1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 // Max recursion depth for collectBitParts used when detecting bswap and
95 // bitreverse idioms
96 static const unsigned BitPartRecursionMaxDepth = 64;
97 
98 //===----------------------------------------------------------------------===//
99 //  Local constant propagation.
100 //
101 
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination.  This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110                                   const TargetLibraryInfo *TLI,
111                                   DomTreeUpdater *DTU) {
112   Instruction *T = BB->getTerminator();
113   IRBuilder<> Builder(T);
114 
115   // Branch - See if we are conditional jumping on constant
116   if (auto *BI = dyn_cast<BranchInst>(T)) {
117     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
118     BasicBlock *Dest1 = BI->getSuccessor(0);
119     BasicBlock *Dest2 = BI->getSuccessor(1);
120 
121     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122       // Are we branching on constant?
123       // YES.  Change to unconditional branch...
124       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
126 
127       // Let the basic block know that we are letting go of it.  Based on this,
128       // it will adjust it's PHI nodes.
129       OldDest->removePredecessor(BB);
130 
131       // Replace the conditional branch with an unconditional one.
132       Builder.CreateBr(Destination);
133       BI->eraseFromParent();
134       if (DTU)
135         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136       return true;
137     }
138 
139     if (Dest2 == Dest1) {       // Conditional branch to same location?
140       // This branch matches something like this:
141       //     br bool %cond, label %Dest, label %Dest
142       // and changes it into:  br label %Dest
143 
144       // Let the basic block know that we are letting go of one copy of it.
145       assert(BI->getParent() && "Terminator not inserted in block!");
146       Dest1->removePredecessor(BI->getParent());
147 
148       // Replace the conditional branch with an unconditional one.
149       Builder.CreateBr(Dest1);
150       Value *Cond = BI->getCondition();
151       BI->eraseFromParent();
152       if (DeleteDeadConditions)
153         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154       return true;
155     }
156     return false;
157   }
158 
159   if (auto *SI = dyn_cast<SwitchInst>(T)) {
160     // If we are switching on a constant, we can convert the switch to an
161     // unconditional branch.
162     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163     BasicBlock *DefaultDest = SI->getDefaultDest();
164     BasicBlock *TheOnlyDest = DefaultDest;
165 
166     // If the default is unreachable, ignore it when searching for TheOnlyDest.
167     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168         SI->getNumCases() > 0) {
169       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170     }
171 
172     // Figure out which case it goes to.
173     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174       // Found case matching a constant operand?
175       if (i->getCaseValue() == CI) {
176         TheOnlyDest = i->getCaseSuccessor();
177         break;
178       }
179 
180       // Check to see if this branch is going to the same place as the default
181       // dest.  If so, eliminate it as an explicit compare.
182       if (i->getCaseSuccessor() == DefaultDest) {
183         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184         unsigned NCases = SI->getNumCases();
185         // Fold the case metadata into the default if there will be any branches
186         // left, unless the metadata doesn't match the switch.
187         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188           // Collect branch weights into a vector.
189           SmallVector<uint32_t, 8> Weights;
190           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191                ++MD_i) {
192             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193             Weights.push_back(CI->getValue().getZExtValue());
194           }
195           // Merge weight of this case to the default weight.
196           unsigned idx = i->getCaseIndex();
197           Weights[0] += Weights[idx+1];
198           // Remove weight for this case.
199           std::swap(Weights[idx+1], Weights.back());
200           Weights.pop_back();
201           SI->setMetadata(LLVMContext::MD_prof,
202                           MDBuilder(BB->getContext()).
203                           createBranchWeights(Weights));
204         }
205         // Remove this entry.
206         BasicBlock *ParentBB = SI->getParent();
207         DefaultDest->removePredecessor(ParentBB);
208         i = SI->removeCase(i);
209         e = SI->case_end();
210         if (DTU)
211           DTU->applyUpdatesPermissive(
212               {{DominatorTree::Delete, ParentBB, DefaultDest}});
213         continue;
214       }
215 
216       // Otherwise, check to see if the switch only branches to one destination.
217       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218       // destinations.
219       if (i->getCaseSuccessor() != TheOnlyDest)
220         TheOnlyDest = nullptr;
221 
222       // Increment this iterator as we haven't removed the case.
223       ++i;
224     }
225 
226     if (CI && !TheOnlyDest) {
227       // Branching on a constant, but not any of the cases, go to the default
228       // successor.
229       TheOnlyDest = SI->getDefaultDest();
230     }
231 
232     // If we found a single destination that we can fold the switch into, do so
233     // now.
234     if (TheOnlyDest) {
235       // Insert the new branch.
236       Builder.CreateBr(TheOnlyDest);
237       BasicBlock *BB = SI->getParent();
238       std::vector <DominatorTree::UpdateType> Updates;
239       if (DTU)
240         Updates.reserve(SI->getNumSuccessors() - 1);
241 
242       // Remove entries from PHI nodes which we no longer branch to...
243       for (BasicBlock *Succ : successors(SI)) {
244         // Found case matching a constant operand?
245         if (Succ == TheOnlyDest) {
246           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247         } else {
248           Succ->removePredecessor(BB);
249           if (DTU)
250             Updates.push_back({DominatorTree::Delete, BB, Succ});
251         }
252       }
253 
254       // Delete the old switch.
255       Value *Cond = SI->getCondition();
256       SI->eraseFromParent();
257       if (DeleteDeadConditions)
258         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259       if (DTU)
260         DTU->applyUpdatesPermissive(Updates);
261       return true;
262     }
263 
264     if (SI->getNumCases() == 1) {
265       // Otherwise, we can fold this switch into a conditional branch
266       // instruction if it has only one non-default destination.
267       auto FirstCase = *SI->case_begin();
268       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269           FirstCase.getCaseValue(), "cond");
270 
271       // Insert the new branch.
272       BranchInst *NewBr = Builder.CreateCondBr(Cond,
273                                                FirstCase.getCaseSuccessor(),
274                                                SI->getDefaultDest());
275       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276       if (MD && MD->getNumOperands() == 3) {
277         ConstantInt *SICase =
278             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279         ConstantInt *SIDef =
280             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281         assert(SICase && SIDef);
282         // The TrueWeight should be the weight for the single case of SI.
283         NewBr->setMetadata(LLVMContext::MD_prof,
284                         MDBuilder(BB->getContext()).
285                         createBranchWeights(SICase->getValue().getZExtValue(),
286                                             SIDef->getValue().getZExtValue()));
287       }
288 
289       // Update make.implicit metadata to the newly-created conditional branch.
290       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291       if (MakeImplicitMD)
292         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293 
294       // Delete the old switch.
295       SI->eraseFromParent();
296       return true;
297     }
298     return false;
299   }
300 
301   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302     // indirectbr blockaddress(@F, @BB) -> br label @BB
303     if (auto *BA =
304           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305       BasicBlock *TheOnlyDest = BA->getBasicBlock();
306       std::vector <DominatorTree::UpdateType> Updates;
307       if (DTU)
308         Updates.reserve(IBI->getNumDestinations() - 1);
309 
310       // Insert the new branch.
311       Builder.CreateBr(TheOnlyDest);
312 
313       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314         if (IBI->getDestination(i) == TheOnlyDest) {
315           TheOnlyDest = nullptr;
316         } else {
317           BasicBlock *ParentBB = IBI->getParent();
318           BasicBlock *DestBB = IBI->getDestination(i);
319           DestBB->removePredecessor(ParentBB);
320           if (DTU)
321             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322         }
323       }
324       Value *Address = IBI->getAddress();
325       IBI->eraseFromParent();
326       if (DeleteDeadConditions)
327         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
328 
329       // If we didn't find our destination in the IBI successor list, then we
330       // have undefined behavior.  Replace the unconditional branch with an
331       // 'unreachable' instruction.
332       if (TheOnlyDest) {
333         BB->getTerminator()->eraseFromParent();
334         new UnreachableInst(BB->getContext(), BB);
335       }
336 
337       if (DTU)
338         DTU->applyUpdatesPermissive(Updates);
339       return true;
340     }
341   }
342 
343   return false;
344 }
345 
346 //===----------------------------------------------------------------------===//
347 //  Local dead code elimination.
348 //
349 
350 /// isInstructionTriviallyDead - Return true if the result produced by the
351 /// instruction is not used, and the instruction has no side effects.
352 ///
353 bool llvm::isInstructionTriviallyDead(Instruction *I,
354                                       const TargetLibraryInfo *TLI) {
355   if (!I->use_empty())
356     return false;
357   return wouldInstructionBeTriviallyDead(I, TLI);
358 }
359 
360 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
361                                            const TargetLibraryInfo *TLI) {
362   if (I->isTerminator())
363     return false;
364 
365   // We don't want the landingpad-like instructions removed by anything this
366   // general.
367   if (I->isEHPad())
368     return false;
369 
370   // We don't want debug info removed by anything this general, unless
371   // debug info is empty.
372   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
373     if (DDI->getAddress())
374       return false;
375     return true;
376   }
377   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
378     if (DVI->getValue())
379       return false;
380     return true;
381   }
382   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
383     if (DLI->getLabel())
384       return false;
385     return true;
386   }
387 
388   if (!I->mayHaveSideEffects())
389     return true;
390 
391   // Special case intrinsics that "may have side effects" but can be deleted
392   // when dead.
393   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
394     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
395     if (II->getIntrinsicID() == Intrinsic::stacksave ||
396         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
397       return true;
398 
399     // Lifetime intrinsics are dead when their right-hand is undef.
400     if (II->isLifetimeStartOrEnd())
401       return isa<UndefValue>(II->getArgOperand(1));
402 
403     // Assumptions are dead if their condition is trivially true.  Guards on
404     // true are operationally no-ops.  In the future we can consider more
405     // sophisticated tradeoffs for guards considering potential for check
406     // widening, but for now we keep things simple.
407     if (II->getIntrinsicID() == Intrinsic::assume ||
408         II->getIntrinsicID() == Intrinsic::experimental_guard) {
409       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
410         return !Cond->isZero();
411 
412       return false;
413     }
414   }
415 
416   if (isAllocLikeFn(I, TLI))
417     return true;
418 
419   if (CallInst *CI = isFreeCall(I, TLI))
420     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
421       return C->isNullValue() || isa<UndefValue>(C);
422 
423   if (auto *Call = dyn_cast<CallBase>(I))
424     if (isMathLibCallNoop(Call, TLI))
425       return true;
426 
427   return false;
428 }
429 
430 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
431 /// trivially dead instruction, delete it.  If that makes any of its operands
432 /// trivially dead, delete them too, recursively.  Return true if any
433 /// instructions were deleted.
434 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
435     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
436   Instruction *I = dyn_cast<Instruction>(V);
437   if (!I || !isInstructionTriviallyDead(I, TLI))
438     return false;
439 
440   SmallVector<Instruction*, 16> DeadInsts;
441   DeadInsts.push_back(I);
442   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
443 
444   return true;
445 }
446 
447 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
448     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
449     MemorySSAUpdater *MSSAU) {
450   // Process the dead instruction list until empty.
451   while (!DeadInsts.empty()) {
452     Instruction &I = *DeadInsts.pop_back_val();
453     assert(I.use_empty() && "Instructions with uses are not dead.");
454     assert(isInstructionTriviallyDead(&I, TLI) &&
455            "Live instruction found in dead worklist!");
456 
457     // Don't lose the debug info while deleting the instructions.
458     salvageDebugInfo(I);
459 
460     // Null out all of the instruction's operands to see if any operand becomes
461     // dead as we go.
462     for (Use &OpU : I.operands()) {
463       Value *OpV = OpU.get();
464       OpU.set(nullptr);
465 
466       if (!OpV->use_empty())
467         continue;
468 
469       // If the operand is an instruction that became dead as we nulled out the
470       // operand, and if it is 'trivially' dead, delete it in a future loop
471       // iteration.
472       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
473         if (isInstructionTriviallyDead(OpI, TLI))
474           DeadInsts.push_back(OpI);
475     }
476     if (MSSAU)
477       MSSAU->removeMemoryAccess(&I);
478 
479     I.eraseFromParent();
480   }
481 }
482 
483 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
484   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
485   findDbgUsers(DbgUsers, I);
486   for (auto *DII : DbgUsers) {
487     Value *Undef = UndefValue::get(I->getType());
488     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
489                                             ValueAsMetadata::get(Undef)));
490   }
491   return !DbgUsers.empty();
492 }
493 
494 /// areAllUsesEqual - Check whether the uses of a value are all the same.
495 /// This is similar to Instruction::hasOneUse() except this will also return
496 /// true when there are no uses or multiple uses that all refer to the same
497 /// value.
498 static bool areAllUsesEqual(Instruction *I) {
499   Value::user_iterator UI = I->user_begin();
500   Value::user_iterator UE = I->user_end();
501   if (UI == UE)
502     return true;
503 
504   User *TheUse = *UI;
505   for (++UI; UI != UE; ++UI) {
506     if (*UI != TheUse)
507       return false;
508   }
509   return true;
510 }
511 
512 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
513 /// dead PHI node, due to being a def-use chain of single-use nodes that
514 /// either forms a cycle or is terminated by a trivially dead instruction,
515 /// delete it.  If that makes any of its operands trivially dead, delete them
516 /// too, recursively.  Return true if a change was made.
517 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
518                                         const TargetLibraryInfo *TLI) {
519   SmallPtrSet<Instruction*, 4> Visited;
520   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
521        I = cast<Instruction>(*I->user_begin())) {
522     if (I->use_empty())
523       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
524 
525     // If we find an instruction more than once, we're on a cycle that
526     // won't prove fruitful.
527     if (!Visited.insert(I).second) {
528       // Break the cycle and delete the instruction and its operands.
529       I->replaceAllUsesWith(UndefValue::get(I->getType()));
530       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
531       return true;
532     }
533   }
534   return false;
535 }
536 
537 static bool
538 simplifyAndDCEInstruction(Instruction *I,
539                           SmallSetVector<Instruction *, 16> &WorkList,
540                           const DataLayout &DL,
541                           const TargetLibraryInfo *TLI) {
542   if (isInstructionTriviallyDead(I, TLI)) {
543     salvageDebugInfo(*I);
544 
545     // Null out all of the instruction's operands to see if any operand becomes
546     // dead as we go.
547     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
548       Value *OpV = I->getOperand(i);
549       I->setOperand(i, nullptr);
550 
551       if (!OpV->use_empty() || I == OpV)
552         continue;
553 
554       // If the operand is an instruction that became dead as we nulled out the
555       // operand, and if it is 'trivially' dead, delete it in a future loop
556       // iteration.
557       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
558         if (isInstructionTriviallyDead(OpI, TLI))
559           WorkList.insert(OpI);
560     }
561 
562     I->eraseFromParent();
563 
564     return true;
565   }
566 
567   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
568     // Add the users to the worklist. CAREFUL: an instruction can use itself,
569     // in the case of a phi node.
570     for (User *U : I->users()) {
571       if (U != I) {
572         WorkList.insert(cast<Instruction>(U));
573       }
574     }
575 
576     // Replace the instruction with its simplified value.
577     bool Changed = false;
578     if (!I->use_empty()) {
579       I->replaceAllUsesWith(SimpleV);
580       Changed = true;
581     }
582     if (isInstructionTriviallyDead(I, TLI)) {
583       I->eraseFromParent();
584       Changed = true;
585     }
586     return Changed;
587   }
588   return false;
589 }
590 
591 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
592 /// simplify any instructions in it and recursively delete dead instructions.
593 ///
594 /// This returns true if it changed the code, note that it can delete
595 /// instructions in other blocks as well in this block.
596 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
597                                        const TargetLibraryInfo *TLI) {
598   bool MadeChange = false;
599   const DataLayout &DL = BB->getModule()->getDataLayout();
600 
601 #ifndef NDEBUG
602   // In debug builds, ensure that the terminator of the block is never replaced
603   // or deleted by these simplifications. The idea of simplification is that it
604   // cannot introduce new instructions, and there is no way to replace the
605   // terminator of a block without introducing a new instruction.
606   AssertingVH<Instruction> TerminatorVH(&BB->back());
607 #endif
608 
609   SmallSetVector<Instruction *, 16> WorkList;
610   // Iterate over the original function, only adding insts to the worklist
611   // if they actually need to be revisited. This avoids having to pre-init
612   // the worklist with the entire function's worth of instructions.
613   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
614        BI != E;) {
615     assert(!BI->isTerminator());
616     Instruction *I = &*BI;
617     ++BI;
618 
619     // We're visiting this instruction now, so make sure it's not in the
620     // worklist from an earlier visit.
621     if (!WorkList.count(I))
622       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
623   }
624 
625   while (!WorkList.empty()) {
626     Instruction *I = WorkList.pop_back_val();
627     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
628   }
629   return MadeChange;
630 }
631 
632 //===----------------------------------------------------------------------===//
633 //  Control Flow Graph Restructuring.
634 //
635 
636 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
637 /// method is called when we're about to delete Pred as a predecessor of BB.  If
638 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
639 ///
640 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
641 /// nodes that collapse into identity values.  For example, if we have:
642 ///   x = phi(1, 0, 0, 0)
643 ///   y = and x, z
644 ///
645 /// .. and delete the predecessor corresponding to the '1', this will attempt to
646 /// recursively fold the and to 0.
647 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
648                                         DomTreeUpdater *DTU) {
649   // This only adjusts blocks with PHI nodes.
650   if (!isa<PHINode>(BB->begin()))
651     return;
652 
653   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
654   // them down.  This will leave us with single entry phi nodes and other phis
655   // that can be removed.
656   BB->removePredecessor(Pred, true);
657 
658   WeakTrackingVH PhiIt = &BB->front();
659   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
660     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
661     Value *OldPhiIt = PhiIt;
662 
663     if (!recursivelySimplifyInstruction(PN))
664       continue;
665 
666     // If recursive simplification ended up deleting the next PHI node we would
667     // iterate to, then our iterator is invalid, restart scanning from the top
668     // of the block.
669     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
670   }
671   if (DTU)
672     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
673 }
674 
675 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
676 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
677 /// between them, moving the instructions in the predecessor into DestBB and
678 /// deleting the predecessor block.
679 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
680                                        DomTreeUpdater *DTU) {
681 
682   // If BB has single-entry PHI nodes, fold them.
683   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
684     Value *NewVal = PN->getIncomingValue(0);
685     // Replace self referencing PHI with undef, it must be dead.
686     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
687     PN->replaceAllUsesWith(NewVal);
688     PN->eraseFromParent();
689   }
690 
691   BasicBlock *PredBB = DestBB->getSinglePredecessor();
692   assert(PredBB && "Block doesn't have a single predecessor!");
693 
694   bool ReplaceEntryBB = false;
695   if (PredBB == &DestBB->getParent()->getEntryBlock())
696     ReplaceEntryBB = true;
697 
698   // DTU updates: Collect all the edges that enter
699   // PredBB. These dominator edges will be redirected to DestBB.
700   SmallVector<DominatorTree::UpdateType, 32> Updates;
701 
702   if (DTU) {
703     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
704     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
705       Updates.push_back({DominatorTree::Delete, *I, PredBB});
706       // This predecessor of PredBB may already have DestBB as a successor.
707       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
708         Updates.push_back({DominatorTree::Insert, *I, DestBB});
709     }
710   }
711 
712   // Zap anything that took the address of DestBB.  Not doing this will give the
713   // address an invalid value.
714   if (DestBB->hasAddressTaken()) {
715     BlockAddress *BA = BlockAddress::get(DestBB);
716     Constant *Replacement =
717       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
718     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
719                                                      BA->getType()));
720     BA->destroyConstant();
721   }
722 
723   // Anything that branched to PredBB now branches to DestBB.
724   PredBB->replaceAllUsesWith(DestBB);
725 
726   // Splice all the instructions from PredBB to DestBB.
727   PredBB->getTerminator()->eraseFromParent();
728   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
729   new UnreachableInst(PredBB->getContext(), PredBB);
730 
731   // If the PredBB is the entry block of the function, move DestBB up to
732   // become the entry block after we erase PredBB.
733   if (ReplaceEntryBB)
734     DestBB->moveAfter(PredBB);
735 
736   if (DTU) {
737     assert(PredBB->getInstList().size() == 1 &&
738            isa<UnreachableInst>(PredBB->getTerminator()) &&
739            "The successor list of PredBB isn't empty before "
740            "applying corresponding DTU updates.");
741     DTU->applyUpdatesPermissive(Updates);
742     DTU->deleteBB(PredBB);
743     // Recalculation of DomTree is needed when updating a forward DomTree and
744     // the Entry BB is replaced.
745     if (ReplaceEntryBB && DTU->hasDomTree()) {
746       // The entry block was removed and there is no external interface for
747       // the dominator tree to be notified of this change. In this corner-case
748       // we recalculate the entire tree.
749       DTU->recalculate(*(DestBB->getParent()));
750     }
751   }
752 
753   else {
754     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
755   }
756 }
757 
758 /// CanMergeValues - Return true if we can choose one of these values to use
759 /// in place of the other. Note that we will always choose the non-undef
760 /// value to keep.
761 static bool CanMergeValues(Value *First, Value *Second) {
762   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
763 }
764 
765 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
766 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
767 ///
768 /// Assumption: Succ is the single successor for BB.
769 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
770   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
771 
772   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
773                     << Succ->getName() << "\n");
774   // Shortcut, if there is only a single predecessor it must be BB and merging
775   // is always safe
776   if (Succ->getSinglePredecessor()) return true;
777 
778   // Make a list of the predecessors of BB
779   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
780 
781   // Look at all the phi nodes in Succ, to see if they present a conflict when
782   // merging these blocks
783   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
784     PHINode *PN = cast<PHINode>(I);
785 
786     // If the incoming value from BB is again a PHINode in
787     // BB which has the same incoming value for *PI as PN does, we can
788     // merge the phi nodes and then the blocks can still be merged
789     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
790     if (BBPN && BBPN->getParent() == BB) {
791       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
792         BasicBlock *IBB = PN->getIncomingBlock(PI);
793         if (BBPreds.count(IBB) &&
794             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
795                             PN->getIncomingValue(PI))) {
796           LLVM_DEBUG(dbgs()
797                      << "Can't fold, phi node " << PN->getName() << " in "
798                      << Succ->getName() << " is conflicting with "
799                      << BBPN->getName() << " with regard to common predecessor "
800                      << IBB->getName() << "\n");
801           return false;
802         }
803       }
804     } else {
805       Value* Val = PN->getIncomingValueForBlock(BB);
806       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
807         // See if the incoming value for the common predecessor is equal to the
808         // one for BB, in which case this phi node will not prevent the merging
809         // of the block.
810         BasicBlock *IBB = PN->getIncomingBlock(PI);
811         if (BBPreds.count(IBB) &&
812             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
813           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
814                             << " in " << Succ->getName()
815                             << " is conflicting with regard to common "
816                             << "predecessor " << IBB->getName() << "\n");
817           return false;
818         }
819       }
820     }
821   }
822 
823   return true;
824 }
825 
826 using PredBlockVector = SmallVector<BasicBlock *, 16>;
827 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
828 
829 /// Determines the value to use as the phi node input for a block.
830 ///
831 /// Select between \p OldVal any value that we know flows from \p BB
832 /// to a particular phi on the basis of which one (if either) is not
833 /// undef. Update IncomingValues based on the selected value.
834 ///
835 /// \param OldVal The value we are considering selecting.
836 /// \param BB The block that the value flows in from.
837 /// \param IncomingValues A map from block-to-value for other phi inputs
838 /// that we have examined.
839 ///
840 /// \returns the selected value.
841 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
842                                           IncomingValueMap &IncomingValues) {
843   if (!isa<UndefValue>(OldVal)) {
844     assert((!IncomingValues.count(BB) ||
845             IncomingValues.find(BB)->second == OldVal) &&
846            "Expected OldVal to match incoming value from BB!");
847 
848     IncomingValues.insert(std::make_pair(BB, OldVal));
849     return OldVal;
850   }
851 
852   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
853   if (It != IncomingValues.end()) return It->second;
854 
855   return OldVal;
856 }
857 
858 /// Create a map from block to value for the operands of a
859 /// given phi.
860 ///
861 /// Create a map from block to value for each non-undef value flowing
862 /// into \p PN.
863 ///
864 /// \param PN The phi we are collecting the map for.
865 /// \param IncomingValues [out] The map from block to value for this phi.
866 static void gatherIncomingValuesToPhi(PHINode *PN,
867                                       IncomingValueMap &IncomingValues) {
868   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
869     BasicBlock *BB = PN->getIncomingBlock(i);
870     Value *V = PN->getIncomingValue(i);
871 
872     if (!isa<UndefValue>(V))
873       IncomingValues.insert(std::make_pair(BB, V));
874   }
875 }
876 
877 /// Replace the incoming undef values to a phi with the values
878 /// from a block-to-value map.
879 ///
880 /// \param PN The phi we are replacing the undefs in.
881 /// \param IncomingValues A map from block to value.
882 static void replaceUndefValuesInPhi(PHINode *PN,
883                                     const IncomingValueMap &IncomingValues) {
884   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
885     Value *V = PN->getIncomingValue(i);
886 
887     if (!isa<UndefValue>(V)) continue;
888 
889     BasicBlock *BB = PN->getIncomingBlock(i);
890     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
891     if (It == IncomingValues.end()) continue;
892 
893     PN->setIncomingValue(i, It->second);
894   }
895 }
896 
897 /// Replace a value flowing from a block to a phi with
898 /// potentially multiple instances of that value flowing from the
899 /// block's predecessors to the phi.
900 ///
901 /// \param BB The block with the value flowing into the phi.
902 /// \param BBPreds The predecessors of BB.
903 /// \param PN The phi that we are updating.
904 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
905                                                 const PredBlockVector &BBPreds,
906                                                 PHINode *PN) {
907   Value *OldVal = PN->removeIncomingValue(BB, false);
908   assert(OldVal && "No entry in PHI for Pred BB!");
909 
910   IncomingValueMap IncomingValues;
911 
912   // We are merging two blocks - BB, and the block containing PN - and
913   // as a result we need to redirect edges from the predecessors of BB
914   // to go to the block containing PN, and update PN
915   // accordingly. Since we allow merging blocks in the case where the
916   // predecessor and successor blocks both share some predecessors,
917   // and where some of those common predecessors might have undef
918   // values flowing into PN, we want to rewrite those values to be
919   // consistent with the non-undef values.
920 
921   gatherIncomingValuesToPhi(PN, IncomingValues);
922 
923   // If this incoming value is one of the PHI nodes in BB, the new entries
924   // in the PHI node are the entries from the old PHI.
925   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
926     PHINode *OldValPN = cast<PHINode>(OldVal);
927     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
928       // Note that, since we are merging phi nodes and BB and Succ might
929       // have common predecessors, we could end up with a phi node with
930       // identical incoming branches. This will be cleaned up later (and
931       // will trigger asserts if we try to clean it up now, without also
932       // simplifying the corresponding conditional branch).
933       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
934       Value *PredVal = OldValPN->getIncomingValue(i);
935       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
936                                                     IncomingValues);
937 
938       // And add a new incoming value for this predecessor for the
939       // newly retargeted branch.
940       PN->addIncoming(Selected, PredBB);
941     }
942   } else {
943     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
944       // Update existing incoming values in PN for this
945       // predecessor of BB.
946       BasicBlock *PredBB = BBPreds[i];
947       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
948                                                     IncomingValues);
949 
950       // And add a new incoming value for this predecessor for the
951       // newly retargeted branch.
952       PN->addIncoming(Selected, PredBB);
953     }
954   }
955 
956   replaceUndefValuesInPhi(PN, IncomingValues);
957 }
958 
959 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
960 /// unconditional branch, and contains no instructions other than PHI nodes,
961 /// potential side-effect free intrinsics and the branch.  If possible,
962 /// eliminate BB by rewriting all the predecessors to branch to the successor
963 /// block and return true.  If we can't transform, return false.
964 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
965                                                    DomTreeUpdater *DTU) {
966   assert(BB != &BB->getParent()->getEntryBlock() &&
967          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
968 
969   // We can't eliminate infinite loops.
970   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
971   if (BB == Succ) return false;
972 
973   // Check to see if merging these blocks would cause conflicts for any of the
974   // phi nodes in BB or Succ. If not, we can safely merge.
975   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
976 
977   // Check for cases where Succ has multiple predecessors and a PHI node in BB
978   // has uses which will not disappear when the PHI nodes are merged.  It is
979   // possible to handle such cases, but difficult: it requires checking whether
980   // BB dominates Succ, which is non-trivial to calculate in the case where
981   // Succ has multiple predecessors.  Also, it requires checking whether
982   // constructing the necessary self-referential PHI node doesn't introduce any
983   // conflicts; this isn't too difficult, but the previous code for doing this
984   // was incorrect.
985   //
986   // Note that if this check finds a live use, BB dominates Succ, so BB is
987   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
988   // folding the branch isn't profitable in that case anyway.
989   if (!Succ->getSinglePredecessor()) {
990     BasicBlock::iterator BBI = BB->begin();
991     while (isa<PHINode>(*BBI)) {
992       for (Use &U : BBI->uses()) {
993         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
994           if (PN->getIncomingBlock(U) != BB)
995             return false;
996         } else {
997           return false;
998         }
999       }
1000       ++BBI;
1001     }
1002   }
1003 
1004   // We cannot fold the block if it's a branch to an already present callbr
1005   // successor because that creates duplicate successors.
1006   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1007     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1008       if (Succ == CBI->getDefaultDest())
1009         return false;
1010       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1011         if (Succ == CBI->getIndirectDest(i))
1012           return false;
1013     }
1014   }
1015 
1016   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1017 
1018   SmallVector<DominatorTree::UpdateType, 32> Updates;
1019   if (DTU) {
1020     Updates.push_back({DominatorTree::Delete, BB, Succ});
1021     // All predecessors of BB will be moved to Succ.
1022     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1023       Updates.push_back({DominatorTree::Delete, *I, BB});
1024       // This predecessor of BB may already have Succ as a successor.
1025       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1026         Updates.push_back({DominatorTree::Insert, *I, Succ});
1027     }
1028   }
1029 
1030   if (isa<PHINode>(Succ->begin())) {
1031     // If there is more than one pred of succ, and there are PHI nodes in
1032     // the successor, then we need to add incoming edges for the PHI nodes
1033     //
1034     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1035 
1036     // Loop over all of the PHI nodes in the successor of BB.
1037     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1038       PHINode *PN = cast<PHINode>(I);
1039 
1040       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1041     }
1042   }
1043 
1044   if (Succ->getSinglePredecessor()) {
1045     // BB is the only predecessor of Succ, so Succ will end up with exactly
1046     // the same predecessors BB had.
1047 
1048     // Copy over any phi, debug or lifetime instruction.
1049     BB->getTerminator()->eraseFromParent();
1050     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1051                                BB->getInstList());
1052   } else {
1053     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1054       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1055       assert(PN->use_empty() && "There shouldn't be any uses here!");
1056       PN->eraseFromParent();
1057     }
1058   }
1059 
1060   // If the unconditional branch we replaced contains llvm.loop metadata, we
1061   // add the metadata to the branch instructions in the predecessors.
1062   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1063   Instruction *TI = BB->getTerminator();
1064   if (TI)
1065     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1066       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1067         BasicBlock *Pred = *PI;
1068         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1069       }
1070 
1071   // Everything that jumped to BB now goes to Succ.
1072   BB->replaceAllUsesWith(Succ);
1073   if (!Succ->hasName()) Succ->takeName(BB);
1074 
1075   // Clear the successor list of BB to match updates applying to DTU later.
1076   if (BB->getTerminator())
1077     BB->getInstList().pop_back();
1078   new UnreachableInst(BB->getContext(), BB);
1079   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1080                            "applying corresponding DTU updates.");
1081 
1082   if (DTU) {
1083     DTU->applyUpdatesPermissive(Updates);
1084     DTU->deleteBB(BB);
1085   } else {
1086     BB->eraseFromParent(); // Delete the old basic block.
1087   }
1088   return true;
1089 }
1090 
1091 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1092 /// nodes in this block. This doesn't try to be clever about PHI nodes
1093 /// which differ only in the order of the incoming values, but instcombine
1094 /// orders them so it usually won't matter.
1095 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1096   // This implementation doesn't currently consider undef operands
1097   // specially. Theoretically, two phis which are identical except for
1098   // one having an undef where the other doesn't could be collapsed.
1099 
1100   struct PHIDenseMapInfo {
1101     static PHINode *getEmptyKey() {
1102       return DenseMapInfo<PHINode *>::getEmptyKey();
1103     }
1104 
1105     static PHINode *getTombstoneKey() {
1106       return DenseMapInfo<PHINode *>::getTombstoneKey();
1107     }
1108 
1109     static unsigned getHashValue(PHINode *PN) {
1110       // Compute a hash value on the operands. Instcombine will likely have
1111       // sorted them, which helps expose duplicates, but we have to check all
1112       // the operands to be safe in case instcombine hasn't run.
1113       return static_cast<unsigned>(hash_combine(
1114           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1115           hash_combine_range(PN->block_begin(), PN->block_end())));
1116     }
1117 
1118     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1119       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1120           RHS == getEmptyKey() || RHS == getTombstoneKey())
1121         return LHS == RHS;
1122       return LHS->isIdenticalTo(RHS);
1123     }
1124   };
1125 
1126   // Set of unique PHINodes.
1127   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1128 
1129   // Examine each PHI.
1130   bool Changed = false;
1131   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1132     auto Inserted = PHISet.insert(PN);
1133     if (!Inserted.second) {
1134       // A duplicate. Replace this PHI with its duplicate.
1135       PN->replaceAllUsesWith(*Inserted.first);
1136       PN->eraseFromParent();
1137       Changed = true;
1138 
1139       // The RAUW can change PHIs that we already visited. Start over from the
1140       // beginning.
1141       PHISet.clear();
1142       I = BB->begin();
1143     }
1144   }
1145 
1146   return Changed;
1147 }
1148 
1149 /// enforceKnownAlignment - If the specified pointer points to an object that
1150 /// we control, modify the object's alignment to PrefAlign. This isn't
1151 /// often possible though. If alignment is important, a more reliable approach
1152 /// is to simply align all global variables and allocation instructions to
1153 /// their preferred alignment from the beginning.
1154 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1155                                       unsigned PrefAlign,
1156                                       const DataLayout &DL) {
1157   assert(PrefAlign > Align);
1158 
1159   V = V->stripPointerCasts();
1160 
1161   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1162     // TODO: ideally, computeKnownBits ought to have used
1163     // AllocaInst::getAlignment() in its computation already, making
1164     // the below max redundant. But, as it turns out,
1165     // stripPointerCasts recurses through infinite layers of bitcasts,
1166     // while computeKnownBits is not allowed to traverse more than 6
1167     // levels.
1168     Align = std::max(AI->getAlignment(), Align);
1169     if (PrefAlign <= Align)
1170       return Align;
1171 
1172     // If the preferred alignment is greater than the natural stack alignment
1173     // then don't round up. This avoids dynamic stack realignment.
1174     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1175       return Align;
1176     AI->setAlignment(PrefAlign);
1177     return PrefAlign;
1178   }
1179 
1180   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1181     // TODO: as above, this shouldn't be necessary.
1182     Align = std::max(GO->getAlignment(), Align);
1183     if (PrefAlign <= Align)
1184       return Align;
1185 
1186     // If there is a large requested alignment and we can, bump up the alignment
1187     // of the global.  If the memory we set aside for the global may not be the
1188     // memory used by the final program then it is impossible for us to reliably
1189     // enforce the preferred alignment.
1190     if (!GO->canIncreaseAlignment())
1191       return Align;
1192 
1193     GO->setAlignment(PrefAlign);
1194     return PrefAlign;
1195   }
1196 
1197   return Align;
1198 }
1199 
1200 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1201                                           const DataLayout &DL,
1202                                           const Instruction *CxtI,
1203                                           AssumptionCache *AC,
1204                                           const DominatorTree *DT) {
1205   assert(V->getType()->isPointerTy() &&
1206          "getOrEnforceKnownAlignment expects a pointer!");
1207 
1208   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1209   unsigned TrailZ = Known.countMinTrailingZeros();
1210 
1211   // Avoid trouble with ridiculously large TrailZ values, such as
1212   // those computed from a null pointer.
1213   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1214 
1215   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1216 
1217   // LLVM doesn't support alignments larger than this currently.
1218   Align = std::min(Align, +Value::MaximumAlignment);
1219 
1220   if (PrefAlign > Align)
1221     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1222 
1223   // We don't need to make any adjustment.
1224   return Align;
1225 }
1226 
1227 ///===---------------------------------------------------------------------===//
1228 ///  Dbg Intrinsic utilities
1229 ///
1230 
1231 /// See if there is a dbg.value intrinsic for DIVar before I.
1232 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1233                               Instruction *I) {
1234   // Since we can't guarantee that the original dbg.declare instrinsic
1235   // is removed by LowerDbgDeclare(), we need to make sure that we are
1236   // not inserting the same dbg.value intrinsic over and over.
1237   BasicBlock::InstListType::iterator PrevI(I);
1238   if (PrevI != I->getParent()->getInstList().begin()) {
1239     --PrevI;
1240     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1241       if (DVI->getValue() == I->getOperand(0) &&
1242           DVI->getVariable() == DIVar &&
1243           DVI->getExpression() == DIExpr)
1244         return true;
1245   }
1246   return false;
1247 }
1248 
1249 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1250 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1251                              DIExpression *DIExpr,
1252                              PHINode *APN) {
1253   // Since we can't guarantee that the original dbg.declare instrinsic
1254   // is removed by LowerDbgDeclare(), we need to make sure that we are
1255   // not inserting the same dbg.value intrinsic over and over.
1256   SmallVector<DbgValueInst *, 1> DbgValues;
1257   findDbgValues(DbgValues, APN);
1258   for (auto *DVI : DbgValues) {
1259     assert(DVI->getValue() == APN);
1260     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1261       return true;
1262   }
1263   return false;
1264 }
1265 
1266 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1267 /// (or fragment of the variable) described by \p DII.
1268 ///
1269 /// This is primarily intended as a helper for the different
1270 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1271 /// converted describes an alloca'd variable, so we need to use the
1272 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1273 /// identified as covering an n-bit fragment, if the store size of i1 is at
1274 /// least n bits.
1275 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1276   const DataLayout &DL = DII->getModule()->getDataLayout();
1277   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1278   if (auto FragmentSize = DII->getFragmentSizeInBits())
1279     return ValueSize >= *FragmentSize;
1280   // We can't always calculate the size of the DI variable (e.g. if it is a
1281   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1282   // intead.
1283   if (DII->isAddressOfVariable())
1284     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1285       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1286         return ValueSize >= *FragmentSize;
1287   // Could not determine size of variable. Conservatively return false.
1288   return false;
1289 }
1290 
1291 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1292 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1293 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1294 /// case this DebugLoc leaks into any adjacent instructions.
1295 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1296   // Original dbg.declare must have a location.
1297   DebugLoc DeclareLoc = DII->getDebugLoc();
1298   MDNode *Scope = DeclareLoc.getScope();
1299   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1300   // Produce an unknown location with the correct scope / inlinedAt fields.
1301   return DebugLoc::get(0, 0, Scope, InlinedAt);
1302 }
1303 
1304 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1307                                            StoreInst *SI, DIBuilder &Builder) {
1308   assert(DII->isAddressOfVariable());
1309   auto *DIVar = DII->getVariable();
1310   assert(DIVar && "Missing variable");
1311   auto *DIExpr = DII->getExpression();
1312   Value *DV = SI->getValueOperand();
1313 
1314   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1315 
1316   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1317     // FIXME: If storing to a part of the variable described by the dbg.declare,
1318     // then we want to insert a dbg.value for the corresponding fragment.
1319     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1320                       << *DII << '\n');
1321     // For now, when there is a store to parts of the variable (but we do not
1322     // know which part) we insert an dbg.value instrinsic to indicate that we
1323     // know nothing about the variable's content.
1324     DV = UndefValue::get(DV->getType());
1325     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1326       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1327     return;
1328   }
1329 
1330   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1331     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1332 }
1333 
1334 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1335 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1337                                            LoadInst *LI, DIBuilder &Builder) {
1338   auto *DIVar = DII->getVariable();
1339   auto *DIExpr = DII->getExpression();
1340   assert(DIVar && "Missing variable");
1341 
1342   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1343     return;
1344 
1345   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1346     // FIXME: If only referring to a part of the variable described by the
1347     // dbg.declare, then we want to insert a dbg.value for the corresponding
1348     // fragment.
1349     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1350                       << *DII << '\n');
1351     return;
1352   }
1353 
1354   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1355 
1356   // We are now tracking the loaded value instead of the address. In the
1357   // future if multi-location support is added to the IR, it might be
1358   // preferable to keep tracking both the loaded value and the original
1359   // address in case the alloca can not be elided.
1360   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1361       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1362   DbgValue->insertAfter(LI);
1363 }
1364 
1365 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1366 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1367 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1368                                            PHINode *APN, DIBuilder &Builder) {
1369   auto *DIVar = DII->getVariable();
1370   auto *DIExpr = DII->getExpression();
1371   assert(DIVar && "Missing variable");
1372 
1373   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1374     return;
1375 
1376   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1377     // FIXME: If only referring to a part of the variable described by the
1378     // dbg.declare, then we want to insert a dbg.value for the corresponding
1379     // fragment.
1380     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1381                       << *DII << '\n');
1382     return;
1383   }
1384 
1385   BasicBlock *BB = APN->getParent();
1386   auto InsertionPt = BB->getFirstInsertionPt();
1387 
1388   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1389 
1390   // The block may be a catchswitch block, which does not have a valid
1391   // insertion point.
1392   // FIXME: Insert dbg.value markers in the successors when appropriate.
1393   if (InsertionPt != BB->end())
1394     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1395 }
1396 
1397 /// Determine whether this alloca is either a VLA or an array.
1398 static bool isArray(AllocaInst *AI) {
1399   return AI->isArrayAllocation() ||
1400     AI->getType()->getElementType()->isArrayTy();
1401 }
1402 
1403 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1404 /// of llvm.dbg.value intrinsics.
1405 bool llvm::LowerDbgDeclare(Function &F) {
1406   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1407   SmallVector<DbgDeclareInst *, 4> Dbgs;
1408   for (auto &FI : F)
1409     for (Instruction &BI : FI)
1410       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1411         Dbgs.push_back(DDI);
1412 
1413   if (Dbgs.empty())
1414     return false;
1415 
1416   for (auto &I : Dbgs) {
1417     DbgDeclareInst *DDI = I;
1418     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1419     // If this is an alloca for a scalar variable, insert a dbg.value
1420     // at each load and store to the alloca and erase the dbg.declare.
1421     // The dbg.values allow tracking a variable even if it is not
1422     // stored on the stack, while the dbg.declare can only describe
1423     // the stack slot (and at a lexical-scope granularity). Later
1424     // passes will attempt to elide the stack slot.
1425     if (!AI || isArray(AI))
1426       continue;
1427 
1428     // A volatile load/store means that the alloca can't be elided anyway.
1429     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1430           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1431             return LI->isVolatile();
1432           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1433             return SI->isVolatile();
1434           return false;
1435         }))
1436       continue;
1437 
1438     for (auto &AIUse : AI->uses()) {
1439       User *U = AIUse.getUser();
1440       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1441         if (AIUse.getOperandNo() == 1)
1442           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1443       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1444         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1445       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1446         // This is a call by-value or some other instruction that takes a
1447         // pointer to the variable. Insert a *value* intrinsic that describes
1448         // the variable by dereferencing the alloca.
1449         DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1450         auto *DerefExpr =
1451             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1452         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, NewLoc,
1453                                     CI);
1454       }
1455     }
1456     DDI->eraseFromParent();
1457   }
1458   return true;
1459 }
1460 
1461 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1462 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1463                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1464   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1465   if (InsertedPHIs.size() == 0)
1466     return;
1467 
1468   // Map existing PHI nodes to their dbg.values.
1469   ValueToValueMapTy DbgValueMap;
1470   for (auto &I : *BB) {
1471     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1472       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1473         DbgValueMap.insert({Loc, DbgII});
1474     }
1475   }
1476   if (DbgValueMap.size() == 0)
1477     return;
1478 
1479   // Then iterate through the new PHIs and look to see if they use one of the
1480   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1481   // propagate the info through the new PHI.
1482   LLVMContext &C = BB->getContext();
1483   for (auto PHI : InsertedPHIs) {
1484     BasicBlock *Parent = PHI->getParent();
1485     // Avoid inserting an intrinsic into an EH block.
1486     if (Parent->getFirstNonPHI()->isEHPad())
1487       continue;
1488     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1489     for (auto VI : PHI->operand_values()) {
1490       auto V = DbgValueMap.find(VI);
1491       if (V != DbgValueMap.end()) {
1492         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1493         Instruction *NewDbgII = DbgII->clone();
1494         NewDbgII->setOperand(0, PhiMAV);
1495         auto InsertionPt = Parent->getFirstInsertionPt();
1496         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1497         NewDbgII->insertBefore(&*InsertionPt);
1498       }
1499     }
1500   }
1501 }
1502 
1503 /// Finds all intrinsics declaring local variables as living in the memory that
1504 /// 'V' points to. This may include a mix of dbg.declare and
1505 /// dbg.addr intrinsics.
1506 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1507   // This function is hot. Check whether the value has any metadata to avoid a
1508   // DenseMap lookup.
1509   if (!V->isUsedByMetadata())
1510     return {};
1511   auto *L = LocalAsMetadata::getIfExists(V);
1512   if (!L)
1513     return {};
1514   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1515   if (!MDV)
1516     return {};
1517 
1518   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1519   for (User *U : MDV->users()) {
1520     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1521       if (DII->isAddressOfVariable())
1522         Declares.push_back(DII);
1523   }
1524 
1525   return Declares;
1526 }
1527 
1528 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1529   // This function is hot. Check whether the value has any metadata to avoid a
1530   // DenseMap lookup.
1531   if (!V->isUsedByMetadata())
1532     return;
1533   if (auto *L = LocalAsMetadata::getIfExists(V))
1534     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1535       for (User *U : MDV->users())
1536         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1537           DbgValues.push_back(DVI);
1538 }
1539 
1540 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1541                         Value *V) {
1542   // This function is hot. Check whether the value has any metadata to avoid a
1543   // DenseMap lookup.
1544   if (!V->isUsedByMetadata())
1545     return;
1546   if (auto *L = LocalAsMetadata::getIfExists(V))
1547     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1548       for (User *U : MDV->users())
1549         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1550           DbgUsers.push_back(DII);
1551 }
1552 
1553 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1554                              Instruction *InsertBefore, DIBuilder &Builder,
1555                              bool DerefBefore, int Offset, bool DerefAfter) {
1556   auto DbgAddrs = FindDbgAddrUses(Address);
1557   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1558     DebugLoc Loc = DII->getDebugLoc();
1559     auto *DIVar = DII->getVariable();
1560     auto *DIExpr = DII->getExpression();
1561     assert(DIVar && "Missing variable");
1562     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1563     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1564     // llvm.dbg.declare.
1565     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1566     if (DII == InsertBefore)
1567       InsertBefore = InsertBefore->getNextNode();
1568     DII->eraseFromParent();
1569   }
1570   return !DbgAddrs.empty();
1571 }
1572 
1573 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1574                                       DIBuilder &Builder, bool DerefBefore,
1575                                       int Offset, bool DerefAfter) {
1576   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1577                            DerefBefore, Offset, DerefAfter);
1578 }
1579 
1580 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1581                                         DIBuilder &Builder, int Offset) {
1582   DebugLoc Loc = DVI->getDebugLoc();
1583   auto *DIVar = DVI->getVariable();
1584   auto *DIExpr = DVI->getExpression();
1585   assert(DIVar && "Missing variable");
1586 
1587   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1588   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1589   // it and give up.
1590   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1591       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1592     return;
1593 
1594   // Insert the offset immediately after the first deref.
1595   // We could just change the offset argument of dbg.value, but it's unsigned...
1596   if (Offset) {
1597     SmallVector<uint64_t, 4> Ops;
1598     Ops.push_back(dwarf::DW_OP_deref);
1599     DIExpression::appendOffset(Ops, Offset);
1600     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1601     DIExpr = Builder.createExpression(Ops);
1602   }
1603 
1604   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1605   DVI->eraseFromParent();
1606 }
1607 
1608 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1609                                     DIBuilder &Builder, int Offset) {
1610   if (auto *L = LocalAsMetadata::getIfExists(AI))
1611     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1612       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1613         Use &U = *UI++;
1614         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1615           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1616       }
1617 }
1618 
1619 /// Wrap \p V in a ValueAsMetadata instance.
1620 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1621   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1622 }
1623 
1624 bool llvm::salvageDebugInfo(Instruction &I) {
1625   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1626   findDbgUsers(DbgUsers, &I);
1627   if (DbgUsers.empty())
1628     return false;
1629 
1630   return salvageDebugInfoForDbgValues(I, DbgUsers);
1631 }
1632 
1633 bool llvm::salvageDebugInfoForDbgValues(
1634     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1635   auto &Ctx = I.getContext();
1636   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1637 
1638   for (auto *DII : DbgUsers) {
1639     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1640     // are implicitly pointing out the value as a DWARF memory location
1641     // description.
1642     bool StackValue = isa<DbgValueInst>(DII);
1643 
1644     DIExpression *DIExpr =
1645         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1646 
1647     // salvageDebugInfoImpl should fail on examining the first element of
1648     // DbgUsers, or none of them.
1649     if (!DIExpr)
1650       return false;
1651 
1652     DII->setOperand(0, wrapMD(I.getOperand(0)));
1653     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1654     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1655   }
1656 
1657   return true;
1658 }
1659 
1660 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1661                                          DIExpression *SrcDIExpr,
1662                                          bool WithStackValue) {
1663   auto &M = *I.getModule();
1664   auto &DL = M.getDataLayout();
1665 
1666   // Apply a vector of opcodes to the source DIExpression.
1667   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1668     DIExpression *DIExpr = SrcDIExpr;
1669     if (!Ops.empty()) {
1670       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1671     }
1672     return DIExpr;
1673   };
1674 
1675   // Apply the given offset to the source DIExpression.
1676   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1677     SmallVector<uint64_t, 8> Ops;
1678     DIExpression::appendOffset(Ops, Offset);
1679     return doSalvage(Ops);
1680   };
1681 
1682   // initializer-list helper for applying operators to the source DIExpression.
1683   auto applyOps =
1684       [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * {
1685     SmallVector<uint64_t, 8> Ops(Opcodes);
1686     return doSalvage(Ops);
1687   };
1688 
1689   if (auto *CI = dyn_cast<CastInst>(&I)) {
1690     // No-op casts and zexts are irrelevant for debug info.
1691     if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1692       return SrcDIExpr;
1693 
1694     Type *Type = CI->getType();
1695     // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1696     if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I)))
1697       return nullptr;
1698 
1699     Value *FromValue = CI->getOperand(0);
1700     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1701 
1702     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1703 
1704     // The result of the cast will be sign extended iff the instruction is a
1705     // SExt; signedness is otherwise irrelevant on the expression stack.
1706     unsigned Encoding =
1707         isa<SExtInst>(&I) ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
1708 
1709     return applyOps({dwarf::DW_OP_LLVM_convert, FromTypeBitSize, Encoding,
1710                      dwarf::DW_OP_LLVM_convert, ToTypeBitSize, Encoding});
1711   }
1712 
1713   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1714     unsigned BitWidth =
1715         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1716     // Rewrite a constant GEP into a DIExpression.
1717     APInt Offset(BitWidth, 0);
1718     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1719       return applyOffset(Offset.getSExtValue());
1720     } else {
1721       return nullptr;
1722     }
1723   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1724     // Rewrite binary operations with constant integer operands.
1725     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1726     if (!ConstInt || ConstInt->getBitWidth() > 64)
1727       return nullptr;
1728 
1729     uint64_t Val = ConstInt->getSExtValue();
1730     switch (BI->getOpcode()) {
1731     case Instruction::Add:
1732       return applyOffset(Val);
1733     case Instruction::Sub:
1734       return applyOffset(-int64_t(Val));
1735     case Instruction::Mul:
1736       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1737     case Instruction::SDiv:
1738       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1739     case Instruction::SRem:
1740       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1741     case Instruction::Or:
1742       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1743     case Instruction::And:
1744       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1745     case Instruction::Xor:
1746       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1747     case Instruction::Shl:
1748       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1749     case Instruction::LShr:
1750       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1751     case Instruction::AShr:
1752       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1753     default:
1754       // TODO: Salvage constants from each kind of binop we know about.
1755       return nullptr;
1756     }
1757     // *Not* to do: we should not attempt to salvage load instructions,
1758     // because the validity and lifetime of a dbg.value containing
1759     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1760   }
1761   return nullptr;
1762 }
1763 
1764 /// A replacement for a dbg.value expression.
1765 using DbgValReplacement = Optional<DIExpression *>;
1766 
1767 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1768 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1769 /// changes are made.
1770 static bool rewriteDebugUsers(
1771     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1772     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1773   // Find debug users of From.
1774   SmallVector<DbgVariableIntrinsic *, 1> Users;
1775   findDbgUsers(Users, &From);
1776   if (Users.empty())
1777     return false;
1778 
1779   // Prevent use-before-def of To.
1780   bool Changed = false;
1781   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1782   if (isa<Instruction>(&To)) {
1783     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1784 
1785     for (auto *DII : Users) {
1786       // It's common to see a debug user between From and DomPoint. Move it
1787       // after DomPoint to preserve the variable update without any reordering.
1788       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1789         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1790         DII->moveAfter(&DomPoint);
1791         Changed = true;
1792 
1793       // Users which otherwise aren't dominated by the replacement value must
1794       // be salvaged or deleted.
1795       } else if (!DT.dominates(&DomPoint, DII)) {
1796         DeleteOrSalvage.insert(DII);
1797       }
1798     }
1799   }
1800 
1801   // Update debug users without use-before-def risk.
1802   for (auto *DII : Users) {
1803     if (DeleteOrSalvage.count(DII))
1804       continue;
1805 
1806     LLVMContext &Ctx = DII->getContext();
1807     DbgValReplacement DVR = RewriteExpr(*DII);
1808     if (!DVR)
1809       continue;
1810 
1811     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1812     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1813     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1814     Changed = true;
1815   }
1816 
1817   if (!DeleteOrSalvage.empty()) {
1818     // Try to salvage the remaining debug users.
1819     Changed |= salvageDebugInfo(From);
1820 
1821     // Delete the debug users which weren't salvaged.
1822     for (auto *DII : DeleteOrSalvage) {
1823       if (DII->getVariableLocation() == &From) {
1824         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1825         DII->eraseFromParent();
1826         Changed = true;
1827       }
1828     }
1829   }
1830 
1831   return Changed;
1832 }
1833 
1834 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1835 /// losslessly preserve the bits and semantics of the value. This predicate is
1836 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1837 ///
1838 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1839 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1840 /// and also does not allow lossless pointer <-> integer conversions.
1841 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1842                                          Type *ToTy) {
1843   // Trivially compatible types.
1844   if (FromTy == ToTy)
1845     return true;
1846 
1847   // Handle compatible pointer <-> integer conversions.
1848   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1849     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1850     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1851                               !DL.isNonIntegralPointerType(ToTy);
1852     return SameSize && LosslessConversion;
1853   }
1854 
1855   // TODO: This is not exhaustive.
1856   return false;
1857 }
1858 
1859 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1860                                  Instruction &DomPoint, DominatorTree &DT) {
1861   // Exit early if From has no debug users.
1862   if (!From.isUsedByMetadata())
1863     return false;
1864 
1865   assert(&From != &To && "Can't replace something with itself");
1866 
1867   Type *FromTy = From.getType();
1868   Type *ToTy = To.getType();
1869 
1870   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1871     return DII.getExpression();
1872   };
1873 
1874   // Handle no-op conversions.
1875   Module &M = *From.getModule();
1876   const DataLayout &DL = M.getDataLayout();
1877   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1878     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1879 
1880   // Handle integer-to-integer widening and narrowing.
1881   // FIXME: Use DW_OP_convert when it's available everywhere.
1882   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1883     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1884     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1885     assert(FromBits != ToBits && "Unexpected no-op conversion");
1886 
1887     // When the width of the result grows, assume that a debugger will only
1888     // access the low `FromBits` bits when inspecting the source variable.
1889     if (FromBits < ToBits)
1890       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1891 
1892     // The width of the result has shrunk. Use sign/zero extension to describe
1893     // the source variable's high bits.
1894     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1895       DILocalVariable *Var = DII.getVariable();
1896 
1897       // Without knowing signedness, sign/zero extension isn't possible.
1898       auto Signedness = Var->getSignedness();
1899       if (!Signedness)
1900         return None;
1901 
1902       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1903       dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
1904       SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert, ToBits, TK,
1905                                    dwarf::DW_OP_LLVM_convert, FromBits, TK});
1906       return DIExpression::appendToStack(DII.getExpression(), Ops);
1907     };
1908     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1909   }
1910 
1911   // TODO: Floating-point conversions, vectors.
1912   return false;
1913 }
1914 
1915 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1916   unsigned NumDeadInst = 0;
1917   // Delete the instructions backwards, as it has a reduced likelihood of
1918   // having to update as many def-use and use-def chains.
1919   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1920   while (EndInst != &BB->front()) {
1921     // Delete the next to last instruction.
1922     Instruction *Inst = &*--EndInst->getIterator();
1923     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1924       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1925     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1926       EndInst = Inst;
1927       continue;
1928     }
1929     if (!isa<DbgInfoIntrinsic>(Inst))
1930       ++NumDeadInst;
1931     Inst->eraseFromParent();
1932   }
1933   return NumDeadInst;
1934 }
1935 
1936 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1937                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1938                                    MemorySSAUpdater *MSSAU) {
1939   BasicBlock *BB = I->getParent();
1940   std::vector <DominatorTree::UpdateType> Updates;
1941 
1942   if (MSSAU)
1943     MSSAU->changeToUnreachable(I);
1944 
1945   // Loop over all of the successors, removing BB's entry from any PHI
1946   // nodes.
1947   if (DTU)
1948     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1949   for (BasicBlock *Successor : successors(BB)) {
1950     Successor->removePredecessor(BB, PreserveLCSSA);
1951     if (DTU)
1952       Updates.push_back({DominatorTree::Delete, BB, Successor});
1953   }
1954   // Insert a call to llvm.trap right before this.  This turns the undefined
1955   // behavior into a hard fail instead of falling through into random code.
1956   if (UseLLVMTrap) {
1957     Function *TrapFn =
1958       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1959     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1960     CallTrap->setDebugLoc(I->getDebugLoc());
1961   }
1962   auto *UI = new UnreachableInst(I->getContext(), I);
1963   UI->setDebugLoc(I->getDebugLoc());
1964 
1965   // All instructions after this are dead.
1966   unsigned NumInstrsRemoved = 0;
1967   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1968   while (BBI != BBE) {
1969     if (!BBI->use_empty())
1970       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1971     BB->getInstList().erase(BBI++);
1972     ++NumInstrsRemoved;
1973   }
1974   if (DTU)
1975     DTU->applyUpdatesPermissive(Updates);
1976   return NumInstrsRemoved;
1977 }
1978 
1979 /// changeToCall - Convert the specified invoke into a normal call.
1980 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1981   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1982   SmallVector<OperandBundleDef, 1> OpBundles;
1983   II->getOperandBundlesAsDefs(OpBundles);
1984   CallInst *NewCall = CallInst::Create(
1985       II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II);
1986   NewCall->takeName(II);
1987   NewCall->setCallingConv(II->getCallingConv());
1988   NewCall->setAttributes(II->getAttributes());
1989   NewCall->setDebugLoc(II->getDebugLoc());
1990   NewCall->copyMetadata(*II);
1991   II->replaceAllUsesWith(NewCall);
1992 
1993   // Follow the call by a branch to the normal destination.
1994   BasicBlock *NormalDestBB = II->getNormalDest();
1995   BranchInst::Create(NormalDestBB, II);
1996 
1997   // Update PHI nodes in the unwind destination
1998   BasicBlock *BB = II->getParent();
1999   BasicBlock *UnwindDestBB = II->getUnwindDest();
2000   UnwindDestBB->removePredecessor(BB);
2001   II->eraseFromParent();
2002   if (DTU)
2003     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2004 }
2005 
2006 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2007                                                    BasicBlock *UnwindEdge) {
2008   BasicBlock *BB = CI->getParent();
2009 
2010   // Convert this function call into an invoke instruction.  First, split the
2011   // basic block.
2012   BasicBlock *Split =
2013       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2014 
2015   // Delete the unconditional branch inserted by splitBasicBlock
2016   BB->getInstList().pop_back();
2017 
2018   // Create the new invoke instruction.
2019   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2020   SmallVector<OperandBundleDef, 1> OpBundles;
2021 
2022   CI->getOperandBundlesAsDefs(OpBundles);
2023 
2024   // Note: we're round tripping operand bundles through memory here, and that
2025   // can potentially be avoided with a cleverer API design that we do not have
2026   // as of this time.
2027 
2028   InvokeInst *II =
2029       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2030                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2031   II->setDebugLoc(CI->getDebugLoc());
2032   II->setCallingConv(CI->getCallingConv());
2033   II->setAttributes(CI->getAttributes());
2034 
2035   // Make sure that anything using the call now uses the invoke!  This also
2036   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2037   CI->replaceAllUsesWith(II);
2038 
2039   // Delete the original call
2040   Split->getInstList().pop_front();
2041   return Split;
2042 }
2043 
2044 static bool markAliveBlocks(Function &F,
2045                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2046                             DomTreeUpdater *DTU = nullptr) {
2047   SmallVector<BasicBlock*, 128> Worklist;
2048   BasicBlock *BB = &F.front();
2049   Worklist.push_back(BB);
2050   Reachable.insert(BB);
2051   bool Changed = false;
2052   do {
2053     BB = Worklist.pop_back_val();
2054 
2055     // Do a quick scan of the basic block, turning any obviously unreachable
2056     // instructions into LLVM unreachable insts.  The instruction combining pass
2057     // canonicalizes unreachable insts into stores to null or undef.
2058     for (Instruction &I : *BB) {
2059       if (auto *CI = dyn_cast<CallInst>(&I)) {
2060         Value *Callee = CI->getCalledValue();
2061         // Handle intrinsic calls.
2062         if (Function *F = dyn_cast<Function>(Callee)) {
2063           auto IntrinsicID = F->getIntrinsicID();
2064           // Assumptions that are known to be false are equivalent to
2065           // unreachable. Also, if the condition is undefined, then we make the
2066           // choice most beneficial to the optimizer, and choose that to also be
2067           // unreachable.
2068           if (IntrinsicID == Intrinsic::assume) {
2069             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2070               // Don't insert a call to llvm.trap right before the unreachable.
2071               changeToUnreachable(CI, false, false, DTU);
2072               Changed = true;
2073               break;
2074             }
2075           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2076             // A call to the guard intrinsic bails out of the current
2077             // compilation unit if the predicate passed to it is false. If the
2078             // predicate is a constant false, then we know the guard will bail
2079             // out of the current compile unconditionally, so all code following
2080             // it is dead.
2081             //
2082             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2083             // guards to treat `undef` as `false` since a guard on `undef` can
2084             // still be useful for widening.
2085             if (match(CI->getArgOperand(0), m_Zero()))
2086               if (!isa<UnreachableInst>(CI->getNextNode())) {
2087                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2088                                     false, DTU);
2089                 Changed = true;
2090                 break;
2091               }
2092           }
2093         } else if ((isa<ConstantPointerNull>(Callee) &&
2094                     !NullPointerIsDefined(CI->getFunction())) ||
2095                    isa<UndefValue>(Callee)) {
2096           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2097           Changed = true;
2098           break;
2099         }
2100         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2101           // If we found a call to a no-return function, insert an unreachable
2102           // instruction after it.  Make sure there isn't *already* one there
2103           // though.
2104           if (!isa<UnreachableInst>(CI->getNextNode())) {
2105             // Don't insert a call to llvm.trap right before the unreachable.
2106             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2107             Changed = true;
2108           }
2109           break;
2110         }
2111       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2112         // Store to undef and store to null are undefined and used to signal
2113         // that they should be changed to unreachable by passes that can't
2114         // modify the CFG.
2115 
2116         // Don't touch volatile stores.
2117         if (SI->isVolatile()) continue;
2118 
2119         Value *Ptr = SI->getOperand(1);
2120 
2121         if (isa<UndefValue>(Ptr) ||
2122             (isa<ConstantPointerNull>(Ptr) &&
2123              !NullPointerIsDefined(SI->getFunction(),
2124                                    SI->getPointerAddressSpace()))) {
2125           changeToUnreachable(SI, true, false, DTU);
2126           Changed = true;
2127           break;
2128         }
2129       }
2130     }
2131 
2132     Instruction *Terminator = BB->getTerminator();
2133     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2134       // Turn invokes that call 'nounwind' functions into ordinary calls.
2135       Value *Callee = II->getCalledValue();
2136       if ((isa<ConstantPointerNull>(Callee) &&
2137            !NullPointerIsDefined(BB->getParent())) ||
2138           isa<UndefValue>(Callee)) {
2139         changeToUnreachable(II, true, false, DTU);
2140         Changed = true;
2141       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2142         if (II->use_empty() && II->onlyReadsMemory()) {
2143           // jump to the normal destination branch.
2144           BasicBlock *NormalDestBB = II->getNormalDest();
2145           BasicBlock *UnwindDestBB = II->getUnwindDest();
2146           BranchInst::Create(NormalDestBB, II);
2147           UnwindDestBB->removePredecessor(II->getParent());
2148           II->eraseFromParent();
2149           if (DTU)
2150             DTU->applyUpdatesPermissive(
2151                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2152         } else
2153           changeToCall(II, DTU);
2154         Changed = true;
2155       }
2156     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2157       // Remove catchpads which cannot be reached.
2158       struct CatchPadDenseMapInfo {
2159         static CatchPadInst *getEmptyKey() {
2160           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2161         }
2162 
2163         static CatchPadInst *getTombstoneKey() {
2164           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2165         }
2166 
2167         static unsigned getHashValue(CatchPadInst *CatchPad) {
2168           return static_cast<unsigned>(hash_combine_range(
2169               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2170         }
2171 
2172         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2173           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2174               RHS == getEmptyKey() || RHS == getTombstoneKey())
2175             return LHS == RHS;
2176           return LHS->isIdenticalTo(RHS);
2177         }
2178       };
2179 
2180       // Set of unique CatchPads.
2181       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2182                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2183           HandlerSet;
2184       detail::DenseSetEmpty Empty;
2185       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2186                                              E = CatchSwitch->handler_end();
2187            I != E; ++I) {
2188         BasicBlock *HandlerBB = *I;
2189         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2190         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2191           CatchSwitch->removeHandler(I);
2192           --I;
2193           --E;
2194           Changed = true;
2195         }
2196       }
2197     }
2198 
2199     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2200     for (BasicBlock *Successor : successors(BB))
2201       if (Reachable.insert(Successor).second)
2202         Worklist.push_back(Successor);
2203   } while (!Worklist.empty());
2204   return Changed;
2205 }
2206 
2207 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2208   Instruction *TI = BB->getTerminator();
2209 
2210   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2211     changeToCall(II, DTU);
2212     return;
2213   }
2214 
2215   Instruction *NewTI;
2216   BasicBlock *UnwindDest;
2217 
2218   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2219     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2220     UnwindDest = CRI->getUnwindDest();
2221   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2222     auto *NewCatchSwitch = CatchSwitchInst::Create(
2223         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2224         CatchSwitch->getName(), CatchSwitch);
2225     for (BasicBlock *PadBB : CatchSwitch->handlers())
2226       NewCatchSwitch->addHandler(PadBB);
2227 
2228     NewTI = NewCatchSwitch;
2229     UnwindDest = CatchSwitch->getUnwindDest();
2230   } else {
2231     llvm_unreachable("Could not find unwind successor");
2232   }
2233 
2234   NewTI->takeName(TI);
2235   NewTI->setDebugLoc(TI->getDebugLoc());
2236   UnwindDest->removePredecessor(BB);
2237   TI->replaceAllUsesWith(NewTI);
2238   TI->eraseFromParent();
2239   if (DTU)
2240     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2241 }
2242 
2243 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2244 /// if they are in a dead cycle.  Return true if a change was made, false
2245 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2246 /// after modifying the CFG.
2247 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2248                                    DomTreeUpdater *DTU,
2249                                    MemorySSAUpdater *MSSAU) {
2250   SmallPtrSet<BasicBlock*, 16> Reachable;
2251   bool Changed = markAliveBlocks(F, Reachable, DTU);
2252 
2253   // If there are unreachable blocks in the CFG...
2254   if (Reachable.size() == F.size())
2255     return Changed;
2256 
2257   assert(Reachable.size() < F.size());
2258   NumRemoved += F.size()-Reachable.size();
2259 
2260   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2261   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2262     auto *BB = &*I;
2263     if (Reachable.count(BB))
2264       continue;
2265     DeadBlockSet.insert(BB);
2266   }
2267 
2268   if (MSSAU)
2269     MSSAU->removeBlocks(DeadBlockSet);
2270 
2271   // Loop over all of the basic blocks that are not reachable, dropping all of
2272   // their internal references. Update DTU and LVI if available.
2273   std::vector<DominatorTree::UpdateType> Updates;
2274   for (auto *BB : DeadBlockSet) {
2275     for (BasicBlock *Successor : successors(BB)) {
2276       if (!DeadBlockSet.count(Successor))
2277         Successor->removePredecessor(BB);
2278       if (DTU)
2279         Updates.push_back({DominatorTree::Delete, BB, Successor});
2280     }
2281     if (LVI)
2282       LVI->eraseBlock(BB);
2283     BB->dropAllReferences();
2284   }
2285   for (Function::iterator I = ++F.begin(); I != F.end();) {
2286     auto *BB = &*I;
2287     if (Reachable.count(BB)) {
2288       ++I;
2289       continue;
2290     }
2291     if (DTU) {
2292       // Remove the terminator of BB to clear the successor list of BB.
2293       if (BB->getTerminator())
2294         BB->getInstList().pop_back();
2295       new UnreachableInst(BB->getContext(), BB);
2296       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2297                                "applying corresponding DTU updates.");
2298       ++I;
2299     } else {
2300       I = F.getBasicBlockList().erase(I);
2301     }
2302   }
2303 
2304   if (DTU) {
2305     DTU->applyUpdatesPermissive(Updates);
2306     bool Deleted = false;
2307     for (auto *BB : DeadBlockSet) {
2308       if (DTU->isBBPendingDeletion(BB))
2309         --NumRemoved;
2310       else
2311         Deleted = true;
2312       DTU->deleteBB(BB);
2313     }
2314     if (!Deleted)
2315       return false;
2316   }
2317   return true;
2318 }
2319 
2320 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2321                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2322   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2323   K->dropUnknownNonDebugMetadata(KnownIDs);
2324   K->getAllMetadataOtherThanDebugLoc(Metadata);
2325   for (const auto &MD : Metadata) {
2326     unsigned Kind = MD.first;
2327     MDNode *JMD = J->getMetadata(Kind);
2328     MDNode *KMD = MD.second;
2329 
2330     switch (Kind) {
2331       default:
2332         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2333         break;
2334       case LLVMContext::MD_dbg:
2335         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2336       case LLVMContext::MD_tbaa:
2337         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2338         break;
2339       case LLVMContext::MD_alias_scope:
2340         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2341         break;
2342       case LLVMContext::MD_noalias:
2343       case LLVMContext::MD_mem_parallel_loop_access:
2344         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2345         break;
2346       case LLVMContext::MD_access_group:
2347         K->setMetadata(LLVMContext::MD_access_group,
2348                        intersectAccessGroups(K, J));
2349         break;
2350       case LLVMContext::MD_range:
2351 
2352         // If K does move, use most generic range. Otherwise keep the range of
2353         // K.
2354         if (DoesKMove)
2355           // FIXME: If K does move, we should drop the range info and nonnull.
2356           //        Currently this function is used with DoesKMove in passes
2357           //        doing hoisting/sinking and the current behavior of using the
2358           //        most generic range is correct in those cases.
2359           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2360         break;
2361       case LLVMContext::MD_fpmath:
2362         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2363         break;
2364       case LLVMContext::MD_invariant_load:
2365         // Only set the !invariant.load if it is present in both instructions.
2366         K->setMetadata(Kind, JMD);
2367         break;
2368       case LLVMContext::MD_nonnull:
2369         // If K does move, keep nonull if it is present in both instructions.
2370         if (DoesKMove)
2371           K->setMetadata(Kind, JMD);
2372         break;
2373       case LLVMContext::MD_invariant_group:
2374         // Preserve !invariant.group in K.
2375         break;
2376       case LLVMContext::MD_align:
2377         K->setMetadata(Kind,
2378           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2379         break;
2380       case LLVMContext::MD_dereferenceable:
2381       case LLVMContext::MD_dereferenceable_or_null:
2382         K->setMetadata(Kind,
2383           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2384         break;
2385     }
2386   }
2387   // Set !invariant.group from J if J has it. If both instructions have it
2388   // then we will just pick it from J - even when they are different.
2389   // Also make sure that K is load or store - f.e. combining bitcast with load
2390   // could produce bitcast with invariant.group metadata, which is invalid.
2391   // FIXME: we should try to preserve both invariant.group md if they are
2392   // different, but right now instruction can only have one invariant.group.
2393   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2394     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2395       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2396 }
2397 
2398 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2399                                  bool KDominatesJ) {
2400   unsigned KnownIDs[] = {
2401       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2402       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2403       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2404       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2405       LLVMContext::MD_dereferenceable,
2406       LLVMContext::MD_dereferenceable_or_null,
2407       LLVMContext::MD_access_group};
2408   combineMetadata(K, J, KnownIDs, KDominatesJ);
2409 }
2410 
2411 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2412   auto *ReplInst = dyn_cast<Instruction>(Repl);
2413   if (!ReplInst)
2414     return;
2415 
2416   // Patch the replacement so that it is not more restrictive than the value
2417   // being replaced.
2418   // Note that if 'I' is a load being replaced by some operation,
2419   // for example, by an arithmetic operation, then andIRFlags()
2420   // would just erase all math flags from the original arithmetic
2421   // operation, which is clearly not wanted and not needed.
2422   if (!isa<LoadInst>(I))
2423     ReplInst->andIRFlags(I);
2424 
2425   // FIXME: If both the original and replacement value are part of the
2426   // same control-flow region (meaning that the execution of one
2427   // guarantees the execution of the other), then we can combine the
2428   // noalias scopes here and do better than the general conservative
2429   // answer used in combineMetadata().
2430 
2431   // In general, GVN unifies expressions over different control-flow
2432   // regions, and so we need a conservative combination of the noalias
2433   // scopes.
2434   static const unsigned KnownIDs[] = {
2435       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2436       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2437       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2438       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2439       LLVMContext::MD_access_group};
2440   combineMetadata(ReplInst, I, KnownIDs, false);
2441 }
2442 
2443 template <typename RootType, typename DominatesFn>
2444 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2445                                          const RootType &Root,
2446                                          const DominatesFn &Dominates) {
2447   assert(From->getType() == To->getType());
2448 
2449   unsigned Count = 0;
2450   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2451        UI != UE;) {
2452     Use &U = *UI++;
2453     if (!Dominates(Root, U))
2454       continue;
2455     U.set(To);
2456     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2457                       << "' as " << *To << " in " << *U << "\n");
2458     ++Count;
2459   }
2460   return Count;
2461 }
2462 
2463 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2464    assert(From->getType() == To->getType());
2465    auto *BB = From->getParent();
2466    unsigned Count = 0;
2467 
2468   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2469        UI != UE;) {
2470     Use &U = *UI++;
2471     auto *I = cast<Instruction>(U.getUser());
2472     if (I->getParent() == BB)
2473       continue;
2474     U.set(To);
2475     ++Count;
2476   }
2477   return Count;
2478 }
2479 
2480 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2481                                         DominatorTree &DT,
2482                                         const BasicBlockEdge &Root) {
2483   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2484     return DT.dominates(Root, U);
2485   };
2486   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2487 }
2488 
2489 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2490                                         DominatorTree &DT,
2491                                         const BasicBlock *BB) {
2492   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2493     auto *I = cast<Instruction>(U.getUser())->getParent();
2494     return DT.properlyDominates(BB, I);
2495   };
2496   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2497 }
2498 
2499 bool llvm::callsGCLeafFunction(const CallBase *Call,
2500                                const TargetLibraryInfo &TLI) {
2501   // Check if the function is specifically marked as a gc leaf function.
2502   if (Call->hasFnAttr("gc-leaf-function"))
2503     return true;
2504   if (const Function *F = Call->getCalledFunction()) {
2505     if (F->hasFnAttribute("gc-leaf-function"))
2506       return true;
2507 
2508     if (auto IID = F->getIntrinsicID())
2509       // Most LLVM intrinsics do not take safepoints.
2510       return IID != Intrinsic::experimental_gc_statepoint &&
2511              IID != Intrinsic::experimental_deoptimize;
2512   }
2513 
2514   // Lib calls can be materialized by some passes, and won't be
2515   // marked as 'gc-leaf-function.' All available Libcalls are
2516   // GC-leaf.
2517   LibFunc LF;
2518   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2519     return TLI.has(LF);
2520   }
2521 
2522   return false;
2523 }
2524 
2525 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2526                                LoadInst &NewLI) {
2527   auto *NewTy = NewLI.getType();
2528 
2529   // This only directly applies if the new type is also a pointer.
2530   if (NewTy->isPointerTy()) {
2531     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2532     return;
2533   }
2534 
2535   // The only other translation we can do is to integral loads with !range
2536   // metadata.
2537   if (!NewTy->isIntegerTy())
2538     return;
2539 
2540   MDBuilder MDB(NewLI.getContext());
2541   const Value *Ptr = OldLI.getPointerOperand();
2542   auto *ITy = cast<IntegerType>(NewTy);
2543   auto *NullInt = ConstantExpr::getPtrToInt(
2544       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2545   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2546   NewLI.setMetadata(LLVMContext::MD_range,
2547                     MDB.createRange(NonNullInt, NullInt));
2548 }
2549 
2550 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2551                              MDNode *N, LoadInst &NewLI) {
2552   auto *NewTy = NewLI.getType();
2553 
2554   // Give up unless it is converted to a pointer where there is a single very
2555   // valuable mapping we can do reliably.
2556   // FIXME: It would be nice to propagate this in more ways, but the type
2557   // conversions make it hard.
2558   if (!NewTy->isPointerTy())
2559     return;
2560 
2561   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2562   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2563     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2564     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2565   }
2566 }
2567 
2568 void llvm::dropDebugUsers(Instruction &I) {
2569   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2570   findDbgUsers(DbgUsers, &I);
2571   for (auto *DII : DbgUsers)
2572     DII->eraseFromParent();
2573 }
2574 
2575 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2576                                     BasicBlock *BB) {
2577   // Since we are moving the instructions out of its basic block, we do not
2578   // retain their original debug locations (DILocations) and debug intrinsic
2579   // instructions.
2580   //
2581   // Doing so would degrade the debugging experience and adversely affect the
2582   // accuracy of profiling information.
2583   //
2584   // Currently, when hoisting the instructions, we take the following actions:
2585   // - Remove their debug intrinsic instructions.
2586   // - Set their debug locations to the values from the insertion point.
2587   //
2588   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2589   // need to be deleted, is because there will not be any instructions with a
2590   // DILocation in either branch left after performing the transformation. We
2591   // can only insert a dbg.value after the two branches are joined again.
2592   //
2593   // See PR38762, PR39243 for more details.
2594   //
2595   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2596   // encode predicated DIExpressions that yield different results on different
2597   // code paths.
2598   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2599     Instruction *I = &*II;
2600     I->dropUnknownNonDebugMetadata();
2601     if (I->isUsedByMetadata())
2602       dropDebugUsers(*I);
2603     if (isa<DbgInfoIntrinsic>(I)) {
2604       // Remove DbgInfo Intrinsics.
2605       II = I->eraseFromParent();
2606       continue;
2607     }
2608     I->setDebugLoc(InsertPt->getDebugLoc());
2609     ++II;
2610   }
2611   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2612                                  BB->begin(),
2613                                  BB->getTerminator()->getIterator());
2614 }
2615 
2616 namespace {
2617 
2618 /// A potential constituent of a bitreverse or bswap expression. See
2619 /// collectBitParts for a fuller explanation.
2620 struct BitPart {
2621   BitPart(Value *P, unsigned BW) : Provider(P) {
2622     Provenance.resize(BW);
2623   }
2624 
2625   /// The Value that this is a bitreverse/bswap of.
2626   Value *Provider;
2627 
2628   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2629   /// in Provider becomes bit B in the result of this expression.
2630   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2631 
2632   enum { Unset = -1 };
2633 };
2634 
2635 } // end anonymous namespace
2636 
2637 /// Analyze the specified subexpression and see if it is capable of providing
2638 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2639 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2640 /// the output of the expression came from a corresponding bit in some other
2641 /// value. This function is recursive, and the end result is a mapping of
2642 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2643 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2644 ///
2645 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2646 /// that the expression deposits the low byte of %X into the high byte of the
2647 /// result and that all other bits are zero. This expression is accepted and a
2648 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2649 /// [0-7].
2650 ///
2651 /// To avoid revisiting values, the BitPart results are memoized into the
2652 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2653 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2654 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2655 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2656 /// type instead to provide the same functionality.
2657 ///
2658 /// Because we pass around references into \c BPS, we must use a container that
2659 /// does not invalidate internal references (std::map instead of DenseMap).
2660 static const Optional<BitPart> &
2661 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2662                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2663   auto I = BPS.find(V);
2664   if (I != BPS.end())
2665     return I->second;
2666 
2667   auto &Result = BPS[V] = None;
2668   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2669 
2670   // Prevent stack overflow by limiting the recursion depth
2671   if (Depth == BitPartRecursionMaxDepth) {
2672     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2673     return Result;
2674   }
2675 
2676   if (Instruction *I = dyn_cast<Instruction>(V)) {
2677     // If this is an or instruction, it may be an inner node of the bswap.
2678     if (I->getOpcode() == Instruction::Or) {
2679       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2680                                 MatchBitReversals, BPS, Depth + 1);
2681       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2682                                 MatchBitReversals, BPS, Depth + 1);
2683       if (!A || !B)
2684         return Result;
2685 
2686       // Try and merge the two together.
2687       if (!A->Provider || A->Provider != B->Provider)
2688         return Result;
2689 
2690       Result = BitPart(A->Provider, BitWidth);
2691       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2692         if (A->Provenance[i] != BitPart::Unset &&
2693             B->Provenance[i] != BitPart::Unset &&
2694             A->Provenance[i] != B->Provenance[i])
2695           return Result = None;
2696 
2697         if (A->Provenance[i] == BitPart::Unset)
2698           Result->Provenance[i] = B->Provenance[i];
2699         else
2700           Result->Provenance[i] = A->Provenance[i];
2701       }
2702 
2703       return Result;
2704     }
2705 
2706     // If this is a logical shift by a constant, recurse then shift the result.
2707     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2708       unsigned BitShift =
2709           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2710       // Ensure the shift amount is defined.
2711       if (BitShift > BitWidth)
2712         return Result;
2713 
2714       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2715                                   MatchBitReversals, BPS, Depth + 1);
2716       if (!Res)
2717         return Result;
2718       Result = Res;
2719 
2720       // Perform the "shift" on BitProvenance.
2721       auto &P = Result->Provenance;
2722       if (I->getOpcode() == Instruction::Shl) {
2723         P.erase(std::prev(P.end(), BitShift), P.end());
2724         P.insert(P.begin(), BitShift, BitPart::Unset);
2725       } else {
2726         P.erase(P.begin(), std::next(P.begin(), BitShift));
2727         P.insert(P.end(), BitShift, BitPart::Unset);
2728       }
2729 
2730       return Result;
2731     }
2732 
2733     // If this is a logical 'and' with a mask that clears bits, recurse then
2734     // unset the appropriate bits.
2735     if (I->getOpcode() == Instruction::And &&
2736         isa<ConstantInt>(I->getOperand(1))) {
2737       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2738       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2739 
2740       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2741       // early exit.
2742       unsigned NumMaskedBits = AndMask.countPopulation();
2743       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2744         return Result;
2745 
2746       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2747                                   MatchBitReversals, BPS, Depth + 1);
2748       if (!Res)
2749         return Result;
2750       Result = Res;
2751 
2752       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2753         // If the AndMask is zero for this bit, clear the bit.
2754         if ((AndMask & Bit) == 0)
2755           Result->Provenance[i] = BitPart::Unset;
2756       return Result;
2757     }
2758 
2759     // If this is a zext instruction zero extend the result.
2760     if (I->getOpcode() == Instruction::ZExt) {
2761       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2762                                   MatchBitReversals, BPS, Depth + 1);
2763       if (!Res)
2764         return Result;
2765 
2766       Result = BitPart(Res->Provider, BitWidth);
2767       auto NarrowBitWidth =
2768           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2769       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2770         Result->Provenance[i] = Res->Provenance[i];
2771       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2772         Result->Provenance[i] = BitPart::Unset;
2773       return Result;
2774     }
2775   }
2776 
2777   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2778   // the input value to the bswap/bitreverse.
2779   Result = BitPart(V, BitWidth);
2780   for (unsigned i = 0; i < BitWidth; ++i)
2781     Result->Provenance[i] = i;
2782   return Result;
2783 }
2784 
2785 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2786                                           unsigned BitWidth) {
2787   if (From % 8 != To % 8)
2788     return false;
2789   // Convert from bit indices to byte indices and check for a byte reversal.
2790   From >>= 3;
2791   To >>= 3;
2792   BitWidth >>= 3;
2793   return From == BitWidth - To - 1;
2794 }
2795 
2796 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2797                                                unsigned BitWidth) {
2798   return From == BitWidth - To - 1;
2799 }
2800 
2801 bool llvm::recognizeBSwapOrBitReverseIdiom(
2802     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2803     SmallVectorImpl<Instruction *> &InsertedInsts) {
2804   if (Operator::getOpcode(I) != Instruction::Or)
2805     return false;
2806   if (!MatchBSwaps && !MatchBitReversals)
2807     return false;
2808   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2809   if (!ITy || ITy->getBitWidth() > 128)
2810     return false;   // Can't do vectors or integers > 128 bits.
2811   unsigned BW = ITy->getBitWidth();
2812 
2813   unsigned DemandedBW = BW;
2814   IntegerType *DemandedTy = ITy;
2815   if (I->hasOneUse()) {
2816     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2817       DemandedTy = cast<IntegerType>(Trunc->getType());
2818       DemandedBW = DemandedTy->getBitWidth();
2819     }
2820   }
2821 
2822   // Try to find all the pieces corresponding to the bswap.
2823   std::map<Value *, Optional<BitPart>> BPS;
2824   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2825   if (!Res)
2826     return false;
2827   auto &BitProvenance = Res->Provenance;
2828 
2829   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2830   // only byteswap values with an even number of bytes.
2831   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2832   for (unsigned i = 0; i < DemandedBW; ++i) {
2833     OKForBSwap &=
2834         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2835     OKForBitReverse &=
2836         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2837   }
2838 
2839   Intrinsic::ID Intrin;
2840   if (OKForBSwap && MatchBSwaps)
2841     Intrin = Intrinsic::bswap;
2842   else if (OKForBitReverse && MatchBitReversals)
2843     Intrin = Intrinsic::bitreverse;
2844   else
2845     return false;
2846 
2847   if (ITy != DemandedTy) {
2848     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2849     Value *Provider = Res->Provider;
2850     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2851     // We may need to truncate the provider.
2852     if (DemandedTy != ProviderTy) {
2853       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2854                                      "trunc", I);
2855       InsertedInsts.push_back(Trunc);
2856       Provider = Trunc;
2857     }
2858     auto *CI = CallInst::Create(F, Provider, "rev", I);
2859     InsertedInsts.push_back(CI);
2860     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2861     InsertedInsts.push_back(ExtInst);
2862     return true;
2863   }
2864 
2865   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2866   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2867   return true;
2868 }
2869 
2870 // CodeGen has special handling for some string functions that may replace
2871 // them with target-specific intrinsics.  Since that'd skip our interceptors
2872 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2873 // we mark affected calls as NoBuiltin, which will disable optimization
2874 // in CodeGen.
2875 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2876     CallInst *CI, const TargetLibraryInfo *TLI) {
2877   Function *F = CI->getCalledFunction();
2878   LibFunc Func;
2879   if (F && !F->hasLocalLinkage() && F->hasName() &&
2880       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2881       !F->doesNotAccessMemory())
2882     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2883 }
2884 
2885 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2886   // We can't have a PHI with a metadata type.
2887   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2888     return false;
2889 
2890   // Early exit.
2891   if (!isa<Constant>(I->getOperand(OpIdx)))
2892     return true;
2893 
2894   switch (I->getOpcode()) {
2895   default:
2896     return true;
2897   case Instruction::Call:
2898   case Instruction::Invoke:
2899     // Can't handle inline asm. Skip it.
2900     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2901       return false;
2902     // Many arithmetic intrinsics have no issue taking a
2903     // variable, however it's hard to distingish these from
2904     // specials such as @llvm.frameaddress that require a constant.
2905     if (isa<IntrinsicInst>(I))
2906       return false;
2907 
2908     // Constant bundle operands may need to retain their constant-ness for
2909     // correctness.
2910     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2911       return false;
2912     return true;
2913   case Instruction::ShuffleVector:
2914     // Shufflevector masks are constant.
2915     return OpIdx != 2;
2916   case Instruction::Switch:
2917   case Instruction::ExtractValue:
2918     // All operands apart from the first are constant.
2919     return OpIdx == 0;
2920   case Instruction::InsertValue:
2921     // All operands apart from the first and the second are constant.
2922     return OpIdx < 2;
2923   case Instruction::Alloca:
2924     // Static allocas (constant size in the entry block) are handled by
2925     // prologue/epilogue insertion so they're free anyway. We definitely don't
2926     // want to make them non-constant.
2927     return !cast<AllocaInst>(I)->isStaticAlloca();
2928   case Instruction::GetElementPtr:
2929     if (OpIdx == 0)
2930       return true;
2931     gep_type_iterator It = gep_type_begin(I);
2932     for (auto E = std::next(It, OpIdx); It != E; ++It)
2933       if (It.isStruct())
2934         return false;
2935     return true;
2936   }
2937 }
2938 
2939 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
2940 AllocaInst *llvm::findAllocaForValue(Value *V,
2941                                      AllocaForValueMapTy &AllocaForValue) {
2942   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2943     return AI;
2944   // See if we've already calculated (or started to calculate) alloca for a
2945   // given value.
2946   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2947   if (I != AllocaForValue.end())
2948     return I->second;
2949   // Store 0 while we're calculating alloca for value V to avoid
2950   // infinite recursion if the value references itself.
2951   AllocaForValue[V] = nullptr;
2952   AllocaInst *Res = nullptr;
2953   if (CastInst *CI = dyn_cast<CastInst>(V))
2954     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
2955   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2956     for (Value *IncValue : PN->incoming_values()) {
2957       // Allow self-referencing phi-nodes.
2958       if (IncValue == PN)
2959         continue;
2960       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
2961       // AI for incoming values should exist and should all be equal.
2962       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2963         return nullptr;
2964       Res = IncValueAI;
2965     }
2966   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
2967     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
2968   } else {
2969     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
2970                       << *V << "\n");
2971   }
2972   if (Res)
2973     AllocaForValue[V] = Res;
2974   return Res;
2975 }
2976