Function &F) {
3377   // Note: We explicitly check for attributes rather than using cover functions
3378   // because some of the cover functions include the logic being implemented.
3379 
3380   bool Changed = false;
3381   // readnone + not convergent implies nosync
3382   if (!F.hasFnAttribute(Attribute::NoSync) &&
3383       F.doesNotAccessMemory() && !F.isConvergent()) {
3384     F.setNoSync();
3385     Changed = true;
3386   }
3387 
3388   // readonly implies nofree
3389   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3390     F.setDoesNotFreeMemory();
3391     Changed = true;
3392   }
3393 
3394   // willreturn implies mustprogress
3395   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3396     F.setMustProgress();
3397     Changed = true;
3398   }
3399 
3400   // TODO: There are a bunch of cases of restrictive memory effects we
3401   // can infer by inspecting arguments of argmemonly-ish functions.
3402 
3403   return Changed;
3404 }
3405