1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LazyValueInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 using namespace llvm;
53 using namespace llvm::PatternMatch;
54 
55 #define DEBUG_TYPE "local"
56 
57 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
58 
59 //===----------------------------------------------------------------------===//
60 //  Local constant propagation.
61 //
62 
63 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
64 /// constant value, convert it into an unconditional branch to the constant
65 /// destination.  This is a nontrivial operation because the successors of this
66 /// basic block must have their PHI nodes updated.
67 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
68 /// conditions and indirectbr addresses this might make dead if
69 /// DeleteDeadConditions is true.
70 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
71                                   const TargetLibraryInfo *TLI,
72                                   DominatorTree *DT) {
73   TerminatorInst *T = BB->getTerminator();
74   IRBuilder<> Builder(T);
75 
76   // Branch - See if we are conditional jumping on constant
77   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
78     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
79     BasicBlock *Dest1 = BI->getSuccessor(0);
80     BasicBlock *Dest2 = BI->getSuccessor(1);
81 
82     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
83       // Are we branching on constant?
84       // YES.  Change to unconditional branch...
85       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
86       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
87 
88       //cerr << "Function: " << T->getParent()->getParent()
89       //     << "\nRemoving branch from " << T->getParent()
90       //     << "\n\nTo: " << OldDest << endl;
91 
92       // Let the basic block know that we are letting go of it.  Based on this,
93       // it will adjust it's PHI nodes.
94       OldDest->removePredecessor(BB);
95 
96       // Replace the conditional branch with an unconditional one.
97       Builder.CreateBr(Destination);
98       BI->eraseFromParent();
99       if (DT && OldDest != Destination && OldDest != BB)
100         DT->deleteEdge(BB, OldDest);
101       return true;
102     }
103 
104     if (Dest2 == Dest1) {       // Conditional branch to same location?
105       // This branch matches something like this:
106       //     br bool %cond, label %Dest, label %Dest
107       // and changes it into:  br label %Dest
108 
109       // Let the basic block know that we are letting go of one copy of it.
110       assert(BI->getParent() && "Terminator not inserted in block!");
111       Dest1->removePredecessor(BI->getParent());
112 
113       // Replace the conditional branch with an unconditional one.
114       Builder.CreateBr(Dest1);
115       Value *Cond = BI->getCondition();
116       BI->eraseFromParent();
117       if (DeleteDeadConditions)
118         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
119       return true;
120     }
121     return false;
122   }
123 
124   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
125     // If we are switching on a constant, we can convert the switch to an
126     // unconditional branch.
127     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
128     BasicBlock *DefaultDest = SI->getDefaultDest();
129     BasicBlock *TheOnlyDest = DefaultDest;
130 
131     // If the default is unreachable, ignore it when searching for TheOnlyDest.
132     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
133         SI->getNumCases() > 0) {
134       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
135     }
136 
137     // Figure out which case it goes to.
138     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
139       // Found case matching a constant operand?
140       if (i->getCaseValue() == CI) {
141         TheOnlyDest = i->getCaseSuccessor();
142         break;
143       }
144 
145       // Check to see if this branch is going to the same place as the default
146       // dest.  If so, eliminate it as an explicit compare.
147       if (i->getCaseSuccessor() == DefaultDest) {
148         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
149         unsigned NCases = SI->getNumCases();
150         // Fold the case metadata into the default if there will be any branches
151         // left, unless the metadata doesn't match the switch.
152         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
153           // Collect branch weights into a vector.
154           SmallVector<uint32_t, 8> Weights;
155           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
156                ++MD_i) {
157             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
158             Weights.push_back(CI->getValue().getZExtValue());
159           }
160           // Merge weight of this case to the default weight.
161           unsigned idx = i->getCaseIndex();
162           Weights[0] += Weights[idx+1];
163           // Remove weight for this case.
164           std::swap(Weights[idx+1], Weights.back());
165           Weights.pop_back();
166           SI->setMetadata(LLVMContext::MD_prof,
167                           MDBuilder(BB->getContext()).
168                           createBranchWeights(Weights));
169         }
170         // Remove this entry.
171         BasicBlock *ParentBB = SI->getParent();
172         DefaultDest->removePredecessor(ParentBB);
173         i = SI->removeCase(i);
174         e = SI->case_end();
175         if (DT && DefaultDest != ParentBB) {
176           // DefaultDest may still be a successor of a non-default case.
177           if (none_of(successors(ParentBB), [DefaultDest](BasicBlock *S) {
178                 return S == DefaultDest;
179               }))
180             DT->deleteEdge(ParentBB, DefaultDest);
181         }
182         continue;
183       }
184 
185       // Otherwise, check to see if the switch only branches to one destination.
186       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
187       // destinations.
188       if (i->getCaseSuccessor() != TheOnlyDest)
189         TheOnlyDest = nullptr;
190 
191       // Increment this iterator as we haven't removed the case.
192       ++i;
193     }
194 
195     if (CI && !TheOnlyDest) {
196       // Branching on a constant, but not any of the cases, go to the default
197       // successor.
198       TheOnlyDest = SI->getDefaultDest();
199     }
200 
201     // If we found a single destination that we can fold the switch into, do so
202     // now.
203     if (TheOnlyDest) {
204       // Insert the new branch.
205       Builder.CreateBr(TheOnlyDest);
206       BasicBlock *BB = SI->getParent();
207       BasicBlock *TheOnlyDestCheck = TheOnlyDest;
208       std::vector<DominatorTree::UpdateType> Updates;
209 
210       // Remove entries from PHI nodes which we no longer branch to...
211       for (BasicBlock *Succ : SI->successors()) {
212         // Found case matching a constant operand?
213         if (Succ == TheOnlyDest) {
214           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
215         } else {
216           Succ->removePredecessor(BB);
217           if (DT && Succ != TheOnlyDestCheck && Succ != BB) {
218             DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, Succ};
219             if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
220               Updates.push_back(UT);
221           }
222         }
223       }
224 
225       // Delete the old switch.
226       Value *Cond = SI->getCondition();
227       SI->eraseFromParent();
228       if (DT && !Updates.empty())
229         DT->applyUpdates(Updates);
230       if (DeleteDeadConditions)
231         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
232       return true;
233     }
234 
235     if (SI->getNumCases() == 1) {
236       // Otherwise, we can fold this switch into a conditional branch
237       // instruction if it has only one non-default destination.
238       auto FirstCase = *SI->case_begin();
239       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
240           FirstCase.getCaseValue(), "cond");
241 
242       // Insert the new branch.
243       BranchInst *NewBr = Builder.CreateCondBr(Cond,
244                                                FirstCase.getCaseSuccessor(),
245                                                SI->getDefaultDest());
246       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
247       if (MD && MD->getNumOperands() == 3) {
248         ConstantInt *SICase =
249             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
250         ConstantInt *SIDef =
251             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
252         assert(SICase && SIDef);
253         // The TrueWeight should be the weight for the single case of SI.
254         NewBr->setMetadata(LLVMContext::MD_prof,
255                         MDBuilder(BB->getContext()).
256                         createBranchWeights(SICase->getValue().getZExtValue(),
257                                             SIDef->getValue().getZExtValue()));
258       }
259 
260       // Update make.implicit metadata to the newly-created conditional branch.
261       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
262       if (MakeImplicitMD)
263         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
264 
265       // Delete the old switch.
266       SI->eraseFromParent();
267       return true;
268     }
269     return false;
270   }
271 
272   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
273     // indirectbr blockaddress(@F, @BB) -> br label @BB
274     if (BlockAddress *BA =
275           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
276       BasicBlock *TheOnlyDest = BA->getBasicBlock();
277       BasicBlock *TheOnlyDestCheck = TheOnlyDest;
278       std::vector<DominatorTree::UpdateType> Updates;
279       // Insert the new branch.
280       Builder.CreateBr(TheOnlyDest);
281 
282       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
283         if (IBI->getDestination(i) == TheOnlyDest) {
284           TheOnlyDest = nullptr;
285         } else {
286           BasicBlock *ParentBB = IBI->getParent();
287           BasicBlock *DestBB = IBI->getDestination(i);
288           DestBB->removePredecessor(ParentBB);
289           if (DT && DestBB != TheOnlyDestCheck && DestBB != ParentBB) {
290             DominatorTree::UpdateType UT = {DominatorTree::Delete, ParentBB,
291                                             DestBB};
292             if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
293               Updates.push_back(UT);
294           }
295         }
296       }
297       Value *Address = IBI->getAddress();
298       IBI->eraseFromParent();
299       if (DT && !Updates.empty())
300         DT->applyUpdates(Updates);
301       if (DeleteDeadConditions)
302         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
303 
304       // If we didn't find our destination in the IBI successor list, then we
305       // have undefined behavior.  Replace the unconditional branch with an
306       // 'unreachable' instruction.
307       if (TheOnlyDest) {
308         BB->getTerminator()->eraseFromParent();
309         new UnreachableInst(BB->getContext(), BB);
310       }
311 
312       return true;
313     }
314   }
315 
316   return false;
317 }
318 
319 
320 //===----------------------------------------------------------------------===//
321 //  Local dead code elimination.
322 //
323 
324 /// isInstructionTriviallyDead - Return true if the result produced by the
325 /// instruction is not used, and the instruction has no side effects.
326 ///
327 bool llvm::isInstructionTriviallyDead(Instruction *I,
328                                       const TargetLibraryInfo *TLI) {
329   if (!I->use_empty())
330     return false;
331   return wouldInstructionBeTriviallyDead(I, TLI);
332 }
333 
334 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
335                                            const TargetLibraryInfo *TLI) {
336   if (isa<TerminatorInst>(I))
337     return false;
338 
339   // We don't want the landingpad-like instructions removed by anything this
340   // general.
341   if (I->isEHPad())
342     return false;
343 
344   // We don't want debug info removed by anything this general, unless
345   // debug info is empty.
346   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
347     if (DDI->getAddress())
348       return false;
349     return true;
350   }
351   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
352     if (DVI->getValue())
353       return false;
354     return true;
355   }
356 
357   if (!I->mayHaveSideEffects())
358     return true;
359 
360   // Special case intrinsics that "may have side effects" but can be deleted
361   // when dead.
362   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
363     // Safe to delete llvm.stacksave if dead.
364     if (II->getIntrinsicID() == Intrinsic::stacksave)
365       return true;
366 
367     // Lifetime intrinsics are dead when their right-hand is undef.
368     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
369         II->getIntrinsicID() == Intrinsic::lifetime_end)
370       return isa<UndefValue>(II->getArgOperand(1));
371 
372     // Assumptions are dead if their condition is trivially true.  Guards on
373     // true are operationally no-ops.  In the future we can consider more
374     // sophisticated tradeoffs for guards considering potential for check
375     // widening, but for now we keep things simple.
376     if (II->getIntrinsicID() == Intrinsic::assume ||
377         II->getIntrinsicID() == Intrinsic::experimental_guard) {
378       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
379         return !Cond->isZero();
380 
381       return false;
382     }
383   }
384 
385   if (isAllocLikeFn(I, TLI))
386     return true;
387 
388   if (CallInst *CI = isFreeCall(I, TLI))
389     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
390       return C->isNullValue() || isa<UndefValue>(C);
391 
392   if (CallSite CS = CallSite(I))
393     if (isMathLibCallNoop(CS, TLI))
394       return true;
395 
396   return false;
397 }
398 
399 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
400 /// trivially dead instruction, delete it.  If that makes any of its operands
401 /// trivially dead, delete them too, recursively.  Return true if any
402 /// instructions were deleted.
403 bool
404 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
405                                                  const TargetLibraryInfo *TLI) {
406   Instruction *I = dyn_cast<Instruction>(V);
407   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
408     return false;
409 
410   SmallVector<Instruction*, 16> DeadInsts;
411   DeadInsts.push_back(I);
412 
413   do {
414     I = DeadInsts.pop_back_val();
415 
416     // Null out all of the instruction's operands to see if any operand becomes
417     // dead as we go.
418     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
419       Value *OpV = I->getOperand(i);
420       I->setOperand(i, nullptr);
421 
422       if (!OpV->use_empty()) continue;
423 
424       // If the operand is an instruction that became dead as we nulled out the
425       // operand, and if it is 'trivially' dead, delete it in a future loop
426       // iteration.
427       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
428         if (isInstructionTriviallyDead(OpI, TLI))
429           DeadInsts.push_back(OpI);
430     }
431 
432     I->eraseFromParent();
433   } while (!DeadInsts.empty());
434 
435   return true;
436 }
437 
438 /// areAllUsesEqual - Check whether the uses of a value are all the same.
439 /// This is similar to Instruction::hasOneUse() except this will also return
440 /// true when there are no uses or multiple uses that all refer to the same
441 /// value.
442 static bool areAllUsesEqual(Instruction *I) {
443   Value::user_iterator UI = I->user_begin();
444   Value::user_iterator UE = I->user_end();
445   if (UI == UE)
446     return true;
447 
448   User *TheUse = *UI;
449   for (++UI; UI != UE; ++UI) {
450     if (*UI != TheUse)
451       return false;
452   }
453   return true;
454 }
455 
456 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
457 /// dead PHI node, due to being a def-use chain of single-use nodes that
458 /// either forms a cycle or is terminated by a trivially dead instruction,
459 /// delete it.  If that makes any of its operands trivially dead, delete them
460 /// too, recursively.  Return true if a change was made.
461 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
462                                         const TargetLibraryInfo *TLI) {
463   SmallPtrSet<Instruction*, 4> Visited;
464   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
465        I = cast<Instruction>(*I->user_begin())) {
466     if (I->use_empty())
467       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
468 
469     // If we find an instruction more than once, we're on a cycle that
470     // won't prove fruitful.
471     if (!Visited.insert(I).second) {
472       // Break the cycle and delete the instruction and its operands.
473       I->replaceAllUsesWith(UndefValue::get(I->getType()));
474       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
475       return true;
476     }
477   }
478   return false;
479 }
480 
481 static bool
482 simplifyAndDCEInstruction(Instruction *I,
483                           SmallSetVector<Instruction *, 16> &WorkList,
484                           const DataLayout &DL,
485                           const TargetLibraryInfo *TLI) {
486   if (isInstructionTriviallyDead(I, TLI)) {
487     // Null out all of the instruction's operands to see if any operand becomes
488     // dead as we go.
489     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
490       Value *OpV = I->getOperand(i);
491       I->setOperand(i, nullptr);
492 
493       if (!OpV->use_empty() || I == OpV)
494         continue;
495 
496       // If the operand is an instruction that became dead as we nulled out the
497       // operand, and if it is 'trivially' dead, delete it in a future loop
498       // iteration.
499       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
500         if (isInstructionTriviallyDead(OpI, TLI))
501           WorkList.insert(OpI);
502     }
503 
504     I->eraseFromParent();
505 
506     return true;
507   }
508 
509   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
510     // Add the users to the worklist. CAREFUL: an instruction can use itself,
511     // in the case of a phi node.
512     for (User *U : I->users()) {
513       if (U != I) {
514         WorkList.insert(cast<Instruction>(U));
515       }
516     }
517 
518     // Replace the instruction with its simplified value.
519     bool Changed = false;
520     if (!I->use_empty()) {
521       I->replaceAllUsesWith(SimpleV);
522       Changed = true;
523     }
524     if (isInstructionTriviallyDead(I, TLI)) {
525       I->eraseFromParent();
526       Changed = true;
527     }
528     return Changed;
529   }
530   return false;
531 }
532 
533 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
534 /// simplify any instructions in it and recursively delete dead instructions.
535 ///
536 /// This returns true if it changed the code, note that it can delete
537 /// instructions in other blocks as well in this block.
538 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
539                                        const TargetLibraryInfo *TLI) {
540   bool MadeChange = false;
541   const DataLayout &DL = BB->getModule()->getDataLayout();
542 
543 #ifndef NDEBUG
544   // In debug builds, ensure that the terminator of the block is never replaced
545   // or deleted by these simplifications. The idea of simplification is that it
546   // cannot introduce new instructions, and there is no way to replace the
547   // terminator of a block without introducing a new instruction.
548   AssertingVH<Instruction> TerminatorVH(&BB->back());
549 #endif
550 
551   SmallSetVector<Instruction *, 16> WorkList;
552   // Iterate over the original function, only adding insts to the worklist
553   // if they actually need to be revisited. This avoids having to pre-init
554   // the worklist with the entire function's worth of instructions.
555   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
556        BI != E;) {
557     assert(!BI->isTerminator());
558     Instruction *I = &*BI;
559     ++BI;
560 
561     // We're visiting this instruction now, so make sure it's not in the
562     // worklist from an earlier visit.
563     if (!WorkList.count(I))
564       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
565   }
566 
567   while (!WorkList.empty()) {
568     Instruction *I = WorkList.pop_back_val();
569     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
570   }
571   return MadeChange;
572 }
573 
574 //===----------------------------------------------------------------------===//
575 //  Control Flow Graph Restructuring.
576 //
577 
578 
579 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
580 /// method is called when we're about to delete Pred as a predecessor of BB.  If
581 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
582 ///
583 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
584 /// nodes that collapse into identity values.  For example, if we have:
585 ///   x = phi(1, 0, 0, 0)
586 ///   y = and x, z
587 ///
588 /// .. and delete the predecessor corresponding to the '1', this will attempt to
589 /// recursively fold the and to 0.
590 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
591                                         DominatorTree *DT) {
592   // This only adjusts blocks with PHI nodes.
593   if (!isa<PHINode>(BB->begin()))
594     return;
595 
596   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
597   // them down.  This will leave us with single entry phi nodes and other phis
598   // that can be removed.
599   BB->removePredecessor(Pred, true);
600 
601   WeakTrackingVH PhiIt = &BB->front();
602   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
603     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
604     Value *OldPhiIt = PhiIt;
605 
606     if (!recursivelySimplifyInstruction(PN))
607       continue;
608 
609     // If recursive simplification ended up deleting the next PHI node we would
610     // iterate to, then our iterator is invalid, restart scanning from the top
611     // of the block.
612     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
613   }
614   if (DT && BB != Pred)
615     DT->deleteEdge(Pred, BB);
616 }
617 
618 
619 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
620 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
621 /// between them, moving the instructions in the predecessor into DestBB and
622 /// deleting the predecessor block.
623 ///
624 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
625   // If BB has single-entry PHI nodes, fold them.
626   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
627     Value *NewVal = PN->getIncomingValue(0);
628     // Replace self referencing PHI with undef, it must be dead.
629     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
630     PN->replaceAllUsesWith(NewVal);
631     PN->eraseFromParent();
632   }
633 
634   BasicBlock *PredBB = DestBB->getSinglePredecessor();
635   assert(PredBB && "Block doesn't have a single predecessor!");
636 
637   // Collect all the edges that enter PredBB, discarding edges to itself and
638   // duplicates. These dominator edges will be redirected to DestBB.
639   std::vector<DominatorTree::UpdateType> Updates;
640   if (DT)
641     for (pred_iterator PI = pred_begin(PredBB), E = pred_end(PredBB); PI != E;
642          ++PI) {
643       if (*PI == PredBB)
644         continue;
645       DominatorTree::UpdateType UT = {DominatorTree::Delete, *PI, PredBB};
646       if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) {
647         Updates.push_back(UT);
648         // DestBB cannot dominate itself.
649         if (*PI != DestBB)
650           Updates.push_back({DominatorTree::Insert, *PI, DestBB});
651       }
652     }
653 
654   // Zap anything that took the address of DestBB.  Not doing this will give the
655   // address an invalid value.
656   if (DestBB->hasAddressTaken()) {
657     BlockAddress *BA = BlockAddress::get(DestBB);
658     Constant *Replacement =
659       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
660     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
661                                                      BA->getType()));
662     BA->destroyConstant();
663   }
664 
665   // Anything that branched to PredBB now branches to DestBB.
666   PredBB->replaceAllUsesWith(DestBB);
667 
668   // Splice all the instructions from PredBB to DestBB.
669   PredBB->getTerminator()->eraseFromParent();
670   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
671 
672   // If the PredBB is the entry block of the function, move DestBB up to
673   // become the entry block after we erase PredBB.
674   bool ReplacedEntryBB = false;
675   if (PredBB == &DestBB->getParent()->getEntryBlock()) {
676     DestBB->moveAfter(PredBB);
677     ReplacedEntryBB = true;
678   }
679 
680   if (DT && !ReplacedEntryBB) {
681     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
682     DT->applyUpdates(Updates);
683   }
684 
685   // Nuke BB.
686   PredBB->eraseFromParent();
687 
688   // The entry block was removed and there is no external interface for the
689   // dominator tree to be notified of this change. In this corner-case we
690   // recalculate the entire tree.
691   if (DT && ReplacedEntryBB)
692     DT->recalculate(*(DestBB->getParent()));
693 }
694 
695 /// CanMergeValues - Return true if we can choose one of these values to use
696 /// in place of the other. Note that we will always choose the non-undef
697 /// value to keep.
698 static bool CanMergeValues(Value *First, Value *Second) {
699   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
700 }
701 
702 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
703 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
704 ///
705 /// Assumption: Succ is the single successor for BB.
706 ///
707 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
708   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
709 
710   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
711         << Succ->getName() << "\n");
712   // Shortcut, if there is only a single predecessor it must be BB and merging
713   // is always safe
714   if (Succ->getSinglePredecessor()) return true;
715 
716   // Make a list of the predecessors of BB
717   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
718 
719   // Look at all the phi nodes in Succ, to see if they present a conflict when
720   // merging these blocks
721   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
722     PHINode *PN = cast<PHINode>(I);
723 
724     // If the incoming value from BB is again a PHINode in
725     // BB which has the same incoming value for *PI as PN does, we can
726     // merge the phi nodes and then the blocks can still be merged
727     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
728     if (BBPN && BBPN->getParent() == BB) {
729       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
730         BasicBlock *IBB = PN->getIncomingBlock(PI);
731         if (BBPreds.count(IBB) &&
732             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
733                             PN->getIncomingValue(PI))) {
734           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
735                 << Succ->getName() << " is conflicting with "
736                 << BBPN->getName() << " with regard to common predecessor "
737                 << IBB->getName() << "\n");
738           return false;
739         }
740       }
741     } else {
742       Value* Val = PN->getIncomingValueForBlock(BB);
743       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
744         // See if the incoming value for the common predecessor is equal to the
745         // one for BB, in which case this phi node will not prevent the merging
746         // of the block.
747         BasicBlock *IBB = PN->getIncomingBlock(PI);
748         if (BBPreds.count(IBB) &&
749             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
750           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
751                 << Succ->getName() << " is conflicting with regard to common "
752                 << "predecessor " << IBB->getName() << "\n");
753           return false;
754         }
755       }
756     }
757   }
758 
759   return true;
760 }
761 
762 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
763 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
764 
765 /// \brief Determines the value to use as the phi node input for a block.
766 ///
767 /// Select between \p OldVal any value that we know flows from \p BB
768 /// to a particular phi on the basis of which one (if either) is not
769 /// undef. Update IncomingValues based on the selected value.
770 ///
771 /// \param OldVal The value we are considering selecting.
772 /// \param BB The block that the value flows in from.
773 /// \param IncomingValues A map from block-to-value for other phi inputs
774 /// that we have examined.
775 ///
776 /// \returns the selected value.
777 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
778                                           IncomingValueMap &IncomingValues) {
779   if (!isa<UndefValue>(OldVal)) {
780     assert((!IncomingValues.count(BB) ||
781             IncomingValues.find(BB)->second == OldVal) &&
782            "Expected OldVal to match incoming value from BB!");
783 
784     IncomingValues.insert(std::make_pair(BB, OldVal));
785     return OldVal;
786   }
787 
788   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
789   if (It != IncomingValues.end()) return It->second;
790 
791   return OldVal;
792 }
793 
794 /// \brief Create a map from block to value for the operands of a
795 /// given phi.
796 ///
797 /// Create a map from block to value for each non-undef value flowing
798 /// into \p PN.
799 ///
800 /// \param PN The phi we are collecting the map for.
801 /// \param IncomingValues [out] The map from block to value for this phi.
802 static void gatherIncomingValuesToPhi(PHINode *PN,
803                                       IncomingValueMap &IncomingValues) {
804   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
805     BasicBlock *BB = PN->getIncomingBlock(i);
806     Value *V = PN->getIncomingValue(i);
807 
808     if (!isa<UndefValue>(V))
809       IncomingValues.insert(std::make_pair(BB, V));
810   }
811 }
812 
813 /// \brief Replace the incoming undef values to a phi with the values
814 /// from a block-to-value map.
815 ///
816 /// \param PN The phi we are replacing the undefs in.
817 /// \param IncomingValues A map from block to value.
818 static void replaceUndefValuesInPhi(PHINode *PN,
819                                     const IncomingValueMap &IncomingValues) {
820   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
821     Value *V = PN->getIncomingValue(i);
822 
823     if (!isa<UndefValue>(V)) continue;
824 
825     BasicBlock *BB = PN->getIncomingBlock(i);
826     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
827     if (It == IncomingValues.end()) continue;
828 
829     PN->setIncomingValue(i, It->second);
830   }
831 }
832 
833 /// \brief Replace a value flowing from a block to a phi with
834 /// potentially multiple instances of that value flowing from the
835 /// block's predecessors to the phi.
836 ///
837 /// \param BB The block with the value flowing into the phi.
838 /// \param BBPreds The predecessors of BB.
839 /// \param PN The phi that we are updating.
840 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
841                                                 const PredBlockVector &BBPreds,
842                                                 PHINode *PN) {
843   Value *OldVal = PN->removeIncomingValue(BB, false);
844   assert(OldVal && "No entry in PHI for Pred BB!");
845 
846   IncomingValueMap IncomingValues;
847 
848   // We are merging two blocks - BB, and the block containing PN - and
849   // as a result we need to redirect edges from the predecessors of BB
850   // to go to the block containing PN, and update PN
851   // accordingly. Since we allow merging blocks in the case where the
852   // predecessor and successor blocks both share some predecessors,
853   // and where some of those common predecessors might have undef
854   // values flowing into PN, we want to rewrite those values to be
855   // consistent with the non-undef values.
856 
857   gatherIncomingValuesToPhi(PN, IncomingValues);
858 
859   // If this incoming value is one of the PHI nodes in BB, the new entries
860   // in the PHI node are the entries from the old PHI.
861   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
862     PHINode *OldValPN = cast<PHINode>(OldVal);
863     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
864       // Note that, since we are merging phi nodes and BB and Succ might
865       // have common predecessors, we could end up with a phi node with
866       // identical incoming branches. This will be cleaned up later (and
867       // will trigger asserts if we try to clean it up now, without also
868       // simplifying the corresponding conditional branch).
869       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
870       Value *PredVal = OldValPN->getIncomingValue(i);
871       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
872                                                     IncomingValues);
873 
874       // And add a new incoming value for this predecessor for the
875       // newly retargeted branch.
876       PN->addIncoming(Selected, PredBB);
877     }
878   } else {
879     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
880       // Update existing incoming values in PN for this
881       // predecessor of BB.
882       BasicBlock *PredBB = BBPreds[i];
883       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
884                                                     IncomingValues);
885 
886       // And add a new incoming value for this predecessor for the
887       // newly retargeted branch.
888       PN->addIncoming(Selected, PredBB);
889     }
890   }
891 
892   replaceUndefValuesInPhi(PN, IncomingValues);
893 }
894 
895 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
896 /// unconditional branch, and contains no instructions other than PHI nodes,
897 /// potential side-effect free intrinsics and the branch.  If possible,
898 /// eliminate BB by rewriting all the predecessors to branch to the successor
899 /// block and return true.  If we can't transform, return false.
900 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
901                                                    DominatorTree *DT) {
902   assert(BB != &BB->getParent()->getEntryBlock() &&
903          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
904 
905   // We can't eliminate infinite loops.
906   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
907   if (BB == Succ) return false;
908 
909   // Check to see if merging these blocks would cause conflicts for any of the
910   // phi nodes in BB or Succ. If not, we can safely merge.
911   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
912 
913   // Check for cases where Succ has multiple predecessors and a PHI node in BB
914   // has uses which will not disappear when the PHI nodes are merged.  It is
915   // possible to handle such cases, but difficult: it requires checking whether
916   // BB dominates Succ, which is non-trivial to calculate in the case where
917   // Succ has multiple predecessors.  Also, it requires checking whether
918   // constructing the necessary self-referential PHI node doesn't introduce any
919   // conflicts; this isn't too difficult, but the previous code for doing this
920   // was incorrect.
921   //
922   // Note that if this check finds a live use, BB dominates Succ, so BB is
923   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
924   // folding the branch isn't profitable in that case anyway.
925   if (!Succ->getSinglePredecessor()) {
926     BasicBlock::iterator BBI = BB->begin();
927     while (isa<PHINode>(*BBI)) {
928       for (Use &U : BBI->uses()) {
929         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
930           if (PN->getIncomingBlock(U) != BB)
931             return false;
932         } else {
933           return false;
934         }
935       }
936       ++BBI;
937     }
938   }
939 
940   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
941 
942   // Collect all the edges that enter BB, discarding edges to itself and
943   // duplicates. These dominator edges will be redirected to Succ.
944   std::vector<DominatorTree::UpdateType> Updates;
945   if (DT)
946     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
947       if (*PI == BB)
948         continue;
949       DominatorTree::UpdateType UT = {DominatorTree::Delete, *PI, BB};
950       if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end()) {
951         Updates.push_back(UT);
952         Updates.push_back({DominatorTree::Insert, *PI, Succ});
953       }
954     }
955 
956   if (isa<PHINode>(Succ->begin())) {
957     // If there is more than one pred of succ, and there are PHI nodes in
958     // the successor, then we need to add incoming edges for the PHI nodes
959     //
960     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
961 
962     // Loop over all of the PHI nodes in the successor of BB.
963     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
964       PHINode *PN = cast<PHINode>(I);
965 
966       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
967     }
968   }
969 
970   if (Succ->getSinglePredecessor()) {
971     // BB is the only predecessor of Succ, so Succ will end up with exactly
972     // the same predecessors BB had.
973 
974     // Copy over any phi, debug or lifetime instruction.
975     BB->getTerminator()->eraseFromParent();
976     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
977                                BB->getInstList());
978   } else {
979     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
980       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
981       assert(PN->use_empty() && "There shouldn't be any uses here!");
982       PN->eraseFromParent();
983     }
984   }
985 
986   // If the unconditional branch we replaced contains llvm.loop metadata, we
987   // add the metadata to the branch instructions in the predecessors.
988   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
989   Instruction *TI = BB->getTerminator();
990   if (TI) {
991     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
992       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
993         BasicBlock *Pred = *PI;
994         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
995       }
996     // Replace the terminator instruction with unreachable to ensure the CFG is
997     // consistent. This is necessary for dominance to be correctly calculated.
998     new UnreachableInst(BB->getContext(), TI);
999     TI->eraseFromParent();
1000   }
1001 
1002   // Everything that jumped to BB now goes to Succ.
1003   BB->replaceAllUsesWith(Succ);
1004   if (!Succ->hasName()) Succ->takeName(BB);
1005 
1006   if (DT) {
1007     Updates.push_back({DominatorTree::Delete, BB, Succ});
1008     DT->applyUpdates(Updates);
1009   }
1010 
1011   BB->eraseFromParent();              // Delete the old basic block.
1012   return true;
1013 }
1014 
1015 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1016 /// nodes in this block. This doesn't try to be clever about PHI nodes
1017 /// which differ only in the order of the incoming values, but instcombine
1018 /// orders them so it usually won't matter.
1019 ///
1020 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1021   // This implementation doesn't currently consider undef operands
1022   // specially. Theoretically, two phis which are identical except for
1023   // one having an undef where the other doesn't could be collapsed.
1024 
1025   struct PHIDenseMapInfo {
1026     static PHINode *getEmptyKey() {
1027       return DenseMapInfo<PHINode *>::getEmptyKey();
1028     }
1029     static PHINode *getTombstoneKey() {
1030       return DenseMapInfo<PHINode *>::getTombstoneKey();
1031     }
1032     static unsigned getHashValue(PHINode *PN) {
1033       // Compute a hash value on the operands. Instcombine will likely have
1034       // sorted them, which helps expose duplicates, but we have to check all
1035       // the operands to be safe in case instcombine hasn't run.
1036       return static_cast<unsigned>(hash_combine(
1037           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1038           hash_combine_range(PN->block_begin(), PN->block_end())));
1039     }
1040     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1041       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1042           RHS == getEmptyKey() || RHS == getTombstoneKey())
1043         return LHS == RHS;
1044       return LHS->isIdenticalTo(RHS);
1045     }
1046   };
1047 
1048   // Set of unique PHINodes.
1049   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1050 
1051   // Examine each PHI.
1052   bool Changed = false;
1053   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1054     auto Inserted = PHISet.insert(PN);
1055     if (!Inserted.second) {
1056       // A duplicate. Replace this PHI with its duplicate.
1057       PN->replaceAllUsesWith(*Inserted.first);
1058       PN->eraseFromParent();
1059       Changed = true;
1060 
1061       // The RAUW can change PHIs that we already visited. Start over from the
1062       // beginning.
1063       PHISet.clear();
1064       I = BB->begin();
1065     }
1066   }
1067 
1068   return Changed;
1069 }
1070 
1071 /// enforceKnownAlignment - If the specified pointer points to an object that
1072 /// we control, modify the object's alignment to PrefAlign. This isn't
1073 /// often possible though. If alignment is important, a more reliable approach
1074 /// is to simply align all global variables and allocation instructions to
1075 /// their preferred alignment from the beginning.
1076 ///
1077 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1078                                       unsigned PrefAlign,
1079                                       const DataLayout &DL) {
1080   assert(PrefAlign > Align);
1081 
1082   V = V->stripPointerCasts();
1083 
1084   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1085     // TODO: ideally, computeKnownBits ought to have used
1086     // AllocaInst::getAlignment() in its computation already, making
1087     // the below max redundant. But, as it turns out,
1088     // stripPointerCasts recurses through infinite layers of bitcasts,
1089     // while computeKnownBits is not allowed to traverse more than 6
1090     // levels.
1091     Align = std::max(AI->getAlignment(), Align);
1092     if (PrefAlign <= Align)
1093       return Align;
1094 
1095     // If the preferred alignment is greater than the natural stack alignment
1096     // then don't round up. This avoids dynamic stack realignment.
1097     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1098       return Align;
1099     AI->setAlignment(PrefAlign);
1100     return PrefAlign;
1101   }
1102 
1103   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1104     // TODO: as above, this shouldn't be necessary.
1105     Align = std::max(GO->getAlignment(), Align);
1106     if (PrefAlign <= Align)
1107       return Align;
1108 
1109     // If there is a large requested alignment and we can, bump up the alignment
1110     // of the global.  If the memory we set aside for the global may not be the
1111     // memory used by the final program then it is impossible for us to reliably
1112     // enforce the preferred alignment.
1113     if (!GO->canIncreaseAlignment())
1114       return Align;
1115 
1116     GO->setAlignment(PrefAlign);
1117     return PrefAlign;
1118   }
1119 
1120   return Align;
1121 }
1122 
1123 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1124                                           const DataLayout &DL,
1125                                           const Instruction *CxtI,
1126                                           AssumptionCache *AC,
1127                                           const DominatorTree *DT) {
1128   assert(V->getType()->isPointerTy() &&
1129          "getOrEnforceKnownAlignment expects a pointer!");
1130 
1131   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1132   unsigned TrailZ = Known.countMinTrailingZeros();
1133 
1134   // Avoid trouble with ridiculously large TrailZ values, such as
1135   // those computed from a null pointer.
1136   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1137 
1138   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1139 
1140   // LLVM doesn't support alignments larger than this currently.
1141   Align = std::min(Align, +Value::MaximumAlignment);
1142 
1143   if (PrefAlign > Align)
1144     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1145 
1146   // We don't need to make any adjustment.
1147   return Align;
1148 }
1149 
1150 ///===---------------------------------------------------------------------===//
1151 ///  Dbg Intrinsic utilities
1152 ///
1153 
1154 /// See if there is a dbg.value intrinsic for DIVar before I.
1155 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1156                               Instruction *I) {
1157   // Since we can't guarantee that the original dbg.declare instrinsic
1158   // is removed by LowerDbgDeclare(), we need to make sure that we are
1159   // not inserting the same dbg.value intrinsic over and over.
1160   llvm::BasicBlock::InstListType::iterator PrevI(I);
1161   if (PrevI != I->getParent()->getInstList().begin()) {
1162     --PrevI;
1163     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1164       if (DVI->getValue() == I->getOperand(0) &&
1165           DVI->getVariable() == DIVar &&
1166           DVI->getExpression() == DIExpr)
1167         return true;
1168   }
1169   return false;
1170 }
1171 
1172 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1173 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1174                              DIExpression *DIExpr,
1175                              PHINode *APN) {
1176   // Since we can't guarantee that the original dbg.declare instrinsic
1177   // is removed by LowerDbgDeclare(), we need to make sure that we are
1178   // not inserting the same dbg.value intrinsic over and over.
1179   SmallVector<DbgValueInst *, 1> DbgValues;
1180   findDbgValues(DbgValues, APN);
1181   for (auto *DVI : DbgValues) {
1182     assert(DVI->getValue() == APN);
1183     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1184       return true;
1185   }
1186   return false;
1187 }
1188 
1189 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1190 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1191 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1192                                            StoreInst *SI, DIBuilder &Builder) {
1193   assert(DII->isAddressOfVariable());
1194   auto *DIVar = DII->getVariable();
1195   assert(DIVar && "Missing variable");
1196   auto *DIExpr = DII->getExpression();
1197   Value *DV = SI->getOperand(0);
1198 
1199   // If an argument is zero extended then use argument directly. The ZExt
1200   // may be zapped by an optimization pass in future.
1201   Argument *ExtendedArg = nullptr;
1202   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1203     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1204   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1205     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1206   if (ExtendedArg) {
1207     // If this DII was already describing only a fragment of a variable, ensure
1208     // that fragment is appropriately narrowed here.
1209     // But if a fragment wasn't used, describe the value as the original
1210     // argument (rather than the zext or sext) so that it remains described even
1211     // if the sext/zext is optimized away. This widens the variable description,
1212     // leaving it up to the consumer to know how the smaller value may be
1213     // represented in a larger register.
1214     if (auto Fragment = DIExpr->getFragmentInfo()) {
1215       unsigned FragmentOffset = Fragment->OffsetInBits;
1216       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1217                                    DIExpr->elements_end() - 3);
1218       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1219       Ops.push_back(FragmentOffset);
1220       const DataLayout &DL = DII->getModule()->getDataLayout();
1221       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1222       DIExpr = Builder.createExpression(Ops);
1223     }
1224     DV = ExtendedArg;
1225   }
1226   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1227     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1228                                     SI);
1229 }
1230 
1231 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1232 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1233 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1234                                            LoadInst *LI, DIBuilder &Builder) {
1235   auto *DIVar = DII->getVariable();
1236   auto *DIExpr = DII->getExpression();
1237   assert(DIVar && "Missing variable");
1238 
1239   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1240     return;
1241 
1242   // We are now tracking the loaded value instead of the address. In the
1243   // future if multi-location support is added to the IR, it might be
1244   // preferable to keep tracking both the loaded value and the original
1245   // address in case the alloca can not be elided.
1246   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1247       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1248   DbgValue->insertAfter(LI);
1249 }
1250 
1251 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1252 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1253 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1254                                            PHINode *APN, DIBuilder &Builder) {
1255   auto *DIVar = DII->getVariable();
1256   auto *DIExpr = DII->getExpression();
1257   assert(DIVar && "Missing variable");
1258 
1259   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1260     return;
1261 
1262   BasicBlock *BB = APN->getParent();
1263   auto InsertionPt = BB->getFirstInsertionPt();
1264 
1265   // The block may be a catchswitch block, which does not have a valid
1266   // insertion point.
1267   // FIXME: Insert dbg.value markers in the successors when appropriate.
1268   if (InsertionPt != BB->end())
1269     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1270                                     &*InsertionPt);
1271 }
1272 
1273 /// Determine whether this alloca is either a VLA or an array.
1274 static bool isArray(AllocaInst *AI) {
1275   return AI->isArrayAllocation() ||
1276     AI->getType()->getElementType()->isArrayTy();
1277 }
1278 
1279 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1280 /// of llvm.dbg.value intrinsics.
1281 bool llvm::LowerDbgDeclare(Function &F) {
1282   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1283   SmallVector<DbgDeclareInst *, 4> Dbgs;
1284   for (auto &FI : F)
1285     for (Instruction &BI : FI)
1286       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1287         Dbgs.push_back(DDI);
1288 
1289   if (Dbgs.empty())
1290     return false;
1291 
1292   for (auto &I : Dbgs) {
1293     DbgDeclareInst *DDI = I;
1294     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1295     // If this is an alloca for a scalar variable, insert a dbg.value
1296     // at each load and store to the alloca and erase the dbg.declare.
1297     // The dbg.values allow tracking a variable even if it is not
1298     // stored on the stack, while the dbg.declare can only describe
1299     // the stack slot (and at a lexical-scope granularity). Later
1300     // passes will attempt to elide the stack slot.
1301     if (AI && !isArray(AI)) {
1302       for (auto &AIUse : AI->uses()) {
1303         User *U = AIUse.getUser();
1304         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1305           if (AIUse.getOperandNo() == 1)
1306             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1307         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1308           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1309         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1310           // This is a call by-value or some other instruction that
1311           // takes a pointer to the variable. Insert a *value*
1312           // intrinsic that describes the alloca.
1313           DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1314                                       DDI->getExpression(), DDI->getDebugLoc(),
1315                                       CI);
1316         }
1317       }
1318       DDI->eraseFromParent();
1319     }
1320   }
1321   return true;
1322 }
1323 
1324 /// Finds all intrinsics declaring local variables as living in the memory that
1325 /// 'V' points to. This may include a mix of dbg.declare and
1326 /// dbg.addr intrinsics.
1327 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1328   auto *L = LocalAsMetadata::getIfExists(V);
1329   if (!L)
1330     return {};
1331   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1332   if (!MDV)
1333     return {};
1334 
1335   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1336   for (User *U : MDV->users()) {
1337     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1338       if (DII->isAddressOfVariable())
1339         Declares.push_back(DII);
1340   }
1341 
1342   return Declares;
1343 }
1344 
1345 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1346   if (auto *L = LocalAsMetadata::getIfExists(V))
1347     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1348       for (User *U : MDV->users())
1349         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1350           DbgValues.push_back(DVI);
1351 }
1352 
1353 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1354                              Instruction *InsertBefore, DIBuilder &Builder,
1355                              bool Deref, int Offset) {
1356   auto DbgAddrs = FindDbgAddrUses(Address);
1357   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1358     DebugLoc Loc = DII->getDebugLoc();
1359     auto *DIVar = DII->getVariable();
1360     auto *DIExpr = DII->getExpression();
1361     assert(DIVar && "Missing variable");
1362     DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
1363     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1364     // llvm.dbg.declare.
1365     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1366     if (DII == InsertBefore)
1367       InsertBefore = &*std::next(InsertBefore->getIterator());
1368     DII->eraseFromParent();
1369   }
1370   return !DbgAddrs.empty();
1371 }
1372 
1373 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1374                                       DIBuilder &Builder, bool Deref, int Offset) {
1375   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1376                            Deref, Offset);
1377 }
1378 
1379 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1380                                         DIBuilder &Builder, int Offset) {
1381   DebugLoc Loc = DVI->getDebugLoc();
1382   auto *DIVar = DVI->getVariable();
1383   auto *DIExpr = DVI->getExpression();
1384   assert(DIVar && "Missing variable");
1385 
1386   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1387   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1388   // it and give up.
1389   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1390       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1391     return;
1392 
1393   // Insert the offset immediately after the first deref.
1394   // We could just change the offset argument of dbg.value, but it's unsigned...
1395   if (Offset) {
1396     SmallVector<uint64_t, 4> Ops;
1397     Ops.push_back(dwarf::DW_OP_deref);
1398     DIExpression::appendOffset(Ops, Offset);
1399     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1400     DIExpr = Builder.createExpression(Ops);
1401   }
1402 
1403   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1404   DVI->eraseFromParent();
1405 }
1406 
1407 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1408                                     DIBuilder &Builder, int Offset) {
1409   if (auto *L = LocalAsMetadata::getIfExists(AI))
1410     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1411       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1412         Use &U = *UI++;
1413         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1414           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1415       }
1416 }
1417 
1418 void llvm::salvageDebugInfo(Instruction &I) {
1419   SmallVector<DbgValueInst *, 1> DbgValues;
1420   auto &M = *I.getModule();
1421 
1422   auto MDWrap = [&](Value *V) {
1423     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1424   };
1425 
1426   if (isa<BitCastInst>(&I)) {
1427     findDbgValues(DbgValues, &I);
1428     for (auto *DVI : DbgValues) {
1429       // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
1430       // to use the cast's source.
1431       DVI->setOperand(0, MDWrap(I.getOperand(0)));
1432       DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1433     }
1434   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1435     findDbgValues(DbgValues, &I);
1436     for (auto *DVI : DbgValues) {
1437       unsigned BitWidth =
1438           M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
1439       APInt Offset(BitWidth, 0);
1440       // Rewrite a constant GEP into a DIExpression.  Since we are performing
1441       // arithmetic to compute the variable's *value* in the DIExpression, we
1442       // need to mark the expression with a DW_OP_stack_value.
1443       if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1444         auto *DIExpr = DVI->getExpression();
1445         DIBuilder DIB(M, /*AllowUnresolved*/ false);
1446         // GEP offsets are i32 and thus always fit into an int64_t.
1447         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
1448                                        Offset.getSExtValue(),
1449                                        DIExpression::WithStackValue);
1450         DVI->setOperand(0, MDWrap(I.getOperand(0)));
1451         DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1452         DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1453       }
1454     }
1455   } else if (isa<LoadInst>(&I)) {
1456     findDbgValues(DbgValues, &I);
1457     for (auto *DVI : DbgValues) {
1458       // Rewrite the load into DW_OP_deref.
1459       auto *DIExpr = DVI->getExpression();
1460       DIBuilder DIB(M, /*AllowUnresolved*/ false);
1461       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1462       DVI->setOperand(0, MDWrap(I.getOperand(0)));
1463       DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1464       DEBUG(dbgs() << "SALVAGE:  " << *DVI << '\n');
1465     }
1466   }
1467 }
1468 
1469 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1470   unsigned NumDeadInst = 0;
1471   // Delete the instructions backwards, as it has a reduced likelihood of
1472   // having to update as many def-use and use-def chains.
1473   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1474   while (EndInst != &BB->front()) {
1475     // Delete the next to last instruction.
1476     Instruction *Inst = &*--EndInst->getIterator();
1477     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1478       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1479     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1480       EndInst = Inst;
1481       continue;
1482     }
1483     if (!isa<DbgInfoIntrinsic>(Inst))
1484       ++NumDeadInst;
1485     Inst->eraseFromParent();
1486   }
1487   return NumDeadInst;
1488 }
1489 
1490 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1491                                    bool PreserveLCSSA, DominatorTree *DT) {
1492   BasicBlock *BB = I->getParent();
1493   std::vector<DominatorTree::UpdateType> Updates;
1494   // Loop over all of the successors, removing BB's entry from any PHI
1495   // nodes.
1496   for (BasicBlock *Successor : successors(BB)) {
1497     Successor->removePredecessor(BB, PreserveLCSSA);
1498     if (DT && BB != Successor) {
1499       DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, Successor};
1500       if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
1501         Updates.push_back(UT);
1502     }
1503   }
1504   // Insert a call to llvm.trap right before this.  This turns the undefined
1505   // behavior into a hard fail instead of falling through into random code.
1506   if (UseLLVMTrap) {
1507     Function *TrapFn =
1508       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1509     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1510     CallTrap->setDebugLoc(I->getDebugLoc());
1511   }
1512   new UnreachableInst(I->getContext(), I);
1513 
1514   // All instructions after this are dead.
1515   unsigned NumInstrsRemoved = 0;
1516   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1517   while (BBI != BBE) {
1518     if (!BBI->use_empty())
1519       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1520     BB->getInstList().erase(BBI++);
1521     ++NumInstrsRemoved;
1522   }
1523   if (DT && !Updates.empty())
1524     DT->applyUpdates(Updates);
1525   return NumInstrsRemoved;
1526 }
1527 
1528 /// changeToCall - Convert the specified invoke into a normal call.
1529 static void changeToCall(InvokeInst *II, DominatorTree *DT = nullptr) {
1530   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1531   SmallVector<OperandBundleDef, 1> OpBundles;
1532   II->getOperandBundlesAsDefs(OpBundles);
1533   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1534                                        "", II);
1535   NewCall->takeName(II);
1536   NewCall->setCallingConv(II->getCallingConv());
1537   NewCall->setAttributes(II->getAttributes());
1538   NewCall->setDebugLoc(II->getDebugLoc());
1539   II->replaceAllUsesWith(NewCall);
1540 
1541   // Follow the call by a branch to the normal destination.
1542   BasicBlock *NormalDestBB = II->getNormalDest();
1543   BranchInst::Create(NormalDestBB, II);
1544 
1545   // Update PHI nodes in the unwind destination
1546   BasicBlock *BB = II->getParent();
1547   BasicBlock *UnwindDestBB = II->getUnwindDest();
1548   UnwindDestBB->removePredecessor(BB);
1549   II->eraseFromParent();
1550   if (DT && BB != UnwindDestBB && NormalDestBB != UnwindDestBB)
1551     DT->deleteEdge(BB, UnwindDestBB);
1552 }
1553 
1554 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1555                                                    BasicBlock *UnwindEdge) {
1556   BasicBlock *BB = CI->getParent();
1557 
1558   // Convert this function call into an invoke instruction.  First, split the
1559   // basic block.
1560   BasicBlock *Split =
1561       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1562 
1563   // Delete the unconditional branch inserted by splitBasicBlock
1564   BB->getInstList().pop_back();
1565 
1566   // Create the new invoke instruction.
1567   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1568   SmallVector<OperandBundleDef, 1> OpBundles;
1569 
1570   CI->getOperandBundlesAsDefs(OpBundles);
1571 
1572   // Note: we're round tripping operand bundles through memory here, and that
1573   // can potentially be avoided with a cleverer API design that we do not have
1574   // as of this time.
1575 
1576   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1577                                       InvokeArgs, OpBundles, CI->getName(), BB);
1578   II->setDebugLoc(CI->getDebugLoc());
1579   II->setCallingConv(CI->getCallingConv());
1580   II->setAttributes(CI->getAttributes());
1581 
1582   // Make sure that anything using the call now uses the invoke!  This also
1583   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1584   CI->replaceAllUsesWith(II);
1585 
1586   // Delete the original call
1587   Split->getInstList().pop_front();
1588   return Split;
1589 }
1590 
1591 static bool markAliveBlocks(Function &F,
1592                             SmallPtrSetImpl<BasicBlock *> &Reachable,
1593                             DominatorTree *DT = nullptr) {
1594 
1595   SmallVector<BasicBlock*, 128> Worklist;
1596   BasicBlock *BB = &F.front();
1597   Worklist.push_back(BB);
1598   Reachable.insert(BB);
1599   bool Changed = false;
1600   do {
1601     BB = Worklist.pop_back_val();
1602 
1603     // Do a quick scan of the basic block, turning any obviously unreachable
1604     // instructions into LLVM unreachable insts.  The instruction combining pass
1605     // canonicalizes unreachable insts into stores to null or undef.
1606     for (Instruction &I : *BB) {
1607       // Assumptions that are known to be false are equivalent to unreachable.
1608       // Also, if the condition is undefined, then we make the choice most
1609       // beneficial to the optimizer, and choose that to also be unreachable.
1610       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1611         if (II->getIntrinsicID() == Intrinsic::assume) {
1612           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1613             // Don't insert a call to llvm.trap right before the unreachable.
1614             changeToUnreachable(II, false, false, DT);
1615             Changed = true;
1616             break;
1617           }
1618         }
1619 
1620         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1621           // A call to the guard intrinsic bails out of the current compilation
1622           // unit if the predicate passed to it is false.  If the predicate is a
1623           // constant false, then we know the guard will bail out of the current
1624           // compile unconditionally, so all code following it is dead.
1625           //
1626           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1627           // guards to treat `undef` as `false` since a guard on `undef` can
1628           // still be useful for widening.
1629           if (match(II->getArgOperand(0), m_Zero()))
1630             if (!isa<UnreachableInst>(II->getNextNode())) {
1631               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1632                                   false, DT);
1633               Changed = true;
1634               break;
1635             }
1636         }
1637       }
1638 
1639       if (auto *CI = dyn_cast<CallInst>(&I)) {
1640         Value *Callee = CI->getCalledValue();
1641         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1642           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DT);
1643           Changed = true;
1644           break;
1645         }
1646         if (CI->doesNotReturn()) {
1647           // If we found a call to a no-return function, insert an unreachable
1648           // instruction after it.  Make sure there isn't *already* one there
1649           // though.
1650           if (!isa<UnreachableInst>(CI->getNextNode())) {
1651             // Don't insert a call to llvm.trap right before the unreachable.
1652             changeToUnreachable(CI->getNextNode(), false, false, DT);
1653             Changed = true;
1654           }
1655           break;
1656         }
1657       }
1658 
1659       // Store to undef and store to null are undefined and used to signal that
1660       // they should be changed to unreachable by passes that can't modify the
1661       // CFG.
1662       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1663         // Don't touch volatile stores.
1664         if (SI->isVolatile()) continue;
1665 
1666         Value *Ptr = SI->getOperand(1);
1667 
1668         if (isa<UndefValue>(Ptr) ||
1669             (isa<ConstantPointerNull>(Ptr) &&
1670              SI->getPointerAddressSpace() == 0)) {
1671           changeToUnreachable(SI, true, false, DT);
1672           Changed = true;
1673           break;
1674         }
1675       }
1676     }
1677 
1678     TerminatorInst *Terminator = BB->getTerminator();
1679     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1680       // Turn invokes that call 'nounwind' functions into ordinary calls.
1681       Value *Callee = II->getCalledValue();
1682       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1683         changeToUnreachable(II, true, false, DT);
1684         Changed = true;
1685       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1686         if (II->use_empty() && II->onlyReadsMemory()) {
1687           // jump to the normal destination branch.
1688           BasicBlock *UnwindDestBB = II->getUnwindDest();
1689           BranchInst::Create(II->getNormalDest(), II);
1690           UnwindDestBB->removePredecessor(II->getParent());
1691           II->eraseFromParent();
1692           if (DT && BB != UnwindDestBB)
1693             DT->deleteEdge(BB, UnwindDestBB);
1694         } else
1695           changeToCall(II, DT);
1696         Changed = true;
1697       }
1698     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1699       // Remove catchpads which cannot be reached.
1700       struct CatchPadDenseMapInfo {
1701         static CatchPadInst *getEmptyKey() {
1702           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1703         }
1704         static CatchPadInst *getTombstoneKey() {
1705           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1706         }
1707         static unsigned getHashValue(CatchPadInst *CatchPad) {
1708           return static_cast<unsigned>(hash_combine_range(
1709               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1710         }
1711         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1712           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1713               RHS == getEmptyKey() || RHS == getTombstoneKey())
1714             return LHS == RHS;
1715           return LHS->isIdenticalTo(RHS);
1716         }
1717       };
1718 
1719       // Set of unique CatchPads.
1720       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1721                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1722           HandlerSet;
1723       detail::DenseSetEmpty Empty;
1724       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1725                                              E = CatchSwitch->handler_end();
1726            I != E; ++I) {
1727         BasicBlock *HandlerBB = *I;
1728         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1729         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1730           CatchSwitch->removeHandler(I);
1731           --I;
1732           --E;
1733           Changed = true;
1734         }
1735       }
1736     }
1737 
1738     Changed |= ConstantFoldTerminator(BB, true, nullptr, DT);
1739     for (BasicBlock *Successor : successors(BB))
1740       if (Reachable.insert(Successor).second)
1741         Worklist.push_back(Successor);
1742   } while (!Worklist.empty());
1743   return Changed;
1744 }
1745 
1746 void llvm::removeUnwindEdge(BasicBlock *BB, DominatorTree *DT) {
1747   TerminatorInst *TI = BB->getTerminator();
1748 
1749   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1750     changeToCall(II, DT);
1751     return;
1752   }
1753 
1754   TerminatorInst *NewTI;
1755   BasicBlock *UnwindDest;
1756 
1757   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1758     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1759     UnwindDest = CRI->getUnwindDest();
1760   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1761     auto *NewCatchSwitch = CatchSwitchInst::Create(
1762         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1763         CatchSwitch->getName(), CatchSwitch);
1764     for (BasicBlock *PadBB : CatchSwitch->handlers())
1765       NewCatchSwitch->addHandler(PadBB);
1766 
1767     NewTI = NewCatchSwitch;
1768     UnwindDest = CatchSwitch->getUnwindDest();
1769   } else {
1770     llvm_unreachable("Could not find unwind successor");
1771   }
1772 
1773   NewTI->takeName(TI);
1774   NewTI->setDebugLoc(TI->getDebugLoc());
1775   UnwindDest->removePredecessor(BB);
1776   TI->replaceAllUsesWith(NewTI);
1777   TI->eraseFromParent();
1778   if (DT && BB != UnwindDest)
1779     DT->deleteEdge(BB, UnwindDest);
1780 }
1781 
1782 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1783 /// if they are in a dead cycle.  Return true if a change was made, false
1784 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1785 /// after modifying the CFG.
1786 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
1787                                    DominatorTree *DT) {
1788   SmallPtrSet<BasicBlock*, 16> Reachable;
1789   bool Changed = markAliveBlocks(F, Reachable, DT);
1790   std::vector<DominatorTree::UpdateType> Updates;
1791 
1792   // If there are unreachable blocks in the CFG...
1793   if (Reachable.size() == F.size())
1794     return Changed;
1795 
1796   assert(Reachable.size() < F.size());
1797   NumRemoved += F.size()-Reachable.size();
1798 
1799   SmallPtrSet<TerminatorInst *, 4> TIRemoved;
1800 
1801   // Loop over all of the basic blocks that are not reachable, dropping all of
1802   // their internal references...
1803   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1804     if (Reachable.count(&*BB))
1805       continue;
1806 
1807     for (BasicBlock *Successor : successors(&*BB))
1808       if (Reachable.count(Successor)) {
1809         Successor->removePredecessor(&*BB);
1810         if (DT && &*BB != Successor) {
1811           DominatorTree::UpdateType UT = {DominatorTree::Delete, &*BB,
1812                                           Successor};
1813           if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
1814             Updates.push_back(UT);
1815         }
1816       }
1817 
1818     if (LVI)
1819       LVI->eraseBlock(&*BB);
1820 
1821     TerminatorInst *TI = BB->getTerminator();
1822     TIRemoved.insert(TI);
1823     new UnreachableInst(BB->getContext(), TI);
1824 
1825     BB->dropAllReferences();
1826   }
1827 
1828   // Remove all the terminator instructions after dropping all references. This
1829   // keeps the state of the CFG consistent and prevents asserts from circular
1830   // use counts in groups of unreachable basic blocks.
1831   for (TerminatorInst *TI : TIRemoved)
1832     TI->eraseFromParent();
1833 
1834   if (DT && !Updates.empty())
1835     DT->applyUpdates(Updates);
1836 
1837   for (Function::iterator I = ++F.begin(); I != F.end();)
1838     if (!Reachable.count(&*I))
1839       I = F.getBasicBlockList().erase(I);
1840     else
1841       ++I;
1842 
1843   return true;
1844 }
1845 
1846 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1847                            ArrayRef<unsigned> KnownIDs) {
1848   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1849   K->dropUnknownNonDebugMetadata(KnownIDs);
1850   K->getAllMetadataOtherThanDebugLoc(Metadata);
1851   for (const auto &MD : Metadata) {
1852     unsigned Kind = MD.first;
1853     MDNode *JMD = J->getMetadata(Kind);
1854     MDNode *KMD = MD.second;
1855 
1856     switch (Kind) {
1857       default:
1858         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1859         break;
1860       case LLVMContext::MD_dbg:
1861         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1862       case LLVMContext::MD_tbaa:
1863         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1864         break;
1865       case LLVMContext::MD_alias_scope:
1866         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1867         break;
1868       case LLVMContext::MD_noalias:
1869       case LLVMContext::MD_mem_parallel_loop_access:
1870         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1871         break;
1872       case LLVMContext::MD_range:
1873         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1874         break;
1875       case LLVMContext::MD_fpmath:
1876         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1877         break;
1878       case LLVMContext::MD_invariant_load:
1879         // Only set the !invariant.load if it is present in both instructions.
1880         K->setMetadata(Kind, JMD);
1881         break;
1882       case LLVMContext::MD_nonnull:
1883         // Only set the !nonnull if it is present in both instructions.
1884         K->setMetadata(Kind, JMD);
1885         break;
1886       case LLVMContext::MD_invariant_group:
1887         // Preserve !invariant.group in K.
1888         break;
1889       case LLVMContext::MD_align:
1890         K->setMetadata(Kind,
1891           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1892         break;
1893       case LLVMContext::MD_dereferenceable:
1894       case LLVMContext::MD_dereferenceable_or_null:
1895         K->setMetadata(Kind,
1896           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1897         break;
1898     }
1899   }
1900   // Set !invariant.group from J if J has it. If both instructions have it
1901   // then we will just pick it from J - even when they are different.
1902   // Also make sure that K is load or store - f.e. combining bitcast with load
1903   // could produce bitcast with invariant.group metadata, which is invalid.
1904   // FIXME: we should try to preserve both invariant.group md if they are
1905   // different, but right now instruction can only have one invariant.group.
1906   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1907     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1908       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1909 }
1910 
1911 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1912   unsigned KnownIDs[] = {
1913       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1914       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1915       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1916       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1917       LLVMContext::MD_dereferenceable,
1918       LLVMContext::MD_dereferenceable_or_null};
1919   combineMetadata(K, J, KnownIDs);
1920 }
1921 
1922 template <typename RootType, typename DominatesFn>
1923 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
1924                                          const RootType &Root,
1925                                          const DominatesFn &Dominates) {
1926   assert(From->getType() == To->getType());
1927 
1928   unsigned Count = 0;
1929   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1930        UI != UE;) {
1931     Use &U = *UI++;
1932     if (!Dominates(Root, U))
1933       continue;
1934     U.set(To);
1935     DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1936                  << *To << " in " << *U << "\n");
1937     ++Count;
1938   }
1939   return Count;
1940 }
1941 
1942 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
1943    assert(From->getType() == To->getType());
1944    auto *BB = From->getParent();
1945    unsigned Count = 0;
1946 
1947   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1948        UI != UE;) {
1949     Use &U = *UI++;
1950     auto *I = cast<Instruction>(U.getUser());
1951     if (I->getParent() == BB)
1952       continue;
1953     U.set(To);
1954     ++Count;
1955   }
1956   return Count;
1957 }
1958 
1959 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1960                                         DominatorTree &DT,
1961                                         const BasicBlockEdge &Root) {
1962   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
1963     return DT.dominates(Root, U);
1964   };
1965   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
1966 }
1967 
1968 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1969                                         DominatorTree &DT,
1970                                         const BasicBlock *BB) {
1971   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
1972     auto *I = cast<Instruction>(U.getUser())->getParent();
1973     return DT.properlyDominates(BB, I);
1974   };
1975   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
1976 }
1977 
1978 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
1979                                const TargetLibraryInfo &TLI) {
1980   // Check if the function is specifically marked as a gc leaf function.
1981   if (CS.hasFnAttr("gc-leaf-function"))
1982     return true;
1983   if (const Function *F = CS.getCalledFunction()) {
1984     if (F->hasFnAttribute("gc-leaf-function"))
1985       return true;
1986 
1987     if (auto IID = F->getIntrinsicID())
1988       // Most LLVM intrinsics do not take safepoints.
1989       return IID != Intrinsic::experimental_gc_statepoint &&
1990              IID != Intrinsic::experimental_deoptimize;
1991   }
1992 
1993   // Lib calls can be materialized by some passes, and won't be
1994   // marked as 'gc-leaf-function.' All available Libcalls are
1995   // GC-leaf.
1996   LibFunc LF;
1997   if (TLI.getLibFunc(CS, LF)) {
1998     return TLI.has(LF);
1999   }
2000 
2001   return false;
2002 }
2003 
2004 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2005                                LoadInst &NewLI) {
2006   auto *NewTy = NewLI.getType();
2007 
2008   // This only directly applies if the new type is also a pointer.
2009   if (NewTy->isPointerTy()) {
2010     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2011     return;
2012   }
2013 
2014   // The only other translation we can do is to integral loads with !range
2015   // metadata.
2016   if (!NewTy->isIntegerTy())
2017     return;
2018 
2019   MDBuilder MDB(NewLI.getContext());
2020   const Value *Ptr = OldLI.getPointerOperand();
2021   auto *ITy = cast<IntegerType>(NewTy);
2022   auto *NullInt = ConstantExpr::getPtrToInt(
2023       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2024   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2025   NewLI.setMetadata(LLVMContext::MD_range,
2026                     MDB.createRange(NonNullInt, NullInt));
2027 }
2028 
2029 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2030                              MDNode *N, LoadInst &NewLI) {
2031   auto *NewTy = NewLI.getType();
2032 
2033   // Give up unless it is converted to a pointer where there is a single very
2034   // valuable mapping we can do reliably.
2035   // FIXME: It would be nice to propagate this in more ways, but the type
2036   // conversions make it hard.
2037   if (!NewTy->isPointerTy())
2038     return;
2039 
2040   unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
2041   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2042     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2043     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2044   }
2045 }
2046 
2047 namespace {
2048 /// A potential constituent of a bitreverse or bswap expression. See
2049 /// collectBitParts for a fuller explanation.
2050 struct BitPart {
2051   BitPart(Value *P, unsigned BW) : Provider(P) {
2052     Provenance.resize(BW);
2053   }
2054 
2055   /// The Value that this is a bitreverse/bswap of.
2056   Value *Provider;
2057   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2058   /// in Provider becomes bit B in the result of this expression.
2059   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2060 
2061   enum { Unset = -1 };
2062 };
2063 } // end anonymous namespace
2064 
2065 /// Analyze the specified subexpression and see if it is capable of providing
2066 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2067 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2068 /// the output of the expression came from a corresponding bit in some other
2069 /// value. This function is recursive, and the end result is a mapping of
2070 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2071 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2072 ///
2073 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2074 /// that the expression deposits the low byte of %X into the high byte of the
2075 /// result and that all other bits are zero. This expression is accepted and a
2076 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2077 /// [0-7].
2078 ///
2079 /// To avoid revisiting values, the BitPart results are memoized into the
2080 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2081 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2082 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2083 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2084 /// type instead to provide the same functionality.
2085 ///
2086 /// Because we pass around references into \c BPS, we must use a container that
2087 /// does not invalidate internal references (std::map instead of DenseMap).
2088 ///
2089 static const Optional<BitPart> &
2090 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2091                 std::map<Value *, Optional<BitPart>> &BPS) {
2092   auto I = BPS.find(V);
2093   if (I != BPS.end())
2094     return I->second;
2095 
2096   auto &Result = BPS[V] = None;
2097   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2098 
2099   if (Instruction *I = dyn_cast<Instruction>(V)) {
2100     // If this is an or instruction, it may be an inner node of the bswap.
2101     if (I->getOpcode() == Instruction::Or) {
2102       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2103                                 MatchBitReversals, BPS);
2104       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2105                                 MatchBitReversals, BPS);
2106       if (!A || !B)
2107         return Result;
2108 
2109       // Try and merge the two together.
2110       if (!A->Provider || A->Provider != B->Provider)
2111         return Result;
2112 
2113       Result = BitPart(A->Provider, BitWidth);
2114       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2115         if (A->Provenance[i] != BitPart::Unset &&
2116             B->Provenance[i] != BitPart::Unset &&
2117             A->Provenance[i] != B->Provenance[i])
2118           return Result = None;
2119 
2120         if (A->Provenance[i] == BitPart::Unset)
2121           Result->Provenance[i] = B->Provenance[i];
2122         else
2123           Result->Provenance[i] = A->Provenance[i];
2124       }
2125 
2126       return Result;
2127     }
2128 
2129     // If this is a logical shift by a constant, recurse then shift the result.
2130     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2131       unsigned BitShift =
2132           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2133       // Ensure the shift amount is defined.
2134       if (BitShift > BitWidth)
2135         return Result;
2136 
2137       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2138                                   MatchBitReversals, BPS);
2139       if (!Res)
2140         return Result;
2141       Result = Res;
2142 
2143       // Perform the "shift" on BitProvenance.
2144       auto &P = Result->Provenance;
2145       if (I->getOpcode() == Instruction::Shl) {
2146         P.erase(std::prev(P.end(), BitShift), P.end());
2147         P.insert(P.begin(), BitShift, BitPart::Unset);
2148       } else {
2149         P.erase(P.begin(), std::next(P.begin(), BitShift));
2150         P.insert(P.end(), BitShift, BitPart::Unset);
2151       }
2152 
2153       return Result;
2154     }
2155 
2156     // If this is a logical 'and' with a mask that clears bits, recurse then
2157     // unset the appropriate bits.
2158     if (I->getOpcode() == Instruction::And &&
2159         isa<ConstantInt>(I->getOperand(1))) {
2160       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2161       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2162 
2163       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2164       // early exit.
2165       unsigned NumMaskedBits = AndMask.countPopulation();
2166       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2167         return Result;
2168 
2169       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2170                                   MatchBitReversals, BPS);
2171       if (!Res)
2172         return Result;
2173       Result = Res;
2174 
2175       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2176         // If the AndMask is zero for this bit, clear the bit.
2177         if ((AndMask & Bit) == 0)
2178           Result->Provenance[i] = BitPart::Unset;
2179       return Result;
2180     }
2181 
2182     // If this is a zext instruction zero extend the result.
2183     if (I->getOpcode() == Instruction::ZExt) {
2184       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2185                                   MatchBitReversals, BPS);
2186       if (!Res)
2187         return Result;
2188 
2189       Result = BitPart(Res->Provider, BitWidth);
2190       auto NarrowBitWidth =
2191           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2192       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2193         Result->Provenance[i] = Res->Provenance[i];
2194       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2195         Result->Provenance[i] = BitPart::Unset;
2196       return Result;
2197     }
2198   }
2199 
2200   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2201   // the input value to the bswap/bitreverse.
2202   Result = BitPart(V, BitWidth);
2203   for (unsigned i = 0; i < BitWidth; ++i)
2204     Result->Provenance[i] = i;
2205   return Result;
2206 }
2207 
2208 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2209                                           unsigned BitWidth) {
2210   if (From % 8 != To % 8)
2211     return false;
2212   // Convert from bit indices to byte indices and check for a byte reversal.
2213   From >>= 3;
2214   To >>= 3;
2215   BitWidth >>= 3;
2216   return From == BitWidth - To - 1;
2217 }
2218 
2219 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2220                                                unsigned BitWidth) {
2221   return From == BitWidth - To - 1;
2222 }
2223 
2224 /// Given an OR instruction, check to see if this is a bitreverse
2225 /// idiom. If so, insert the new intrinsic and return true.
2226 bool llvm::recognizeBSwapOrBitReverseIdiom(
2227     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2228     SmallVectorImpl<Instruction *> &InsertedInsts) {
2229   if (Operator::getOpcode(I) != Instruction::Or)
2230     return false;
2231   if (!MatchBSwaps && !MatchBitReversals)
2232     return false;
2233   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2234   if (!ITy || ITy->getBitWidth() > 128)
2235     return false;   // Can't do vectors or integers > 128 bits.
2236   unsigned BW = ITy->getBitWidth();
2237 
2238   unsigned DemandedBW = BW;
2239   IntegerType *DemandedTy = ITy;
2240   if (I->hasOneUse()) {
2241     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2242       DemandedTy = cast<IntegerType>(Trunc->getType());
2243       DemandedBW = DemandedTy->getBitWidth();
2244     }
2245   }
2246 
2247   // Try to find all the pieces corresponding to the bswap.
2248   std::map<Value *, Optional<BitPart>> BPS;
2249   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2250   if (!Res)
2251     return false;
2252   auto &BitProvenance = Res->Provenance;
2253 
2254   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2255   // only byteswap values with an even number of bytes.
2256   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2257   for (unsigned i = 0; i < DemandedBW; ++i) {
2258     OKForBSwap &=
2259         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2260     OKForBitReverse &=
2261         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2262   }
2263 
2264   Intrinsic::ID Intrin;
2265   if (OKForBSwap && MatchBSwaps)
2266     Intrin = Intrinsic::bswap;
2267   else if (OKForBitReverse && MatchBitReversals)
2268     Intrin = Intrinsic::bitreverse;
2269   else
2270     return false;
2271 
2272   if (ITy != DemandedTy) {
2273     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2274     Value *Provider = Res->Provider;
2275     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2276     // We may need to truncate the provider.
2277     if (DemandedTy != ProviderTy) {
2278       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2279                                      "trunc", I);
2280       InsertedInsts.push_back(Trunc);
2281       Provider = Trunc;
2282     }
2283     auto *CI = CallInst::Create(F, Provider, "rev", I);
2284     InsertedInsts.push_back(CI);
2285     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2286     InsertedInsts.push_back(ExtInst);
2287     return true;
2288   }
2289 
2290   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2291   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2292   return true;
2293 }
2294 
2295 // CodeGen has special handling for some string functions that may replace
2296 // them with target-specific intrinsics.  Since that'd skip our interceptors
2297 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2298 // we mark affected calls as NoBuiltin, which will disable optimization
2299 // in CodeGen.
2300 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2301     CallInst *CI, const TargetLibraryInfo *TLI) {
2302   Function *F = CI->getCalledFunction();
2303   LibFunc Func;
2304   if (F && !F->hasLocalLinkage() && F->hasName() &&
2305       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2306       !F->doesNotAccessMemory())
2307     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2308 }
2309 
2310 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2311   // We can't have a PHI with a metadata type.
2312   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2313     return false;
2314 
2315   // Early exit.
2316   if (!isa<Constant>(I->getOperand(OpIdx)))
2317     return true;
2318 
2319   switch (I->getOpcode()) {
2320   default:
2321     return true;
2322   case Instruction::Call:
2323   case Instruction::Invoke:
2324     // Can't handle inline asm. Skip it.
2325     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2326       return false;
2327     // Many arithmetic intrinsics have no issue taking a
2328     // variable, however it's hard to distingish these from
2329     // specials such as @llvm.frameaddress that require a constant.
2330     if (isa<IntrinsicInst>(I))
2331       return false;
2332 
2333     // Constant bundle operands may need to retain their constant-ness for
2334     // correctness.
2335     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2336       return false;
2337     return true;
2338   case Instruction::ShuffleVector:
2339     // Shufflevector masks are constant.
2340     return OpIdx != 2;
2341   case Instruction::Switch:
2342   case Instruction::ExtractValue:
2343     // All operands apart from the first are constant.
2344     return OpIdx == 0;
2345   case Instruction::InsertValue:
2346     // All operands apart from the first and the second are constant.
2347     return OpIdx < 2;
2348   case Instruction::Alloca:
2349     // Static allocas (constant size in the entry block) are handled by
2350     // prologue/epilogue insertion so they're free anyway. We definitely don't
2351     // want to make them non-constant.
2352     return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
2353   case Instruction::GetElementPtr:
2354     if (OpIdx == 0)
2355       return true;
2356     gep_type_iterator It = gep_type_begin(I);
2357     for (auto E = std::next(It, OpIdx); It != E; ++It)
2358       if (It.isStruct())
2359         return false;
2360     return true;
2361   }
2362 }
2363