1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 92 //===----------------------------------------------------------------------===// 93 // Local constant propagation. 94 // 95 96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 97 /// constant value, convert it into an unconditional branch to the constant 98 /// destination. This is a nontrivial operation because the successors of this 99 /// basic block must have their PHI nodes updated. 100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 101 /// conditions and indirectbr addresses this might make dead if 102 /// DeleteDeadConditions is true. 103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 104 const TargetLibraryInfo *TLI, 105 DeferredDominance *DDT) { 106 TerminatorInst *T = BB->getTerminator(); 107 IRBuilder<> Builder(T); 108 109 // Branch - See if we are conditional jumping on constant 110 if (auto *BI = dyn_cast<BranchInst>(T)) { 111 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 112 BasicBlock *Dest1 = BI->getSuccessor(0); 113 BasicBlock *Dest2 = BI->getSuccessor(1); 114 115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 116 // Are we branching on constant? 117 // YES. Change to unconditional branch... 118 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 119 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 120 121 // Let the basic block know that we are letting go of it. Based on this, 122 // it will adjust it's PHI nodes. 123 OldDest->removePredecessor(BB); 124 125 // Replace the conditional branch with an unconditional one. 126 Builder.CreateBr(Destination); 127 BI->eraseFromParent(); 128 if (DDT) 129 DDT->deleteEdge(BB, OldDest); 130 return true; 131 } 132 133 if (Dest2 == Dest1) { // Conditional branch to same location? 134 // This branch matches something like this: 135 // br bool %cond, label %Dest, label %Dest 136 // and changes it into: br label %Dest 137 138 // Let the basic block know that we are letting go of one copy of it. 139 assert(BI->getParent() && "Terminator not inserted in block!"); 140 Dest1->removePredecessor(BI->getParent()); 141 142 // Replace the conditional branch with an unconditional one. 143 Builder.CreateBr(Dest1); 144 Value *Cond = BI->getCondition(); 145 BI->eraseFromParent(); 146 if (DeleteDeadConditions) 147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 148 return true; 149 } 150 return false; 151 } 152 153 if (auto *SI = dyn_cast<SwitchInst>(T)) { 154 // If we are switching on a constant, we can convert the switch to an 155 // unconditional branch. 156 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 157 BasicBlock *DefaultDest = SI->getDefaultDest(); 158 BasicBlock *TheOnlyDest = DefaultDest; 159 160 // If the default is unreachable, ignore it when searching for TheOnlyDest. 161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 162 SI->getNumCases() > 0) { 163 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 164 } 165 166 // Figure out which case it goes to. 167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 168 // Found case matching a constant operand? 169 if (i->getCaseValue() == CI) { 170 TheOnlyDest = i->getCaseSuccessor(); 171 break; 172 } 173 174 // Check to see if this branch is going to the same place as the default 175 // dest. If so, eliminate it as an explicit compare. 176 if (i->getCaseSuccessor() == DefaultDest) { 177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 178 unsigned NCases = SI->getNumCases(); 179 // Fold the case metadata into the default if there will be any branches 180 // left, unless the metadata doesn't match the switch. 181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 182 // Collect branch weights into a vector. 183 SmallVector<uint32_t, 8> Weights; 184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 185 ++MD_i) { 186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 187 Weights.push_back(CI->getValue().getZExtValue()); 188 } 189 // Merge weight of this case to the default weight. 190 unsigned idx = i->getCaseIndex(); 191 Weights[0] += Weights[idx+1]; 192 // Remove weight for this case. 193 std::swap(Weights[idx+1], Weights.back()); 194 Weights.pop_back(); 195 SI->setMetadata(LLVMContext::MD_prof, 196 MDBuilder(BB->getContext()). 197 createBranchWeights(Weights)); 198 } 199 // Remove this entry. 200 BasicBlock *ParentBB = SI->getParent(); 201 DefaultDest->removePredecessor(ParentBB); 202 i = SI->removeCase(i); 203 e = SI->case_end(); 204 if (DDT) 205 DDT->deleteEdge(ParentBB, DefaultDest); 206 continue; 207 } 208 209 // Otherwise, check to see if the switch only branches to one destination. 210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 211 // destinations. 212 if (i->getCaseSuccessor() != TheOnlyDest) 213 TheOnlyDest = nullptr; 214 215 // Increment this iterator as we haven't removed the case. 216 ++i; 217 } 218 219 if (CI && !TheOnlyDest) { 220 // Branching on a constant, but not any of the cases, go to the default 221 // successor. 222 TheOnlyDest = SI->getDefaultDest(); 223 } 224 225 // If we found a single destination that we can fold the switch into, do so 226 // now. 227 if (TheOnlyDest) { 228 // Insert the new branch. 229 Builder.CreateBr(TheOnlyDest); 230 BasicBlock *BB = SI->getParent(); 231 std::vector <DominatorTree::UpdateType> Updates; 232 if (DDT) 233 Updates.reserve(SI->getNumSuccessors() - 1); 234 235 // Remove entries from PHI nodes which we no longer branch to... 236 for (BasicBlock *Succ : SI->successors()) { 237 // Found case matching a constant operand? 238 if (Succ == TheOnlyDest) { 239 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 240 } else { 241 Succ->removePredecessor(BB); 242 if (DDT) 243 Updates.push_back({DominatorTree::Delete, BB, Succ}); 244 } 245 } 246 247 // Delete the old switch. 248 Value *Cond = SI->getCondition(); 249 SI->eraseFromParent(); 250 if (DeleteDeadConditions) 251 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 252 if (DDT) 253 DDT->applyUpdates(Updates); 254 return true; 255 } 256 257 if (SI->getNumCases() == 1) { 258 // Otherwise, we can fold this switch into a conditional branch 259 // instruction if it has only one non-default destination. 260 auto FirstCase = *SI->case_begin(); 261 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 262 FirstCase.getCaseValue(), "cond"); 263 264 // Insert the new branch. 265 BranchInst *NewBr = Builder.CreateCondBr(Cond, 266 FirstCase.getCaseSuccessor(), 267 SI->getDefaultDest()); 268 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 269 if (MD && MD->getNumOperands() == 3) { 270 ConstantInt *SICase = 271 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 272 ConstantInt *SIDef = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 274 assert(SICase && SIDef); 275 // The TrueWeight should be the weight for the single case of SI. 276 NewBr->setMetadata(LLVMContext::MD_prof, 277 MDBuilder(BB->getContext()). 278 createBranchWeights(SICase->getValue().getZExtValue(), 279 SIDef->getValue().getZExtValue())); 280 } 281 282 // Update make.implicit metadata to the newly-created conditional branch. 283 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 284 if (MakeImplicitMD) 285 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 286 287 // Delete the old switch. 288 SI->eraseFromParent(); 289 return true; 290 } 291 return false; 292 } 293 294 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 295 // indirectbr blockaddress(@F, @BB) -> br label @BB 296 if (auto *BA = 297 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 298 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 299 std::vector <DominatorTree::UpdateType> Updates; 300 if (DDT) 301 Updates.reserve(IBI->getNumDestinations() - 1); 302 303 // Insert the new branch. 304 Builder.CreateBr(TheOnlyDest); 305 306 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 307 if (IBI->getDestination(i) == TheOnlyDest) { 308 TheOnlyDest = nullptr; 309 } else { 310 BasicBlock *ParentBB = IBI->getParent(); 311 BasicBlock *DestBB = IBI->getDestination(i); 312 DestBB->removePredecessor(ParentBB); 313 if (DDT) 314 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 315 } 316 } 317 Value *Address = IBI->getAddress(); 318 IBI->eraseFromParent(); 319 if (DeleteDeadConditions) 320 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 321 322 // If we didn't find our destination in the IBI successor list, then we 323 // have undefined behavior. Replace the unconditional branch with an 324 // 'unreachable' instruction. 325 if (TheOnlyDest) { 326 BB->getTerminator()->eraseFromParent(); 327 new UnreachableInst(BB->getContext(), BB); 328 } 329 330 if (DDT) 331 DDT->applyUpdates(Updates); 332 return true; 333 } 334 } 335 336 return false; 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Local dead code elimination. 341 // 342 343 /// isInstructionTriviallyDead - Return true if the result produced by the 344 /// instruction is not used, and the instruction has no side effects. 345 /// 346 bool llvm::isInstructionTriviallyDead(Instruction *I, 347 const TargetLibraryInfo *TLI) { 348 if (!I->use_empty()) 349 return false; 350 return wouldInstructionBeTriviallyDead(I, TLI); 351 } 352 353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 354 const TargetLibraryInfo *TLI) { 355 if (isa<TerminatorInst>(I)) 356 return false; 357 358 // We don't want the landingpad-like instructions removed by anything this 359 // general. 360 if (I->isEHPad()) 361 return false; 362 363 // We don't want debug info removed by anything this general, unless 364 // debug info is empty. 365 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 366 if (DDI->getAddress()) 367 return false; 368 return true; 369 } 370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 371 if (DVI->getValue()) 372 return false; 373 return true; 374 } 375 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 376 if (DLI->getLabel()) 377 return false; 378 return true; 379 } 380 381 if (!I->mayHaveSideEffects()) 382 return true; 383 384 // Special case intrinsics that "may have side effects" but can be deleted 385 // when dead. 386 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 387 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 388 if (II->getIntrinsicID() == Intrinsic::stacksave || 389 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 390 return true; 391 392 // Lifetime intrinsics are dead when their right-hand is undef. 393 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 394 II->getIntrinsicID() == Intrinsic::lifetime_end) 395 return isa<UndefValue>(II->getArgOperand(1)); 396 397 // Assumptions are dead if their condition is trivially true. Guards on 398 // true are operationally no-ops. In the future we can consider more 399 // sophisticated tradeoffs for guards considering potential for check 400 // widening, but for now we keep things simple. 401 if (II->getIntrinsicID() == Intrinsic::assume || 402 II->getIntrinsicID() == Intrinsic::experimental_guard) { 403 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 404 return !Cond->isZero(); 405 406 return false; 407 } 408 } 409 410 if (isAllocLikeFn(I, TLI)) 411 return true; 412 413 if (CallInst *CI = isFreeCall(I, TLI)) 414 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 415 return C->isNullValue() || isa<UndefValue>(C); 416 417 if (CallSite CS = CallSite(I)) 418 if (isMathLibCallNoop(CS, TLI)) 419 return true; 420 421 return false; 422 } 423 424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 425 /// trivially dead instruction, delete it. If that makes any of its operands 426 /// trivially dead, delete them too, recursively. Return true if any 427 /// instructions were deleted. 428 bool 429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 430 const TargetLibraryInfo *TLI) { 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 433 return false; 434 435 SmallVector<Instruction*, 16> DeadInsts; 436 DeadInsts.push_back(I); 437 438 do { 439 I = DeadInsts.pop_back_val(); 440 salvageDebugInfo(*I); 441 442 // Null out all of the instruction's operands to see if any operand becomes 443 // dead as we go. 444 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 445 Value *OpV = I->getOperand(i); 446 I->setOperand(i, nullptr); 447 448 if (!OpV->use_empty()) continue; 449 450 // If the operand is an instruction that became dead as we nulled out the 451 // operand, and if it is 'trivially' dead, delete it in a future loop 452 // iteration. 453 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 454 if (isInstructionTriviallyDead(OpI, TLI)) 455 DeadInsts.push_back(OpI); 456 } 457 458 I->eraseFromParent(); 459 } while (!DeadInsts.empty()); 460 461 return true; 462 } 463 464 /// areAllUsesEqual - Check whether the uses of a value are all the same. 465 /// This is similar to Instruction::hasOneUse() except this will also return 466 /// true when there are no uses or multiple uses that all refer to the same 467 /// value. 468 static bool areAllUsesEqual(Instruction *I) { 469 Value::user_iterator UI = I->user_begin(); 470 Value::user_iterator UE = I->user_end(); 471 if (UI == UE) 472 return true; 473 474 User *TheUse = *UI; 475 for (++UI; UI != UE; ++UI) { 476 if (*UI != TheUse) 477 return false; 478 } 479 return true; 480 } 481 482 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 483 /// dead PHI node, due to being a def-use chain of single-use nodes that 484 /// either forms a cycle or is terminated by a trivially dead instruction, 485 /// delete it. If that makes any of its operands trivially dead, delete them 486 /// too, recursively. Return true if a change was made. 487 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 488 const TargetLibraryInfo *TLI) { 489 SmallPtrSet<Instruction*, 4> Visited; 490 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 491 I = cast<Instruction>(*I->user_begin())) { 492 if (I->use_empty()) 493 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 494 495 // If we find an instruction more than once, we're on a cycle that 496 // won't prove fruitful. 497 if (!Visited.insert(I).second) { 498 // Break the cycle and delete the instruction and its operands. 499 I->replaceAllUsesWith(UndefValue::get(I->getType())); 500 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 501 return true; 502 } 503 } 504 return false; 505 } 506 507 static bool 508 simplifyAndDCEInstruction(Instruction *I, 509 SmallSetVector<Instruction *, 16> &WorkList, 510 const DataLayout &DL, 511 const TargetLibraryInfo *TLI) { 512 if (isInstructionTriviallyDead(I, TLI)) { 513 salvageDebugInfo(*I); 514 515 // Null out all of the instruction's operands to see if any operand becomes 516 // dead as we go. 517 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 518 Value *OpV = I->getOperand(i); 519 I->setOperand(i, nullptr); 520 521 if (!OpV->use_empty() || I == OpV) 522 continue; 523 524 // If the operand is an instruction that became dead as we nulled out the 525 // operand, and if it is 'trivially' dead, delete it in a future loop 526 // iteration. 527 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 528 if (isInstructionTriviallyDead(OpI, TLI)) 529 WorkList.insert(OpI); 530 } 531 532 I->eraseFromParent(); 533 534 return true; 535 } 536 537 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 538 // Add the users to the worklist. CAREFUL: an instruction can use itself, 539 // in the case of a phi node. 540 for (User *U : I->users()) { 541 if (U != I) { 542 WorkList.insert(cast<Instruction>(U)); 543 } 544 } 545 546 // Replace the instruction with its simplified value. 547 bool Changed = false; 548 if (!I->use_empty()) { 549 I->replaceAllUsesWith(SimpleV); 550 Changed = true; 551 } 552 if (isInstructionTriviallyDead(I, TLI)) { 553 I->eraseFromParent(); 554 Changed = true; 555 } 556 return Changed; 557 } 558 return false; 559 } 560 561 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 562 /// simplify any instructions in it and recursively delete dead instructions. 563 /// 564 /// This returns true if it changed the code, note that it can delete 565 /// instructions in other blocks as well in this block. 566 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 567 const TargetLibraryInfo *TLI) { 568 bool MadeChange = false; 569 const DataLayout &DL = BB->getModule()->getDataLayout(); 570 571 #ifndef NDEBUG 572 // In debug builds, ensure that the terminator of the block is never replaced 573 // or deleted by these simplifications. The idea of simplification is that it 574 // cannot introduce new instructions, and there is no way to replace the 575 // terminator of a block without introducing a new instruction. 576 AssertingVH<Instruction> TerminatorVH(&BB->back()); 577 #endif 578 579 SmallSetVector<Instruction *, 16> WorkList; 580 // Iterate over the original function, only adding insts to the worklist 581 // if they actually need to be revisited. This avoids having to pre-init 582 // the worklist with the entire function's worth of instructions. 583 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 584 BI != E;) { 585 assert(!BI->isTerminator()); 586 Instruction *I = &*BI; 587 ++BI; 588 589 // We're visiting this instruction now, so make sure it's not in the 590 // worklist from an earlier visit. 591 if (!WorkList.count(I)) 592 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 593 } 594 595 while (!WorkList.empty()) { 596 Instruction *I = WorkList.pop_back_val(); 597 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 598 } 599 return MadeChange; 600 } 601 602 //===----------------------------------------------------------------------===// 603 // Control Flow Graph Restructuring. 604 // 605 606 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 607 /// method is called when we're about to delete Pred as a predecessor of BB. If 608 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 609 /// 610 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 611 /// nodes that collapse into identity values. For example, if we have: 612 /// x = phi(1, 0, 0, 0) 613 /// y = and x, z 614 /// 615 /// .. and delete the predecessor corresponding to the '1', this will attempt to 616 /// recursively fold the and to 0. 617 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 618 DeferredDominance *DDT) { 619 // This only adjusts blocks with PHI nodes. 620 if (!isa<PHINode>(BB->begin())) 621 return; 622 623 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 624 // them down. This will leave us with single entry phi nodes and other phis 625 // that can be removed. 626 BB->removePredecessor(Pred, true); 627 628 WeakTrackingVH PhiIt = &BB->front(); 629 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 630 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 631 Value *OldPhiIt = PhiIt; 632 633 if (!recursivelySimplifyInstruction(PN)) 634 continue; 635 636 // If recursive simplification ended up deleting the next PHI node we would 637 // iterate to, then our iterator is invalid, restart scanning from the top 638 // of the block. 639 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 640 } 641 if (DDT) 642 DDT->deleteEdge(Pred, BB); 643 } 644 645 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 646 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 647 /// between them, moving the instructions in the predecessor into DestBB and 648 /// deleting the predecessor block. 649 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT, 650 DeferredDominance *DDT) { 651 assert(!(DT && DDT) && "Cannot call with both DT and DDT."); 652 653 // If BB has single-entry PHI nodes, fold them. 654 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 655 Value *NewVal = PN->getIncomingValue(0); 656 // Replace self referencing PHI with undef, it must be dead. 657 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 658 PN->replaceAllUsesWith(NewVal); 659 PN->eraseFromParent(); 660 } 661 662 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 663 assert(PredBB && "Block doesn't have a single predecessor!"); 664 665 bool ReplaceEntryBB = false; 666 if (PredBB == &DestBB->getParent()->getEntryBlock()) 667 ReplaceEntryBB = true; 668 669 // Deferred DT update: Collect all the edges that enter PredBB. These 670 // dominator edges will be redirected to DestBB. 671 std::vector <DominatorTree::UpdateType> Updates; 672 if (DDT && !ReplaceEntryBB) { 673 Updates.reserve(1 + (2 * pred_size(PredBB))); 674 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 675 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 676 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 677 // This predecessor of PredBB may already have DestBB as a successor. 678 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 679 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 680 } 681 } 682 683 // Zap anything that took the address of DestBB. Not doing this will give the 684 // address an invalid value. 685 if (DestBB->hasAddressTaken()) { 686 BlockAddress *BA = BlockAddress::get(DestBB); 687 Constant *Replacement = 688 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 689 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 690 BA->getType())); 691 BA->destroyConstant(); 692 } 693 694 // Anything that branched to PredBB now branches to DestBB. 695 PredBB->replaceAllUsesWith(DestBB); 696 697 // Splice all the instructions from PredBB to DestBB. 698 PredBB->getTerminator()->eraseFromParent(); 699 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 700 701 // If the PredBB is the entry block of the function, move DestBB up to 702 // become the entry block after we erase PredBB. 703 if (ReplaceEntryBB) 704 DestBB->moveAfter(PredBB); 705 706 if (DT) { 707 // For some irreducible CFG we end up having forward-unreachable blocks 708 // so check if getNode returns a valid node before updating the domtree. 709 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 710 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 711 DT->changeImmediateDominator(DestBB, PredBBIDom); 712 DT->eraseNode(PredBB); 713 } 714 } 715 716 if (DDT) { 717 DDT->deleteBB(PredBB); // Deferred deletion of BB. 718 if (ReplaceEntryBB) 719 // The entry block was removed and there is no external interface for the 720 // dominator tree to be notified of this change. In this corner-case we 721 // recalculate the entire tree. 722 DDT->recalculate(*(DestBB->getParent())); 723 else 724 DDT->applyUpdates(Updates); 725 } else { 726 PredBB->eraseFromParent(); // Nuke BB. 727 } 728 } 729 730 /// CanMergeValues - Return true if we can choose one of these values to use 731 /// in place of the other. Note that we will always choose the non-undef 732 /// value to keep. 733 static bool CanMergeValues(Value *First, Value *Second) { 734 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 735 } 736 737 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 738 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 739 /// 740 /// Assumption: Succ is the single successor for BB. 741 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 742 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 743 744 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 745 << Succ->getName() << "\n"); 746 // Shortcut, if there is only a single predecessor it must be BB and merging 747 // is always safe 748 if (Succ->getSinglePredecessor()) return true; 749 750 // Make a list of the predecessors of BB 751 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 752 753 // Look at all the phi nodes in Succ, to see if they present a conflict when 754 // merging these blocks 755 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 756 PHINode *PN = cast<PHINode>(I); 757 758 // If the incoming value from BB is again a PHINode in 759 // BB which has the same incoming value for *PI as PN does, we can 760 // merge the phi nodes and then the blocks can still be merged 761 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 762 if (BBPN && BBPN->getParent() == BB) { 763 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 764 BasicBlock *IBB = PN->getIncomingBlock(PI); 765 if (BBPreds.count(IBB) && 766 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 767 PN->getIncomingValue(PI))) { 768 LLVM_DEBUG(dbgs() 769 << "Can't fold, phi node " << PN->getName() << " in " 770 << Succ->getName() << " is conflicting with " 771 << BBPN->getName() << " with regard to common predecessor " 772 << IBB->getName() << "\n"); 773 return false; 774 } 775 } 776 } else { 777 Value* Val = PN->getIncomingValueForBlock(BB); 778 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 779 // See if the incoming value for the common predecessor is equal to the 780 // one for BB, in which case this phi node will not prevent the merging 781 // of the block. 782 BasicBlock *IBB = PN->getIncomingBlock(PI); 783 if (BBPreds.count(IBB) && 784 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 785 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 786 << " in " << Succ->getName() 787 << " is conflicting with regard to common " 788 << "predecessor " << IBB->getName() << "\n"); 789 return false; 790 } 791 } 792 } 793 } 794 795 return true; 796 } 797 798 using PredBlockVector = SmallVector<BasicBlock *, 16>; 799 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 800 801 /// Determines the value to use as the phi node input for a block. 802 /// 803 /// Select between \p OldVal any value that we know flows from \p BB 804 /// to a particular phi on the basis of which one (if either) is not 805 /// undef. Update IncomingValues based on the selected value. 806 /// 807 /// \param OldVal The value we are considering selecting. 808 /// \param BB The block that the value flows in from. 809 /// \param IncomingValues A map from block-to-value for other phi inputs 810 /// that we have examined. 811 /// 812 /// \returns the selected value. 813 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 814 IncomingValueMap &IncomingValues) { 815 if (!isa<UndefValue>(OldVal)) { 816 assert((!IncomingValues.count(BB) || 817 IncomingValues.find(BB)->second == OldVal) && 818 "Expected OldVal to match incoming value from BB!"); 819 820 IncomingValues.insert(std::make_pair(BB, OldVal)); 821 return OldVal; 822 } 823 824 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 825 if (It != IncomingValues.end()) return It->second; 826 827 return OldVal; 828 } 829 830 /// Create a map from block to value for the operands of a 831 /// given phi. 832 /// 833 /// Create a map from block to value for each non-undef value flowing 834 /// into \p PN. 835 /// 836 /// \param PN The phi we are collecting the map for. 837 /// \param IncomingValues [out] The map from block to value for this phi. 838 static void gatherIncomingValuesToPhi(PHINode *PN, 839 IncomingValueMap &IncomingValues) { 840 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 841 BasicBlock *BB = PN->getIncomingBlock(i); 842 Value *V = PN->getIncomingValue(i); 843 844 if (!isa<UndefValue>(V)) 845 IncomingValues.insert(std::make_pair(BB, V)); 846 } 847 } 848 849 /// Replace the incoming undef values to a phi with the values 850 /// from a block-to-value map. 851 /// 852 /// \param PN The phi we are replacing the undefs in. 853 /// \param IncomingValues A map from block to value. 854 static void replaceUndefValuesInPhi(PHINode *PN, 855 const IncomingValueMap &IncomingValues) { 856 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 857 Value *V = PN->getIncomingValue(i); 858 859 if (!isa<UndefValue>(V)) continue; 860 861 BasicBlock *BB = PN->getIncomingBlock(i); 862 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 863 if (It == IncomingValues.end()) continue; 864 865 PN->setIncomingValue(i, It->second); 866 } 867 } 868 869 /// Replace a value flowing from a block to a phi with 870 /// potentially multiple instances of that value flowing from the 871 /// block's predecessors to the phi. 872 /// 873 /// \param BB The block with the value flowing into the phi. 874 /// \param BBPreds The predecessors of BB. 875 /// \param PN The phi that we are updating. 876 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 877 const PredBlockVector &BBPreds, 878 PHINode *PN) { 879 Value *OldVal = PN->removeIncomingValue(BB, false); 880 assert(OldVal && "No entry in PHI for Pred BB!"); 881 882 IncomingValueMap IncomingValues; 883 884 // We are merging two blocks - BB, and the block containing PN - and 885 // as a result we need to redirect edges from the predecessors of BB 886 // to go to the block containing PN, and update PN 887 // accordingly. Since we allow merging blocks in the case where the 888 // predecessor and successor blocks both share some predecessors, 889 // and where some of those common predecessors might have undef 890 // values flowing into PN, we want to rewrite those values to be 891 // consistent with the non-undef values. 892 893 gatherIncomingValuesToPhi(PN, IncomingValues); 894 895 // If this incoming value is one of the PHI nodes in BB, the new entries 896 // in the PHI node are the entries from the old PHI. 897 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 898 PHINode *OldValPN = cast<PHINode>(OldVal); 899 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 900 // Note that, since we are merging phi nodes and BB and Succ might 901 // have common predecessors, we could end up with a phi node with 902 // identical incoming branches. This will be cleaned up later (and 903 // will trigger asserts if we try to clean it up now, without also 904 // simplifying the corresponding conditional branch). 905 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 906 Value *PredVal = OldValPN->getIncomingValue(i); 907 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 908 IncomingValues); 909 910 // And add a new incoming value for this predecessor for the 911 // newly retargeted branch. 912 PN->addIncoming(Selected, PredBB); 913 } 914 } else { 915 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 916 // Update existing incoming values in PN for this 917 // predecessor of BB. 918 BasicBlock *PredBB = BBPreds[i]; 919 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 920 IncomingValues); 921 922 // And add a new incoming value for this predecessor for the 923 // newly retargeted branch. 924 PN->addIncoming(Selected, PredBB); 925 } 926 } 927 928 replaceUndefValuesInPhi(PN, IncomingValues); 929 } 930 931 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 932 /// unconditional branch, and contains no instructions other than PHI nodes, 933 /// potential side-effect free intrinsics and the branch. If possible, 934 /// eliminate BB by rewriting all the predecessors to branch to the successor 935 /// block and return true. If we can't transform, return false. 936 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 937 DeferredDominance *DDT) { 938 assert(BB != &BB->getParent()->getEntryBlock() && 939 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 940 941 // We can't eliminate infinite loops. 942 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 943 if (BB == Succ) return false; 944 945 // Check to see if merging these blocks would cause conflicts for any of the 946 // phi nodes in BB or Succ. If not, we can safely merge. 947 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 948 949 // Check for cases where Succ has multiple predecessors and a PHI node in BB 950 // has uses which will not disappear when the PHI nodes are merged. It is 951 // possible to handle such cases, but difficult: it requires checking whether 952 // BB dominates Succ, which is non-trivial to calculate in the case where 953 // Succ has multiple predecessors. Also, it requires checking whether 954 // constructing the necessary self-referential PHI node doesn't introduce any 955 // conflicts; this isn't too difficult, but the previous code for doing this 956 // was incorrect. 957 // 958 // Note that if this check finds a live use, BB dominates Succ, so BB is 959 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 960 // folding the branch isn't profitable in that case anyway. 961 if (!Succ->getSinglePredecessor()) { 962 BasicBlock::iterator BBI = BB->begin(); 963 while (isa<PHINode>(*BBI)) { 964 for (Use &U : BBI->uses()) { 965 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 966 if (PN->getIncomingBlock(U) != BB) 967 return false; 968 } else { 969 return false; 970 } 971 } 972 ++BBI; 973 } 974 } 975 976 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 977 978 std::vector<DominatorTree::UpdateType> Updates; 979 if (DDT) { 980 Updates.reserve(1 + (2 * pred_size(BB))); 981 Updates.push_back({DominatorTree::Delete, BB, Succ}); 982 // All predecessors of BB will be moved to Succ. 983 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 984 Updates.push_back({DominatorTree::Delete, *I, BB}); 985 // This predecessor of BB may already have Succ as a successor. 986 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 987 Updates.push_back({DominatorTree::Insert, *I, Succ}); 988 } 989 } 990 991 if (isa<PHINode>(Succ->begin())) { 992 // If there is more than one pred of succ, and there are PHI nodes in 993 // the successor, then we need to add incoming edges for the PHI nodes 994 // 995 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 996 997 // Loop over all of the PHI nodes in the successor of BB. 998 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 999 PHINode *PN = cast<PHINode>(I); 1000 1001 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1002 } 1003 } 1004 1005 if (Succ->getSinglePredecessor()) { 1006 // BB is the only predecessor of Succ, so Succ will end up with exactly 1007 // the same predecessors BB had. 1008 1009 // Copy over any phi, debug or lifetime instruction. 1010 BB->getTerminator()->eraseFromParent(); 1011 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1012 BB->getInstList()); 1013 } else { 1014 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1015 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1016 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1017 PN->eraseFromParent(); 1018 } 1019 } 1020 1021 // If the unconditional branch we replaced contains llvm.loop metadata, we 1022 // add the metadata to the branch instructions in the predecessors. 1023 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1024 Instruction *TI = BB->getTerminator(); 1025 if (TI) 1026 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1027 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1028 BasicBlock *Pred = *PI; 1029 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1030 } 1031 1032 // Everything that jumped to BB now goes to Succ. 1033 BB->replaceAllUsesWith(Succ); 1034 if (!Succ->hasName()) Succ->takeName(BB); 1035 1036 if (DDT) { 1037 DDT->deleteBB(BB); // Deferred deletion of the old basic block. 1038 DDT->applyUpdates(Updates); 1039 } else { 1040 BB->eraseFromParent(); // Delete the old basic block. 1041 } 1042 return true; 1043 } 1044 1045 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1046 /// nodes in this block. This doesn't try to be clever about PHI nodes 1047 /// which differ only in the order of the incoming values, but instcombine 1048 /// orders them so it usually won't matter. 1049 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1050 // This implementation doesn't currently consider undef operands 1051 // specially. Theoretically, two phis which are identical except for 1052 // one having an undef where the other doesn't could be collapsed. 1053 1054 struct PHIDenseMapInfo { 1055 static PHINode *getEmptyKey() { 1056 return DenseMapInfo<PHINode *>::getEmptyKey(); 1057 } 1058 1059 static PHINode *getTombstoneKey() { 1060 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1061 } 1062 1063 static unsigned getHashValue(PHINode *PN) { 1064 // Compute a hash value on the operands. Instcombine will likely have 1065 // sorted them, which helps expose duplicates, but we have to check all 1066 // the operands to be safe in case instcombine hasn't run. 1067 return static_cast<unsigned>(hash_combine( 1068 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1069 hash_combine_range(PN->block_begin(), PN->block_end()))); 1070 } 1071 1072 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1073 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1074 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1075 return LHS == RHS; 1076 return LHS->isIdenticalTo(RHS); 1077 } 1078 }; 1079 1080 // Set of unique PHINodes. 1081 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1082 1083 // Examine each PHI. 1084 bool Changed = false; 1085 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1086 auto Inserted = PHISet.insert(PN); 1087 if (!Inserted.second) { 1088 // A duplicate. Replace this PHI with its duplicate. 1089 PN->replaceAllUsesWith(*Inserted.first); 1090 PN->eraseFromParent(); 1091 Changed = true; 1092 1093 // The RAUW can change PHIs that we already visited. Start over from the 1094 // beginning. 1095 PHISet.clear(); 1096 I = BB->begin(); 1097 } 1098 } 1099 1100 return Changed; 1101 } 1102 1103 /// enforceKnownAlignment - If the specified pointer points to an object that 1104 /// we control, modify the object's alignment to PrefAlign. This isn't 1105 /// often possible though. If alignment is important, a more reliable approach 1106 /// is to simply align all global variables and allocation instructions to 1107 /// their preferred alignment from the beginning. 1108 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1109 unsigned PrefAlign, 1110 const DataLayout &DL) { 1111 assert(PrefAlign > Align); 1112 1113 V = V->stripPointerCasts(); 1114 1115 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1116 // TODO: ideally, computeKnownBits ought to have used 1117 // AllocaInst::getAlignment() in its computation already, making 1118 // the below max redundant. But, as it turns out, 1119 // stripPointerCasts recurses through infinite layers of bitcasts, 1120 // while computeKnownBits is not allowed to traverse more than 6 1121 // levels. 1122 Align = std::max(AI->getAlignment(), Align); 1123 if (PrefAlign <= Align) 1124 return Align; 1125 1126 // If the preferred alignment is greater than the natural stack alignment 1127 // then don't round up. This avoids dynamic stack realignment. 1128 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1129 return Align; 1130 AI->setAlignment(PrefAlign); 1131 return PrefAlign; 1132 } 1133 1134 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1135 // TODO: as above, this shouldn't be necessary. 1136 Align = std::max(GO->getAlignment(), Align); 1137 if (PrefAlign <= Align) 1138 return Align; 1139 1140 // If there is a large requested alignment and we can, bump up the alignment 1141 // of the global. If the memory we set aside for the global may not be the 1142 // memory used by the final program then it is impossible for us to reliably 1143 // enforce the preferred alignment. 1144 if (!GO->canIncreaseAlignment()) 1145 return Align; 1146 1147 GO->setAlignment(PrefAlign); 1148 return PrefAlign; 1149 } 1150 1151 return Align; 1152 } 1153 1154 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1155 const DataLayout &DL, 1156 const Instruction *CxtI, 1157 AssumptionCache *AC, 1158 const DominatorTree *DT) { 1159 assert(V->getType()->isPointerTy() && 1160 "getOrEnforceKnownAlignment expects a pointer!"); 1161 1162 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1163 unsigned TrailZ = Known.countMinTrailingZeros(); 1164 1165 // Avoid trouble with ridiculously large TrailZ values, such as 1166 // those computed from a null pointer. 1167 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1168 1169 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1170 1171 // LLVM doesn't support alignments larger than this currently. 1172 Align = std::min(Align, +Value::MaximumAlignment); 1173 1174 if (PrefAlign > Align) 1175 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1176 1177 // We don't need to make any adjustment. 1178 return Align; 1179 } 1180 1181 ///===---------------------------------------------------------------------===// 1182 /// Dbg Intrinsic utilities 1183 /// 1184 1185 /// See if there is a dbg.value intrinsic for DIVar before I. 1186 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1187 Instruction *I) { 1188 // Since we can't guarantee that the original dbg.declare instrinsic 1189 // is removed by LowerDbgDeclare(), we need to make sure that we are 1190 // not inserting the same dbg.value intrinsic over and over. 1191 BasicBlock::InstListType::iterator PrevI(I); 1192 if (PrevI != I->getParent()->getInstList().begin()) { 1193 --PrevI; 1194 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1195 if (DVI->getValue() == I->getOperand(0) && 1196 DVI->getVariable() == DIVar && 1197 DVI->getExpression() == DIExpr) 1198 return true; 1199 } 1200 return false; 1201 } 1202 1203 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1204 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1205 DIExpression *DIExpr, 1206 PHINode *APN) { 1207 // Since we can't guarantee that the original dbg.declare instrinsic 1208 // is removed by LowerDbgDeclare(), we need to make sure that we are 1209 // not inserting the same dbg.value intrinsic over and over. 1210 SmallVector<DbgValueInst *, 1> DbgValues; 1211 findDbgValues(DbgValues, APN); 1212 for (auto *DVI : DbgValues) { 1213 assert(DVI->getValue() == APN); 1214 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1215 return true; 1216 } 1217 return false; 1218 } 1219 1220 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1221 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1222 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1223 StoreInst *SI, DIBuilder &Builder) { 1224 assert(DII->isAddressOfVariable()); 1225 auto *DIVar = DII->getVariable(); 1226 assert(DIVar && "Missing variable"); 1227 auto *DIExpr = DII->getExpression(); 1228 Value *DV = SI->getOperand(0); 1229 1230 // If an argument is zero extended then use argument directly. The ZExt 1231 // may be zapped by an optimization pass in future. 1232 Argument *ExtendedArg = nullptr; 1233 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1234 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1235 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1236 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1237 if (ExtendedArg) { 1238 // If this DII was already describing only a fragment of a variable, ensure 1239 // that fragment is appropriately narrowed here. 1240 // But if a fragment wasn't used, describe the value as the original 1241 // argument (rather than the zext or sext) so that it remains described even 1242 // if the sext/zext is optimized away. This widens the variable description, 1243 // leaving it up to the consumer to know how the smaller value may be 1244 // represented in a larger register. 1245 if (auto Fragment = DIExpr->getFragmentInfo()) { 1246 unsigned FragmentOffset = Fragment->OffsetInBits; 1247 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1248 DIExpr->elements_end() - 3); 1249 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1250 Ops.push_back(FragmentOffset); 1251 const DataLayout &DL = DII->getModule()->getDataLayout(); 1252 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1253 DIExpr = Builder.createExpression(Ops); 1254 } 1255 DV = ExtendedArg; 1256 } 1257 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1258 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1259 SI); 1260 } 1261 1262 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1263 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1264 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1265 LoadInst *LI, DIBuilder &Builder) { 1266 auto *DIVar = DII->getVariable(); 1267 auto *DIExpr = DII->getExpression(); 1268 assert(DIVar && "Missing variable"); 1269 1270 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1271 return; 1272 1273 // We are now tracking the loaded value instead of the address. In the 1274 // future if multi-location support is added to the IR, it might be 1275 // preferable to keep tracking both the loaded value and the original 1276 // address in case the alloca can not be elided. 1277 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1278 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1279 DbgValue->insertAfter(LI); 1280 } 1281 1282 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1283 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1284 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1285 PHINode *APN, DIBuilder &Builder) { 1286 auto *DIVar = DII->getVariable(); 1287 auto *DIExpr = DII->getExpression(); 1288 assert(DIVar && "Missing variable"); 1289 1290 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1291 return; 1292 1293 BasicBlock *BB = APN->getParent(); 1294 auto InsertionPt = BB->getFirstInsertionPt(); 1295 1296 // The block may be a catchswitch block, which does not have a valid 1297 // insertion point. 1298 // FIXME: Insert dbg.value markers in the successors when appropriate. 1299 if (InsertionPt != BB->end()) 1300 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1301 &*InsertionPt); 1302 } 1303 1304 /// Determine whether this alloca is either a VLA or an array. 1305 static bool isArray(AllocaInst *AI) { 1306 return AI->isArrayAllocation() || 1307 AI->getType()->getElementType()->isArrayTy(); 1308 } 1309 1310 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1311 /// of llvm.dbg.value intrinsics. 1312 bool llvm::LowerDbgDeclare(Function &F) { 1313 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1314 SmallVector<DbgDeclareInst *, 4> Dbgs; 1315 for (auto &FI : F) 1316 for (Instruction &BI : FI) 1317 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1318 Dbgs.push_back(DDI); 1319 1320 if (Dbgs.empty()) 1321 return false; 1322 1323 for (auto &I : Dbgs) { 1324 DbgDeclareInst *DDI = I; 1325 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1326 // If this is an alloca for a scalar variable, insert a dbg.value 1327 // at each load and store to the alloca and erase the dbg.declare. 1328 // The dbg.values allow tracking a variable even if it is not 1329 // stored on the stack, while the dbg.declare can only describe 1330 // the stack slot (and at a lexical-scope granularity). Later 1331 // passes will attempt to elide the stack slot. 1332 if (!AI || isArray(AI)) 1333 continue; 1334 1335 // A volatile load/store means that the alloca can't be elided anyway. 1336 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1337 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1338 return LI->isVolatile(); 1339 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1340 return SI->isVolatile(); 1341 return false; 1342 })) 1343 continue; 1344 1345 for (auto &AIUse : AI->uses()) { 1346 User *U = AIUse.getUser(); 1347 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1348 if (AIUse.getOperandNo() == 1) 1349 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1350 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1351 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1352 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1353 // This is a call by-value or some other instruction that 1354 // takes a pointer to the variable. Insert a *value* 1355 // intrinsic that describes the alloca. 1356 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), 1357 DDI->getExpression(), DDI->getDebugLoc(), 1358 CI); 1359 } 1360 } 1361 DDI->eraseFromParent(); 1362 } 1363 return true; 1364 } 1365 1366 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1367 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1368 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1369 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1370 if (InsertedPHIs.size() == 0) 1371 return; 1372 1373 // Map existing PHI nodes to their dbg.values. 1374 ValueToValueMapTy DbgValueMap; 1375 for (auto &I : *BB) { 1376 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 1377 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1378 DbgValueMap.insert({Loc, DbgII}); 1379 } 1380 } 1381 if (DbgValueMap.size() == 0) 1382 return; 1383 1384 // Then iterate through the new PHIs and look to see if they use one of the 1385 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1386 // propagate the info through the new PHI. 1387 LLVMContext &C = BB->getContext(); 1388 for (auto PHI : InsertedPHIs) { 1389 BasicBlock *Parent = PHI->getParent(); 1390 // Avoid inserting an intrinsic into an EH block. 1391 if (Parent->getFirstNonPHI()->isEHPad()) 1392 continue; 1393 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1394 for (auto VI : PHI->operand_values()) { 1395 auto V = DbgValueMap.find(VI); 1396 if (V != DbgValueMap.end()) { 1397 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 1398 Instruction *NewDbgII = DbgII->clone(); 1399 NewDbgII->setOperand(0, PhiMAV); 1400 auto InsertionPt = Parent->getFirstInsertionPt(); 1401 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1402 NewDbgII->insertBefore(&*InsertionPt); 1403 } 1404 } 1405 } 1406 } 1407 1408 /// Finds all intrinsics declaring local variables as living in the memory that 1409 /// 'V' points to. This may include a mix of dbg.declare and 1410 /// dbg.addr intrinsics. 1411 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1412 auto *L = LocalAsMetadata::getIfExists(V); 1413 if (!L) 1414 return {}; 1415 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1416 if (!MDV) 1417 return {}; 1418 1419 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1420 for (User *U : MDV->users()) { 1421 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1422 if (DII->isAddressOfVariable()) 1423 Declares.push_back(DII); 1424 } 1425 1426 return Declares; 1427 } 1428 1429 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1430 if (auto *L = LocalAsMetadata::getIfExists(V)) 1431 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1432 for (User *U : MDV->users()) 1433 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1434 DbgValues.push_back(DVI); 1435 } 1436 1437 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1438 Value *V) { 1439 if (auto *L = LocalAsMetadata::getIfExists(V)) 1440 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1441 for (User *U : MDV->users()) 1442 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1443 DbgUsers.push_back(DII); 1444 } 1445 1446 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1447 Instruction *InsertBefore, DIBuilder &Builder, 1448 bool DerefBefore, int Offset, bool DerefAfter) { 1449 auto DbgAddrs = FindDbgAddrUses(Address); 1450 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1451 DebugLoc Loc = DII->getDebugLoc(); 1452 auto *DIVar = DII->getVariable(); 1453 auto *DIExpr = DII->getExpression(); 1454 assert(DIVar && "Missing variable"); 1455 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1456 // Insert llvm.dbg.declare immediately after InsertBefore, and remove old 1457 // llvm.dbg.declare. 1458 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1459 if (DII == InsertBefore) 1460 InsertBefore = &*std::next(InsertBefore->getIterator()); 1461 DII->eraseFromParent(); 1462 } 1463 return !DbgAddrs.empty(); 1464 } 1465 1466 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1467 DIBuilder &Builder, bool DerefBefore, 1468 int Offset, bool DerefAfter) { 1469 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1470 DerefBefore, Offset, DerefAfter); 1471 } 1472 1473 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1474 DIBuilder &Builder, int Offset) { 1475 DebugLoc Loc = DVI->getDebugLoc(); 1476 auto *DIVar = DVI->getVariable(); 1477 auto *DIExpr = DVI->getExpression(); 1478 assert(DIVar && "Missing variable"); 1479 1480 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1481 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1482 // it and give up. 1483 if (!DIExpr || DIExpr->getNumElements() < 1 || 1484 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1485 return; 1486 1487 // Insert the offset immediately after the first deref. 1488 // We could just change the offset argument of dbg.value, but it's unsigned... 1489 if (Offset) { 1490 SmallVector<uint64_t, 4> Ops; 1491 Ops.push_back(dwarf::DW_OP_deref); 1492 DIExpression::appendOffset(Ops, Offset); 1493 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1494 DIExpr = Builder.createExpression(Ops); 1495 } 1496 1497 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1498 DVI->eraseFromParent(); 1499 } 1500 1501 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1502 DIBuilder &Builder, int Offset) { 1503 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1504 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1505 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1506 Use &U = *UI++; 1507 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1508 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1509 } 1510 } 1511 1512 void llvm::salvageDebugInfo(Instruction &I) { 1513 // This function is hot. An early check to determine whether the instruction 1514 // has any metadata to save allows it to return earlier on average. 1515 if (!I.isUsedByMetadata()) 1516 return; 1517 1518 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1519 findDbgUsers(DbgUsers, &I); 1520 if (DbgUsers.empty()) 1521 return; 1522 1523 auto &M = *I.getModule(); 1524 auto &DL = M.getDataLayout(); 1525 1526 auto wrapMD = [&](Value *V) { 1527 return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V)); 1528 }; 1529 1530 auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1531 auto *DIExpr = DII->getExpression(); 1532 DIExpr = 1533 DIExpression::prependOpcodes(DIExpr, Ops, DIExpression::WithStackValue); 1534 DII->setOperand(0, wrapMD(I.getOperand(0))); 1535 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1536 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1537 }; 1538 1539 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) { 1540 SmallVector<uint64_t, 8> Ops; 1541 DIExpression::appendOffset(Ops, Offset); 1542 doSalvage(DII, Ops); 1543 }; 1544 1545 auto applyOps = [&](DbgInfoIntrinsic *DII, 1546 std::initializer_list<uint64_t> Opcodes) { 1547 SmallVector<uint64_t, 8> Ops(Opcodes); 1548 doSalvage(DII, Ops); 1549 }; 1550 1551 if (auto *CI = dyn_cast<CastInst>(&I)) { 1552 if (!CI->isNoopCast(DL)) 1553 return; 1554 1555 // No-op casts are irrelevant for debug info. 1556 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1557 for (auto *DII : DbgUsers) { 1558 DII->setOperand(0, CastSrc); 1559 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1560 } 1561 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1562 unsigned BitWidth = 1563 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1564 // Rewrite a constant GEP into a DIExpression. Since we are performing 1565 // arithmetic to compute the variable's *value* in the DIExpression, we 1566 // need to mark the expression with a DW_OP_stack_value. 1567 APInt Offset(BitWidth, 0); 1568 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1569 for (auto *DII : DbgUsers) 1570 applyOffset(DII, Offset.getSExtValue()); 1571 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1572 // Rewrite binary operations with constant integer operands. 1573 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1574 if (!ConstInt || ConstInt->getBitWidth() > 64) 1575 return; 1576 1577 uint64_t Val = ConstInt->getSExtValue(); 1578 for (auto *DII : DbgUsers) { 1579 switch (BI->getOpcode()) { 1580 case Instruction::Add: 1581 applyOffset(DII, Val); 1582 break; 1583 case Instruction::Sub: 1584 applyOffset(DII, -int64_t(Val)); 1585 break; 1586 case Instruction::Mul: 1587 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1588 break; 1589 case Instruction::SDiv: 1590 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1591 break; 1592 case Instruction::SRem: 1593 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1594 break; 1595 case Instruction::Or: 1596 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1597 break; 1598 case Instruction::And: 1599 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1600 break; 1601 case Instruction::Xor: 1602 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1603 break; 1604 case Instruction::Shl: 1605 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1606 break; 1607 case Instruction::LShr: 1608 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1609 break; 1610 case Instruction::AShr: 1611 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1612 break; 1613 default: 1614 // TODO: Salvage constants from each kind of binop we know about. 1615 continue; 1616 } 1617 } 1618 } else if (isa<LoadInst>(&I)) { 1619 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1620 for (auto *DII : DbgUsers) { 1621 // Rewrite the load into DW_OP_deref. 1622 auto *DIExpr = DII->getExpression(); 1623 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1624 DII->setOperand(0, AddrMD); 1625 DII->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr)); 1626 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1627 } 1628 } 1629 } 1630 1631 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1632 unsigned NumDeadInst = 0; 1633 // Delete the instructions backwards, as it has a reduced likelihood of 1634 // having to update as many def-use and use-def chains. 1635 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1636 while (EndInst != &BB->front()) { 1637 // Delete the next to last instruction. 1638 Instruction *Inst = &*--EndInst->getIterator(); 1639 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1640 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1641 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1642 EndInst = Inst; 1643 continue; 1644 } 1645 if (!isa<DbgInfoIntrinsic>(Inst)) 1646 ++NumDeadInst; 1647 Inst->eraseFromParent(); 1648 } 1649 return NumDeadInst; 1650 } 1651 1652 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1653 bool PreserveLCSSA, DeferredDominance *DDT) { 1654 BasicBlock *BB = I->getParent(); 1655 std::vector <DominatorTree::UpdateType> Updates; 1656 1657 // Loop over all of the successors, removing BB's entry from any PHI 1658 // nodes. 1659 if (DDT) 1660 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1661 for (BasicBlock *Successor : successors(BB)) { 1662 Successor->removePredecessor(BB, PreserveLCSSA); 1663 if (DDT) 1664 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1665 } 1666 // Insert a call to llvm.trap right before this. This turns the undefined 1667 // behavior into a hard fail instead of falling through into random code. 1668 if (UseLLVMTrap) { 1669 Function *TrapFn = 1670 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1671 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1672 CallTrap->setDebugLoc(I->getDebugLoc()); 1673 } 1674 new UnreachableInst(I->getContext(), I); 1675 1676 // All instructions after this are dead. 1677 unsigned NumInstrsRemoved = 0; 1678 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1679 while (BBI != BBE) { 1680 if (!BBI->use_empty()) 1681 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1682 BB->getInstList().erase(BBI++); 1683 ++NumInstrsRemoved; 1684 } 1685 if (DDT) 1686 DDT->applyUpdates(Updates); 1687 return NumInstrsRemoved; 1688 } 1689 1690 /// changeToCall - Convert the specified invoke into a normal call. 1691 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) { 1692 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1693 SmallVector<OperandBundleDef, 1> OpBundles; 1694 II->getOperandBundlesAsDefs(OpBundles); 1695 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1696 "", II); 1697 NewCall->takeName(II); 1698 NewCall->setCallingConv(II->getCallingConv()); 1699 NewCall->setAttributes(II->getAttributes()); 1700 NewCall->setDebugLoc(II->getDebugLoc()); 1701 II->replaceAllUsesWith(NewCall); 1702 1703 // Follow the call by a branch to the normal destination. 1704 BasicBlock *NormalDestBB = II->getNormalDest(); 1705 BranchInst::Create(NormalDestBB, II); 1706 1707 // Update PHI nodes in the unwind destination 1708 BasicBlock *BB = II->getParent(); 1709 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1710 UnwindDestBB->removePredecessor(BB); 1711 II->eraseFromParent(); 1712 if (DDT) 1713 DDT->deleteEdge(BB, UnwindDestBB); 1714 } 1715 1716 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1717 BasicBlock *UnwindEdge) { 1718 BasicBlock *BB = CI->getParent(); 1719 1720 // Convert this function call into an invoke instruction. First, split the 1721 // basic block. 1722 BasicBlock *Split = 1723 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1724 1725 // Delete the unconditional branch inserted by splitBasicBlock 1726 BB->getInstList().pop_back(); 1727 1728 // Create the new invoke instruction. 1729 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1730 SmallVector<OperandBundleDef, 1> OpBundles; 1731 1732 CI->getOperandBundlesAsDefs(OpBundles); 1733 1734 // Note: we're round tripping operand bundles through memory here, and that 1735 // can potentially be avoided with a cleverer API design that we do not have 1736 // as of this time. 1737 1738 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1739 InvokeArgs, OpBundles, CI->getName(), BB); 1740 II->setDebugLoc(CI->getDebugLoc()); 1741 II->setCallingConv(CI->getCallingConv()); 1742 II->setAttributes(CI->getAttributes()); 1743 1744 // Make sure that anything using the call now uses the invoke! This also 1745 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1746 CI->replaceAllUsesWith(II); 1747 1748 // Delete the original call 1749 Split->getInstList().pop_front(); 1750 return Split; 1751 } 1752 1753 static bool markAliveBlocks(Function &F, 1754 SmallPtrSetImpl<BasicBlock*> &Reachable, 1755 DeferredDominance *DDT = nullptr) { 1756 SmallVector<BasicBlock*, 128> Worklist; 1757 BasicBlock *BB = &F.front(); 1758 Worklist.push_back(BB); 1759 Reachable.insert(BB); 1760 bool Changed = false; 1761 do { 1762 BB = Worklist.pop_back_val(); 1763 1764 // Do a quick scan of the basic block, turning any obviously unreachable 1765 // instructions into LLVM unreachable insts. The instruction combining pass 1766 // canonicalizes unreachable insts into stores to null or undef. 1767 for (Instruction &I : *BB) { 1768 // Assumptions that are known to be false are equivalent to unreachable. 1769 // Also, if the condition is undefined, then we make the choice most 1770 // beneficial to the optimizer, and choose that to also be unreachable. 1771 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1772 if (II->getIntrinsicID() == Intrinsic::assume) { 1773 if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 1774 // Don't insert a call to llvm.trap right before the unreachable. 1775 changeToUnreachable(II, false, false, DDT); 1776 Changed = true; 1777 break; 1778 } 1779 } 1780 1781 if (II->getIntrinsicID() == Intrinsic::experimental_guard) { 1782 // A call to the guard intrinsic bails out of the current compilation 1783 // unit if the predicate passed to it is false. If the predicate is a 1784 // constant false, then we know the guard will bail out of the current 1785 // compile unconditionally, so all code following it is dead. 1786 // 1787 // Note: unlike in llvm.assume, it is not "obviously profitable" for 1788 // guards to treat `undef` as `false` since a guard on `undef` can 1789 // still be useful for widening. 1790 if (match(II->getArgOperand(0), m_Zero())) 1791 if (!isa<UnreachableInst>(II->getNextNode())) { 1792 changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/false, 1793 false, DDT); 1794 Changed = true; 1795 break; 1796 } 1797 } 1798 } 1799 1800 if (auto *CI = dyn_cast<CallInst>(&I)) { 1801 Value *Callee = CI->getCalledValue(); 1802 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1803 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT); 1804 Changed = true; 1805 break; 1806 } 1807 if (CI->doesNotReturn()) { 1808 // If we found a call to a no-return function, insert an unreachable 1809 // instruction after it. Make sure there isn't *already* one there 1810 // though. 1811 if (!isa<UnreachableInst>(CI->getNextNode())) { 1812 // Don't insert a call to llvm.trap right before the unreachable. 1813 changeToUnreachable(CI->getNextNode(), false, false, DDT); 1814 Changed = true; 1815 } 1816 break; 1817 } 1818 } 1819 1820 // Store to undef and store to null are undefined and used to signal that 1821 // they should be changed to unreachable by passes that can't modify the 1822 // CFG. 1823 if (auto *SI = dyn_cast<StoreInst>(&I)) { 1824 // Don't touch volatile stores. 1825 if (SI->isVolatile()) continue; 1826 1827 Value *Ptr = SI->getOperand(1); 1828 1829 if (isa<UndefValue>(Ptr) || 1830 (isa<ConstantPointerNull>(Ptr) && 1831 SI->getPointerAddressSpace() == 0)) { 1832 changeToUnreachable(SI, true, false, DDT); 1833 Changed = true; 1834 break; 1835 } 1836 } 1837 } 1838 1839 TerminatorInst *Terminator = BB->getTerminator(); 1840 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 1841 // Turn invokes that call 'nounwind' functions into ordinary calls. 1842 Value *Callee = II->getCalledValue(); 1843 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1844 changeToUnreachable(II, true, false, DDT); 1845 Changed = true; 1846 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 1847 if (II->use_empty() && II->onlyReadsMemory()) { 1848 // jump to the normal destination branch. 1849 BasicBlock *NormalDestBB = II->getNormalDest(); 1850 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1851 BranchInst::Create(NormalDestBB, II); 1852 UnwindDestBB->removePredecessor(II->getParent()); 1853 II->eraseFromParent(); 1854 if (DDT) 1855 DDT->deleteEdge(BB, UnwindDestBB); 1856 } else 1857 changeToCall(II, DDT); 1858 Changed = true; 1859 } 1860 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 1861 // Remove catchpads which cannot be reached. 1862 struct CatchPadDenseMapInfo { 1863 static CatchPadInst *getEmptyKey() { 1864 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 1865 } 1866 1867 static CatchPadInst *getTombstoneKey() { 1868 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 1869 } 1870 1871 static unsigned getHashValue(CatchPadInst *CatchPad) { 1872 return static_cast<unsigned>(hash_combine_range( 1873 CatchPad->value_op_begin(), CatchPad->value_op_end())); 1874 } 1875 1876 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 1877 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1878 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1879 return LHS == RHS; 1880 return LHS->isIdenticalTo(RHS); 1881 } 1882 }; 1883 1884 // Set of unique CatchPads. 1885 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 1886 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 1887 HandlerSet; 1888 detail::DenseSetEmpty Empty; 1889 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 1890 E = CatchSwitch->handler_end(); 1891 I != E; ++I) { 1892 BasicBlock *HandlerBB = *I; 1893 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 1894 if (!HandlerSet.insert({CatchPad, Empty}).second) { 1895 CatchSwitch->removeHandler(I); 1896 --I; 1897 --E; 1898 Changed = true; 1899 } 1900 } 1901 } 1902 1903 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT); 1904 for (BasicBlock *Successor : successors(BB)) 1905 if (Reachable.insert(Successor).second) 1906 Worklist.push_back(Successor); 1907 } while (!Worklist.empty()); 1908 return Changed; 1909 } 1910 1911 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) { 1912 TerminatorInst *TI = BB->getTerminator(); 1913 1914 if (auto *II = dyn_cast<InvokeInst>(TI)) { 1915 changeToCall(II, DDT); 1916 return; 1917 } 1918 1919 TerminatorInst *NewTI; 1920 BasicBlock *UnwindDest; 1921 1922 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 1923 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 1924 UnwindDest = CRI->getUnwindDest(); 1925 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 1926 auto *NewCatchSwitch = CatchSwitchInst::Create( 1927 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 1928 CatchSwitch->getName(), CatchSwitch); 1929 for (BasicBlock *PadBB : CatchSwitch->handlers()) 1930 NewCatchSwitch->addHandler(PadBB); 1931 1932 NewTI = NewCatchSwitch; 1933 UnwindDest = CatchSwitch->getUnwindDest(); 1934 } else { 1935 llvm_unreachable("Could not find unwind successor"); 1936 } 1937 1938 NewTI->takeName(TI); 1939 NewTI->setDebugLoc(TI->getDebugLoc()); 1940 UnwindDest->removePredecessor(BB); 1941 TI->replaceAllUsesWith(NewTI); 1942 TI->eraseFromParent(); 1943 if (DDT) 1944 DDT->deleteEdge(BB, UnwindDest); 1945 } 1946 1947 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 1948 /// if they are in a dead cycle. Return true if a change was made, false 1949 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 1950 /// after modifying the CFG. 1951 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 1952 DeferredDominance *DDT) { 1953 SmallPtrSet<BasicBlock*, 16> Reachable; 1954 bool Changed = markAliveBlocks(F, Reachable, DDT); 1955 1956 // If there are unreachable blocks in the CFG... 1957 if (Reachable.size() == F.size()) 1958 return Changed; 1959 1960 assert(Reachable.size() < F.size()); 1961 NumRemoved += F.size()-Reachable.size(); 1962 1963 // Loop over all of the basic blocks that are not reachable, dropping all of 1964 // their internal references. Update DDT and LVI if available. 1965 std::vector <DominatorTree::UpdateType> Updates; 1966 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 1967 auto *BB = &*I; 1968 if (Reachable.count(BB)) 1969 continue; 1970 for (BasicBlock *Successor : successors(BB)) { 1971 if (Reachable.count(Successor)) 1972 Successor->removePredecessor(BB); 1973 if (DDT) 1974 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1975 } 1976 if (LVI) 1977 LVI->eraseBlock(BB); 1978 BB->dropAllReferences(); 1979 } 1980 1981 for (Function::iterator I = ++F.begin(); I != F.end();) { 1982 auto *BB = &*I; 1983 if (Reachable.count(BB)) { 1984 ++I; 1985 continue; 1986 } 1987 if (DDT) { 1988 DDT->deleteBB(BB); // deferred deletion of BB. 1989 ++I; 1990 } else { 1991 I = F.getBasicBlockList().erase(I); 1992 } 1993 } 1994 1995 if (DDT) 1996 DDT->applyUpdates(Updates); 1997 return true; 1998 } 1999 2000 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2001 ArrayRef<unsigned> KnownIDs) { 2002 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2003 K->dropUnknownNonDebugMetadata(KnownIDs); 2004 K->getAllMetadataOtherThanDebugLoc(Metadata); 2005 for (const auto &MD : Metadata) { 2006 unsigned Kind = MD.first; 2007 MDNode *JMD = J->getMetadata(Kind); 2008 MDNode *KMD = MD.second; 2009 2010 switch (Kind) { 2011 default: 2012 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2013 break; 2014 case LLVMContext::MD_dbg: 2015 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2016 case LLVMContext::MD_tbaa: 2017 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2018 break; 2019 case LLVMContext::MD_alias_scope: 2020 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2021 break; 2022 case LLVMContext::MD_noalias: 2023 case LLVMContext::MD_mem_parallel_loop_access: 2024 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2025 break; 2026 case LLVMContext::MD_range: 2027 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2028 break; 2029 case LLVMContext::MD_fpmath: 2030 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2031 break; 2032 case LLVMContext::MD_invariant_load: 2033 // Only set the !invariant.load if it is present in both instructions. 2034 K->setMetadata(Kind, JMD); 2035 break; 2036 case LLVMContext::MD_nonnull: 2037 // Only set the !nonnull if it is present in both instructions. 2038 K->setMetadata(Kind, JMD); 2039 break; 2040 case LLVMContext::MD_invariant_group: 2041 // Preserve !invariant.group in K. 2042 break; 2043 case LLVMContext::MD_align: 2044 K->setMetadata(Kind, 2045 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2046 break; 2047 case LLVMContext::MD_dereferenceable: 2048 case LLVMContext::MD_dereferenceable_or_null: 2049 K->setMetadata(Kind, 2050 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2051 break; 2052 } 2053 } 2054 // Set !invariant.group from J if J has it. If both instructions have it 2055 // then we will just pick it from J - even when they are different. 2056 // Also make sure that K is load or store - f.e. combining bitcast with load 2057 // could produce bitcast with invariant.group metadata, which is invalid. 2058 // FIXME: we should try to preserve both invariant.group md if they are 2059 // different, but right now instruction can only have one invariant.group. 2060 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2061 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2062 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2063 } 2064 2065 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 2066 unsigned KnownIDs[] = { 2067 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2068 LLVMContext::MD_noalias, LLVMContext::MD_range, 2069 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2070 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2071 LLVMContext::MD_dereferenceable, 2072 LLVMContext::MD_dereferenceable_or_null}; 2073 combineMetadata(K, J, KnownIDs); 2074 } 2075 2076 template <typename RootType, typename DominatesFn> 2077 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2078 const RootType &Root, 2079 const DominatesFn &Dominates) { 2080 assert(From->getType() == To->getType()); 2081 2082 unsigned Count = 0; 2083 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2084 UI != UE;) { 2085 Use &U = *UI++; 2086 if (!Dominates(Root, U)) 2087 continue; 2088 U.set(To); 2089 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2090 << "' as " << *To << " in " << *U << "\n"); 2091 ++Count; 2092 } 2093 return Count; 2094 } 2095 2096 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2097 assert(From->getType() == To->getType()); 2098 auto *BB = From->getParent(); 2099 unsigned Count = 0; 2100 2101 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2102 UI != UE;) { 2103 Use &U = *UI++; 2104 auto *I = cast<Instruction>(U.getUser()); 2105 if (I->getParent() == BB) 2106 continue; 2107 U.set(To); 2108 ++Count; 2109 } 2110 return Count; 2111 } 2112 2113 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2114 DominatorTree &DT, 2115 const BasicBlockEdge &Root) { 2116 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2117 return DT.dominates(Root, U); 2118 }; 2119 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2120 } 2121 2122 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2123 DominatorTree &DT, 2124 const BasicBlock *BB) { 2125 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2126 auto *I = cast<Instruction>(U.getUser())->getParent(); 2127 return DT.properlyDominates(BB, I); 2128 }; 2129 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2130 } 2131 2132 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2133 const TargetLibraryInfo &TLI) { 2134 // Check if the function is specifically marked as a gc leaf function. 2135 if (CS.hasFnAttr("gc-leaf-function")) 2136 return true; 2137 if (const Function *F = CS.getCalledFunction()) { 2138 if (F->hasFnAttribute("gc-leaf-function")) 2139 return true; 2140 2141 if (auto IID = F->getIntrinsicID()) 2142 // Most LLVM intrinsics do not take safepoints. 2143 return IID != Intrinsic::experimental_gc_statepoint && 2144 IID != Intrinsic::experimental_deoptimize; 2145 } 2146 2147 // Lib calls can be materialized by some passes, and won't be 2148 // marked as 'gc-leaf-function.' All available Libcalls are 2149 // GC-leaf. 2150 LibFunc LF; 2151 if (TLI.getLibFunc(CS, LF)) { 2152 return TLI.has(LF); 2153 } 2154 2155 return false; 2156 } 2157 2158 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2159 LoadInst &NewLI) { 2160 auto *NewTy = NewLI.getType(); 2161 2162 // This only directly applies if the new type is also a pointer. 2163 if (NewTy->isPointerTy()) { 2164 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2165 return; 2166 } 2167 2168 // The only other translation we can do is to integral loads with !range 2169 // metadata. 2170 if (!NewTy->isIntegerTy()) 2171 return; 2172 2173 MDBuilder MDB(NewLI.getContext()); 2174 const Value *Ptr = OldLI.getPointerOperand(); 2175 auto *ITy = cast<IntegerType>(NewTy); 2176 auto *NullInt = ConstantExpr::getPtrToInt( 2177 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2178 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2179 NewLI.setMetadata(LLVMContext::MD_range, 2180 MDB.createRange(NonNullInt, NullInt)); 2181 } 2182 2183 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2184 MDNode *N, LoadInst &NewLI) { 2185 auto *NewTy = NewLI.getType(); 2186 2187 // Give up unless it is converted to a pointer where there is a single very 2188 // valuable mapping we can do reliably. 2189 // FIXME: It would be nice to propagate this in more ways, but the type 2190 // conversions make it hard. 2191 if (!NewTy->isPointerTy()) 2192 return; 2193 2194 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2195 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2196 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2197 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2198 } 2199 } 2200 2201 namespace { 2202 2203 /// A potential constituent of a bitreverse or bswap expression. See 2204 /// collectBitParts for a fuller explanation. 2205 struct BitPart { 2206 BitPart(Value *P, unsigned BW) : Provider(P) { 2207 Provenance.resize(BW); 2208 } 2209 2210 /// The Value that this is a bitreverse/bswap of. 2211 Value *Provider; 2212 2213 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2214 /// in Provider becomes bit B in the result of this expression. 2215 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2216 2217 enum { Unset = -1 }; 2218 }; 2219 2220 } // end anonymous namespace 2221 2222 /// Analyze the specified subexpression and see if it is capable of providing 2223 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2224 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2225 /// the output of the expression came from a corresponding bit in some other 2226 /// value. This function is recursive, and the end result is a mapping of 2227 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2228 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2229 /// 2230 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2231 /// that the expression deposits the low byte of %X into the high byte of the 2232 /// result and that all other bits are zero. This expression is accepted and a 2233 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2234 /// [0-7]. 2235 /// 2236 /// To avoid revisiting values, the BitPart results are memoized into the 2237 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2238 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2239 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2240 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2241 /// type instead to provide the same functionality. 2242 /// 2243 /// Because we pass around references into \c BPS, we must use a container that 2244 /// does not invalidate internal references (std::map instead of DenseMap). 2245 static const Optional<BitPart> & 2246 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2247 std::map<Value *, Optional<BitPart>> &BPS) { 2248 auto I = BPS.find(V); 2249 if (I != BPS.end()) 2250 return I->second; 2251 2252 auto &Result = BPS[V] = None; 2253 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2254 2255 if (Instruction *I = dyn_cast<Instruction>(V)) { 2256 // If this is an or instruction, it may be an inner node of the bswap. 2257 if (I->getOpcode() == Instruction::Or) { 2258 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2259 MatchBitReversals, BPS); 2260 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2261 MatchBitReversals, BPS); 2262 if (!A || !B) 2263 return Result; 2264 2265 // Try and merge the two together. 2266 if (!A->Provider || A->Provider != B->Provider) 2267 return Result; 2268 2269 Result = BitPart(A->Provider, BitWidth); 2270 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2271 if (A->Provenance[i] != BitPart::Unset && 2272 B->Provenance[i] != BitPart::Unset && 2273 A->Provenance[i] != B->Provenance[i]) 2274 return Result = None; 2275 2276 if (A->Provenance[i] == BitPart::Unset) 2277 Result->Provenance[i] = B->Provenance[i]; 2278 else 2279 Result->Provenance[i] = A->Provenance[i]; 2280 } 2281 2282 return Result; 2283 } 2284 2285 // If this is a logical shift by a constant, recurse then shift the result. 2286 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2287 unsigned BitShift = 2288 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2289 // Ensure the shift amount is defined. 2290 if (BitShift > BitWidth) 2291 return Result; 2292 2293 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2294 MatchBitReversals, BPS); 2295 if (!Res) 2296 return Result; 2297 Result = Res; 2298 2299 // Perform the "shift" on BitProvenance. 2300 auto &P = Result->Provenance; 2301 if (I->getOpcode() == Instruction::Shl) { 2302 P.erase(std::prev(P.end(), BitShift), P.end()); 2303 P.insert(P.begin(), BitShift, BitPart::Unset); 2304 } else { 2305 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2306 P.insert(P.end(), BitShift, BitPart::Unset); 2307 } 2308 2309 return Result; 2310 } 2311 2312 // If this is a logical 'and' with a mask that clears bits, recurse then 2313 // unset the appropriate bits. 2314 if (I->getOpcode() == Instruction::And && 2315 isa<ConstantInt>(I->getOperand(1))) { 2316 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2317 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2318 2319 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2320 // early exit. 2321 unsigned NumMaskedBits = AndMask.countPopulation(); 2322 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2323 return Result; 2324 2325 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2326 MatchBitReversals, BPS); 2327 if (!Res) 2328 return Result; 2329 Result = Res; 2330 2331 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2332 // If the AndMask is zero for this bit, clear the bit. 2333 if ((AndMask & Bit) == 0) 2334 Result->Provenance[i] = BitPart::Unset; 2335 return Result; 2336 } 2337 2338 // If this is a zext instruction zero extend the result. 2339 if (I->getOpcode() == Instruction::ZExt) { 2340 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2341 MatchBitReversals, BPS); 2342 if (!Res) 2343 return Result; 2344 2345 Result = BitPart(Res->Provider, BitWidth); 2346 auto NarrowBitWidth = 2347 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2348 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2349 Result->Provenance[i] = Res->Provenance[i]; 2350 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2351 Result->Provenance[i] = BitPart::Unset; 2352 return Result; 2353 } 2354 } 2355 2356 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2357 // the input value to the bswap/bitreverse. 2358 Result = BitPart(V, BitWidth); 2359 for (unsigned i = 0; i < BitWidth; ++i) 2360 Result->Provenance[i] = i; 2361 return Result; 2362 } 2363 2364 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2365 unsigned BitWidth) { 2366 if (From % 8 != To % 8) 2367 return false; 2368 // Convert from bit indices to byte indices and check for a byte reversal. 2369 From >>= 3; 2370 To >>= 3; 2371 BitWidth >>= 3; 2372 return From == BitWidth - To - 1; 2373 } 2374 2375 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2376 unsigned BitWidth) { 2377 return From == BitWidth - To - 1; 2378 } 2379 2380 bool llvm::recognizeBSwapOrBitReverseIdiom( 2381 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2382 SmallVectorImpl<Instruction *> &InsertedInsts) { 2383 if (Operator::getOpcode(I) != Instruction::Or) 2384 return false; 2385 if (!MatchBSwaps && !MatchBitReversals) 2386 return false; 2387 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2388 if (!ITy || ITy->getBitWidth() > 128) 2389 return false; // Can't do vectors or integers > 128 bits. 2390 unsigned BW = ITy->getBitWidth(); 2391 2392 unsigned DemandedBW = BW; 2393 IntegerType *DemandedTy = ITy; 2394 if (I->hasOneUse()) { 2395 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2396 DemandedTy = cast<IntegerType>(Trunc->getType()); 2397 DemandedBW = DemandedTy->getBitWidth(); 2398 } 2399 } 2400 2401 // Try to find all the pieces corresponding to the bswap. 2402 std::map<Value *, Optional<BitPart>> BPS; 2403 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2404 if (!Res) 2405 return false; 2406 auto &BitProvenance = Res->Provenance; 2407 2408 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2409 // only byteswap values with an even number of bytes. 2410 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2411 for (unsigned i = 0; i < DemandedBW; ++i) { 2412 OKForBSwap &= 2413 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2414 OKForBitReverse &= 2415 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2416 } 2417 2418 Intrinsic::ID Intrin; 2419 if (OKForBSwap && MatchBSwaps) 2420 Intrin = Intrinsic::bswap; 2421 else if (OKForBitReverse && MatchBitReversals) 2422 Intrin = Intrinsic::bitreverse; 2423 else 2424 return false; 2425 2426 if (ITy != DemandedTy) { 2427 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2428 Value *Provider = Res->Provider; 2429 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2430 // We may need to truncate the provider. 2431 if (DemandedTy != ProviderTy) { 2432 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2433 "trunc", I); 2434 InsertedInsts.push_back(Trunc); 2435 Provider = Trunc; 2436 } 2437 auto *CI = CallInst::Create(F, Provider, "rev", I); 2438 InsertedInsts.push_back(CI); 2439 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2440 InsertedInsts.push_back(ExtInst); 2441 return true; 2442 } 2443 2444 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2445 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2446 return true; 2447 } 2448 2449 // CodeGen has special handling for some string functions that may replace 2450 // them with target-specific intrinsics. Since that'd skip our interceptors 2451 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2452 // we mark affected calls as NoBuiltin, which will disable optimization 2453 // in CodeGen. 2454 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2455 CallInst *CI, const TargetLibraryInfo *TLI) { 2456 Function *F = CI->getCalledFunction(); 2457 LibFunc Func; 2458 if (F && !F->hasLocalLinkage() && F->hasName() && 2459 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2460 !F->doesNotAccessMemory()) 2461 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2462 } 2463 2464 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2465 // We can't have a PHI with a metadata type. 2466 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2467 return false; 2468 2469 // Early exit. 2470 if (!isa<Constant>(I->getOperand(OpIdx))) 2471 return true; 2472 2473 switch (I->getOpcode()) { 2474 default: 2475 return true; 2476 case Instruction::Call: 2477 case Instruction::Invoke: 2478 // Can't handle inline asm. Skip it. 2479 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2480 return false; 2481 // Many arithmetic intrinsics have no issue taking a 2482 // variable, however it's hard to distingish these from 2483 // specials such as @llvm.frameaddress that require a constant. 2484 if (isa<IntrinsicInst>(I)) 2485 return false; 2486 2487 // Constant bundle operands may need to retain their constant-ness for 2488 // correctness. 2489 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2490 return false; 2491 return true; 2492 case Instruction::ShuffleVector: 2493 // Shufflevector masks are constant. 2494 return OpIdx != 2; 2495 case Instruction::Switch: 2496 case Instruction::ExtractValue: 2497 // All operands apart from the first are constant. 2498 return OpIdx == 0; 2499 case Instruction::InsertValue: 2500 // All operands apart from the first and the second are constant. 2501 return OpIdx < 2; 2502 case Instruction::Alloca: 2503 // Static allocas (constant size in the entry block) are handled by 2504 // prologue/epilogue insertion so they're free anyway. We definitely don't 2505 // want to make them non-constant. 2506 return !cast<AllocaInst>(I)->isStaticAlloca(); 2507 case Instruction::GetElementPtr: 2508 if (OpIdx == 0) 2509 return true; 2510 gep_type_iterator It = gep_type_begin(I); 2511 for (auto E = std::next(It, OpIdx); It != E; ++It) 2512 if (It.isStruct()) 2513 return false; 2514 return true; 2515 } 2516 } 2517