1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 406 const TargetLibraryInfo *TLI) { 407 if (I->isTerminator()) 408 return false; 409 410 // We don't want the landingpad-like instructions removed by anything this 411 // general. 412 if (I->isEHPad()) 413 return false; 414 415 // We don't want debug info removed by anything this general, unless 416 // debug info is empty. 417 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 418 if (DDI->getAddress()) 419 return false; 420 return true; 421 } 422 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 423 if (DVI->hasArgList() || DVI->getValue(0)) 424 return false; 425 return true; 426 } 427 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 428 if (DLI->getLabel()) 429 return false; 430 return true; 431 } 432 433 if (!I->willReturn()) 434 return false; 435 436 if (!I->mayHaveSideEffects()) 437 return true; 438 439 // Special case intrinsics that "may have side effects" but can be deleted 440 // when dead. 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 442 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 443 if (II->getIntrinsicID() == Intrinsic::stacksave || 444 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 445 return true; 446 447 if (II->isLifetimeStartOrEnd()) { 448 auto *Arg = II->getArgOperand(1); 449 // Lifetime intrinsics are dead when their right-hand is undef. 450 if (isa<UndefValue>(Arg)) 451 return true; 452 // If the right-hand is an alloc, global, or argument and the only uses 453 // are lifetime intrinsics then the intrinsics are dead. 454 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 455 return llvm::all_of(Arg->uses(), [](Use &Use) { 456 if (IntrinsicInst *IntrinsicUse = 457 dyn_cast<IntrinsicInst>(Use.getUser())) 458 return IntrinsicUse->isLifetimeStartOrEnd(); 459 return false; 460 }); 461 return false; 462 } 463 464 // Assumptions are dead if their condition is trivially true. Guards on 465 // true are operationally no-ops. In the future we can consider more 466 // sophisticated tradeoffs for guards considering potential for check 467 // widening, but for now we keep things simple. 468 if ((II->getIntrinsicID() == Intrinsic::assume && 469 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 470 II->getIntrinsicID() == Intrinsic::experimental_guard) { 471 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 472 return !Cond->isZero(); 473 474 return false; 475 } 476 } 477 478 if (isAllocLikeFn(I, TLI)) 479 return true; 480 481 if (CallInst *CI = isFreeCall(I, TLI)) 482 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 483 return C->isNullValue() || isa<UndefValue>(C); 484 485 if (auto *Call = dyn_cast<CallBase>(I)) 486 if (isMathLibCallNoop(Call, TLI)) 487 return true; 488 489 return false; 490 } 491 492 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 493 /// trivially dead instruction, delete it. If that makes any of its operands 494 /// trivially dead, delete them too, recursively. Return true if any 495 /// instructions were deleted. 496 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 497 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 498 std::function<void(Value *)> AboutToDeleteCallback) { 499 Instruction *I = dyn_cast<Instruction>(V); 500 if (!I || !isInstructionTriviallyDead(I, TLI)) 501 return false; 502 503 SmallVector<WeakTrackingVH, 16> DeadInsts; 504 DeadInsts.push_back(I); 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 508 return true; 509 } 510 511 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 512 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 513 MemorySSAUpdater *MSSAU, 514 std::function<void(Value *)> AboutToDeleteCallback) { 515 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 516 for (; S != E; ++S) { 517 auto *I = cast<Instruction>(DeadInsts[S]); 518 if (!isInstructionTriviallyDead(I)) { 519 DeadInsts[S] = nullptr; 520 ++Alive; 521 } 522 } 523 if (Alive == E) 524 return false; 525 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 526 AboutToDeleteCallback); 527 return true; 528 } 529 530 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 531 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 532 MemorySSAUpdater *MSSAU, 533 std::function<void(Value *)> AboutToDeleteCallback) { 534 // Process the dead instruction list until empty. 535 while (!DeadInsts.empty()) { 536 Value *V = DeadInsts.pop_back_val(); 537 Instruction *I = cast_or_null<Instruction>(V); 538 if (!I) 539 continue; 540 assert(isInstructionTriviallyDead(I, TLI) && 541 "Live instruction found in dead worklist!"); 542 assert(I->use_empty() && "Instructions with uses are not dead."); 543 544 // Don't lose the debug info while deleting the instructions. 545 salvageDebugInfo(*I); 546 547 if (AboutToDeleteCallback) 548 AboutToDeleteCallback(I); 549 550 // Null out all of the instruction's operands to see if any operand becomes 551 // dead as we go. 552 for (Use &OpU : I->operands()) { 553 Value *OpV = OpU.get(); 554 OpU.set(nullptr); 555 556 if (!OpV->use_empty()) 557 continue; 558 559 // If the operand is an instruction that became dead as we nulled out the 560 // operand, and if it is 'trivially' dead, delete it in a future loop 561 // iteration. 562 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 563 if (isInstructionTriviallyDead(OpI, TLI)) 564 DeadInsts.push_back(OpI); 565 } 566 if (MSSAU) 567 MSSAU->removeMemoryAccess(I); 568 569 I->eraseFromParent(); 570 } 571 } 572 573 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 574 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 575 findDbgUsers(DbgUsers, I); 576 for (auto *DII : DbgUsers) { 577 Value *Undef = UndefValue::get(I->getType()); 578 DII->replaceVariableLocationOp(I, Undef); 579 } 580 return !DbgUsers.empty(); 581 } 582 583 /// areAllUsesEqual - Check whether the uses of a value are all the same. 584 /// This is similar to Instruction::hasOneUse() except this will also return 585 /// true when there are no uses or multiple uses that all refer to the same 586 /// value. 587 static bool areAllUsesEqual(Instruction *I) { 588 Value::user_iterator UI = I->user_begin(); 589 Value::user_iterator UE = I->user_end(); 590 if (UI == UE) 591 return true; 592 593 User *TheUse = *UI; 594 for (++UI; UI != UE; ++UI) { 595 if (*UI != TheUse) 596 return false; 597 } 598 return true; 599 } 600 601 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 602 /// dead PHI node, due to being a def-use chain of single-use nodes that 603 /// either forms a cycle or is terminated by a trivially dead instruction, 604 /// delete it. If that makes any of its operands trivially dead, delete them 605 /// too, recursively. Return true if a change was made. 606 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 607 const TargetLibraryInfo *TLI, 608 llvm::MemorySSAUpdater *MSSAU) { 609 SmallPtrSet<Instruction*, 4> Visited; 610 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 611 I = cast<Instruction>(*I->user_begin())) { 612 if (I->use_empty()) 613 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 614 615 // If we find an instruction more than once, we're on a cycle that 616 // won't prove fruitful. 617 if (!Visited.insert(I).second) { 618 // Break the cycle and delete the instruction and its operands. 619 I->replaceAllUsesWith(UndefValue::get(I->getType())); 620 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 621 return true; 622 } 623 } 624 return false; 625 } 626 627 static bool 628 simplifyAndDCEInstruction(Instruction *I, 629 SmallSetVector<Instruction *, 16> &WorkList, 630 const DataLayout &DL, 631 const TargetLibraryInfo *TLI) { 632 if (isInstructionTriviallyDead(I, TLI)) { 633 salvageDebugInfo(*I); 634 635 // Null out all of the instruction's operands to see if any operand becomes 636 // dead as we go. 637 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 638 Value *OpV = I->getOperand(i); 639 I->setOperand(i, nullptr); 640 641 if (!OpV->use_empty() || I == OpV) 642 continue; 643 644 // If the operand is an instruction that became dead as we nulled out the 645 // operand, and if it is 'trivially' dead, delete it in a future loop 646 // iteration. 647 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 648 if (isInstructionTriviallyDead(OpI, TLI)) 649 WorkList.insert(OpI); 650 } 651 652 I->eraseFromParent(); 653 654 return true; 655 } 656 657 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 658 // Add the users to the worklist. CAREFUL: an instruction can use itself, 659 // in the case of a phi node. 660 for (User *U : I->users()) { 661 if (U != I) { 662 WorkList.insert(cast<Instruction>(U)); 663 } 664 } 665 666 // Replace the instruction with its simplified value. 667 bool Changed = false; 668 if (!I->use_empty()) { 669 I->replaceAllUsesWith(SimpleV); 670 Changed = true; 671 } 672 if (isInstructionTriviallyDead(I, TLI)) { 673 I->eraseFromParent(); 674 Changed = true; 675 } 676 return Changed; 677 } 678 return false; 679 } 680 681 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 682 /// simplify any instructions in it and recursively delete dead instructions. 683 /// 684 /// This returns true if it changed the code, note that it can delete 685 /// instructions in other blocks as well in this block. 686 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 687 const TargetLibraryInfo *TLI) { 688 bool MadeChange = false; 689 const DataLayout &DL = BB->getModule()->getDataLayout(); 690 691 #ifndef NDEBUG 692 // In debug builds, ensure that the terminator of the block is never replaced 693 // or deleted by these simplifications. The idea of simplification is that it 694 // cannot introduce new instructions, and there is no way to replace the 695 // terminator of a block without introducing a new instruction. 696 AssertingVH<Instruction> TerminatorVH(&BB->back()); 697 #endif 698 699 SmallSetVector<Instruction *, 16> WorkList; 700 // Iterate over the original function, only adding insts to the worklist 701 // if they actually need to be revisited. This avoids having to pre-init 702 // the worklist with the entire function's worth of instructions. 703 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 704 BI != E;) { 705 assert(!BI->isTerminator()); 706 Instruction *I = &*BI; 707 ++BI; 708 709 // We're visiting this instruction now, so make sure it's not in the 710 // worklist from an earlier visit. 711 if (!WorkList.count(I)) 712 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 713 } 714 715 while (!WorkList.empty()) { 716 Instruction *I = WorkList.pop_back_val(); 717 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 718 } 719 return MadeChange; 720 } 721 722 //===----------------------------------------------------------------------===// 723 // Control Flow Graph Restructuring. 724 // 725 726 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 727 DomTreeUpdater *DTU) { 728 729 // If BB has single-entry PHI nodes, fold them. 730 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 731 Value *NewVal = PN->getIncomingValue(0); 732 // Replace self referencing PHI with undef, it must be dead. 733 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 734 PN->replaceAllUsesWith(NewVal); 735 PN->eraseFromParent(); 736 } 737 738 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 739 assert(PredBB && "Block doesn't have a single predecessor!"); 740 741 bool ReplaceEntryBB = false; 742 if (PredBB == &DestBB->getParent()->getEntryBlock()) 743 ReplaceEntryBB = true; 744 745 // DTU updates: Collect all the edges that enter 746 // PredBB. These dominator edges will be redirected to DestBB. 747 SmallVector<DominatorTree::UpdateType, 32> Updates; 748 749 if (DTU) { 750 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 751 pred_end(PredBB)); 752 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 753 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 754 // This predecessor of PredBB may already have DestBB as a successor. 755 if (PredOfPredBB != PredBB) 756 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 757 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 758 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 759 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 760 } 761 762 // Zap anything that took the address of DestBB. Not doing this will give the 763 // address an invalid value. 764 if (DestBB->hasAddressTaken()) { 765 BlockAddress *BA = BlockAddress::get(DestBB); 766 Constant *Replacement = 767 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 768 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 769 BA->getType())); 770 BA->destroyConstant(); 771 } 772 773 // Anything that branched to PredBB now branches to DestBB. 774 PredBB->replaceAllUsesWith(DestBB); 775 776 // Splice all the instructions from PredBB to DestBB. 777 PredBB->getTerminator()->eraseFromParent(); 778 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 779 new UnreachableInst(PredBB->getContext(), PredBB); 780 781 // If the PredBB is the entry block of the function, move DestBB up to 782 // become the entry block after we erase PredBB. 783 if (ReplaceEntryBB) 784 DestBB->moveAfter(PredBB); 785 786 if (DTU) { 787 assert(PredBB->getInstList().size() == 1 && 788 isa<UnreachableInst>(PredBB->getTerminator()) && 789 "The successor list of PredBB isn't empty before " 790 "applying corresponding DTU updates."); 791 DTU->applyUpdatesPermissive(Updates); 792 DTU->deleteBB(PredBB); 793 // Recalculation of DomTree is needed when updating a forward DomTree and 794 // the Entry BB is replaced. 795 if (ReplaceEntryBB && DTU->hasDomTree()) { 796 // The entry block was removed and there is no external interface for 797 // the dominator tree to be notified of this change. In this corner-case 798 // we recalculate the entire tree. 799 DTU->recalculate(*(DestBB->getParent())); 800 } 801 } 802 803 else { 804 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 805 } 806 } 807 808 /// Return true if we can choose one of these values to use in place of the 809 /// other. Note that we will always choose the non-undef value to keep. 810 static bool CanMergeValues(Value *First, Value *Second) { 811 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 812 } 813 814 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 815 /// branch to Succ, into Succ. 816 /// 817 /// Assumption: Succ is the single successor for BB. 818 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 819 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 820 821 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 822 << Succ->getName() << "\n"); 823 // Shortcut, if there is only a single predecessor it must be BB and merging 824 // is always safe 825 if (Succ->getSinglePredecessor()) return true; 826 827 // Make a list of the predecessors of BB 828 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 829 830 // Look at all the phi nodes in Succ, to see if they present a conflict when 831 // merging these blocks 832 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 833 PHINode *PN = cast<PHINode>(I); 834 835 // If the incoming value from BB is again a PHINode in 836 // BB which has the same incoming value for *PI as PN does, we can 837 // merge the phi nodes and then the blocks can still be merged 838 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 839 if (BBPN && BBPN->getParent() == BB) { 840 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 841 BasicBlock *IBB = PN->getIncomingBlock(PI); 842 if (BBPreds.count(IBB) && 843 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 844 PN->getIncomingValue(PI))) { 845 LLVM_DEBUG(dbgs() 846 << "Can't fold, phi node " << PN->getName() << " in " 847 << Succ->getName() << " is conflicting with " 848 << BBPN->getName() << " with regard to common predecessor " 849 << IBB->getName() << "\n"); 850 return false; 851 } 852 } 853 } else { 854 Value* Val = PN->getIncomingValueForBlock(BB); 855 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 856 // See if the incoming value for the common predecessor is equal to the 857 // one for BB, in which case this phi node will not prevent the merging 858 // of the block. 859 BasicBlock *IBB = PN->getIncomingBlock(PI); 860 if (BBPreds.count(IBB) && 861 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 862 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 863 << " in " << Succ->getName() 864 << " is conflicting with regard to common " 865 << "predecessor " << IBB->getName() << "\n"); 866 return false; 867 } 868 } 869 } 870 } 871 872 return true; 873 } 874 875 using PredBlockVector = SmallVector<BasicBlock *, 16>; 876 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 877 878 /// Determines the value to use as the phi node input for a block. 879 /// 880 /// Select between \p OldVal any value that we know flows from \p BB 881 /// to a particular phi on the basis of which one (if either) is not 882 /// undef. Update IncomingValues based on the selected value. 883 /// 884 /// \param OldVal The value we are considering selecting. 885 /// \param BB The block that the value flows in from. 886 /// \param IncomingValues A map from block-to-value for other phi inputs 887 /// that we have examined. 888 /// 889 /// \returns the selected value. 890 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 891 IncomingValueMap &IncomingValues) { 892 if (!isa<UndefValue>(OldVal)) { 893 assert((!IncomingValues.count(BB) || 894 IncomingValues.find(BB)->second == OldVal) && 895 "Expected OldVal to match incoming value from BB!"); 896 897 IncomingValues.insert(std::make_pair(BB, OldVal)); 898 return OldVal; 899 } 900 901 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 902 if (It != IncomingValues.end()) return It->second; 903 904 return OldVal; 905 } 906 907 /// Create a map from block to value for the operands of a 908 /// given phi. 909 /// 910 /// Create a map from block to value for each non-undef value flowing 911 /// into \p PN. 912 /// 913 /// \param PN The phi we are collecting the map for. 914 /// \param IncomingValues [out] The map from block to value for this phi. 915 static void gatherIncomingValuesToPhi(PHINode *PN, 916 IncomingValueMap &IncomingValues) { 917 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 918 BasicBlock *BB = PN->getIncomingBlock(i); 919 Value *V = PN->getIncomingValue(i); 920 921 if (!isa<UndefValue>(V)) 922 IncomingValues.insert(std::make_pair(BB, V)); 923 } 924 } 925 926 /// Replace the incoming undef values to a phi with the values 927 /// from a block-to-value map. 928 /// 929 /// \param PN The phi we are replacing the undefs in. 930 /// \param IncomingValues A map from block to value. 931 static void replaceUndefValuesInPhi(PHINode *PN, 932 const IncomingValueMap &IncomingValues) { 933 SmallVector<unsigned> TrueUndefOps; 934 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 935 Value *V = PN->getIncomingValue(i); 936 937 if (!isa<UndefValue>(V)) continue; 938 939 BasicBlock *BB = PN->getIncomingBlock(i); 940 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 941 942 // Keep track of undef/poison incoming values. Those must match, so we fix 943 // them up below if needed. 944 // Note: this is conservatively correct, but we could try harder and group 945 // the undef values per incoming basic block. 946 if (It == IncomingValues.end()) { 947 TrueUndefOps.push_back(i); 948 continue; 949 } 950 951 // There is a defined value for this incoming block, so map this undef 952 // incoming value to the defined value. 953 PN->setIncomingValue(i, It->second); 954 } 955 956 // If there are both undef and poison values incoming, then convert those 957 // values to undef. It is invalid to have different values for the same 958 // incoming block. 959 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 960 return isa<PoisonValue>(PN->getIncomingValue(i)); 961 }); 962 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 963 for (unsigned i : TrueUndefOps) 964 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 965 } 966 } 967 968 /// Replace a value flowing from a block to a phi with 969 /// potentially multiple instances of that value flowing from the 970 /// block's predecessors to the phi. 971 /// 972 /// \param BB The block with the value flowing into the phi. 973 /// \param BBPreds The predecessors of BB. 974 /// \param PN The phi that we are updating. 975 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 976 const PredBlockVector &BBPreds, 977 PHINode *PN) { 978 Value *OldVal = PN->removeIncomingValue(BB, false); 979 assert(OldVal && "No entry in PHI for Pred BB!"); 980 981 IncomingValueMap IncomingValues; 982 983 // We are merging two blocks - BB, and the block containing PN - and 984 // as a result we need to redirect edges from the predecessors of BB 985 // to go to the block containing PN, and update PN 986 // accordingly. Since we allow merging blocks in the case where the 987 // predecessor and successor blocks both share some predecessors, 988 // and where some of those common predecessors might have undef 989 // values flowing into PN, we want to rewrite those values to be 990 // consistent with the non-undef values. 991 992 gatherIncomingValuesToPhi(PN, IncomingValues); 993 994 // If this incoming value is one of the PHI nodes in BB, the new entries 995 // in the PHI node are the entries from the old PHI. 996 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 997 PHINode *OldValPN = cast<PHINode>(OldVal); 998 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 999 // Note that, since we are merging phi nodes and BB and Succ might 1000 // have common predecessors, we could end up with a phi node with 1001 // identical incoming branches. This will be cleaned up later (and 1002 // will trigger asserts if we try to clean it up now, without also 1003 // simplifying the corresponding conditional branch). 1004 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1005 Value *PredVal = OldValPN->getIncomingValue(i); 1006 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1007 IncomingValues); 1008 1009 // And add a new incoming value for this predecessor for the 1010 // newly retargeted branch. 1011 PN->addIncoming(Selected, PredBB); 1012 } 1013 } else { 1014 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1015 // Update existing incoming values in PN for this 1016 // predecessor of BB. 1017 BasicBlock *PredBB = BBPreds[i]; 1018 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1019 IncomingValues); 1020 1021 // And add a new incoming value for this predecessor for the 1022 // newly retargeted branch. 1023 PN->addIncoming(Selected, PredBB); 1024 } 1025 } 1026 1027 replaceUndefValuesInPhi(PN, IncomingValues); 1028 } 1029 1030 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1031 DomTreeUpdater *DTU) { 1032 assert(BB != &BB->getParent()->getEntryBlock() && 1033 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1034 1035 // We can't eliminate infinite loops. 1036 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1037 if (BB == Succ) return false; 1038 1039 // Check to see if merging these blocks would cause conflicts for any of the 1040 // phi nodes in BB or Succ. If not, we can safely merge. 1041 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1042 1043 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1044 // has uses which will not disappear when the PHI nodes are merged. It is 1045 // possible to handle such cases, but difficult: it requires checking whether 1046 // BB dominates Succ, which is non-trivial to calculate in the case where 1047 // Succ has multiple predecessors. Also, it requires checking whether 1048 // constructing the necessary self-referential PHI node doesn't introduce any 1049 // conflicts; this isn't too difficult, but the previous code for doing this 1050 // was incorrect. 1051 // 1052 // Note that if this check finds a live use, BB dominates Succ, so BB is 1053 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1054 // folding the branch isn't profitable in that case anyway. 1055 if (!Succ->getSinglePredecessor()) { 1056 BasicBlock::iterator BBI = BB->begin(); 1057 while (isa<PHINode>(*BBI)) { 1058 for (Use &U : BBI->uses()) { 1059 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1060 if (PN->getIncomingBlock(U) != BB) 1061 return false; 1062 } else { 1063 return false; 1064 } 1065 } 1066 ++BBI; 1067 } 1068 } 1069 1070 // We cannot fold the block if it's a branch to an already present callbr 1071 // successor because that creates duplicate successors. 1072 for (BasicBlock *PredBB : predecessors(BB)) { 1073 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1074 if (Succ == CBI->getDefaultDest()) 1075 return false; 1076 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1077 if (Succ == CBI->getIndirectDest(i)) 1078 return false; 1079 } 1080 } 1081 1082 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1083 1084 SmallVector<DominatorTree::UpdateType, 32> Updates; 1085 if (DTU) { 1086 // All predecessors of BB will be moved to Succ. 1087 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1088 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1089 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1090 for (auto *PredOfBB : PredsOfBB) 1091 // This predecessor of BB may already have Succ as a successor. 1092 if (!PredsOfSucc.contains(PredOfBB)) 1093 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1094 for (auto *PredOfBB : PredsOfBB) 1095 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1096 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1097 } 1098 1099 if (isa<PHINode>(Succ->begin())) { 1100 // If there is more than one pred of succ, and there are PHI nodes in 1101 // the successor, then we need to add incoming edges for the PHI nodes 1102 // 1103 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1104 1105 // Loop over all of the PHI nodes in the successor of BB. 1106 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1107 PHINode *PN = cast<PHINode>(I); 1108 1109 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1110 } 1111 } 1112 1113 if (Succ->getSinglePredecessor()) { 1114 // BB is the only predecessor of Succ, so Succ will end up with exactly 1115 // the same predecessors BB had. 1116 1117 // Copy over any phi, debug or lifetime instruction. 1118 BB->getTerminator()->eraseFromParent(); 1119 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1120 BB->getInstList()); 1121 } else { 1122 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1123 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1124 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1125 PN->eraseFromParent(); 1126 } 1127 } 1128 1129 // If the unconditional branch we replaced contains llvm.loop metadata, we 1130 // add the metadata to the branch instructions in the predecessors. 1131 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1132 Instruction *TI = BB->getTerminator(); 1133 if (TI) 1134 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1135 for (BasicBlock *Pred : predecessors(BB)) 1136 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1137 1138 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1139 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1140 // into Succ and mark them dangling. This should allow the counts inference a 1141 // chance to get a more reasonable weight for BB. 1142 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1143 1144 // Everything that jumped to BB now goes to Succ. 1145 BB->replaceAllUsesWith(Succ); 1146 if (!Succ->hasName()) Succ->takeName(BB); 1147 1148 // Clear the successor list of BB to match updates applying to DTU later. 1149 if (BB->getTerminator()) 1150 BB->getInstList().pop_back(); 1151 new UnreachableInst(BB->getContext(), BB); 1152 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1153 "applying corresponding DTU updates."); 1154 1155 if (DTU) { 1156 DTU->applyUpdates(Updates); 1157 DTU->deleteBB(BB); 1158 } else { 1159 BB->eraseFromParent(); // Delete the old basic block. 1160 } 1161 return true; 1162 } 1163 1164 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1165 // This implementation doesn't currently consider undef operands 1166 // specially. Theoretically, two phis which are identical except for 1167 // one having an undef where the other doesn't could be collapsed. 1168 1169 bool Changed = false; 1170 1171 // Examine each PHI. 1172 // Note that increment of I must *NOT* be in the iteration_expression, since 1173 // we don't want to immediately advance when we restart from the beginning. 1174 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1175 ++I; 1176 // Is there an identical PHI node in this basic block? 1177 // Note that we only look in the upper square's triangle, 1178 // we already checked that the lower triangle PHI's aren't identical. 1179 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1180 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1181 continue; 1182 // A duplicate. Replace this PHI with the base PHI. 1183 ++NumPHICSEs; 1184 DuplicatePN->replaceAllUsesWith(PN); 1185 DuplicatePN->eraseFromParent(); 1186 Changed = true; 1187 1188 // The RAUW can change PHIs that we already visited. 1189 I = BB->begin(); 1190 break; // Start over from the beginning. 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1197 // This implementation doesn't currently consider undef operands 1198 // specially. Theoretically, two phis which are identical except for 1199 // one having an undef where the other doesn't could be collapsed. 1200 1201 struct PHIDenseMapInfo { 1202 static PHINode *getEmptyKey() { 1203 return DenseMapInfo<PHINode *>::getEmptyKey(); 1204 } 1205 1206 static PHINode *getTombstoneKey() { 1207 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1208 } 1209 1210 static bool isSentinel(PHINode *PN) { 1211 return PN == getEmptyKey() || PN == getTombstoneKey(); 1212 } 1213 1214 // WARNING: this logic must be kept in sync with 1215 // Instruction::isIdenticalToWhenDefined()! 1216 static unsigned getHashValueImpl(PHINode *PN) { 1217 // Compute a hash value on the operands. Instcombine will likely have 1218 // sorted them, which helps expose duplicates, but we have to check all 1219 // the operands to be safe in case instcombine hasn't run. 1220 return static_cast<unsigned>(hash_combine( 1221 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1222 hash_combine_range(PN->block_begin(), PN->block_end()))); 1223 } 1224 1225 static unsigned getHashValue(PHINode *PN) { 1226 #ifndef NDEBUG 1227 // If -phicse-debug-hash was specified, return a constant -- this 1228 // will force all hashing to collide, so we'll exhaustively search 1229 // the table for a match, and the assertion in isEqual will fire if 1230 // there's a bug causing equal keys to hash differently. 1231 if (PHICSEDebugHash) 1232 return 0; 1233 #endif 1234 return getHashValueImpl(PN); 1235 } 1236 1237 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1238 if (isSentinel(LHS) || isSentinel(RHS)) 1239 return LHS == RHS; 1240 return LHS->isIdenticalTo(RHS); 1241 } 1242 1243 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1244 // These comparisons are nontrivial, so assert that equality implies 1245 // hash equality (DenseMap demands this as an invariant). 1246 bool Result = isEqualImpl(LHS, RHS); 1247 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1248 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1249 return Result; 1250 } 1251 }; 1252 1253 // Set of unique PHINodes. 1254 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1255 PHISet.reserve(4 * PHICSENumPHISmallSize); 1256 1257 // Examine each PHI. 1258 bool Changed = false; 1259 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1260 auto Inserted = PHISet.insert(PN); 1261 if (!Inserted.second) { 1262 // A duplicate. Replace this PHI with its duplicate. 1263 ++NumPHICSEs; 1264 PN->replaceAllUsesWith(*Inserted.first); 1265 PN->eraseFromParent(); 1266 Changed = true; 1267 1268 // The RAUW can change PHIs that we already visited. Start over from the 1269 // beginning. 1270 PHISet.clear(); 1271 I = BB->begin(); 1272 } 1273 } 1274 1275 return Changed; 1276 } 1277 1278 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1279 if ( 1280 #ifndef NDEBUG 1281 !PHICSEDebugHash && 1282 #endif 1283 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1284 return EliminateDuplicatePHINodesNaiveImpl(BB); 1285 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1286 } 1287 1288 /// If the specified pointer points to an object that we control, try to modify 1289 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1290 /// the value after the operation, which may be lower than PrefAlign. 1291 /// 1292 /// Increating value alignment isn't often possible though. If alignment is 1293 /// important, a more reliable approach is to simply align all global variables 1294 /// and allocation instructions to their preferred alignment from the beginning. 1295 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1296 const DataLayout &DL) { 1297 V = V->stripPointerCasts(); 1298 1299 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1300 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1301 // than the current alignment, as the known bits calculation should have 1302 // already taken it into account. However, this is not always the case, 1303 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1304 // doesn't. 1305 Align CurrentAlign = AI->getAlign(); 1306 if (PrefAlign <= CurrentAlign) 1307 return CurrentAlign; 1308 1309 // If the preferred alignment is greater than the natural stack alignment 1310 // then don't round up. This avoids dynamic stack realignment. 1311 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1312 return CurrentAlign; 1313 AI->setAlignment(PrefAlign); 1314 return PrefAlign; 1315 } 1316 1317 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1318 // TODO: as above, this shouldn't be necessary. 1319 Align CurrentAlign = GO->getPointerAlignment(DL); 1320 if (PrefAlign <= CurrentAlign) 1321 return CurrentAlign; 1322 1323 // If there is a large requested alignment and we can, bump up the alignment 1324 // of the global. If the memory we set aside for the global may not be the 1325 // memory used by the final program then it is impossible for us to reliably 1326 // enforce the preferred alignment. 1327 if (!GO->canIncreaseAlignment()) 1328 return CurrentAlign; 1329 1330 GO->setAlignment(PrefAlign); 1331 return PrefAlign; 1332 } 1333 1334 return Align(1); 1335 } 1336 1337 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1338 const DataLayout &DL, 1339 const Instruction *CxtI, 1340 AssumptionCache *AC, 1341 const DominatorTree *DT) { 1342 assert(V->getType()->isPointerTy() && 1343 "getOrEnforceKnownAlignment expects a pointer!"); 1344 1345 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1346 unsigned TrailZ = Known.countMinTrailingZeros(); 1347 1348 // Avoid trouble with ridiculously large TrailZ values, such as 1349 // those computed from a null pointer. 1350 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1351 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1352 1353 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1354 1355 if (PrefAlign && *PrefAlign > Alignment) 1356 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1357 1358 // We don't need to make any adjustment. 1359 return Alignment; 1360 } 1361 1362 ///===---------------------------------------------------------------------===// 1363 /// Dbg Intrinsic utilities 1364 /// 1365 1366 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1367 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1368 DIExpression *DIExpr, 1369 PHINode *APN) { 1370 // Since we can't guarantee that the original dbg.declare instrinsic 1371 // is removed by LowerDbgDeclare(), we need to make sure that we are 1372 // not inserting the same dbg.value intrinsic over and over. 1373 SmallVector<DbgValueInst *, 1> DbgValues; 1374 findDbgValues(DbgValues, APN); 1375 for (auto *DVI : DbgValues) { 1376 assert(is_contained(DVI->getValues(), APN)); 1377 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1378 return true; 1379 } 1380 return false; 1381 } 1382 1383 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1384 /// (or fragment of the variable) described by \p DII. 1385 /// 1386 /// This is primarily intended as a helper for the different 1387 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1388 /// converted describes an alloca'd variable, so we need to use the 1389 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1390 /// identified as covering an n-bit fragment, if the store size of i1 is at 1391 /// least n bits. 1392 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1393 const DataLayout &DL = DII->getModule()->getDataLayout(); 1394 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1395 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1396 assert(!ValueSize.isScalable() && 1397 "Fragments don't work on scalable types."); 1398 return ValueSize.getFixedSize() >= *FragmentSize; 1399 } 1400 // We can't always calculate the size of the DI variable (e.g. if it is a 1401 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1402 // intead. 1403 if (DII->isAddressOfVariable()) { 1404 // DII should have exactly 1 location when it is an address. 1405 assert(DII->getNumVariableLocationOps() == 1 && 1406 "address of variable must have exactly 1 location operand."); 1407 if (auto *AI = 1408 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1409 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1410 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1411 "Both sizes should agree on the scalable flag."); 1412 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1413 } 1414 } 1415 } 1416 // Could not determine size of variable. Conservatively return false. 1417 return false; 1418 } 1419 1420 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1421 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1422 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1423 /// case this DebugLoc leaks into any adjacent instructions. 1424 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1425 // Original dbg.declare must have a location. 1426 DebugLoc DeclareLoc = DII->getDebugLoc(); 1427 MDNode *Scope = DeclareLoc.getScope(); 1428 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1429 // Produce an unknown location with the correct scope / inlinedAt fields. 1430 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1431 } 1432 1433 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1434 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1435 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1436 StoreInst *SI, DIBuilder &Builder) { 1437 assert(DII->isAddressOfVariable()); 1438 auto *DIVar = DII->getVariable(); 1439 assert(DIVar && "Missing variable"); 1440 auto *DIExpr = DII->getExpression(); 1441 Value *DV = SI->getValueOperand(); 1442 1443 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1444 1445 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1446 // FIXME: If storing to a part of the variable described by the dbg.declare, 1447 // then we want to insert a dbg.value for the corresponding fragment. 1448 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1449 << *DII << '\n'); 1450 // For now, when there is a store to parts of the variable (but we do not 1451 // know which part) we insert an dbg.value instrinsic to indicate that we 1452 // know nothing about the variable's content. 1453 DV = UndefValue::get(DV->getType()); 1454 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1455 return; 1456 } 1457 1458 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1459 } 1460 1461 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1462 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1463 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1464 LoadInst *LI, DIBuilder &Builder) { 1465 auto *DIVar = DII->getVariable(); 1466 auto *DIExpr = DII->getExpression(); 1467 assert(DIVar && "Missing variable"); 1468 1469 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1470 // FIXME: If only referring to a part of the variable described by the 1471 // dbg.declare, then we want to insert a dbg.value for the corresponding 1472 // fragment. 1473 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1474 << *DII << '\n'); 1475 return; 1476 } 1477 1478 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1479 1480 // We are now tracking the loaded value instead of the address. In the 1481 // future if multi-location support is added to the IR, it might be 1482 // preferable to keep tracking both the loaded value and the original 1483 // address in case the alloca can not be elided. 1484 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1485 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1486 DbgValue->insertAfter(LI); 1487 } 1488 1489 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1490 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1491 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1492 PHINode *APN, DIBuilder &Builder) { 1493 auto *DIVar = DII->getVariable(); 1494 auto *DIExpr = DII->getExpression(); 1495 assert(DIVar && "Missing variable"); 1496 1497 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1498 return; 1499 1500 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1501 // FIXME: If only referring to a part of the variable described by the 1502 // dbg.declare, then we want to insert a dbg.value for the corresponding 1503 // fragment. 1504 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1505 << *DII << '\n'); 1506 return; 1507 } 1508 1509 BasicBlock *BB = APN->getParent(); 1510 auto InsertionPt = BB->getFirstInsertionPt(); 1511 1512 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1513 1514 // The block may be a catchswitch block, which does not have a valid 1515 // insertion point. 1516 // FIXME: Insert dbg.value markers in the successors when appropriate. 1517 if (InsertionPt != BB->end()) 1518 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1519 } 1520 1521 /// Determine whether this alloca is either a VLA or an array. 1522 static bool isArray(AllocaInst *AI) { 1523 return AI->isArrayAllocation() || 1524 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1525 } 1526 1527 /// Determine whether this alloca is a structure. 1528 static bool isStructure(AllocaInst *AI) { 1529 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1530 } 1531 1532 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1533 /// of llvm.dbg.value intrinsics. 1534 bool llvm::LowerDbgDeclare(Function &F) { 1535 bool Changed = false; 1536 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1537 SmallVector<DbgDeclareInst *, 4> Dbgs; 1538 for (auto &FI : F) 1539 for (Instruction &BI : FI) 1540 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1541 Dbgs.push_back(DDI); 1542 1543 if (Dbgs.empty()) 1544 return Changed; 1545 1546 for (auto &I : Dbgs) { 1547 DbgDeclareInst *DDI = I; 1548 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1549 // If this is an alloca for a scalar variable, insert a dbg.value 1550 // at each load and store to the alloca and erase the dbg.declare. 1551 // The dbg.values allow tracking a variable even if it is not 1552 // stored on the stack, while the dbg.declare can only describe 1553 // the stack slot (and at a lexical-scope granularity). Later 1554 // passes will attempt to elide the stack slot. 1555 if (!AI || isArray(AI) || isStructure(AI)) 1556 continue; 1557 1558 // A volatile load/store means that the alloca can't be elided anyway. 1559 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1560 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1561 return LI->isVolatile(); 1562 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1563 return SI->isVolatile(); 1564 return false; 1565 })) 1566 continue; 1567 1568 SmallVector<const Value *, 8> WorkList; 1569 WorkList.push_back(AI); 1570 while (!WorkList.empty()) { 1571 const Value *V = WorkList.pop_back_val(); 1572 for (auto &AIUse : V->uses()) { 1573 User *U = AIUse.getUser(); 1574 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1575 if (AIUse.getOperandNo() == 1) 1576 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1577 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1578 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1579 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1580 // This is a call by-value or some other instruction that takes a 1581 // pointer to the variable. Insert a *value* intrinsic that describes 1582 // the variable by dereferencing the alloca. 1583 if (!CI->isLifetimeStartOrEnd()) { 1584 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1585 auto *DerefExpr = 1586 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1587 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1588 NewLoc, CI); 1589 } 1590 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1591 if (BI->getType()->isPointerTy()) 1592 WorkList.push_back(BI); 1593 } 1594 } 1595 } 1596 DDI->eraseFromParent(); 1597 Changed = true; 1598 } 1599 1600 if (Changed) 1601 for (BasicBlock &BB : F) 1602 RemoveRedundantDbgInstrs(&BB); 1603 1604 return Changed; 1605 } 1606 1607 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1608 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1609 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1610 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1611 if (InsertedPHIs.size() == 0) 1612 return; 1613 1614 // Map existing PHI nodes to their dbg.values. 1615 ValueToValueMapTy DbgValueMap; 1616 for (auto &I : *BB) { 1617 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1618 for (Value *V : DbgII->location_ops()) 1619 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1620 DbgValueMap.insert({Loc, DbgII}); 1621 } 1622 } 1623 if (DbgValueMap.size() == 0) 1624 return; 1625 1626 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1627 // so that if a dbg.value is being rewritten to use more than one of the 1628 // inserted PHIs in the same destination BB, we can update the same dbg.value 1629 // with all the new PHIs instead of creating one copy for each. 1630 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1631 DbgVariableIntrinsic *> 1632 NewDbgValueMap; 1633 // Then iterate through the new PHIs and look to see if they use one of the 1634 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1635 // propagate the info through the new PHI. If we use more than one new PHI in 1636 // a single destination BB with the same old dbg.value, merge the updates so 1637 // that we get a single new dbg.value with all the new PHIs. 1638 for (auto PHI : InsertedPHIs) { 1639 BasicBlock *Parent = PHI->getParent(); 1640 // Avoid inserting an intrinsic into an EH block. 1641 if (Parent->getFirstNonPHI()->isEHPad()) 1642 continue; 1643 for (auto VI : PHI->operand_values()) { 1644 auto V = DbgValueMap.find(VI); 1645 if (V != DbgValueMap.end()) { 1646 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1647 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1648 if (NewDI == NewDbgValueMap.end()) { 1649 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1650 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1651 } 1652 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1653 // If PHI contains VI as an operand more than once, we may 1654 // replaced it in NewDbgII; confirm that it is present. 1655 if (is_contained(NewDbgII->location_ops(), VI)) 1656 NewDbgII->replaceVariableLocationOp(VI, PHI); 1657 } 1658 } 1659 } 1660 // Insert thew new dbg.values into their destination blocks. 1661 for (auto DI : NewDbgValueMap) { 1662 BasicBlock *Parent = DI.first.first; 1663 auto *NewDbgII = DI.second; 1664 auto InsertionPt = Parent->getFirstInsertionPt(); 1665 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1666 NewDbgII->insertBefore(&*InsertionPt); 1667 } 1668 } 1669 1670 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1671 DIBuilder &Builder, uint8_t DIExprFlags, 1672 int Offset) { 1673 auto DbgAddrs = FindDbgAddrUses(Address); 1674 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1675 DebugLoc Loc = DII->getDebugLoc(); 1676 auto *DIVar = DII->getVariable(); 1677 auto *DIExpr = DII->getExpression(); 1678 assert(DIVar && "Missing variable"); 1679 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1680 // Insert llvm.dbg.declare immediately before DII, and remove old 1681 // llvm.dbg.declare. 1682 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1683 DII->eraseFromParent(); 1684 } 1685 return !DbgAddrs.empty(); 1686 } 1687 1688 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1689 DIBuilder &Builder, int Offset) { 1690 DebugLoc Loc = DVI->getDebugLoc(); 1691 auto *DIVar = DVI->getVariable(); 1692 auto *DIExpr = DVI->getExpression(); 1693 assert(DIVar && "Missing variable"); 1694 1695 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1696 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1697 // it and give up. 1698 if (!DIExpr || DIExpr->getNumElements() < 1 || 1699 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1700 return; 1701 1702 // Insert the offset before the first deref. 1703 // We could just change the offset argument of dbg.value, but it's unsigned... 1704 if (Offset) 1705 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1706 1707 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1708 DVI->eraseFromParent(); 1709 } 1710 1711 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1712 DIBuilder &Builder, int Offset) { 1713 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1714 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1715 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1716 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1717 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1718 } 1719 1720 /// Where possible to salvage debug information for \p I do so 1721 /// and return True. If not possible mark undef and return False. 1722 void llvm::salvageDebugInfo(Instruction &I) { 1723 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1724 findDbgUsers(DbgUsers, &I); 1725 salvageDebugInfoForDbgValues(I, DbgUsers); 1726 } 1727 1728 void llvm::salvageDebugInfoForDbgValues( 1729 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1730 bool Salvaged = false; 1731 1732 for (auto *DII : DbgUsers) { 1733 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1734 // are implicitly pointing out the value as a DWARF memory location 1735 // description. 1736 bool StackValue = isa<DbgValueInst>(DII); 1737 auto DIILocation = DII->location_ops(); 1738 assert( 1739 is_contained(DIILocation, &I) && 1740 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1741 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1742 SmallVector<Value *, 4> AdditionalValues; 1743 DIExpression *SalvagedExpr = salvageDebugInfoImpl( 1744 I, DII->getExpression(), StackValue, LocNo, AdditionalValues); 1745 1746 // salvageDebugInfoImpl should fail on examining the first element of 1747 // DbgUsers, or none of them. 1748 if (!SalvagedExpr) 1749 break; 1750 1751 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1752 if (AdditionalValues.empty()) { 1753 DII->setExpression(SalvagedExpr); 1754 } else if (isa<DbgValueInst>(DII)) { 1755 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1756 } else { 1757 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1758 // currently only valid for stack value expressions. 1759 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1760 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1761 } 1762 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1763 Salvaged = true; 1764 } 1765 1766 if (Salvaged) 1767 return; 1768 1769 for (auto *DII : DbgUsers) { 1770 Value *Undef = UndefValue::get(I.getType()); 1771 DII->replaceVariableLocationOp(&I, Undef); 1772 } 1773 } 1774 1775 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1776 uint64_t CurrentLocOps, 1777 SmallVectorImpl<uint64_t> &Opcodes, 1778 SmallVectorImpl<Value *> &AdditionalValues) { 1779 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1780 // Rewrite a GEP into a DIExpression. 1781 SmallDenseMap<Value *, APInt, 8> VariableOffsets; 1782 APInt ConstantOffset(BitWidth, 0); 1783 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1784 return false; 1785 if (!VariableOffsets.empty() && !CurrentLocOps) { 1786 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1787 CurrentLocOps = 1; 1788 } 1789 for (auto Offset : VariableOffsets) { 1790 AdditionalValues.push_back(Offset.first); 1791 assert(Offset.second.isStrictlyPositive() && 1792 "Expected strictly positive multiplier for offset."); 1793 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1794 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1795 dwarf::DW_OP_plus}); 1796 } 1797 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1798 return true; 1799 } 1800 1801 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1802 switch (Opcode) { 1803 case Instruction::Add: 1804 return dwarf::DW_OP_plus; 1805 case Instruction::Sub: 1806 return dwarf::DW_OP_minus; 1807 case Instruction::Mul: 1808 return dwarf::DW_OP_mul; 1809 case Instruction::SDiv: 1810 return dwarf::DW_OP_div; 1811 case Instruction::SRem: 1812 return dwarf::DW_OP_mod; 1813 case Instruction::Or: 1814 return dwarf::DW_OP_or; 1815 case Instruction::And: 1816 return dwarf::DW_OP_and; 1817 case Instruction::Xor: 1818 return dwarf::DW_OP_xor; 1819 case Instruction::Shl: 1820 return dwarf::DW_OP_shl; 1821 case Instruction::LShr: 1822 return dwarf::DW_OP_shr; 1823 case Instruction::AShr: 1824 return dwarf::DW_OP_shra; 1825 default: 1826 // TODO: Salvage from each kind of binop we know about. 1827 return 0; 1828 } 1829 } 1830 1831 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1832 SmallVectorImpl<uint64_t> &Opcodes, 1833 SmallVectorImpl<Value *> &AdditionalValues) { 1834 // Handle binary operations with constant integer operands as a special case. 1835 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1836 // Values wider than 64 bits cannot be represented within a DIExpression. 1837 if (ConstInt && ConstInt->getBitWidth() > 64) 1838 return false; 1839 1840 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1841 // Push any Constant Int operand onto the expression stack. 1842 if (ConstInt) { 1843 uint64_t Val = ConstInt->getSExtValue(); 1844 // Add or Sub Instructions with a constant operand can potentially be 1845 // simplified. 1846 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1847 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1848 DIExpression::appendOffset(Opcodes, Offset); 1849 return true; 1850 } 1851 Opcodes.append({dwarf::DW_OP_constu, Val}); 1852 } else { 1853 if (!CurrentLocOps) { 1854 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1855 CurrentLocOps = 1; 1856 } 1857 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1858 AdditionalValues.push_back(BI->getOperand(1)); 1859 } 1860 1861 // Add salvaged binary operator to expression stack, if it has a valid 1862 // representation in a DIExpression. 1863 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1864 if (!DwarfBinOp) 1865 return false; 1866 Opcodes.push_back(DwarfBinOp); 1867 1868 return true; 1869 } 1870 1871 DIExpression * 1872 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr, 1873 bool WithStackValue, unsigned LocNo, 1874 SmallVectorImpl<Value *> &AdditionalValues) { 1875 uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands(); 1876 auto &M = *I.getModule(); 1877 auto &DL = M.getDataLayout(); 1878 1879 // Apply a vector of opcodes to the source DIExpression. 1880 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1881 DIExpression *DIExpr = SrcDIExpr; 1882 if (!Ops.empty()) { 1883 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1884 } 1885 return DIExpr; 1886 }; 1887 1888 // initializer-list helper for applying operators to the source DIExpression. 1889 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) { 1890 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1891 return doSalvage(Ops); 1892 }; 1893 1894 if (auto *CI = dyn_cast<CastInst>(&I)) { 1895 // No-op casts are irrelevant for debug info. 1896 if (CI->isNoopCast(DL)) 1897 return SrcDIExpr; 1898 1899 Type *Type = CI->getType(); 1900 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1901 if (Type->isVectorTy() || 1902 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1903 return nullptr; 1904 1905 Value *FromValue = CI->getOperand(0); 1906 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1907 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1908 1909 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1910 isa<SExtInst>(&I))); 1911 } 1912 1913 SmallVector<uint64_t, 8> Ops; 1914 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1915 if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues)) 1916 return doSalvage(Ops); 1917 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1918 if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues)) 1919 return doSalvage(Ops); 1920 } 1921 // *Not* to do: we should not attempt to salvage load instructions, 1922 // because the validity and lifetime of a dbg.value containing 1923 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1924 return nullptr; 1925 } 1926 1927 /// A replacement for a dbg.value expression. 1928 using DbgValReplacement = Optional<DIExpression *>; 1929 1930 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1931 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1932 /// changes are made. 1933 static bool rewriteDebugUsers( 1934 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1935 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1936 // Find debug users of From. 1937 SmallVector<DbgVariableIntrinsic *, 1> Users; 1938 findDbgUsers(Users, &From); 1939 if (Users.empty()) 1940 return false; 1941 1942 // Prevent use-before-def of To. 1943 bool Changed = false; 1944 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1945 if (isa<Instruction>(&To)) { 1946 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1947 1948 for (auto *DII : Users) { 1949 // It's common to see a debug user between From and DomPoint. Move it 1950 // after DomPoint to preserve the variable update without any reordering. 1951 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1952 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1953 DII->moveAfter(&DomPoint); 1954 Changed = true; 1955 1956 // Users which otherwise aren't dominated by the replacement value must 1957 // be salvaged or deleted. 1958 } else if (!DT.dominates(&DomPoint, DII)) { 1959 UndefOrSalvage.insert(DII); 1960 } 1961 } 1962 } 1963 1964 // Update debug users without use-before-def risk. 1965 for (auto *DII : Users) { 1966 if (UndefOrSalvage.count(DII)) 1967 continue; 1968 1969 DbgValReplacement DVR = RewriteExpr(*DII); 1970 if (!DVR) 1971 continue; 1972 1973 DII->replaceVariableLocationOp(&From, &To); 1974 DII->setExpression(*DVR); 1975 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1976 Changed = true; 1977 } 1978 1979 if (!UndefOrSalvage.empty()) { 1980 // Try to salvage the remaining debug users. 1981 salvageDebugInfo(From); 1982 Changed = true; 1983 } 1984 1985 return Changed; 1986 } 1987 1988 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1989 /// losslessly preserve the bits and semantics of the value. This predicate is 1990 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1991 /// 1992 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1993 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1994 /// and also does not allow lossless pointer <-> integer conversions. 1995 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1996 Type *ToTy) { 1997 // Trivially compatible types. 1998 if (FromTy == ToTy) 1999 return true; 2000 2001 // Handle compatible pointer <-> integer conversions. 2002 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2003 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2004 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2005 !DL.isNonIntegralPointerType(ToTy); 2006 return SameSize && LosslessConversion; 2007 } 2008 2009 // TODO: This is not exhaustive. 2010 return false; 2011 } 2012 2013 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2014 Instruction &DomPoint, DominatorTree &DT) { 2015 // Exit early if From has no debug users. 2016 if (!From.isUsedByMetadata()) 2017 return false; 2018 2019 assert(&From != &To && "Can't replace something with itself"); 2020 2021 Type *FromTy = From.getType(); 2022 Type *ToTy = To.getType(); 2023 2024 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2025 return DII.getExpression(); 2026 }; 2027 2028 // Handle no-op conversions. 2029 Module &M = *From.getModule(); 2030 const DataLayout &DL = M.getDataLayout(); 2031 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2032 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2033 2034 // Handle integer-to-integer widening and narrowing. 2035 // FIXME: Use DW_OP_convert when it's available everywhere. 2036 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2037 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2038 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2039 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2040 2041 // When the width of the result grows, assume that a debugger will only 2042 // access the low `FromBits` bits when inspecting the source variable. 2043 if (FromBits < ToBits) 2044 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2045 2046 // The width of the result has shrunk. Use sign/zero extension to describe 2047 // the source variable's high bits. 2048 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2049 DILocalVariable *Var = DII.getVariable(); 2050 2051 // Without knowing signedness, sign/zero extension isn't possible. 2052 auto Signedness = Var->getSignedness(); 2053 if (!Signedness) 2054 return None; 2055 2056 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2057 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2058 Signed); 2059 }; 2060 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2061 } 2062 2063 // TODO: Floating-point conversions, vectors. 2064 return false; 2065 } 2066 2067 std::pair<unsigned, unsigned> 2068 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2069 unsigned NumDeadInst = 0; 2070 unsigned NumDeadDbgInst = 0; 2071 // Delete the instructions backwards, as it has a reduced likelihood of 2072 // having to update as many def-use and use-def chains. 2073 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2074 while (EndInst != &BB->front()) { 2075 // Delete the next to last instruction. 2076 Instruction *Inst = &*--EndInst->getIterator(); 2077 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2078 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2079 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2080 EndInst = Inst; 2081 continue; 2082 } 2083 if (isa<DbgInfoIntrinsic>(Inst)) 2084 ++NumDeadDbgInst; 2085 else 2086 ++NumDeadInst; 2087 Inst->eraseFromParent(); 2088 } 2089 return {NumDeadInst, NumDeadDbgInst}; 2090 } 2091 2092 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2093 bool PreserveLCSSA, DomTreeUpdater *DTU, 2094 MemorySSAUpdater *MSSAU) { 2095 BasicBlock *BB = I->getParent(); 2096 2097 if (MSSAU) 2098 MSSAU->changeToUnreachable(I); 2099 2100 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2101 2102 // Loop over all of the successors, removing BB's entry from any PHI 2103 // nodes. 2104 for (BasicBlock *Successor : successors(BB)) { 2105 Successor->removePredecessor(BB, PreserveLCSSA); 2106 if (DTU) 2107 UniqueSuccessors.insert(Successor); 2108 } 2109 // Insert a call to llvm.trap right before this. This turns the undefined 2110 // behavior into a hard fail instead of falling through into random code. 2111 if (UseLLVMTrap) { 2112 Function *TrapFn = 2113 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2114 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2115 CallTrap->setDebugLoc(I->getDebugLoc()); 2116 } 2117 auto *UI = new UnreachableInst(I->getContext(), I); 2118 UI->setDebugLoc(I->getDebugLoc()); 2119 2120 // All instructions after this are dead. 2121 unsigned NumInstrsRemoved = 0; 2122 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2123 while (BBI != BBE) { 2124 if (!BBI->use_empty()) 2125 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2126 BB->getInstList().erase(BBI++); 2127 ++NumInstrsRemoved; 2128 } 2129 if (DTU) { 2130 SmallVector<DominatorTree::UpdateType, 8> Updates; 2131 Updates.reserve(UniqueSuccessors.size()); 2132 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2133 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2134 DTU->applyUpdates(Updates); 2135 } 2136 return NumInstrsRemoved; 2137 } 2138 2139 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2140 SmallVector<Value *, 8> Args(II->args()); 2141 SmallVector<OperandBundleDef, 1> OpBundles; 2142 II->getOperandBundlesAsDefs(OpBundles); 2143 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2144 II->getCalledOperand(), Args, OpBundles); 2145 NewCall->setCallingConv(II->getCallingConv()); 2146 NewCall->setAttributes(II->getAttributes()); 2147 NewCall->setDebugLoc(II->getDebugLoc()); 2148 NewCall->copyMetadata(*II); 2149 2150 // If the invoke had profile metadata, try converting them for CallInst. 2151 uint64_t TotalWeight; 2152 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2153 // Set the total weight if it fits into i32, otherwise reset. 2154 MDBuilder MDB(NewCall->getContext()); 2155 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2156 ? nullptr 2157 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2158 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2159 } 2160 2161 return NewCall; 2162 } 2163 2164 /// changeToCall - Convert the specified invoke into a normal call. 2165 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2166 CallInst *NewCall = createCallMatchingInvoke(II); 2167 NewCall->takeName(II); 2168 NewCall->insertBefore(II); 2169 II->replaceAllUsesWith(NewCall); 2170 2171 // Follow the call by a branch to the normal destination. 2172 BasicBlock *NormalDestBB = II->getNormalDest(); 2173 BranchInst::Create(NormalDestBB, II); 2174 2175 // Update PHI nodes in the unwind destination 2176 BasicBlock *BB = II->getParent(); 2177 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2178 UnwindDestBB->removePredecessor(BB); 2179 II->eraseFromParent(); 2180 if (DTU) 2181 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2182 } 2183 2184 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2185 BasicBlock *UnwindEdge, 2186 DomTreeUpdater *DTU) { 2187 BasicBlock *BB = CI->getParent(); 2188 2189 // Convert this function call into an invoke instruction. First, split the 2190 // basic block. 2191 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2192 CI->getName() + ".noexc"); 2193 2194 // Delete the unconditional branch inserted by SplitBlock 2195 BB->getInstList().pop_back(); 2196 2197 // Create the new invoke instruction. 2198 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2199 SmallVector<OperandBundleDef, 1> OpBundles; 2200 2201 CI->getOperandBundlesAsDefs(OpBundles); 2202 2203 // Note: we're round tripping operand bundles through memory here, and that 2204 // can potentially be avoided with a cleverer API design that we do not have 2205 // as of this time. 2206 2207 InvokeInst *II = 2208 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2209 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2210 II->setDebugLoc(CI->getDebugLoc()); 2211 II->setCallingConv(CI->getCallingConv()); 2212 II->setAttributes(CI->getAttributes()); 2213 2214 if (DTU) 2215 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2216 2217 // Make sure that anything using the call now uses the invoke! This also 2218 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2219 CI->replaceAllUsesWith(II); 2220 2221 // Delete the original call 2222 Split->getInstList().pop_front(); 2223 return Split; 2224 } 2225 2226 static bool markAliveBlocks(Function &F, 2227 SmallPtrSetImpl<BasicBlock *> &Reachable, 2228 DomTreeUpdater *DTU = nullptr) { 2229 SmallVector<BasicBlock*, 128> Worklist; 2230 BasicBlock *BB = &F.front(); 2231 Worklist.push_back(BB); 2232 Reachable.insert(BB); 2233 bool Changed = false; 2234 do { 2235 BB = Worklist.pop_back_val(); 2236 2237 // Do a quick scan of the basic block, turning any obviously unreachable 2238 // instructions into LLVM unreachable insts. The instruction combining pass 2239 // canonicalizes unreachable insts into stores to null or undef. 2240 for (Instruction &I : *BB) { 2241 if (auto *CI = dyn_cast<CallInst>(&I)) { 2242 Value *Callee = CI->getCalledOperand(); 2243 // Handle intrinsic calls. 2244 if (Function *F = dyn_cast<Function>(Callee)) { 2245 auto IntrinsicID = F->getIntrinsicID(); 2246 // Assumptions that are known to be false are equivalent to 2247 // unreachable. Also, if the condition is undefined, then we make the 2248 // choice most beneficial to the optimizer, and choose that to also be 2249 // unreachable. 2250 if (IntrinsicID == Intrinsic::assume) { 2251 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2252 // Don't insert a call to llvm.trap right before the unreachable. 2253 changeToUnreachable(CI, false, false, DTU); 2254 Changed = true; 2255 break; 2256 } 2257 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2258 // A call to the guard intrinsic bails out of the current 2259 // compilation unit if the predicate passed to it is false. If the 2260 // predicate is a constant false, then we know the guard will bail 2261 // out of the current compile unconditionally, so all code following 2262 // it is dead. 2263 // 2264 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2265 // guards to treat `undef` as `false` since a guard on `undef` can 2266 // still be useful for widening. 2267 if (match(CI->getArgOperand(0), m_Zero())) 2268 if (!isa<UnreachableInst>(CI->getNextNode())) { 2269 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2270 false, DTU); 2271 Changed = true; 2272 break; 2273 } 2274 } 2275 } else if ((isa<ConstantPointerNull>(Callee) && 2276 !NullPointerIsDefined(CI->getFunction())) || 2277 isa<UndefValue>(Callee)) { 2278 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2279 Changed = true; 2280 break; 2281 } 2282 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2283 // If we found a call to a no-return function, insert an unreachable 2284 // instruction after it. Make sure there isn't *already* one there 2285 // though. 2286 if (!isa<UnreachableInst>(CI->getNextNode())) { 2287 // Don't insert a call to llvm.trap right before the unreachable. 2288 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2289 Changed = true; 2290 } 2291 break; 2292 } 2293 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2294 // Store to undef and store to null are undefined and used to signal 2295 // that they should be changed to unreachable by passes that can't 2296 // modify the CFG. 2297 2298 // Don't touch volatile stores. 2299 if (SI->isVolatile()) continue; 2300 2301 Value *Ptr = SI->getOperand(1); 2302 2303 if (isa<UndefValue>(Ptr) || 2304 (isa<ConstantPointerNull>(Ptr) && 2305 !NullPointerIsDefined(SI->getFunction(), 2306 SI->getPointerAddressSpace()))) { 2307 changeToUnreachable(SI, true, false, DTU); 2308 Changed = true; 2309 break; 2310 } 2311 } 2312 } 2313 2314 Instruction *Terminator = BB->getTerminator(); 2315 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2316 // Turn invokes that call 'nounwind' functions into ordinary calls. 2317 Value *Callee = II->getCalledOperand(); 2318 if ((isa<ConstantPointerNull>(Callee) && 2319 !NullPointerIsDefined(BB->getParent())) || 2320 isa<UndefValue>(Callee)) { 2321 changeToUnreachable(II, true, false, DTU); 2322 Changed = true; 2323 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2324 if (II->use_empty() && II->onlyReadsMemory()) { 2325 // jump to the normal destination branch. 2326 BasicBlock *NormalDestBB = II->getNormalDest(); 2327 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2328 BranchInst::Create(NormalDestBB, II); 2329 UnwindDestBB->removePredecessor(II->getParent()); 2330 II->eraseFromParent(); 2331 if (DTU) 2332 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2333 } else 2334 changeToCall(II, DTU); 2335 Changed = true; 2336 } 2337 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2338 // Remove catchpads which cannot be reached. 2339 struct CatchPadDenseMapInfo { 2340 static CatchPadInst *getEmptyKey() { 2341 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2342 } 2343 2344 static CatchPadInst *getTombstoneKey() { 2345 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2346 } 2347 2348 static unsigned getHashValue(CatchPadInst *CatchPad) { 2349 return static_cast<unsigned>(hash_combine_range( 2350 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2351 } 2352 2353 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2354 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2355 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2356 return LHS == RHS; 2357 return LHS->isIdenticalTo(RHS); 2358 } 2359 }; 2360 2361 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2362 // Set of unique CatchPads. 2363 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2364 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2365 HandlerSet; 2366 detail::DenseSetEmpty Empty; 2367 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2368 E = CatchSwitch->handler_end(); 2369 I != E; ++I) { 2370 BasicBlock *HandlerBB = *I; 2371 if (DTU) 2372 ++NumPerSuccessorCases[HandlerBB]; 2373 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2374 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2375 if (DTU) 2376 --NumPerSuccessorCases[HandlerBB]; 2377 CatchSwitch->removeHandler(I); 2378 --I; 2379 --E; 2380 Changed = true; 2381 } 2382 } 2383 if (DTU) { 2384 std::vector<DominatorTree::UpdateType> Updates; 2385 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2386 if (I.second == 0) 2387 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2388 DTU->applyUpdates(Updates); 2389 } 2390 } 2391 2392 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2393 for (BasicBlock *Successor : successors(BB)) 2394 if (Reachable.insert(Successor).second) 2395 Worklist.push_back(Successor); 2396 } while (!Worklist.empty()); 2397 return Changed; 2398 } 2399 2400 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2401 Instruction *TI = BB->getTerminator(); 2402 2403 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2404 changeToCall(II, DTU); 2405 return; 2406 } 2407 2408 Instruction *NewTI; 2409 BasicBlock *UnwindDest; 2410 2411 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2412 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2413 UnwindDest = CRI->getUnwindDest(); 2414 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2415 auto *NewCatchSwitch = CatchSwitchInst::Create( 2416 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2417 CatchSwitch->getName(), CatchSwitch); 2418 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2419 NewCatchSwitch->addHandler(PadBB); 2420 2421 NewTI = NewCatchSwitch; 2422 UnwindDest = CatchSwitch->getUnwindDest(); 2423 } else { 2424 llvm_unreachable("Could not find unwind successor"); 2425 } 2426 2427 NewTI->takeName(TI); 2428 NewTI->setDebugLoc(TI->getDebugLoc()); 2429 UnwindDest->removePredecessor(BB); 2430 TI->replaceAllUsesWith(NewTI); 2431 TI->eraseFromParent(); 2432 if (DTU) 2433 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2434 } 2435 2436 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2437 /// if they are in a dead cycle. Return true if a change was made, false 2438 /// otherwise. 2439 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2440 MemorySSAUpdater *MSSAU) { 2441 SmallPtrSet<BasicBlock *, 16> Reachable; 2442 bool Changed = markAliveBlocks(F, Reachable, DTU); 2443 2444 // If there are unreachable blocks in the CFG... 2445 if (Reachable.size() == F.size()) 2446 return Changed; 2447 2448 assert(Reachable.size() < F.size()); 2449 2450 // Are there any blocks left to actually delete? 2451 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2452 for (BasicBlock &BB : F) { 2453 // Skip reachable basic blocks 2454 if (Reachable.count(&BB)) 2455 continue; 2456 // Skip already-deleted blocks 2457 if (DTU && DTU->isBBPendingDeletion(&BB)) 2458 continue; 2459 BlocksToRemove.insert(&BB); 2460 } 2461 2462 if (BlocksToRemove.empty()) 2463 return Changed; 2464 2465 Changed = true; 2466 NumRemoved += BlocksToRemove.size(); 2467 2468 if (MSSAU) 2469 MSSAU->removeBlocks(BlocksToRemove); 2470 2471 // Loop over all of the basic blocks that are up for removal, dropping all of 2472 // their internal references. Update DTU if available. 2473 std::vector<DominatorTree::UpdateType> Updates; 2474 for (auto *BB : BlocksToRemove) { 2475 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2476 for (BasicBlock *Successor : successors(BB)) { 2477 // Only remove references to BB in reachable successors of BB. 2478 if (Reachable.count(Successor)) 2479 Successor->removePredecessor(BB); 2480 if (DTU) 2481 UniqueSuccessors.insert(Successor); 2482 } 2483 BB->dropAllReferences(); 2484 if (DTU) { 2485 Instruction *TI = BB->getTerminator(); 2486 assert(TI && "Basic block should have a terminator"); 2487 // Terminators like invoke can have users. We have to replace their users, 2488 // before removing them. 2489 if (!TI->use_empty()) 2490 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2491 TI->eraseFromParent(); 2492 new UnreachableInst(BB->getContext(), BB); 2493 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2494 "applying corresponding DTU updates."); 2495 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2496 for (auto *UniqueSuccessor : UniqueSuccessors) 2497 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2498 } 2499 } 2500 2501 if (DTU) { 2502 DTU->applyUpdates(Updates); 2503 for (auto *BB : BlocksToRemove) 2504 DTU->deleteBB(BB); 2505 } else { 2506 for (auto *BB : BlocksToRemove) 2507 BB->eraseFromParent(); 2508 } 2509 2510 return Changed; 2511 } 2512 2513 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2514 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2515 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2516 K->dropUnknownNonDebugMetadata(KnownIDs); 2517 K->getAllMetadataOtherThanDebugLoc(Metadata); 2518 for (const auto &MD : Metadata) { 2519 unsigned Kind = MD.first; 2520 MDNode *JMD = J->getMetadata(Kind); 2521 MDNode *KMD = MD.second; 2522 2523 switch (Kind) { 2524 default: 2525 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2526 break; 2527 case LLVMContext::MD_dbg: 2528 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2529 case LLVMContext::MD_tbaa: 2530 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2531 break; 2532 case LLVMContext::MD_alias_scope: 2533 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2534 break; 2535 case LLVMContext::MD_noalias: 2536 case LLVMContext::MD_mem_parallel_loop_access: 2537 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2538 break; 2539 case LLVMContext::MD_access_group: 2540 K->setMetadata(LLVMContext::MD_access_group, 2541 intersectAccessGroups(K, J)); 2542 break; 2543 case LLVMContext::MD_range: 2544 2545 // If K does move, use most generic range. Otherwise keep the range of 2546 // K. 2547 if (DoesKMove) 2548 // FIXME: If K does move, we should drop the range info and nonnull. 2549 // Currently this function is used with DoesKMove in passes 2550 // doing hoisting/sinking and the current behavior of using the 2551 // most generic range is correct in those cases. 2552 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2553 break; 2554 case LLVMContext::MD_fpmath: 2555 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2556 break; 2557 case LLVMContext::MD_invariant_load: 2558 // Only set the !invariant.load if it is present in both instructions. 2559 K->setMetadata(Kind, JMD); 2560 break; 2561 case LLVMContext::MD_nonnull: 2562 // If K does move, keep nonull if it is present in both instructions. 2563 if (DoesKMove) 2564 K->setMetadata(Kind, JMD); 2565 break; 2566 case LLVMContext::MD_invariant_group: 2567 // Preserve !invariant.group in K. 2568 break; 2569 case LLVMContext::MD_align: 2570 K->setMetadata(Kind, 2571 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2572 break; 2573 case LLVMContext::MD_dereferenceable: 2574 case LLVMContext::MD_dereferenceable_or_null: 2575 K->setMetadata(Kind, 2576 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2577 break; 2578 case LLVMContext::MD_preserve_access_index: 2579 // Preserve !preserve.access.index in K. 2580 break; 2581 } 2582 } 2583 // Set !invariant.group from J if J has it. If both instructions have it 2584 // then we will just pick it from J - even when they are different. 2585 // Also make sure that K is load or store - f.e. combining bitcast with load 2586 // could produce bitcast with invariant.group metadata, which is invalid. 2587 // FIXME: we should try to preserve both invariant.group md if they are 2588 // different, but right now instruction can only have one invariant.group. 2589 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2590 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2591 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2592 } 2593 2594 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2595 bool KDominatesJ) { 2596 unsigned KnownIDs[] = { 2597 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2598 LLVMContext::MD_noalias, LLVMContext::MD_range, 2599 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2600 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2601 LLVMContext::MD_dereferenceable, 2602 LLVMContext::MD_dereferenceable_or_null, 2603 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2604 combineMetadata(K, J, KnownIDs, KDominatesJ); 2605 } 2606 2607 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2608 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2609 Source.getAllMetadata(MD); 2610 MDBuilder MDB(Dest.getContext()); 2611 Type *NewType = Dest.getType(); 2612 const DataLayout &DL = Source.getModule()->getDataLayout(); 2613 for (const auto &MDPair : MD) { 2614 unsigned ID = MDPair.first; 2615 MDNode *N = MDPair.second; 2616 // Note, essentially every kind of metadata should be preserved here! This 2617 // routine is supposed to clone a load instruction changing *only its type*. 2618 // The only metadata it makes sense to drop is metadata which is invalidated 2619 // when the pointer type changes. This should essentially never be the case 2620 // in LLVM, but we explicitly switch over only known metadata to be 2621 // conservatively correct. If you are adding metadata to LLVM which pertains 2622 // to loads, you almost certainly want to add it here. 2623 switch (ID) { 2624 case LLVMContext::MD_dbg: 2625 case LLVMContext::MD_tbaa: 2626 case LLVMContext::MD_prof: 2627 case LLVMContext::MD_fpmath: 2628 case LLVMContext::MD_tbaa_struct: 2629 case LLVMContext::MD_invariant_load: 2630 case LLVMContext::MD_alias_scope: 2631 case LLVMContext::MD_noalias: 2632 case LLVMContext::MD_nontemporal: 2633 case LLVMContext::MD_mem_parallel_loop_access: 2634 case LLVMContext::MD_access_group: 2635 // All of these directly apply. 2636 Dest.setMetadata(ID, N); 2637 break; 2638 2639 case LLVMContext::MD_nonnull: 2640 copyNonnullMetadata(Source, N, Dest); 2641 break; 2642 2643 case LLVMContext::MD_align: 2644 case LLVMContext::MD_dereferenceable: 2645 case LLVMContext::MD_dereferenceable_or_null: 2646 // These only directly apply if the new type is also a pointer. 2647 if (NewType->isPointerTy()) 2648 Dest.setMetadata(ID, N); 2649 break; 2650 2651 case LLVMContext::MD_range: 2652 copyRangeMetadata(DL, Source, N, Dest); 2653 break; 2654 } 2655 } 2656 } 2657 2658 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2659 auto *ReplInst = dyn_cast<Instruction>(Repl); 2660 if (!ReplInst) 2661 return; 2662 2663 // Patch the replacement so that it is not more restrictive than the value 2664 // being replaced. 2665 // Note that if 'I' is a load being replaced by some operation, 2666 // for example, by an arithmetic operation, then andIRFlags() 2667 // would just erase all math flags from the original arithmetic 2668 // operation, which is clearly not wanted and not needed. 2669 if (!isa<LoadInst>(I)) 2670 ReplInst->andIRFlags(I); 2671 2672 // FIXME: If both the original and replacement value are part of the 2673 // same control-flow region (meaning that the execution of one 2674 // guarantees the execution of the other), then we can combine the 2675 // noalias scopes here and do better than the general conservative 2676 // answer used in combineMetadata(). 2677 2678 // In general, GVN unifies expressions over different control-flow 2679 // regions, and so we need a conservative combination of the noalias 2680 // scopes. 2681 static const unsigned KnownIDs[] = { 2682 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2683 LLVMContext::MD_noalias, LLVMContext::MD_range, 2684 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2685 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2686 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2687 combineMetadata(ReplInst, I, KnownIDs, false); 2688 } 2689 2690 template <typename RootType, typename DominatesFn> 2691 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2692 const RootType &Root, 2693 const DominatesFn &Dominates) { 2694 assert(From->getType() == To->getType()); 2695 2696 unsigned Count = 0; 2697 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2698 UI != UE;) { 2699 Use &U = *UI++; 2700 if (!Dominates(Root, U)) 2701 continue; 2702 U.set(To); 2703 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2704 << "' as " << *To << " in " << *U << "\n"); 2705 ++Count; 2706 } 2707 return Count; 2708 } 2709 2710 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2711 assert(From->getType() == To->getType()); 2712 auto *BB = From->getParent(); 2713 unsigned Count = 0; 2714 2715 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2716 UI != UE;) { 2717 Use &U = *UI++; 2718 auto *I = cast<Instruction>(U.getUser()); 2719 if (I->getParent() == BB) 2720 continue; 2721 U.set(To); 2722 ++Count; 2723 } 2724 return Count; 2725 } 2726 2727 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2728 DominatorTree &DT, 2729 const BasicBlockEdge &Root) { 2730 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2731 return DT.dominates(Root, U); 2732 }; 2733 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2734 } 2735 2736 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2737 DominatorTree &DT, 2738 const BasicBlock *BB) { 2739 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2740 return DT.dominates(BB, U); 2741 }; 2742 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2743 } 2744 2745 bool llvm::callsGCLeafFunction(const CallBase *Call, 2746 const TargetLibraryInfo &TLI) { 2747 // Check if the function is specifically marked as a gc leaf function. 2748 if (Call->hasFnAttr("gc-leaf-function")) 2749 return true; 2750 if (const Function *F = Call->getCalledFunction()) { 2751 if (F->hasFnAttribute("gc-leaf-function")) 2752 return true; 2753 2754 if (auto IID = F->getIntrinsicID()) { 2755 // Most LLVM intrinsics do not take safepoints. 2756 return IID != Intrinsic::experimental_gc_statepoint && 2757 IID != Intrinsic::experimental_deoptimize && 2758 IID != Intrinsic::memcpy_element_unordered_atomic && 2759 IID != Intrinsic::memmove_element_unordered_atomic; 2760 } 2761 } 2762 2763 // Lib calls can be materialized by some passes, and won't be 2764 // marked as 'gc-leaf-function.' All available Libcalls are 2765 // GC-leaf. 2766 LibFunc LF; 2767 if (TLI.getLibFunc(*Call, LF)) { 2768 return TLI.has(LF); 2769 } 2770 2771 return false; 2772 } 2773 2774 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2775 LoadInst &NewLI) { 2776 auto *NewTy = NewLI.getType(); 2777 2778 // This only directly applies if the new type is also a pointer. 2779 if (NewTy->isPointerTy()) { 2780 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2781 return; 2782 } 2783 2784 // The only other translation we can do is to integral loads with !range 2785 // metadata. 2786 if (!NewTy->isIntegerTy()) 2787 return; 2788 2789 MDBuilder MDB(NewLI.getContext()); 2790 const Value *Ptr = OldLI.getPointerOperand(); 2791 auto *ITy = cast<IntegerType>(NewTy); 2792 auto *NullInt = ConstantExpr::getPtrToInt( 2793 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2794 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2795 NewLI.setMetadata(LLVMContext::MD_range, 2796 MDB.createRange(NonNullInt, NullInt)); 2797 } 2798 2799 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2800 MDNode *N, LoadInst &NewLI) { 2801 auto *NewTy = NewLI.getType(); 2802 2803 // Give up unless it is converted to a pointer where there is a single very 2804 // valuable mapping we can do reliably. 2805 // FIXME: It would be nice to propagate this in more ways, but the type 2806 // conversions make it hard. 2807 if (!NewTy->isPointerTy()) 2808 return; 2809 2810 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2811 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2812 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2813 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2814 } 2815 } 2816 2817 void llvm::dropDebugUsers(Instruction &I) { 2818 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2819 findDbgUsers(DbgUsers, &I); 2820 for (auto *DII : DbgUsers) 2821 DII->eraseFromParent(); 2822 } 2823 2824 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2825 BasicBlock *BB) { 2826 // Since we are moving the instructions out of its basic block, we do not 2827 // retain their original debug locations (DILocations) and debug intrinsic 2828 // instructions. 2829 // 2830 // Doing so would degrade the debugging experience and adversely affect the 2831 // accuracy of profiling information. 2832 // 2833 // Currently, when hoisting the instructions, we take the following actions: 2834 // - Remove their debug intrinsic instructions. 2835 // - Set their debug locations to the values from the insertion point. 2836 // 2837 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2838 // need to be deleted, is because there will not be any instructions with a 2839 // DILocation in either branch left after performing the transformation. We 2840 // can only insert a dbg.value after the two branches are joined again. 2841 // 2842 // See PR38762, PR39243 for more details. 2843 // 2844 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2845 // encode predicated DIExpressions that yield different results on different 2846 // code paths. 2847 2848 // A hoisted conditional probe should be treated as dangling so that it will 2849 // not be over-counted when the samples collected on the non-conditional path 2850 // are counted towards the conditional path. We leave it for the counts 2851 // inference algorithm to figure out a proper count for a danglng probe. 2852 moveAndDanglePseudoProbes(BB, InsertPt); 2853 2854 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2855 Instruction *I = &*II; 2856 I->dropUnknownNonDebugMetadata(); 2857 if (I->isUsedByMetadata()) 2858 dropDebugUsers(*I); 2859 if (isa<DbgInfoIntrinsic>(I)) { 2860 // Remove DbgInfo Intrinsics. 2861 II = I->eraseFromParent(); 2862 continue; 2863 } 2864 I->setDebugLoc(InsertPt->getDebugLoc()); 2865 ++II; 2866 } 2867 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2868 BB->begin(), 2869 BB->getTerminator()->getIterator()); 2870 } 2871 2872 namespace { 2873 2874 /// A potential constituent of a bitreverse or bswap expression. See 2875 /// collectBitParts for a fuller explanation. 2876 struct BitPart { 2877 BitPart(Value *P, unsigned BW) : Provider(P) { 2878 Provenance.resize(BW); 2879 } 2880 2881 /// The Value that this is a bitreverse/bswap of. 2882 Value *Provider; 2883 2884 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2885 /// in Provider becomes bit B in the result of this expression. 2886 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2887 2888 enum { Unset = -1 }; 2889 }; 2890 2891 } // end anonymous namespace 2892 2893 /// Analyze the specified subexpression and see if it is capable of providing 2894 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2895 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2896 /// the output of the expression came from a corresponding bit in some other 2897 /// value. This function is recursive, and the end result is a mapping of 2898 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2899 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2900 /// 2901 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2902 /// that the expression deposits the low byte of %X into the high byte of the 2903 /// result and that all other bits are zero. This expression is accepted and a 2904 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2905 /// [0-7]. 2906 /// 2907 /// For vector types, all analysis is performed at the per-element level. No 2908 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2909 /// constant masks must be splatted across all elements. 2910 /// 2911 /// To avoid revisiting values, the BitPart results are memoized into the 2912 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2913 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2914 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2915 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2916 /// type instead to provide the same functionality. 2917 /// 2918 /// Because we pass around references into \c BPS, we must use a container that 2919 /// does not invalidate internal references (std::map instead of DenseMap). 2920 static const Optional<BitPart> & 2921 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2922 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2923 auto I = BPS.find(V); 2924 if (I != BPS.end()) 2925 return I->second; 2926 2927 auto &Result = BPS[V] = None; 2928 auto BitWidth = V->getType()->getScalarSizeInBits(); 2929 2930 // Can't do integer/elements > 128 bits. 2931 if (BitWidth > 128) 2932 return Result; 2933 2934 // Prevent stack overflow by limiting the recursion depth 2935 if (Depth == BitPartRecursionMaxDepth) { 2936 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2937 return Result; 2938 } 2939 2940 if (auto *I = dyn_cast<Instruction>(V)) { 2941 Value *X, *Y; 2942 const APInt *C; 2943 2944 // If this is an or instruction, it may be an inner node of the bswap. 2945 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2946 const auto &A = 2947 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2948 const auto &B = 2949 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2950 if (!A || !B) 2951 return Result; 2952 2953 // Try and merge the two together. 2954 if (!A->Provider || A->Provider != B->Provider) 2955 return Result; 2956 2957 Result = BitPart(A->Provider, BitWidth); 2958 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2959 if (A->Provenance[BitIdx] != BitPart::Unset && 2960 B->Provenance[BitIdx] != BitPart::Unset && 2961 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2962 return Result = None; 2963 2964 if (A->Provenance[BitIdx] == BitPart::Unset) 2965 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2966 else 2967 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2968 } 2969 2970 return Result; 2971 } 2972 2973 // If this is a logical shift by a constant, recurse then shift the result. 2974 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2975 const APInt &BitShift = *C; 2976 2977 // Ensure the shift amount is defined. 2978 if (BitShift.uge(BitWidth)) 2979 return Result; 2980 2981 const auto &Res = 2982 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2983 if (!Res) 2984 return Result; 2985 Result = Res; 2986 2987 // Perform the "shift" on BitProvenance. 2988 auto &P = Result->Provenance; 2989 if (I->getOpcode() == Instruction::Shl) { 2990 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2991 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2992 } else { 2993 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2994 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2995 } 2996 2997 return Result; 2998 } 2999 3000 // If this is a logical 'and' with a mask that clears bits, recurse then 3001 // unset the appropriate bits. 3002 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3003 const APInt &AndMask = *C; 3004 3005 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3006 // early exit. 3007 unsigned NumMaskedBits = AndMask.countPopulation(); 3008 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3009 return Result; 3010 3011 const auto &Res = 3012 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3013 if (!Res) 3014 return Result; 3015 Result = Res; 3016 3017 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3018 // If the AndMask is zero for this bit, clear the bit. 3019 if (AndMask[BitIdx] == 0) 3020 Result->Provenance[BitIdx] = BitPart::Unset; 3021 return Result; 3022 } 3023 3024 // If this is a zext instruction zero extend the result. 3025 if (match(V, m_ZExt(m_Value(X)))) { 3026 const auto &Res = 3027 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3028 if (!Res) 3029 return Result; 3030 3031 Result = BitPart(Res->Provider, BitWidth); 3032 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3033 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3034 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3035 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3036 Result->Provenance[BitIdx] = BitPart::Unset; 3037 return Result; 3038 } 3039 3040 // If this is a truncate instruction, extract the lower bits. 3041 if (match(V, m_Trunc(m_Value(X)))) { 3042 const auto &Res = 3043 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3044 if (!Res) 3045 return Result; 3046 3047 Result = BitPart(Res->Provider, BitWidth); 3048 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3049 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3050 return Result; 3051 } 3052 3053 // BITREVERSE - most likely due to us previous matching a partial 3054 // bitreverse. 3055 if (match(V, m_BitReverse(m_Value(X)))) { 3056 const auto &Res = 3057 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3058 if (!Res) 3059 return Result; 3060 3061 Result = BitPart(Res->Provider, BitWidth); 3062 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3063 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3064 return Result; 3065 } 3066 3067 // BSWAP - most likely due to us previous matching a partial bswap. 3068 if (match(V, m_BSwap(m_Value(X)))) { 3069 const auto &Res = 3070 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3071 if (!Res) 3072 return Result; 3073 3074 unsigned ByteWidth = BitWidth / 8; 3075 Result = BitPart(Res->Provider, BitWidth); 3076 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3077 unsigned ByteBitOfs = ByteIdx * 8; 3078 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3079 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3080 Res->Provenance[ByteBitOfs + BitIdx]; 3081 } 3082 return Result; 3083 } 3084 3085 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3086 // amount (modulo). 3087 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3088 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3089 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3090 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3091 // We can treat fshr as a fshl by flipping the modulo amount. 3092 unsigned ModAmt = C->urem(BitWidth); 3093 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3094 ModAmt = BitWidth - ModAmt; 3095 3096 const auto &LHS = 3097 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3098 const auto &RHS = 3099 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3100 3101 // Check we have both sources and they are from the same provider. 3102 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3103 return Result; 3104 3105 unsigned StartBitRHS = BitWidth - ModAmt; 3106 Result = BitPart(LHS->Provider, BitWidth); 3107 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3108 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3109 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3110 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3111 return Result; 3112 } 3113 } 3114 3115 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3116 // the input value to the bswap/bitreverse. 3117 Result = BitPart(V, BitWidth); 3118 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3119 Result->Provenance[BitIdx] = BitIdx; 3120 return Result; 3121 } 3122 3123 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3124 unsigned BitWidth) { 3125 if (From % 8 != To % 8) 3126 return false; 3127 // Convert from bit indices to byte indices and check for a byte reversal. 3128 From >>= 3; 3129 To >>= 3; 3130 BitWidth >>= 3; 3131 return From == BitWidth - To - 1; 3132 } 3133 3134 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3135 unsigned BitWidth) { 3136 return From == BitWidth - To - 1; 3137 } 3138 3139 bool llvm::recognizeBSwapOrBitReverseIdiom( 3140 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3141 SmallVectorImpl<Instruction *> &InsertedInsts) { 3142 if (Operator::getOpcode(I) != Instruction::Or) 3143 return false; 3144 if (!MatchBSwaps && !MatchBitReversals) 3145 return false; 3146 Type *ITy = I->getType(); 3147 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3148 return false; // Can't do integer/elements > 128 bits. 3149 3150 Type *DemandedTy = ITy; 3151 if (I->hasOneUse()) 3152 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3153 DemandedTy = Trunc->getType(); 3154 3155 // Try to find all the pieces corresponding to the bswap. 3156 std::map<Value *, Optional<BitPart>> BPS; 3157 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3158 if (!Res) 3159 return false; 3160 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3161 assert(all_of(BitProvenance, 3162 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3163 "Illegal bit provenance index"); 3164 3165 // If the upper bits are zero, then attempt to perform as a truncated op. 3166 if (BitProvenance.back() == BitPart::Unset) { 3167 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3168 BitProvenance = BitProvenance.drop_back(); 3169 if (BitProvenance.empty()) 3170 return false; // TODO - handle null value? 3171 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3172 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3173 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3174 } 3175 3176 // Check BitProvenance hasn't found a source larger than the result type. 3177 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3178 if (DemandedBW > ITy->getScalarSizeInBits()) 3179 return false; 3180 3181 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3182 // only byteswap values with an even number of bytes. 3183 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3184 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3185 bool OKForBitReverse = MatchBitReversals; 3186 for (unsigned BitIdx = 0; 3187 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3188 if (BitProvenance[BitIdx] == BitPart::Unset) { 3189 DemandedMask.clearBit(BitIdx); 3190 continue; 3191 } 3192 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3193 DemandedBW); 3194 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3195 BitIdx, DemandedBW); 3196 } 3197 3198 Intrinsic::ID Intrin; 3199 if (OKForBSwap) 3200 Intrin = Intrinsic::bswap; 3201 else if (OKForBitReverse) 3202 Intrin = Intrinsic::bitreverse; 3203 else 3204 return false; 3205 3206 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3207 Value *Provider = Res->Provider; 3208 3209 // We may need to truncate the provider. 3210 if (DemandedTy != Provider->getType()) { 3211 auto *Trunc = 3212 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3213 InsertedInsts.push_back(Trunc); 3214 Provider = Trunc; 3215 } 3216 3217 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3218 InsertedInsts.push_back(Result); 3219 3220 if (!DemandedMask.isAllOnesValue()) { 3221 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3222 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3223 InsertedInsts.push_back(Result); 3224 } 3225 3226 // We may need to zeroextend back to the result type. 3227 if (ITy != Result->getType()) { 3228 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3229 InsertedInsts.push_back(ExtInst); 3230 } 3231 3232 return true; 3233 } 3234 3235 // CodeGen has special handling for some string functions that may replace 3236 // them with target-specific intrinsics. Since that'd skip our interceptors 3237 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3238 // we mark affected calls as NoBuiltin, which will disable optimization 3239 // in CodeGen. 3240 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3241 CallInst *CI, const TargetLibraryInfo *TLI) { 3242 Function *F = CI->getCalledFunction(); 3243 LibFunc Func; 3244 if (F && !F->hasLocalLinkage() && F->hasName() && 3245 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3246 !F->doesNotAccessMemory()) 3247 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3248 } 3249 3250 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3251 // We can't have a PHI with a metadata type. 3252 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3253 return false; 3254 3255 // Early exit. 3256 if (!isa<Constant>(I->getOperand(OpIdx))) 3257 return true; 3258 3259 switch (I->getOpcode()) { 3260 default: 3261 return true; 3262 case Instruction::Call: 3263 case Instruction::Invoke: { 3264 const auto &CB = cast<CallBase>(*I); 3265 3266 // Can't handle inline asm. Skip it. 3267 if (CB.isInlineAsm()) 3268 return false; 3269 3270 // Constant bundle operands may need to retain their constant-ness for 3271 // correctness. 3272 if (CB.isBundleOperand(OpIdx)) 3273 return false; 3274 3275 if (OpIdx < CB.getNumArgOperands()) { 3276 // Some variadic intrinsics require constants in the variadic arguments, 3277 // which currently aren't markable as immarg. 3278 if (isa<IntrinsicInst>(CB) && 3279 OpIdx >= CB.getFunctionType()->getNumParams()) { 3280 // This is known to be OK for stackmap. 3281 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3282 } 3283 3284 // gcroot is a special case, since it requires a constant argument which 3285 // isn't also required to be a simple ConstantInt. 3286 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3287 return false; 3288 3289 // Some intrinsic operands are required to be immediates. 3290 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3291 } 3292 3293 // It is never allowed to replace the call argument to an intrinsic, but it 3294 // may be possible for a call. 3295 return !isa<IntrinsicInst>(CB); 3296 } 3297 case Instruction::ShuffleVector: 3298 // Shufflevector masks are constant. 3299 return OpIdx != 2; 3300 case Instruction::Switch: 3301 case Instruction::ExtractValue: 3302 // All operands apart from the first are constant. 3303 return OpIdx == 0; 3304 case Instruction::InsertValue: 3305 // All operands apart from the first and the second are constant. 3306 return OpIdx < 2; 3307 case Instruction::Alloca: 3308 // Static allocas (constant size in the entry block) are handled by 3309 // prologue/epilogue insertion so they're free anyway. We definitely don't 3310 // want to make them non-constant. 3311 return !cast<AllocaInst>(I)->isStaticAlloca(); 3312 case Instruction::GetElementPtr: 3313 if (OpIdx == 0) 3314 return true; 3315 gep_type_iterator It = gep_type_begin(I); 3316 for (auto E = std::next(It, OpIdx); It != E; ++It) 3317 if (It.isStruct()) 3318 return false; 3319 return true; 3320 } 3321 } 3322 3323 Value *llvm::invertCondition(Value *Condition) { 3324 // First: Check if it's a constant 3325 if (Constant *C = dyn_cast<Constant>(Condition)) 3326 return ConstantExpr::getNot(C); 3327 3328 // Second: If the condition is already inverted, return the original value 3329 Value *NotCondition; 3330 if (match(Condition, m_Not(m_Value(NotCondition)))) 3331 return NotCondition; 3332 3333 BasicBlock *Parent = nullptr; 3334 Instruction *Inst = dyn_cast<Instruction>(Condition); 3335 if (Inst) 3336 Parent = Inst->getParent(); 3337 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3338 Parent = &Arg->getParent()->getEntryBlock(); 3339 assert(Parent && "Unsupported condition to invert"); 3340 3341 // Third: Check all the users for an invert 3342 for (User *U : Condition->users()) 3343 if (Instruction *I = dyn_cast<Instruction>(U)) 3344 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3345 return I; 3346 3347 // Last option: Create a new instruction 3348 auto *Inverted = 3349 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3350 if (Inst && !isa<PHINode>(Inst)) 3351 Inverted->insertAfter(Inst); 3352 else 3353 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3354 return Inverted; 3355 } 3356 3357 bool llvm::inferAttributesFromOthers(Function &F) { 3358 // Note: We explicitly check for attributes rather than using cover functions 3359 // because some of the cover functions include the logic being implemented. 3360 3361 bool Changed = false; 3362 // readnone + not convergent implies nosync 3363 if (!F.hasFnAttribute(Attribute::NoSync) && 3364 F.doesNotAccessMemory() && !F.isConvergent()) { 3365 F.setNoSync(); 3366 Changed = true; 3367 } 3368 3369 // readonly implies nofree 3370 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3371 F.setDoesNotFreeMemory(); 3372 Changed = true; 3373 } 3374 3375 // willreturn implies mustprogress 3376 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3377 F.setMustProgress(); 3378 Changed = true; 3379 } 3380 3381 // TODO: There are a bunch of cases of restrictive memory effects we 3382 // can infer by inspecting arguments of argmemonly-ish functions. 3383 3384 return Changed; 3385 } 3386