1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 // Max recursion depth for collectBitParts used when detecting bswap and 95 // bitreverse idioms 96 static const unsigned BitPartRecursionMaxDepth = 64; 97 98 //===----------------------------------------------------------------------===// 99 // Local constant propagation. 100 // 101 102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 103 /// constant value, convert it into an unconditional branch to the constant 104 /// destination. This is a nontrivial operation because the successors of this 105 /// basic block must have their PHI nodes updated. 106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 107 /// conditions and indirectbr addresses this might make dead if 108 /// DeleteDeadConditions is true. 109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 110 const TargetLibraryInfo *TLI, 111 DomTreeUpdater *DTU) { 112 Instruction *T = BB->getTerminator(); 113 IRBuilder<> Builder(T); 114 115 // Branch - See if we are conditional jumping on constant 116 if (auto *BI = dyn_cast<BranchInst>(T)) { 117 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 118 BasicBlock *Dest1 = BI->getSuccessor(0); 119 BasicBlock *Dest2 = BI->getSuccessor(1); 120 121 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 122 // Are we branching on constant? 123 // YES. Change to unconditional branch... 124 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 125 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 126 127 // Let the basic block know that we are letting go of it. Based on this, 128 // it will adjust it's PHI nodes. 129 OldDest->removePredecessor(BB); 130 131 // Replace the conditional branch with an unconditional one. 132 Builder.CreateBr(Destination); 133 BI->eraseFromParent(); 134 if (DTU) 135 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 136 return true; 137 } 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 Builder.CreateBr(Dest1); 150 Value *Cond = BI->getCondition(); 151 BI->eraseFromParent(); 152 if (DeleteDeadConditions) 153 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 154 return true; 155 } 156 return false; 157 } 158 159 if (auto *SI = dyn_cast<SwitchInst>(T)) { 160 // If we are switching on a constant, we can convert the switch to an 161 // unconditional branch. 162 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 163 BasicBlock *DefaultDest = SI->getDefaultDest(); 164 BasicBlock *TheOnlyDest = DefaultDest; 165 166 // If the default is unreachable, ignore it when searching for TheOnlyDest. 167 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 168 SI->getNumCases() > 0) { 169 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 170 } 171 172 // Figure out which case it goes to. 173 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 174 // Found case matching a constant operand? 175 if (i->getCaseValue() == CI) { 176 TheOnlyDest = i->getCaseSuccessor(); 177 break; 178 } 179 180 // Check to see if this branch is going to the same place as the default 181 // dest. If so, eliminate it as an explicit compare. 182 if (i->getCaseSuccessor() == DefaultDest) { 183 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 184 unsigned NCases = SI->getNumCases(); 185 // Fold the case metadata into the default if there will be any branches 186 // left, unless the metadata doesn't match the switch. 187 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 188 // Collect branch weights into a vector. 189 SmallVector<uint32_t, 8> Weights; 190 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 191 ++MD_i) { 192 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 193 Weights.push_back(CI->getValue().getZExtValue()); 194 } 195 // Merge weight of this case to the default weight. 196 unsigned idx = i->getCaseIndex(); 197 Weights[0] += Weights[idx+1]; 198 // Remove weight for this case. 199 std::swap(Weights[idx+1], Weights.back()); 200 Weights.pop_back(); 201 SI->setMetadata(LLVMContext::MD_prof, 202 MDBuilder(BB->getContext()). 203 createBranchWeights(Weights)); 204 } 205 // Remove this entry. 206 BasicBlock *ParentBB = SI->getParent(); 207 DefaultDest->removePredecessor(ParentBB); 208 i = SI->removeCase(i); 209 e = SI->case_end(); 210 if (DTU) 211 DTU->applyUpdatesPermissive( 212 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 213 continue; 214 } 215 216 // Otherwise, check to see if the switch only branches to one destination. 217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 218 // destinations. 219 if (i->getCaseSuccessor() != TheOnlyDest) 220 TheOnlyDest = nullptr; 221 222 // Increment this iterator as we haven't removed the case. 223 ++i; 224 } 225 226 if (CI && !TheOnlyDest) { 227 // Branching on a constant, but not any of the cases, go to the default 228 // successor. 229 TheOnlyDest = SI->getDefaultDest(); 230 } 231 232 // If we found a single destination that we can fold the switch into, do so 233 // now. 234 if (TheOnlyDest) { 235 // Insert the new branch. 236 Builder.CreateBr(TheOnlyDest); 237 BasicBlock *BB = SI->getParent(); 238 std::vector <DominatorTree::UpdateType> Updates; 239 if (DTU) 240 Updates.reserve(SI->getNumSuccessors() - 1); 241 242 // Remove entries from PHI nodes which we no longer branch to... 243 for (BasicBlock *Succ : successors(SI)) { 244 // Found case matching a constant operand? 245 if (Succ == TheOnlyDest) { 246 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 247 } else { 248 Succ->removePredecessor(BB); 249 if (DTU) 250 Updates.push_back({DominatorTree::Delete, BB, Succ}); 251 } 252 } 253 254 // Delete the old switch. 255 Value *Cond = SI->getCondition(); 256 SI->eraseFromParent(); 257 if (DeleteDeadConditions) 258 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 259 if (DTU) 260 DTU->applyUpdatesPermissive(Updates); 261 return true; 262 } 263 264 if (SI->getNumCases() == 1) { 265 // Otherwise, we can fold this switch into a conditional branch 266 // instruction if it has only one non-default destination. 267 auto FirstCase = *SI->case_begin(); 268 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 269 FirstCase.getCaseValue(), "cond"); 270 271 // Insert the new branch. 272 BranchInst *NewBr = Builder.CreateCondBr(Cond, 273 FirstCase.getCaseSuccessor(), 274 SI->getDefaultDest()); 275 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 276 if (MD && MD->getNumOperands() == 3) { 277 ConstantInt *SICase = 278 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 279 ConstantInt *SIDef = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 281 assert(SICase && SIDef); 282 // The TrueWeight should be the weight for the single case of SI. 283 NewBr->setMetadata(LLVMContext::MD_prof, 284 MDBuilder(BB->getContext()). 285 createBranchWeights(SICase->getValue().getZExtValue(), 286 SIDef->getValue().getZExtValue())); 287 } 288 289 // Update make.implicit metadata to the newly-created conditional branch. 290 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 291 if (MakeImplicitMD) 292 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 293 294 // Delete the old switch. 295 SI->eraseFromParent(); 296 return true; 297 } 298 return false; 299 } 300 301 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 302 // indirectbr blockaddress(@F, @BB) -> br label @BB 303 if (auto *BA = 304 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 305 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 306 std::vector <DominatorTree::UpdateType> Updates; 307 if (DTU) 308 Updates.reserve(IBI->getNumDestinations() - 1); 309 310 // Insert the new branch. 311 Builder.CreateBr(TheOnlyDest); 312 313 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 314 if (IBI->getDestination(i) == TheOnlyDest) { 315 TheOnlyDest = nullptr; 316 } else { 317 BasicBlock *ParentBB = IBI->getParent(); 318 BasicBlock *DestBB = IBI->getDestination(i); 319 DestBB->removePredecessor(ParentBB); 320 if (DTU) 321 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 322 } 323 } 324 Value *Address = IBI->getAddress(); 325 IBI->eraseFromParent(); 326 if (DeleteDeadConditions) 327 // Delete pointer cast instructions. 328 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 329 330 // Also zap the blockaddress constant if there are no users remaining, 331 // otherwise the destination is still marked as having its address taken. 332 if (BA->use_empty()) 333 BA->destroyConstant(); 334 335 // If we didn't find our destination in the IBI successor list, then we 336 // have undefined behavior. Replace the unconditional branch with an 337 // 'unreachable' instruction. 338 if (TheOnlyDest) { 339 BB->getTerminator()->eraseFromParent(); 340 new UnreachableInst(BB->getContext(), BB); 341 } 342 343 if (DTU) 344 DTU->applyUpdatesPermissive(Updates); 345 return true; 346 } 347 } 348 349 return false; 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Local dead code elimination. 354 // 355 356 /// isInstructionTriviallyDead - Return true if the result produced by the 357 /// instruction is not used, and the instruction has no side effects. 358 /// 359 bool llvm::isInstructionTriviallyDead(Instruction *I, 360 const TargetLibraryInfo *TLI) { 361 if (!I->use_empty()) 362 return false; 363 return wouldInstructionBeTriviallyDead(I, TLI); 364 } 365 366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 367 const TargetLibraryInfo *TLI) { 368 if (I->isTerminator()) 369 return false; 370 371 // We don't want the landingpad-like instructions removed by anything this 372 // general. 373 if (I->isEHPad()) 374 return false; 375 376 // We don't want debug info removed by anything this general, unless 377 // debug info is empty. 378 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 379 if (DDI->getAddress()) 380 return false; 381 return true; 382 } 383 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 384 if (DVI->getValue()) 385 return false; 386 return true; 387 } 388 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 389 if (DLI->getLabel()) 390 return false; 391 return true; 392 } 393 394 if (!I->mayHaveSideEffects()) 395 return true; 396 397 // Special case intrinsics that "may have side effects" but can be deleted 398 // when dead. 399 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 400 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 401 if (II->getIntrinsicID() == Intrinsic::stacksave || 402 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 403 return true; 404 405 // Lifetime intrinsics are dead when their right-hand is undef. 406 if (II->isLifetimeStartOrEnd()) 407 return isa<UndefValue>(II->getArgOperand(1)); 408 409 // Assumptions are dead if their condition is trivially true. Guards on 410 // true are operationally no-ops. In the future we can consider more 411 // sophisticated tradeoffs for guards considering potential for check 412 // widening, but for now we keep things simple. 413 if (II->getIntrinsicID() == Intrinsic::assume || 414 II->getIntrinsicID() == Intrinsic::experimental_guard) { 415 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 416 return !Cond->isZero(); 417 418 return false; 419 } 420 } 421 422 if (isAllocLikeFn(I, TLI)) 423 return true; 424 425 if (CallInst *CI = isFreeCall(I, TLI)) 426 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 427 return C->isNullValue() || isa<UndefValue>(C); 428 429 if (auto *Call = dyn_cast<CallBase>(I)) 430 if (isMathLibCallNoop(Call, TLI)) 431 return true; 432 433 return false; 434 } 435 436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 437 /// trivially dead instruction, delete it. If that makes any of its operands 438 /// trivially dead, delete them too, recursively. Return true if any 439 /// instructions were deleted. 440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 441 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 442 Instruction *I = dyn_cast<Instruction>(V); 443 if (!I || !isInstructionTriviallyDead(I, TLI)) 444 return false; 445 446 SmallVector<WeakTrackingVH, 16> DeadInsts; 447 DeadInsts.push_back(I); 448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 449 450 return true; 451 } 452 453 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 454 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 455 MemorySSAUpdater *MSSAU) { 456 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 457 for (; S != E; ++S) { 458 auto *I = cast<Instruction>(DeadInsts[S]); 459 if (!isInstructionTriviallyDead(I)) { 460 DeadInsts[S] = nullptr; 461 ++Alive; 462 } 463 } 464 if (Alive == E) 465 return false; 466 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 467 return true; 468 } 469 470 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 471 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 472 MemorySSAUpdater *MSSAU) { 473 // Process the dead instruction list until empty. 474 while (!DeadInsts.empty()) { 475 Value *V = DeadInsts.pop_back_val(); 476 Instruction *I = cast_or_null<Instruction>(V); 477 if (!I) 478 continue; 479 assert(isInstructionTriviallyDead(I, TLI) && 480 "Live instruction found in dead worklist!"); 481 assert(I->use_empty() && "Instructions with uses are not dead."); 482 483 // Don't lose the debug info while deleting the instructions. 484 salvageDebugInfo(*I); 485 486 // Null out all of the instruction's operands to see if any operand becomes 487 // dead as we go. 488 for (Use &OpU : I->operands()) { 489 Value *OpV = OpU.get(); 490 OpU.set(nullptr); 491 492 if (!OpV->use_empty()) 493 continue; 494 495 // If the operand is an instruction that became dead as we nulled out the 496 // operand, and if it is 'trivially' dead, delete it in a future loop 497 // iteration. 498 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 499 if (isInstructionTriviallyDead(OpI, TLI)) 500 DeadInsts.push_back(OpI); 501 } 502 if (MSSAU) 503 MSSAU->removeMemoryAccess(I); 504 505 I->eraseFromParent(); 506 } 507 } 508 509 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 510 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 511 findDbgUsers(DbgUsers, I); 512 for (auto *DII : DbgUsers) { 513 Value *Undef = UndefValue::get(I->getType()); 514 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 515 ValueAsMetadata::get(Undef))); 516 } 517 return !DbgUsers.empty(); 518 } 519 520 /// areAllUsesEqual - Check whether the uses of a value are all the same. 521 /// This is similar to Instruction::hasOneUse() except this will also return 522 /// true when there are no uses or multiple uses that all refer to the same 523 /// value. 524 static bool areAllUsesEqual(Instruction *I) { 525 Value::user_iterator UI = I->user_begin(); 526 Value::user_iterator UE = I->user_end(); 527 if (UI == UE) 528 return true; 529 530 User *TheUse = *UI; 531 for (++UI; UI != UE; ++UI) { 532 if (*UI != TheUse) 533 return false; 534 } 535 return true; 536 } 537 538 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 539 /// dead PHI node, due to being a def-use chain of single-use nodes that 540 /// either forms a cycle or is terminated by a trivially dead instruction, 541 /// delete it. If that makes any of its operands trivially dead, delete them 542 /// too, recursively. Return true if a change was made. 543 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 544 const TargetLibraryInfo *TLI, 545 llvm::MemorySSAUpdater *MSSAU) { 546 SmallPtrSet<Instruction*, 4> Visited; 547 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 548 I = cast<Instruction>(*I->user_begin())) { 549 if (I->use_empty()) 550 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 551 552 // If we find an instruction more than once, we're on a cycle that 553 // won't prove fruitful. 554 if (!Visited.insert(I).second) { 555 // Break the cycle and delete the instruction and its operands. 556 I->replaceAllUsesWith(UndefValue::get(I->getType())); 557 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 558 return true; 559 } 560 } 561 return false; 562 } 563 564 static bool 565 simplifyAndDCEInstruction(Instruction *I, 566 SmallSetVector<Instruction *, 16> &WorkList, 567 const DataLayout &DL, 568 const TargetLibraryInfo *TLI) { 569 if (isInstructionTriviallyDead(I, TLI)) { 570 salvageDebugInfo(*I); 571 572 // Null out all of the instruction's operands to see if any operand becomes 573 // dead as we go. 574 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 575 Value *OpV = I->getOperand(i); 576 I->setOperand(i, nullptr); 577 578 if (!OpV->use_empty() || I == OpV) 579 continue; 580 581 // If the operand is an instruction that became dead as we nulled out the 582 // operand, and if it is 'trivially' dead, delete it in a future loop 583 // iteration. 584 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 585 if (isInstructionTriviallyDead(OpI, TLI)) 586 WorkList.insert(OpI); 587 } 588 589 I->eraseFromParent(); 590 591 return true; 592 } 593 594 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 595 // Add the users to the worklist. CAREFUL: an instruction can use itself, 596 // in the case of a phi node. 597 for (User *U : I->users()) { 598 if (U != I) { 599 WorkList.insert(cast<Instruction>(U)); 600 } 601 } 602 603 // Replace the instruction with its simplified value. 604 bool Changed = false; 605 if (!I->use_empty()) { 606 I->replaceAllUsesWith(SimpleV); 607 Changed = true; 608 } 609 if (isInstructionTriviallyDead(I, TLI)) { 610 I->eraseFromParent(); 611 Changed = true; 612 } 613 return Changed; 614 } 615 return false; 616 } 617 618 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 619 /// simplify any instructions in it and recursively delete dead instructions. 620 /// 621 /// This returns true if it changed the code, note that it can delete 622 /// instructions in other blocks as well in this block. 623 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 624 const TargetLibraryInfo *TLI) { 625 bool MadeChange = false; 626 const DataLayout &DL = BB->getModule()->getDataLayout(); 627 628 #ifndef NDEBUG 629 // In debug builds, ensure that the terminator of the block is never replaced 630 // or deleted by these simplifications. The idea of simplification is that it 631 // cannot introduce new instructions, and there is no way to replace the 632 // terminator of a block without introducing a new instruction. 633 AssertingVH<Instruction> TerminatorVH(&BB->back()); 634 #endif 635 636 SmallSetVector<Instruction *, 16> WorkList; 637 // Iterate over the original function, only adding insts to the worklist 638 // if they actually need to be revisited. This avoids having to pre-init 639 // the worklist with the entire function's worth of instructions. 640 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 641 BI != E;) { 642 assert(!BI->isTerminator()); 643 Instruction *I = &*BI; 644 ++BI; 645 646 // We're visiting this instruction now, so make sure it's not in the 647 // worklist from an earlier visit. 648 if (!WorkList.count(I)) 649 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 650 } 651 652 while (!WorkList.empty()) { 653 Instruction *I = WorkList.pop_back_val(); 654 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 655 } 656 return MadeChange; 657 } 658 659 //===----------------------------------------------------------------------===// 660 // Control Flow Graph Restructuring. 661 // 662 663 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 664 DomTreeUpdater *DTU) { 665 // This only adjusts blocks with PHI nodes. 666 if (!isa<PHINode>(BB->begin())) 667 return; 668 669 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 670 // them down. This will leave us with single entry phi nodes and other phis 671 // that can be removed. 672 BB->removePredecessor(Pred, true); 673 674 WeakTrackingVH PhiIt = &BB->front(); 675 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 676 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 677 Value *OldPhiIt = PhiIt; 678 679 if (!recursivelySimplifyInstruction(PN)) 680 continue; 681 682 // If recursive simplification ended up deleting the next PHI node we would 683 // iterate to, then our iterator is invalid, restart scanning from the top 684 // of the block. 685 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 686 } 687 if (DTU) 688 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 689 } 690 691 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 692 DomTreeUpdater *DTU) { 693 694 // If BB has single-entry PHI nodes, fold them. 695 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 696 Value *NewVal = PN->getIncomingValue(0); 697 // Replace self referencing PHI with undef, it must be dead. 698 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 699 PN->replaceAllUsesWith(NewVal); 700 PN->eraseFromParent(); 701 } 702 703 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 704 assert(PredBB && "Block doesn't have a single predecessor!"); 705 706 bool ReplaceEntryBB = false; 707 if (PredBB == &DestBB->getParent()->getEntryBlock()) 708 ReplaceEntryBB = true; 709 710 // DTU updates: Collect all the edges that enter 711 // PredBB. These dominator edges will be redirected to DestBB. 712 SmallVector<DominatorTree::UpdateType, 32> Updates; 713 714 if (DTU) { 715 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 716 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 717 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 718 // This predecessor of PredBB may already have DestBB as a successor. 719 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 720 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 721 } 722 } 723 724 // Zap anything that took the address of DestBB. Not doing this will give the 725 // address an invalid value. 726 if (DestBB->hasAddressTaken()) { 727 BlockAddress *BA = BlockAddress::get(DestBB); 728 Constant *Replacement = 729 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 730 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 731 BA->getType())); 732 BA->destroyConstant(); 733 } 734 735 // Anything that branched to PredBB now branches to DestBB. 736 PredBB->replaceAllUsesWith(DestBB); 737 738 // Splice all the instructions from PredBB to DestBB. 739 PredBB->getTerminator()->eraseFromParent(); 740 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 741 new UnreachableInst(PredBB->getContext(), PredBB); 742 743 // If the PredBB is the entry block of the function, move DestBB up to 744 // become the entry block after we erase PredBB. 745 if (ReplaceEntryBB) 746 DestBB->moveAfter(PredBB); 747 748 if (DTU) { 749 assert(PredBB->getInstList().size() == 1 && 750 isa<UnreachableInst>(PredBB->getTerminator()) && 751 "The successor list of PredBB isn't empty before " 752 "applying corresponding DTU updates."); 753 DTU->applyUpdatesPermissive(Updates); 754 DTU->deleteBB(PredBB); 755 // Recalculation of DomTree is needed when updating a forward DomTree and 756 // the Entry BB is replaced. 757 if (ReplaceEntryBB && DTU->hasDomTree()) { 758 // The entry block was removed and there is no external interface for 759 // the dominator tree to be notified of this change. In this corner-case 760 // we recalculate the entire tree. 761 DTU->recalculate(*(DestBB->getParent())); 762 } 763 } 764 765 else { 766 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 767 } 768 } 769 770 /// Return true if we can choose one of these values to use in place of the 771 /// other. Note that we will always choose the non-undef value to keep. 772 static bool CanMergeValues(Value *First, Value *Second) { 773 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 774 } 775 776 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 777 /// branch to Succ, into Succ. 778 /// 779 /// Assumption: Succ is the single successor for BB. 780 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 781 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 782 783 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 784 << Succ->getName() << "\n"); 785 // Shortcut, if there is only a single predecessor it must be BB and merging 786 // is always safe 787 if (Succ->getSinglePredecessor()) return true; 788 789 // Make a list of the predecessors of BB 790 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 791 792 // Look at all the phi nodes in Succ, to see if they present a conflict when 793 // merging these blocks 794 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 795 PHINode *PN = cast<PHINode>(I); 796 797 // If the incoming value from BB is again a PHINode in 798 // BB which has the same incoming value for *PI as PN does, we can 799 // merge the phi nodes and then the blocks can still be merged 800 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 801 if (BBPN && BBPN->getParent() == BB) { 802 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 803 BasicBlock *IBB = PN->getIncomingBlock(PI); 804 if (BBPreds.count(IBB) && 805 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 806 PN->getIncomingValue(PI))) { 807 LLVM_DEBUG(dbgs() 808 << "Can't fold, phi node " << PN->getName() << " in " 809 << Succ->getName() << " is conflicting with " 810 << BBPN->getName() << " with regard to common predecessor " 811 << IBB->getName() << "\n"); 812 return false; 813 } 814 } 815 } else { 816 Value* Val = PN->getIncomingValueForBlock(BB); 817 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 818 // See if the incoming value for the common predecessor is equal to the 819 // one for BB, in which case this phi node will not prevent the merging 820 // of the block. 821 BasicBlock *IBB = PN->getIncomingBlock(PI); 822 if (BBPreds.count(IBB) && 823 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 824 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 825 << " in " << Succ->getName() 826 << " is conflicting with regard to common " 827 << "predecessor " << IBB->getName() << "\n"); 828 return false; 829 } 830 } 831 } 832 } 833 834 return true; 835 } 836 837 using PredBlockVector = SmallVector<BasicBlock *, 16>; 838 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 839 840 /// Determines the value to use as the phi node input for a block. 841 /// 842 /// Select between \p OldVal any value that we know flows from \p BB 843 /// to a particular phi on the basis of which one (if either) is not 844 /// undef. Update IncomingValues based on the selected value. 845 /// 846 /// \param OldVal The value we are considering selecting. 847 /// \param BB The block that the value flows in from. 848 /// \param IncomingValues A map from block-to-value for other phi inputs 849 /// that we have examined. 850 /// 851 /// \returns the selected value. 852 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 853 IncomingValueMap &IncomingValues) { 854 if (!isa<UndefValue>(OldVal)) { 855 assert((!IncomingValues.count(BB) || 856 IncomingValues.find(BB)->second == OldVal) && 857 "Expected OldVal to match incoming value from BB!"); 858 859 IncomingValues.insert(std::make_pair(BB, OldVal)); 860 return OldVal; 861 } 862 863 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 864 if (It != IncomingValues.end()) return It->second; 865 866 return OldVal; 867 } 868 869 /// Create a map from block to value for the operands of a 870 /// given phi. 871 /// 872 /// Create a map from block to value for each non-undef value flowing 873 /// into \p PN. 874 /// 875 /// \param PN The phi we are collecting the map for. 876 /// \param IncomingValues [out] The map from block to value for this phi. 877 static void gatherIncomingValuesToPhi(PHINode *PN, 878 IncomingValueMap &IncomingValues) { 879 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 880 BasicBlock *BB = PN->getIncomingBlock(i); 881 Value *V = PN->getIncomingValue(i); 882 883 if (!isa<UndefValue>(V)) 884 IncomingValues.insert(std::make_pair(BB, V)); 885 } 886 } 887 888 /// Replace the incoming undef values to a phi with the values 889 /// from a block-to-value map. 890 /// 891 /// \param PN The phi we are replacing the undefs in. 892 /// \param IncomingValues A map from block to value. 893 static void replaceUndefValuesInPhi(PHINode *PN, 894 const IncomingValueMap &IncomingValues) { 895 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 896 Value *V = PN->getIncomingValue(i); 897 898 if (!isa<UndefValue>(V)) continue; 899 900 BasicBlock *BB = PN->getIncomingBlock(i); 901 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 902 if (It == IncomingValues.end()) continue; 903 904 PN->setIncomingValue(i, It->second); 905 } 906 } 907 908 /// Replace a value flowing from a block to a phi with 909 /// potentially multiple instances of that value flowing from the 910 /// block's predecessors to the phi. 911 /// 912 /// \param BB The block with the value flowing into the phi. 913 /// \param BBPreds The predecessors of BB. 914 /// \param PN The phi that we are updating. 915 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 916 const PredBlockVector &BBPreds, 917 PHINode *PN) { 918 Value *OldVal = PN->removeIncomingValue(BB, false); 919 assert(OldVal && "No entry in PHI for Pred BB!"); 920 921 IncomingValueMap IncomingValues; 922 923 // We are merging two blocks - BB, and the block containing PN - and 924 // as a result we need to redirect edges from the predecessors of BB 925 // to go to the block containing PN, and update PN 926 // accordingly. Since we allow merging blocks in the case where the 927 // predecessor and successor blocks both share some predecessors, 928 // and where some of those common predecessors might have undef 929 // values flowing into PN, we want to rewrite those values to be 930 // consistent with the non-undef values. 931 932 gatherIncomingValuesToPhi(PN, IncomingValues); 933 934 // If this incoming value is one of the PHI nodes in BB, the new entries 935 // in the PHI node are the entries from the old PHI. 936 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 937 PHINode *OldValPN = cast<PHINode>(OldVal); 938 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 939 // Note that, since we are merging phi nodes and BB and Succ might 940 // have common predecessors, we could end up with a phi node with 941 // identical incoming branches. This will be cleaned up later (and 942 // will trigger asserts if we try to clean it up now, without also 943 // simplifying the corresponding conditional branch). 944 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 945 Value *PredVal = OldValPN->getIncomingValue(i); 946 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 947 IncomingValues); 948 949 // And add a new incoming value for this predecessor for the 950 // newly retargeted branch. 951 PN->addIncoming(Selected, PredBB); 952 } 953 } else { 954 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 955 // Update existing incoming values in PN for this 956 // predecessor of BB. 957 BasicBlock *PredBB = BBPreds[i]; 958 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 959 IncomingValues); 960 961 // And add a new incoming value for this predecessor for the 962 // newly retargeted branch. 963 PN->addIncoming(Selected, PredBB); 964 } 965 } 966 967 replaceUndefValuesInPhi(PN, IncomingValues); 968 } 969 970 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 971 DomTreeUpdater *DTU) { 972 assert(BB != &BB->getParent()->getEntryBlock() && 973 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 974 975 // We can't eliminate infinite loops. 976 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 977 if (BB == Succ) return false; 978 979 // Check to see if merging these blocks would cause conflicts for any of the 980 // phi nodes in BB or Succ. If not, we can safely merge. 981 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 982 983 // Check for cases where Succ has multiple predecessors and a PHI node in BB 984 // has uses which will not disappear when the PHI nodes are merged. It is 985 // possible to handle such cases, but difficult: it requires checking whether 986 // BB dominates Succ, which is non-trivial to calculate in the case where 987 // Succ has multiple predecessors. Also, it requires checking whether 988 // constructing the necessary self-referential PHI node doesn't introduce any 989 // conflicts; this isn't too difficult, but the previous code for doing this 990 // was incorrect. 991 // 992 // Note that if this check finds a live use, BB dominates Succ, so BB is 993 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 994 // folding the branch isn't profitable in that case anyway. 995 if (!Succ->getSinglePredecessor()) { 996 BasicBlock::iterator BBI = BB->begin(); 997 while (isa<PHINode>(*BBI)) { 998 for (Use &U : BBI->uses()) { 999 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1000 if (PN->getIncomingBlock(U) != BB) 1001 return false; 1002 } else { 1003 return false; 1004 } 1005 } 1006 ++BBI; 1007 } 1008 } 1009 1010 // We cannot fold the block if it's a branch to an already present callbr 1011 // successor because that creates duplicate successors. 1012 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1013 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1014 if (Succ == CBI->getDefaultDest()) 1015 return false; 1016 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1017 if (Succ == CBI->getIndirectDest(i)) 1018 return false; 1019 } 1020 } 1021 1022 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1023 1024 SmallVector<DominatorTree::UpdateType, 32> Updates; 1025 if (DTU) { 1026 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1027 // All predecessors of BB will be moved to Succ. 1028 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1029 Updates.push_back({DominatorTree::Delete, *I, BB}); 1030 // This predecessor of BB may already have Succ as a successor. 1031 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1032 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1033 } 1034 } 1035 1036 if (isa<PHINode>(Succ->begin())) { 1037 // If there is more than one pred of succ, and there are PHI nodes in 1038 // the successor, then we need to add incoming edges for the PHI nodes 1039 // 1040 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1041 1042 // Loop over all of the PHI nodes in the successor of BB. 1043 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1044 PHINode *PN = cast<PHINode>(I); 1045 1046 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1047 } 1048 } 1049 1050 if (Succ->getSinglePredecessor()) { 1051 // BB is the only predecessor of Succ, so Succ will end up with exactly 1052 // the same predecessors BB had. 1053 1054 // Copy over any phi, debug or lifetime instruction. 1055 BB->getTerminator()->eraseFromParent(); 1056 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1057 BB->getInstList()); 1058 } else { 1059 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1060 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1061 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1062 PN->eraseFromParent(); 1063 } 1064 } 1065 1066 // If the unconditional branch we replaced contains llvm.loop metadata, we 1067 // add the metadata to the branch instructions in the predecessors. 1068 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1069 Instruction *TI = BB->getTerminator(); 1070 if (TI) 1071 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1072 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1073 BasicBlock *Pred = *PI; 1074 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1075 } 1076 1077 // Everything that jumped to BB now goes to Succ. 1078 BB->replaceAllUsesWith(Succ); 1079 if (!Succ->hasName()) Succ->takeName(BB); 1080 1081 // Clear the successor list of BB to match updates applying to DTU later. 1082 if (BB->getTerminator()) 1083 BB->getInstList().pop_back(); 1084 new UnreachableInst(BB->getContext(), BB); 1085 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1086 "applying corresponding DTU updates."); 1087 1088 if (DTU) { 1089 DTU->applyUpdatesPermissive(Updates); 1090 DTU->deleteBB(BB); 1091 } else { 1092 BB->eraseFromParent(); // Delete the old basic block. 1093 } 1094 return true; 1095 } 1096 1097 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1098 // This implementation doesn't currently consider undef operands 1099 // specially. Theoretically, two phis which are identical except for 1100 // one having an undef where the other doesn't could be collapsed. 1101 1102 struct PHIDenseMapInfo { 1103 static PHINode *getEmptyKey() { 1104 return DenseMapInfo<PHINode *>::getEmptyKey(); 1105 } 1106 1107 static PHINode *getTombstoneKey() { 1108 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1109 } 1110 1111 static unsigned getHashValue(PHINode *PN) { 1112 // Compute a hash value on the operands. Instcombine will likely have 1113 // sorted them, which helps expose duplicates, but we have to check all 1114 // the operands to be safe in case instcombine hasn't run. 1115 return static_cast<unsigned>(hash_combine( 1116 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1117 hash_combine_range(PN->block_begin(), PN->block_end()))); 1118 } 1119 1120 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1121 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1122 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1123 return LHS == RHS; 1124 return LHS->isIdenticalTo(RHS); 1125 } 1126 }; 1127 1128 // Set of unique PHINodes. 1129 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1130 1131 // Examine each PHI. 1132 bool Changed = false; 1133 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1134 auto Inserted = PHISet.insert(PN); 1135 if (!Inserted.second) { 1136 // A duplicate. Replace this PHI with its duplicate. 1137 PN->replaceAllUsesWith(*Inserted.first); 1138 PN->eraseFromParent(); 1139 Changed = true; 1140 1141 // The RAUW can change PHIs that we already visited. Start over from the 1142 // beginning. 1143 PHISet.clear(); 1144 I = BB->begin(); 1145 } 1146 } 1147 1148 return Changed; 1149 } 1150 1151 /// enforceKnownAlignment - If the specified pointer points to an object that 1152 /// we control, modify the object's alignment to PrefAlign. This isn't 1153 /// often possible though. If alignment is important, a more reliable approach 1154 /// is to simply align all global variables and allocation instructions to 1155 /// their preferred alignment from the beginning. 1156 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment, 1157 unsigned PrefAlign, 1158 const DataLayout &DL) { 1159 assert(PrefAlign > Alignment); 1160 1161 V = V->stripPointerCasts(); 1162 1163 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1164 // TODO: ideally, computeKnownBits ought to have used 1165 // AllocaInst::getAlignment() in its computation already, making 1166 // the below max redundant. But, as it turns out, 1167 // stripPointerCasts recurses through infinite layers of bitcasts, 1168 // while computeKnownBits is not allowed to traverse more than 6 1169 // levels. 1170 Alignment = std::max(AI->getAlignment(), Alignment); 1171 if (PrefAlign <= Alignment) 1172 return Alignment; 1173 1174 // If the preferred alignment is greater than the natural stack alignment 1175 // then don't round up. This avoids dynamic stack realignment. 1176 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign))) 1177 return Alignment; 1178 AI->setAlignment(MaybeAlign(PrefAlign)); 1179 return PrefAlign; 1180 } 1181 1182 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1183 // TODO: as above, this shouldn't be necessary. 1184 Alignment = std::max(GO->getAlignment(), Alignment); 1185 if (PrefAlign <= Alignment) 1186 return Alignment; 1187 1188 // If there is a large requested alignment and we can, bump up the alignment 1189 // of the global. If the memory we set aside for the global may not be the 1190 // memory used by the final program then it is impossible for us to reliably 1191 // enforce the preferred alignment. 1192 if (!GO->canIncreaseAlignment()) 1193 return Alignment; 1194 1195 GO->setAlignment(MaybeAlign(PrefAlign)); 1196 return PrefAlign; 1197 } 1198 1199 return Alignment; 1200 } 1201 1202 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1203 const DataLayout &DL, 1204 const Instruction *CxtI, 1205 AssumptionCache *AC, 1206 const DominatorTree *DT) { 1207 assert(V->getType()->isPointerTy() && 1208 "getOrEnforceKnownAlignment expects a pointer!"); 1209 1210 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1211 unsigned TrailZ = Known.countMinTrailingZeros(); 1212 1213 // Avoid trouble with ridiculously large TrailZ values, such as 1214 // those computed from a null pointer. 1215 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1216 1217 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1218 1219 // LLVM doesn't support alignments larger than this currently. 1220 Align = std::min(Align, +Value::MaximumAlignment); 1221 1222 if (PrefAlign > Align) 1223 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1224 1225 // We don't need to make any adjustment. 1226 return Align; 1227 } 1228 1229 ///===---------------------------------------------------------------------===// 1230 /// Dbg Intrinsic utilities 1231 /// 1232 1233 /// See if there is a dbg.value intrinsic for DIVar before I. 1234 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1235 Instruction *I) { 1236 // Since we can't guarantee that the original dbg.declare instrinsic 1237 // is removed by LowerDbgDeclare(), we need to make sure that we are 1238 // not inserting the same dbg.value intrinsic over and over. 1239 BasicBlock::InstListType::iterator PrevI(I); 1240 if (PrevI != I->getParent()->getInstList().begin()) { 1241 --PrevI; 1242 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1243 if (DVI->getValue() == I->getOperand(0) && 1244 DVI->getVariable() == DIVar && 1245 DVI->getExpression() == DIExpr) 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1252 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1253 DIExpression *DIExpr, 1254 PHINode *APN) { 1255 // Since we can't guarantee that the original dbg.declare instrinsic 1256 // is removed by LowerDbgDeclare(), we need to make sure that we are 1257 // not inserting the same dbg.value intrinsic over and over. 1258 SmallVector<DbgValueInst *, 1> DbgValues; 1259 findDbgValues(DbgValues, APN); 1260 for (auto *DVI : DbgValues) { 1261 assert(DVI->getValue() == APN); 1262 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1263 return true; 1264 } 1265 return false; 1266 } 1267 1268 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1269 /// (or fragment of the variable) described by \p DII. 1270 /// 1271 /// This is primarily intended as a helper for the different 1272 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1273 /// converted describes an alloca'd variable, so we need to use the 1274 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1275 /// identified as covering an n-bit fragment, if the store size of i1 is at 1276 /// least n bits. 1277 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1278 const DataLayout &DL = DII->getModule()->getDataLayout(); 1279 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1280 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1281 return ValueSize >= *FragmentSize; 1282 // We can't always calculate the size of the DI variable (e.g. if it is a 1283 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1284 // intead. 1285 if (DII->isAddressOfVariable()) 1286 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1287 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1288 return ValueSize >= *FragmentSize; 1289 // Could not determine size of variable. Conservatively return false. 1290 return false; 1291 } 1292 1293 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1294 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1295 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1296 /// case this DebugLoc leaks into any adjacent instructions. 1297 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1298 // Original dbg.declare must have a location. 1299 DebugLoc DeclareLoc = DII->getDebugLoc(); 1300 MDNode *Scope = DeclareLoc.getScope(); 1301 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1302 // Produce an unknown location with the correct scope / inlinedAt fields. 1303 return DebugLoc::get(0, 0, Scope, InlinedAt); 1304 } 1305 1306 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1307 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1308 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1309 StoreInst *SI, DIBuilder &Builder) { 1310 assert(DII->isAddressOfVariable()); 1311 auto *DIVar = DII->getVariable(); 1312 assert(DIVar && "Missing variable"); 1313 auto *DIExpr = DII->getExpression(); 1314 Value *DV = SI->getValueOperand(); 1315 1316 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1317 1318 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1319 // FIXME: If storing to a part of the variable described by the dbg.declare, 1320 // then we want to insert a dbg.value for the corresponding fragment. 1321 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1322 << *DII << '\n'); 1323 // For now, when there is a store to parts of the variable (but we do not 1324 // know which part) we insert an dbg.value instrinsic to indicate that we 1325 // know nothing about the variable's content. 1326 DV = UndefValue::get(DV->getType()); 1327 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1328 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1329 return; 1330 } 1331 1332 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1333 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1334 } 1335 1336 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1337 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1338 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1339 LoadInst *LI, DIBuilder &Builder) { 1340 auto *DIVar = DII->getVariable(); 1341 auto *DIExpr = DII->getExpression(); 1342 assert(DIVar && "Missing variable"); 1343 1344 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1345 return; 1346 1347 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1348 // FIXME: If only referring to a part of the variable described by the 1349 // dbg.declare, then we want to insert a dbg.value for the corresponding 1350 // fragment. 1351 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1352 << *DII << '\n'); 1353 return; 1354 } 1355 1356 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1357 1358 // We are now tracking the loaded value instead of the address. In the 1359 // future if multi-location support is added to the IR, it might be 1360 // preferable to keep tracking both the loaded value and the original 1361 // address in case the alloca can not be elided. 1362 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1363 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1364 DbgValue->insertAfter(LI); 1365 } 1366 1367 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1368 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1369 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1370 PHINode *APN, DIBuilder &Builder) { 1371 auto *DIVar = DII->getVariable(); 1372 auto *DIExpr = DII->getExpression(); 1373 assert(DIVar && "Missing variable"); 1374 1375 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1376 return; 1377 1378 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1379 // FIXME: If only referring to a part of the variable described by the 1380 // dbg.declare, then we want to insert a dbg.value for the corresponding 1381 // fragment. 1382 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1383 << *DII << '\n'); 1384 return; 1385 } 1386 1387 BasicBlock *BB = APN->getParent(); 1388 auto InsertionPt = BB->getFirstInsertionPt(); 1389 1390 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1391 1392 // The block may be a catchswitch block, which does not have a valid 1393 // insertion point. 1394 // FIXME: Insert dbg.value markers in the successors when appropriate. 1395 if (InsertionPt != BB->end()) 1396 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1397 } 1398 1399 /// Determine whether this alloca is either a VLA or an array. 1400 static bool isArray(AllocaInst *AI) { 1401 return AI->isArrayAllocation() || 1402 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1403 } 1404 1405 /// Determine whether this alloca is a structure. 1406 static bool isStructure(AllocaInst *AI) { 1407 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1408 } 1409 1410 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1411 /// of llvm.dbg.value intrinsics. 1412 bool llvm::LowerDbgDeclare(Function &F) { 1413 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1414 SmallVector<DbgDeclareInst *, 4> Dbgs; 1415 for (auto &FI : F) 1416 for (Instruction &BI : FI) 1417 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1418 Dbgs.push_back(DDI); 1419 1420 if (Dbgs.empty()) 1421 return false; 1422 1423 for (auto &I : Dbgs) { 1424 DbgDeclareInst *DDI = I; 1425 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1426 // If this is an alloca for a scalar variable, insert a dbg.value 1427 // at each load and store to the alloca and erase the dbg.declare. 1428 // The dbg.values allow tracking a variable even if it is not 1429 // stored on the stack, while the dbg.declare can only describe 1430 // the stack slot (and at a lexical-scope granularity). Later 1431 // passes will attempt to elide the stack slot. 1432 if (!AI || isArray(AI) || isStructure(AI)) 1433 continue; 1434 1435 // A volatile load/store means that the alloca can't be elided anyway. 1436 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1437 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1438 return LI->isVolatile(); 1439 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1440 return SI->isVolatile(); 1441 return false; 1442 })) 1443 continue; 1444 1445 SmallVector<const Value *, 8> WorkList; 1446 WorkList.push_back(AI); 1447 while (!WorkList.empty()) { 1448 const Value *V = WorkList.pop_back_val(); 1449 for (auto &AIUse : V->uses()) { 1450 User *U = AIUse.getUser(); 1451 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1452 if (AIUse.getOperandNo() == 1) 1453 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1454 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1455 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1456 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1457 // This is a call by-value or some other instruction that takes a 1458 // pointer to the variable. Insert a *value* intrinsic that describes 1459 // the variable by dereferencing the alloca. 1460 if (!CI->isLifetimeStartOrEnd()) { 1461 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1462 auto *DerefExpr = 1463 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1464 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1465 NewLoc, CI); 1466 } 1467 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1468 if (BI->getType()->isPointerTy()) 1469 WorkList.push_back(BI); 1470 } 1471 } 1472 } 1473 DDI->eraseFromParent(); 1474 } 1475 return true; 1476 } 1477 1478 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1479 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1480 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1481 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1482 if (InsertedPHIs.size() == 0) 1483 return; 1484 1485 // Map existing PHI nodes to their dbg.values. 1486 ValueToValueMapTy DbgValueMap; 1487 for (auto &I : *BB) { 1488 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1489 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1490 DbgValueMap.insert({Loc, DbgII}); 1491 } 1492 } 1493 if (DbgValueMap.size() == 0) 1494 return; 1495 1496 // Then iterate through the new PHIs and look to see if they use one of the 1497 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1498 // propagate the info through the new PHI. 1499 LLVMContext &C = BB->getContext(); 1500 for (auto PHI : InsertedPHIs) { 1501 BasicBlock *Parent = PHI->getParent(); 1502 // Avoid inserting an intrinsic into an EH block. 1503 if (Parent->getFirstNonPHI()->isEHPad()) 1504 continue; 1505 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1506 for (auto VI : PHI->operand_values()) { 1507 auto V = DbgValueMap.find(VI); 1508 if (V != DbgValueMap.end()) { 1509 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1510 Instruction *NewDbgII = DbgII->clone(); 1511 NewDbgII->setOperand(0, PhiMAV); 1512 auto InsertionPt = Parent->getFirstInsertionPt(); 1513 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1514 NewDbgII->insertBefore(&*InsertionPt); 1515 } 1516 } 1517 } 1518 } 1519 1520 /// Finds all intrinsics declaring local variables as living in the memory that 1521 /// 'V' points to. This may include a mix of dbg.declare and 1522 /// dbg.addr intrinsics. 1523 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1524 // This function is hot. Check whether the value has any metadata to avoid a 1525 // DenseMap lookup. 1526 if (!V->isUsedByMetadata()) 1527 return {}; 1528 auto *L = LocalAsMetadata::getIfExists(V); 1529 if (!L) 1530 return {}; 1531 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1532 if (!MDV) 1533 return {}; 1534 1535 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1536 for (User *U : MDV->users()) { 1537 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1538 if (DII->isAddressOfVariable()) 1539 Declares.push_back(DII); 1540 } 1541 1542 return Declares; 1543 } 1544 1545 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1546 // This function is hot. Check whether the value has any metadata to avoid a 1547 // DenseMap lookup. 1548 if (!V->isUsedByMetadata()) 1549 return; 1550 if (auto *L = LocalAsMetadata::getIfExists(V)) 1551 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1552 for (User *U : MDV->users()) 1553 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1554 DbgValues.push_back(DVI); 1555 } 1556 1557 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1558 Value *V) { 1559 // This function is hot. Check whether the value has any metadata to avoid a 1560 // DenseMap lookup. 1561 if (!V->isUsedByMetadata()) 1562 return; 1563 if (auto *L = LocalAsMetadata::getIfExists(V)) 1564 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1565 for (User *U : MDV->users()) 1566 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1567 DbgUsers.push_back(DII); 1568 } 1569 1570 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1571 DIBuilder &Builder, uint8_t DIExprFlags, 1572 int Offset) { 1573 auto DbgAddrs = FindDbgAddrUses(Address); 1574 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1575 DebugLoc Loc = DII->getDebugLoc(); 1576 auto *DIVar = DII->getVariable(); 1577 auto *DIExpr = DII->getExpression(); 1578 assert(DIVar && "Missing variable"); 1579 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1580 // Insert llvm.dbg.declare immediately before DII, and remove old 1581 // llvm.dbg.declare. 1582 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1583 DII->eraseFromParent(); 1584 } 1585 return !DbgAddrs.empty(); 1586 } 1587 1588 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1589 DIBuilder &Builder, int Offset) { 1590 DebugLoc Loc = DVI->getDebugLoc(); 1591 auto *DIVar = DVI->getVariable(); 1592 auto *DIExpr = DVI->getExpression(); 1593 assert(DIVar && "Missing variable"); 1594 1595 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1596 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1597 // it and give up. 1598 if (!DIExpr || DIExpr->getNumElements() < 1 || 1599 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1600 return; 1601 1602 // Insert the offset before the first deref. 1603 // We could just change the offset argument of dbg.value, but it's unsigned... 1604 if (Offset) 1605 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1606 1607 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1608 DVI->eraseFromParent(); 1609 } 1610 1611 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1612 DIBuilder &Builder, int Offset) { 1613 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1614 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1615 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1616 Use &U = *UI++; 1617 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1618 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1619 } 1620 } 1621 1622 /// Wrap \p V in a ValueAsMetadata instance. 1623 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1624 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1625 } 1626 1627 bool llvm::salvageDebugInfo(Instruction &I) { 1628 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1629 findDbgUsers(DbgUsers, &I); 1630 if (DbgUsers.empty()) 1631 return false; 1632 1633 return salvageDebugInfoForDbgValues(I, DbgUsers); 1634 } 1635 1636 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1637 if (!salvageDebugInfo(I)) 1638 replaceDbgUsesWithUndef(&I); 1639 } 1640 1641 bool llvm::salvageDebugInfoForDbgValues( 1642 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1643 auto &Ctx = I.getContext(); 1644 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1645 1646 for (auto *DII : DbgUsers) { 1647 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1648 // are implicitly pointing out the value as a DWARF memory location 1649 // description. 1650 bool StackValue = isa<DbgValueInst>(DII); 1651 1652 DIExpression *DIExpr = 1653 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1654 1655 // salvageDebugInfoImpl should fail on examining the first element of 1656 // DbgUsers, or none of them. 1657 if (!DIExpr) 1658 return false; 1659 1660 DII->setOperand(0, wrapMD(I.getOperand(0))); 1661 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1662 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1663 } 1664 1665 return true; 1666 } 1667 1668 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1669 DIExpression *SrcDIExpr, 1670 bool WithStackValue) { 1671 auto &M = *I.getModule(); 1672 auto &DL = M.getDataLayout(); 1673 1674 // Apply a vector of opcodes to the source DIExpression. 1675 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1676 DIExpression *DIExpr = SrcDIExpr; 1677 if (!Ops.empty()) { 1678 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1679 } 1680 return DIExpr; 1681 }; 1682 1683 // Apply the given offset to the source DIExpression. 1684 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1685 SmallVector<uint64_t, 8> Ops; 1686 DIExpression::appendOffset(Ops, Offset); 1687 return doSalvage(Ops); 1688 }; 1689 1690 // initializer-list helper for applying operators to the source DIExpression. 1691 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1692 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1693 return doSalvage(Ops); 1694 }; 1695 1696 if (auto *CI = dyn_cast<CastInst>(&I)) { 1697 // No-op casts and zexts are irrelevant for debug info. 1698 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1699 return SrcDIExpr; 1700 1701 Type *Type = CI->getType(); 1702 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1703 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1704 return nullptr; 1705 1706 Value *FromValue = CI->getOperand(0); 1707 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1708 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1709 1710 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1711 isa<SExtInst>(&I))); 1712 } 1713 1714 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1715 unsigned BitWidth = 1716 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1717 // Rewrite a constant GEP into a DIExpression. 1718 APInt Offset(BitWidth, 0); 1719 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1720 return applyOffset(Offset.getSExtValue()); 1721 } else { 1722 return nullptr; 1723 } 1724 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1725 // Rewrite binary operations with constant integer operands. 1726 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1727 if (!ConstInt || ConstInt->getBitWidth() > 64) 1728 return nullptr; 1729 1730 uint64_t Val = ConstInt->getSExtValue(); 1731 switch (BI->getOpcode()) { 1732 case Instruction::Add: 1733 return applyOffset(Val); 1734 case Instruction::Sub: 1735 return applyOffset(-int64_t(Val)); 1736 case Instruction::Mul: 1737 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1738 case Instruction::SDiv: 1739 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1740 case Instruction::SRem: 1741 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1742 case Instruction::Or: 1743 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1744 case Instruction::And: 1745 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1746 case Instruction::Xor: 1747 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1748 case Instruction::Shl: 1749 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1750 case Instruction::LShr: 1751 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1752 case Instruction::AShr: 1753 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1754 default: 1755 // TODO: Salvage constants from each kind of binop we know about. 1756 return nullptr; 1757 } 1758 // *Not* to do: we should not attempt to salvage load instructions, 1759 // because the validity and lifetime of a dbg.value containing 1760 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1761 } 1762 return nullptr; 1763 } 1764 1765 /// A replacement for a dbg.value expression. 1766 using DbgValReplacement = Optional<DIExpression *>; 1767 1768 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1769 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1770 /// changes are made. 1771 static bool rewriteDebugUsers( 1772 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1773 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1774 // Find debug users of From. 1775 SmallVector<DbgVariableIntrinsic *, 1> Users; 1776 findDbgUsers(Users, &From); 1777 if (Users.empty()) 1778 return false; 1779 1780 // Prevent use-before-def of To. 1781 bool Changed = false; 1782 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1783 if (isa<Instruction>(&To)) { 1784 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1785 1786 for (auto *DII : Users) { 1787 // It's common to see a debug user between From and DomPoint. Move it 1788 // after DomPoint to preserve the variable update without any reordering. 1789 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1790 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1791 DII->moveAfter(&DomPoint); 1792 Changed = true; 1793 1794 // Users which otherwise aren't dominated by the replacement value must 1795 // be salvaged or deleted. 1796 } else if (!DT.dominates(&DomPoint, DII)) { 1797 UndefOrSalvage.insert(DII); 1798 } 1799 } 1800 } 1801 1802 // Update debug users without use-before-def risk. 1803 for (auto *DII : Users) { 1804 if (UndefOrSalvage.count(DII)) 1805 continue; 1806 1807 LLVMContext &Ctx = DII->getContext(); 1808 DbgValReplacement DVR = RewriteExpr(*DII); 1809 if (!DVR) 1810 continue; 1811 1812 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1813 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1814 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1815 Changed = true; 1816 } 1817 1818 if (!UndefOrSalvage.empty()) { 1819 // Try to salvage the remaining debug users. 1820 salvageDebugInfoOrMarkUndef(From); 1821 Changed = true; 1822 } 1823 1824 return Changed; 1825 } 1826 1827 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1828 /// losslessly preserve the bits and semantics of the value. This predicate is 1829 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1830 /// 1831 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1832 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1833 /// and also does not allow lossless pointer <-> integer conversions. 1834 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1835 Type *ToTy) { 1836 // Trivially compatible types. 1837 if (FromTy == ToTy) 1838 return true; 1839 1840 // Handle compatible pointer <-> integer conversions. 1841 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1842 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1843 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1844 !DL.isNonIntegralPointerType(ToTy); 1845 return SameSize && LosslessConversion; 1846 } 1847 1848 // TODO: This is not exhaustive. 1849 return false; 1850 } 1851 1852 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1853 Instruction &DomPoint, DominatorTree &DT) { 1854 // Exit early if From has no debug users. 1855 if (!From.isUsedByMetadata()) 1856 return false; 1857 1858 assert(&From != &To && "Can't replace something with itself"); 1859 1860 Type *FromTy = From.getType(); 1861 Type *ToTy = To.getType(); 1862 1863 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1864 return DII.getExpression(); 1865 }; 1866 1867 // Handle no-op conversions. 1868 Module &M = *From.getModule(); 1869 const DataLayout &DL = M.getDataLayout(); 1870 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1871 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1872 1873 // Handle integer-to-integer widening and narrowing. 1874 // FIXME: Use DW_OP_convert when it's available everywhere. 1875 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1876 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1877 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1878 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1879 1880 // When the width of the result grows, assume that a debugger will only 1881 // access the low `FromBits` bits when inspecting the source variable. 1882 if (FromBits < ToBits) 1883 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1884 1885 // The width of the result has shrunk. Use sign/zero extension to describe 1886 // the source variable's high bits. 1887 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1888 DILocalVariable *Var = DII.getVariable(); 1889 1890 // Without knowing signedness, sign/zero extension isn't possible. 1891 auto Signedness = Var->getSignedness(); 1892 if (!Signedness) 1893 return None; 1894 1895 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1896 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1897 Signed); 1898 }; 1899 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1900 } 1901 1902 // TODO: Floating-point conversions, vectors. 1903 return false; 1904 } 1905 1906 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1907 unsigned NumDeadInst = 0; 1908 // Delete the instructions backwards, as it has a reduced likelihood of 1909 // having to update as many def-use and use-def chains. 1910 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1911 while (EndInst != &BB->front()) { 1912 // Delete the next to last instruction. 1913 Instruction *Inst = &*--EndInst->getIterator(); 1914 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1915 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1916 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1917 EndInst = Inst; 1918 continue; 1919 } 1920 if (!isa<DbgInfoIntrinsic>(Inst)) 1921 ++NumDeadInst; 1922 Inst->eraseFromParent(); 1923 } 1924 return NumDeadInst; 1925 } 1926 1927 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1928 bool PreserveLCSSA, DomTreeUpdater *DTU, 1929 MemorySSAUpdater *MSSAU) { 1930 BasicBlock *BB = I->getParent(); 1931 std::vector <DominatorTree::UpdateType> Updates; 1932 1933 if (MSSAU) 1934 MSSAU->changeToUnreachable(I); 1935 1936 // Loop over all of the successors, removing BB's entry from any PHI 1937 // nodes. 1938 if (DTU) 1939 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1940 for (BasicBlock *Successor : successors(BB)) { 1941 Successor->removePredecessor(BB, PreserveLCSSA); 1942 if (DTU) 1943 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1944 } 1945 // Insert a call to llvm.trap right before this. This turns the undefined 1946 // behavior into a hard fail instead of falling through into random code. 1947 if (UseLLVMTrap) { 1948 Function *TrapFn = 1949 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1950 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1951 CallTrap->setDebugLoc(I->getDebugLoc()); 1952 } 1953 auto *UI = new UnreachableInst(I->getContext(), I); 1954 UI->setDebugLoc(I->getDebugLoc()); 1955 1956 // All instructions after this are dead. 1957 unsigned NumInstrsRemoved = 0; 1958 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1959 while (BBI != BBE) { 1960 if (!BBI->use_empty()) 1961 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1962 BB->getInstList().erase(BBI++); 1963 ++NumInstrsRemoved; 1964 } 1965 if (DTU) 1966 DTU->applyUpdatesPermissive(Updates); 1967 return NumInstrsRemoved; 1968 } 1969 1970 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1971 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1972 SmallVector<OperandBundleDef, 1> OpBundles; 1973 II->getOperandBundlesAsDefs(OpBundles); 1974 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1975 II->getCalledValue(), Args, OpBundles); 1976 NewCall->setCallingConv(II->getCallingConv()); 1977 NewCall->setAttributes(II->getAttributes()); 1978 NewCall->setDebugLoc(II->getDebugLoc()); 1979 NewCall->copyMetadata(*II); 1980 return NewCall; 1981 } 1982 1983 /// changeToCall - Convert the specified invoke into a normal call. 1984 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1985 CallInst *NewCall = createCallMatchingInvoke(II); 1986 NewCall->takeName(II); 1987 NewCall->insertBefore(II); 1988 II->replaceAllUsesWith(NewCall); 1989 1990 // Follow the call by a branch to the normal destination. 1991 BasicBlock *NormalDestBB = II->getNormalDest(); 1992 BranchInst::Create(NormalDestBB, II); 1993 1994 // Update PHI nodes in the unwind destination 1995 BasicBlock *BB = II->getParent(); 1996 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1997 UnwindDestBB->removePredecessor(BB); 1998 II->eraseFromParent(); 1999 if (DTU) 2000 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2001 } 2002 2003 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2004 BasicBlock *UnwindEdge) { 2005 BasicBlock *BB = CI->getParent(); 2006 2007 // Convert this function call into an invoke instruction. First, split the 2008 // basic block. 2009 BasicBlock *Split = 2010 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2011 2012 // Delete the unconditional branch inserted by splitBasicBlock 2013 BB->getInstList().pop_back(); 2014 2015 // Create the new invoke instruction. 2016 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2017 SmallVector<OperandBundleDef, 1> OpBundles; 2018 2019 CI->getOperandBundlesAsDefs(OpBundles); 2020 2021 // Note: we're round tripping operand bundles through memory here, and that 2022 // can potentially be avoided with a cleverer API design that we do not have 2023 // as of this time. 2024 2025 InvokeInst *II = 2026 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2027 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2028 II->setDebugLoc(CI->getDebugLoc()); 2029 II->setCallingConv(CI->getCallingConv()); 2030 II->setAttributes(CI->getAttributes()); 2031 2032 // Make sure that anything using the call now uses the invoke! This also 2033 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2034 CI->replaceAllUsesWith(II); 2035 2036 // Delete the original call 2037 Split->getInstList().pop_front(); 2038 return Split; 2039 } 2040 2041 static bool markAliveBlocks(Function &F, 2042 SmallPtrSetImpl<BasicBlock *> &Reachable, 2043 DomTreeUpdater *DTU = nullptr) { 2044 SmallVector<BasicBlock*, 128> Worklist; 2045 BasicBlock *BB = &F.front(); 2046 Worklist.push_back(BB); 2047 Reachable.insert(BB); 2048 bool Changed = false; 2049 do { 2050 BB = Worklist.pop_back_val(); 2051 2052 // Do a quick scan of the basic block, turning any obviously unreachable 2053 // instructions into LLVM unreachable insts. The instruction combining pass 2054 // canonicalizes unreachable insts into stores to null or undef. 2055 for (Instruction &I : *BB) { 2056 if (auto *CI = dyn_cast<CallInst>(&I)) { 2057 Value *Callee = CI->getCalledValue(); 2058 // Handle intrinsic calls. 2059 if (Function *F = dyn_cast<Function>(Callee)) { 2060 auto IntrinsicID = F->getIntrinsicID(); 2061 // Assumptions that are known to be false are equivalent to 2062 // unreachable. Also, if the condition is undefined, then we make the 2063 // choice most beneficial to the optimizer, and choose that to also be 2064 // unreachable. 2065 if (IntrinsicID == Intrinsic::assume) { 2066 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2067 // Don't insert a call to llvm.trap right before the unreachable. 2068 changeToUnreachable(CI, false, false, DTU); 2069 Changed = true; 2070 break; 2071 } 2072 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2073 // A call to the guard intrinsic bails out of the current 2074 // compilation unit if the predicate passed to it is false. If the 2075 // predicate is a constant false, then we know the guard will bail 2076 // out of the current compile unconditionally, so all code following 2077 // it is dead. 2078 // 2079 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2080 // guards to treat `undef` as `false` since a guard on `undef` can 2081 // still be useful for widening. 2082 if (match(CI->getArgOperand(0), m_Zero())) 2083 if (!isa<UnreachableInst>(CI->getNextNode())) { 2084 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2085 false, DTU); 2086 Changed = true; 2087 break; 2088 } 2089 } 2090 } else if ((isa<ConstantPointerNull>(Callee) && 2091 !NullPointerIsDefined(CI->getFunction())) || 2092 isa<UndefValue>(Callee)) { 2093 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2094 Changed = true; 2095 break; 2096 } 2097 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2098 // If we found a call to a no-return function, insert an unreachable 2099 // instruction after it. Make sure there isn't *already* one there 2100 // though. 2101 if (!isa<UnreachableInst>(CI->getNextNode())) { 2102 // Don't insert a call to llvm.trap right before the unreachable. 2103 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2104 Changed = true; 2105 } 2106 break; 2107 } 2108 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2109 // Store to undef and store to null are undefined and used to signal 2110 // that they should be changed to unreachable by passes that can't 2111 // modify the CFG. 2112 2113 // Don't touch volatile stores. 2114 if (SI->isVolatile()) continue; 2115 2116 Value *Ptr = SI->getOperand(1); 2117 2118 if (isa<UndefValue>(Ptr) || 2119 (isa<ConstantPointerNull>(Ptr) && 2120 !NullPointerIsDefined(SI->getFunction(), 2121 SI->getPointerAddressSpace()))) { 2122 changeToUnreachable(SI, true, false, DTU); 2123 Changed = true; 2124 break; 2125 } 2126 } 2127 } 2128 2129 Instruction *Terminator = BB->getTerminator(); 2130 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2131 // Turn invokes that call 'nounwind' functions into ordinary calls. 2132 Value *Callee = II->getCalledValue(); 2133 if ((isa<ConstantPointerNull>(Callee) && 2134 !NullPointerIsDefined(BB->getParent())) || 2135 isa<UndefValue>(Callee)) { 2136 changeToUnreachable(II, true, false, DTU); 2137 Changed = true; 2138 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2139 if (II->use_empty() && II->onlyReadsMemory()) { 2140 // jump to the normal destination branch. 2141 BasicBlock *NormalDestBB = II->getNormalDest(); 2142 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2143 BranchInst::Create(NormalDestBB, II); 2144 UnwindDestBB->removePredecessor(II->getParent()); 2145 II->eraseFromParent(); 2146 if (DTU) 2147 DTU->applyUpdatesPermissive( 2148 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2149 } else 2150 changeToCall(II, DTU); 2151 Changed = true; 2152 } 2153 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2154 // Remove catchpads which cannot be reached. 2155 struct CatchPadDenseMapInfo { 2156 static CatchPadInst *getEmptyKey() { 2157 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2158 } 2159 2160 static CatchPadInst *getTombstoneKey() { 2161 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2162 } 2163 2164 static unsigned getHashValue(CatchPadInst *CatchPad) { 2165 return static_cast<unsigned>(hash_combine_range( 2166 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2167 } 2168 2169 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2170 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2171 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2172 return LHS == RHS; 2173 return LHS->isIdenticalTo(RHS); 2174 } 2175 }; 2176 2177 // Set of unique CatchPads. 2178 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2179 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2180 HandlerSet; 2181 detail::DenseSetEmpty Empty; 2182 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2183 E = CatchSwitch->handler_end(); 2184 I != E; ++I) { 2185 BasicBlock *HandlerBB = *I; 2186 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2187 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2188 CatchSwitch->removeHandler(I); 2189 --I; 2190 --E; 2191 Changed = true; 2192 } 2193 } 2194 } 2195 2196 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2197 for (BasicBlock *Successor : successors(BB)) 2198 if (Reachable.insert(Successor).second) 2199 Worklist.push_back(Successor); 2200 } while (!Worklist.empty()); 2201 return Changed; 2202 } 2203 2204 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2205 Instruction *TI = BB->getTerminator(); 2206 2207 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2208 changeToCall(II, DTU); 2209 return; 2210 } 2211 2212 Instruction *NewTI; 2213 BasicBlock *UnwindDest; 2214 2215 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2216 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2217 UnwindDest = CRI->getUnwindDest(); 2218 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2219 auto *NewCatchSwitch = CatchSwitchInst::Create( 2220 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2221 CatchSwitch->getName(), CatchSwitch); 2222 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2223 NewCatchSwitch->addHandler(PadBB); 2224 2225 NewTI = NewCatchSwitch; 2226 UnwindDest = CatchSwitch->getUnwindDest(); 2227 } else { 2228 llvm_unreachable("Could not find unwind successor"); 2229 } 2230 2231 NewTI->takeName(TI); 2232 NewTI->setDebugLoc(TI->getDebugLoc()); 2233 UnwindDest->removePredecessor(BB); 2234 TI->replaceAllUsesWith(NewTI); 2235 TI->eraseFromParent(); 2236 if (DTU) 2237 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2238 } 2239 2240 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2241 /// if they are in a dead cycle. Return true if a change was made, false 2242 /// otherwise. 2243 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2244 MemorySSAUpdater *MSSAU) { 2245 SmallPtrSet<BasicBlock *, 16> Reachable; 2246 bool Changed = markAliveBlocks(F, Reachable, DTU); 2247 2248 // If there are unreachable blocks in the CFG... 2249 if (Reachable.size() == F.size()) 2250 return Changed; 2251 2252 assert(Reachable.size() < F.size()); 2253 NumRemoved += F.size() - Reachable.size(); 2254 2255 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2256 for (BasicBlock &BB : F) { 2257 // Skip reachable basic blocks 2258 if (Reachable.find(&BB) != Reachable.end()) 2259 continue; 2260 DeadBlockSet.insert(&BB); 2261 } 2262 2263 if (MSSAU) 2264 MSSAU->removeBlocks(DeadBlockSet); 2265 2266 // Loop over all of the basic blocks that are not reachable, dropping all of 2267 // their internal references. Update DTU if available. 2268 std::vector<DominatorTree::UpdateType> Updates; 2269 for (auto *BB : DeadBlockSet) { 2270 for (BasicBlock *Successor : successors(BB)) { 2271 if (!DeadBlockSet.count(Successor)) 2272 Successor->removePredecessor(BB); 2273 if (DTU) 2274 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2275 } 2276 BB->dropAllReferences(); 2277 if (DTU) { 2278 Instruction *TI = BB->getTerminator(); 2279 assert(TI && "Basic block should have a terminator"); 2280 // Terminators like invoke can have users. We have to replace their users, 2281 // before removing them. 2282 if (!TI->use_empty()) 2283 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2284 TI->eraseFromParent(); 2285 new UnreachableInst(BB->getContext(), BB); 2286 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2287 "applying corresponding DTU updates."); 2288 } 2289 } 2290 2291 if (DTU) { 2292 DTU->applyUpdatesPermissive(Updates); 2293 bool Deleted = false; 2294 for (auto *BB : DeadBlockSet) { 2295 if (DTU->isBBPendingDeletion(BB)) 2296 --NumRemoved; 2297 else 2298 Deleted = true; 2299 DTU->deleteBB(BB); 2300 } 2301 if (!Deleted) 2302 return false; 2303 } else { 2304 for (auto *BB : DeadBlockSet) 2305 BB->eraseFromParent(); 2306 } 2307 2308 return true; 2309 } 2310 2311 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2312 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2313 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2314 K->dropUnknownNonDebugMetadata(KnownIDs); 2315 K->getAllMetadataOtherThanDebugLoc(Metadata); 2316 for (const auto &MD : Metadata) { 2317 unsigned Kind = MD.first; 2318 MDNode *JMD = J->getMetadata(Kind); 2319 MDNode *KMD = MD.second; 2320 2321 switch (Kind) { 2322 default: 2323 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2324 break; 2325 case LLVMContext::MD_dbg: 2326 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2327 case LLVMContext::MD_tbaa: 2328 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2329 break; 2330 case LLVMContext::MD_alias_scope: 2331 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2332 break; 2333 case LLVMContext::MD_noalias: 2334 case LLVMContext::MD_mem_parallel_loop_access: 2335 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2336 break; 2337 case LLVMContext::MD_access_group: 2338 K->setMetadata(LLVMContext::MD_access_group, 2339 intersectAccessGroups(K, J)); 2340 break; 2341 case LLVMContext::MD_range: 2342 2343 // If K does move, use most generic range. Otherwise keep the range of 2344 // K. 2345 if (DoesKMove) 2346 // FIXME: If K does move, we should drop the range info and nonnull. 2347 // Currently this function is used with DoesKMove in passes 2348 // doing hoisting/sinking and the current behavior of using the 2349 // most generic range is correct in those cases. 2350 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2351 break; 2352 case LLVMContext::MD_fpmath: 2353 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2354 break; 2355 case LLVMContext::MD_invariant_load: 2356 // Only set the !invariant.load if it is present in both instructions. 2357 K->setMetadata(Kind, JMD); 2358 break; 2359 case LLVMContext::MD_nonnull: 2360 // If K does move, keep nonull if it is present in both instructions. 2361 if (DoesKMove) 2362 K->setMetadata(Kind, JMD); 2363 break; 2364 case LLVMContext::MD_invariant_group: 2365 // Preserve !invariant.group in K. 2366 break; 2367 case LLVMContext::MD_align: 2368 K->setMetadata(Kind, 2369 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2370 break; 2371 case LLVMContext::MD_dereferenceable: 2372 case LLVMContext::MD_dereferenceable_or_null: 2373 K->setMetadata(Kind, 2374 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2375 break; 2376 case LLVMContext::MD_preserve_access_index: 2377 // Preserve !preserve.access.index in K. 2378 break; 2379 } 2380 } 2381 // Set !invariant.group from J if J has it. If both instructions have it 2382 // then we will just pick it from J - even when they are different. 2383 // Also make sure that K is load or store - f.e. combining bitcast with load 2384 // could produce bitcast with invariant.group metadata, which is invalid. 2385 // FIXME: we should try to preserve both invariant.group md if they are 2386 // different, but right now instruction can only have one invariant.group. 2387 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2388 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2389 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2390 } 2391 2392 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2393 bool KDominatesJ) { 2394 unsigned KnownIDs[] = { 2395 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2396 LLVMContext::MD_noalias, LLVMContext::MD_range, 2397 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2398 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2399 LLVMContext::MD_dereferenceable, 2400 LLVMContext::MD_dereferenceable_or_null, 2401 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2402 combineMetadata(K, J, KnownIDs, KDominatesJ); 2403 } 2404 2405 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2406 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2407 Source.getAllMetadata(MD); 2408 MDBuilder MDB(Dest.getContext()); 2409 Type *NewType = Dest.getType(); 2410 const DataLayout &DL = Source.getModule()->getDataLayout(); 2411 for (const auto &MDPair : MD) { 2412 unsigned ID = MDPair.first; 2413 MDNode *N = MDPair.second; 2414 // Note, essentially every kind of metadata should be preserved here! This 2415 // routine is supposed to clone a load instruction changing *only its type*. 2416 // The only metadata it makes sense to drop is metadata which is invalidated 2417 // when the pointer type changes. This should essentially never be the case 2418 // in LLVM, but we explicitly switch over only known metadata to be 2419 // conservatively correct. If you are adding metadata to LLVM which pertains 2420 // to loads, you almost certainly want to add it here. 2421 switch (ID) { 2422 case LLVMContext::MD_dbg: 2423 case LLVMContext::MD_tbaa: 2424 case LLVMContext::MD_prof: 2425 case LLVMContext::MD_fpmath: 2426 case LLVMContext::MD_tbaa_struct: 2427 case LLVMContext::MD_invariant_load: 2428 case LLVMContext::MD_alias_scope: 2429 case LLVMContext::MD_noalias: 2430 case LLVMContext::MD_nontemporal: 2431 case LLVMContext::MD_mem_parallel_loop_access: 2432 case LLVMContext::MD_access_group: 2433 // All of these directly apply. 2434 Dest.setMetadata(ID, N); 2435 break; 2436 2437 case LLVMContext::MD_nonnull: 2438 copyNonnullMetadata(Source, N, Dest); 2439 break; 2440 2441 case LLVMContext::MD_align: 2442 case LLVMContext::MD_dereferenceable: 2443 case LLVMContext::MD_dereferenceable_or_null: 2444 // These only directly apply if the new type is also a pointer. 2445 if (NewType->isPointerTy()) 2446 Dest.setMetadata(ID, N); 2447 break; 2448 2449 case LLVMContext::MD_range: 2450 copyRangeMetadata(DL, Source, N, Dest); 2451 break; 2452 } 2453 } 2454 } 2455 2456 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2457 auto *ReplInst = dyn_cast<Instruction>(Repl); 2458 if (!ReplInst) 2459 return; 2460 2461 // Patch the replacement so that it is not more restrictive than the value 2462 // being replaced. 2463 // Note that if 'I' is a load being replaced by some operation, 2464 // for example, by an arithmetic operation, then andIRFlags() 2465 // would just erase all math flags from the original arithmetic 2466 // operation, which is clearly not wanted and not needed. 2467 if (!isa<LoadInst>(I)) 2468 ReplInst->andIRFlags(I); 2469 2470 // FIXME: If both the original and replacement value are part of the 2471 // same control-flow region (meaning that the execution of one 2472 // guarantees the execution of the other), then we can combine the 2473 // noalias scopes here and do better than the general conservative 2474 // answer used in combineMetadata(). 2475 2476 // In general, GVN unifies expressions over different control-flow 2477 // regions, and so we need a conservative combination of the noalias 2478 // scopes. 2479 static const unsigned KnownIDs[] = { 2480 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2481 LLVMContext::MD_noalias, LLVMContext::MD_range, 2482 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2483 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2484 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2485 combineMetadata(ReplInst, I, KnownIDs, false); 2486 } 2487 2488 template <typename RootType, typename DominatesFn> 2489 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2490 const RootType &Root, 2491 const DominatesFn &Dominates) { 2492 assert(From->getType() == To->getType()); 2493 2494 unsigned Count = 0; 2495 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2496 UI != UE;) { 2497 Use &U = *UI++; 2498 if (!Dominates(Root, U)) 2499 continue; 2500 U.set(To); 2501 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2502 << "' as " << *To << " in " << *U << "\n"); 2503 ++Count; 2504 } 2505 return Count; 2506 } 2507 2508 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2509 assert(From->getType() == To->getType()); 2510 auto *BB = From->getParent(); 2511 unsigned Count = 0; 2512 2513 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2514 UI != UE;) { 2515 Use &U = *UI++; 2516 auto *I = cast<Instruction>(U.getUser()); 2517 if (I->getParent() == BB) 2518 continue; 2519 U.set(To); 2520 ++Count; 2521 } 2522 return Count; 2523 } 2524 2525 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2526 DominatorTree &DT, 2527 const BasicBlockEdge &Root) { 2528 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2529 return DT.dominates(Root, U); 2530 }; 2531 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2532 } 2533 2534 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2535 DominatorTree &DT, 2536 const BasicBlock *BB) { 2537 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2538 auto *I = cast<Instruction>(U.getUser())->getParent(); 2539 return DT.properlyDominates(BB, I); 2540 }; 2541 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2542 } 2543 2544 bool llvm::callsGCLeafFunction(const CallBase *Call, 2545 const TargetLibraryInfo &TLI) { 2546 // Check if the function is specifically marked as a gc leaf function. 2547 if (Call->hasFnAttr("gc-leaf-function")) 2548 return true; 2549 if (const Function *F = Call->getCalledFunction()) { 2550 if (F->hasFnAttribute("gc-leaf-function")) 2551 return true; 2552 2553 if (auto IID = F->getIntrinsicID()) 2554 // Most LLVM intrinsics do not take safepoints. 2555 return IID != Intrinsic::experimental_gc_statepoint && 2556 IID != Intrinsic::experimental_deoptimize; 2557 } 2558 2559 // Lib calls can be materialized by some passes, and won't be 2560 // marked as 'gc-leaf-function.' All available Libcalls are 2561 // GC-leaf. 2562 LibFunc LF; 2563 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2564 return TLI.has(LF); 2565 } 2566 2567 return false; 2568 } 2569 2570 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2571 LoadInst &NewLI) { 2572 auto *NewTy = NewLI.getType(); 2573 2574 // This only directly applies if the new type is also a pointer. 2575 if (NewTy->isPointerTy()) { 2576 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2577 return; 2578 } 2579 2580 // The only other translation we can do is to integral loads with !range 2581 // metadata. 2582 if (!NewTy->isIntegerTy()) 2583 return; 2584 2585 MDBuilder MDB(NewLI.getContext()); 2586 const Value *Ptr = OldLI.getPointerOperand(); 2587 auto *ITy = cast<IntegerType>(NewTy); 2588 auto *NullInt = ConstantExpr::getPtrToInt( 2589 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2590 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2591 NewLI.setMetadata(LLVMContext::MD_range, 2592 MDB.createRange(NonNullInt, NullInt)); 2593 } 2594 2595 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2596 MDNode *N, LoadInst &NewLI) { 2597 auto *NewTy = NewLI.getType(); 2598 2599 // Give up unless it is converted to a pointer where there is a single very 2600 // valuable mapping we can do reliably. 2601 // FIXME: It would be nice to propagate this in more ways, but the type 2602 // conversions make it hard. 2603 if (!NewTy->isPointerTy()) 2604 return; 2605 2606 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2607 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2608 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2609 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2610 } 2611 } 2612 2613 void llvm::dropDebugUsers(Instruction &I) { 2614 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2615 findDbgUsers(DbgUsers, &I); 2616 for (auto *DII : DbgUsers) 2617 DII->eraseFromParent(); 2618 } 2619 2620 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2621 BasicBlock *BB) { 2622 // Since we are moving the instructions out of its basic block, we do not 2623 // retain their original debug locations (DILocations) and debug intrinsic 2624 // instructions. 2625 // 2626 // Doing so would degrade the debugging experience and adversely affect the 2627 // accuracy of profiling information. 2628 // 2629 // Currently, when hoisting the instructions, we take the following actions: 2630 // - Remove their debug intrinsic instructions. 2631 // - Set their debug locations to the values from the insertion point. 2632 // 2633 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2634 // need to be deleted, is because there will not be any instructions with a 2635 // DILocation in either branch left after performing the transformation. We 2636 // can only insert a dbg.value after the two branches are joined again. 2637 // 2638 // See PR38762, PR39243 for more details. 2639 // 2640 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2641 // encode predicated DIExpressions that yield different results on different 2642 // code paths. 2643 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2644 Instruction *I = &*II; 2645 I->dropUnknownNonDebugMetadata(); 2646 if (I->isUsedByMetadata()) 2647 dropDebugUsers(*I); 2648 if (isa<DbgInfoIntrinsic>(I)) { 2649 // Remove DbgInfo Intrinsics. 2650 II = I->eraseFromParent(); 2651 continue; 2652 } 2653 I->setDebugLoc(InsertPt->getDebugLoc()); 2654 ++II; 2655 } 2656 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2657 BB->begin(), 2658 BB->getTerminator()->getIterator()); 2659 } 2660 2661 namespace { 2662 2663 /// A potential constituent of a bitreverse or bswap expression. See 2664 /// collectBitParts for a fuller explanation. 2665 struct BitPart { 2666 BitPart(Value *P, unsigned BW) : Provider(P) { 2667 Provenance.resize(BW); 2668 } 2669 2670 /// The Value that this is a bitreverse/bswap of. 2671 Value *Provider; 2672 2673 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2674 /// in Provider becomes bit B in the result of this expression. 2675 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2676 2677 enum { Unset = -1 }; 2678 }; 2679 2680 } // end anonymous namespace 2681 2682 /// Analyze the specified subexpression and see if it is capable of providing 2683 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2684 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2685 /// the output of the expression came from a corresponding bit in some other 2686 /// value. This function is recursive, and the end result is a mapping of 2687 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2688 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2689 /// 2690 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2691 /// that the expression deposits the low byte of %X into the high byte of the 2692 /// result and that all other bits are zero. This expression is accepted and a 2693 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2694 /// [0-7]. 2695 /// 2696 /// To avoid revisiting values, the BitPart results are memoized into the 2697 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2698 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2699 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2700 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2701 /// type instead to provide the same functionality. 2702 /// 2703 /// Because we pass around references into \c BPS, we must use a container that 2704 /// does not invalidate internal references (std::map instead of DenseMap). 2705 static const Optional<BitPart> & 2706 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2707 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2708 auto I = BPS.find(V); 2709 if (I != BPS.end()) 2710 return I->second; 2711 2712 auto &Result = BPS[V] = None; 2713 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2714 2715 // Prevent stack overflow by limiting the recursion depth 2716 if (Depth == BitPartRecursionMaxDepth) { 2717 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2718 return Result; 2719 } 2720 2721 if (Instruction *I = dyn_cast<Instruction>(V)) { 2722 // If this is an or instruction, it may be an inner node of the bswap. 2723 if (I->getOpcode() == Instruction::Or) { 2724 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2725 MatchBitReversals, BPS, Depth + 1); 2726 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2727 MatchBitReversals, BPS, Depth + 1); 2728 if (!A || !B) 2729 return Result; 2730 2731 // Try and merge the two together. 2732 if (!A->Provider || A->Provider != B->Provider) 2733 return Result; 2734 2735 Result = BitPart(A->Provider, BitWidth); 2736 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2737 if (A->Provenance[i] != BitPart::Unset && 2738 B->Provenance[i] != BitPart::Unset && 2739 A->Provenance[i] != B->Provenance[i]) 2740 return Result = None; 2741 2742 if (A->Provenance[i] == BitPart::Unset) 2743 Result->Provenance[i] = B->Provenance[i]; 2744 else 2745 Result->Provenance[i] = A->Provenance[i]; 2746 } 2747 2748 return Result; 2749 } 2750 2751 // If this is a logical shift by a constant, recurse then shift the result. 2752 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2753 unsigned BitShift = 2754 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2755 // Ensure the shift amount is defined. 2756 if (BitShift > BitWidth) 2757 return Result; 2758 2759 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2760 MatchBitReversals, BPS, Depth + 1); 2761 if (!Res) 2762 return Result; 2763 Result = Res; 2764 2765 // Perform the "shift" on BitProvenance. 2766 auto &P = Result->Provenance; 2767 if (I->getOpcode() == Instruction::Shl) { 2768 P.erase(std::prev(P.end(), BitShift), P.end()); 2769 P.insert(P.begin(), BitShift, BitPart::Unset); 2770 } else { 2771 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2772 P.insert(P.end(), BitShift, BitPart::Unset); 2773 } 2774 2775 return Result; 2776 } 2777 2778 // If this is a logical 'and' with a mask that clears bits, recurse then 2779 // unset the appropriate bits. 2780 if (I->getOpcode() == Instruction::And && 2781 isa<ConstantInt>(I->getOperand(1))) { 2782 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2783 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2784 2785 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2786 // early exit. 2787 unsigned NumMaskedBits = AndMask.countPopulation(); 2788 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2789 return Result; 2790 2791 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2792 MatchBitReversals, BPS, Depth + 1); 2793 if (!Res) 2794 return Result; 2795 Result = Res; 2796 2797 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2798 // If the AndMask is zero for this bit, clear the bit. 2799 if ((AndMask & Bit) == 0) 2800 Result->Provenance[i] = BitPart::Unset; 2801 return Result; 2802 } 2803 2804 // If this is a zext instruction zero extend the result. 2805 if (I->getOpcode() == Instruction::ZExt) { 2806 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2807 MatchBitReversals, BPS, Depth + 1); 2808 if (!Res) 2809 return Result; 2810 2811 Result = BitPart(Res->Provider, BitWidth); 2812 auto NarrowBitWidth = 2813 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2814 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2815 Result->Provenance[i] = Res->Provenance[i]; 2816 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2817 Result->Provenance[i] = BitPart::Unset; 2818 return Result; 2819 } 2820 } 2821 2822 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2823 // the input value to the bswap/bitreverse. 2824 Result = BitPart(V, BitWidth); 2825 for (unsigned i = 0; i < BitWidth; ++i) 2826 Result->Provenance[i] = i; 2827 return Result; 2828 } 2829 2830 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2831 unsigned BitWidth) { 2832 if (From % 8 != To % 8) 2833 return false; 2834 // Convert from bit indices to byte indices and check for a byte reversal. 2835 From >>= 3; 2836 To >>= 3; 2837 BitWidth >>= 3; 2838 return From == BitWidth - To - 1; 2839 } 2840 2841 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2842 unsigned BitWidth) { 2843 return From == BitWidth - To - 1; 2844 } 2845 2846 bool llvm::recognizeBSwapOrBitReverseIdiom( 2847 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2848 SmallVectorImpl<Instruction *> &InsertedInsts) { 2849 if (Operator::getOpcode(I) != Instruction::Or) 2850 return false; 2851 if (!MatchBSwaps && !MatchBitReversals) 2852 return false; 2853 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2854 if (!ITy || ITy->getBitWidth() > 128) 2855 return false; // Can't do vectors or integers > 128 bits. 2856 unsigned BW = ITy->getBitWidth(); 2857 2858 unsigned DemandedBW = BW; 2859 IntegerType *DemandedTy = ITy; 2860 if (I->hasOneUse()) { 2861 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2862 DemandedTy = cast<IntegerType>(Trunc->getType()); 2863 DemandedBW = DemandedTy->getBitWidth(); 2864 } 2865 } 2866 2867 // Try to find all the pieces corresponding to the bswap. 2868 std::map<Value *, Optional<BitPart>> BPS; 2869 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2870 if (!Res) 2871 return false; 2872 auto &BitProvenance = Res->Provenance; 2873 2874 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2875 // only byteswap values with an even number of bytes. 2876 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2877 for (unsigned i = 0; i < DemandedBW; ++i) { 2878 OKForBSwap &= 2879 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2880 OKForBitReverse &= 2881 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2882 } 2883 2884 Intrinsic::ID Intrin; 2885 if (OKForBSwap && MatchBSwaps) 2886 Intrin = Intrinsic::bswap; 2887 else if (OKForBitReverse && MatchBitReversals) 2888 Intrin = Intrinsic::bitreverse; 2889 else 2890 return false; 2891 2892 if (ITy != DemandedTy) { 2893 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2894 Value *Provider = Res->Provider; 2895 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2896 // We may need to truncate the provider. 2897 if (DemandedTy != ProviderTy) { 2898 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2899 "trunc", I); 2900 InsertedInsts.push_back(Trunc); 2901 Provider = Trunc; 2902 } 2903 auto *CI = CallInst::Create(F, Provider, "rev", I); 2904 InsertedInsts.push_back(CI); 2905 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2906 InsertedInsts.push_back(ExtInst); 2907 return true; 2908 } 2909 2910 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2911 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2912 return true; 2913 } 2914 2915 // CodeGen has special handling for some string functions that may replace 2916 // them with target-specific intrinsics. Since that'd skip our interceptors 2917 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2918 // we mark affected calls as NoBuiltin, which will disable optimization 2919 // in CodeGen. 2920 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2921 CallInst *CI, const TargetLibraryInfo *TLI) { 2922 Function *F = CI->getCalledFunction(); 2923 LibFunc Func; 2924 if (F && !F->hasLocalLinkage() && F->hasName() && 2925 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2926 !F->doesNotAccessMemory()) 2927 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2928 } 2929 2930 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2931 // We can't have a PHI with a metadata type. 2932 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2933 return false; 2934 2935 // Early exit. 2936 if (!isa<Constant>(I->getOperand(OpIdx))) 2937 return true; 2938 2939 switch (I->getOpcode()) { 2940 default: 2941 return true; 2942 case Instruction::Call: 2943 case Instruction::Invoke: 2944 // Can't handle inline asm. Skip it. 2945 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2946 return false; 2947 // Many arithmetic intrinsics have no issue taking a 2948 // variable, however it's hard to distingish these from 2949 // specials such as @llvm.frameaddress that require a constant. 2950 if (isa<IntrinsicInst>(I)) 2951 return false; 2952 2953 // Constant bundle operands may need to retain their constant-ness for 2954 // correctness. 2955 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2956 return false; 2957 return true; 2958 case Instruction::ShuffleVector: 2959 // Shufflevector masks are constant. 2960 return OpIdx != 2; 2961 case Instruction::Switch: 2962 case Instruction::ExtractValue: 2963 // All operands apart from the first are constant. 2964 return OpIdx == 0; 2965 case Instruction::InsertValue: 2966 // All operands apart from the first and the second are constant. 2967 return OpIdx < 2; 2968 case Instruction::Alloca: 2969 // Static allocas (constant size in the entry block) are handled by 2970 // prologue/epilogue insertion so they're free anyway. We definitely don't 2971 // want to make them non-constant. 2972 return !cast<AllocaInst>(I)->isStaticAlloca(); 2973 case Instruction::GetElementPtr: 2974 if (OpIdx == 0) 2975 return true; 2976 gep_type_iterator It = gep_type_begin(I); 2977 for (auto E = std::next(It, OpIdx); It != E; ++It) 2978 if (It.isStruct()) 2979 return false; 2980 return true; 2981 } 2982 } 2983 2984 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2985 AllocaInst *llvm::findAllocaForValue(Value *V, 2986 AllocaForValueMapTy &AllocaForValue) { 2987 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2988 return AI; 2989 // See if we've already calculated (or started to calculate) alloca for a 2990 // given value. 2991 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2992 if (I != AllocaForValue.end()) 2993 return I->second; 2994 // Store 0 while we're calculating alloca for value V to avoid 2995 // infinite recursion if the value references itself. 2996 AllocaForValue[V] = nullptr; 2997 AllocaInst *Res = nullptr; 2998 if (CastInst *CI = dyn_cast<CastInst>(V)) 2999 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 3000 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3001 for (Value *IncValue : PN->incoming_values()) { 3002 // Allow self-referencing phi-nodes. 3003 if (IncValue == PN) 3004 continue; 3005 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 3006 // AI for incoming values should exist and should all be equal. 3007 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3008 return nullptr; 3009 Res = IncValueAI; 3010 } 3011 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3012 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3013 } else { 3014 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3015 << *V << "\n"); 3016 } 3017 if (Res) 3018 AllocaForValue[V] = Res; 3019 return Res; 3020 } 3021