1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LazyValueInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DIBuilder.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/ValueHandle.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/KnownBits.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "local" 56 57 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 58 59 //===----------------------------------------------------------------------===// 60 // Local constant propagation. 61 // 62 63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 64 /// constant value, convert it into an unconditional branch to the constant 65 /// destination. This is a nontrivial operation because the successors of this 66 /// basic block must have their PHI nodes updated. 67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 68 /// conditions and indirectbr addresses this might make dead if 69 /// DeleteDeadConditions is true. 70 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 71 const TargetLibraryInfo *TLI, 72 DominatorTree *DT) { 73 TerminatorInst *T = BB->getTerminator(); 74 IRBuilder<> Builder(T); 75 76 // Branch - See if we are conditional jumping on constant 77 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 78 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 79 BasicBlock *Dest1 = BI->getSuccessor(0); 80 BasicBlock *Dest2 = BI->getSuccessor(1); 81 82 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 83 // Are we branching on constant? 84 // YES. Change to unconditional branch... 85 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 86 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 87 88 //cerr << "Function: " << T->getParent()->getParent() 89 // << "\nRemoving branch from " << T->getParent() 90 // << "\n\nTo: " << OldDest << endl; 91 92 // Let the basic block know that we are letting go of it. Based on this, 93 // it will adjust it's PHI nodes. 94 OldDest->removePredecessor(BB); 95 96 // Replace the conditional branch with an unconditional one. 97 Builder.CreateBr(Destination); 98 BI->eraseFromParent(); 99 if (DT && OldDest != Destination && OldDest != BB) 100 DT->deleteEdge(BB, OldDest); 101 return true; 102 } 103 104 if (Dest2 == Dest1) { // Conditional branch to same location? 105 // This branch matches something like this: 106 // br bool %cond, label %Dest, label %Dest 107 // and changes it into: br label %Dest 108 109 // Let the basic block know that we are letting go of one copy of it. 110 assert(BI->getParent() && "Terminator not inserted in block!"); 111 Dest1->removePredecessor(BI->getParent()); 112 113 // Replace the conditional branch with an unconditional one. 114 Builder.CreateBr(Dest1); 115 Value *Cond = BI->getCondition(); 116 BI->eraseFromParent(); 117 if (DeleteDeadConditions) 118 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 119 return true; 120 } 121 return false; 122 } 123 124 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 125 // If we are switching on a constant, we can convert the switch to an 126 // unconditional branch. 127 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 128 BasicBlock *DefaultDest = SI->getDefaultDest(); 129 BasicBlock *TheOnlyDest = DefaultDest; 130 131 // If the default is unreachable, ignore it when searching for TheOnlyDest. 132 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 133 SI->getNumCases() > 0) { 134 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 135 } 136 137 // Figure out which case it goes to. 138 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 139 // Found case matching a constant operand? 140 if (i->getCaseValue() == CI) { 141 TheOnlyDest = i->getCaseSuccessor(); 142 break; 143 } 144 145 // Check to see if this branch is going to the same place as the default 146 // dest. If so, eliminate it as an explicit compare. 147 if (i->getCaseSuccessor() == DefaultDest) { 148 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 149 unsigned NCases = SI->getNumCases(); 150 // Fold the case metadata into the default if there will be any branches 151 // left, unless the metadata doesn't match the switch. 152 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 153 // Collect branch weights into a vector. 154 SmallVector<uint32_t, 8> Weights; 155 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 156 ++MD_i) { 157 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 158 Weights.push_back(CI->getValue().getZExtValue()); 159 } 160 // Merge weight of this case to the default weight. 161 unsigned idx = i->getCaseIndex(); 162 Weights[0] += Weights[idx+1]; 163 // Remove weight for this case. 164 std::swap(Weights[idx+1], Weights.back()); 165 Weights.pop_back(); 166 SI->setMetadata(LLVMContext::MD_prof, 167 MDBuilder(BB->getContext()). 168 createBranchWeights(Weights)); 169 } 170 // Remove this entry. 171 BasicBlock *ParentBB = SI->getParent(); 172 DefaultDest->removePredecessor(ParentBB); 173 i = SI->removeCase(i); 174 e = SI->case_end(); 175 if (DT && DefaultDest != ParentBB) { 176 // DefaultDest may still be a successor of a non-default case. 177 if (none_of(successors(ParentBB), [DefaultDest](BasicBlock *S) { 178 return S == DefaultDest; 179 })) 180 DT->deleteEdge(ParentBB, DefaultDest); 181 } 182 continue; 183 } 184 185 // Otherwise, check to see if the switch only branches to one destination. 186 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 187 // destinations. 188 if (i->getCaseSuccessor() != TheOnlyDest) 189 TheOnlyDest = nullptr; 190 191 // Increment this iterator as we haven't removed the case. 192 ++i; 193 } 194 195 if (CI && !TheOnlyDest) { 196 // Branching on a constant, but not any of the cases, go to the default 197 // successor. 198 TheOnlyDest = SI->getDefaultDest(); 199 } 200 201 // If we found a single destination that we can fold the switch into, do so 202 // now. 203 if (TheOnlyDest) { 204 // Insert the new branch. 205 Builder.CreateBr(TheOnlyDest); 206 BasicBlock *BB = SI->getParent(); 207 BasicBlock *TheOnlyDestCheck = TheOnlyDest; 208 std::vector<DominatorTree::UpdateType> Updates; 209 210 // Remove entries from PHI nodes which we no longer branch to... 211 for (BasicBlock *Succ : SI->successors()) { 212 // Found case matching a constant operand? 213 if (Succ == TheOnlyDest) { 214 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 215 } else { 216 Succ->removePredecessor(BB); 217 if (DT && Succ != TheOnlyDestCheck && Succ != BB) { 218 DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, Succ}; 219 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) 220 Updates.push_back(UT); 221 } 222 } 223 } 224 225 // Delete the old switch. 226 Value *Cond = SI->getCondition(); 227 SI->eraseFromParent(); 228 if (DT && !Updates.empty()) 229 DT->applyUpdates(Updates); 230 if (DeleteDeadConditions) 231 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 232 return true; 233 } 234 235 if (SI->getNumCases() == 1) { 236 // Otherwise, we can fold this switch into a conditional branch 237 // instruction if it has only one non-default destination. 238 auto FirstCase = *SI->case_begin(); 239 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 240 FirstCase.getCaseValue(), "cond"); 241 242 // Insert the new branch. 243 BranchInst *NewBr = Builder.CreateCondBr(Cond, 244 FirstCase.getCaseSuccessor(), 245 SI->getDefaultDest()); 246 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 247 if (MD && MD->getNumOperands() == 3) { 248 ConstantInt *SICase = 249 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 250 ConstantInt *SIDef = 251 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 252 assert(SICase && SIDef); 253 // The TrueWeight should be the weight for the single case of SI. 254 NewBr->setMetadata(LLVMContext::MD_prof, 255 MDBuilder(BB->getContext()). 256 createBranchWeights(SICase->getValue().getZExtValue(), 257 SIDef->getValue().getZExtValue())); 258 } 259 260 // Update make.implicit metadata to the newly-created conditional branch. 261 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 262 if (MakeImplicitMD) 263 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 264 265 // Delete the old switch. 266 SI->eraseFromParent(); 267 return true; 268 } 269 return false; 270 } 271 272 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 273 // indirectbr blockaddress(@F, @BB) -> br label @BB 274 if (BlockAddress *BA = 275 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 276 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 277 BasicBlock *TheOnlyDestCheck = TheOnlyDest; 278 std::vector<DominatorTree::UpdateType> Updates; 279 // Insert the new branch. 280 Builder.CreateBr(TheOnlyDest); 281 282 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 283 if (IBI->getDestination(i) == TheOnlyDest) { 284 TheOnlyDest = nullptr; 285 } else { 286 BasicBlock *ParentBB = IBI->getParent(); 287 BasicBlock *DestBB = IBI->getDestination(i); 288 DestBB->removePredecessor(ParentBB); 289 if (DT && DestBB != TheOnlyDestCheck && DestBB != ParentBB) { 290 DominatorTree::UpdateType UT = {DominatorTree::Delete, ParentBB, 291 DestBB}; 292 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) 293 Updates.push_back(UT); 294 } 295 } 296 } 297 Value *Address = IBI->getAddress(); 298 IBI->eraseFromParent(); 299 if (DT && !Updates.empty()) 300 DT->applyUpdates(Updates); 301 if (DeleteDeadConditions) 302 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 303 304 // If we didn't find our destination in the IBI successor list, then we 305 // have undefined behavior. Replace the unconditional branch with an 306 // 'unreachable' instruction. 307 if (TheOnlyDest) { 308 BB->getTerminator()->eraseFromParent(); 309 new UnreachableInst(BB->getContext(), BB); 310 } 311 312 return true; 313 } 314 } 315 316 return false; 317 } 318 319 320 //===----------------------------------------------------------------------===// 321 // Local dead code elimination. 322 // 323 324 /// isInstructionTriviallyDead - Return true if the result produced by the 325 /// instruction is not used, and the instruction has no side effects. 326 /// 327 bool llvm::isInstructionTriviallyDead(Instruction *I, 328 const TargetLibraryInfo *TLI) { 329 if (!I->use_empty()) 330 return false; 331 return wouldInstructionBeTriviallyDead(I, TLI); 332 } 333 334 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 335 const TargetLibraryInfo *TLI) { 336 if (isa<TerminatorInst>(I)) 337 return false; 338 339 // We don't want the landingpad-like instructions removed by anything this 340 // general. 341 if (I->isEHPad()) 342 return false; 343 344 // We don't want debug info removed by anything this general, unless 345 // debug info is empty. 346 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 347 if (DDI->getAddress()) 348 return false; 349 return true; 350 } 351 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 352 if (DVI->getValue()) 353 return false; 354 return true; 355 } 356 357 if (!I->mayHaveSideEffects()) 358 return true; 359 360 // Special case intrinsics that "may have side effects" but can be deleted 361 // when dead. 362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 363 // Safe to delete llvm.stacksave if dead. 364 if (II->getIntrinsicID() == Intrinsic::stacksave) 365 return true; 366 367 // Lifetime intrinsics are dead when their right-hand is undef. 368 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 369 II->getIntrinsicID() == Intrinsic::lifetime_end) 370 return isa<UndefValue>(II->getArgOperand(1)); 371 372 // Assumptions are dead if their condition is trivially true. Guards on 373 // true are operationally no-ops. In the future we can consider more 374 // sophisticated tradeoffs for guards considering potential for check 375 // widening, but for now we keep things simple. 376 if (II->getIntrinsicID() == Intrinsic::assume || 377 II->getIntrinsicID() == Intrinsic::experimental_guard) { 378 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 379 return !Cond->isZero(); 380 381 return false; 382 } 383 } 384 385 if (isAllocLikeFn(I, TLI)) 386 return true; 387 388 if (CallInst *CI = isFreeCall(I, TLI)) 389 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 390 return C->isNullValue() || isa<UndefValue>(C); 391 392 if (CallSite CS = CallSite(I)) 393 if (isMathLibCallNoop(CS, TLI)) 394 return true; 395 396 return false; 397 } 398 399 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 400 /// trivially dead instruction, delete it. If that makes any of its operands 401 /// trivially dead, delete them too, recursively. Return true if any 402 /// instructions were deleted. 403 bool 404 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 405 const TargetLibraryInfo *TLI) { 406 Instruction *I = dyn_cast<Instruction>(V); 407 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 408 return false; 409 410 SmallVector<Instruction*, 16> DeadInsts; 411 DeadInsts.push_back(I); 412 413 do { 414 I = DeadInsts.pop_back_val(); 415 416 // Null out all of the instruction's operands to see if any operand becomes 417 // dead as we go. 418 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 419 Value *OpV = I->getOperand(i); 420 I->setOperand(i, nullptr); 421 422 if (!OpV->use_empty()) continue; 423 424 // If the operand is an instruction that became dead as we nulled out the 425 // operand, and if it is 'trivially' dead, delete it in a future loop 426 // iteration. 427 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 428 if (isInstructionTriviallyDead(OpI, TLI)) 429 DeadInsts.push_back(OpI); 430 } 431 432 I->eraseFromParent(); 433 } while (!DeadInsts.empty()); 434 435 return true; 436 } 437 438 /// areAllUsesEqual - Check whether the uses of a value are all the same. 439 /// This is similar to Instruction::hasOneUse() except this will also return 440 /// true when there are no uses or multiple uses that all refer to the same 441 /// value. 442 static bool areAllUsesEqual(Instruction *I) { 443 Value::user_iterator UI = I->user_begin(); 444 Value::user_iterator UE = I->user_end(); 445 if (UI == UE) 446 return true; 447 448 User *TheUse = *UI; 449 for (++UI; UI != UE; ++UI) { 450 if (*UI != TheUse) 451 return false; 452 } 453 return true; 454 } 455 456 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 457 /// dead PHI node, due to being a def-use chain of single-use nodes that 458 /// either forms a cycle or is terminated by a trivially dead instruction, 459 /// delete it. If that makes any of its operands trivially dead, delete them 460 /// too, recursively. Return true if a change was made. 461 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 462 const TargetLibraryInfo *TLI) { 463 SmallPtrSet<Instruction*, 4> Visited; 464 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 465 I = cast<Instruction>(*I->user_begin())) { 466 if (I->use_empty()) 467 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 468 469 // If we find an instruction more than once, we're on a cycle that 470 // won't prove fruitful. 471 if (!Visited.insert(I).second) { 472 // Break the cycle and delete the instruction and its operands. 473 I->replaceAllUsesWith(UndefValue::get(I->getType())); 474 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 475 return true; 476 } 477 } 478 return false; 479 } 480 481 static bool 482 simplifyAndDCEInstruction(Instruction *I, 483 SmallSetVector<Instruction *, 16> &WorkList, 484 const DataLayout &DL, 485 const TargetLibraryInfo *TLI) { 486 if (isInstructionTriviallyDead(I, TLI)) { 487 // Null out all of the instruction's operands to see if any operand becomes 488 // dead as we go. 489 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 490 Value *OpV = I->getOperand(i); 491 I->setOperand(i, nullptr); 492 493 if (!OpV->use_empty() || I == OpV) 494 continue; 495 496 // If the operand is an instruction that became dead as we nulled out the 497 // operand, and if it is 'trivially' dead, delete it in a future loop 498 // iteration. 499 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 500 if (isInstructionTriviallyDead(OpI, TLI)) 501 WorkList.insert(OpI); 502 } 503 504 I->eraseFromParent(); 505 506 return true; 507 } 508 509 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 510 // Add the users to the worklist. CAREFUL: an instruction can use itself, 511 // in the case of a phi node. 512 for (User *U : I->users()) { 513 if (U != I) { 514 WorkList.insert(cast<Instruction>(U)); 515 } 516 } 517 518 // Replace the instruction with its simplified value. 519 bool Changed = false; 520 if (!I->use_empty()) { 521 I->replaceAllUsesWith(SimpleV); 522 Changed = true; 523 } 524 if (isInstructionTriviallyDead(I, TLI)) { 525 I->eraseFromParent(); 526 Changed = true; 527 } 528 return Changed; 529 } 530 return false; 531 } 532 533 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 534 /// simplify any instructions in it and recursively delete dead instructions. 535 /// 536 /// This returns true if it changed the code, note that it can delete 537 /// instructions in other blocks as well in this block. 538 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 539 const TargetLibraryInfo *TLI) { 540 bool MadeChange = false; 541 const DataLayout &DL = BB->getModule()->getDataLayout(); 542 543 #ifndef NDEBUG 544 // In debug builds, ensure that the terminator of the block is never replaced 545 // or deleted by these simplifications. The idea of simplification is that it 546 // cannot introduce new instructions, and there is no way to replace the 547 // terminator of a block without introducing a new instruction. 548 AssertingVH<Instruction> TerminatorVH(&BB->back()); 549 #endif 550 551 SmallSetVector<Instruction *, 16> WorkList; 552 // Iterate over the original function, only adding insts to the worklist 553 // if they actually need to be revisited. This avoids having to pre-init 554 // the worklist with the entire function's worth of instructions. 555 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 556 BI != E;) { 557 assert(!BI->isTerminator()); 558 Instruction *I = &*BI; 559 ++BI; 560 561 // We're visiting this instruction now, so make sure it's not in the 562 // worklist from an earlier visit. 563 if (!WorkList.count(I)) 564 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 565 } 566 567 while (!WorkList.empty()) { 568 Instruction *I = WorkList.pop_back_val(); 569 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 570 } 571 return MadeChange; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // Control Flow Graph Restructuring. 576 // 577 578 579 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 580 /// method is called when we're about to delete Pred as a predecessor of BB. If 581 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 582 /// 583 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 584 /// nodes that collapse into identity values. For example, if we have: 585 /// x = phi(1, 0, 0, 0) 586 /// y = and x, z 587 /// 588 /// .. and delete the predecessor corresponding to the '1', this will attempt to 589 /// recursively fold the and to 0. 590 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 591 DominatorTree *DT) { 592 // This only adjusts blocks with PHI nodes. 593 if (!isa<PHINode>(BB->begin())) 594 return; 595 596 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 597 // them down. This will leave us with single entry phi nodes and other phis 598 // that can be removed. 599 BB->removePredecessor(Pred, true); 600 601 WeakTrackingVH PhiIt = &BB->front(); 602 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 603 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 604 Value *OldPhiIt = PhiIt; 605 606 if (!recursivelySimplifyInstruction(PN)) 607 continue; 608 609 // If recursive simplification ended up deleting the next PHI node we would 610 // iterate to, then our iterator is invalid, restart scanning from the top 611 // of the block. 612 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 613 } 614 if (DT && BB != Pred) 615 DT->deleteEdge(Pred, BB); 616 } 617 618 619 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 620 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 621 /// between them, moving the instructions in the predecessor into DestBB and 622 /// deleting the predecessor block. 623 /// 624 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) { 625 // If BB has single-entry PHI nodes, fold them. 626 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 627 Value *NewVal = PN->getIncomingValue(0); 628 // Replace self referencing PHI with undef, it must be dead. 629 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 630 PN->replaceAllUsesWith(NewVal); 631 PN->eraseFromParent(); 632 } 633 634 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 635 assert(PredBB && "Block doesn't have a single predecessor!"); 636 637 // Collect all the edges that enter PredBB, discarding edges to itself and 638 // duplicates. These dominator edges will be redirected to DestBB. 639 std::vector<DominatorTree::UpdateType> Updates; 640 if (DT) 641 for (pred_iterator PI = pred_begin(PredBB), E = pred_end(PredBB); PI != E; 642 ++PI) { 643 if (*PI == PredBB) 644 continue; 645 DominatorTree::UpdateType UT = {DominatorTree::Delete, *PI, PredBB}; 646 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) { 647 Updates.push_back(UT); 648 // DestBB cannot dominate itself. 649 if (*PI != DestBB) 650 Updates.push_back({DominatorTree::Insert, *PI, DestBB}); 651 } 652 } 653 654 // Zap anything that took the address of DestBB. Not doing this will give the 655 // address an invalid value. 656 if (DestBB->hasAddressTaken()) { 657 BlockAddress *BA = BlockAddress::get(DestBB); 658 Constant *Replacement = 659 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 660 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 661 BA->getType())); 662 BA->destroyConstant(); 663 } 664 665 // Anything that branched to PredBB now branches to DestBB. 666 PredBB->replaceAllUsesWith(DestBB); 667 668 // Splice all the instructions from PredBB to DestBB. 669 PredBB->getTerminator()->eraseFromParent(); 670 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 671 672 // If the PredBB is the entry block of the function, move DestBB up to 673 // become the entry block after we erase PredBB. 674 bool ReplacedEntryBB = false; 675 if (PredBB == &DestBB->getParent()->getEntryBlock()) { 676 DestBB->moveAfter(PredBB); 677 ReplacedEntryBB = true; 678 } 679 680 if (DT && !ReplacedEntryBB) { 681 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 682 DT->applyUpdates(Updates); 683 } 684 685 // Nuke BB. 686 PredBB->eraseFromParent(); 687 688 // The entry block was removed and there is no external interface for the 689 // dominator tree to be notified of this change. In this corner-case we 690 // recalculate the entire tree. 691 if (DT && ReplacedEntryBB) 692 DT->recalculate(*(DestBB->getParent())); 693 } 694 695 /// CanMergeValues - Return true if we can choose one of these values to use 696 /// in place of the other. Note that we will always choose the non-undef 697 /// value to keep. 698 static bool CanMergeValues(Value *First, Value *Second) { 699 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 700 } 701 702 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 703 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 704 /// 705 /// Assumption: Succ is the single successor for BB. 706 /// 707 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 708 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 709 710 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 711 << Succ->getName() << "\n"); 712 // Shortcut, if there is only a single predecessor it must be BB and merging 713 // is always safe 714 if (Succ->getSinglePredecessor()) return true; 715 716 // Make a list of the predecessors of BB 717 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 718 719 // Look at all the phi nodes in Succ, to see if they present a conflict when 720 // merging these blocks 721 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 722 PHINode *PN = cast<PHINode>(I); 723 724 // If the incoming value from BB is again a PHINode in 725 // BB which has the same incoming value for *PI as PN does, we can 726 // merge the phi nodes and then the blocks can still be merged 727 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 728 if (BBPN && BBPN->getParent() == BB) { 729 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 730 BasicBlock *IBB = PN->getIncomingBlock(PI); 731 if (BBPreds.count(IBB) && 732 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 733 PN->getIncomingValue(PI))) { 734 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 735 << Succ->getName() << " is conflicting with " 736 << BBPN->getName() << " with regard to common predecessor " 737 << IBB->getName() << "\n"); 738 return false; 739 } 740 } 741 } else { 742 Value* Val = PN->getIncomingValueForBlock(BB); 743 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 744 // See if the incoming value for the common predecessor is equal to the 745 // one for BB, in which case this phi node will not prevent the merging 746 // of the block. 747 BasicBlock *IBB = PN->getIncomingBlock(PI); 748 if (BBPreds.count(IBB) && 749 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 750 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 751 << Succ->getName() << " is conflicting with regard to common " 752 << "predecessor " << IBB->getName() << "\n"); 753 return false; 754 } 755 } 756 } 757 } 758 759 return true; 760 } 761 762 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 763 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 764 765 /// \brief Determines the value to use as the phi node input for a block. 766 /// 767 /// Select between \p OldVal any value that we know flows from \p BB 768 /// to a particular phi on the basis of which one (if either) is not 769 /// undef. Update IncomingValues based on the selected value. 770 /// 771 /// \param OldVal The value we are considering selecting. 772 /// \param BB The block that the value flows in from. 773 /// \param IncomingValues A map from block-to-value for other phi inputs 774 /// that we have examined. 775 /// 776 /// \returns the selected value. 777 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 778 IncomingValueMap &IncomingValues) { 779 if (!isa<UndefValue>(OldVal)) { 780 assert((!IncomingValues.count(BB) || 781 IncomingValues.find(BB)->second == OldVal) && 782 "Expected OldVal to match incoming value from BB!"); 783 784 IncomingValues.insert(std::make_pair(BB, OldVal)); 785 return OldVal; 786 } 787 788 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 789 if (It != IncomingValues.end()) return It->second; 790 791 return OldVal; 792 } 793 794 /// \brief Create a map from block to value for the operands of a 795 /// given phi. 796 /// 797 /// Create a map from block to value for each non-undef value flowing 798 /// into \p PN. 799 /// 800 /// \param PN The phi we are collecting the map for. 801 /// \param IncomingValues [out] The map from block to value for this phi. 802 static void gatherIncomingValuesToPhi(PHINode *PN, 803 IncomingValueMap &IncomingValues) { 804 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 805 BasicBlock *BB = PN->getIncomingBlock(i); 806 Value *V = PN->getIncomingValue(i); 807 808 if (!isa<UndefValue>(V)) 809 IncomingValues.insert(std::make_pair(BB, V)); 810 } 811 } 812 813 /// \brief Replace the incoming undef values to a phi with the values 814 /// from a block-to-value map. 815 /// 816 /// \param PN The phi we are replacing the undefs in. 817 /// \param IncomingValues A map from block to value. 818 static void replaceUndefValuesInPhi(PHINode *PN, 819 const IncomingValueMap &IncomingValues) { 820 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 821 Value *V = PN->getIncomingValue(i); 822 823 if (!isa<UndefValue>(V)) continue; 824 825 BasicBlock *BB = PN->getIncomingBlock(i); 826 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 827 if (It == IncomingValues.end()) continue; 828 829 PN->setIncomingValue(i, It->second); 830 } 831 } 832 833 /// \brief Replace a value flowing from a block to a phi with 834 /// potentially multiple instances of that value flowing from the 835 /// block's predecessors to the phi. 836 /// 837 /// \param BB The block with the value flowing into the phi. 838 /// \param BBPreds The predecessors of BB. 839 /// \param PN The phi that we are updating. 840 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 841 const PredBlockVector &BBPreds, 842 PHINode *PN) { 843 Value *OldVal = PN->removeIncomingValue(BB, false); 844 assert(OldVal && "No entry in PHI for Pred BB!"); 845 846 IncomingValueMap IncomingValues; 847 848 // We are merging two blocks - BB, and the block containing PN - and 849 // as a result we need to redirect edges from the predecessors of BB 850 // to go to the block containing PN, and update PN 851 // accordingly. Since we allow merging blocks in the case where the 852 // predecessor and successor blocks both share some predecessors, 853 // and where some of those common predecessors might have undef 854 // values flowing into PN, we want to rewrite those values to be 855 // consistent with the non-undef values. 856 857 gatherIncomingValuesToPhi(PN, IncomingValues); 858 859 // If this incoming value is one of the PHI nodes in BB, the new entries 860 // in the PHI node are the entries from the old PHI. 861 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 862 PHINode *OldValPN = cast<PHINode>(OldVal); 863 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 864 // Note that, since we are merging phi nodes and BB and Succ might 865 // have common predecessors, we could end up with a phi node with 866 // identical incoming branches. This will be cleaned up later (and 867 // will trigger asserts if we try to clean it up now, without also 868 // simplifying the corresponding conditional branch). 869 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 870 Value *PredVal = OldValPN->getIncomingValue(i); 871 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 872 IncomingValues); 873 874 // And add a new incoming value for this predecessor for the 875 // newly retargeted branch. 876 PN->addIncoming(Selected, PredBB); 877 } 878 } else { 879 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 880 // Update existing incoming values in PN for this 881 // predecessor of BB. 882 BasicBlock *PredBB = BBPreds[i]; 883 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 884 IncomingValues); 885 886 // And add a new incoming value for this predecessor for the 887 // newly retargeted branch. 888 PN->addIncoming(Selected, PredBB); 889 } 890 } 891 892 replaceUndefValuesInPhi(PN, IncomingValues); 893 } 894 895 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 896 /// unconditional branch, and contains no instructions other than PHI nodes, 897 /// potential side-effect free intrinsics and the branch. If possible, 898 /// eliminate BB by rewriting all the predecessors to branch to the successor 899 /// block and return true. If we can't transform, return false. 900 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 901 DominatorTree *DT) { 902 assert(BB != &BB->getParent()->getEntryBlock() && 903 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 904 905 // We can't eliminate infinite loops. 906 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 907 if (BB == Succ) return false; 908 909 // Check to see if merging these blocks would cause conflicts for any of the 910 // phi nodes in BB or Succ. If not, we can safely merge. 911 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 912 913 // Check for cases where Succ has multiple predecessors and a PHI node in BB 914 // has uses which will not disappear when the PHI nodes are merged. It is 915 // possible to handle such cases, but difficult: it requires checking whether 916 // BB dominates Succ, which is non-trivial to calculate in the case where 917 // Succ has multiple predecessors. Also, it requires checking whether 918 // constructing the necessary self-referential PHI node doesn't introduce any 919 // conflicts; this isn't too difficult, but the previous code for doing this 920 // was incorrect. 921 // 922 // Note that if this check finds a live use, BB dominates Succ, so BB is 923 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 924 // folding the branch isn't profitable in that case anyway. 925 if (!Succ->getSinglePredecessor()) { 926 BasicBlock::iterator BBI = BB->begin(); 927 while (isa<PHINode>(*BBI)) { 928 for (Use &U : BBI->uses()) { 929 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 930 if (PN->getIncomingBlock(U) != BB) 931 return false; 932 } else { 933 return false; 934 } 935 } 936 ++BBI; 937 } 938 } 939 940 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 941 942 // Collect all the edges that enter BB, discarding edges to itself and 943 // duplicates. These dominator edges will be redirected to Succ. 944 std::vector<DominatorTree::UpdateType> Updates; 945 if (DT) 946 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 947 if (*PI == BB) 948 continue; 949 DominatorTree::UpdateType UT = {DominatorTree::Delete, *PI, BB}; 950 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) { 951 Updates.push_back(UT); 952 Updates.push_back({DominatorTree::Insert, *PI, Succ}); 953 } 954 } 955 956 if (isa<PHINode>(Succ->begin())) { 957 // If there is more than one pred of succ, and there are PHI nodes in 958 // the successor, then we need to add incoming edges for the PHI nodes 959 // 960 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 961 962 // Loop over all of the PHI nodes in the successor of BB. 963 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 964 PHINode *PN = cast<PHINode>(I); 965 966 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 967 } 968 } 969 970 if (Succ->getSinglePredecessor()) { 971 // BB is the only predecessor of Succ, so Succ will end up with exactly 972 // the same predecessors BB had. 973 974 // Copy over any phi, debug or lifetime instruction. 975 BB->getTerminator()->eraseFromParent(); 976 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 977 BB->getInstList()); 978 } else { 979 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 980 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 981 assert(PN->use_empty() && "There shouldn't be any uses here!"); 982 PN->eraseFromParent(); 983 } 984 } 985 986 // If the unconditional branch we replaced contains llvm.loop metadata, we 987 // add the metadata to the branch instructions in the predecessors. 988 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 989 Instruction *TI = BB->getTerminator(); 990 if (TI) { 991 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 992 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 993 BasicBlock *Pred = *PI; 994 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 995 } 996 // Replace the terminator instruction with unreachable to ensure the CFG is 997 // consistent. This is necessary for dominance to be correctly calculated. 998 new UnreachableInst(BB->getContext(), TI); 999 TI->eraseFromParent(); 1000 } 1001 1002 // Everything that jumped to BB now goes to Succ. 1003 BB->replaceAllUsesWith(Succ); 1004 if (!Succ->hasName()) Succ->takeName(BB); 1005 1006 if (DT) { 1007 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1008 DT->applyUpdates(Updates); 1009 } 1010 1011 BB->eraseFromParent(); // Delete the old basic block. 1012 return true; 1013 } 1014 1015 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1016 /// nodes in this block. This doesn't try to be clever about PHI nodes 1017 /// which differ only in the order of the incoming values, but instcombine 1018 /// orders them so it usually won't matter. 1019 /// 1020 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1021 // This implementation doesn't currently consider undef operands 1022 // specially. Theoretically, two phis which are identical except for 1023 // one having an undef where the other doesn't could be collapsed. 1024 1025 struct PHIDenseMapInfo { 1026 static PHINode *getEmptyKey() { 1027 return DenseMapInfo<PHINode *>::getEmptyKey(); 1028 } 1029 static PHINode *getTombstoneKey() { 1030 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1031 } 1032 static unsigned getHashValue(PHINode *PN) { 1033 // Compute a hash value on the operands. Instcombine will likely have 1034 // sorted them, which helps expose duplicates, but we have to check all 1035 // the operands to be safe in case instcombine hasn't run. 1036 return static_cast<unsigned>(hash_combine( 1037 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1038 hash_combine_range(PN->block_begin(), PN->block_end()))); 1039 } 1040 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1041 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1042 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1043 return LHS == RHS; 1044 return LHS->isIdenticalTo(RHS); 1045 } 1046 }; 1047 1048 // Set of unique PHINodes. 1049 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1050 1051 // Examine each PHI. 1052 bool Changed = false; 1053 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1054 auto Inserted = PHISet.insert(PN); 1055 if (!Inserted.second) { 1056 // A duplicate. Replace this PHI with its duplicate. 1057 PN->replaceAllUsesWith(*Inserted.first); 1058 PN->eraseFromParent(); 1059 Changed = true; 1060 1061 // The RAUW can change PHIs that we already visited. Start over from the 1062 // beginning. 1063 PHISet.clear(); 1064 I = BB->begin(); 1065 } 1066 } 1067 1068 return Changed; 1069 } 1070 1071 /// enforceKnownAlignment - If the specified pointer points to an object that 1072 /// we control, modify the object's alignment to PrefAlign. This isn't 1073 /// often possible though. If alignment is important, a more reliable approach 1074 /// is to simply align all global variables and allocation instructions to 1075 /// their preferred alignment from the beginning. 1076 /// 1077 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1078 unsigned PrefAlign, 1079 const DataLayout &DL) { 1080 assert(PrefAlign > Align); 1081 1082 V = V->stripPointerCasts(); 1083 1084 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1085 // TODO: ideally, computeKnownBits ought to have used 1086 // AllocaInst::getAlignment() in its computation already, making 1087 // the below max redundant. But, as it turns out, 1088 // stripPointerCasts recurses through infinite layers of bitcasts, 1089 // while computeKnownBits is not allowed to traverse more than 6 1090 // levels. 1091 Align = std::max(AI->getAlignment(), Align); 1092 if (PrefAlign <= Align) 1093 return Align; 1094 1095 // If the preferred alignment is greater than the natural stack alignment 1096 // then don't round up. This avoids dynamic stack realignment. 1097 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1098 return Align; 1099 AI->setAlignment(PrefAlign); 1100 return PrefAlign; 1101 } 1102 1103 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1104 // TODO: as above, this shouldn't be necessary. 1105 Align = std::max(GO->getAlignment(), Align); 1106 if (PrefAlign <= Align) 1107 return Align; 1108 1109 // If there is a large requested alignment and we can, bump up the alignment 1110 // of the global. If the memory we set aside for the global may not be the 1111 // memory used by the final program then it is impossible for us to reliably 1112 // enforce the preferred alignment. 1113 if (!GO->canIncreaseAlignment()) 1114 return Align; 1115 1116 GO->setAlignment(PrefAlign); 1117 return PrefAlign; 1118 } 1119 1120 return Align; 1121 } 1122 1123 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1124 const DataLayout &DL, 1125 const Instruction *CxtI, 1126 AssumptionCache *AC, 1127 const DominatorTree *DT) { 1128 assert(V->getType()->isPointerTy() && 1129 "getOrEnforceKnownAlignment expects a pointer!"); 1130 1131 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1132 unsigned TrailZ = Known.countMinTrailingZeros(); 1133 1134 // Avoid trouble with ridiculously large TrailZ values, such as 1135 // those computed from a null pointer. 1136 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1137 1138 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1139 1140 // LLVM doesn't support alignments larger than this currently. 1141 Align = std::min(Align, +Value::MaximumAlignment); 1142 1143 if (PrefAlign > Align) 1144 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1145 1146 // We don't need to make any adjustment. 1147 return Align; 1148 } 1149 1150 ///===---------------------------------------------------------------------===// 1151 /// Dbg Intrinsic utilities 1152 /// 1153 1154 /// See if there is a dbg.value intrinsic for DIVar before I. 1155 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1156 Instruction *I) { 1157 // Since we can't guarantee that the original dbg.declare instrinsic 1158 // is removed by LowerDbgDeclare(), we need to make sure that we are 1159 // not inserting the same dbg.value intrinsic over and over. 1160 llvm::BasicBlock::InstListType::iterator PrevI(I); 1161 if (PrevI != I->getParent()->getInstList().begin()) { 1162 --PrevI; 1163 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1164 if (DVI->getValue() == I->getOperand(0) && 1165 DVI->getVariable() == DIVar && 1166 DVI->getExpression() == DIExpr) 1167 return true; 1168 } 1169 return false; 1170 } 1171 1172 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1173 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1174 DIExpression *DIExpr, 1175 PHINode *APN) { 1176 // Since we can't guarantee that the original dbg.declare instrinsic 1177 // is removed by LowerDbgDeclare(), we need to make sure that we are 1178 // not inserting the same dbg.value intrinsic over and over. 1179 SmallVector<DbgValueInst *, 1> DbgValues; 1180 findDbgValues(DbgValues, APN); 1181 for (auto *DVI : DbgValues) { 1182 assert(DVI->getValue() == APN); 1183 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1184 return true; 1185 } 1186 return false; 1187 } 1188 1189 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1190 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1191 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1192 StoreInst *SI, DIBuilder &Builder) { 1193 assert(DII->isAddressOfVariable()); 1194 auto *DIVar = DII->getVariable(); 1195 assert(DIVar && "Missing variable"); 1196 auto *DIExpr = DII->getExpression(); 1197 Value *DV = SI->getOperand(0); 1198 1199 // If an argument is zero extended then use argument directly. The ZExt 1200 // may be zapped by an optimization pass in future. 1201 Argument *ExtendedArg = nullptr; 1202 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1203 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1204 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1205 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1206 if (ExtendedArg) { 1207 // If this DII was already describing only a fragment of a variable, ensure 1208 // that fragment is appropriately narrowed here. 1209 // But if a fragment wasn't used, describe the value as the original 1210 // argument (rather than the zext or sext) so that it remains described even 1211 // if the sext/zext is optimized away. This widens the variable description, 1212 // leaving it up to the consumer to know how the smaller value may be 1213 // represented in a larger register. 1214 if (auto Fragment = DIExpr->getFragmentInfo()) { 1215 unsigned FragmentOffset = Fragment->OffsetInBits; 1216 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1217 DIExpr->elements_end() - 3); 1218 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1219 Ops.push_back(FragmentOffset); 1220 const DataLayout &DL = DII->getModule()->getDataLayout(); 1221 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1222 DIExpr = Builder.createExpression(Ops); 1223 } 1224 DV = ExtendedArg; 1225 } 1226 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1227 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1228 SI); 1229 } 1230 1231 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1232 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1233 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1234 LoadInst *LI, DIBuilder &Builder) { 1235 auto *DIVar = DII->getVariable(); 1236 auto *DIExpr = DII->getExpression(); 1237 assert(DIVar && "Missing variable"); 1238 1239 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1240 return; 1241 1242 // We are now tracking the loaded value instead of the address. In the 1243 // future if multi-location support is added to the IR, it might be 1244 // preferable to keep tracking both the loaded value and the original 1245 // address in case the alloca can not be elided. 1246 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1247 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1248 DbgValue->insertAfter(LI); 1249 } 1250 1251 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1252 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1253 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1254 PHINode *APN, DIBuilder &Builder) { 1255 auto *DIVar = DII->getVariable(); 1256 auto *DIExpr = DII->getExpression(); 1257 assert(DIVar && "Missing variable"); 1258 1259 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1260 return; 1261 1262 BasicBlock *BB = APN->getParent(); 1263 auto InsertionPt = BB->getFirstInsertionPt(); 1264 1265 // The block may be a catchswitch block, which does not have a valid 1266 // insertion point. 1267 // FIXME: Insert dbg.value markers in the successors when appropriate. 1268 if (InsertionPt != BB->end()) 1269 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1270 &*InsertionPt); 1271 } 1272 1273 /// Determine whether this alloca is either a VLA or an array. 1274 static bool isArray(AllocaInst *AI) { 1275 return AI->isArrayAllocation() || 1276 AI->getType()->getElementType()->isArrayTy(); 1277 } 1278 1279 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1280 /// of llvm.dbg.value intrinsics. 1281 bool llvm::LowerDbgDeclare(Function &F) { 1282 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1283 SmallVector<DbgDeclareInst *, 4> Dbgs; 1284 for (auto &FI : F) 1285 for (Instruction &BI : FI) 1286 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1287 Dbgs.push_back(DDI); 1288 1289 if (Dbgs.empty()) 1290 return false; 1291 1292 for (auto &I : Dbgs) { 1293 DbgDeclareInst *DDI = I; 1294 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1295 // If this is an alloca for a scalar variable, insert a dbg.value 1296 // at each load and store to the alloca and erase the dbg.declare. 1297 // The dbg.values allow tracking a variable even if it is not 1298 // stored on the stack, while the dbg.declare can only describe 1299 // the stack slot (and at a lexical-scope granularity). Later 1300 // passes will attempt to elide the stack slot. 1301 if (AI && !isArray(AI)) { 1302 for (auto &AIUse : AI->uses()) { 1303 User *U = AIUse.getUser(); 1304 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1305 if (AIUse.getOperandNo() == 1) 1306 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1307 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1308 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1309 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1310 // This is a call by-value or some other instruction that 1311 // takes a pointer to the variable. Insert a *value* 1312 // intrinsic that describes the alloca. 1313 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1314 DDI->getExpression(), DDI->getDebugLoc(), 1315 CI); 1316 } 1317 } 1318 DDI->eraseFromParent(); 1319 } 1320 } 1321 return true; 1322 } 1323 1324 /// Finds all intrinsics declaring local variables as living in the memory that 1325 /// 'V' points to. This may include a mix of dbg.declare and 1326 /// dbg.addr intrinsics. 1327 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1328 auto *L = LocalAsMetadata::getIfExists(V); 1329 if (!L) 1330 return {}; 1331 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1332 if (!MDV) 1333 return {}; 1334 1335 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1336 for (User *U : MDV->users()) { 1337 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1338 if (DII->isAddressOfVariable()) 1339 Declares.push_back(DII); 1340 } 1341 1342 return Declares; 1343 } 1344 1345 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1346 if (auto *L = LocalAsMetadata::getIfExists(V)) 1347 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1348 for (User *U : MDV->users()) 1349 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1350 DbgValues.push_back(DVI); 1351 } 1352 1353 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1354 Instruction *InsertBefore, DIBuilder &Builder, 1355 bool Deref, int Offset) { 1356 auto DbgAddrs = FindDbgAddrUses(Address); 1357 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1358 DebugLoc Loc = DII->getDebugLoc(); 1359 auto *DIVar = DII->getVariable(); 1360 auto *DIExpr = DII->getExpression(); 1361 assert(DIVar && "Missing variable"); 1362 DIExpr = DIExpression::prepend(DIExpr, Deref, Offset); 1363 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1364 // llvm.dbg.declare. 1365 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1366 if (DII == InsertBefore) 1367 InsertBefore = &*std::next(InsertBefore->getIterator()); 1368 DII->eraseFromParent(); 1369 } 1370 return !DbgAddrs.empty(); 1371 } 1372 1373 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1374 DIBuilder &Builder, bool Deref, int Offset) { 1375 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1376 Deref, Offset); 1377 } 1378 1379 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1380 DIBuilder &Builder, int Offset) { 1381 DebugLoc Loc = DVI->getDebugLoc(); 1382 auto *DIVar = DVI->getVariable(); 1383 auto *DIExpr = DVI->getExpression(); 1384 assert(DIVar && "Missing variable"); 1385 1386 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1387 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1388 // it and give up. 1389 if (!DIExpr || DIExpr->getNumElements() < 1 || 1390 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1391 return; 1392 1393 // Insert the offset immediately after the first deref. 1394 // We could just change the offset argument of dbg.value, but it's unsigned... 1395 if (Offset) { 1396 SmallVector<uint64_t, 4> Ops; 1397 Ops.push_back(dwarf::DW_OP_deref); 1398 DIExpression::appendOffset(Ops, Offset); 1399 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1400 DIExpr = Builder.createExpression(Ops); 1401 } 1402 1403 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1404 DVI->eraseFromParent(); 1405 } 1406 1407 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1408 DIBuilder &Builder, int Offset) { 1409 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1410 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1411 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1412 Use &U = *UI++; 1413 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1414 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1415 } 1416 } 1417 1418 void llvm::salvageDebugInfo(Instruction &I) { 1419 SmallVector<DbgValueInst *, 1> DbgValues; 1420 auto &M = *I.getModule(); 1421 1422 auto MDWrap = [&](Value *V) { 1423 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1424 }; 1425 1426 if (isa<BitCastInst>(&I)) { 1427 findDbgValues(DbgValues, &I); 1428 for (auto *DVI : DbgValues) { 1429 // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value 1430 // to use the cast's source. 1431 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1432 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1433 } 1434 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1435 findDbgValues(DbgValues, &I); 1436 for (auto *DVI : DbgValues) { 1437 unsigned BitWidth = 1438 M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace()); 1439 APInt Offset(BitWidth, 0); 1440 // Rewrite a constant GEP into a DIExpression. Since we are performing 1441 // arithmetic to compute the variable's *value* in the DIExpression, we 1442 // need to mark the expression with a DW_OP_stack_value. 1443 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1444 auto *DIExpr = DVI->getExpression(); 1445 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1446 // GEP offsets are i32 and thus always fit into an int64_t. 1447 DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, 1448 Offset.getSExtValue(), 1449 DIExpression::WithStackValue); 1450 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1451 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1452 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1453 } 1454 } 1455 } else if (isa<LoadInst>(&I)) { 1456 findDbgValues(DbgValues, &I); 1457 for (auto *DVI : DbgValues) { 1458 // Rewrite the load into DW_OP_deref. 1459 auto *DIExpr = DVI->getExpression(); 1460 DIBuilder DIB(M, /*AllowUnresolved*/ false); 1461 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1462 DVI->setOperand(0, MDWrap(I.getOperand(0))); 1463 DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1464 DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n'); 1465 } 1466 } 1467 } 1468 1469 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1470 unsigned NumDeadInst = 0; 1471 // Delete the instructions backwards, as it has a reduced likelihood of 1472 // having to update as many def-use and use-def chains. 1473 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1474 while (EndInst != &BB->front()) { 1475 // Delete the next to last instruction. 1476 Instruction *Inst = &*--EndInst->getIterator(); 1477 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1478 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1479 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1480 EndInst = Inst; 1481 continue; 1482 } 1483 if (!isa<DbgInfoIntrinsic>(Inst)) 1484 ++NumDeadInst; 1485 Inst->eraseFromParent(); 1486 } 1487 return NumDeadInst; 1488 } 1489 1490 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1491 bool PreserveLCSSA, DominatorTree *DT) { 1492 BasicBlock *BB = I->getParent(); 1493 std::vector<DominatorTree::UpdateType> Updates; 1494 // Loop over all of the successors, removing BB's entry from any PHI 1495 // nodes. 1496 for (BasicBlock *Successor : successors(BB)) { 1497 Successor->removePredecessor(BB, PreserveLCSSA); 1498 if (DT && BB != Successor) { 1499 DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, Successor}; 1500 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) 1501 Updates.push_back(UT); 1502 } 1503 } 1504 // Insert a call to llvm.trap right before this. This turns the undefined 1505 // behavior into a hard fail instead of falling through into random code. 1506 if (UseLLVMTrap) { 1507 Function *TrapFn = 1508 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1509 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1510 CallTrap->setDebugLoc(I->getDebugLoc()); 1511 } 1512 new UnreachableInst(I->getContext(), I); 1513 1514 // All instructions after this are dead. 1515 unsigned NumInstrsRemoved = 0; 1516 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1517 while (BBI != BBE) { 1518 if (!BBI->use_empty()) 1519 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1520 BB->getInstList().erase(BBI++); 1521 ++NumInstrsRemoved; 1522 } 1523 if (DT && !Updates.empty()) 1524 DT->applyUpdates(Updates); 1525 return NumInstrsRemoved; 1526 } 1527 1528 /// changeToCall - Convert the specified invoke into a normal call. 1529 static void changeToCall(InvokeInst *II, DominatorTree *DT = nullptr) { 1530 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1531 SmallVector<OperandBundleDef, 1> OpBundles; 1532 II->getOperandBundlesAsDefs(OpBundles); 1533 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1534 "", II); 1535 NewCall->takeName(II); 1536 NewCall->setCallingConv(II->getCallingConv()); 1537 NewCall->setAttributes(II->getAttributes()); 1538 NewCall->setDebugLoc(II->getDebugLoc()); 1539 II->replaceAllUsesWith(NewCall); 1540 1541 // Follow the call by a branch to the normal destination. 1542 BasicBlock *NormalDestBB = II->getNormalDest(); 1543 BranchInst::Create(NormalDestBB, II); 1544 1545 // Update PHI nodes in the unwind destination 1546 BasicBlock *BB = II->getParent(); 1547 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1548 UnwindDestBB->removePredecessor(BB); 1549 II->eraseFromParent(); 1550 if (DT && BB != UnwindDestBB && NormalDestBB != UnwindDestBB) 1551 DT->deleteEdge(BB, UnwindDestBB); 1552 } 1553 1554 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1555 BasicBlock *UnwindEdge) { 1556 BasicBlock *BB = CI->getParent(); 1557 1558 // Convert this function call into an invoke instruction. First, split the 1559 // basic block. 1560 BasicBlock *Split = 1561 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1562 1563 // Delete the unconditional branch inserted by splitBasicBlock 1564 BB->getInstList().pop_back(); 1565 1566 // Create the new invoke instruction. 1567 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1568 SmallVector<OperandBundleDef, 1> OpBundles; 1569 1570 CI->getOperandBundlesAsDefs(OpBundles); 1571 1572 // Note: we're round tripping operand bundles through memory here, and that 1573 // can potentially be avoided with a cleverer API design that we do not have 1574 // as of this time. 1575 1576 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1577 InvokeArgs, OpBundles, CI->getName(), BB); 1578 II->setDebugLoc(CI->getDebugLoc()); 1579 II->setCallingConv(CI->getCallingConv()); 1580 II->setAttributes(CI->getAttributes()); 1581 1582 // Make sure that anything using the call now uses the invoke! This also 1583 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1584 CI->replaceAllUsesWith(II); 1585 1586 // Delete the original call 1587 Split->getInstList().pop_front(); 1588 return Split; 1589 } 1590 1591 static bool markAliveBlocks(Function &F, 1592 SmallPtrSetImpl<BasicBlock *> &Reachable, 1593 DominatorTree *DT = nullptr) { 1594 1595 SmallVector<BasicBlock*, 128> Worklist; 1596 BasicBlock *BB = &F.front(); 1597 Worklist.push_back(BB); 1598 Reachable.insert(BB); 1599 bool Changed = false; 1600 do { 1601 BB = Worklist.pop_back_val(); 1602 1603 // Do a quick scan of the basic block, turning any obviously unreachable 1604 // instructions into LLVM unreachable insts. The instruction combining pass 1605 // canonicalizes unreachable insts into stores to null or undef. 1606 for (Instruction &I : *BB) { 1607 // Assumptions that are known to be false are equivalent to unreachable. 1608 // Also, if the condition is undefined, then we make the choice most 1609 // beneficial to the optimizer, and choose that to also be unreachable. 1610 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1611 if (II->getIntrinsicID() == Intrinsic::assume) { 1612 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1613 // Don't insert a call to llvm.trap right before the unreachable. 1614 changeToUnreachable(II, false, false, DT); 1615 Changed = true; 1616 break; 1617 } 1618 } 1619 1620 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1621 // A call to the guard intrinsic bails out of the current compilation 1622 // unit if the predicate passed to it is false. If the predicate is a 1623 // constant false, then we know the guard will bail out of the current 1624 // compile unconditionally, so all code following it is dead. 1625 // 1626 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1627 // guards to treat `undef` as `false` since a guard on `undef` can 1628 // still be useful for widening. 1629 if (match(II->getArgOperand(0), m_Zero())) 1630 if (!isa<UnreachableInst>(II->getNextNode())) { 1631 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false, 1632 false, DT); 1633 Changed = true; 1634 break; 1635 } 1636 } 1637 } 1638 1639 if (auto *CI = dyn_cast<CallInst>(&I)) { 1640 Value *Callee = CI->getCalledValue(); 1641 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1642 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DT); 1643 Changed = true; 1644 break; 1645 } 1646 if (CI->doesNotReturn()) { 1647 // If we found a call to a no-return function, insert an unreachable 1648 // instruction after it. Make sure there isn't *already* one there 1649 // though. 1650 if (!isa<UnreachableInst>(CI->getNextNode())) { 1651 // Don't insert a call to llvm.trap right before the unreachable. 1652 changeToUnreachable(CI->getNextNode(), false, false, DT); 1653 Changed = true; 1654 } 1655 break; 1656 } 1657 } 1658 1659 // Store to undef and store to null are undefined and used to signal that 1660 // they should be changed to unreachable by passes that can't modify the 1661 // CFG. 1662 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1663 // Don't touch volatile stores. 1664 if (SI->isVolatile()) continue; 1665 1666 Value *Ptr = SI->getOperand(1); 1667 1668 if (isa<UndefValue>(Ptr) || 1669 (isa<ConstantPointerNull>(Ptr) && 1670 SI->getPointerAddressSpace() == 0)) { 1671 changeToUnreachable(SI, true, false, DT); 1672 Changed = true; 1673 break; 1674 } 1675 } 1676 } 1677 1678 TerminatorInst *Terminator = BB->getTerminator(); 1679 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1680 // Turn invokes that call 'nounwind' functions into ordinary calls. 1681 Value *Callee = II->getCalledValue(); 1682 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1683 changeToUnreachable(II, true, false, DT); 1684 Changed = true; 1685 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1686 if (II->use_empty() && II->onlyReadsMemory()) { 1687 // jump to the normal destination branch. 1688 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1689 BranchInst::Create(II->getNormalDest(), II); 1690 UnwindDestBB->removePredecessor(II->getParent()); 1691 II->eraseFromParent(); 1692 if (DT && BB != UnwindDestBB) 1693 DT->deleteEdge(BB, UnwindDestBB); 1694 } else 1695 changeToCall(II, DT); 1696 Changed = true; 1697 } 1698 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1699 // Remove catchpads which cannot be reached. 1700 struct CatchPadDenseMapInfo { 1701 static CatchPadInst *getEmptyKey() { 1702 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1703 } 1704 static CatchPadInst *getTombstoneKey() { 1705 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1706 } 1707 static unsigned getHashValue(CatchPadInst *CatchPad) { 1708 return static_cast<unsigned>(hash_combine_range( 1709 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1710 } 1711 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1712 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1713 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1714 return LHS == RHS; 1715 return LHS->isIdenticalTo(RHS); 1716 } 1717 }; 1718 1719 // Set of unique CatchPads. 1720 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1721 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1722 HandlerSet; 1723 detail::DenseSetEmpty Empty; 1724 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1725 E = CatchSwitch->handler_end(); 1726 I != E; ++I) { 1727 BasicBlock *HandlerBB = *I; 1728 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1729 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1730 CatchSwitch->removeHandler(I); 1731 --I; 1732 --E; 1733 Changed = true; 1734 } 1735 } 1736 } 1737 1738 Changed |= ConstantFoldTerminator(BB, true, nullptr, DT); 1739 for (BasicBlock *Successor : successors(BB)) 1740 if (Reachable.insert(Successor).second) 1741 Worklist.push_back(Successor); 1742 } while (!Worklist.empty()); 1743 return Changed; 1744 } 1745 1746 void llvm::removeUnwindEdge(BasicBlock *BB, DominatorTree *DT) { 1747 TerminatorInst *TI = BB->getTerminator(); 1748 1749 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1750 changeToCall(II, DT); 1751 return; 1752 } 1753 1754 TerminatorInst *NewTI; 1755 BasicBlock *UnwindDest; 1756 1757 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1758 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1759 UnwindDest = CRI->getUnwindDest(); 1760 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1761 auto *NewCatchSwitch = CatchSwitchInst::Create( 1762 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1763 CatchSwitch->getName(), CatchSwitch); 1764 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1765 NewCatchSwitch->addHandler(PadBB); 1766 1767 NewTI = NewCatchSwitch; 1768 UnwindDest = CatchSwitch->getUnwindDest(); 1769 } else { 1770 llvm_unreachable("Could not find unwind successor"); 1771 } 1772 1773 NewTI->takeName(TI); 1774 NewTI->setDebugLoc(TI->getDebugLoc()); 1775 UnwindDest->removePredecessor(BB); 1776 TI->replaceAllUsesWith(NewTI); 1777 TI->eraseFromParent(); 1778 if (DT && BB != UnwindDest) 1779 DT->deleteEdge(BB, UnwindDest); 1780 } 1781 1782 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1783 /// if they are in a dead cycle. Return true if a change was made, false 1784 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1785 /// after modifying the CFG. 1786 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 1787 DominatorTree *DT) { 1788 SmallPtrSet<BasicBlock*, 16> Reachable; 1789 bool Changed = markAliveBlocks(F, Reachable, DT); 1790 std::vector<DominatorTree::UpdateType> Updates; 1791 1792 // If there are unreachable blocks in the CFG... 1793 if (Reachable.size() == F.size()) 1794 return Changed; 1795 1796 assert(Reachable.size() < F.size()); 1797 NumRemoved += F.size()-Reachable.size(); 1798 1799 SmallPtrSet<TerminatorInst *, 4> TIRemoved; 1800 1801 // Loop over all of the basic blocks that are not reachable, dropping all of 1802 // their internal references... 1803 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1804 if (Reachable.count(&*BB)) 1805 continue; 1806 1807 for (BasicBlock *Successor : successors(&*BB)) 1808 if (Reachable.count(Successor)) { 1809 Successor->removePredecessor(&*BB); 1810 if (DT && &*BB != Successor) { 1811 DominatorTree::UpdateType UT = {DominatorTree::Delete, &*BB, 1812 Successor}; 1813 if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) 1814 Updates.push_back(UT); 1815 } 1816 } 1817 1818 if (LVI) 1819 LVI->eraseBlock(&*BB); 1820 1821 TerminatorInst *TI = BB->getTerminator(); 1822 TIRemoved.insert(TI); 1823 new UnreachableInst(BB->getContext(), TI); 1824 1825 BB->dropAllReferences(); 1826 } 1827 1828 // Remove all the terminator instructions after dropping all references. This 1829 // keeps the state of the CFG consistent and prevents asserts from circular 1830 // use counts in groups of unreachable basic blocks. 1831 for (TerminatorInst *TI : TIRemoved) 1832 TI->eraseFromParent(); 1833 1834 if (DT && !Updates.empty()) 1835 DT->applyUpdates(Updates); 1836 1837 for (Function::iterator I = ++F.begin(); I != F.end();) 1838 if (!Reachable.count(&*I)) 1839 I = F.getBasicBlockList().erase(I); 1840 else 1841 ++I; 1842 1843 return true; 1844 } 1845 1846 void llvm::combineMetadata(Instruction *K, const Instruction *J, 1847 ArrayRef<unsigned> KnownIDs) { 1848 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 1849 K->dropUnknownNonDebugMetadata(KnownIDs); 1850 K->getAllMetadataOtherThanDebugLoc(Metadata); 1851 for (const auto &MD : Metadata) { 1852 unsigned Kind = MD.first; 1853 MDNode *JMD = J->getMetadata(Kind); 1854 MDNode *KMD = MD.second; 1855 1856 switch (Kind) { 1857 default: 1858 K->setMetadata(Kind, nullptr); // Remove unknown metadata 1859 break; 1860 case LLVMContext::MD_dbg: 1861 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1862 case LLVMContext::MD_tbaa: 1863 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 1864 break; 1865 case LLVMContext::MD_alias_scope: 1866 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 1867 break; 1868 case LLVMContext::MD_noalias: 1869 case LLVMContext::MD_mem_parallel_loop_access: 1870 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 1871 break; 1872 case LLVMContext::MD_range: 1873 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 1874 break; 1875 case LLVMContext::MD_fpmath: 1876 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 1877 break; 1878 case LLVMContext::MD_invariant_load: 1879 // Only set the !invariant.load if it is present in both instructions. 1880 K->setMetadata(Kind, JMD); 1881 break; 1882 case LLVMContext::MD_nonnull: 1883 // Only set the !nonnull if it is present in both instructions. 1884 K->setMetadata(Kind, JMD); 1885 break; 1886 case LLVMContext::MD_invariant_group: 1887 // Preserve !invariant.group in K. 1888 break; 1889 case LLVMContext::MD_align: 1890 K->setMetadata(Kind, 1891 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1892 break; 1893 case LLVMContext::MD_dereferenceable: 1894 case LLVMContext::MD_dereferenceable_or_null: 1895 K->setMetadata(Kind, 1896 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 1897 break; 1898 } 1899 } 1900 // Set !invariant.group from J if J has it. If both instructions have it 1901 // then we will just pick it from J - even when they are different. 1902 // Also make sure that K is load or store - f.e. combining bitcast with load 1903 // could produce bitcast with invariant.group metadata, which is invalid. 1904 // FIXME: we should try to preserve both invariant.group md if they are 1905 // different, but right now instruction can only have one invariant.group. 1906 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 1907 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 1908 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 1909 } 1910 1911 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 1912 unsigned KnownIDs[] = { 1913 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1914 LLVMContext::MD_noalias, LLVMContext::MD_range, 1915 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 1916 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 1917 LLVMContext::MD_dereferenceable, 1918 LLVMContext::MD_dereferenceable_or_null}; 1919 combineMetadata(K, J, KnownIDs); 1920 } 1921 1922 template <typename RootType, typename DominatesFn> 1923 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 1924 const RootType &Root, 1925 const DominatesFn &Dominates) { 1926 assert(From->getType() == To->getType()); 1927 1928 unsigned Count = 0; 1929 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1930 UI != UE;) { 1931 Use &U = *UI++; 1932 if (!Dominates(Root, U)) 1933 continue; 1934 U.set(To); 1935 DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as " 1936 << *To << " in " << *U << "\n"); 1937 ++Count; 1938 } 1939 return Count; 1940 } 1941 1942 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 1943 assert(From->getType() == To->getType()); 1944 auto *BB = From->getParent(); 1945 unsigned Count = 0; 1946 1947 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 1948 UI != UE;) { 1949 Use &U = *UI++; 1950 auto *I = cast<Instruction>(U.getUser()); 1951 if (I->getParent() == BB) 1952 continue; 1953 U.set(To); 1954 ++Count; 1955 } 1956 return Count; 1957 } 1958 1959 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1960 DominatorTree &DT, 1961 const BasicBlockEdge &Root) { 1962 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 1963 return DT.dominates(Root, U); 1964 }; 1965 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 1966 } 1967 1968 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 1969 DominatorTree &DT, 1970 const BasicBlock *BB) { 1971 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 1972 auto *I = cast<Instruction>(U.getUser())->getParent(); 1973 return DT.properlyDominates(BB, I); 1974 }; 1975 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 1976 } 1977 1978 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 1979 const TargetLibraryInfo &TLI) { 1980 // Check if the function is specifically marked as a gc leaf function. 1981 if (CS.hasFnAttr("gc-leaf-function")) 1982 return true; 1983 if (const Function *F = CS.getCalledFunction()) { 1984 if (F->hasFnAttribute("gc-leaf-function")) 1985 return true; 1986 1987 if (auto IID = F->getIntrinsicID()) 1988 // Most LLVM intrinsics do not take safepoints. 1989 return IID != Intrinsic::experimental_gc_statepoint && 1990 IID != Intrinsic::experimental_deoptimize; 1991 } 1992 1993 // Lib calls can be materialized by some passes, and won't be 1994 // marked as 'gc-leaf-function.' All available Libcalls are 1995 // GC-leaf. 1996 LibFunc LF; 1997 if (TLI.getLibFunc(CS, LF)) { 1998 return TLI.has(LF); 1999 } 2000 2001 return false; 2002 } 2003 2004 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2005 LoadInst &NewLI) { 2006 auto *NewTy = NewLI.getType(); 2007 2008 // This only directly applies if the new type is also a pointer. 2009 if (NewTy->isPointerTy()) { 2010 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2011 return; 2012 } 2013 2014 // The only other translation we can do is to integral loads with !range 2015 // metadata. 2016 if (!NewTy->isIntegerTy()) 2017 return; 2018 2019 MDBuilder MDB(NewLI.getContext()); 2020 const Value *Ptr = OldLI.getPointerOperand(); 2021 auto *ITy = cast<IntegerType>(NewTy); 2022 auto *NullInt = ConstantExpr::getPtrToInt( 2023 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2024 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2025 NewLI.setMetadata(LLVMContext::MD_range, 2026 MDB.createRange(NonNullInt, NullInt)); 2027 } 2028 2029 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2030 MDNode *N, LoadInst &NewLI) { 2031 auto *NewTy = NewLI.getType(); 2032 2033 // Give up unless it is converted to a pointer where there is a single very 2034 // valuable mapping we can do reliably. 2035 // FIXME: It would be nice to propagate this in more ways, but the type 2036 // conversions make it hard. 2037 if (!NewTy->isPointerTy()) 2038 return; 2039 2040 unsigned BitWidth = DL.getTypeSizeInBits(NewTy); 2041 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2042 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2043 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2044 } 2045 } 2046 2047 namespace { 2048 /// A potential constituent of a bitreverse or bswap expression. See 2049 /// collectBitParts for a fuller explanation. 2050 struct BitPart { 2051 BitPart(Value *P, unsigned BW) : Provider(P) { 2052 Provenance.resize(BW); 2053 } 2054 2055 /// The Value that this is a bitreverse/bswap of. 2056 Value *Provider; 2057 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2058 /// in Provider becomes bit B in the result of this expression. 2059 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2060 2061 enum { Unset = -1 }; 2062 }; 2063 } // end anonymous namespace 2064 2065 /// Analyze the specified subexpression and see if it is capable of providing 2066 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2067 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2068 /// the output of the expression came from a corresponding bit in some other 2069 /// value. This function is recursive, and the end result is a mapping of 2070 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2071 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2072 /// 2073 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2074 /// that the expression deposits the low byte of %X into the high byte of the 2075 /// result and that all other bits are zero. This expression is accepted and a 2076 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2077 /// [0-7]. 2078 /// 2079 /// To avoid revisiting values, the BitPart results are memoized into the 2080 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2081 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2082 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2083 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2084 /// type instead to provide the same functionality. 2085 /// 2086 /// Because we pass around references into \c BPS, we must use a container that 2087 /// does not invalidate internal references (std::map instead of DenseMap). 2088 /// 2089 static const Optional<BitPart> & 2090 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2091 std::map<Value *, Optional<BitPart>> &BPS) { 2092 auto I = BPS.find(V); 2093 if (I != BPS.end()) 2094 return I->second; 2095 2096 auto &Result = BPS[V] = None; 2097 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2098 2099 if (Instruction *I = dyn_cast<Instruction>(V)) { 2100 // If this is an or instruction, it may be an inner node of the bswap. 2101 if (I->getOpcode() == Instruction::Or) { 2102 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2103 MatchBitReversals, BPS); 2104 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2105 MatchBitReversals, BPS); 2106 if (!A || !B) 2107 return Result; 2108 2109 // Try and merge the two together. 2110 if (!A->Provider || A->Provider != B->Provider) 2111 return Result; 2112 2113 Result = BitPart(A->Provider, BitWidth); 2114 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2115 if (A->Provenance[i] != BitPart::Unset && 2116 B->Provenance[i] != BitPart::Unset && 2117 A->Provenance[i] != B->Provenance[i]) 2118 return Result = None; 2119 2120 if (A->Provenance[i] == BitPart::Unset) 2121 Result->Provenance[i] = B->Provenance[i]; 2122 else 2123 Result->Provenance[i] = A->Provenance[i]; 2124 } 2125 2126 return Result; 2127 } 2128 2129 // If this is a logical shift by a constant, recurse then shift the result. 2130 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2131 unsigned BitShift = 2132 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2133 // Ensure the shift amount is defined. 2134 if (BitShift > BitWidth) 2135 return Result; 2136 2137 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2138 MatchBitReversals, BPS); 2139 if (!Res) 2140 return Result; 2141 Result = Res; 2142 2143 // Perform the "shift" on BitProvenance. 2144 auto &P = Result->Provenance; 2145 if (I->getOpcode() == Instruction::Shl) { 2146 P.erase(std::prev(P.end(), BitShift), P.end()); 2147 P.insert(P.begin(), BitShift, BitPart::Unset); 2148 } else { 2149 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2150 P.insert(P.end(), BitShift, BitPart::Unset); 2151 } 2152 2153 return Result; 2154 } 2155 2156 // If this is a logical 'and' with a mask that clears bits, recurse then 2157 // unset the appropriate bits. 2158 if (I->getOpcode() == Instruction::And && 2159 isa<ConstantInt>(I->getOperand(1))) { 2160 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2161 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2162 2163 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2164 // early exit. 2165 unsigned NumMaskedBits = AndMask.countPopulation(); 2166 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2167 return Result; 2168 2169 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2170 MatchBitReversals, BPS); 2171 if (!Res) 2172 return Result; 2173 Result = Res; 2174 2175 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2176 // If the AndMask is zero for this bit, clear the bit. 2177 if ((AndMask & Bit) == 0) 2178 Result->Provenance[i] = BitPart::Unset; 2179 return Result; 2180 } 2181 2182 // If this is a zext instruction zero extend the result. 2183 if (I->getOpcode() == Instruction::ZExt) { 2184 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2185 MatchBitReversals, BPS); 2186 if (!Res) 2187 return Result; 2188 2189 Result = BitPart(Res->Provider, BitWidth); 2190 auto NarrowBitWidth = 2191 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2192 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2193 Result->Provenance[i] = Res->Provenance[i]; 2194 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2195 Result->Provenance[i] = BitPart::Unset; 2196 return Result; 2197 } 2198 } 2199 2200 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2201 // the input value to the bswap/bitreverse. 2202 Result = BitPart(V, BitWidth); 2203 for (unsigned i = 0; i < BitWidth; ++i) 2204 Result->Provenance[i] = i; 2205 return Result; 2206 } 2207 2208 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2209 unsigned BitWidth) { 2210 if (From % 8 != To % 8) 2211 return false; 2212 // Convert from bit indices to byte indices and check for a byte reversal. 2213 From >>= 3; 2214 To >>= 3; 2215 BitWidth >>= 3; 2216 return From == BitWidth - To - 1; 2217 } 2218 2219 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2220 unsigned BitWidth) { 2221 return From == BitWidth - To - 1; 2222 } 2223 2224 /// Given an OR instruction, check to see if this is a bitreverse 2225 /// idiom. If so, insert the new intrinsic and return true. 2226 bool llvm::recognizeBSwapOrBitReverseIdiom( 2227 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2228 SmallVectorImpl<Instruction *> &InsertedInsts) { 2229 if (Operator::getOpcode(I) != Instruction::Or) 2230 return false; 2231 if (!MatchBSwaps && !MatchBitReversals) 2232 return false; 2233 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2234 if (!ITy || ITy->getBitWidth() > 128) 2235 return false; // Can't do vectors or integers > 128 bits. 2236 unsigned BW = ITy->getBitWidth(); 2237 2238 unsigned DemandedBW = BW; 2239 IntegerType *DemandedTy = ITy; 2240 if (I->hasOneUse()) { 2241 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2242 DemandedTy = cast<IntegerType>(Trunc->getType()); 2243 DemandedBW = DemandedTy->getBitWidth(); 2244 } 2245 } 2246 2247 // Try to find all the pieces corresponding to the bswap. 2248 std::map<Value *, Optional<BitPart>> BPS; 2249 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2250 if (!Res) 2251 return false; 2252 auto &BitProvenance = Res->Provenance; 2253 2254 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2255 // only byteswap values with an even number of bytes. 2256 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2257 for (unsigned i = 0; i < DemandedBW; ++i) { 2258 OKForBSwap &= 2259 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2260 OKForBitReverse &= 2261 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2262 } 2263 2264 Intrinsic::ID Intrin; 2265 if (OKForBSwap && MatchBSwaps) 2266 Intrin = Intrinsic::bswap; 2267 else if (OKForBitReverse && MatchBitReversals) 2268 Intrin = Intrinsic::bitreverse; 2269 else 2270 return false; 2271 2272 if (ITy != DemandedTy) { 2273 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2274 Value *Provider = Res->Provider; 2275 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2276 // We may need to truncate the provider. 2277 if (DemandedTy != ProviderTy) { 2278 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2279 "trunc", I); 2280 InsertedInsts.push_back(Trunc); 2281 Provider = Trunc; 2282 } 2283 auto *CI = CallInst::Create(F, Provider, "rev", I); 2284 InsertedInsts.push_back(CI); 2285 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2286 InsertedInsts.push_back(ExtInst); 2287 return true; 2288 } 2289 2290 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2291 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2292 return true; 2293 } 2294 2295 // CodeGen has special handling for some string functions that may replace 2296 // them with target-specific intrinsics. Since that'd skip our interceptors 2297 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2298 // we mark affected calls as NoBuiltin, which will disable optimization 2299 // in CodeGen. 2300 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2301 CallInst *CI, const TargetLibraryInfo *TLI) { 2302 Function *F = CI->getCalledFunction(); 2303 LibFunc Func; 2304 if (F && !F->hasLocalLinkage() && F->hasName() && 2305 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2306 !F->doesNotAccessMemory()) 2307 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2308 } 2309 2310 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2311 // We can't have a PHI with a metadata type. 2312 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2313 return false; 2314 2315 // Early exit. 2316 if (!isa<Constant>(I->getOperand(OpIdx))) 2317 return true; 2318 2319 switch (I->getOpcode()) { 2320 default: 2321 return true; 2322 case Instruction::Call: 2323 case Instruction::Invoke: 2324 // Can't handle inline asm. Skip it. 2325 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2326 return false; 2327 // Many arithmetic intrinsics have no issue taking a 2328 // variable, however it's hard to distingish these from 2329 // specials such as @llvm.frameaddress that require a constant. 2330 if (isa<IntrinsicInst>(I)) 2331 return false; 2332 2333 // Constant bundle operands may need to retain their constant-ness for 2334 // correctness. 2335 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2336 return false; 2337 return true; 2338 case Instruction::ShuffleVector: 2339 // Shufflevector masks are constant. 2340 return OpIdx != 2; 2341 case Instruction::Switch: 2342 case Instruction::ExtractValue: 2343 // All operands apart from the first are constant. 2344 return OpIdx == 0; 2345 case Instruction::InsertValue: 2346 // All operands apart from the first and the second are constant. 2347 return OpIdx < 2; 2348 case Instruction::Alloca: 2349 // Static allocas (constant size in the entry block) are handled by 2350 // prologue/epilogue insertion so they're free anyway. We definitely don't 2351 // want to make them non-constant. 2352 return !dyn_cast<AllocaInst>(I)->isStaticAlloca(); 2353 case Instruction::GetElementPtr: 2354 if (OpIdx == 0) 2355 return true; 2356 gep_type_iterator It = gep_type_begin(I); 2357 for (auto E = std::next(It, OpIdx); It != E; ++It) 2358 if (It.isStruct()) 2359 return false; 2360 return true; 2361 } 2362 } 2363