1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 95 // Max recursion depth for collectBitParts used when detecting bswap and 96 // bitreverse idioms 97 static const unsigned BitPartRecursionMaxDepth = 64; 98 99 //===----------------------------------------------------------------------===// 100 // Local constant propagation. 101 // 102 103 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 104 /// constant value, convert it into an unconditional branch to the constant 105 /// destination. This is a nontrivial operation because the successors of this 106 /// basic block must have their PHI nodes updated. 107 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 108 /// conditions and indirectbr addresses this might make dead if 109 /// DeleteDeadConditions is true. 110 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 111 const TargetLibraryInfo *TLI, 112 DomTreeUpdater *DTU) { 113 Instruction *T = BB->getTerminator(); 114 IRBuilder<> Builder(T); 115 116 // Branch - See if we are conditional jumping on constant 117 if (auto *BI = dyn_cast<BranchInst>(T)) { 118 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 119 BasicBlock *Dest1 = BI->getSuccessor(0); 120 BasicBlock *Dest2 = BI->getSuccessor(1); 121 122 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 123 // Are we branching on constant? 124 // YES. Change to unconditional branch... 125 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 126 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 127 128 // Let the basic block know that we are letting go of it. Based on this, 129 // it will adjust it's PHI nodes. 130 OldDest->removePredecessor(BB); 131 132 // Replace the conditional branch with an unconditional one. 133 Builder.CreateBr(Destination); 134 BI->eraseFromParent(); 135 if (DTU) 136 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 137 return true; 138 } 139 140 if (Dest2 == Dest1) { // Conditional branch to same location? 141 // This branch matches something like this: 142 // br bool %cond, label %Dest, label %Dest 143 // and changes it into: br label %Dest 144 145 // Let the basic block know that we are letting go of one copy of it. 146 assert(BI->getParent() && "Terminator not inserted in block!"); 147 Dest1->removePredecessor(BI->getParent()); 148 149 // Replace the conditional branch with an unconditional one. 150 Builder.CreateBr(Dest1); 151 Value *Cond = BI->getCondition(); 152 BI->eraseFromParent(); 153 if (DeleteDeadConditions) 154 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 155 return true; 156 } 157 return false; 158 } 159 160 if (auto *SI = dyn_cast<SwitchInst>(T)) { 161 // If we are switching on a constant, we can convert the switch to an 162 // unconditional branch. 163 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 164 BasicBlock *DefaultDest = SI->getDefaultDest(); 165 BasicBlock *TheOnlyDest = DefaultDest; 166 167 // If the default is unreachable, ignore it when searching for TheOnlyDest. 168 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 169 SI->getNumCases() > 0) { 170 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 171 } 172 173 // Figure out which case it goes to. 174 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 175 // Found case matching a constant operand? 176 if (i->getCaseValue() == CI) { 177 TheOnlyDest = i->getCaseSuccessor(); 178 break; 179 } 180 181 // Check to see if this branch is going to the same place as the default 182 // dest. If so, eliminate it as an explicit compare. 183 if (i->getCaseSuccessor() == DefaultDest) { 184 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 185 unsigned NCases = SI->getNumCases(); 186 // Fold the case metadata into the default if there will be any branches 187 // left, unless the metadata doesn't match the switch. 188 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 189 // Collect branch weights into a vector. 190 SmallVector<uint32_t, 8> Weights; 191 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 192 ++MD_i) { 193 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 194 Weights.push_back(CI->getValue().getZExtValue()); 195 } 196 // Merge weight of this case to the default weight. 197 unsigned idx = i->getCaseIndex(); 198 Weights[0] += Weights[idx+1]; 199 // Remove weight for this case. 200 std::swap(Weights[idx+1], Weights.back()); 201 Weights.pop_back(); 202 SI->setMetadata(LLVMContext::MD_prof, 203 MDBuilder(BB->getContext()). 204 createBranchWeights(Weights)); 205 } 206 // Remove this entry. 207 BasicBlock *ParentBB = SI->getParent(); 208 DefaultDest->removePredecessor(ParentBB); 209 i = SI->removeCase(i); 210 e = SI->case_end(); 211 if (DTU) 212 DTU->applyUpdatesPermissive( 213 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 214 continue; 215 } 216 217 // Otherwise, check to see if the switch only branches to one destination. 218 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 219 // destinations. 220 if (i->getCaseSuccessor() != TheOnlyDest) 221 TheOnlyDest = nullptr; 222 223 // Increment this iterator as we haven't removed the case. 224 ++i; 225 } 226 227 if (CI && !TheOnlyDest) { 228 // Branching on a constant, but not any of the cases, go to the default 229 // successor. 230 TheOnlyDest = SI->getDefaultDest(); 231 } 232 233 // If we found a single destination that we can fold the switch into, do so 234 // now. 235 if (TheOnlyDest) { 236 // Insert the new branch. 237 Builder.CreateBr(TheOnlyDest); 238 BasicBlock *BB = SI->getParent(); 239 std::vector <DominatorTree::UpdateType> Updates; 240 if (DTU) 241 Updates.reserve(SI->getNumSuccessors() - 1); 242 243 // Remove entries from PHI nodes which we no longer branch to... 244 for (BasicBlock *Succ : successors(SI)) { 245 // Found case matching a constant operand? 246 if (Succ == TheOnlyDest) { 247 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 248 } else { 249 Succ->removePredecessor(BB); 250 if (DTU) 251 Updates.push_back({DominatorTree::Delete, BB, Succ}); 252 } 253 } 254 255 // Delete the old switch. 256 Value *Cond = SI->getCondition(); 257 SI->eraseFromParent(); 258 if (DeleteDeadConditions) 259 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 260 if (DTU) 261 DTU->applyUpdatesPermissive(Updates); 262 return true; 263 } 264 265 if (SI->getNumCases() == 1) { 266 // Otherwise, we can fold this switch into a conditional branch 267 // instruction if it has only one non-default destination. 268 auto FirstCase = *SI->case_begin(); 269 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 270 FirstCase.getCaseValue(), "cond"); 271 272 // Insert the new branch. 273 BranchInst *NewBr = Builder.CreateCondBr(Cond, 274 FirstCase.getCaseSuccessor(), 275 SI->getDefaultDest()); 276 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 277 if (MD && MD->getNumOperands() == 3) { 278 ConstantInt *SICase = 279 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 280 ConstantInt *SIDef = 281 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 282 assert(SICase && SIDef); 283 // The TrueWeight should be the weight for the single case of SI. 284 NewBr->setMetadata(LLVMContext::MD_prof, 285 MDBuilder(BB->getContext()). 286 createBranchWeights(SICase->getValue().getZExtValue(), 287 SIDef->getValue().getZExtValue())); 288 } 289 290 // Update make.implicit metadata to the newly-created conditional branch. 291 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 292 if (MakeImplicitMD) 293 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 294 295 // Delete the old switch. 296 SI->eraseFromParent(); 297 return true; 298 } 299 return false; 300 } 301 302 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 303 // indirectbr blockaddress(@F, @BB) -> br label @BB 304 if (auto *BA = 305 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 306 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 307 std::vector <DominatorTree::UpdateType> Updates; 308 if (DTU) 309 Updates.reserve(IBI->getNumDestinations() - 1); 310 311 // Insert the new branch. 312 Builder.CreateBr(TheOnlyDest); 313 314 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 315 if (IBI->getDestination(i) == TheOnlyDest) { 316 TheOnlyDest = nullptr; 317 } else { 318 BasicBlock *ParentBB = IBI->getParent(); 319 BasicBlock *DestBB = IBI->getDestination(i); 320 DestBB->removePredecessor(ParentBB); 321 if (DTU) 322 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 323 } 324 } 325 Value *Address = IBI->getAddress(); 326 IBI->eraseFromParent(); 327 if (DeleteDeadConditions) 328 // Delete pointer cast instructions. 329 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 330 331 // Also zap the blockaddress constant if there are no users remaining, 332 // otherwise the destination is still marked as having its address taken. 333 if (BA->use_empty()) 334 BA->destroyConstant(); 335 336 // If we didn't find our destination in the IBI successor list, then we 337 // have undefined behavior. Replace the unconditional branch with an 338 // 'unreachable' instruction. 339 if (TheOnlyDest) { 340 BB->getTerminator()->eraseFromParent(); 341 new UnreachableInst(BB->getContext(), BB); 342 } 343 344 if (DTU) 345 DTU->applyUpdatesPermissive(Updates); 346 return true; 347 } 348 } 349 350 return false; 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Local dead code elimination. 355 // 356 357 /// isInstructionTriviallyDead - Return true if the result produced by the 358 /// instruction is not used, and the instruction has no side effects. 359 /// 360 bool llvm::isInstructionTriviallyDead(Instruction *I, 361 const TargetLibraryInfo *TLI) { 362 if (!I->use_empty()) 363 return false; 364 return wouldInstructionBeTriviallyDead(I, TLI); 365 } 366 367 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 368 const TargetLibraryInfo *TLI) { 369 if (I->isTerminator()) 370 return false; 371 372 // We don't want the landingpad-like instructions removed by anything this 373 // general. 374 if (I->isEHPad()) 375 return false; 376 377 // We don't want debug info removed by anything this general, unless 378 // debug info is empty. 379 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 380 if (DDI->getAddress()) 381 return false; 382 return true; 383 } 384 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 385 if (DVI->getValue()) 386 return false; 387 return true; 388 } 389 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 390 if (DLI->getLabel()) 391 return false; 392 return true; 393 } 394 395 if (!I->mayHaveSideEffects()) 396 return true; 397 398 // Special case intrinsics that "may have side effects" but can be deleted 399 // when dead. 400 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 401 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 402 if (II->getIntrinsicID() == Intrinsic::stacksave || 403 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 404 return true; 405 406 // Lifetime intrinsics are dead when their right-hand is undef. 407 if (II->isLifetimeStartOrEnd()) 408 return isa<UndefValue>(II->getArgOperand(1)); 409 410 // Assumptions are dead if their condition is trivially true. Guards on 411 // true are operationally no-ops. In the future we can consider more 412 // sophisticated tradeoffs for guards considering potential for check 413 // widening, but for now we keep things simple. 414 if ((II->getIntrinsicID() == Intrinsic::assume && 415 isAssumeWithEmptyBundle(*II)) || 416 II->getIntrinsicID() == Intrinsic::experimental_guard) { 417 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 418 return !Cond->isZero(); 419 420 return false; 421 } 422 } 423 424 if (isAllocLikeFn(I, TLI)) 425 return true; 426 427 if (CallInst *CI = isFreeCall(I, TLI)) 428 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 429 return C->isNullValue() || isa<UndefValue>(C); 430 431 if (auto *Call = dyn_cast<CallBase>(I)) 432 if (isMathLibCallNoop(Call, TLI)) 433 return true; 434 435 return false; 436 } 437 438 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 439 /// trivially dead instruction, delete it. If that makes any of its operands 440 /// trivially dead, delete them too, recursively. Return true if any 441 /// instructions were deleted. 442 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 443 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 444 Instruction *I = dyn_cast<Instruction>(V); 445 if (!I || !isInstructionTriviallyDead(I, TLI)) 446 return false; 447 448 SmallVector<WeakTrackingVH, 16> DeadInsts; 449 DeadInsts.push_back(I); 450 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 451 452 return true; 453 } 454 455 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 456 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 457 MemorySSAUpdater *MSSAU) { 458 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 459 for (; S != E; ++S) { 460 auto *I = cast<Instruction>(DeadInsts[S]); 461 if (!isInstructionTriviallyDead(I)) { 462 DeadInsts[S] = nullptr; 463 ++Alive; 464 } 465 } 466 if (Alive == E) 467 return false; 468 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 469 return true; 470 } 471 472 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 473 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 474 MemorySSAUpdater *MSSAU) { 475 // Process the dead instruction list until empty. 476 while (!DeadInsts.empty()) { 477 Value *V = DeadInsts.pop_back_val(); 478 Instruction *I = cast_or_null<Instruction>(V); 479 if (!I) 480 continue; 481 assert(isInstructionTriviallyDead(I, TLI) && 482 "Live instruction found in dead worklist!"); 483 assert(I->use_empty() && "Instructions with uses are not dead."); 484 485 // Don't lose the debug info while deleting the instructions. 486 salvageDebugInfo(*I); 487 488 // Null out all of the instruction's operands to see if any operand becomes 489 // dead as we go. 490 for (Use &OpU : I->operands()) { 491 Value *OpV = OpU.get(); 492 OpU.set(nullptr); 493 494 if (!OpV->use_empty()) 495 continue; 496 497 // If the operand is an instruction that became dead as we nulled out the 498 // operand, and if it is 'trivially' dead, delete it in a future loop 499 // iteration. 500 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 501 if (isInstructionTriviallyDead(OpI, TLI)) 502 DeadInsts.push_back(OpI); 503 } 504 if (MSSAU) 505 MSSAU->removeMemoryAccess(I); 506 507 I->eraseFromParent(); 508 } 509 } 510 511 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 512 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 513 findDbgUsers(DbgUsers, I); 514 for (auto *DII : DbgUsers) { 515 Value *Undef = UndefValue::get(I->getType()); 516 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 517 ValueAsMetadata::get(Undef))); 518 } 519 return !DbgUsers.empty(); 520 } 521 522 /// areAllUsesEqual - Check whether the uses of a value are all the same. 523 /// This is similar to Instruction::hasOneUse() except this will also return 524 /// true when there are no uses or multiple uses that all refer to the same 525 /// value. 526 static bool areAllUsesEqual(Instruction *I) { 527 Value::user_iterator UI = I->user_begin(); 528 Value::user_iterator UE = I->user_end(); 529 if (UI == UE) 530 return true; 531 532 User *TheUse = *UI; 533 for (++UI; UI != UE; ++UI) { 534 if (*UI != TheUse) 535 return false; 536 } 537 return true; 538 } 539 540 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 541 /// dead PHI node, due to being a def-use chain of single-use nodes that 542 /// either forms a cycle or is terminated by a trivially dead instruction, 543 /// delete it. If that makes any of its operands trivially dead, delete them 544 /// too, recursively. Return true if a change was made. 545 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 546 const TargetLibraryInfo *TLI, 547 llvm::MemorySSAUpdater *MSSAU) { 548 SmallPtrSet<Instruction*, 4> Visited; 549 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 550 I = cast<Instruction>(*I->user_begin())) { 551 if (I->use_empty()) 552 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 553 554 // If we find an instruction more than once, we're on a cycle that 555 // won't prove fruitful. 556 if (!Visited.insert(I).second) { 557 // Break the cycle and delete the instruction and its operands. 558 I->replaceAllUsesWith(UndefValue::get(I->getType())); 559 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 560 return true; 561 } 562 } 563 return false; 564 } 565 566 static bool 567 simplifyAndDCEInstruction(Instruction *I, 568 SmallSetVector<Instruction *, 16> &WorkList, 569 const DataLayout &DL, 570 const TargetLibraryInfo *TLI) { 571 if (isInstructionTriviallyDead(I, TLI)) { 572 salvageDebugInfo(*I); 573 574 // Null out all of the instruction's operands to see if any operand becomes 575 // dead as we go. 576 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 577 Value *OpV = I->getOperand(i); 578 I->setOperand(i, nullptr); 579 580 if (!OpV->use_empty() || I == OpV) 581 continue; 582 583 // If the operand is an instruction that became dead as we nulled out the 584 // operand, and if it is 'trivially' dead, delete it in a future loop 585 // iteration. 586 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 587 if (isInstructionTriviallyDead(OpI, TLI)) 588 WorkList.insert(OpI); 589 } 590 591 I->eraseFromParent(); 592 593 return true; 594 } 595 596 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 597 // Add the users to the worklist. CAREFUL: an instruction can use itself, 598 // in the case of a phi node. 599 for (User *U : I->users()) { 600 if (U != I) { 601 WorkList.insert(cast<Instruction>(U)); 602 } 603 } 604 605 // Replace the instruction with its simplified value. 606 bool Changed = false; 607 if (!I->use_empty()) { 608 I->replaceAllUsesWith(SimpleV); 609 Changed = true; 610 } 611 if (isInstructionTriviallyDead(I, TLI)) { 612 I->eraseFromParent(); 613 Changed = true; 614 } 615 return Changed; 616 } 617 return false; 618 } 619 620 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 621 /// simplify any instructions in it and recursively delete dead instructions. 622 /// 623 /// This returns true if it changed the code, note that it can delete 624 /// instructions in other blocks as well in this block. 625 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 626 const TargetLibraryInfo *TLI) { 627 bool MadeChange = false; 628 const DataLayout &DL = BB->getModule()->getDataLayout(); 629 630 #ifndef NDEBUG 631 // In debug builds, ensure that the terminator of the block is never replaced 632 // or deleted by these simplifications. The idea of simplification is that it 633 // cannot introduce new instructions, and there is no way to replace the 634 // terminator of a block without introducing a new instruction. 635 AssertingVH<Instruction> TerminatorVH(&BB->back()); 636 #endif 637 638 SmallSetVector<Instruction *, 16> WorkList; 639 // Iterate over the original function, only adding insts to the worklist 640 // if they actually need to be revisited. This avoids having to pre-init 641 // the worklist with the entire function's worth of instructions. 642 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 643 BI != E;) { 644 assert(!BI->isTerminator()); 645 Instruction *I = &*BI; 646 ++BI; 647 648 // We're visiting this instruction now, so make sure it's not in the 649 // worklist from an earlier visit. 650 if (!WorkList.count(I)) 651 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 652 } 653 654 while (!WorkList.empty()) { 655 Instruction *I = WorkList.pop_back_val(); 656 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 657 } 658 return MadeChange; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // Control Flow Graph Restructuring. 663 // 664 665 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 666 DomTreeUpdater *DTU) { 667 // This only adjusts blocks with PHI nodes. 668 if (!isa<PHINode>(BB->begin())) 669 return; 670 671 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 672 // them down. This will leave us with single entry phi nodes and other phis 673 // that can be removed. 674 BB->removePredecessor(Pred, true); 675 676 WeakTrackingVH PhiIt = &BB->front(); 677 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 678 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 679 Value *OldPhiIt = PhiIt; 680 681 if (!recursivelySimplifyInstruction(PN)) 682 continue; 683 684 // If recursive simplification ended up deleting the next PHI node we would 685 // iterate to, then our iterator is invalid, restart scanning from the top 686 // of the block. 687 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 688 } 689 if (DTU) 690 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 691 } 692 693 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 694 DomTreeUpdater *DTU) { 695 696 // If BB has single-entry PHI nodes, fold them. 697 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 698 Value *NewVal = PN->getIncomingValue(0); 699 // Replace self referencing PHI with undef, it must be dead. 700 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 701 PN->replaceAllUsesWith(NewVal); 702 PN->eraseFromParent(); 703 } 704 705 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 706 assert(PredBB && "Block doesn't have a single predecessor!"); 707 708 bool ReplaceEntryBB = false; 709 if (PredBB == &DestBB->getParent()->getEntryBlock()) 710 ReplaceEntryBB = true; 711 712 // DTU updates: Collect all the edges that enter 713 // PredBB. These dominator edges will be redirected to DestBB. 714 SmallVector<DominatorTree::UpdateType, 32> Updates; 715 716 if (DTU) { 717 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 718 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 719 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 720 // This predecessor of PredBB may already have DestBB as a successor. 721 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 722 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 723 } 724 } 725 726 // Zap anything that took the address of DestBB. Not doing this will give the 727 // address an invalid value. 728 if (DestBB->hasAddressTaken()) { 729 BlockAddress *BA = BlockAddress::get(DestBB); 730 Constant *Replacement = 731 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 732 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 733 BA->getType())); 734 BA->destroyConstant(); 735 } 736 737 // Anything that branched to PredBB now branches to DestBB. 738 PredBB->replaceAllUsesWith(DestBB); 739 740 // Splice all the instructions from PredBB to DestBB. 741 PredBB->getTerminator()->eraseFromParent(); 742 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 743 new UnreachableInst(PredBB->getContext(), PredBB); 744 745 // If the PredBB is the entry block of the function, move DestBB up to 746 // become the entry block after we erase PredBB. 747 if (ReplaceEntryBB) 748 DestBB->moveAfter(PredBB); 749 750 if (DTU) { 751 assert(PredBB->getInstList().size() == 1 && 752 isa<UnreachableInst>(PredBB->getTerminator()) && 753 "The successor list of PredBB isn't empty before " 754 "applying corresponding DTU updates."); 755 DTU->applyUpdatesPermissive(Updates); 756 DTU->deleteBB(PredBB); 757 // Recalculation of DomTree is needed when updating a forward DomTree and 758 // the Entry BB is replaced. 759 if (ReplaceEntryBB && DTU->hasDomTree()) { 760 // The entry block was removed and there is no external interface for 761 // the dominator tree to be notified of this change. In this corner-case 762 // we recalculate the entire tree. 763 DTU->recalculate(*(DestBB->getParent())); 764 } 765 } 766 767 else { 768 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 769 } 770 } 771 772 /// Return true if we can choose one of these values to use in place of the 773 /// other. Note that we will always choose the non-undef value to keep. 774 static bool CanMergeValues(Value *First, Value *Second) { 775 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 776 } 777 778 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 779 /// branch to Succ, into Succ. 780 /// 781 /// Assumption: Succ is the single successor for BB. 782 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 783 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 784 785 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 786 << Succ->getName() << "\n"); 787 // Shortcut, if there is only a single predecessor it must be BB and merging 788 // is always safe 789 if (Succ->getSinglePredecessor()) return true; 790 791 // Make a list of the predecessors of BB 792 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 793 794 // Look at all the phi nodes in Succ, to see if they present a conflict when 795 // merging these blocks 796 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 797 PHINode *PN = cast<PHINode>(I); 798 799 // If the incoming value from BB is again a PHINode in 800 // BB which has the same incoming value for *PI as PN does, we can 801 // merge the phi nodes and then the blocks can still be merged 802 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 803 if (BBPN && BBPN->getParent() == BB) { 804 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 805 BasicBlock *IBB = PN->getIncomingBlock(PI); 806 if (BBPreds.count(IBB) && 807 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 808 PN->getIncomingValue(PI))) { 809 LLVM_DEBUG(dbgs() 810 << "Can't fold, phi node " << PN->getName() << " in " 811 << Succ->getName() << " is conflicting with " 812 << BBPN->getName() << " with regard to common predecessor " 813 << IBB->getName() << "\n"); 814 return false; 815 } 816 } 817 } else { 818 Value* Val = PN->getIncomingValueForBlock(BB); 819 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 820 // See if the incoming value for the common predecessor is equal to the 821 // one for BB, in which case this phi node will not prevent the merging 822 // of the block. 823 BasicBlock *IBB = PN->getIncomingBlock(PI); 824 if (BBPreds.count(IBB) && 825 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 826 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 827 << " in " << Succ->getName() 828 << " is conflicting with regard to common " 829 << "predecessor " << IBB->getName() << "\n"); 830 return false; 831 } 832 } 833 } 834 } 835 836 return true; 837 } 838 839 using PredBlockVector = SmallVector<BasicBlock *, 16>; 840 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 841 842 /// Determines the value to use as the phi node input for a block. 843 /// 844 /// Select between \p OldVal any value that we know flows from \p BB 845 /// to a particular phi on the basis of which one (if either) is not 846 /// undef. Update IncomingValues based on the selected value. 847 /// 848 /// \param OldVal The value we are considering selecting. 849 /// \param BB The block that the value flows in from. 850 /// \param IncomingValues A map from block-to-value for other phi inputs 851 /// that we have examined. 852 /// 853 /// \returns the selected value. 854 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 855 IncomingValueMap &IncomingValues) { 856 if (!isa<UndefValue>(OldVal)) { 857 assert((!IncomingValues.count(BB) || 858 IncomingValues.find(BB)->second == OldVal) && 859 "Expected OldVal to match incoming value from BB!"); 860 861 IncomingValues.insert(std::make_pair(BB, OldVal)); 862 return OldVal; 863 } 864 865 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 866 if (It != IncomingValues.end()) return It->second; 867 868 return OldVal; 869 } 870 871 /// Create a map from block to value for the operands of a 872 /// given phi. 873 /// 874 /// Create a map from block to value for each non-undef value flowing 875 /// into \p PN. 876 /// 877 /// \param PN The phi we are collecting the map for. 878 /// \param IncomingValues [out] The map from block to value for this phi. 879 static void gatherIncomingValuesToPhi(PHINode *PN, 880 IncomingValueMap &IncomingValues) { 881 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 882 BasicBlock *BB = PN->getIncomingBlock(i); 883 Value *V = PN->getIncomingValue(i); 884 885 if (!isa<UndefValue>(V)) 886 IncomingValues.insert(std::make_pair(BB, V)); 887 } 888 } 889 890 /// Replace the incoming undef values to a phi with the values 891 /// from a block-to-value map. 892 /// 893 /// \param PN The phi we are replacing the undefs in. 894 /// \param IncomingValues A map from block to value. 895 static void replaceUndefValuesInPhi(PHINode *PN, 896 const IncomingValueMap &IncomingValues) { 897 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 898 Value *V = PN->getIncomingValue(i); 899 900 if (!isa<UndefValue>(V)) continue; 901 902 BasicBlock *BB = PN->getIncomingBlock(i); 903 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 904 if (It == IncomingValues.end()) continue; 905 906 PN->setIncomingValue(i, It->second); 907 } 908 } 909 910 /// Replace a value flowing from a block to a phi with 911 /// potentially multiple instances of that value flowing from the 912 /// block's predecessors to the phi. 913 /// 914 /// \param BB The block with the value flowing into the phi. 915 /// \param BBPreds The predecessors of BB. 916 /// \param PN The phi that we are updating. 917 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 918 const PredBlockVector &BBPreds, 919 PHINode *PN) { 920 Value *OldVal = PN->removeIncomingValue(BB, false); 921 assert(OldVal && "No entry in PHI for Pred BB!"); 922 923 IncomingValueMap IncomingValues; 924 925 // We are merging two blocks - BB, and the block containing PN - and 926 // as a result we need to redirect edges from the predecessors of BB 927 // to go to the block containing PN, and update PN 928 // accordingly. Since we allow merging blocks in the case where the 929 // predecessor and successor blocks both share some predecessors, 930 // and where some of those common predecessors might have undef 931 // values flowing into PN, we want to rewrite those values to be 932 // consistent with the non-undef values. 933 934 gatherIncomingValuesToPhi(PN, IncomingValues); 935 936 // If this incoming value is one of the PHI nodes in BB, the new entries 937 // in the PHI node are the entries from the old PHI. 938 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 939 PHINode *OldValPN = cast<PHINode>(OldVal); 940 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 941 // Note that, since we are merging phi nodes and BB and Succ might 942 // have common predecessors, we could end up with a phi node with 943 // identical incoming branches. This will be cleaned up later (and 944 // will trigger asserts if we try to clean it up now, without also 945 // simplifying the corresponding conditional branch). 946 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 947 Value *PredVal = OldValPN->getIncomingValue(i); 948 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 949 IncomingValues); 950 951 // And add a new incoming value for this predecessor for the 952 // newly retargeted branch. 953 PN->addIncoming(Selected, PredBB); 954 } 955 } else { 956 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 957 // Update existing incoming values in PN for this 958 // predecessor of BB. 959 BasicBlock *PredBB = BBPreds[i]; 960 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 961 IncomingValues); 962 963 // And add a new incoming value for this predecessor for the 964 // newly retargeted branch. 965 PN->addIncoming(Selected, PredBB); 966 } 967 } 968 969 replaceUndefValuesInPhi(PN, IncomingValues); 970 } 971 972 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 973 DomTreeUpdater *DTU) { 974 assert(BB != &BB->getParent()->getEntryBlock() && 975 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 976 977 // We can't eliminate infinite loops. 978 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 979 if (BB == Succ) return false; 980 981 // Check to see if merging these blocks would cause conflicts for any of the 982 // phi nodes in BB or Succ. If not, we can safely merge. 983 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 984 985 // Check for cases where Succ has multiple predecessors and a PHI node in BB 986 // has uses which will not disappear when the PHI nodes are merged. It is 987 // possible to handle such cases, but difficult: it requires checking whether 988 // BB dominates Succ, which is non-trivial to calculate in the case where 989 // Succ has multiple predecessors. Also, it requires checking whether 990 // constructing the necessary self-referential PHI node doesn't introduce any 991 // conflicts; this isn't too difficult, but the previous code for doing this 992 // was incorrect. 993 // 994 // Note that if this check finds a live use, BB dominates Succ, so BB is 995 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 996 // folding the branch isn't profitable in that case anyway. 997 if (!Succ->getSinglePredecessor()) { 998 BasicBlock::iterator BBI = BB->begin(); 999 while (isa<PHINode>(*BBI)) { 1000 for (Use &U : BBI->uses()) { 1001 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1002 if (PN->getIncomingBlock(U) != BB) 1003 return false; 1004 } else { 1005 return false; 1006 } 1007 } 1008 ++BBI; 1009 } 1010 } 1011 1012 // We cannot fold the block if it's a branch to an already present callbr 1013 // successor because that creates duplicate successors. 1014 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1015 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1016 if (Succ == CBI->getDefaultDest()) 1017 return false; 1018 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1019 if (Succ == CBI->getIndirectDest(i)) 1020 return false; 1021 } 1022 } 1023 1024 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1025 1026 SmallVector<DominatorTree::UpdateType, 32> Updates; 1027 if (DTU) { 1028 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1029 // All predecessors of BB will be moved to Succ. 1030 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1031 Updates.push_back({DominatorTree::Delete, *I, BB}); 1032 // This predecessor of BB may already have Succ as a successor. 1033 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1034 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1035 } 1036 } 1037 1038 if (isa<PHINode>(Succ->begin())) { 1039 // If there is more than one pred of succ, and there are PHI nodes in 1040 // the successor, then we need to add incoming edges for the PHI nodes 1041 // 1042 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1043 1044 // Loop over all of the PHI nodes in the successor of BB. 1045 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1046 PHINode *PN = cast<PHINode>(I); 1047 1048 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1049 } 1050 } 1051 1052 if (Succ->getSinglePredecessor()) { 1053 // BB is the only predecessor of Succ, so Succ will end up with exactly 1054 // the same predecessors BB had. 1055 1056 // Copy over any phi, debug or lifetime instruction. 1057 BB->getTerminator()->eraseFromParent(); 1058 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1059 BB->getInstList()); 1060 } else { 1061 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1062 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1063 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1064 PN->eraseFromParent(); 1065 } 1066 } 1067 1068 // If the unconditional branch we replaced contains llvm.loop metadata, we 1069 // add the metadata to the branch instructions in the predecessors. 1070 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1071 Instruction *TI = BB->getTerminator(); 1072 if (TI) 1073 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1074 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1075 BasicBlock *Pred = *PI; 1076 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1077 } 1078 1079 // Everything that jumped to BB now goes to Succ. 1080 BB->replaceAllUsesWith(Succ); 1081 if (!Succ->hasName()) Succ->takeName(BB); 1082 1083 // Clear the successor list of BB to match updates applying to DTU later. 1084 if (BB->getTerminator()) 1085 BB->getInstList().pop_back(); 1086 new UnreachableInst(BB->getContext(), BB); 1087 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1088 "applying corresponding DTU updates."); 1089 1090 if (DTU) { 1091 DTU->applyUpdatesPermissive(Updates); 1092 DTU->deleteBB(BB); 1093 } else { 1094 BB->eraseFromParent(); // Delete the old basic block. 1095 } 1096 return true; 1097 } 1098 1099 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1100 // This implementation doesn't currently consider undef operands 1101 // specially. Theoretically, two phis which are identical except for 1102 // one having an undef where the other doesn't could be collapsed. 1103 1104 struct PHIDenseMapInfo { 1105 static PHINode *getEmptyKey() { 1106 return DenseMapInfo<PHINode *>::getEmptyKey(); 1107 } 1108 1109 static PHINode *getTombstoneKey() { 1110 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1111 } 1112 1113 static unsigned getHashValue(PHINode *PN) { 1114 // Compute a hash value on the operands. Instcombine will likely have 1115 // sorted them, which helps expose duplicates, but we have to check all 1116 // the operands to be safe in case instcombine hasn't run. 1117 return static_cast<unsigned>(hash_combine( 1118 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1119 hash_combine_range(PN->block_begin(), PN->block_end()))); 1120 } 1121 1122 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1123 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1124 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1125 return LHS == RHS; 1126 return LHS->isIdenticalTo(RHS); 1127 } 1128 }; 1129 1130 // Set of unique PHINodes. 1131 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1132 1133 // Examine each PHI. 1134 bool Changed = false; 1135 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1136 auto Inserted = PHISet.insert(PN); 1137 if (!Inserted.second) { 1138 // A duplicate. Replace this PHI with its duplicate. 1139 PN->replaceAllUsesWith(*Inserted.first); 1140 PN->eraseFromParent(); 1141 Changed = true; 1142 1143 // The RAUW can change PHIs that we already visited. Start over from the 1144 // beginning. 1145 PHISet.clear(); 1146 I = BB->begin(); 1147 } 1148 } 1149 1150 return Changed; 1151 } 1152 1153 /// enforceKnownAlignment - If the specified pointer points to an object that 1154 /// we control, modify the object's alignment to PrefAlign. This isn't 1155 /// often possible though. If alignment is important, a more reliable approach 1156 /// is to simply align all global variables and allocation instructions to 1157 /// their preferred alignment from the beginning. 1158 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign, 1159 const DataLayout &DL) { 1160 assert(PrefAlign > Alignment); 1161 1162 V = V->stripPointerCasts(); 1163 1164 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1165 // TODO: ideally, computeKnownBits ought to have used 1166 // AllocaInst::getAlignment() in its computation already, making 1167 // the below max redundant. But, as it turns out, 1168 // stripPointerCasts recurses through infinite layers of bitcasts, 1169 // while computeKnownBits is not allowed to traverse more than 6 1170 // levels. 1171 Alignment = max(AI->getAlign(), Alignment); 1172 if (PrefAlign <= Alignment) 1173 return Alignment; 1174 1175 // If the preferred alignment is greater than the natural stack alignment 1176 // then don't round up. This avoids dynamic stack realignment. 1177 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1178 return Alignment; 1179 AI->setAlignment(PrefAlign); 1180 return PrefAlign; 1181 } 1182 1183 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1184 // TODO: as above, this shouldn't be necessary. 1185 Alignment = max(GO->getAlign(), Alignment); 1186 if (PrefAlign <= Alignment) 1187 return Alignment; 1188 1189 // If there is a large requested alignment and we can, bump up the alignment 1190 // of the global. If the memory we set aside for the global may not be the 1191 // memory used by the final program then it is impossible for us to reliably 1192 // enforce the preferred alignment. 1193 if (!GO->canIncreaseAlignment()) 1194 return Alignment; 1195 1196 GO->setAlignment(PrefAlign); 1197 return PrefAlign; 1198 } 1199 1200 return Alignment; 1201 } 1202 1203 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1204 const DataLayout &DL, 1205 const Instruction *CxtI, 1206 AssumptionCache *AC, 1207 const DominatorTree *DT) { 1208 assert(V->getType()->isPointerTy() && 1209 "getOrEnforceKnownAlignment expects a pointer!"); 1210 1211 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1212 unsigned TrailZ = Known.countMinTrailingZeros(); 1213 1214 // Avoid trouble with ridiculously large TrailZ values, such as 1215 // those computed from a null pointer. 1216 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1217 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1218 1219 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1220 1221 if (PrefAlign && *PrefAlign > Alignment) 1222 Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL); 1223 1224 // We don't need to make any adjustment. 1225 return Alignment; 1226 } 1227 1228 ///===---------------------------------------------------------------------===// 1229 /// Dbg Intrinsic utilities 1230 /// 1231 1232 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1233 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1234 DIExpression *DIExpr, 1235 PHINode *APN) { 1236 // Since we can't guarantee that the original dbg.declare instrinsic 1237 // is removed by LowerDbgDeclare(), we need to make sure that we are 1238 // not inserting the same dbg.value intrinsic over and over. 1239 SmallVector<DbgValueInst *, 1> DbgValues; 1240 findDbgValues(DbgValues, APN); 1241 for (auto *DVI : DbgValues) { 1242 assert(DVI->getValue() == APN); 1243 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1244 return true; 1245 } 1246 return false; 1247 } 1248 1249 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1250 /// (or fragment of the variable) described by \p DII. 1251 /// 1252 /// This is primarily intended as a helper for the different 1253 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1254 /// converted describes an alloca'd variable, so we need to use the 1255 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1256 /// identified as covering an n-bit fragment, if the store size of i1 is at 1257 /// least n bits. 1258 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1259 const DataLayout &DL = DII->getModule()->getDataLayout(); 1260 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1261 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1262 return ValueSize >= *FragmentSize; 1263 // We can't always calculate the size of the DI variable (e.g. if it is a 1264 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1265 // intead. 1266 if (DII->isAddressOfVariable()) 1267 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1268 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1269 return ValueSize >= *FragmentSize; 1270 // Could not determine size of variable. Conservatively return false. 1271 return false; 1272 } 1273 1274 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1275 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1276 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1277 /// case this DebugLoc leaks into any adjacent instructions. 1278 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1279 // Original dbg.declare must have a location. 1280 DebugLoc DeclareLoc = DII->getDebugLoc(); 1281 MDNode *Scope = DeclareLoc.getScope(); 1282 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1283 // Produce an unknown location with the correct scope / inlinedAt fields. 1284 return DebugLoc::get(0, 0, Scope, InlinedAt); 1285 } 1286 1287 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1288 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1289 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1290 StoreInst *SI, DIBuilder &Builder) { 1291 assert(DII->isAddressOfVariable()); 1292 auto *DIVar = DII->getVariable(); 1293 assert(DIVar && "Missing variable"); 1294 auto *DIExpr = DII->getExpression(); 1295 Value *DV = SI->getValueOperand(); 1296 1297 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1298 1299 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1300 // FIXME: If storing to a part of the variable described by the dbg.declare, 1301 // then we want to insert a dbg.value for the corresponding fragment. 1302 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1303 << *DII << '\n'); 1304 // For now, when there is a store to parts of the variable (but we do not 1305 // know which part) we insert an dbg.value instrinsic to indicate that we 1306 // know nothing about the variable's content. 1307 DV = UndefValue::get(DV->getType()); 1308 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1309 return; 1310 } 1311 1312 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1313 } 1314 1315 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1316 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1317 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1318 LoadInst *LI, DIBuilder &Builder) { 1319 auto *DIVar = DII->getVariable(); 1320 auto *DIExpr = DII->getExpression(); 1321 assert(DIVar && "Missing variable"); 1322 1323 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1324 // FIXME: If only referring to a part of the variable described by the 1325 // dbg.declare, then we want to insert a dbg.value for the corresponding 1326 // fragment. 1327 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1328 << *DII << '\n'); 1329 return; 1330 } 1331 1332 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1333 1334 // We are now tracking the loaded value instead of the address. In the 1335 // future if multi-location support is added to the IR, it might be 1336 // preferable to keep tracking both the loaded value and the original 1337 // address in case the alloca can not be elided. 1338 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1339 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1340 DbgValue->insertAfter(LI); 1341 } 1342 1343 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1344 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1345 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1346 PHINode *APN, DIBuilder &Builder) { 1347 auto *DIVar = DII->getVariable(); 1348 auto *DIExpr = DII->getExpression(); 1349 assert(DIVar && "Missing variable"); 1350 1351 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1352 return; 1353 1354 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1355 // FIXME: If only referring to a part of the variable described by the 1356 // dbg.declare, then we want to insert a dbg.value for the corresponding 1357 // fragment. 1358 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1359 << *DII << '\n'); 1360 return; 1361 } 1362 1363 BasicBlock *BB = APN->getParent(); 1364 auto InsertionPt = BB->getFirstInsertionPt(); 1365 1366 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1367 1368 // The block may be a catchswitch block, which does not have a valid 1369 // insertion point. 1370 // FIXME: Insert dbg.value markers in the successors when appropriate. 1371 if (InsertionPt != BB->end()) 1372 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1373 } 1374 1375 /// Determine whether this alloca is either a VLA or an array. 1376 static bool isArray(AllocaInst *AI) { 1377 return AI->isArrayAllocation() || 1378 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1379 } 1380 1381 /// Determine whether this alloca is a structure. 1382 static bool isStructure(AllocaInst *AI) { 1383 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1384 } 1385 1386 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1387 /// of llvm.dbg.value intrinsics. 1388 bool llvm::LowerDbgDeclare(Function &F) { 1389 bool Changed = false; 1390 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1391 SmallVector<DbgDeclareInst *, 4> Dbgs; 1392 for (auto &FI : F) 1393 for (Instruction &BI : FI) 1394 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1395 Dbgs.push_back(DDI); 1396 1397 if (Dbgs.empty()) 1398 return Changed; 1399 1400 for (auto &I : Dbgs) { 1401 DbgDeclareInst *DDI = I; 1402 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1403 // If this is an alloca for a scalar variable, insert a dbg.value 1404 // at each load and store to the alloca and erase the dbg.declare. 1405 // The dbg.values allow tracking a variable even if it is not 1406 // stored on the stack, while the dbg.declare can only describe 1407 // the stack slot (and at a lexical-scope granularity). Later 1408 // passes will attempt to elide the stack slot. 1409 if (!AI || isArray(AI) || isStructure(AI)) 1410 continue; 1411 1412 // A volatile load/store means that the alloca can't be elided anyway. 1413 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1414 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1415 return LI->isVolatile(); 1416 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1417 return SI->isVolatile(); 1418 return false; 1419 })) 1420 continue; 1421 1422 SmallVector<const Value *, 8> WorkList; 1423 WorkList.push_back(AI); 1424 while (!WorkList.empty()) { 1425 const Value *V = WorkList.pop_back_val(); 1426 for (auto &AIUse : V->uses()) { 1427 User *U = AIUse.getUser(); 1428 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1429 if (AIUse.getOperandNo() == 1) 1430 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1431 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1432 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1433 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1434 // This is a call by-value or some other instruction that takes a 1435 // pointer to the variable. Insert a *value* intrinsic that describes 1436 // the variable by dereferencing the alloca. 1437 if (!CI->isLifetimeStartOrEnd()) { 1438 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1439 auto *DerefExpr = 1440 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1441 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1442 NewLoc, CI); 1443 } 1444 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1445 if (BI->getType()->isPointerTy()) 1446 WorkList.push_back(BI); 1447 } 1448 } 1449 } 1450 DDI->eraseFromParent(); 1451 Changed = true; 1452 } 1453 1454 if (Changed) 1455 for (BasicBlock &BB : F) 1456 RemoveRedundantDbgInstrs(&BB); 1457 1458 return Changed; 1459 } 1460 1461 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1462 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1463 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1464 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1465 if (InsertedPHIs.size() == 0) 1466 return; 1467 1468 // Map existing PHI nodes to their dbg.values. 1469 ValueToValueMapTy DbgValueMap; 1470 for (auto &I : *BB) { 1471 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1472 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1473 DbgValueMap.insert({Loc, DbgII}); 1474 } 1475 } 1476 if (DbgValueMap.size() == 0) 1477 return; 1478 1479 // Then iterate through the new PHIs and look to see if they use one of the 1480 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1481 // propagate the info through the new PHI. 1482 LLVMContext &C = BB->getContext(); 1483 for (auto PHI : InsertedPHIs) { 1484 BasicBlock *Parent = PHI->getParent(); 1485 // Avoid inserting an intrinsic into an EH block. 1486 if (Parent->getFirstNonPHI()->isEHPad()) 1487 continue; 1488 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1489 for (auto VI : PHI->operand_values()) { 1490 auto V = DbgValueMap.find(VI); 1491 if (V != DbgValueMap.end()) { 1492 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1493 Instruction *NewDbgII = DbgII->clone(); 1494 NewDbgII->setOperand(0, PhiMAV); 1495 auto InsertionPt = Parent->getFirstInsertionPt(); 1496 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1497 NewDbgII->insertBefore(&*InsertionPt); 1498 } 1499 } 1500 } 1501 } 1502 1503 /// Finds all intrinsics declaring local variables as living in the memory that 1504 /// 'V' points to. This may include a mix of dbg.declare and 1505 /// dbg.addr intrinsics. 1506 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1507 // This function is hot. Check whether the value has any metadata to avoid a 1508 // DenseMap lookup. 1509 if (!V->isUsedByMetadata()) 1510 return {}; 1511 auto *L = LocalAsMetadata::getIfExists(V); 1512 if (!L) 1513 return {}; 1514 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1515 if (!MDV) 1516 return {}; 1517 1518 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1519 for (User *U : MDV->users()) { 1520 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1521 if (DII->isAddressOfVariable()) 1522 Declares.push_back(DII); 1523 } 1524 1525 return Declares; 1526 } 1527 1528 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1529 TinyPtrVector<DbgDeclareInst *> DDIs; 1530 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1531 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1532 DDIs.push_back(DDI); 1533 return DDIs; 1534 } 1535 1536 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1537 // This function is hot. Check whether the value has any metadata to avoid a 1538 // DenseMap lookup. 1539 if (!V->isUsedByMetadata()) 1540 return; 1541 if (auto *L = LocalAsMetadata::getIfExists(V)) 1542 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1543 for (User *U : MDV->users()) 1544 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1545 DbgValues.push_back(DVI); 1546 } 1547 1548 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1549 Value *V) { 1550 // This function is hot. Check whether the value has any metadata to avoid a 1551 // DenseMap lookup. 1552 if (!V->isUsedByMetadata()) 1553 return; 1554 if (auto *L = LocalAsMetadata::getIfExists(V)) 1555 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1556 for (User *U : MDV->users()) 1557 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1558 DbgUsers.push_back(DII); 1559 } 1560 1561 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1562 DIBuilder &Builder, uint8_t DIExprFlags, 1563 int Offset) { 1564 auto DbgAddrs = FindDbgAddrUses(Address); 1565 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1566 DebugLoc Loc = DII->getDebugLoc(); 1567 auto *DIVar = DII->getVariable(); 1568 auto *DIExpr = DII->getExpression(); 1569 assert(DIVar && "Missing variable"); 1570 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1571 // Insert llvm.dbg.declare immediately before DII, and remove old 1572 // llvm.dbg.declare. 1573 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1574 DII->eraseFromParent(); 1575 } 1576 return !DbgAddrs.empty(); 1577 } 1578 1579 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1580 DIBuilder &Builder, int Offset) { 1581 DebugLoc Loc = DVI->getDebugLoc(); 1582 auto *DIVar = DVI->getVariable(); 1583 auto *DIExpr = DVI->getExpression(); 1584 assert(DIVar && "Missing variable"); 1585 1586 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1587 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1588 // it and give up. 1589 if (!DIExpr || DIExpr->getNumElements() < 1 || 1590 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1591 return; 1592 1593 // Insert the offset before the first deref. 1594 // We could just change the offset argument of dbg.value, but it's unsigned... 1595 if (Offset) 1596 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1597 1598 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1599 DVI->eraseFromParent(); 1600 } 1601 1602 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1603 DIBuilder &Builder, int Offset) { 1604 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1605 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1606 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1607 Use &U = *UI++; 1608 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1609 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1610 } 1611 } 1612 1613 /// Wrap \p V in a ValueAsMetadata instance. 1614 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1615 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1616 } 1617 1618 bool llvm::salvageDebugInfo(Instruction &I) { 1619 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1620 findDbgUsers(DbgUsers, &I); 1621 if (DbgUsers.empty()) 1622 return false; 1623 1624 return salvageDebugInfoForDbgValues(I, DbgUsers); 1625 } 1626 1627 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1628 if (!salvageDebugInfo(I)) 1629 replaceDbgUsesWithUndef(&I); 1630 } 1631 1632 bool llvm::salvageDebugInfoForDbgValues( 1633 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1634 auto &Ctx = I.getContext(); 1635 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1636 1637 for (auto *DII : DbgUsers) { 1638 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1639 // are implicitly pointing out the value as a DWARF memory location 1640 // description. 1641 bool StackValue = isa<DbgValueInst>(DII); 1642 1643 DIExpression *DIExpr = 1644 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1645 1646 // salvageDebugInfoImpl should fail on examining the first element of 1647 // DbgUsers, or none of them. 1648 if (!DIExpr) 1649 return false; 1650 1651 DII->setOperand(0, wrapMD(I.getOperand(0))); 1652 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1653 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1654 } 1655 1656 return true; 1657 } 1658 1659 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1660 DIExpression *SrcDIExpr, 1661 bool WithStackValue) { 1662 auto &M = *I.getModule(); 1663 auto &DL = M.getDataLayout(); 1664 1665 // Apply a vector of opcodes to the source DIExpression. 1666 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1667 DIExpression *DIExpr = SrcDIExpr; 1668 if (!Ops.empty()) { 1669 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1670 } 1671 return DIExpr; 1672 }; 1673 1674 // Apply the given offset to the source DIExpression. 1675 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1676 SmallVector<uint64_t, 8> Ops; 1677 DIExpression::appendOffset(Ops, Offset); 1678 return doSalvage(Ops); 1679 }; 1680 1681 // initializer-list helper for applying operators to the source DIExpression. 1682 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1683 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1684 return doSalvage(Ops); 1685 }; 1686 1687 if (auto *CI = dyn_cast<CastInst>(&I)) { 1688 // No-op casts and zexts are irrelevant for debug info. 1689 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1690 return SrcDIExpr; 1691 1692 Type *Type = CI->getType(); 1693 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1694 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1695 return nullptr; 1696 1697 Value *FromValue = CI->getOperand(0); 1698 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1699 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1700 1701 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1702 isa<SExtInst>(&I))); 1703 } 1704 1705 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1706 unsigned BitWidth = 1707 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1708 // Rewrite a constant GEP into a DIExpression. 1709 APInt Offset(BitWidth, 0); 1710 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1711 return applyOffset(Offset.getSExtValue()); 1712 } else { 1713 return nullptr; 1714 } 1715 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1716 // Rewrite binary operations with constant integer operands. 1717 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1718 if (!ConstInt || ConstInt->getBitWidth() > 64) 1719 return nullptr; 1720 1721 uint64_t Val = ConstInt->getSExtValue(); 1722 switch (BI->getOpcode()) { 1723 case Instruction::Add: 1724 return applyOffset(Val); 1725 case Instruction::Sub: 1726 return applyOffset(-int64_t(Val)); 1727 case Instruction::Mul: 1728 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1729 case Instruction::SDiv: 1730 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1731 case Instruction::SRem: 1732 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1733 case Instruction::Or: 1734 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1735 case Instruction::And: 1736 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1737 case Instruction::Xor: 1738 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1739 case Instruction::Shl: 1740 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1741 case Instruction::LShr: 1742 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1743 case Instruction::AShr: 1744 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1745 default: 1746 // TODO: Salvage constants from each kind of binop we know about. 1747 return nullptr; 1748 } 1749 // *Not* to do: we should not attempt to salvage load instructions, 1750 // because the validity and lifetime of a dbg.value containing 1751 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1752 } 1753 return nullptr; 1754 } 1755 1756 /// A replacement for a dbg.value expression. 1757 using DbgValReplacement = Optional<DIExpression *>; 1758 1759 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1760 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1761 /// changes are made. 1762 static bool rewriteDebugUsers( 1763 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1764 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1765 // Find debug users of From. 1766 SmallVector<DbgVariableIntrinsic *, 1> Users; 1767 findDbgUsers(Users, &From); 1768 if (Users.empty()) 1769 return false; 1770 1771 // Prevent use-before-def of To. 1772 bool Changed = false; 1773 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1774 if (isa<Instruction>(&To)) { 1775 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1776 1777 for (auto *DII : Users) { 1778 // It's common to see a debug user between From and DomPoint. Move it 1779 // after DomPoint to preserve the variable update without any reordering. 1780 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1781 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1782 DII->moveAfter(&DomPoint); 1783 Changed = true; 1784 1785 // Users which otherwise aren't dominated by the replacement value must 1786 // be salvaged or deleted. 1787 } else if (!DT.dominates(&DomPoint, DII)) { 1788 UndefOrSalvage.insert(DII); 1789 } 1790 } 1791 } 1792 1793 // Update debug users without use-before-def risk. 1794 for (auto *DII : Users) { 1795 if (UndefOrSalvage.count(DII)) 1796 continue; 1797 1798 LLVMContext &Ctx = DII->getContext(); 1799 DbgValReplacement DVR = RewriteExpr(*DII); 1800 if (!DVR) 1801 continue; 1802 1803 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1804 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1805 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1806 Changed = true; 1807 } 1808 1809 if (!UndefOrSalvage.empty()) { 1810 // Try to salvage the remaining debug users. 1811 salvageDebugInfoOrMarkUndef(From); 1812 Changed = true; 1813 } 1814 1815 return Changed; 1816 } 1817 1818 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1819 /// losslessly preserve the bits and semantics of the value. This predicate is 1820 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1821 /// 1822 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1823 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1824 /// and also does not allow lossless pointer <-> integer conversions. 1825 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1826 Type *ToTy) { 1827 // Trivially compatible types. 1828 if (FromTy == ToTy) 1829 return true; 1830 1831 // Handle compatible pointer <-> integer conversions. 1832 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1833 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1834 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1835 !DL.isNonIntegralPointerType(ToTy); 1836 return SameSize && LosslessConversion; 1837 } 1838 1839 // TODO: This is not exhaustive. 1840 return false; 1841 } 1842 1843 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1844 Instruction &DomPoint, DominatorTree &DT) { 1845 // Exit early if From has no debug users. 1846 if (!From.isUsedByMetadata()) 1847 return false; 1848 1849 assert(&From != &To && "Can't replace something with itself"); 1850 1851 Type *FromTy = From.getType(); 1852 Type *ToTy = To.getType(); 1853 1854 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1855 return DII.getExpression(); 1856 }; 1857 1858 // Handle no-op conversions. 1859 Module &M = *From.getModule(); 1860 const DataLayout &DL = M.getDataLayout(); 1861 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1862 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1863 1864 // Handle integer-to-integer widening and narrowing. 1865 // FIXME: Use DW_OP_convert when it's available everywhere. 1866 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1867 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1868 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1869 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1870 1871 // When the width of the result grows, assume that a debugger will only 1872 // access the low `FromBits` bits when inspecting the source variable. 1873 if (FromBits < ToBits) 1874 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1875 1876 // The width of the result has shrunk. Use sign/zero extension to describe 1877 // the source variable's high bits. 1878 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1879 DILocalVariable *Var = DII.getVariable(); 1880 1881 // Without knowing signedness, sign/zero extension isn't possible. 1882 auto Signedness = Var->getSignedness(); 1883 if (!Signedness) 1884 return None; 1885 1886 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1887 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1888 Signed); 1889 }; 1890 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1891 } 1892 1893 // TODO: Floating-point conversions, vectors. 1894 return false; 1895 } 1896 1897 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1898 unsigned NumDeadInst = 0; 1899 // Delete the instructions backwards, as it has a reduced likelihood of 1900 // having to update as many def-use and use-def chains. 1901 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1902 while (EndInst != &BB->front()) { 1903 // Delete the next to last instruction. 1904 Instruction *Inst = &*--EndInst->getIterator(); 1905 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1906 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1907 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1908 EndInst = Inst; 1909 continue; 1910 } 1911 if (!isa<DbgInfoIntrinsic>(Inst)) 1912 ++NumDeadInst; 1913 Inst->eraseFromParent(); 1914 } 1915 return NumDeadInst; 1916 } 1917 1918 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1919 bool PreserveLCSSA, DomTreeUpdater *DTU, 1920 MemorySSAUpdater *MSSAU) { 1921 BasicBlock *BB = I->getParent(); 1922 std::vector <DominatorTree::UpdateType> Updates; 1923 1924 if (MSSAU) 1925 MSSAU->changeToUnreachable(I); 1926 1927 // Loop over all of the successors, removing BB's entry from any PHI 1928 // nodes. 1929 if (DTU) 1930 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1931 for (BasicBlock *Successor : successors(BB)) { 1932 Successor->removePredecessor(BB, PreserveLCSSA); 1933 if (DTU) 1934 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1935 } 1936 // Insert a call to llvm.trap right before this. This turns the undefined 1937 // behavior into a hard fail instead of falling through into random code. 1938 if (UseLLVMTrap) { 1939 Function *TrapFn = 1940 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1941 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1942 CallTrap->setDebugLoc(I->getDebugLoc()); 1943 } 1944 auto *UI = new UnreachableInst(I->getContext(), I); 1945 UI->setDebugLoc(I->getDebugLoc()); 1946 1947 // All instructions after this are dead. 1948 unsigned NumInstrsRemoved = 0; 1949 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1950 while (BBI != BBE) { 1951 if (!BBI->use_empty()) 1952 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1953 BB->getInstList().erase(BBI++); 1954 ++NumInstrsRemoved; 1955 } 1956 if (DTU) 1957 DTU->applyUpdatesPermissive(Updates); 1958 return NumInstrsRemoved; 1959 } 1960 1961 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1962 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1963 SmallVector<OperandBundleDef, 1> OpBundles; 1964 II->getOperandBundlesAsDefs(OpBundles); 1965 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1966 II->getCalledOperand(), Args, OpBundles); 1967 NewCall->setCallingConv(II->getCallingConv()); 1968 NewCall->setAttributes(II->getAttributes()); 1969 NewCall->setDebugLoc(II->getDebugLoc()); 1970 NewCall->copyMetadata(*II); 1971 return NewCall; 1972 } 1973 1974 /// changeToCall - Convert the specified invoke into a normal call. 1975 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1976 CallInst *NewCall = createCallMatchingInvoke(II); 1977 NewCall->takeName(II); 1978 NewCall->insertBefore(II); 1979 II->replaceAllUsesWith(NewCall); 1980 1981 // Follow the call by a branch to the normal destination. 1982 BasicBlock *NormalDestBB = II->getNormalDest(); 1983 BranchInst::Create(NormalDestBB, II); 1984 1985 // Update PHI nodes in the unwind destination 1986 BasicBlock *BB = II->getParent(); 1987 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1988 UnwindDestBB->removePredecessor(BB); 1989 II->eraseFromParent(); 1990 if (DTU) 1991 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1992 } 1993 1994 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1995 BasicBlock *UnwindEdge) { 1996 BasicBlock *BB = CI->getParent(); 1997 1998 // Convert this function call into an invoke instruction. First, split the 1999 // basic block. 2000 BasicBlock *Split = 2001 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2002 2003 // Delete the unconditional branch inserted by splitBasicBlock 2004 BB->getInstList().pop_back(); 2005 2006 // Create the new invoke instruction. 2007 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2008 SmallVector<OperandBundleDef, 1> OpBundles; 2009 2010 CI->getOperandBundlesAsDefs(OpBundles); 2011 2012 // Note: we're round tripping operand bundles through memory here, and that 2013 // can potentially be avoided with a cleverer API design that we do not have 2014 // as of this time. 2015 2016 InvokeInst *II = 2017 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2018 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2019 II->setDebugLoc(CI->getDebugLoc()); 2020 II->setCallingConv(CI->getCallingConv()); 2021 II->setAttributes(CI->getAttributes()); 2022 2023 // Make sure that anything using the call now uses the invoke! This also 2024 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2025 CI->replaceAllUsesWith(II); 2026 2027 // Delete the original call 2028 Split->getInstList().pop_front(); 2029 return Split; 2030 } 2031 2032 static bool markAliveBlocks(Function &F, 2033 SmallPtrSetImpl<BasicBlock *> &Reachable, 2034 DomTreeUpdater *DTU = nullptr) { 2035 SmallVector<BasicBlock*, 128> Worklist; 2036 BasicBlock *BB = &F.front(); 2037 Worklist.push_back(BB); 2038 Reachable.insert(BB); 2039 bool Changed = false; 2040 do { 2041 BB = Worklist.pop_back_val(); 2042 2043 // Do a quick scan of the basic block, turning any obviously unreachable 2044 // instructions into LLVM unreachable insts. The instruction combining pass 2045 // canonicalizes unreachable insts into stores to null or undef. 2046 for (Instruction &I : *BB) { 2047 if (auto *CI = dyn_cast<CallInst>(&I)) { 2048 Value *Callee = CI->getCalledOperand(); 2049 // Handle intrinsic calls. 2050 if (Function *F = dyn_cast<Function>(Callee)) { 2051 auto IntrinsicID = F->getIntrinsicID(); 2052 // Assumptions that are known to be false are equivalent to 2053 // unreachable. Also, if the condition is undefined, then we make the 2054 // choice most beneficial to the optimizer, and choose that to also be 2055 // unreachable. 2056 if (IntrinsicID == Intrinsic::assume) { 2057 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2058 // Don't insert a call to llvm.trap right before the unreachable. 2059 changeToUnreachable(CI, false, false, DTU); 2060 Changed = true; 2061 break; 2062 } 2063 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2064 // A call to the guard intrinsic bails out of the current 2065 // compilation unit if the predicate passed to it is false. If the 2066 // predicate is a constant false, then we know the guard will bail 2067 // out of the current compile unconditionally, so all code following 2068 // it is dead. 2069 // 2070 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2071 // guards to treat `undef` as `false` since a guard on `undef` can 2072 // still be useful for widening. 2073 if (match(CI->getArgOperand(0), m_Zero())) 2074 if (!isa<UnreachableInst>(CI->getNextNode())) { 2075 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2076 false, DTU); 2077 Changed = true; 2078 break; 2079 } 2080 } 2081 } else if ((isa<ConstantPointerNull>(Callee) && 2082 !NullPointerIsDefined(CI->getFunction())) || 2083 isa<UndefValue>(Callee)) { 2084 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2085 Changed = true; 2086 break; 2087 } 2088 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2089 // If we found a call to a no-return function, insert an unreachable 2090 // instruction after it. Make sure there isn't *already* one there 2091 // though. 2092 if (!isa<UnreachableInst>(CI->getNextNode())) { 2093 // Don't insert a call to llvm.trap right before the unreachable. 2094 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2095 Changed = true; 2096 } 2097 break; 2098 } 2099 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2100 // Store to undef and store to null are undefined and used to signal 2101 // that they should be changed to unreachable by passes that can't 2102 // modify the CFG. 2103 2104 // Don't touch volatile stores. 2105 if (SI->isVolatile()) continue; 2106 2107 Value *Ptr = SI->getOperand(1); 2108 2109 if (isa<UndefValue>(Ptr) || 2110 (isa<ConstantPointerNull>(Ptr) && 2111 !NullPointerIsDefined(SI->getFunction(), 2112 SI->getPointerAddressSpace()))) { 2113 changeToUnreachable(SI, true, false, DTU); 2114 Changed = true; 2115 break; 2116 } 2117 } 2118 } 2119 2120 Instruction *Terminator = BB->getTerminator(); 2121 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2122 // Turn invokes that call 'nounwind' functions into ordinary calls. 2123 Value *Callee = II->getCalledOperand(); 2124 if ((isa<ConstantPointerNull>(Callee) && 2125 !NullPointerIsDefined(BB->getParent())) || 2126 isa<UndefValue>(Callee)) { 2127 changeToUnreachable(II, true, false, DTU); 2128 Changed = true; 2129 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2130 if (II->use_empty() && II->onlyReadsMemory()) { 2131 // jump to the normal destination branch. 2132 BasicBlock *NormalDestBB = II->getNormalDest(); 2133 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2134 BranchInst::Create(NormalDestBB, II); 2135 UnwindDestBB->removePredecessor(II->getParent()); 2136 II->eraseFromParent(); 2137 if (DTU) 2138 DTU->applyUpdatesPermissive( 2139 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2140 } else 2141 changeToCall(II, DTU); 2142 Changed = true; 2143 } 2144 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2145 // Remove catchpads which cannot be reached. 2146 struct CatchPadDenseMapInfo { 2147 static CatchPadInst *getEmptyKey() { 2148 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2149 } 2150 2151 static CatchPadInst *getTombstoneKey() { 2152 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2153 } 2154 2155 static unsigned getHashValue(CatchPadInst *CatchPad) { 2156 return static_cast<unsigned>(hash_combine_range( 2157 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2158 } 2159 2160 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2161 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2162 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2163 return LHS == RHS; 2164 return LHS->isIdenticalTo(RHS); 2165 } 2166 }; 2167 2168 // Set of unique CatchPads. 2169 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2170 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2171 HandlerSet; 2172 detail::DenseSetEmpty Empty; 2173 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2174 E = CatchSwitch->handler_end(); 2175 I != E; ++I) { 2176 BasicBlock *HandlerBB = *I; 2177 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2178 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2179 CatchSwitch->removeHandler(I); 2180 --I; 2181 --E; 2182 Changed = true; 2183 } 2184 } 2185 } 2186 2187 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2188 for (BasicBlock *Successor : successors(BB)) 2189 if (Reachable.insert(Successor).second) 2190 Worklist.push_back(Successor); 2191 } while (!Worklist.empty()); 2192 return Changed; 2193 } 2194 2195 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2196 Instruction *TI = BB->getTerminator(); 2197 2198 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2199 changeToCall(II, DTU); 2200 return; 2201 } 2202 2203 Instruction *NewTI; 2204 BasicBlock *UnwindDest; 2205 2206 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2207 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2208 UnwindDest = CRI->getUnwindDest(); 2209 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2210 auto *NewCatchSwitch = CatchSwitchInst::Create( 2211 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2212 CatchSwitch->getName(), CatchSwitch); 2213 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2214 NewCatchSwitch->addHandler(PadBB); 2215 2216 NewTI = NewCatchSwitch; 2217 UnwindDest = CatchSwitch->getUnwindDest(); 2218 } else { 2219 llvm_unreachable("Could not find unwind successor"); 2220 } 2221 2222 NewTI->takeName(TI); 2223 NewTI->setDebugLoc(TI->getDebugLoc()); 2224 UnwindDest->removePredecessor(BB); 2225 TI->replaceAllUsesWith(NewTI); 2226 TI->eraseFromParent(); 2227 if (DTU) 2228 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2229 } 2230 2231 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2232 /// if they are in a dead cycle. Return true if a change was made, false 2233 /// otherwise. 2234 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2235 MemorySSAUpdater *MSSAU) { 2236 SmallPtrSet<BasicBlock *, 16> Reachable; 2237 bool Changed = markAliveBlocks(F, Reachable, DTU); 2238 2239 // If there are unreachable blocks in the CFG... 2240 if (Reachable.size() == F.size()) 2241 return Changed; 2242 2243 assert(Reachable.size() < F.size()); 2244 NumRemoved += F.size() - Reachable.size(); 2245 2246 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2247 for (BasicBlock &BB : F) { 2248 // Skip reachable basic blocks 2249 if (Reachable.find(&BB) != Reachable.end()) 2250 continue; 2251 DeadBlockSet.insert(&BB); 2252 } 2253 2254 if (MSSAU) 2255 MSSAU->removeBlocks(DeadBlockSet); 2256 2257 // Loop over all of the basic blocks that are not reachable, dropping all of 2258 // their internal references. Update DTU if available. 2259 std::vector<DominatorTree::UpdateType> Updates; 2260 for (auto *BB : DeadBlockSet) { 2261 for (BasicBlock *Successor : successors(BB)) { 2262 if (!DeadBlockSet.count(Successor)) 2263 Successor->removePredecessor(BB); 2264 if (DTU) 2265 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2266 } 2267 BB->dropAllReferences(); 2268 if (DTU) { 2269 Instruction *TI = BB->getTerminator(); 2270 assert(TI && "Basic block should have a terminator"); 2271 // Terminators like invoke can have users. We have to replace their users, 2272 // before removing them. 2273 if (!TI->use_empty()) 2274 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2275 TI->eraseFromParent(); 2276 new UnreachableInst(BB->getContext(), BB); 2277 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2278 "applying corresponding DTU updates."); 2279 } 2280 } 2281 2282 if (DTU) { 2283 DTU->applyUpdatesPermissive(Updates); 2284 bool Deleted = false; 2285 for (auto *BB : DeadBlockSet) { 2286 if (DTU->isBBPendingDeletion(BB)) 2287 --NumRemoved; 2288 else 2289 Deleted = true; 2290 DTU->deleteBB(BB); 2291 } 2292 if (!Deleted) 2293 return false; 2294 } else { 2295 for (auto *BB : DeadBlockSet) 2296 BB->eraseFromParent(); 2297 } 2298 2299 return true; 2300 } 2301 2302 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2303 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2304 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2305 K->dropUnknownNonDebugMetadata(KnownIDs); 2306 K->getAllMetadataOtherThanDebugLoc(Metadata); 2307 for (const auto &MD : Metadata) { 2308 unsigned Kind = MD.first; 2309 MDNode *JMD = J->getMetadata(Kind); 2310 MDNode *KMD = MD.second; 2311 2312 switch (Kind) { 2313 default: 2314 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2315 break; 2316 case LLVMContext::MD_dbg: 2317 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2318 case LLVMContext::MD_tbaa: 2319 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2320 break; 2321 case LLVMContext::MD_alias_scope: 2322 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2323 break; 2324 case LLVMContext::MD_noalias: 2325 case LLVMContext::MD_mem_parallel_loop_access: 2326 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2327 break; 2328 case LLVMContext::MD_access_group: 2329 K->setMetadata(LLVMContext::MD_access_group, 2330 intersectAccessGroups(K, J)); 2331 break; 2332 case LLVMContext::MD_range: 2333 2334 // If K does move, use most generic range. Otherwise keep the range of 2335 // K. 2336 if (DoesKMove) 2337 // FIXME: If K does move, we should drop the range info and nonnull. 2338 // Currently this function is used with DoesKMove in passes 2339 // doing hoisting/sinking and the current behavior of using the 2340 // most generic range is correct in those cases. 2341 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2342 break; 2343 case LLVMContext::MD_fpmath: 2344 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2345 break; 2346 case LLVMContext::MD_invariant_load: 2347 // Only set the !invariant.load if it is present in both instructions. 2348 K->setMetadata(Kind, JMD); 2349 break; 2350 case LLVMContext::MD_nonnull: 2351 // If K does move, keep nonull if it is present in both instructions. 2352 if (DoesKMove) 2353 K->setMetadata(Kind, JMD); 2354 break; 2355 case LLVMContext::MD_invariant_group: 2356 // Preserve !invariant.group in K. 2357 break; 2358 case LLVMContext::MD_align: 2359 K->setMetadata(Kind, 2360 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2361 break; 2362 case LLVMContext::MD_dereferenceable: 2363 case LLVMContext::MD_dereferenceable_or_null: 2364 K->setMetadata(Kind, 2365 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2366 break; 2367 case LLVMContext::MD_preserve_access_index: 2368 // Preserve !preserve.access.index in K. 2369 break; 2370 } 2371 } 2372 // Set !invariant.group from J if J has it. If both instructions have it 2373 // then we will just pick it from J - even when they are different. 2374 // Also make sure that K is load or store - f.e. combining bitcast with load 2375 // could produce bitcast with invariant.group metadata, which is invalid. 2376 // FIXME: we should try to preserve both invariant.group md if they are 2377 // different, but right now instruction can only have one invariant.group. 2378 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2379 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2380 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2381 } 2382 2383 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2384 bool KDominatesJ) { 2385 unsigned KnownIDs[] = { 2386 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2387 LLVMContext::MD_noalias, LLVMContext::MD_range, 2388 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2389 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2390 LLVMContext::MD_dereferenceable, 2391 LLVMContext::MD_dereferenceable_or_null, 2392 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2393 combineMetadata(K, J, KnownIDs, KDominatesJ); 2394 } 2395 2396 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2397 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2398 Source.getAllMetadata(MD); 2399 MDBuilder MDB(Dest.getContext()); 2400 Type *NewType = Dest.getType(); 2401 const DataLayout &DL = Source.getModule()->getDataLayout(); 2402 for (const auto &MDPair : MD) { 2403 unsigned ID = MDPair.first; 2404 MDNode *N = MDPair.second; 2405 // Note, essentially every kind of metadata should be preserved here! This 2406 // routine is supposed to clone a load instruction changing *only its type*. 2407 // The only metadata it makes sense to drop is metadata which is invalidated 2408 // when the pointer type changes. This should essentially never be the case 2409 // in LLVM, but we explicitly switch over only known metadata to be 2410 // conservatively correct. If you are adding metadata to LLVM which pertains 2411 // to loads, you almost certainly want to add it here. 2412 switch (ID) { 2413 case LLVMContext::MD_dbg: 2414 case LLVMContext::MD_tbaa: 2415 case LLVMContext::MD_prof: 2416 case LLVMContext::MD_fpmath: 2417 case LLVMContext::MD_tbaa_struct: 2418 case LLVMContext::MD_invariant_load: 2419 case LLVMContext::MD_alias_scope: 2420 case LLVMContext::MD_noalias: 2421 case LLVMContext::MD_nontemporal: 2422 case LLVMContext::MD_mem_parallel_loop_access: 2423 case LLVMContext::MD_access_group: 2424 // All of these directly apply. 2425 Dest.setMetadata(ID, N); 2426 break; 2427 2428 case LLVMContext::MD_nonnull: 2429 copyNonnullMetadata(Source, N, Dest); 2430 break; 2431 2432 case LLVMContext::MD_align: 2433 case LLVMContext::MD_dereferenceable: 2434 case LLVMContext::MD_dereferenceable_or_null: 2435 // These only directly apply if the new type is also a pointer. 2436 if (NewType->isPointerTy()) 2437 Dest.setMetadata(ID, N); 2438 break; 2439 2440 case LLVMContext::MD_range: 2441 copyRangeMetadata(DL, Source, N, Dest); 2442 break; 2443 } 2444 } 2445 } 2446 2447 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2448 auto *ReplInst = dyn_cast<Instruction>(Repl); 2449 if (!ReplInst) 2450 return; 2451 2452 // Patch the replacement so that it is not more restrictive than the value 2453 // being replaced. 2454 // Note that if 'I' is a load being replaced by some operation, 2455 // for example, by an arithmetic operation, then andIRFlags() 2456 // would just erase all math flags from the original arithmetic 2457 // operation, which is clearly not wanted and not needed. 2458 if (!isa<LoadInst>(I)) 2459 ReplInst->andIRFlags(I); 2460 2461 // FIXME: If both the original and replacement value are part of the 2462 // same control-flow region (meaning that the execution of one 2463 // guarantees the execution of the other), then we can combine the 2464 // noalias scopes here and do better than the general conservative 2465 // answer used in combineMetadata(). 2466 2467 // In general, GVN unifies expressions over different control-flow 2468 // regions, and so we need a conservative combination of the noalias 2469 // scopes. 2470 static const unsigned KnownIDs[] = { 2471 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2472 LLVMContext::MD_noalias, LLVMContext::MD_range, 2473 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2474 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2475 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2476 combineMetadata(ReplInst, I, KnownIDs, false); 2477 } 2478 2479 template <typename RootType, typename DominatesFn> 2480 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2481 const RootType &Root, 2482 const DominatesFn &Dominates) { 2483 assert(From->getType() == To->getType()); 2484 2485 unsigned Count = 0; 2486 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2487 UI != UE;) { 2488 Use &U = *UI++; 2489 if (!Dominates(Root, U)) 2490 continue; 2491 U.set(To); 2492 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2493 << "' as " << *To << " in " << *U << "\n"); 2494 ++Count; 2495 } 2496 return Count; 2497 } 2498 2499 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2500 assert(From->getType() == To->getType()); 2501 auto *BB = From->getParent(); 2502 unsigned Count = 0; 2503 2504 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2505 UI != UE;) { 2506 Use &U = *UI++; 2507 auto *I = cast<Instruction>(U.getUser()); 2508 if (I->getParent() == BB) 2509 continue; 2510 U.set(To); 2511 ++Count; 2512 } 2513 return Count; 2514 } 2515 2516 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2517 DominatorTree &DT, 2518 const BasicBlockEdge &Root) { 2519 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2520 return DT.dominates(Root, U); 2521 }; 2522 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2523 } 2524 2525 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2526 DominatorTree &DT, 2527 const BasicBlock *BB) { 2528 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2529 auto *I = cast<Instruction>(U.getUser())->getParent(); 2530 return DT.properlyDominates(BB, I); 2531 }; 2532 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2533 } 2534 2535 bool llvm::callsGCLeafFunction(const CallBase *Call, 2536 const TargetLibraryInfo &TLI) { 2537 // Check if the function is specifically marked as a gc leaf function. 2538 if (Call->hasFnAttr("gc-leaf-function")) 2539 return true; 2540 if (const Function *F = Call->getCalledFunction()) { 2541 if (F->hasFnAttribute("gc-leaf-function")) 2542 return true; 2543 2544 if (auto IID = F->getIntrinsicID()) 2545 // Most LLVM intrinsics do not take safepoints. 2546 return IID != Intrinsic::experimental_gc_statepoint && 2547 IID != Intrinsic::experimental_deoptimize; 2548 } 2549 2550 // Lib calls can be materialized by some passes, and won't be 2551 // marked as 'gc-leaf-function.' All available Libcalls are 2552 // GC-leaf. 2553 LibFunc LF; 2554 if (TLI.getLibFunc(*Call, LF)) { 2555 return TLI.has(LF); 2556 } 2557 2558 return false; 2559 } 2560 2561 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2562 LoadInst &NewLI) { 2563 auto *NewTy = NewLI.getType(); 2564 2565 // This only directly applies if the new type is also a pointer. 2566 if (NewTy->isPointerTy()) { 2567 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2568 return; 2569 } 2570 2571 // The only other translation we can do is to integral loads with !range 2572 // metadata. 2573 if (!NewTy->isIntegerTy()) 2574 return; 2575 2576 MDBuilder MDB(NewLI.getContext()); 2577 const Value *Ptr = OldLI.getPointerOperand(); 2578 auto *ITy = cast<IntegerType>(NewTy); 2579 auto *NullInt = ConstantExpr::getPtrToInt( 2580 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2581 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2582 NewLI.setMetadata(LLVMContext::MD_range, 2583 MDB.createRange(NonNullInt, NullInt)); 2584 } 2585 2586 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2587 MDNode *N, LoadInst &NewLI) { 2588 auto *NewTy = NewLI.getType(); 2589 2590 // Give up unless it is converted to a pointer where there is a single very 2591 // valuable mapping we can do reliably. 2592 // FIXME: It would be nice to propagate this in more ways, but the type 2593 // conversions make it hard. 2594 if (!NewTy->isPointerTy()) 2595 return; 2596 2597 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2598 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2599 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2600 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2601 } 2602 } 2603 2604 void llvm::dropDebugUsers(Instruction &I) { 2605 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2606 findDbgUsers(DbgUsers, &I); 2607 for (auto *DII : DbgUsers) 2608 DII->eraseFromParent(); 2609 } 2610 2611 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2612 BasicBlock *BB) { 2613 // Since we are moving the instructions out of its basic block, we do not 2614 // retain their original debug locations (DILocations) and debug intrinsic 2615 // instructions. 2616 // 2617 // Doing so would degrade the debugging experience and adversely affect the 2618 // accuracy of profiling information. 2619 // 2620 // Currently, when hoisting the instructions, we take the following actions: 2621 // - Remove their debug intrinsic instructions. 2622 // - Set their debug locations to the values from the insertion point. 2623 // 2624 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2625 // need to be deleted, is because there will not be any instructions with a 2626 // DILocation in either branch left after performing the transformation. We 2627 // can only insert a dbg.value after the two branches are joined again. 2628 // 2629 // See PR38762, PR39243 for more details. 2630 // 2631 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2632 // encode predicated DIExpressions that yield different results on different 2633 // code paths. 2634 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2635 Instruction *I = &*II; 2636 I->dropUnknownNonDebugMetadata(); 2637 if (I->isUsedByMetadata()) 2638 dropDebugUsers(*I); 2639 if (isa<DbgInfoIntrinsic>(I)) { 2640 // Remove DbgInfo Intrinsics. 2641 II = I->eraseFromParent(); 2642 continue; 2643 } 2644 I->setDebugLoc(InsertPt->getDebugLoc()); 2645 ++II; 2646 } 2647 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2648 BB->begin(), 2649 BB->getTerminator()->getIterator()); 2650 } 2651 2652 namespace { 2653 2654 /// A potential constituent of a bitreverse or bswap expression. See 2655 /// collectBitParts for a fuller explanation. 2656 struct BitPart { 2657 BitPart(Value *P, unsigned BW) : Provider(P) { 2658 Provenance.resize(BW); 2659 } 2660 2661 /// The Value that this is a bitreverse/bswap of. 2662 Value *Provider; 2663 2664 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2665 /// in Provider becomes bit B in the result of this expression. 2666 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2667 2668 enum { Unset = -1 }; 2669 }; 2670 2671 } // end anonymous namespace 2672 2673 /// Analyze the specified subexpression and see if it is capable of providing 2674 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2675 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2676 /// the output of the expression came from a corresponding bit in some other 2677 /// value. This function is recursive, and the end result is a mapping of 2678 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2679 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2680 /// 2681 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2682 /// that the expression deposits the low byte of %X into the high byte of the 2683 /// result and that all other bits are zero. This expression is accepted and a 2684 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2685 /// [0-7]. 2686 /// 2687 /// To avoid revisiting values, the BitPart results are memoized into the 2688 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2689 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2690 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2691 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2692 /// type instead to provide the same functionality. 2693 /// 2694 /// Because we pass around references into \c BPS, we must use a container that 2695 /// does not invalidate internal references (std::map instead of DenseMap). 2696 static const Optional<BitPart> & 2697 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2698 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2699 auto I = BPS.find(V); 2700 if (I != BPS.end()) 2701 return I->second; 2702 2703 auto &Result = BPS[V] = None; 2704 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2705 2706 // Prevent stack overflow by limiting the recursion depth 2707 if (Depth == BitPartRecursionMaxDepth) { 2708 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2709 return Result; 2710 } 2711 2712 if (Instruction *I = dyn_cast<Instruction>(V)) { 2713 // If this is an or instruction, it may be an inner node of the bswap. 2714 if (I->getOpcode() == Instruction::Or) { 2715 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2716 MatchBitReversals, BPS, Depth + 1); 2717 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2718 MatchBitReversals, BPS, Depth + 1); 2719 if (!A || !B) 2720 return Result; 2721 2722 // Try and merge the two together. 2723 if (!A->Provider || A->Provider != B->Provider) 2724 return Result; 2725 2726 Result = BitPart(A->Provider, BitWidth); 2727 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2728 if (A->Provenance[i] != BitPart::Unset && 2729 B->Provenance[i] != BitPart::Unset && 2730 A->Provenance[i] != B->Provenance[i]) 2731 return Result = None; 2732 2733 if (A->Provenance[i] == BitPart::Unset) 2734 Result->Provenance[i] = B->Provenance[i]; 2735 else 2736 Result->Provenance[i] = A->Provenance[i]; 2737 } 2738 2739 return Result; 2740 } 2741 2742 // If this is a logical shift by a constant, recurse then shift the result. 2743 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2744 unsigned BitShift = 2745 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2746 // Ensure the shift amount is defined. 2747 if (BitShift > BitWidth) 2748 return Result; 2749 2750 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2751 MatchBitReversals, BPS, Depth + 1); 2752 if (!Res) 2753 return Result; 2754 Result = Res; 2755 2756 // Perform the "shift" on BitProvenance. 2757 auto &P = Result->Provenance; 2758 if (I->getOpcode() == Instruction::Shl) { 2759 P.erase(std::prev(P.end(), BitShift), P.end()); 2760 P.insert(P.begin(), BitShift, BitPart::Unset); 2761 } else { 2762 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2763 P.insert(P.end(), BitShift, BitPart::Unset); 2764 } 2765 2766 return Result; 2767 } 2768 2769 // If this is a logical 'and' with a mask that clears bits, recurse then 2770 // unset the appropriate bits. 2771 if (I->getOpcode() == Instruction::And && 2772 isa<ConstantInt>(I->getOperand(1))) { 2773 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2774 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2775 2776 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2777 // early exit. 2778 unsigned NumMaskedBits = AndMask.countPopulation(); 2779 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2780 return Result; 2781 2782 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2783 MatchBitReversals, BPS, Depth + 1); 2784 if (!Res) 2785 return Result; 2786 Result = Res; 2787 2788 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2789 // If the AndMask is zero for this bit, clear the bit. 2790 if ((AndMask & Bit) == 0) 2791 Result->Provenance[i] = BitPart::Unset; 2792 return Result; 2793 } 2794 2795 // If this is a zext instruction zero extend the result. 2796 if (I->getOpcode() == Instruction::ZExt) { 2797 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2798 MatchBitReversals, BPS, Depth + 1); 2799 if (!Res) 2800 return Result; 2801 2802 Result = BitPart(Res->Provider, BitWidth); 2803 auto NarrowBitWidth = 2804 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2805 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2806 Result->Provenance[i] = Res->Provenance[i]; 2807 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2808 Result->Provenance[i] = BitPart::Unset; 2809 return Result; 2810 } 2811 } 2812 2813 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2814 // the input value to the bswap/bitreverse. 2815 Result = BitPart(V, BitWidth); 2816 for (unsigned i = 0; i < BitWidth; ++i) 2817 Result->Provenance[i] = i; 2818 return Result; 2819 } 2820 2821 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2822 unsigned BitWidth) { 2823 if (From % 8 != To % 8) 2824 return false; 2825 // Convert from bit indices to byte indices and check for a byte reversal. 2826 From >>= 3; 2827 To >>= 3; 2828 BitWidth >>= 3; 2829 return From == BitWidth - To - 1; 2830 } 2831 2832 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2833 unsigned BitWidth) { 2834 return From == BitWidth - To - 1; 2835 } 2836 2837 bool llvm::recognizeBSwapOrBitReverseIdiom( 2838 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2839 SmallVectorImpl<Instruction *> &InsertedInsts) { 2840 if (Operator::getOpcode(I) != Instruction::Or) 2841 return false; 2842 if (!MatchBSwaps && !MatchBitReversals) 2843 return false; 2844 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2845 if (!ITy || ITy->getBitWidth() > 128) 2846 return false; // Can't do vectors or integers > 128 bits. 2847 unsigned BW = ITy->getBitWidth(); 2848 2849 unsigned DemandedBW = BW; 2850 IntegerType *DemandedTy = ITy; 2851 if (I->hasOneUse()) { 2852 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2853 DemandedTy = cast<IntegerType>(Trunc->getType()); 2854 DemandedBW = DemandedTy->getBitWidth(); 2855 } 2856 } 2857 2858 // Try to find all the pieces corresponding to the bswap. 2859 std::map<Value *, Optional<BitPart>> BPS; 2860 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2861 if (!Res) 2862 return false; 2863 auto &BitProvenance = Res->Provenance; 2864 2865 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2866 // only byteswap values with an even number of bytes. 2867 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2868 for (unsigned i = 0; i < DemandedBW; ++i) { 2869 OKForBSwap &= 2870 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2871 OKForBitReverse &= 2872 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2873 } 2874 2875 Intrinsic::ID Intrin; 2876 if (OKForBSwap && MatchBSwaps) 2877 Intrin = Intrinsic::bswap; 2878 else if (OKForBitReverse && MatchBitReversals) 2879 Intrin = Intrinsic::bitreverse; 2880 else 2881 return false; 2882 2883 if (ITy != DemandedTy) { 2884 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2885 Value *Provider = Res->Provider; 2886 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2887 // We may need to truncate the provider. 2888 if (DemandedTy != ProviderTy) { 2889 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2890 "trunc", I); 2891 InsertedInsts.push_back(Trunc); 2892 Provider = Trunc; 2893 } 2894 auto *CI = CallInst::Create(F, Provider, "rev", I); 2895 InsertedInsts.push_back(CI); 2896 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2897 InsertedInsts.push_back(ExtInst); 2898 return true; 2899 } 2900 2901 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2902 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2903 return true; 2904 } 2905 2906 // CodeGen has special handling for some string functions that may replace 2907 // them with target-specific intrinsics. Since that'd skip our interceptors 2908 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2909 // we mark affected calls as NoBuiltin, which will disable optimization 2910 // in CodeGen. 2911 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2912 CallInst *CI, const TargetLibraryInfo *TLI) { 2913 Function *F = CI->getCalledFunction(); 2914 LibFunc Func; 2915 if (F && !F->hasLocalLinkage() && F->hasName() && 2916 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2917 !F->doesNotAccessMemory()) 2918 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2919 } 2920 2921 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2922 // We can't have a PHI with a metadata type. 2923 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2924 return false; 2925 2926 // Early exit. 2927 if (!isa<Constant>(I->getOperand(OpIdx))) 2928 return true; 2929 2930 switch (I->getOpcode()) { 2931 default: 2932 return true; 2933 case Instruction::Call: 2934 case Instruction::Invoke: { 2935 const auto &CB = cast<CallBase>(*I); 2936 2937 // Can't handle inline asm. Skip it. 2938 if (CB.isInlineAsm()) 2939 return false; 2940 2941 // Constant bundle operands may need to retain their constant-ness for 2942 // correctness. 2943 if (CB.isBundleOperand(OpIdx)) 2944 return false; 2945 2946 if (OpIdx < CB.getNumArgOperands()) { 2947 // Some variadic intrinsics require constants in the variadic arguments, 2948 // which currently aren't markable as immarg. 2949 if (isa<IntrinsicInst>(CB) && 2950 OpIdx >= CB.getFunctionType()->getNumParams()) { 2951 // This is known to be OK for stackmap. 2952 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 2953 } 2954 2955 // gcroot is a special case, since it requires a constant argument which 2956 // isn't also required to be a simple ConstantInt. 2957 if (CB.getIntrinsicID() == Intrinsic::gcroot) 2958 return false; 2959 2960 // Some intrinsic operands are required to be immediates. 2961 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 2962 } 2963 2964 // It is never allowed to replace the call argument to an intrinsic, but it 2965 // may be possible for a call. 2966 return !isa<IntrinsicInst>(CB); 2967 } 2968 case Instruction::ShuffleVector: 2969 // Shufflevector masks are constant. 2970 return OpIdx != 2; 2971 case Instruction::Switch: 2972 case Instruction::ExtractValue: 2973 // All operands apart from the first are constant. 2974 return OpIdx == 0; 2975 case Instruction::InsertValue: 2976 // All operands apart from the first and the second are constant. 2977 return OpIdx < 2; 2978 case Instruction::Alloca: 2979 // Static allocas (constant size in the entry block) are handled by 2980 // prologue/epilogue insertion so they're free anyway. We definitely don't 2981 // want to make them non-constant. 2982 return !cast<AllocaInst>(I)->isStaticAlloca(); 2983 case Instruction::GetElementPtr: 2984 if (OpIdx == 0) 2985 return true; 2986 gep_type_iterator It = gep_type_begin(I); 2987 for (auto E = std::next(It, OpIdx); It != E; ++It) 2988 if (It.isStruct()) 2989 return false; 2990 return true; 2991 } 2992 } 2993 2994 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2995 AllocaInst *llvm::findAllocaForValue(Value *V, 2996 AllocaForValueMapTy &AllocaForValue) { 2997 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2998 return AI; 2999 // See if we've already calculated (or started to calculate) alloca for a 3000 // given value. 3001 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3002 if (I != AllocaForValue.end()) 3003 return I->second; 3004 // Store 0 while we're calculating alloca for value V to avoid 3005 // infinite recursion if the value references itself. 3006 AllocaForValue[V] = nullptr; 3007 AllocaInst *Res = nullptr; 3008 if (CastInst *CI = dyn_cast<CastInst>(V)) 3009 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 3010 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3011 for (Value *IncValue : PN->incoming_values()) { 3012 // Allow self-referencing phi-nodes. 3013 if (IncValue == PN) 3014 continue; 3015 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 3016 // AI for incoming values should exist and should all be equal. 3017 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3018 return nullptr; 3019 Res = IncValueAI; 3020 } 3021 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3022 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3023 } else { 3024 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3025 << *V << "\n"); 3026 } 3027 if (Res) 3028 AllocaForValue[V] = Res; 3029 return Res; 3030 } 3031 3032 Value *llvm::invertCondition(Value *Condition) { 3033 // First: Check if it's a constant 3034 if (Constant *C = dyn_cast<Constant>(Condition)) 3035 return ConstantExpr::getNot(C); 3036 3037 // Second: If the condition is already inverted, return the original value 3038 Value *NotCondition; 3039 if (match(Condition, m_Not(m_Value(NotCondition)))) 3040 return NotCondition; 3041 3042 if (Instruction *Inst = dyn_cast<Instruction>(Condition)) { 3043 // Third: Check all the users for an invert 3044 BasicBlock *Parent = Inst->getParent(); 3045 for (User *U : Condition->users()) 3046 if (Instruction *I = dyn_cast<Instruction>(U)) 3047 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3048 return I; 3049 3050 // Last option: Create a new instruction 3051 auto Inverted = BinaryOperator::CreateNot(Inst, ""); 3052 if (isa<PHINode>(Inst)) { 3053 // FIXME: This fails if the inversion is to be used in a 3054 // subsequent PHINode in the same basic block. 3055 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3056 } else { 3057 Inverted->insertAfter(Inst); 3058 } 3059 return Inverted; 3060 } 3061 3062 if (Argument *Arg = dyn_cast<Argument>(Condition)) { 3063 BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock(); 3064 return BinaryOperator::CreateNot(Condition, Arg->getName() + ".inv", 3065 &*EntryBlock.getFirstInsertionPt()); 3066 } 3067 3068 llvm_unreachable("Unhandled condition to invert"); 3069 } 3070