1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace llvm::PatternMatch;
87 
88 #define DEBUG_TYPE "local"
89 
90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
91 
92 //===----------------------------------------------------------------------===//
93 //  Local constant propagation.
94 //
95 
96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
97 /// constant value, convert it into an unconditional branch to the constant
98 /// destination.  This is a nontrivial operation because the successors of this
99 /// basic block must have their PHI nodes updated.
100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
101 /// conditions and indirectbr addresses this might make dead if
102 /// DeleteDeadConditions is true.
103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
104                                   const TargetLibraryInfo *TLI,
105                                   DeferredDominance *DDT) {
106   TerminatorInst *T = BB->getTerminator();
107   IRBuilder<> Builder(T);
108 
109   // Branch - See if we are conditional jumping on constant
110   if (auto *BI = dyn_cast<BranchInst>(T)) {
111     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
112     BasicBlock *Dest1 = BI->getSuccessor(0);
113     BasicBlock *Dest2 = BI->getSuccessor(1);
114 
115     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
116       // Are we branching on constant?
117       // YES.  Change to unconditional branch...
118       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
119       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
120 
121       // Let the basic block know that we are letting go of it.  Based on this,
122       // it will adjust it's PHI nodes.
123       OldDest->removePredecessor(BB);
124 
125       // Replace the conditional branch with an unconditional one.
126       Builder.CreateBr(Destination);
127       BI->eraseFromParent();
128       if (DDT)
129         DDT->deleteEdge(BB, OldDest);
130       return true;
131     }
132 
133     if (Dest2 == Dest1) {       // Conditional branch to same location?
134       // This branch matches something like this:
135       //     br bool %cond, label %Dest, label %Dest
136       // and changes it into:  br label %Dest
137 
138       // Let the basic block know that we are letting go of one copy of it.
139       assert(BI->getParent() && "Terminator not inserted in block!");
140       Dest1->removePredecessor(BI->getParent());
141 
142       // Replace the conditional branch with an unconditional one.
143       Builder.CreateBr(Dest1);
144       Value *Cond = BI->getCondition();
145       BI->eraseFromParent();
146       if (DeleteDeadConditions)
147         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148       return true;
149     }
150     return false;
151   }
152 
153   if (auto *SI = dyn_cast<SwitchInst>(T)) {
154     // If we are switching on a constant, we can convert the switch to an
155     // unconditional branch.
156     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
157     BasicBlock *DefaultDest = SI->getDefaultDest();
158     BasicBlock *TheOnlyDest = DefaultDest;
159 
160     // If the default is unreachable, ignore it when searching for TheOnlyDest.
161     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162         SI->getNumCases() > 0) {
163       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
164     }
165 
166     // Figure out which case it goes to.
167     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168       // Found case matching a constant operand?
169       if (i->getCaseValue() == CI) {
170         TheOnlyDest = i->getCaseSuccessor();
171         break;
172       }
173 
174       // Check to see if this branch is going to the same place as the default
175       // dest.  If so, eliminate it as an explicit compare.
176       if (i->getCaseSuccessor() == DefaultDest) {
177         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178         unsigned NCases = SI->getNumCases();
179         // Fold the case metadata into the default if there will be any branches
180         // left, unless the metadata doesn't match the switch.
181         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182           // Collect branch weights into a vector.
183           SmallVector<uint32_t, 8> Weights;
184           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185                ++MD_i) {
186             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187             Weights.push_back(CI->getValue().getZExtValue());
188           }
189           // Merge weight of this case to the default weight.
190           unsigned idx = i->getCaseIndex();
191           Weights[0] += Weights[idx+1];
192           // Remove weight for this case.
193           std::swap(Weights[idx+1], Weights.back());
194           Weights.pop_back();
195           SI->setMetadata(LLVMContext::MD_prof,
196                           MDBuilder(BB->getContext()).
197                           createBranchWeights(Weights));
198         }
199         // Remove this entry.
200         BasicBlock *ParentBB = SI->getParent();
201         DefaultDest->removePredecessor(ParentBB);
202         i = SI->removeCase(i);
203         e = SI->case_end();
204         if (DDT)
205           DDT->deleteEdge(ParentBB, DefaultDest);
206         continue;
207       }
208 
209       // Otherwise, check to see if the switch only branches to one destination.
210       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
211       // destinations.
212       if (i->getCaseSuccessor() != TheOnlyDest)
213         TheOnlyDest = nullptr;
214 
215       // Increment this iterator as we haven't removed the case.
216       ++i;
217     }
218 
219     if (CI && !TheOnlyDest) {
220       // Branching on a constant, but not any of the cases, go to the default
221       // successor.
222       TheOnlyDest = SI->getDefaultDest();
223     }
224 
225     // If we found a single destination that we can fold the switch into, do so
226     // now.
227     if (TheOnlyDest) {
228       // Insert the new branch.
229       Builder.CreateBr(TheOnlyDest);
230       BasicBlock *BB = SI->getParent();
231       std::vector <DominatorTree::UpdateType> Updates;
232       if (DDT)
233         Updates.reserve(SI->getNumSuccessors() - 1);
234 
235       // Remove entries from PHI nodes which we no longer branch to...
236       for (BasicBlock *Succ : SI->successors()) {
237         // Found case matching a constant operand?
238         if (Succ == TheOnlyDest) {
239           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
240         } else {
241           Succ->removePredecessor(BB);
242           if (DDT)
243             Updates.push_back({DominatorTree::Delete, BB, Succ});
244         }
245       }
246 
247       // Delete the old switch.
248       Value *Cond = SI->getCondition();
249       SI->eraseFromParent();
250       if (DeleteDeadConditions)
251         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
252       if (DDT)
253         DDT->applyUpdates(Updates);
254       return true;
255     }
256 
257     if (SI->getNumCases() == 1) {
258       // Otherwise, we can fold this switch into a conditional branch
259       // instruction if it has only one non-default destination.
260       auto FirstCase = *SI->case_begin();
261       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
262           FirstCase.getCaseValue(), "cond");
263 
264       // Insert the new branch.
265       BranchInst *NewBr = Builder.CreateCondBr(Cond,
266                                                FirstCase.getCaseSuccessor(),
267                                                SI->getDefaultDest());
268       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
269       if (MD && MD->getNumOperands() == 3) {
270         ConstantInt *SICase =
271             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
272         ConstantInt *SIDef =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
274         assert(SICase && SIDef);
275         // The TrueWeight should be the weight for the single case of SI.
276         NewBr->setMetadata(LLVMContext::MD_prof,
277                         MDBuilder(BB->getContext()).
278                         createBranchWeights(SICase->getValue().getZExtValue(),
279                                             SIDef->getValue().getZExtValue()));
280       }
281 
282       // Update make.implicit metadata to the newly-created conditional branch.
283       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
284       if (MakeImplicitMD)
285         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
286 
287       // Delete the old switch.
288       SI->eraseFromParent();
289       return true;
290     }
291     return false;
292   }
293 
294   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
295     // indirectbr blockaddress(@F, @BB) -> br label @BB
296     if (auto *BA =
297           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
298       BasicBlock *TheOnlyDest = BA->getBasicBlock();
299       std::vector <DominatorTree::UpdateType> Updates;
300       if (DDT)
301         Updates.reserve(IBI->getNumDestinations() - 1);
302 
303       // Insert the new branch.
304       Builder.CreateBr(TheOnlyDest);
305 
306       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
307         if (IBI->getDestination(i) == TheOnlyDest) {
308           TheOnlyDest = nullptr;
309         } else {
310           BasicBlock *ParentBB = IBI->getParent();
311           BasicBlock *DestBB = IBI->getDestination(i);
312           DestBB->removePredecessor(ParentBB);
313           if (DDT)
314             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
315         }
316       }
317       Value *Address = IBI->getAddress();
318       IBI->eraseFromParent();
319       if (DeleteDeadConditions)
320         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
321 
322       // If we didn't find our destination in the IBI successor list, then we
323       // have undefined behavior.  Replace the unconditional branch with an
324       // 'unreachable' instruction.
325       if (TheOnlyDest) {
326         BB->getTerminator()->eraseFromParent();
327         new UnreachableInst(BB->getContext(), BB);
328       }
329 
330       if (DDT)
331         DDT->applyUpdates(Updates);
332       return true;
333     }
334   }
335 
336   return false;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Local dead code elimination.
341 //
342 
343 /// isInstructionTriviallyDead - Return true if the result produced by the
344 /// instruction is not used, and the instruction has no side effects.
345 ///
346 bool llvm::isInstructionTriviallyDead(Instruction *I,
347                                       const TargetLibraryInfo *TLI) {
348   if (!I->use_empty())
349     return false;
350   return wouldInstructionBeTriviallyDead(I, TLI);
351 }
352 
353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
354                                            const TargetLibraryInfo *TLI) {
355   if (isa<TerminatorInst>(I))
356     return false;
357 
358   // We don't want the landingpad-like instructions removed by anything this
359   // general.
360   if (I->isEHPad())
361     return false;
362 
363   // We don't want debug info removed by anything this general, unless
364   // debug info is empty.
365   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
366     if (DDI->getAddress())
367       return false;
368     return true;
369   }
370   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
371     if (DVI->getValue())
372       return false;
373     return true;
374   }
375   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
376     if (DLI->getLabel())
377       return false;
378     return true;
379   }
380 
381   if (!I->mayHaveSideEffects())
382     return true;
383 
384   // Special case intrinsics that "may have side effects" but can be deleted
385   // when dead.
386   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
387     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
388     if (II->getIntrinsicID() == Intrinsic::stacksave ||
389         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
390       return true;
391 
392     // Lifetime intrinsics are dead when their right-hand is undef.
393     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
394         II->getIntrinsicID() == Intrinsic::lifetime_end)
395       return isa<UndefValue>(II->getArgOperand(1));
396 
397     // Assumptions are dead if their condition is trivially true.  Guards on
398     // true are operationally no-ops.  In the future we can consider more
399     // sophisticated tradeoffs for guards considering potential for check
400     // widening, but for now we keep things simple.
401     if (II->getIntrinsicID() == Intrinsic::assume ||
402         II->getIntrinsicID() == Intrinsic::experimental_guard) {
403       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
404         return !Cond->isZero();
405 
406       return false;
407     }
408   }
409 
410   if (isAllocLikeFn(I, TLI))
411     return true;
412 
413   if (CallInst *CI = isFreeCall(I, TLI))
414     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
415       return C->isNullValue() || isa<UndefValue>(C);
416 
417   if (CallSite CS = CallSite(I))
418     if (isMathLibCallNoop(CS, TLI))
419       return true;
420 
421   return false;
422 }
423 
424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
425 /// trivially dead instruction, delete it.  If that makes any of its operands
426 /// trivially dead, delete them too, recursively.  Return true if any
427 /// instructions were deleted.
428 bool
429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
430                                                  const TargetLibraryInfo *TLI) {
431   Instruction *I = dyn_cast<Instruction>(V);
432   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
433     return false;
434 
435   SmallVector<Instruction*, 16> DeadInsts;
436   DeadInsts.push_back(I);
437 
438   do {
439     I = DeadInsts.pop_back_val();
440     salvageDebugInfo(*I);
441 
442     // Null out all of the instruction's operands to see if any operand becomes
443     // dead as we go.
444     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
445       Value *OpV = I->getOperand(i);
446       I->setOperand(i, nullptr);
447 
448       if (!OpV->use_empty()) continue;
449 
450       // If the operand is an instruction that became dead as we nulled out the
451       // operand, and if it is 'trivially' dead, delete it in a future loop
452       // iteration.
453       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
454         if (isInstructionTriviallyDead(OpI, TLI))
455           DeadInsts.push_back(OpI);
456     }
457 
458     I->eraseFromParent();
459   } while (!DeadInsts.empty());
460 
461   return true;
462 }
463 
464 /// areAllUsesEqual - Check whether the uses of a value are all the same.
465 /// This is similar to Instruction::hasOneUse() except this will also return
466 /// true when there are no uses or multiple uses that all refer to the same
467 /// value.
468 static bool areAllUsesEqual(Instruction *I) {
469   Value::user_iterator UI = I->user_begin();
470   Value::user_iterator UE = I->user_end();
471   if (UI == UE)
472     return true;
473 
474   User *TheUse = *UI;
475   for (++UI; UI != UE; ++UI) {
476     if (*UI != TheUse)
477       return false;
478   }
479   return true;
480 }
481 
482 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
483 /// dead PHI node, due to being a def-use chain of single-use nodes that
484 /// either forms a cycle or is terminated by a trivially dead instruction,
485 /// delete it.  If that makes any of its operands trivially dead, delete them
486 /// too, recursively.  Return true if a change was made.
487 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
488                                         const TargetLibraryInfo *TLI) {
489   SmallPtrSet<Instruction*, 4> Visited;
490   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
491        I = cast<Instruction>(*I->user_begin())) {
492     if (I->use_empty())
493       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
494 
495     // If we find an instruction more than once, we're on a cycle that
496     // won't prove fruitful.
497     if (!Visited.insert(I).second) {
498       // Break the cycle and delete the instruction and its operands.
499       I->replaceAllUsesWith(UndefValue::get(I->getType()));
500       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
501       return true;
502     }
503   }
504   return false;
505 }
506 
507 static bool
508 simplifyAndDCEInstruction(Instruction *I,
509                           SmallSetVector<Instruction *, 16> &WorkList,
510                           const DataLayout &DL,
511                           const TargetLibraryInfo *TLI) {
512   if (isInstructionTriviallyDead(I, TLI)) {
513     salvageDebugInfo(*I);
514 
515     // Null out all of the instruction's operands to see if any operand becomes
516     // dead as we go.
517     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
518       Value *OpV = I->getOperand(i);
519       I->setOperand(i, nullptr);
520 
521       if (!OpV->use_empty() || I == OpV)
522         continue;
523 
524       // If the operand is an instruction that became dead as we nulled out the
525       // operand, and if it is 'trivially' dead, delete it in a future loop
526       // iteration.
527       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
528         if (isInstructionTriviallyDead(OpI, TLI))
529           WorkList.insert(OpI);
530     }
531 
532     I->eraseFromParent();
533 
534     return true;
535   }
536 
537   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
538     // Add the users to the worklist. CAREFUL: an instruction can use itself,
539     // in the case of a phi node.
540     for (User *U : I->users()) {
541       if (U != I) {
542         WorkList.insert(cast<Instruction>(U));
543       }
544     }
545 
546     // Replace the instruction with its simplified value.
547     bool Changed = false;
548     if (!I->use_empty()) {
549       I->replaceAllUsesWith(SimpleV);
550       Changed = true;
551     }
552     if (isInstructionTriviallyDead(I, TLI)) {
553       I->eraseFromParent();
554       Changed = true;
555     }
556     return Changed;
557   }
558   return false;
559 }
560 
561 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
562 /// simplify any instructions in it and recursively delete dead instructions.
563 ///
564 /// This returns true if it changed the code, note that it can delete
565 /// instructions in other blocks as well in this block.
566 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
567                                        const TargetLibraryInfo *TLI) {
568   bool MadeChange = false;
569   const DataLayout &DL = BB->getModule()->getDataLayout();
570 
571 #ifndef NDEBUG
572   // In debug builds, ensure that the terminator of the block is never replaced
573   // or deleted by these simplifications. The idea of simplification is that it
574   // cannot introduce new instructions, and there is no way to replace the
575   // terminator of a block without introducing a new instruction.
576   AssertingVH<Instruction> TerminatorVH(&BB->back());
577 #endif
578 
579   SmallSetVector<Instruction *, 16> WorkList;
580   // Iterate over the original function, only adding insts to the worklist
581   // if they actually need to be revisited. This avoids having to pre-init
582   // the worklist with the entire function's worth of instructions.
583   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
584        BI != E;) {
585     assert(!BI->isTerminator());
586     Instruction *I = &*BI;
587     ++BI;
588 
589     // We're visiting this instruction now, so make sure it's not in the
590     // worklist from an earlier visit.
591     if (!WorkList.count(I))
592       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
593   }
594 
595   while (!WorkList.empty()) {
596     Instruction *I = WorkList.pop_back_val();
597     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
598   }
599   return MadeChange;
600 }
601 
602 //===----------------------------------------------------------------------===//
603 //  Control Flow Graph Restructuring.
604 //
605 
606 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
607 /// method is called when we're about to delete Pred as a predecessor of BB.  If
608 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
609 ///
610 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
611 /// nodes that collapse into identity values.  For example, if we have:
612 ///   x = phi(1, 0, 0, 0)
613 ///   y = and x, z
614 ///
615 /// .. and delete the predecessor corresponding to the '1', this will attempt to
616 /// recursively fold the and to 0.
617 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
618                                         DeferredDominance *DDT) {
619   // This only adjusts blocks with PHI nodes.
620   if (!isa<PHINode>(BB->begin()))
621     return;
622 
623   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
624   // them down.  This will leave us with single entry phi nodes and other phis
625   // that can be removed.
626   BB->removePredecessor(Pred, true);
627 
628   WeakTrackingVH PhiIt = &BB->front();
629   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
630     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
631     Value *OldPhiIt = PhiIt;
632 
633     if (!recursivelySimplifyInstruction(PN))
634       continue;
635 
636     // If recursive simplification ended up deleting the next PHI node we would
637     // iterate to, then our iterator is invalid, restart scanning from the top
638     // of the block.
639     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
640   }
641   if (DDT)
642     DDT->deleteEdge(Pred, BB);
643 }
644 
645 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
646 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
647 /// between them, moving the instructions in the predecessor into DestBB and
648 /// deleting the predecessor block.
649 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT,
650                                        DeferredDominance *DDT) {
651   assert(!(DT && DDT) && "Cannot call with both DT and DDT.");
652 
653   // If BB has single-entry PHI nodes, fold them.
654   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
655     Value *NewVal = PN->getIncomingValue(0);
656     // Replace self referencing PHI with undef, it must be dead.
657     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
658     PN->replaceAllUsesWith(NewVal);
659     PN->eraseFromParent();
660   }
661 
662   BasicBlock *PredBB = DestBB->getSinglePredecessor();
663   assert(PredBB && "Block doesn't have a single predecessor!");
664 
665   bool ReplaceEntryBB = false;
666   if (PredBB == &DestBB->getParent()->getEntryBlock())
667     ReplaceEntryBB = true;
668 
669   // Deferred DT update: Collect all the edges that enter PredBB. These
670   // dominator edges will be redirected to DestBB.
671   std::vector <DominatorTree::UpdateType> Updates;
672   if (DDT && !ReplaceEntryBB) {
673     Updates.reserve(1 + (2 * pred_size(PredBB)));
674     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
675     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
676       Updates.push_back({DominatorTree::Delete, *I, PredBB});
677       // This predecessor of PredBB may already have DestBB as a successor.
678       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
679         Updates.push_back({DominatorTree::Insert, *I, DestBB});
680     }
681   }
682 
683   // Zap anything that took the address of DestBB.  Not doing this will give the
684   // address an invalid value.
685   if (DestBB->hasAddressTaken()) {
686     BlockAddress *BA = BlockAddress::get(DestBB);
687     Constant *Replacement =
688       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
689     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
690                                                      BA->getType()));
691     BA->destroyConstant();
692   }
693 
694   // Anything that branched to PredBB now branches to DestBB.
695   PredBB->replaceAllUsesWith(DestBB);
696 
697   // Splice all the instructions from PredBB to DestBB.
698   PredBB->getTerminator()->eraseFromParent();
699   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
700 
701   // If the PredBB is the entry block of the function, move DestBB up to
702   // become the entry block after we erase PredBB.
703   if (ReplaceEntryBB)
704     DestBB->moveAfter(PredBB);
705 
706   if (DT) {
707     // For some irreducible CFG we end up having forward-unreachable blocks
708     // so check if getNode returns a valid node before updating the domtree.
709     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
710       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
711       DT->changeImmediateDominator(DestBB, PredBBIDom);
712       DT->eraseNode(PredBB);
713     }
714   }
715 
716   if (DDT) {
717     DDT->deleteBB(PredBB); // Deferred deletion of BB.
718     if (ReplaceEntryBB)
719       // The entry block was removed and there is no external interface for the
720       // dominator tree to be notified of this change. In this corner-case we
721       // recalculate the entire tree.
722       DDT->recalculate(*(DestBB->getParent()));
723     else
724       DDT->applyUpdates(Updates);
725   } else {
726     PredBB->eraseFromParent(); // Nuke BB.
727   }
728 }
729 
730 /// CanMergeValues - Return true if we can choose one of these values to use
731 /// in place of the other. Note that we will always choose the non-undef
732 /// value to keep.
733 static bool CanMergeValues(Value *First, Value *Second) {
734   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
735 }
736 
737 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
738 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
739 ///
740 /// Assumption: Succ is the single successor for BB.
741 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
742   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
743 
744   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
745                     << Succ->getName() << "\n");
746   // Shortcut, if there is only a single predecessor it must be BB and merging
747   // is always safe
748   if (Succ->getSinglePredecessor()) return true;
749 
750   // Make a list of the predecessors of BB
751   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
752 
753   // Look at all the phi nodes in Succ, to see if they present a conflict when
754   // merging these blocks
755   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
756     PHINode *PN = cast<PHINode>(I);
757 
758     // If the incoming value from BB is again a PHINode in
759     // BB which has the same incoming value for *PI as PN does, we can
760     // merge the phi nodes and then the blocks can still be merged
761     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
762     if (BBPN && BBPN->getParent() == BB) {
763       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
764         BasicBlock *IBB = PN->getIncomingBlock(PI);
765         if (BBPreds.count(IBB) &&
766             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
767                             PN->getIncomingValue(PI))) {
768           LLVM_DEBUG(dbgs()
769                      << "Can't fold, phi node " << PN->getName() << " in "
770                      << Succ->getName() << " is conflicting with "
771                      << BBPN->getName() << " with regard to common predecessor "
772                      << IBB->getName() << "\n");
773           return false;
774         }
775       }
776     } else {
777       Value* Val = PN->getIncomingValueForBlock(BB);
778       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
779         // See if the incoming value for the common predecessor is equal to the
780         // one for BB, in which case this phi node will not prevent the merging
781         // of the block.
782         BasicBlock *IBB = PN->getIncomingBlock(PI);
783         if (BBPreds.count(IBB) &&
784             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
785           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
786                             << " in " << Succ->getName()
787                             << " is conflicting with regard to common "
788                             << "predecessor " << IBB->getName() << "\n");
789           return false;
790         }
791       }
792     }
793   }
794 
795   return true;
796 }
797 
798 using PredBlockVector = SmallVector<BasicBlock *, 16>;
799 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
800 
801 /// Determines the value to use as the phi node input for a block.
802 ///
803 /// Select between \p OldVal any value that we know flows from \p BB
804 /// to a particular phi on the basis of which one (if either) is not
805 /// undef. Update IncomingValues based on the selected value.
806 ///
807 /// \param OldVal The value we are considering selecting.
808 /// \param BB The block that the value flows in from.
809 /// \param IncomingValues A map from block-to-value for other phi inputs
810 /// that we have examined.
811 ///
812 /// \returns the selected value.
813 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
814                                           IncomingValueMap &IncomingValues) {
815   if (!isa<UndefValue>(OldVal)) {
816     assert((!IncomingValues.count(BB) ||
817             IncomingValues.find(BB)->second == OldVal) &&
818            "Expected OldVal to match incoming value from BB!");
819 
820     IncomingValues.insert(std::make_pair(BB, OldVal));
821     return OldVal;
822   }
823 
824   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
825   if (It != IncomingValues.end()) return It->second;
826 
827   return OldVal;
828 }
829 
830 /// Create a map from block to value for the operands of a
831 /// given phi.
832 ///
833 /// Create a map from block to value for each non-undef value flowing
834 /// into \p PN.
835 ///
836 /// \param PN The phi we are collecting the map for.
837 /// \param IncomingValues [out] The map from block to value for this phi.
838 static void gatherIncomingValuesToPhi(PHINode *PN,
839                                       IncomingValueMap &IncomingValues) {
840   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
841     BasicBlock *BB = PN->getIncomingBlock(i);
842     Value *V = PN->getIncomingValue(i);
843 
844     if (!isa<UndefValue>(V))
845       IncomingValues.insert(std::make_pair(BB, V));
846   }
847 }
848 
849 /// Replace the incoming undef values to a phi with the values
850 /// from a block-to-value map.
851 ///
852 /// \param PN The phi we are replacing the undefs in.
853 /// \param IncomingValues A map from block to value.
854 static void replaceUndefValuesInPhi(PHINode *PN,
855                                     const IncomingValueMap &IncomingValues) {
856   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
857     Value *V = PN->getIncomingValue(i);
858 
859     if (!isa<UndefValue>(V)) continue;
860 
861     BasicBlock *BB = PN->getIncomingBlock(i);
862     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
863     if (It == IncomingValues.end()) continue;
864 
865     PN->setIncomingValue(i, It->second);
866   }
867 }
868 
869 /// Replace a value flowing from a block to a phi with
870 /// potentially multiple instances of that value flowing from the
871 /// block's predecessors to the phi.
872 ///
873 /// \param BB The block with the value flowing into the phi.
874 /// \param BBPreds The predecessors of BB.
875 /// \param PN The phi that we are updating.
876 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
877                                                 const PredBlockVector &BBPreds,
878                                                 PHINode *PN) {
879   Value *OldVal = PN->removeIncomingValue(BB, false);
880   assert(OldVal && "No entry in PHI for Pred BB!");
881 
882   IncomingValueMap IncomingValues;
883 
884   // We are merging two blocks - BB, and the block containing PN - and
885   // as a result we need to redirect edges from the predecessors of BB
886   // to go to the block containing PN, and update PN
887   // accordingly. Since we allow merging blocks in the case where the
888   // predecessor and successor blocks both share some predecessors,
889   // and where some of those common predecessors might have undef
890   // values flowing into PN, we want to rewrite those values to be
891   // consistent with the non-undef values.
892 
893   gatherIncomingValuesToPhi(PN, IncomingValues);
894 
895   // If this incoming value is one of the PHI nodes in BB, the new entries
896   // in the PHI node are the entries from the old PHI.
897   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
898     PHINode *OldValPN = cast<PHINode>(OldVal);
899     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
900       // Note that, since we are merging phi nodes and BB and Succ might
901       // have common predecessors, we could end up with a phi node with
902       // identical incoming branches. This will be cleaned up later (and
903       // will trigger asserts if we try to clean it up now, without also
904       // simplifying the corresponding conditional branch).
905       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
906       Value *PredVal = OldValPN->getIncomingValue(i);
907       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
908                                                     IncomingValues);
909 
910       // And add a new incoming value for this predecessor for the
911       // newly retargeted branch.
912       PN->addIncoming(Selected, PredBB);
913     }
914   } else {
915     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
916       // Update existing incoming values in PN for this
917       // predecessor of BB.
918       BasicBlock *PredBB = BBPreds[i];
919       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
920                                                     IncomingValues);
921 
922       // And add a new incoming value for this predecessor for the
923       // newly retargeted branch.
924       PN->addIncoming(Selected, PredBB);
925     }
926   }
927 
928   replaceUndefValuesInPhi(PN, IncomingValues);
929 }
930 
931 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
932 /// unconditional branch, and contains no instructions other than PHI nodes,
933 /// potential side-effect free intrinsics and the branch.  If possible,
934 /// eliminate BB by rewriting all the predecessors to branch to the successor
935 /// block and return true.  If we can't transform, return false.
936 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
937                                                    DeferredDominance *DDT) {
938   assert(BB != &BB->getParent()->getEntryBlock() &&
939          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
940 
941   // We can't eliminate infinite loops.
942   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
943   if (BB == Succ) return false;
944 
945   // Check to see if merging these blocks would cause conflicts for any of the
946   // phi nodes in BB or Succ. If not, we can safely merge.
947   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
948 
949   // Check for cases where Succ has multiple predecessors and a PHI node in BB
950   // has uses which will not disappear when the PHI nodes are merged.  It is
951   // possible to handle such cases, but difficult: it requires checking whether
952   // BB dominates Succ, which is non-trivial to calculate in the case where
953   // Succ has multiple predecessors.  Also, it requires checking whether
954   // constructing the necessary self-referential PHI node doesn't introduce any
955   // conflicts; this isn't too difficult, but the previous code for doing this
956   // was incorrect.
957   //
958   // Note that if this check finds a live use, BB dominates Succ, so BB is
959   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
960   // folding the branch isn't profitable in that case anyway.
961   if (!Succ->getSinglePredecessor()) {
962     BasicBlock::iterator BBI = BB->begin();
963     while (isa<PHINode>(*BBI)) {
964       for (Use &U : BBI->uses()) {
965         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
966           if (PN->getIncomingBlock(U) != BB)
967             return false;
968         } else {
969           return false;
970         }
971       }
972       ++BBI;
973     }
974   }
975 
976   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
977 
978   std::vector<DominatorTree::UpdateType> Updates;
979   if (DDT) {
980     Updates.reserve(1 + (2 * pred_size(BB)));
981     Updates.push_back({DominatorTree::Delete, BB, Succ});
982     // All predecessors of BB will be moved to Succ.
983     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
984       Updates.push_back({DominatorTree::Delete, *I, BB});
985       // This predecessor of BB may already have Succ as a successor.
986       if (llvm::find(successors(*I), Succ) == succ_end(*I))
987         Updates.push_back({DominatorTree::Insert, *I, Succ});
988     }
989   }
990 
991   if (isa<PHINode>(Succ->begin())) {
992     // If there is more than one pred of succ, and there are PHI nodes in
993     // the successor, then we need to add incoming edges for the PHI nodes
994     //
995     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
996 
997     // Loop over all of the PHI nodes in the successor of BB.
998     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
999       PHINode *PN = cast<PHINode>(I);
1000 
1001       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1002     }
1003   }
1004 
1005   if (Succ->getSinglePredecessor()) {
1006     // BB is the only predecessor of Succ, so Succ will end up with exactly
1007     // the same predecessors BB had.
1008 
1009     // Copy over any phi, debug or lifetime instruction.
1010     BB->getTerminator()->eraseFromParent();
1011     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1012                                BB->getInstList());
1013   } else {
1014     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1015       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1016       assert(PN->use_empty() && "There shouldn't be any uses here!");
1017       PN->eraseFromParent();
1018     }
1019   }
1020 
1021   // If the unconditional branch we replaced contains llvm.loop metadata, we
1022   // add the metadata to the branch instructions in the predecessors.
1023   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1024   Instruction *TI = BB->getTerminator();
1025   if (TI)
1026     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1027       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1028         BasicBlock *Pred = *PI;
1029         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1030       }
1031 
1032   // Everything that jumped to BB now goes to Succ.
1033   BB->replaceAllUsesWith(Succ);
1034   if (!Succ->hasName()) Succ->takeName(BB);
1035 
1036   if (DDT) {
1037     DDT->deleteBB(BB); // Deferred deletion of the old basic block.
1038     DDT->applyUpdates(Updates);
1039   } else {
1040     BB->eraseFromParent(); // Delete the old basic block.
1041   }
1042   return true;
1043 }
1044 
1045 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1046 /// nodes in this block. This doesn't try to be clever about PHI nodes
1047 /// which differ only in the order of the incoming values, but instcombine
1048 /// orders them so it usually won't matter.
1049 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1050   // This implementation doesn't currently consider undef operands
1051   // specially. Theoretically, two phis which are identical except for
1052   // one having an undef where the other doesn't could be collapsed.
1053 
1054   struct PHIDenseMapInfo {
1055     static PHINode *getEmptyKey() {
1056       return DenseMapInfo<PHINode *>::getEmptyKey();
1057     }
1058 
1059     static PHINode *getTombstoneKey() {
1060       return DenseMapInfo<PHINode *>::getTombstoneKey();
1061     }
1062 
1063     static unsigned getHashValue(PHINode *PN) {
1064       // Compute a hash value on the operands. Instcombine will likely have
1065       // sorted them, which helps expose duplicates, but we have to check all
1066       // the operands to be safe in case instcombine hasn't run.
1067       return static_cast<unsigned>(hash_combine(
1068           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1069           hash_combine_range(PN->block_begin(), PN->block_end())));
1070     }
1071 
1072     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1073       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1074           RHS == getEmptyKey() || RHS == getTombstoneKey())
1075         return LHS == RHS;
1076       return LHS->isIdenticalTo(RHS);
1077     }
1078   };
1079 
1080   // Set of unique PHINodes.
1081   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1082 
1083   // Examine each PHI.
1084   bool Changed = false;
1085   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1086     auto Inserted = PHISet.insert(PN);
1087     if (!Inserted.second) {
1088       // A duplicate. Replace this PHI with its duplicate.
1089       PN->replaceAllUsesWith(*Inserted.first);
1090       PN->eraseFromParent();
1091       Changed = true;
1092 
1093       // The RAUW can change PHIs that we already visited. Start over from the
1094       // beginning.
1095       PHISet.clear();
1096       I = BB->begin();
1097     }
1098   }
1099 
1100   return Changed;
1101 }
1102 
1103 /// enforceKnownAlignment - If the specified pointer points to an object that
1104 /// we control, modify the object's alignment to PrefAlign. This isn't
1105 /// often possible though. If alignment is important, a more reliable approach
1106 /// is to simply align all global variables and allocation instructions to
1107 /// their preferred alignment from the beginning.
1108 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1109                                       unsigned PrefAlign,
1110                                       const DataLayout &DL) {
1111   assert(PrefAlign > Align);
1112 
1113   V = V->stripPointerCasts();
1114 
1115   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1116     // TODO: ideally, computeKnownBits ought to have used
1117     // AllocaInst::getAlignment() in its computation already, making
1118     // the below max redundant. But, as it turns out,
1119     // stripPointerCasts recurses through infinite layers of bitcasts,
1120     // while computeKnownBits is not allowed to traverse more than 6
1121     // levels.
1122     Align = std::max(AI->getAlignment(), Align);
1123     if (PrefAlign <= Align)
1124       return Align;
1125 
1126     // If the preferred alignment is greater than the natural stack alignment
1127     // then don't round up. This avoids dynamic stack realignment.
1128     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1129       return Align;
1130     AI->setAlignment(PrefAlign);
1131     return PrefAlign;
1132   }
1133 
1134   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1135     // TODO: as above, this shouldn't be necessary.
1136     Align = std::max(GO->getAlignment(), Align);
1137     if (PrefAlign <= Align)
1138       return Align;
1139 
1140     // If there is a large requested alignment and we can, bump up the alignment
1141     // of the global.  If the memory we set aside for the global may not be the
1142     // memory used by the final program then it is impossible for us to reliably
1143     // enforce the preferred alignment.
1144     if (!GO->canIncreaseAlignment())
1145       return Align;
1146 
1147     GO->setAlignment(PrefAlign);
1148     return PrefAlign;
1149   }
1150 
1151   return Align;
1152 }
1153 
1154 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1155                                           const DataLayout &DL,
1156                                           const Instruction *CxtI,
1157                                           AssumptionCache *AC,
1158                                           const DominatorTree *DT) {
1159   assert(V->getType()->isPointerTy() &&
1160          "getOrEnforceKnownAlignment expects a pointer!");
1161 
1162   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1163   unsigned TrailZ = Known.countMinTrailingZeros();
1164 
1165   // Avoid trouble with ridiculously large TrailZ values, such as
1166   // those computed from a null pointer.
1167   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1168 
1169   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1170 
1171   // LLVM doesn't support alignments larger than this currently.
1172   Align = std::min(Align, +Value::MaximumAlignment);
1173 
1174   if (PrefAlign > Align)
1175     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1176 
1177   // We don't need to make any adjustment.
1178   return Align;
1179 }
1180 
1181 ///===---------------------------------------------------------------------===//
1182 ///  Dbg Intrinsic utilities
1183 ///
1184 
1185 /// See if there is a dbg.value intrinsic for DIVar before I.
1186 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1187                               Instruction *I) {
1188   // Since we can't guarantee that the original dbg.declare instrinsic
1189   // is removed by LowerDbgDeclare(), we need to make sure that we are
1190   // not inserting the same dbg.value intrinsic over and over.
1191   BasicBlock::InstListType::iterator PrevI(I);
1192   if (PrevI != I->getParent()->getInstList().begin()) {
1193     --PrevI;
1194     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1195       if (DVI->getValue() == I->getOperand(0) &&
1196           DVI->getVariable() == DIVar &&
1197           DVI->getExpression() == DIExpr)
1198         return true;
1199   }
1200   return false;
1201 }
1202 
1203 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1204 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1205                              DIExpression *DIExpr,
1206                              PHINode *APN) {
1207   // Since we can't guarantee that the original dbg.declare instrinsic
1208   // is removed by LowerDbgDeclare(), we need to make sure that we are
1209   // not inserting the same dbg.value intrinsic over and over.
1210   SmallVector<DbgValueInst *, 1> DbgValues;
1211   findDbgValues(DbgValues, APN);
1212   for (auto *DVI : DbgValues) {
1213     assert(DVI->getValue() == APN);
1214     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1215       return true;
1216   }
1217   return false;
1218 }
1219 
1220 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1221 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1222 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1223                                            StoreInst *SI, DIBuilder &Builder) {
1224   assert(DII->isAddressOfVariable());
1225   auto *DIVar = DII->getVariable();
1226   assert(DIVar && "Missing variable");
1227   auto *DIExpr = DII->getExpression();
1228   Value *DV = SI->getOperand(0);
1229 
1230   // If an argument is zero extended then use argument directly. The ZExt
1231   // may be zapped by an optimization pass in future.
1232   Argument *ExtendedArg = nullptr;
1233   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1234     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1235   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1236     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1237   if (ExtendedArg) {
1238     // If this DII was already describing only a fragment of a variable, ensure
1239     // that fragment is appropriately narrowed here.
1240     // But if a fragment wasn't used, describe the value as the original
1241     // argument (rather than the zext or sext) so that it remains described even
1242     // if the sext/zext is optimized away. This widens the variable description,
1243     // leaving it up to the consumer to know how the smaller value may be
1244     // represented in a larger register.
1245     if (auto Fragment = DIExpr->getFragmentInfo()) {
1246       unsigned FragmentOffset = Fragment->OffsetInBits;
1247       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1248                                    DIExpr->elements_end() - 3);
1249       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1250       Ops.push_back(FragmentOffset);
1251       const DataLayout &DL = DII->getModule()->getDataLayout();
1252       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1253       DIExpr = Builder.createExpression(Ops);
1254     }
1255     DV = ExtendedArg;
1256   }
1257   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1258     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1259                                     SI);
1260 }
1261 
1262 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1263 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1264 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1265                                            LoadInst *LI, DIBuilder &Builder) {
1266   auto *DIVar = DII->getVariable();
1267   auto *DIExpr = DII->getExpression();
1268   assert(DIVar && "Missing variable");
1269 
1270   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1271     return;
1272 
1273   // We are now tracking the loaded value instead of the address. In the
1274   // future if multi-location support is added to the IR, it might be
1275   // preferable to keep tracking both the loaded value and the original
1276   // address in case the alloca can not be elided.
1277   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1278       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1279   DbgValue->insertAfter(LI);
1280 }
1281 
1282 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1283 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1284 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1285                                            PHINode *APN, DIBuilder &Builder) {
1286   auto *DIVar = DII->getVariable();
1287   auto *DIExpr = DII->getExpression();
1288   assert(DIVar && "Missing variable");
1289 
1290   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1291     return;
1292 
1293   BasicBlock *BB = APN->getParent();
1294   auto InsertionPt = BB->getFirstInsertionPt();
1295 
1296   // The block may be a catchswitch block, which does not have a valid
1297   // insertion point.
1298   // FIXME: Insert dbg.value markers in the successors when appropriate.
1299   if (InsertionPt != BB->end())
1300     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1301                                     &*InsertionPt);
1302 }
1303 
1304 /// Determine whether this alloca is either a VLA or an array.
1305 static bool isArray(AllocaInst *AI) {
1306   return AI->isArrayAllocation() ||
1307     AI->getType()->getElementType()->isArrayTy();
1308 }
1309 
1310 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1311 /// of llvm.dbg.value intrinsics.
1312 bool llvm::LowerDbgDeclare(Function &F) {
1313   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1314   SmallVector<DbgDeclareInst *, 4> Dbgs;
1315   for (auto &FI : F)
1316     for (Instruction &BI : FI)
1317       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1318         Dbgs.push_back(DDI);
1319 
1320   if (Dbgs.empty())
1321     return false;
1322 
1323   for (auto &I : Dbgs) {
1324     DbgDeclareInst *DDI = I;
1325     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1326     // If this is an alloca for a scalar variable, insert a dbg.value
1327     // at each load and store to the alloca and erase the dbg.declare.
1328     // The dbg.values allow tracking a variable even if it is not
1329     // stored on the stack, while the dbg.declare can only describe
1330     // the stack slot (and at a lexical-scope granularity). Later
1331     // passes will attempt to elide the stack slot.
1332     if (!AI || isArray(AI))
1333       continue;
1334 
1335     // A volatile load/store means that the alloca can't be elided anyway.
1336     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1337           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1338             return LI->isVolatile();
1339           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1340             return SI->isVolatile();
1341           return false;
1342         }))
1343       continue;
1344 
1345     for (auto &AIUse : AI->uses()) {
1346       User *U = AIUse.getUser();
1347       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1348         if (AIUse.getOperandNo() == 1)
1349           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1350       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1351         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1352       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1353         // This is a call by-value or some other instruction that
1354         // takes a pointer to the variable. Insert a *value*
1355         // intrinsic that describes the alloca.
1356         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1357                                     DDI->getExpression(), DDI->getDebugLoc(),
1358                                     CI);
1359       }
1360     }
1361     DDI->eraseFromParent();
1362   }
1363   return true;
1364 }
1365 
1366 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1367 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1368                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1369   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1370   if (InsertedPHIs.size() == 0)
1371     return;
1372 
1373   // Map existing PHI nodes to their dbg.values.
1374   ValueToValueMapTy DbgValueMap;
1375   for (auto &I : *BB) {
1376     if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1377       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1378         DbgValueMap.insert({Loc, DbgII});
1379     }
1380   }
1381   if (DbgValueMap.size() == 0)
1382     return;
1383 
1384   // Then iterate through the new PHIs and look to see if they use one of the
1385   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1386   // propagate the info through the new PHI.
1387   LLVMContext &C = BB->getContext();
1388   for (auto PHI : InsertedPHIs) {
1389     BasicBlock *Parent = PHI->getParent();
1390     // Avoid inserting an intrinsic into an EH block.
1391     if (Parent->getFirstNonPHI()->isEHPad())
1392       continue;
1393     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1394     for (auto VI : PHI->operand_values()) {
1395       auto V = DbgValueMap.find(VI);
1396       if (V != DbgValueMap.end()) {
1397         auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1398         Instruction *NewDbgII = DbgII->clone();
1399         NewDbgII->setOperand(0, PhiMAV);
1400         auto InsertionPt = Parent->getFirstInsertionPt();
1401         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1402         NewDbgII->insertBefore(&*InsertionPt);
1403       }
1404     }
1405   }
1406 }
1407 
1408 /// Finds all intrinsics declaring local variables as living in the memory that
1409 /// 'V' points to. This may include a mix of dbg.declare and
1410 /// dbg.addr intrinsics.
1411 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1412   auto *L = LocalAsMetadata::getIfExists(V);
1413   if (!L)
1414     return {};
1415   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1416   if (!MDV)
1417     return {};
1418 
1419   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1420   for (User *U : MDV->users()) {
1421     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1422       if (DII->isAddressOfVariable())
1423         Declares.push_back(DII);
1424   }
1425 
1426   return Declares;
1427 }
1428 
1429 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1430   if (auto *L = LocalAsMetadata::getIfExists(V))
1431     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1432       for (User *U : MDV->users())
1433         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1434           DbgValues.push_back(DVI);
1435 }
1436 
1437 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1438                         Value *V) {
1439   if (auto *L = LocalAsMetadata::getIfExists(V))
1440     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1441       for (User *U : MDV->users())
1442         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1443           DbgUsers.push_back(DII);
1444 }
1445 
1446 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1447                              Instruction *InsertBefore, DIBuilder &Builder,
1448                              bool DerefBefore, int Offset, bool DerefAfter) {
1449   auto DbgAddrs = FindDbgAddrUses(Address);
1450   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1451     DebugLoc Loc = DII->getDebugLoc();
1452     auto *DIVar = DII->getVariable();
1453     auto *DIExpr = DII->getExpression();
1454     assert(DIVar && "Missing variable");
1455     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1456     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1457     // llvm.dbg.declare.
1458     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1459     if (DII == InsertBefore)
1460       InsertBefore = &*std::next(InsertBefore->getIterator());
1461     DII->eraseFromParent();
1462   }
1463   return !DbgAddrs.empty();
1464 }
1465 
1466 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1467                                       DIBuilder &Builder, bool DerefBefore,
1468                                       int Offset, bool DerefAfter) {
1469   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1470                            DerefBefore, Offset, DerefAfter);
1471 }
1472 
1473 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1474                                         DIBuilder &Builder, int Offset) {
1475   DebugLoc Loc = DVI->getDebugLoc();
1476   auto *DIVar = DVI->getVariable();
1477   auto *DIExpr = DVI->getExpression();
1478   assert(DIVar && "Missing variable");
1479 
1480   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1481   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1482   // it and give up.
1483   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1484       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1485     return;
1486 
1487   // Insert the offset immediately after the first deref.
1488   // We could just change the offset argument of dbg.value, but it's unsigned...
1489   if (Offset) {
1490     SmallVector<uint64_t, 4> Ops;
1491     Ops.push_back(dwarf::DW_OP_deref);
1492     DIExpression::appendOffset(Ops, Offset);
1493     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1494     DIExpr = Builder.createExpression(Ops);
1495   }
1496 
1497   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1498   DVI->eraseFromParent();
1499 }
1500 
1501 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1502                                     DIBuilder &Builder, int Offset) {
1503   if (auto *L = LocalAsMetadata::getIfExists(AI))
1504     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1505       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1506         Use &U = *UI++;
1507         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1508           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1509       }
1510 }
1511 
1512 void llvm::salvageDebugInfo(Instruction &I) {
1513   // This function is hot. An early check to determine whether the instruction
1514   // has any metadata to save allows it to return earlier on average.
1515   if (!I.isUsedByMetadata())
1516     return;
1517 
1518   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1519   findDbgUsers(DbgUsers, &I);
1520   if (DbgUsers.empty())
1521     return;
1522 
1523   auto &M = *I.getModule();
1524   auto &DL = M.getDataLayout();
1525 
1526   auto wrapMD = [&](Value *V) {
1527     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1528   };
1529 
1530   auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1531     auto *DIExpr = DII->getExpression();
1532     DIExpr =
1533         DIExpression::prependOpcodes(DIExpr, Ops, DIExpression::WithStackValue);
1534     DII->setOperand(0, wrapMD(I.getOperand(0)));
1535     DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1536     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1537   };
1538 
1539   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1540     SmallVector<uint64_t, 8> Ops;
1541     DIExpression::appendOffset(Ops, Offset);
1542     doSalvage(DII, Ops);
1543   };
1544 
1545   auto applyOps = [&](DbgInfoIntrinsic *DII,
1546                       std::initializer_list<uint64_t> Opcodes) {
1547     SmallVector<uint64_t, 8> Ops(Opcodes);
1548     doSalvage(DII, Ops);
1549   };
1550 
1551   if (auto *CI = dyn_cast<CastInst>(&I)) {
1552     if (!CI->isNoopCast(DL))
1553       return;
1554 
1555     // No-op casts are irrelevant for debug info.
1556     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1557     for (auto *DII : DbgUsers) {
1558       DII->setOperand(0, CastSrc);
1559       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1560     }
1561   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1562     unsigned BitWidth =
1563         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1564     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1565     // arithmetic to compute the variable's *value* in the DIExpression, we
1566     // need to mark the expression with a DW_OP_stack_value.
1567     APInt Offset(BitWidth, 0);
1568     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1569       for (auto *DII : DbgUsers)
1570         applyOffset(DII, Offset.getSExtValue());
1571   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1572     // Rewrite binary operations with constant integer operands.
1573     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1574     if (!ConstInt || ConstInt->getBitWidth() > 64)
1575       return;
1576 
1577     uint64_t Val = ConstInt->getSExtValue();
1578     for (auto *DII : DbgUsers) {
1579       switch (BI->getOpcode()) {
1580       case Instruction::Add:
1581         applyOffset(DII, Val);
1582         break;
1583       case Instruction::Sub:
1584         applyOffset(DII, -int64_t(Val));
1585         break;
1586       case Instruction::Mul:
1587         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1588         break;
1589       case Instruction::SDiv:
1590         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1591         break;
1592       case Instruction::SRem:
1593         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1594         break;
1595       case Instruction::Or:
1596         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1597         break;
1598       case Instruction::And:
1599         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1600         break;
1601       case Instruction::Xor:
1602         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1603         break;
1604       case Instruction::Shl:
1605         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1606         break;
1607       case Instruction::LShr:
1608         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1609         break;
1610       case Instruction::AShr:
1611         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1612         break;
1613       default:
1614         // TODO: Salvage constants from each kind of binop we know about.
1615         continue;
1616       }
1617     }
1618   } else if (isa<LoadInst>(&I)) {
1619     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1620     for (auto *DII : DbgUsers) {
1621       // Rewrite the load into DW_OP_deref.
1622       auto *DIExpr = DII->getExpression();
1623       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1624       DII->setOperand(0, AddrMD);
1625       DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1626       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1627     }
1628   }
1629 }
1630 
1631 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1632   unsigned NumDeadInst = 0;
1633   // Delete the instructions backwards, as it has a reduced likelihood of
1634   // having to update as many def-use and use-def chains.
1635   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1636   while (EndInst != &BB->front()) {
1637     // Delete the next to last instruction.
1638     Instruction *Inst = &*--EndInst->getIterator();
1639     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1640       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1641     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1642       EndInst = Inst;
1643       continue;
1644     }
1645     if (!isa<DbgInfoIntrinsic>(Inst))
1646       ++NumDeadInst;
1647     Inst->eraseFromParent();
1648   }
1649   return NumDeadInst;
1650 }
1651 
1652 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1653                                    bool PreserveLCSSA, DeferredDominance *DDT) {
1654   BasicBlock *BB = I->getParent();
1655   std::vector <DominatorTree::UpdateType> Updates;
1656 
1657   // Loop over all of the successors, removing BB's entry from any PHI
1658   // nodes.
1659   if (DDT)
1660     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1661   for (BasicBlock *Successor : successors(BB)) {
1662     Successor->removePredecessor(BB, PreserveLCSSA);
1663     if (DDT)
1664       Updates.push_back({DominatorTree::Delete, BB, Successor});
1665   }
1666   // Insert a call to llvm.trap right before this.  This turns the undefined
1667   // behavior into a hard fail instead of falling through into random code.
1668   if (UseLLVMTrap) {
1669     Function *TrapFn =
1670       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1671     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1672     CallTrap->setDebugLoc(I->getDebugLoc());
1673   }
1674   new UnreachableInst(I->getContext(), I);
1675 
1676   // All instructions after this are dead.
1677   unsigned NumInstrsRemoved = 0;
1678   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1679   while (BBI != BBE) {
1680     if (!BBI->use_empty())
1681       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1682     BB->getInstList().erase(BBI++);
1683     ++NumInstrsRemoved;
1684   }
1685   if (DDT)
1686     DDT->applyUpdates(Updates);
1687   return NumInstrsRemoved;
1688 }
1689 
1690 /// changeToCall - Convert the specified invoke into a normal call.
1691 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) {
1692   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1693   SmallVector<OperandBundleDef, 1> OpBundles;
1694   II->getOperandBundlesAsDefs(OpBundles);
1695   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1696                                        "", II);
1697   NewCall->takeName(II);
1698   NewCall->setCallingConv(II->getCallingConv());
1699   NewCall->setAttributes(II->getAttributes());
1700   NewCall->setDebugLoc(II->getDebugLoc());
1701   II->replaceAllUsesWith(NewCall);
1702 
1703   // Follow the call by a branch to the normal destination.
1704   BasicBlock *NormalDestBB = II->getNormalDest();
1705   BranchInst::Create(NormalDestBB, II);
1706 
1707   // Update PHI nodes in the unwind destination
1708   BasicBlock *BB = II->getParent();
1709   BasicBlock *UnwindDestBB = II->getUnwindDest();
1710   UnwindDestBB->removePredecessor(BB);
1711   II->eraseFromParent();
1712   if (DDT)
1713     DDT->deleteEdge(BB, UnwindDestBB);
1714 }
1715 
1716 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1717                                                    BasicBlock *UnwindEdge) {
1718   BasicBlock *BB = CI->getParent();
1719 
1720   // Convert this function call into an invoke instruction.  First, split the
1721   // basic block.
1722   BasicBlock *Split =
1723       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1724 
1725   // Delete the unconditional branch inserted by splitBasicBlock
1726   BB->getInstList().pop_back();
1727 
1728   // Create the new invoke instruction.
1729   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1730   SmallVector<OperandBundleDef, 1> OpBundles;
1731 
1732   CI->getOperandBundlesAsDefs(OpBundles);
1733 
1734   // Note: we're round tripping operand bundles through memory here, and that
1735   // can potentially be avoided with a cleverer API design that we do not have
1736   // as of this time.
1737 
1738   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1739                                       InvokeArgs, OpBundles, CI->getName(), BB);
1740   II->setDebugLoc(CI->getDebugLoc());
1741   II->setCallingConv(CI->getCallingConv());
1742   II->setAttributes(CI->getAttributes());
1743 
1744   // Make sure that anything using the call now uses the invoke!  This also
1745   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1746   CI->replaceAllUsesWith(II);
1747 
1748   // Delete the original call
1749   Split->getInstList().pop_front();
1750   return Split;
1751 }
1752 
1753 static bool markAliveBlocks(Function &F,
1754                             SmallPtrSetImpl<BasicBlock*> &Reachable,
1755                             DeferredDominance *DDT = nullptr) {
1756   SmallVector<BasicBlock*, 128> Worklist;
1757   BasicBlock *BB = &F.front();
1758   Worklist.push_back(BB);
1759   Reachable.insert(BB);
1760   bool Changed = false;
1761   do {
1762     BB = Worklist.pop_back_val();
1763 
1764     // Do a quick scan of the basic block, turning any obviously unreachable
1765     // instructions into LLVM unreachable insts.  The instruction combining pass
1766     // canonicalizes unreachable insts into stores to null or undef.
1767     for (Instruction &I : *BB) {
1768       // Assumptions that are known to be false are equivalent to unreachable.
1769       // Also, if the condition is undefined, then we make the choice most
1770       // beneficial to the optimizer, and choose that to also be unreachable.
1771       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1772         if (II->getIntrinsicID() == Intrinsic::assume) {
1773           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1774             // Don't insert a call to llvm.trap right before the unreachable.
1775             changeToUnreachable(II, false, false, DDT);
1776             Changed = true;
1777             break;
1778           }
1779         }
1780 
1781         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1782           // A call to the guard intrinsic bails out of the current compilation
1783           // unit if the predicate passed to it is false.  If the predicate is a
1784           // constant false, then we know the guard will bail out of the current
1785           // compile unconditionally, so all code following it is dead.
1786           //
1787           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1788           // guards to treat `undef` as `false` since a guard on `undef` can
1789           // still be useful for widening.
1790           if (match(II->getArgOperand(0), m_Zero()))
1791             if (!isa<UnreachableInst>(II->getNextNode())) {
1792               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false,
1793                                   false, DDT);
1794               Changed = true;
1795               break;
1796             }
1797         }
1798       }
1799 
1800       if (auto *CI = dyn_cast<CallInst>(&I)) {
1801         Value *Callee = CI->getCalledValue();
1802         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1803           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT);
1804           Changed = true;
1805           break;
1806         }
1807         if (CI->doesNotReturn()) {
1808           // If we found a call to a no-return function, insert an unreachable
1809           // instruction after it.  Make sure there isn't *already* one there
1810           // though.
1811           if (!isa<UnreachableInst>(CI->getNextNode())) {
1812             // Don't insert a call to llvm.trap right before the unreachable.
1813             changeToUnreachable(CI->getNextNode(), false, false, DDT);
1814             Changed = true;
1815           }
1816           break;
1817         }
1818       }
1819 
1820       // Store to undef and store to null are undefined and used to signal that
1821       // they should be changed to unreachable by passes that can't modify the
1822       // CFG.
1823       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1824         // Don't touch volatile stores.
1825         if (SI->isVolatile()) continue;
1826 
1827         Value *Ptr = SI->getOperand(1);
1828 
1829         if (isa<UndefValue>(Ptr) ||
1830             (isa<ConstantPointerNull>(Ptr) &&
1831              SI->getPointerAddressSpace() == 0)) {
1832           changeToUnreachable(SI, true, false, DDT);
1833           Changed = true;
1834           break;
1835         }
1836       }
1837     }
1838 
1839     TerminatorInst *Terminator = BB->getTerminator();
1840     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1841       // Turn invokes that call 'nounwind' functions into ordinary calls.
1842       Value *Callee = II->getCalledValue();
1843       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1844         changeToUnreachable(II, true, false, DDT);
1845         Changed = true;
1846       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1847         if (II->use_empty() && II->onlyReadsMemory()) {
1848           // jump to the normal destination branch.
1849           BasicBlock *NormalDestBB = II->getNormalDest();
1850           BasicBlock *UnwindDestBB = II->getUnwindDest();
1851           BranchInst::Create(NormalDestBB, II);
1852           UnwindDestBB->removePredecessor(II->getParent());
1853           II->eraseFromParent();
1854           if (DDT)
1855             DDT->deleteEdge(BB, UnwindDestBB);
1856         } else
1857           changeToCall(II, DDT);
1858         Changed = true;
1859       }
1860     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1861       // Remove catchpads which cannot be reached.
1862       struct CatchPadDenseMapInfo {
1863         static CatchPadInst *getEmptyKey() {
1864           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1865         }
1866 
1867         static CatchPadInst *getTombstoneKey() {
1868           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1869         }
1870 
1871         static unsigned getHashValue(CatchPadInst *CatchPad) {
1872           return static_cast<unsigned>(hash_combine_range(
1873               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1874         }
1875 
1876         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1877           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1878               RHS == getEmptyKey() || RHS == getTombstoneKey())
1879             return LHS == RHS;
1880           return LHS->isIdenticalTo(RHS);
1881         }
1882       };
1883 
1884       // Set of unique CatchPads.
1885       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1886                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1887           HandlerSet;
1888       detail::DenseSetEmpty Empty;
1889       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1890                                              E = CatchSwitch->handler_end();
1891            I != E; ++I) {
1892         BasicBlock *HandlerBB = *I;
1893         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1894         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1895           CatchSwitch->removeHandler(I);
1896           --I;
1897           --E;
1898           Changed = true;
1899         }
1900       }
1901     }
1902 
1903     Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT);
1904     for (BasicBlock *Successor : successors(BB))
1905       if (Reachable.insert(Successor).second)
1906         Worklist.push_back(Successor);
1907   } while (!Worklist.empty());
1908   return Changed;
1909 }
1910 
1911 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) {
1912   TerminatorInst *TI = BB->getTerminator();
1913 
1914   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1915     changeToCall(II, DDT);
1916     return;
1917   }
1918 
1919   TerminatorInst *NewTI;
1920   BasicBlock *UnwindDest;
1921 
1922   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1923     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1924     UnwindDest = CRI->getUnwindDest();
1925   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1926     auto *NewCatchSwitch = CatchSwitchInst::Create(
1927         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1928         CatchSwitch->getName(), CatchSwitch);
1929     for (BasicBlock *PadBB : CatchSwitch->handlers())
1930       NewCatchSwitch->addHandler(PadBB);
1931 
1932     NewTI = NewCatchSwitch;
1933     UnwindDest = CatchSwitch->getUnwindDest();
1934   } else {
1935     llvm_unreachable("Could not find unwind successor");
1936   }
1937 
1938   NewTI->takeName(TI);
1939   NewTI->setDebugLoc(TI->getDebugLoc());
1940   UnwindDest->removePredecessor(BB);
1941   TI->replaceAllUsesWith(NewTI);
1942   TI->eraseFromParent();
1943   if (DDT)
1944     DDT->deleteEdge(BB, UnwindDest);
1945 }
1946 
1947 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1948 /// if they are in a dead cycle.  Return true if a change was made, false
1949 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1950 /// after modifying the CFG.
1951 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
1952                                    DeferredDominance *DDT) {
1953   SmallPtrSet<BasicBlock*, 16> Reachable;
1954   bool Changed = markAliveBlocks(F, Reachable, DDT);
1955 
1956   // If there are unreachable blocks in the CFG...
1957   if (Reachable.size() == F.size())
1958     return Changed;
1959 
1960   assert(Reachable.size() < F.size());
1961   NumRemoved += F.size()-Reachable.size();
1962 
1963   // Loop over all of the basic blocks that are not reachable, dropping all of
1964   // their internal references. Update DDT and LVI if available.
1965   std::vector <DominatorTree::UpdateType> Updates;
1966   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
1967     auto *BB = &*I;
1968     if (Reachable.count(BB))
1969       continue;
1970     for (BasicBlock *Successor : successors(BB)) {
1971       if (Reachable.count(Successor))
1972         Successor->removePredecessor(BB);
1973       if (DDT)
1974         Updates.push_back({DominatorTree::Delete, BB, Successor});
1975     }
1976     if (LVI)
1977       LVI->eraseBlock(BB);
1978     BB->dropAllReferences();
1979   }
1980 
1981   for (Function::iterator I = ++F.begin(); I != F.end();) {
1982     auto *BB = &*I;
1983     if (Reachable.count(BB)) {
1984       ++I;
1985       continue;
1986     }
1987     if (DDT) {
1988       DDT->deleteBB(BB); // deferred deletion of BB.
1989       ++I;
1990     } else {
1991       I = F.getBasicBlockList().erase(I);
1992     }
1993   }
1994 
1995   if (DDT)
1996     DDT->applyUpdates(Updates);
1997   return true;
1998 }
1999 
2000 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2001                            ArrayRef<unsigned> KnownIDs) {
2002   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2003   K->dropUnknownNonDebugMetadata(KnownIDs);
2004   K->getAllMetadataOtherThanDebugLoc(Metadata);
2005   for (const auto &MD : Metadata) {
2006     unsigned Kind = MD.first;
2007     MDNode *JMD = J->getMetadata(Kind);
2008     MDNode *KMD = MD.second;
2009 
2010     switch (Kind) {
2011       default:
2012         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2013         break;
2014       case LLVMContext::MD_dbg:
2015         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2016       case LLVMContext::MD_tbaa:
2017         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2018         break;
2019       case LLVMContext::MD_alias_scope:
2020         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2021         break;
2022       case LLVMContext::MD_noalias:
2023       case LLVMContext::MD_mem_parallel_loop_access:
2024         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2025         break;
2026       case LLVMContext::MD_range:
2027         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2028         break;
2029       case LLVMContext::MD_fpmath:
2030         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2031         break;
2032       case LLVMContext::MD_invariant_load:
2033         // Only set the !invariant.load if it is present in both instructions.
2034         K->setMetadata(Kind, JMD);
2035         break;
2036       case LLVMContext::MD_nonnull:
2037         // Only set the !nonnull if it is present in both instructions.
2038         K->setMetadata(Kind, JMD);
2039         break;
2040       case LLVMContext::MD_invariant_group:
2041         // Preserve !invariant.group in K.
2042         break;
2043       case LLVMContext::MD_align:
2044         K->setMetadata(Kind,
2045           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2046         break;
2047       case LLVMContext::MD_dereferenceable:
2048       case LLVMContext::MD_dereferenceable_or_null:
2049         K->setMetadata(Kind,
2050           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2051         break;
2052     }
2053   }
2054   // Set !invariant.group from J if J has it. If both instructions have it
2055   // then we will just pick it from J - even when they are different.
2056   // Also make sure that K is load or store - f.e. combining bitcast with load
2057   // could produce bitcast with invariant.group metadata, which is invalid.
2058   // FIXME: we should try to preserve both invariant.group md if they are
2059   // different, but right now instruction can only have one invariant.group.
2060   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2061     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2062       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2063 }
2064 
2065 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2066   unsigned KnownIDs[] = {
2067       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2068       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2069       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2070       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2071       LLVMContext::MD_dereferenceable,
2072       LLVMContext::MD_dereferenceable_or_null};
2073   combineMetadata(K, J, KnownIDs);
2074 }
2075 
2076 template <typename RootType, typename DominatesFn>
2077 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2078                                          const RootType &Root,
2079                                          const DominatesFn &Dominates) {
2080   assert(From->getType() == To->getType());
2081 
2082   unsigned Count = 0;
2083   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2084        UI != UE;) {
2085     Use &U = *UI++;
2086     if (!Dominates(Root, U))
2087       continue;
2088     U.set(To);
2089     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2090                       << "' as " << *To << " in " << *U << "\n");
2091     ++Count;
2092   }
2093   return Count;
2094 }
2095 
2096 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2097    assert(From->getType() == To->getType());
2098    auto *BB = From->getParent();
2099    unsigned Count = 0;
2100 
2101   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2102        UI != UE;) {
2103     Use &U = *UI++;
2104     auto *I = cast<Instruction>(U.getUser());
2105     if (I->getParent() == BB)
2106       continue;
2107     U.set(To);
2108     ++Count;
2109   }
2110   return Count;
2111 }
2112 
2113 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2114                                         DominatorTree &DT,
2115                                         const BasicBlockEdge &Root) {
2116   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2117     return DT.dominates(Root, U);
2118   };
2119   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2120 }
2121 
2122 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2123                                         DominatorTree &DT,
2124                                         const BasicBlock *BB) {
2125   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2126     auto *I = cast<Instruction>(U.getUser())->getParent();
2127     return DT.properlyDominates(BB, I);
2128   };
2129   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2130 }
2131 
2132 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2133                                const TargetLibraryInfo &TLI) {
2134   // Check if the function is specifically marked as a gc leaf function.
2135   if (CS.hasFnAttr("gc-leaf-function"))
2136     return true;
2137   if (const Function *F = CS.getCalledFunction()) {
2138     if (F->hasFnAttribute("gc-leaf-function"))
2139       return true;
2140 
2141     if (auto IID = F->getIntrinsicID())
2142       // Most LLVM intrinsics do not take safepoints.
2143       return IID != Intrinsic::experimental_gc_statepoint &&
2144              IID != Intrinsic::experimental_deoptimize;
2145   }
2146 
2147   // Lib calls can be materialized by some passes, and won't be
2148   // marked as 'gc-leaf-function.' All available Libcalls are
2149   // GC-leaf.
2150   LibFunc LF;
2151   if (TLI.getLibFunc(CS, LF)) {
2152     return TLI.has(LF);
2153   }
2154 
2155   return false;
2156 }
2157 
2158 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2159                                LoadInst &NewLI) {
2160   auto *NewTy = NewLI.getType();
2161 
2162   // This only directly applies if the new type is also a pointer.
2163   if (NewTy->isPointerTy()) {
2164     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2165     return;
2166   }
2167 
2168   // The only other translation we can do is to integral loads with !range
2169   // metadata.
2170   if (!NewTy->isIntegerTy())
2171     return;
2172 
2173   MDBuilder MDB(NewLI.getContext());
2174   const Value *Ptr = OldLI.getPointerOperand();
2175   auto *ITy = cast<IntegerType>(NewTy);
2176   auto *NullInt = ConstantExpr::getPtrToInt(
2177       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2178   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2179   NewLI.setMetadata(LLVMContext::MD_range,
2180                     MDB.createRange(NonNullInt, NullInt));
2181 }
2182 
2183 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2184                              MDNode *N, LoadInst &NewLI) {
2185   auto *NewTy = NewLI.getType();
2186 
2187   // Give up unless it is converted to a pointer where there is a single very
2188   // valuable mapping we can do reliably.
2189   // FIXME: It would be nice to propagate this in more ways, but the type
2190   // conversions make it hard.
2191   if (!NewTy->isPointerTy())
2192     return;
2193 
2194   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2195   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2196     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2197     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2198   }
2199 }
2200 
2201 namespace {
2202 
2203 /// A potential constituent of a bitreverse or bswap expression. See
2204 /// collectBitParts for a fuller explanation.
2205 struct BitPart {
2206   BitPart(Value *P, unsigned BW) : Provider(P) {
2207     Provenance.resize(BW);
2208   }
2209 
2210   /// The Value that this is a bitreverse/bswap of.
2211   Value *Provider;
2212 
2213   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2214   /// in Provider becomes bit B in the result of this expression.
2215   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2216 
2217   enum { Unset = -1 };
2218 };
2219 
2220 } // end anonymous namespace
2221 
2222 /// Analyze the specified subexpression and see if it is capable of providing
2223 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2224 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2225 /// the output of the expression came from a corresponding bit in some other
2226 /// value. This function is recursive, and the end result is a mapping of
2227 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2228 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2229 ///
2230 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2231 /// that the expression deposits the low byte of %X into the high byte of the
2232 /// result and that all other bits are zero. This expression is accepted and a
2233 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2234 /// [0-7].
2235 ///
2236 /// To avoid revisiting values, the BitPart results are memoized into the
2237 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2238 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2239 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2240 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2241 /// type instead to provide the same functionality.
2242 ///
2243 /// Because we pass around references into \c BPS, we must use a container that
2244 /// does not invalidate internal references (std::map instead of DenseMap).
2245 static const Optional<BitPart> &
2246 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2247                 std::map<Value *, Optional<BitPart>> &BPS) {
2248   auto I = BPS.find(V);
2249   if (I != BPS.end())
2250     return I->second;
2251 
2252   auto &Result = BPS[V] = None;
2253   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2254 
2255   if (Instruction *I = dyn_cast<Instruction>(V)) {
2256     // If this is an or instruction, it may be an inner node of the bswap.
2257     if (I->getOpcode() == Instruction::Or) {
2258       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2259                                 MatchBitReversals, BPS);
2260       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2261                                 MatchBitReversals, BPS);
2262       if (!A || !B)
2263         return Result;
2264 
2265       // Try and merge the two together.
2266       if (!A->Provider || A->Provider != B->Provider)
2267         return Result;
2268 
2269       Result = BitPart(A->Provider, BitWidth);
2270       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2271         if (A->Provenance[i] != BitPart::Unset &&
2272             B->Provenance[i] != BitPart::Unset &&
2273             A->Provenance[i] != B->Provenance[i])
2274           return Result = None;
2275 
2276         if (A->Provenance[i] == BitPart::Unset)
2277           Result->Provenance[i] = B->Provenance[i];
2278         else
2279           Result->Provenance[i] = A->Provenance[i];
2280       }
2281 
2282       return Result;
2283     }
2284 
2285     // If this is a logical shift by a constant, recurse then shift the result.
2286     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2287       unsigned BitShift =
2288           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2289       // Ensure the shift amount is defined.
2290       if (BitShift > BitWidth)
2291         return Result;
2292 
2293       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2294                                   MatchBitReversals, BPS);
2295       if (!Res)
2296         return Result;
2297       Result = Res;
2298 
2299       // Perform the "shift" on BitProvenance.
2300       auto &P = Result->Provenance;
2301       if (I->getOpcode() == Instruction::Shl) {
2302         P.erase(std::prev(P.end(), BitShift), P.end());
2303         P.insert(P.begin(), BitShift, BitPart::Unset);
2304       } else {
2305         P.erase(P.begin(), std::next(P.begin(), BitShift));
2306         P.insert(P.end(), BitShift, BitPart::Unset);
2307       }
2308 
2309       return Result;
2310     }
2311 
2312     // If this is a logical 'and' with a mask that clears bits, recurse then
2313     // unset the appropriate bits.
2314     if (I->getOpcode() == Instruction::And &&
2315         isa<ConstantInt>(I->getOperand(1))) {
2316       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2317       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2318 
2319       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2320       // early exit.
2321       unsigned NumMaskedBits = AndMask.countPopulation();
2322       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2323         return Result;
2324 
2325       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2326                                   MatchBitReversals, BPS);
2327       if (!Res)
2328         return Result;
2329       Result = Res;
2330 
2331       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2332         // If the AndMask is zero for this bit, clear the bit.
2333         if ((AndMask & Bit) == 0)
2334           Result->Provenance[i] = BitPart::Unset;
2335       return Result;
2336     }
2337 
2338     // If this is a zext instruction zero extend the result.
2339     if (I->getOpcode() == Instruction::ZExt) {
2340       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2341                                   MatchBitReversals, BPS);
2342       if (!Res)
2343         return Result;
2344 
2345       Result = BitPart(Res->Provider, BitWidth);
2346       auto NarrowBitWidth =
2347           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2348       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2349         Result->Provenance[i] = Res->Provenance[i];
2350       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2351         Result->Provenance[i] = BitPart::Unset;
2352       return Result;
2353     }
2354   }
2355 
2356   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2357   // the input value to the bswap/bitreverse.
2358   Result = BitPart(V, BitWidth);
2359   for (unsigned i = 0; i < BitWidth; ++i)
2360     Result->Provenance[i] = i;
2361   return Result;
2362 }
2363 
2364 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2365                                           unsigned BitWidth) {
2366   if (From % 8 != To % 8)
2367     return false;
2368   // Convert from bit indices to byte indices and check for a byte reversal.
2369   From >>= 3;
2370   To >>= 3;
2371   BitWidth >>= 3;
2372   return From == BitWidth - To - 1;
2373 }
2374 
2375 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2376                                                unsigned BitWidth) {
2377   return From == BitWidth - To - 1;
2378 }
2379 
2380 bool llvm::recognizeBSwapOrBitReverseIdiom(
2381     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2382     SmallVectorImpl<Instruction *> &InsertedInsts) {
2383   if (Operator::getOpcode(I) != Instruction::Or)
2384     return false;
2385   if (!MatchBSwaps && !MatchBitReversals)
2386     return false;
2387   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2388   if (!ITy || ITy->getBitWidth() > 128)
2389     return false;   // Can't do vectors or integers > 128 bits.
2390   unsigned BW = ITy->getBitWidth();
2391 
2392   unsigned DemandedBW = BW;
2393   IntegerType *DemandedTy = ITy;
2394   if (I->hasOneUse()) {
2395     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2396       DemandedTy = cast<IntegerType>(Trunc->getType());
2397       DemandedBW = DemandedTy->getBitWidth();
2398     }
2399   }
2400 
2401   // Try to find all the pieces corresponding to the bswap.
2402   std::map<Value *, Optional<BitPart>> BPS;
2403   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2404   if (!Res)
2405     return false;
2406   auto &BitProvenance = Res->Provenance;
2407 
2408   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2409   // only byteswap values with an even number of bytes.
2410   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2411   for (unsigned i = 0; i < DemandedBW; ++i) {
2412     OKForBSwap &=
2413         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2414     OKForBitReverse &=
2415         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2416   }
2417 
2418   Intrinsic::ID Intrin;
2419   if (OKForBSwap && MatchBSwaps)
2420     Intrin = Intrinsic::bswap;
2421   else if (OKForBitReverse && MatchBitReversals)
2422     Intrin = Intrinsic::bitreverse;
2423   else
2424     return false;
2425 
2426   if (ITy != DemandedTy) {
2427     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2428     Value *Provider = Res->Provider;
2429     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2430     // We may need to truncate the provider.
2431     if (DemandedTy != ProviderTy) {
2432       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2433                                      "trunc", I);
2434       InsertedInsts.push_back(Trunc);
2435       Provider = Trunc;
2436     }
2437     auto *CI = CallInst::Create(F, Provider, "rev", I);
2438     InsertedInsts.push_back(CI);
2439     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2440     InsertedInsts.push_back(ExtInst);
2441     return true;
2442   }
2443 
2444   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2445   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2446   return true;
2447 }
2448 
2449 // CodeGen has special handling for some string functions that may replace
2450 // them with target-specific intrinsics.  Since that'd skip our interceptors
2451 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2452 // we mark affected calls as NoBuiltin, which will disable optimization
2453 // in CodeGen.
2454 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2455     CallInst *CI, const TargetLibraryInfo *TLI) {
2456   Function *F = CI->getCalledFunction();
2457   LibFunc Func;
2458   if (F && !F->hasLocalLinkage() && F->hasName() &&
2459       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2460       !F->doesNotAccessMemory())
2461     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2462 }
2463 
2464 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2465   // We can't have a PHI with a metadata type.
2466   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2467     return false;
2468 
2469   // Early exit.
2470   if (!isa<Constant>(I->getOperand(OpIdx)))
2471     return true;
2472 
2473   switch (I->getOpcode()) {
2474   default:
2475     return true;
2476   case Instruction::Call:
2477   case Instruction::Invoke:
2478     // Can't handle inline asm. Skip it.
2479     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2480       return false;
2481     // Many arithmetic intrinsics have no issue taking a
2482     // variable, however it's hard to distingish these from
2483     // specials such as @llvm.frameaddress that require a constant.
2484     if (isa<IntrinsicInst>(I))
2485       return false;
2486 
2487     // Constant bundle operands may need to retain their constant-ness for
2488     // correctness.
2489     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2490       return false;
2491     return true;
2492   case Instruction::ShuffleVector:
2493     // Shufflevector masks are constant.
2494     return OpIdx != 2;
2495   case Instruction::Switch:
2496   case Instruction::ExtractValue:
2497     // All operands apart from the first are constant.
2498     return OpIdx == 0;
2499   case Instruction::InsertValue:
2500     // All operands apart from the first and the second are constant.
2501     return OpIdx < 2;
2502   case Instruction::Alloca:
2503     // Static allocas (constant size in the entry block) are handled by
2504     // prologue/epilogue insertion so they're free anyway. We definitely don't
2505     // want to make them non-constant.
2506     return !cast<AllocaInst>(I)->isStaticAlloca();
2507   case Instruction::GetElementPtr:
2508     if (OpIdx == 0)
2509       return true;
2510     gep_type_iterator It = gep_type_begin(I);
2511     for (auto E = std::next(It, OpIdx); It != E; ++It)
2512       if (It.isStruct())
2513         return false;
2514     return true;
2515   }
2516 }
2517