1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/PseudoProbe.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/KnownBits.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/ValueMapper.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <iterator>
86 #include <map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::PatternMatch;
91 
92 #define DEBUG_TYPE "local"
93 
94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
96 
97 static cl::opt<bool> PHICSEDebugHash(
98     "phicse-debug-hash",
99 #ifdef EXPENSIVE_CHECKS
100     cl::init(true),
101 #else
102     cl::init(false),
103 #endif
104     cl::Hidden,
105     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
106              "function is well-behaved w.r.t. its isEqual predicate"));
107 
108 static cl::opt<unsigned> PHICSENumPHISmallSize(
109     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
110     cl::desc(
111         "When the basic block contains not more than this number of PHI nodes, "
112         "perform a (faster!) exhaustive search instead of set-driven one."));
113 
114 // Max recursion depth for collectBitParts used when detecting bswap and
115 // bitreverse idioms
116 static const unsigned BitPartRecursionMaxDepth = 64;
117 
118 //===----------------------------------------------------------------------===//
119 //  Local constant propagation.
120 //
121 
122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
123 /// constant value, convert it into an unconditional branch to the constant
124 /// destination.  This is a nontrivial operation because the successors of this
125 /// basic block must have their PHI nodes updated.
126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
127 /// conditions and indirectbr addresses this might make dead if
128 /// DeleteDeadConditions is true.
129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
130                                   const TargetLibraryInfo *TLI,
131                                   DomTreeUpdater *DTU) {
132   Instruction *T = BB->getTerminator();
133   IRBuilder<> Builder(T);
134 
135   // Branch - See if we are conditional jumping on constant
136   if (auto *BI = dyn_cast<BranchInst>(T)) {
137     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
138 
139     BasicBlock *Dest1 = BI->getSuccessor(0);
140     BasicBlock *Dest2 = BI->getSuccessor(1);
141 
142     if (Dest2 == Dest1) {       // Conditional branch to same location?
143       // This branch matches something like this:
144       //     br bool %cond, label %Dest, label %Dest
145       // and changes it into:  br label %Dest
146 
147       // Let the basic block know that we are letting go of one copy of it.
148       assert(BI->getParent() && "Terminator not inserted in block!");
149       Dest1->removePredecessor(BI->getParent());
150 
151       // Replace the conditional branch with an unconditional one.
152       Builder.CreateBr(Dest1);
153       Value *Cond = BI->getCondition();
154       BI->eraseFromParent();
155       if (DeleteDeadConditions)
156         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
157       return true;
158     }
159 
160     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
161       // Are we branching on constant?
162       // YES.  Change to unconditional branch...
163       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
164       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
165 
166       // Let the basic block know that we are letting go of it.  Based on this,
167       // it will adjust it's PHI nodes.
168       OldDest->removePredecessor(BB);
169 
170       // Replace the conditional branch with an unconditional one.
171       Builder.CreateBr(Destination);
172       BI->eraseFromParent();
173       if (DTU)
174         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
175       return true;
176     }
177 
178     return false;
179   }
180 
181   if (auto *SI = dyn_cast<SwitchInst>(T)) {
182     // If we are switching on a constant, we can convert the switch to an
183     // unconditional branch.
184     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
185     BasicBlock *DefaultDest = SI->getDefaultDest();
186     BasicBlock *TheOnlyDest = DefaultDest;
187 
188     // If the default is unreachable, ignore it when searching for TheOnlyDest.
189     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
190         SI->getNumCases() > 0) {
191       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
192     }
193 
194     bool Changed = false;
195 
196     // Figure out which case it goes to.
197     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
198       // Found case matching a constant operand?
199       if (i->getCaseValue() == CI) {
200         TheOnlyDest = i->getCaseSuccessor();
201         break;
202       }
203 
204       // Check to see if this branch is going to the same place as the default
205       // dest.  If so, eliminate it as an explicit compare.
206       if (i->getCaseSuccessor() == DefaultDest) {
207         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
208         unsigned NCases = SI->getNumCases();
209         // Fold the case metadata into the default if there will be any branches
210         // left, unless the metadata doesn't match the switch.
211         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
212           // Collect branch weights into a vector.
213           SmallVector<uint32_t, 8> Weights;
214           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
215                ++MD_i) {
216             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
217             Weights.push_back(CI->getValue().getZExtValue());
218           }
219           // Merge weight of this case to the default weight.
220           unsigned idx = i->getCaseIndex();
221           Weights[0] += Weights[idx+1];
222           // Remove weight for this case.
223           std::swap(Weights[idx+1], Weights.back());
224           Weights.pop_back();
225           SI->setMetadata(LLVMContext::MD_prof,
226                           MDBuilder(BB->getContext()).
227                           createBranchWeights(Weights));
228         }
229         // Remove this entry.
230         BasicBlock *ParentBB = SI->getParent();
231         DefaultDest->removePredecessor(ParentBB);
232         i = SI->removeCase(i);
233         e = SI->case_end();
234         Changed = true;
235         continue;
236       }
237 
238       // Otherwise, check to see if the switch only branches to one destination.
239       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
240       // destinations.
241       if (i->getCaseSuccessor() != TheOnlyDest)
242         TheOnlyDest = nullptr;
243 
244       // Increment this iterator as we haven't removed the case.
245       ++i;
246     }
247 
248     if (CI && !TheOnlyDest) {
249       // Branching on a constant, but not any of the cases, go to the default
250       // successor.
251       TheOnlyDest = SI->getDefaultDest();
252     }
253 
254     // If we found a single destination that we can fold the switch into, do so
255     // now.
256     if (TheOnlyDest) {
257       // Insert the new branch.
258       Builder.CreateBr(TheOnlyDest);
259       BasicBlock *BB = SI->getParent();
260 
261       SmallSet<BasicBlock *, 8> RemovedSuccessors;
262 
263       // Remove entries from PHI nodes which we no longer branch to...
264       BasicBlock *SuccToKeep = TheOnlyDest;
265       for (BasicBlock *Succ : successors(SI)) {
266         if (DTU && Succ != TheOnlyDest)
267           RemovedSuccessors.insert(Succ);
268         // Found case matching a constant operand?
269         if (Succ == SuccToKeep) {
270           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
271         } else {
272           Succ->removePredecessor(BB);
273         }
274       }
275 
276       // Delete the old switch.
277       Value *Cond = SI->getCondition();
278       SI->eraseFromParent();
279       if (DeleteDeadConditions)
280         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
281       if (DTU) {
282         std::vector<DominatorTree::UpdateType> Updates;
283         Updates.reserve(RemovedSuccessors.size());
284         for (auto *RemovedSuccessor : RemovedSuccessors)
285           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
286         DTU->applyUpdates(Updates);
287       }
288       return true;
289     }
290 
291     if (SI->getNumCases() == 1) {
292       // Otherwise, we can fold this switch into a conditional branch
293       // instruction if it has only one non-default destination.
294       auto FirstCase = *SI->case_begin();
295       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
296           FirstCase.getCaseValue(), "cond");
297 
298       // Insert the new branch.
299       BranchInst *NewBr = Builder.CreateCondBr(Cond,
300                                                FirstCase.getCaseSuccessor(),
301                                                SI->getDefaultDest());
302       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
303       if (MD && MD->getNumOperands() == 3) {
304         ConstantInt *SICase =
305             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
306         ConstantInt *SIDef =
307             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
308         assert(SICase && SIDef);
309         // The TrueWeight should be the weight for the single case of SI.
310         NewBr->setMetadata(LLVMContext::MD_prof,
311                         MDBuilder(BB->getContext()).
312                         createBranchWeights(SICase->getValue().getZExtValue(),
313                                             SIDef->getValue().getZExtValue()));
314       }
315 
316       // Update make.implicit metadata to the newly-created conditional branch.
317       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
318       if (MakeImplicitMD)
319         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
320 
321       // Delete the old switch.
322       SI->eraseFromParent();
323       return true;
324     }
325     return Changed;
326   }
327 
328   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
329     // indirectbr blockaddress(@F, @BB) -> br label @BB
330     if (auto *BA =
331           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
332       BasicBlock *TheOnlyDest = BA->getBasicBlock();
333       SmallSet<BasicBlock *, 8> RemovedSuccessors;
334 
335       // Insert the new branch.
336       Builder.CreateBr(TheOnlyDest);
337 
338       BasicBlock *SuccToKeep = TheOnlyDest;
339       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
340         BasicBlock *DestBB = IBI->getDestination(i);
341         if (DTU && DestBB != TheOnlyDest)
342           RemovedSuccessors.insert(DestBB);
343         if (IBI->getDestination(i) == SuccToKeep) {
344           SuccToKeep = nullptr;
345         } else {
346           DestBB->removePredecessor(BB);
347         }
348       }
349       Value *Address = IBI->getAddress();
350       IBI->eraseFromParent();
351       if (DeleteDeadConditions)
352         // Delete pointer cast instructions.
353         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
354 
355       // Also zap the blockaddress constant if there are no users remaining,
356       // otherwise the destination is still marked as having its address taken.
357       if (BA->use_empty())
358         BA->destroyConstant();
359 
360       // If we didn't find our destination in the IBI successor list, then we
361       // have undefined behavior.  Replace the unconditional branch with an
362       // 'unreachable' instruction.
363       if (SuccToKeep) {
364         BB->getTerminator()->eraseFromParent();
365         new UnreachableInst(BB->getContext(), BB);
366       }
367 
368       if (DTU) {
369         std::vector<DominatorTree::UpdateType> Updates;
370         Updates.reserve(RemovedSuccessors.size());
371         for (auto *RemovedSuccessor : RemovedSuccessors)
372           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
373         DTU->applyUpdates(Updates);
374       }
375       return true;
376     }
377   }
378 
379   return false;
380 }
381 
382 //===----------------------------------------------------------------------===//
383 //  Local dead code elimination.
384 //
385 
386 /// isInstructionTriviallyDead - Return true if the result produced by the
387 /// instruction is not used, and the instruction has no side effects.
388 ///
389 bool llvm::isInstructionTriviallyDead(Instruction *I,
390                                       const TargetLibraryInfo *TLI) {
391   if (!I->use_empty())
392     return false;
393   return wouldInstructionBeTriviallyDead(I, TLI);
394 }
395 
396 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
397                                            const TargetLibraryInfo *TLI) {
398   if (I->isTerminator())
399     return false;
400 
401   // We don't want the landingpad-like instructions removed by anything this
402   // general.
403   if (I->isEHPad())
404     return false;
405 
406   // We don't want debug info removed by anything this general, unless
407   // debug info is empty.
408   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
409     if (DDI->getAddress())
410       return false;
411     return true;
412   }
413   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
414     if (DVI->hasArgList() || DVI->getValue(0))
415       return false;
416     return true;
417   }
418   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
419     if (DLI->getLabel())
420       return false;
421     return true;
422   }
423 
424   if (!I->willReturn())
425     return false;
426 
427   if (!I->mayHaveSideEffects())
428     return true;
429 
430   // Special case intrinsics that "may have side effects" but can be deleted
431   // when dead.
432   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
433     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
434     if (II->getIntrinsicID() == Intrinsic::stacksave ||
435         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
436       return true;
437 
438     if (II->isLifetimeStartOrEnd()) {
439       auto *Arg = II->getArgOperand(1);
440       // Lifetime intrinsics are dead when their right-hand is undef.
441       if (isa<UndefValue>(Arg))
442         return true;
443       // If the right-hand is an alloc, global, or argument and the only uses
444       // are lifetime intrinsics then the intrinsics are dead.
445       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
446         return llvm::all_of(Arg->uses(), [](Use &Use) {
447           if (IntrinsicInst *IntrinsicUse =
448                   dyn_cast<IntrinsicInst>(Use.getUser()))
449             return IntrinsicUse->isLifetimeStartOrEnd();
450           return false;
451         });
452       return false;
453     }
454 
455     // Assumptions are dead if their condition is trivially true.  Guards on
456     // true are operationally no-ops.  In the future we can consider more
457     // sophisticated tradeoffs for guards considering potential for check
458     // widening, but for now we keep things simple.
459     if ((II->getIntrinsicID() == Intrinsic::assume &&
460          isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
461         II->getIntrinsicID() == Intrinsic::experimental_guard) {
462       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
463         return !Cond->isZero();
464 
465       return false;
466     }
467   }
468 
469   if (isAllocLikeFn(I, TLI))
470     return true;
471 
472   if (CallInst *CI = isFreeCall(I, TLI))
473     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
474       return C->isNullValue() || isa<UndefValue>(C);
475 
476   if (auto *Call = dyn_cast<CallBase>(I))
477     if (isMathLibCallNoop(Call, TLI))
478       return true;
479 
480   return false;
481 }
482 
483 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
484 /// trivially dead instruction, delete it.  If that makes any of its operands
485 /// trivially dead, delete them too, recursively.  Return true if any
486 /// instructions were deleted.
487 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
488     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
489     std::function<void(Value *)> AboutToDeleteCallback) {
490   Instruction *I = dyn_cast<Instruction>(V);
491   if (!I || !isInstructionTriviallyDead(I, TLI))
492     return false;
493 
494   SmallVector<WeakTrackingVH, 16> DeadInsts;
495   DeadInsts.push_back(I);
496   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
497                                              AboutToDeleteCallback);
498 
499   return true;
500 }
501 
502 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
503     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
504     MemorySSAUpdater *MSSAU,
505     std::function<void(Value *)> AboutToDeleteCallback) {
506   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
507   for (; S != E; ++S) {
508     auto *I = cast<Instruction>(DeadInsts[S]);
509     if (!isInstructionTriviallyDead(I)) {
510       DeadInsts[S] = nullptr;
511       ++Alive;
512     }
513   }
514   if (Alive == E)
515     return false;
516   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
517                                              AboutToDeleteCallback);
518   return true;
519 }
520 
521 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
522     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
523     MemorySSAUpdater *MSSAU,
524     std::function<void(Value *)> AboutToDeleteCallback) {
525   // Process the dead instruction list until empty.
526   while (!DeadInsts.empty()) {
527     Value *V = DeadInsts.pop_back_val();
528     Instruction *I = cast_or_null<Instruction>(V);
529     if (!I)
530       continue;
531     assert(isInstructionTriviallyDead(I, TLI) &&
532            "Live instruction found in dead worklist!");
533     assert(I->use_empty() && "Instructions with uses are not dead.");
534 
535     // Don't lose the debug info while deleting the instructions.
536     salvageDebugInfo(*I);
537 
538     if (AboutToDeleteCallback)
539       AboutToDeleteCallback(I);
540 
541     // Null out all of the instruction's operands to see if any operand becomes
542     // dead as we go.
543     for (Use &OpU : I->operands()) {
544       Value *OpV = OpU.get();
545       OpU.set(nullptr);
546 
547       if (!OpV->use_empty())
548         continue;
549 
550       // If the operand is an instruction that became dead as we nulled out the
551       // operand, and if it is 'trivially' dead, delete it in a future loop
552       // iteration.
553       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554         if (isInstructionTriviallyDead(OpI, TLI))
555           DeadInsts.push_back(OpI);
556     }
557     if (MSSAU)
558       MSSAU->removeMemoryAccess(I);
559 
560     I->eraseFromParent();
561   }
562 }
563 
564 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
565   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
566   findDbgUsers(DbgUsers, I);
567   for (auto *DII : DbgUsers) {
568     Value *Undef = UndefValue::get(I->getType());
569     DII->replaceVariableLocationOp(I, Undef);
570   }
571   return !DbgUsers.empty();
572 }
573 
574 /// areAllUsesEqual - Check whether the uses of a value are all the same.
575 /// This is similar to Instruction::hasOneUse() except this will also return
576 /// true when there are no uses or multiple uses that all refer to the same
577 /// value.
578 static bool areAllUsesEqual(Instruction *I) {
579   Value::user_iterator UI = I->user_begin();
580   Value::user_iterator UE = I->user_end();
581   if (UI == UE)
582     return true;
583 
584   User *TheUse = *UI;
585   for (++UI; UI != UE; ++UI) {
586     if (*UI != TheUse)
587       return false;
588   }
589   return true;
590 }
591 
592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
593 /// dead PHI node, due to being a def-use chain of single-use nodes that
594 /// either forms a cycle or is terminated by a trivially dead instruction,
595 /// delete it.  If that makes any of its operands trivially dead, delete them
596 /// too, recursively.  Return true if a change was made.
597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
598                                         const TargetLibraryInfo *TLI,
599                                         llvm::MemorySSAUpdater *MSSAU) {
600   SmallPtrSet<Instruction*, 4> Visited;
601   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
602        I = cast<Instruction>(*I->user_begin())) {
603     if (I->use_empty())
604       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
605 
606     // If we find an instruction more than once, we're on a cycle that
607     // won't prove fruitful.
608     if (!Visited.insert(I).second) {
609       // Break the cycle and delete the instruction and its operands.
610       I->replaceAllUsesWith(UndefValue::get(I->getType()));
611       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
612       return true;
613     }
614   }
615   return false;
616 }
617 
618 static bool
619 simplifyAndDCEInstruction(Instruction *I,
620                           SmallSetVector<Instruction *, 16> &WorkList,
621                           const DataLayout &DL,
622                           const TargetLibraryInfo *TLI) {
623   if (isInstructionTriviallyDead(I, TLI)) {
624     salvageDebugInfo(*I);
625 
626     // Null out all of the instruction's operands to see if any operand becomes
627     // dead as we go.
628     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
629       Value *OpV = I->getOperand(i);
630       I->setOperand(i, nullptr);
631 
632       if (!OpV->use_empty() || I == OpV)
633         continue;
634 
635       // If the operand is an instruction that became dead as we nulled out the
636       // operand, and if it is 'trivially' dead, delete it in a future loop
637       // iteration.
638       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
639         if (isInstructionTriviallyDead(OpI, TLI))
640           WorkList.insert(OpI);
641     }
642 
643     I->eraseFromParent();
644 
645     return true;
646   }
647 
648   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
649     // Add the users to the worklist. CAREFUL: an instruction can use itself,
650     // in the case of a phi node.
651     for (User *U : I->users()) {
652       if (U != I) {
653         WorkList.insert(cast<Instruction>(U));
654       }
655     }
656 
657     // Replace the instruction with its simplified value.
658     bool Changed = false;
659     if (!I->use_empty()) {
660       I->replaceAllUsesWith(SimpleV);
661       Changed = true;
662     }
663     if (isInstructionTriviallyDead(I, TLI)) {
664       I->eraseFromParent();
665       Changed = true;
666     }
667     return Changed;
668   }
669   return false;
670 }
671 
672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
673 /// simplify any instructions in it and recursively delete dead instructions.
674 ///
675 /// This returns true if it changed the code, note that it can delete
676 /// instructions in other blocks as well in this block.
677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
678                                        const TargetLibraryInfo *TLI) {
679   bool MadeChange = false;
680   const DataLayout &DL = BB->getModule()->getDataLayout();
681 
682 #ifndef NDEBUG
683   // In debug builds, ensure that the terminator of the block is never replaced
684   // or deleted by these simplifications. The idea of simplification is that it
685   // cannot introduce new instructions, and there is no way to replace the
686   // terminator of a block without introducing a new instruction.
687   AssertingVH<Instruction> TerminatorVH(&BB->back());
688 #endif
689 
690   SmallSetVector<Instruction *, 16> WorkList;
691   // Iterate over the original function, only adding insts to the worklist
692   // if they actually need to be revisited. This avoids having to pre-init
693   // the worklist with the entire function's worth of instructions.
694   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
695        BI != E;) {
696     assert(!BI->isTerminator());
697     Instruction *I = &*BI;
698     ++BI;
699 
700     // We're visiting this instruction now, so make sure it's not in the
701     // worklist from an earlier visit.
702     if (!WorkList.count(I))
703       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
704   }
705 
706   while (!WorkList.empty()) {
707     Instruction *I = WorkList.pop_back_val();
708     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709   }
710   return MadeChange;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 //  Control Flow Graph Restructuring.
715 //
716 
717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
718                                        DomTreeUpdater *DTU) {
719 
720   // If BB has single-entry PHI nodes, fold them.
721   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
722     Value *NewVal = PN->getIncomingValue(0);
723     // Replace self referencing PHI with undef, it must be dead.
724     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
725     PN->replaceAllUsesWith(NewVal);
726     PN->eraseFromParent();
727   }
728 
729   BasicBlock *PredBB = DestBB->getSinglePredecessor();
730   assert(PredBB && "Block doesn't have a single predecessor!");
731 
732   bool ReplaceEntryBB = false;
733   if (PredBB == &DestBB->getParent()->getEntryBlock())
734     ReplaceEntryBB = true;
735 
736   // DTU updates: Collect all the edges that enter
737   // PredBB. These dominator edges will be redirected to DestBB.
738   SmallVector<DominatorTree::UpdateType, 32> Updates;
739 
740   if (DTU) {
741     SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB),
742                                                pred_end(PredBB));
743     Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1);
744     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
745       // This predecessor of PredBB may already have DestBB as a successor.
746       if (PredOfPredBB != PredBB)
747         Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
748     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
749       Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
750     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
751   }
752 
753   // Zap anything that took the address of DestBB.  Not doing this will give the
754   // address an invalid value.
755   if (DestBB->hasAddressTaken()) {
756     BlockAddress *BA = BlockAddress::get(DestBB);
757     Constant *Replacement =
758       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
759     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
760                                                      BA->getType()));
761     BA->destroyConstant();
762   }
763 
764   // Anything that branched to PredBB now branches to DestBB.
765   PredBB->replaceAllUsesWith(DestBB);
766 
767   // Splice all the instructions from PredBB to DestBB.
768   PredBB->getTerminator()->eraseFromParent();
769   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
770   new UnreachableInst(PredBB->getContext(), PredBB);
771 
772   // If the PredBB is the entry block of the function, move DestBB up to
773   // become the entry block after we erase PredBB.
774   if (ReplaceEntryBB)
775     DestBB->moveAfter(PredBB);
776 
777   if (DTU) {
778     assert(PredBB->getInstList().size() == 1 &&
779            isa<UnreachableInst>(PredBB->getTerminator()) &&
780            "The successor list of PredBB isn't empty before "
781            "applying corresponding DTU updates.");
782     DTU->applyUpdatesPermissive(Updates);
783     DTU->deleteBB(PredBB);
784     // Recalculation of DomTree is needed when updating a forward DomTree and
785     // the Entry BB is replaced.
786     if (ReplaceEntryBB && DTU->hasDomTree()) {
787       // The entry block was removed and there is no external interface for
788       // the dominator tree to be notified of this change. In this corner-case
789       // we recalculate the entire tree.
790       DTU->recalculate(*(DestBB->getParent()));
791     }
792   }
793 
794   else {
795     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
796   }
797 }
798 
799 /// Return true if we can choose one of these values to use in place of the
800 /// other. Note that we will always choose the non-undef value to keep.
801 static bool CanMergeValues(Value *First, Value *Second) {
802   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
803 }
804 
805 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
806 /// branch to Succ, into Succ.
807 ///
808 /// Assumption: Succ is the single successor for BB.
809 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
810   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
811 
812   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
813                     << Succ->getName() << "\n");
814   // Shortcut, if there is only a single predecessor it must be BB and merging
815   // is always safe
816   if (Succ->getSinglePredecessor()) return true;
817 
818   // Make a list of the predecessors of BB
819   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
820 
821   // Look at all the phi nodes in Succ, to see if they present a conflict when
822   // merging these blocks
823   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
824     PHINode *PN = cast<PHINode>(I);
825 
826     // If the incoming value from BB is again a PHINode in
827     // BB which has the same incoming value for *PI as PN does, we can
828     // merge the phi nodes and then the blocks can still be merged
829     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
830     if (BBPN && BBPN->getParent() == BB) {
831       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
832         BasicBlock *IBB = PN->getIncomingBlock(PI);
833         if (BBPreds.count(IBB) &&
834             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
835                             PN->getIncomingValue(PI))) {
836           LLVM_DEBUG(dbgs()
837                      << "Can't fold, phi node " << PN->getName() << " in "
838                      << Succ->getName() << " is conflicting with "
839                      << BBPN->getName() << " with regard to common predecessor "
840                      << IBB->getName() << "\n");
841           return false;
842         }
843       }
844     } else {
845       Value* Val = PN->getIncomingValueForBlock(BB);
846       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
847         // See if the incoming value for the common predecessor is equal to the
848         // one for BB, in which case this phi node will not prevent the merging
849         // of the block.
850         BasicBlock *IBB = PN->getIncomingBlock(PI);
851         if (BBPreds.count(IBB) &&
852             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
853           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
854                             << " in " << Succ->getName()
855                             << " is conflicting with regard to common "
856                             << "predecessor " << IBB->getName() << "\n");
857           return false;
858         }
859       }
860     }
861   }
862 
863   return true;
864 }
865 
866 using PredBlockVector = SmallVector<BasicBlock *, 16>;
867 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
868 
869 /// Determines the value to use as the phi node input for a block.
870 ///
871 /// Select between \p OldVal any value that we know flows from \p BB
872 /// to a particular phi on the basis of which one (if either) is not
873 /// undef. Update IncomingValues based on the selected value.
874 ///
875 /// \param OldVal The value we are considering selecting.
876 /// \param BB The block that the value flows in from.
877 /// \param IncomingValues A map from block-to-value for other phi inputs
878 /// that we have examined.
879 ///
880 /// \returns the selected value.
881 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
882                                           IncomingValueMap &IncomingValues) {
883   if (!isa<UndefValue>(OldVal)) {
884     assert((!IncomingValues.count(BB) ||
885             IncomingValues.find(BB)->second == OldVal) &&
886            "Expected OldVal to match incoming value from BB!");
887 
888     IncomingValues.insert(std::make_pair(BB, OldVal));
889     return OldVal;
890   }
891 
892   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
893   if (It != IncomingValues.end()) return It->second;
894 
895   return OldVal;
896 }
897 
898 /// Create a map from block to value for the operands of a
899 /// given phi.
900 ///
901 /// Create a map from block to value for each non-undef value flowing
902 /// into \p PN.
903 ///
904 /// \param PN The phi we are collecting the map for.
905 /// \param IncomingValues [out] The map from block to value for this phi.
906 static void gatherIncomingValuesToPhi(PHINode *PN,
907                                       IncomingValueMap &IncomingValues) {
908   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
909     BasicBlock *BB = PN->getIncomingBlock(i);
910     Value *V = PN->getIncomingValue(i);
911 
912     if (!isa<UndefValue>(V))
913       IncomingValues.insert(std::make_pair(BB, V));
914   }
915 }
916 
917 /// Replace the incoming undef values to a phi with the values
918 /// from a block-to-value map.
919 ///
920 /// \param PN The phi we are replacing the undefs in.
921 /// \param IncomingValues A map from block to value.
922 static void replaceUndefValuesInPhi(PHINode *PN,
923                                     const IncomingValueMap &IncomingValues) {
924   SmallVector<unsigned> TrueUndefOps;
925   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
926     Value *V = PN->getIncomingValue(i);
927 
928     if (!isa<UndefValue>(V)) continue;
929 
930     BasicBlock *BB = PN->getIncomingBlock(i);
931     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
932 
933     // Keep track of undef/poison incoming values. Those must match, so we fix
934     // them up below if needed.
935     // Note: this is conservatively correct, but we could try harder and group
936     // the undef values per incoming basic block.
937     if (It == IncomingValues.end()) {
938       TrueUndefOps.push_back(i);
939       continue;
940     }
941 
942     // There is a defined value for this incoming block, so map this undef
943     // incoming value to the defined value.
944     PN->setIncomingValue(i, It->second);
945   }
946 
947   // If there are both undef and poison values incoming, then convert those
948   // values to undef. It is invalid to have different values for the same
949   // incoming block.
950   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
951     return isa<PoisonValue>(PN->getIncomingValue(i));
952   });
953   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
954     for (unsigned i : TrueUndefOps)
955       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
956   }
957 }
958 
959 /// Replace a value flowing from a block to a phi with
960 /// potentially multiple instances of that value flowing from the
961 /// block's predecessors to the phi.
962 ///
963 /// \param BB The block with the value flowing into the phi.
964 /// \param BBPreds The predecessors of BB.
965 /// \param PN The phi that we are updating.
966 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
967                                                 const PredBlockVector &BBPreds,
968                                                 PHINode *PN) {
969   Value *OldVal = PN->removeIncomingValue(BB, false);
970   assert(OldVal && "No entry in PHI for Pred BB!");
971 
972   IncomingValueMap IncomingValues;
973 
974   // We are merging two blocks - BB, and the block containing PN - and
975   // as a result we need to redirect edges from the predecessors of BB
976   // to go to the block containing PN, and update PN
977   // accordingly. Since we allow merging blocks in the case where the
978   // predecessor and successor blocks both share some predecessors,
979   // and where some of those common predecessors might have undef
980   // values flowing into PN, we want to rewrite those values to be
981   // consistent with the non-undef values.
982 
983   gatherIncomingValuesToPhi(PN, IncomingValues);
984 
985   // If this incoming value is one of the PHI nodes in BB, the new entries
986   // in the PHI node are the entries from the old PHI.
987   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
988     PHINode *OldValPN = cast<PHINode>(OldVal);
989     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
990       // Note that, since we are merging phi nodes and BB and Succ might
991       // have common predecessors, we could end up with a phi node with
992       // identical incoming branches. This will be cleaned up later (and
993       // will trigger asserts if we try to clean it up now, without also
994       // simplifying the corresponding conditional branch).
995       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
996       Value *PredVal = OldValPN->getIncomingValue(i);
997       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
998                                                     IncomingValues);
999 
1000       // And add a new incoming value for this predecessor for the
1001       // newly retargeted branch.
1002       PN->addIncoming(Selected, PredBB);
1003     }
1004   } else {
1005     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1006       // Update existing incoming values in PN for this
1007       // predecessor of BB.
1008       BasicBlock *PredBB = BBPreds[i];
1009       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1010                                                     IncomingValues);
1011 
1012       // And add a new incoming value for this predecessor for the
1013       // newly retargeted branch.
1014       PN->addIncoming(Selected, PredBB);
1015     }
1016   }
1017 
1018   replaceUndefValuesInPhi(PN, IncomingValues);
1019 }
1020 
1021 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1022                                                    DomTreeUpdater *DTU) {
1023   assert(BB != &BB->getParent()->getEntryBlock() &&
1024          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1025 
1026   // We can't eliminate infinite loops.
1027   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1028   if (BB == Succ) return false;
1029 
1030   // Check to see if merging these blocks would cause conflicts for any of the
1031   // phi nodes in BB or Succ. If not, we can safely merge.
1032   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1033 
1034   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1035   // has uses which will not disappear when the PHI nodes are merged.  It is
1036   // possible to handle such cases, but difficult: it requires checking whether
1037   // BB dominates Succ, which is non-trivial to calculate in the case where
1038   // Succ has multiple predecessors.  Also, it requires checking whether
1039   // constructing the necessary self-referential PHI node doesn't introduce any
1040   // conflicts; this isn't too difficult, but the previous code for doing this
1041   // was incorrect.
1042   //
1043   // Note that if this check finds a live use, BB dominates Succ, so BB is
1044   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1045   // folding the branch isn't profitable in that case anyway.
1046   if (!Succ->getSinglePredecessor()) {
1047     BasicBlock::iterator BBI = BB->begin();
1048     while (isa<PHINode>(*BBI)) {
1049       for (Use &U : BBI->uses()) {
1050         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1051           if (PN->getIncomingBlock(U) != BB)
1052             return false;
1053         } else {
1054           return false;
1055         }
1056       }
1057       ++BBI;
1058     }
1059   }
1060 
1061   // We cannot fold the block if it's a branch to an already present callbr
1062   // successor because that creates duplicate successors.
1063   for (BasicBlock *PredBB : predecessors(BB)) {
1064     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1065       if (Succ == CBI->getDefaultDest())
1066         return false;
1067       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1068         if (Succ == CBI->getIndirectDest(i))
1069           return false;
1070     }
1071   }
1072 
1073   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1074 
1075   SmallVector<DominatorTree::UpdateType, 32> Updates;
1076   if (DTU) {
1077     // All predecessors of BB will be moved to Succ.
1078     SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB));
1079     SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1080     Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1);
1081     for (auto *PredOfBB : PredsOfBB)
1082       // This predecessor of BB may already have Succ as a successor.
1083       if (!PredsOfSucc.contains(PredOfBB))
1084         Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1085     for (auto *PredOfBB : PredsOfBB)
1086       Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1087     Updates.push_back({DominatorTree::Delete, BB, Succ});
1088   }
1089 
1090   if (isa<PHINode>(Succ->begin())) {
1091     // If there is more than one pred of succ, and there are PHI nodes in
1092     // the successor, then we need to add incoming edges for the PHI nodes
1093     //
1094     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1095 
1096     // Loop over all of the PHI nodes in the successor of BB.
1097     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1098       PHINode *PN = cast<PHINode>(I);
1099 
1100       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1101     }
1102   }
1103 
1104   if (Succ->getSinglePredecessor()) {
1105     // BB is the only predecessor of Succ, so Succ will end up with exactly
1106     // the same predecessors BB had.
1107 
1108     // Copy over any phi, debug or lifetime instruction.
1109     BB->getTerminator()->eraseFromParent();
1110     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1111                                BB->getInstList());
1112   } else {
1113     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1114       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1115       assert(PN->use_empty() && "There shouldn't be any uses here!");
1116       PN->eraseFromParent();
1117     }
1118   }
1119 
1120   // If the unconditional branch we replaced contains llvm.loop metadata, we
1121   // add the metadata to the branch instructions in the predecessors.
1122   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1123   Instruction *TI = BB->getTerminator();
1124   if (TI)
1125     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1126       for (BasicBlock *Pred : predecessors(BB))
1127         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1128 
1129   // For AutoFDO, since BB is going to be removed, we won't be able to sample
1130   // it. To avoid assigning a zero weight for BB, move all its pseudo probes
1131   // into Succ and mark them dangling. This should allow the counts inference a
1132   // chance to get a more reasonable weight for BB.
1133   moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt());
1134 
1135   // Everything that jumped to BB now goes to Succ.
1136   BB->replaceAllUsesWith(Succ);
1137   if (!Succ->hasName()) Succ->takeName(BB);
1138 
1139   // Clear the successor list of BB to match updates applying to DTU later.
1140   if (BB->getTerminator())
1141     BB->getInstList().pop_back();
1142   new UnreachableInst(BB->getContext(), BB);
1143   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1144                            "applying corresponding DTU updates.");
1145 
1146   if (DTU) {
1147     DTU->applyUpdates(Updates);
1148     DTU->deleteBB(BB);
1149   } else {
1150     BB->eraseFromParent(); // Delete the old basic block.
1151   }
1152   return true;
1153 }
1154 
1155 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1156   // This implementation doesn't currently consider undef operands
1157   // specially. Theoretically, two phis which are identical except for
1158   // one having an undef where the other doesn't could be collapsed.
1159 
1160   bool Changed = false;
1161 
1162   // Examine each PHI.
1163   // Note that increment of I must *NOT* be in the iteration_expression, since
1164   // we don't want to immediately advance when we restart from the beginning.
1165   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1166     ++I;
1167     // Is there an identical PHI node in this basic block?
1168     // Note that we only look in the upper square's triangle,
1169     // we already checked that the lower triangle PHI's aren't identical.
1170     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1171       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1172         continue;
1173       // A duplicate. Replace this PHI with the base PHI.
1174       ++NumPHICSEs;
1175       DuplicatePN->replaceAllUsesWith(PN);
1176       DuplicatePN->eraseFromParent();
1177       Changed = true;
1178 
1179       // The RAUW can change PHIs that we already visited.
1180       I = BB->begin();
1181       break; // Start over from the beginning.
1182     }
1183   }
1184   return Changed;
1185 }
1186 
1187 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1188   // This implementation doesn't currently consider undef operands
1189   // specially. Theoretically, two phis which are identical except for
1190   // one having an undef where the other doesn't could be collapsed.
1191 
1192   struct PHIDenseMapInfo {
1193     static PHINode *getEmptyKey() {
1194       return DenseMapInfo<PHINode *>::getEmptyKey();
1195     }
1196 
1197     static PHINode *getTombstoneKey() {
1198       return DenseMapInfo<PHINode *>::getTombstoneKey();
1199     }
1200 
1201     static bool isSentinel(PHINode *PN) {
1202       return PN == getEmptyKey() || PN == getTombstoneKey();
1203     }
1204 
1205     // WARNING: this logic must be kept in sync with
1206     //          Instruction::isIdenticalToWhenDefined()!
1207     static unsigned getHashValueImpl(PHINode *PN) {
1208       // Compute a hash value on the operands. Instcombine will likely have
1209       // sorted them, which helps expose duplicates, but we have to check all
1210       // the operands to be safe in case instcombine hasn't run.
1211       return static_cast<unsigned>(hash_combine(
1212           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1213           hash_combine_range(PN->block_begin(), PN->block_end())));
1214     }
1215 
1216     static unsigned getHashValue(PHINode *PN) {
1217 #ifndef NDEBUG
1218       // If -phicse-debug-hash was specified, return a constant -- this
1219       // will force all hashing to collide, so we'll exhaustively search
1220       // the table for a match, and the assertion in isEqual will fire if
1221       // there's a bug causing equal keys to hash differently.
1222       if (PHICSEDebugHash)
1223         return 0;
1224 #endif
1225       return getHashValueImpl(PN);
1226     }
1227 
1228     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1229       if (isSentinel(LHS) || isSentinel(RHS))
1230         return LHS == RHS;
1231       return LHS->isIdenticalTo(RHS);
1232     }
1233 
1234     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1235       // These comparisons are nontrivial, so assert that equality implies
1236       // hash equality (DenseMap demands this as an invariant).
1237       bool Result = isEqualImpl(LHS, RHS);
1238       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1239              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1240       return Result;
1241     }
1242   };
1243 
1244   // Set of unique PHINodes.
1245   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1246   PHISet.reserve(4 * PHICSENumPHISmallSize);
1247 
1248   // Examine each PHI.
1249   bool Changed = false;
1250   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1251     auto Inserted = PHISet.insert(PN);
1252     if (!Inserted.second) {
1253       // A duplicate. Replace this PHI with its duplicate.
1254       ++NumPHICSEs;
1255       PN->replaceAllUsesWith(*Inserted.first);
1256       PN->eraseFromParent();
1257       Changed = true;
1258 
1259       // The RAUW can change PHIs that we already visited. Start over from the
1260       // beginning.
1261       PHISet.clear();
1262       I = BB->begin();
1263     }
1264   }
1265 
1266   return Changed;
1267 }
1268 
1269 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1270   if (
1271 #ifndef NDEBUG
1272       !PHICSEDebugHash &&
1273 #endif
1274       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1275     return EliminateDuplicatePHINodesNaiveImpl(BB);
1276   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1277 }
1278 
1279 /// If the specified pointer points to an object that we control, try to modify
1280 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1281 /// the value after the operation, which may be lower than PrefAlign.
1282 ///
1283 /// Increating value alignment isn't often possible though. If alignment is
1284 /// important, a more reliable approach is to simply align all global variables
1285 /// and allocation instructions to their preferred alignment from the beginning.
1286 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1287                                  const DataLayout &DL) {
1288   V = V->stripPointerCasts();
1289 
1290   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1291     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1292     // than the current alignment, as the known bits calculation should have
1293     // already taken it into account. However, this is not always the case,
1294     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1295     // doesn't.
1296     Align CurrentAlign = AI->getAlign();
1297     if (PrefAlign <= CurrentAlign)
1298       return CurrentAlign;
1299 
1300     // If the preferred alignment is greater than the natural stack alignment
1301     // then don't round up. This avoids dynamic stack realignment.
1302     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1303       return CurrentAlign;
1304     AI->setAlignment(PrefAlign);
1305     return PrefAlign;
1306   }
1307 
1308   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1309     // TODO: as above, this shouldn't be necessary.
1310     Align CurrentAlign = GO->getPointerAlignment(DL);
1311     if (PrefAlign <= CurrentAlign)
1312       return CurrentAlign;
1313 
1314     // If there is a large requested alignment and we can, bump up the alignment
1315     // of the global.  If the memory we set aside for the global may not be the
1316     // memory used by the final program then it is impossible for us to reliably
1317     // enforce the preferred alignment.
1318     if (!GO->canIncreaseAlignment())
1319       return CurrentAlign;
1320 
1321     GO->setAlignment(PrefAlign);
1322     return PrefAlign;
1323   }
1324 
1325   return Align(1);
1326 }
1327 
1328 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1329                                        const DataLayout &DL,
1330                                        const Instruction *CxtI,
1331                                        AssumptionCache *AC,
1332                                        const DominatorTree *DT) {
1333   assert(V->getType()->isPointerTy() &&
1334          "getOrEnforceKnownAlignment expects a pointer!");
1335 
1336   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1337   unsigned TrailZ = Known.countMinTrailingZeros();
1338 
1339   // Avoid trouble with ridiculously large TrailZ values, such as
1340   // those computed from a null pointer.
1341   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1342   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1343 
1344   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1345 
1346   if (PrefAlign && *PrefAlign > Alignment)
1347     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1348 
1349   // We don't need to make any adjustment.
1350   return Alignment;
1351 }
1352 
1353 ///===---------------------------------------------------------------------===//
1354 ///  Dbg Intrinsic utilities
1355 ///
1356 
1357 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1358 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1359                              DIExpression *DIExpr,
1360                              PHINode *APN) {
1361   // Since we can't guarantee that the original dbg.declare instrinsic
1362   // is removed by LowerDbgDeclare(), we need to make sure that we are
1363   // not inserting the same dbg.value intrinsic over and over.
1364   SmallVector<DbgValueInst *, 1> DbgValues;
1365   findDbgValues(DbgValues, APN);
1366   for (auto *DVI : DbgValues) {
1367     assert(is_contained(DVI->getValues(), APN));
1368     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1369       return true;
1370   }
1371   return false;
1372 }
1373 
1374 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1375 /// (or fragment of the variable) described by \p DII.
1376 ///
1377 /// This is primarily intended as a helper for the different
1378 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1379 /// converted describes an alloca'd variable, so we need to use the
1380 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1381 /// identified as covering an n-bit fragment, if the store size of i1 is at
1382 /// least n bits.
1383 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1384   const DataLayout &DL = DII->getModule()->getDataLayout();
1385   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1386   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1387     assert(!ValueSize.isScalable() &&
1388            "Fragments don't work on scalable types.");
1389     return ValueSize.getFixedSize() >= *FragmentSize;
1390   }
1391   // We can't always calculate the size of the DI variable (e.g. if it is a
1392   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1393   // intead.
1394   if (DII->isAddressOfVariable()) {
1395     // DII should have exactly 1 location when it is an address.
1396     assert(DII->getNumVariableLocationOps() == 1 &&
1397            "address of variable must have exactly 1 location operand.");
1398     if (auto *AI =
1399             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1400       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1401         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1402                "Both sizes should agree on the scalable flag.");
1403         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1404       }
1405     }
1406   }
1407   // Could not determine size of variable. Conservatively return false.
1408   return false;
1409 }
1410 
1411 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1412 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1413 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1414 /// case this DebugLoc leaks into any adjacent instructions.
1415 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1416   // Original dbg.declare must have a location.
1417   DebugLoc DeclareLoc = DII->getDebugLoc();
1418   MDNode *Scope = DeclareLoc.getScope();
1419   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1420   // Produce an unknown location with the correct scope / inlinedAt fields.
1421   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1422 }
1423 
1424 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1425 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1426 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1427                                            StoreInst *SI, DIBuilder &Builder) {
1428   assert(DII->isAddressOfVariable());
1429   auto *DIVar = DII->getVariable();
1430   assert(DIVar && "Missing variable");
1431   auto *DIExpr = DII->getExpression();
1432   Value *DV = SI->getValueOperand();
1433 
1434   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1435 
1436   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1437     // FIXME: If storing to a part of the variable described by the dbg.declare,
1438     // then we want to insert a dbg.value for the corresponding fragment.
1439     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1440                       << *DII << '\n');
1441     // For now, when there is a store to parts of the variable (but we do not
1442     // know which part) we insert an dbg.value instrinsic to indicate that we
1443     // know nothing about the variable's content.
1444     DV = UndefValue::get(DV->getType());
1445     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1446     return;
1447   }
1448 
1449   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1450 }
1451 
1452 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1453 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1454 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1455                                            LoadInst *LI, DIBuilder &Builder) {
1456   auto *DIVar = DII->getVariable();
1457   auto *DIExpr = DII->getExpression();
1458   assert(DIVar && "Missing variable");
1459 
1460   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1461     // FIXME: If only referring to a part of the variable described by the
1462     // dbg.declare, then we want to insert a dbg.value for the corresponding
1463     // fragment.
1464     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1465                       << *DII << '\n');
1466     return;
1467   }
1468 
1469   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1470 
1471   // We are now tracking the loaded value instead of the address. In the
1472   // future if multi-location support is added to the IR, it might be
1473   // preferable to keep tracking both the loaded value and the original
1474   // address in case the alloca can not be elided.
1475   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1476       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1477   DbgValue->insertAfter(LI);
1478 }
1479 
1480 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1481 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1482 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1483                                            PHINode *APN, DIBuilder &Builder) {
1484   auto *DIVar = DII->getVariable();
1485   auto *DIExpr = DII->getExpression();
1486   assert(DIVar && "Missing variable");
1487 
1488   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1489     return;
1490 
1491   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1492     // FIXME: If only referring to a part of the variable described by the
1493     // dbg.declare, then we want to insert a dbg.value for the corresponding
1494     // fragment.
1495     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1496                       << *DII << '\n');
1497     return;
1498   }
1499 
1500   BasicBlock *BB = APN->getParent();
1501   auto InsertionPt = BB->getFirstInsertionPt();
1502 
1503   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1504 
1505   // The block may be a catchswitch block, which does not have a valid
1506   // insertion point.
1507   // FIXME: Insert dbg.value markers in the successors when appropriate.
1508   if (InsertionPt != BB->end())
1509     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1510 }
1511 
1512 /// Determine whether this alloca is either a VLA or an array.
1513 static bool isArray(AllocaInst *AI) {
1514   return AI->isArrayAllocation() ||
1515          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1516 }
1517 
1518 /// Determine whether this alloca is a structure.
1519 static bool isStructure(AllocaInst *AI) {
1520   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1521 }
1522 
1523 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1524 /// of llvm.dbg.value intrinsics.
1525 bool llvm::LowerDbgDeclare(Function &F) {
1526   bool Changed = false;
1527   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1528   SmallVector<DbgDeclareInst *, 4> Dbgs;
1529   for (auto &FI : F)
1530     for (Instruction &BI : FI)
1531       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1532         Dbgs.push_back(DDI);
1533 
1534   if (Dbgs.empty())
1535     return Changed;
1536 
1537   for (auto &I : Dbgs) {
1538     DbgDeclareInst *DDI = I;
1539     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1540     // If this is an alloca for a scalar variable, insert a dbg.value
1541     // at each load and store to the alloca and erase the dbg.declare.
1542     // The dbg.values allow tracking a variable even if it is not
1543     // stored on the stack, while the dbg.declare can only describe
1544     // the stack slot (and at a lexical-scope granularity). Later
1545     // passes will attempt to elide the stack slot.
1546     if (!AI || isArray(AI) || isStructure(AI))
1547       continue;
1548 
1549     // A volatile load/store means that the alloca can't be elided anyway.
1550     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1551           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1552             return LI->isVolatile();
1553           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1554             return SI->isVolatile();
1555           return false;
1556         }))
1557       continue;
1558 
1559     SmallVector<const Value *, 8> WorkList;
1560     WorkList.push_back(AI);
1561     while (!WorkList.empty()) {
1562       const Value *V = WorkList.pop_back_val();
1563       for (auto &AIUse : V->uses()) {
1564         User *U = AIUse.getUser();
1565         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1566           if (AIUse.getOperandNo() == 1)
1567             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1568         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1569           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1570         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1571           // This is a call by-value or some other instruction that takes a
1572           // pointer to the variable. Insert a *value* intrinsic that describes
1573           // the variable by dereferencing the alloca.
1574           if (!CI->isLifetimeStartOrEnd()) {
1575             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1576             auto *DerefExpr =
1577                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1578             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1579                                         NewLoc, CI);
1580           }
1581         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1582           if (BI->getType()->isPointerTy())
1583             WorkList.push_back(BI);
1584         }
1585       }
1586     }
1587     DDI->eraseFromParent();
1588     Changed = true;
1589   }
1590 
1591   if (Changed)
1592   for (BasicBlock &BB : F)
1593     RemoveRedundantDbgInstrs(&BB);
1594 
1595   return Changed;
1596 }
1597 
1598 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1599 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1600                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1601   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1602   if (InsertedPHIs.size() == 0)
1603     return;
1604 
1605   // Map existing PHI nodes to their dbg.values.
1606   ValueToValueMapTy DbgValueMap;
1607   for (auto &I : *BB) {
1608     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1609       for (Value *V : DbgII->location_ops())
1610         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1611           DbgValueMap.insert({Loc, DbgII});
1612     }
1613   }
1614   if (DbgValueMap.size() == 0)
1615     return;
1616 
1617   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1618   // so that if a dbg.value is being rewritten to use more than one of the
1619   // inserted PHIs in the same destination BB, we can update the same dbg.value
1620   // with all the new PHIs instead of creating one copy for each.
1621   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1622             DbgVariableIntrinsic *>
1623       NewDbgValueMap;
1624   // Then iterate through the new PHIs and look to see if they use one of the
1625   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1626   // propagate the info through the new PHI. If we use more than one new PHI in
1627   // a single destination BB with the same old dbg.value, merge the updates so
1628   // that we get a single new dbg.value with all the new PHIs.
1629   for (auto PHI : InsertedPHIs) {
1630     BasicBlock *Parent = PHI->getParent();
1631     // Avoid inserting an intrinsic into an EH block.
1632     if (Parent->getFirstNonPHI()->isEHPad())
1633       continue;
1634     for (auto VI : PHI->operand_values()) {
1635       auto V = DbgValueMap.find(VI);
1636       if (V != DbgValueMap.end()) {
1637         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1638         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1639         if (NewDI == NewDbgValueMap.end()) {
1640           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1641           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1642         }
1643         DbgVariableIntrinsic *NewDbgII = NewDI->second;
1644         // If PHI contains VI as an operand more than once, we may
1645         // replaced it in NewDbgII; confirm that it is present.
1646         if (is_contained(NewDbgII->location_ops(), VI))
1647           NewDbgII->replaceVariableLocationOp(VI, PHI);
1648       }
1649     }
1650   }
1651   // Insert thew new dbg.values into their destination blocks.
1652   for (auto DI : NewDbgValueMap) {
1653     BasicBlock *Parent = DI.first.first;
1654     auto *NewDbgII = DI.second;
1655     auto InsertionPt = Parent->getFirstInsertionPt();
1656     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1657     NewDbgII->insertBefore(&*InsertionPt);
1658   }
1659 }
1660 
1661 /// Finds all intrinsics declaring local variables as living in the memory that
1662 /// 'V' points to. This may include a mix of dbg.declare and
1663 /// dbg.addr intrinsics.
1664 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1665   // This function is hot. Check whether the value has any metadata to avoid a
1666   // DenseMap lookup.
1667   if (!V->isUsedByMetadata())
1668     return {};
1669   auto *L = LocalAsMetadata::getIfExists(V);
1670   if (!L)
1671     return {};
1672   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1673   if (!MDV)
1674     return {};
1675 
1676   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1677   for (User *U : MDV->users()) {
1678     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1679       if (DII->isAddressOfVariable())
1680         Declares.push_back(DII);
1681   }
1682 
1683   return Declares;
1684 }
1685 
1686 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1687   TinyPtrVector<DbgDeclareInst *> DDIs;
1688   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1689     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1690       DDIs.push_back(DDI);
1691   return DDIs;
1692 }
1693 
1694 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1695   // This function is hot. Check whether the value has any metadata to avoid a
1696   // DenseMap lookup.
1697   if (!V->isUsedByMetadata())
1698     return;
1699   // TODO: If this value appears multiple times in a DIArgList, we should still
1700   // only add the owning DbgValueInst once; use this set to track ArgListUsers.
1701   // This behaviour can be removed when we can automatically remove duplicates.
1702   SmallPtrSet<DbgValueInst *, 4> EncounteredDbgValues;
1703   if (auto *L = LocalAsMetadata::getIfExists(V)) {
1704     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) {
1705       for (User *U : MDV->users())
1706         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1707           DbgValues.push_back(DVI);
1708     }
1709     for (Metadata *AL : L->getAllArgListUsers()) {
1710       if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) {
1711         for (User *U : MDV->users())
1712           if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1713             if (EncounteredDbgValues.insert(DVI).second)
1714               DbgValues.push_back(DVI);
1715       }
1716     }
1717   }
1718 }
1719 
1720 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1721                         Value *V) {
1722   // This function is hot. Check whether the value has any metadata to avoid a
1723   // DenseMap lookup.
1724   if (!V->isUsedByMetadata())
1725     return;
1726   // TODO: If this value appears multiple times in a DIArgList, we should still
1727   // only add the owning DbgValueInst once; use this set to track ArgListUsers.
1728   // This behaviour can be removed when we can automatically remove duplicates.
1729   SmallPtrSet<DbgVariableIntrinsic *, 4> EncounteredDbgValues;
1730   if (auto *L = LocalAsMetadata::getIfExists(V)) {
1731     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) {
1732       for (User *U : MDV->users())
1733         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1734           DbgUsers.push_back(DII);
1735     }
1736     for (Metadata *AL : L->getAllArgListUsers()) {
1737       if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) {
1738         for (User *U : MDV->users())
1739           if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1740             if (EncounteredDbgValues.insert(DII).second)
1741               DbgUsers.push_back(DII);
1742       }
1743     }
1744   }
1745 }
1746 
1747 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1748                              DIBuilder &Builder, uint8_t DIExprFlags,
1749                              int Offset) {
1750   auto DbgAddrs = FindDbgAddrUses(Address);
1751   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1752     DebugLoc Loc = DII->getDebugLoc();
1753     auto *DIVar = DII->getVariable();
1754     auto *DIExpr = DII->getExpression();
1755     assert(DIVar && "Missing variable");
1756     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1757     // Insert llvm.dbg.declare immediately before DII, and remove old
1758     // llvm.dbg.declare.
1759     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1760     DII->eraseFromParent();
1761   }
1762   return !DbgAddrs.empty();
1763 }
1764 
1765 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1766                                         DIBuilder &Builder, int Offset) {
1767   DebugLoc Loc = DVI->getDebugLoc();
1768   auto *DIVar = DVI->getVariable();
1769   auto *DIExpr = DVI->getExpression();
1770   assert(DIVar && "Missing variable");
1771 
1772   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1773   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1774   // it and give up.
1775   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1776       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1777     return;
1778 
1779   // Insert the offset before the first deref.
1780   // We could just change the offset argument of dbg.value, but it's unsigned...
1781   if (Offset)
1782     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1783 
1784   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1785   DVI->eraseFromParent();
1786 }
1787 
1788 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1789                                     DIBuilder &Builder, int Offset) {
1790   if (auto *L = LocalAsMetadata::getIfExists(AI))
1791     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1792       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1793         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1794           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1795 }
1796 
1797 /// Where possible to salvage debug information for \p I do so
1798 /// and return True. If not possible mark undef and return False.
1799 void llvm::salvageDebugInfo(Instruction &I) {
1800   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1801   findDbgUsers(DbgUsers, &I);
1802   salvageDebugInfoForDbgValues(I, DbgUsers);
1803 }
1804 
1805 void llvm::salvageDebugInfoForDbgValues(
1806     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1807   bool Salvaged = false;
1808 
1809   for (auto *DII : DbgUsers) {
1810     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1811     // are implicitly pointing out the value as a DWARF memory location
1812     // description.
1813     bool StackValue = isa<DbgValueInst>(DII);
1814     auto DIILocation = DII->location_ops();
1815     assert(
1816         is_contained(DIILocation, &I) &&
1817         "DbgVariableIntrinsic must use salvaged instruction as its location");
1818     unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I));
1819     SmallVector<Value *, 4> AdditionalValues;
1820     DIExpression *SalvagedExpr = salvageDebugInfoImpl(
1821         I, DII->getExpression(), StackValue, LocNo, AdditionalValues);
1822 
1823     // salvageDebugInfoImpl should fail on examining the first element of
1824     // DbgUsers, or none of them.
1825     if (!SalvagedExpr)
1826       break;
1827 
1828     DII->replaceVariableLocationOp(&I, I.getOperand(0));
1829     if (AdditionalValues.empty()) {
1830       DII->setExpression(SalvagedExpr);
1831     } else if (isa<DbgValueInst>(DII)) {
1832       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1833     } else {
1834       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1835       // currently only valid for stack value expressions.
1836       Value *Undef = UndefValue::get(I.getOperand(0)->getType());
1837       DII->replaceVariableLocationOp(I.getOperand(0), Undef);
1838     }
1839     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1840     Salvaged = true;
1841   }
1842 
1843   if (Salvaged)
1844     return;
1845 
1846   for (auto *DII : DbgUsers) {
1847     Value *Undef = UndefValue::get(I.getType());
1848     DII->replaceVariableLocationOp(&I, Undef);
1849   }
1850 }
1851 
1852 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1853                          uint64_t CurrentLocOps,
1854                          SmallVectorImpl<uint64_t> &Opcodes,
1855                          SmallVectorImpl<Value *> &AdditionalValues) {
1856   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1857   // Rewrite a GEP into a DIExpression.
1858   SmallDenseMap<Value *, APInt, 8> VariableOffsets;
1859   APInt ConstantOffset(BitWidth, 0);
1860   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1861     return false;
1862   if (!VariableOffsets.empty() && !CurrentLocOps) {
1863     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1864     CurrentLocOps = 1;
1865   }
1866   for (auto Offset : VariableOffsets) {
1867     AdditionalValues.push_back(Offset.first);
1868     assert(Offset.second.isStrictlyPositive() &&
1869            "Expected strictly positive multiplier for offset.");
1870     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1871                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1872                     dwarf::DW_OP_plus});
1873   }
1874   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1875   return true;
1876 }
1877 
1878 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1879   switch (Opcode) {
1880   case Instruction::Add:
1881     return dwarf::DW_OP_plus;
1882   case Instruction::Sub:
1883     return dwarf::DW_OP_minus;
1884   case Instruction::Mul:
1885     return dwarf::DW_OP_mul;
1886   case Instruction::SDiv:
1887     return dwarf::DW_OP_div;
1888   case Instruction::SRem:
1889     return dwarf::DW_OP_mod;
1890   case Instruction::Or:
1891     return dwarf::DW_OP_or;
1892   case Instruction::And:
1893     return dwarf::DW_OP_and;
1894   case Instruction::Xor:
1895     return dwarf::DW_OP_xor;
1896   case Instruction::Shl:
1897     return dwarf::DW_OP_shl;
1898   case Instruction::LShr:
1899     return dwarf::DW_OP_shr;
1900   case Instruction::AShr:
1901     return dwarf::DW_OP_shra;
1902   default:
1903     // TODO: Salvage from each kind of binop we know about.
1904     return 0;
1905   }
1906 }
1907 
1908 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1909                            SmallVectorImpl<uint64_t> &Opcodes,
1910                            SmallVectorImpl<Value *> &AdditionalValues) {
1911   // Handle binary operations with constant integer operands as a special case.
1912   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1913   // Values wider than 64 bits cannot be represented within a DIExpression.
1914   if (ConstInt && ConstInt->getBitWidth() > 64)
1915     return false;
1916 
1917   Instruction::BinaryOps BinOpcode = BI->getOpcode();
1918   // Push any Constant Int operand onto the expression stack.
1919   if (ConstInt) {
1920     uint64_t Val = ConstInt->getSExtValue();
1921     // Add or Sub Instructions with a constant operand can potentially be
1922     // simplified.
1923     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1924       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1925       DIExpression::appendOffset(Opcodes, Offset);
1926       return true;
1927     }
1928     Opcodes.append({dwarf::DW_OP_constu, Val});
1929   } else {
1930     if (!CurrentLocOps) {
1931       Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
1932       CurrentLocOps = 1;
1933     }
1934     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
1935     AdditionalValues.push_back(BI->getOperand(1));
1936   }
1937 
1938   // Add salvaged binary operator to expression stack, if it has a valid
1939   // representation in a DIExpression.
1940   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1941   if (!DwarfBinOp)
1942     return false;
1943   Opcodes.push_back(DwarfBinOp);
1944 
1945   return true;
1946 }
1947 
1948 DIExpression *
1949 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr,
1950                            bool WithStackValue, unsigned LocNo,
1951                            SmallVectorImpl<Value *> &AdditionalValues) {
1952   uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands();
1953   auto &M = *I.getModule();
1954   auto &DL = M.getDataLayout();
1955 
1956   // Apply a vector of opcodes to the source DIExpression.
1957   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1958     DIExpression *DIExpr = SrcDIExpr;
1959     if (!Ops.empty()) {
1960       DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue);
1961     }
1962     return DIExpr;
1963   };
1964 
1965   // initializer-list helper for applying operators to the source DIExpression.
1966   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) {
1967     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1968     return doSalvage(Ops);
1969   };
1970 
1971   if (auto *CI = dyn_cast<CastInst>(&I)) {
1972     // No-op casts are irrelevant for debug info.
1973     if (CI->isNoopCast(DL))
1974       return SrcDIExpr;
1975 
1976     Type *Type = CI->getType();
1977     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1978     if (Type->isVectorTy() ||
1979         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1980       return nullptr;
1981 
1982     Value *FromValue = CI->getOperand(0);
1983     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1984     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1985 
1986     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1987                                             isa<SExtInst>(&I)));
1988   }
1989 
1990   SmallVector<uint64_t, 8> Ops;
1991   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1992     if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues))
1993       return doSalvage(Ops);
1994   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1995     if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues))
1996       return doSalvage(Ops);
1997   }
1998   // *Not* to do: we should not attempt to salvage load instructions,
1999   // because the validity and lifetime of a dbg.value containing
2000   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2001   return nullptr;
2002 }
2003 
2004 /// A replacement for a dbg.value expression.
2005 using DbgValReplacement = Optional<DIExpression *>;
2006 
2007 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2008 /// possibly moving/undefing users to prevent use-before-def. Returns true if
2009 /// changes are made.
2010 static bool rewriteDebugUsers(
2011     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2012     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
2013   // Find debug users of From.
2014   SmallVector<DbgVariableIntrinsic *, 1> Users;
2015   findDbgUsers(Users, &From);
2016   if (Users.empty())
2017     return false;
2018 
2019   // Prevent use-before-def of To.
2020   bool Changed = false;
2021   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2022   if (isa<Instruction>(&To)) {
2023     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2024 
2025     for (auto *DII : Users) {
2026       // It's common to see a debug user between From and DomPoint. Move it
2027       // after DomPoint to preserve the variable update without any reordering.
2028       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2029         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
2030         DII->moveAfter(&DomPoint);
2031         Changed = true;
2032 
2033       // Users which otherwise aren't dominated by the replacement value must
2034       // be salvaged or deleted.
2035       } else if (!DT.dominates(&DomPoint, DII)) {
2036         UndefOrSalvage.insert(DII);
2037       }
2038     }
2039   }
2040 
2041   // Update debug users without use-before-def risk.
2042   for (auto *DII : Users) {
2043     if (UndefOrSalvage.count(DII))
2044       continue;
2045 
2046     DbgValReplacement DVR = RewriteExpr(*DII);
2047     if (!DVR)
2048       continue;
2049 
2050     DII->replaceVariableLocationOp(&From, &To);
2051     DII->setExpression(*DVR);
2052     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
2053     Changed = true;
2054   }
2055 
2056   if (!UndefOrSalvage.empty()) {
2057     // Try to salvage the remaining debug users.
2058     salvageDebugInfo(From);
2059     Changed = true;
2060   }
2061 
2062   return Changed;
2063 }
2064 
2065 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2066 /// losslessly preserve the bits and semantics of the value. This predicate is
2067 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2068 ///
2069 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2070 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2071 /// and also does not allow lossless pointer <-> integer conversions.
2072 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2073                                          Type *ToTy) {
2074   // Trivially compatible types.
2075   if (FromTy == ToTy)
2076     return true;
2077 
2078   // Handle compatible pointer <-> integer conversions.
2079   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2080     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2081     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2082                               !DL.isNonIntegralPointerType(ToTy);
2083     return SameSize && LosslessConversion;
2084   }
2085 
2086   // TODO: This is not exhaustive.
2087   return false;
2088 }
2089 
2090 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2091                                  Instruction &DomPoint, DominatorTree &DT) {
2092   // Exit early if From has no debug users.
2093   if (!From.isUsedByMetadata())
2094     return false;
2095 
2096   assert(&From != &To && "Can't replace something with itself");
2097 
2098   Type *FromTy = From.getType();
2099   Type *ToTy = To.getType();
2100 
2101   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2102     return DII.getExpression();
2103   };
2104 
2105   // Handle no-op conversions.
2106   Module &M = *From.getModule();
2107   const DataLayout &DL = M.getDataLayout();
2108   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2109     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2110 
2111   // Handle integer-to-integer widening and narrowing.
2112   // FIXME: Use DW_OP_convert when it's available everywhere.
2113   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2114     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2115     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2116     assert(FromBits != ToBits && "Unexpected no-op conversion");
2117 
2118     // When the width of the result grows, assume that a debugger will only
2119     // access the low `FromBits` bits when inspecting the source variable.
2120     if (FromBits < ToBits)
2121       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2122 
2123     // The width of the result has shrunk. Use sign/zero extension to describe
2124     // the source variable's high bits.
2125     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2126       DILocalVariable *Var = DII.getVariable();
2127 
2128       // Without knowing signedness, sign/zero extension isn't possible.
2129       auto Signedness = Var->getSignedness();
2130       if (!Signedness)
2131         return None;
2132 
2133       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2134       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2135                                      Signed);
2136     };
2137     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2138   }
2139 
2140   // TODO: Floating-point conversions, vectors.
2141   return false;
2142 }
2143 
2144 std::pair<unsigned, unsigned>
2145 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2146   unsigned NumDeadInst = 0;
2147   unsigned NumDeadDbgInst = 0;
2148   // Delete the instructions backwards, as it has a reduced likelihood of
2149   // having to update as many def-use and use-def chains.
2150   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2151   while (EndInst != &BB->front()) {
2152     // Delete the next to last instruction.
2153     Instruction *Inst = &*--EndInst->getIterator();
2154     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2155       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2156     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2157       EndInst = Inst;
2158       continue;
2159     }
2160     if (isa<DbgInfoIntrinsic>(Inst))
2161       ++NumDeadDbgInst;
2162     else
2163       ++NumDeadInst;
2164     Inst->eraseFromParent();
2165   }
2166   return {NumDeadInst, NumDeadDbgInst};
2167 }
2168 
2169 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2170                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2171                                    MemorySSAUpdater *MSSAU) {
2172   BasicBlock *BB = I->getParent();
2173 
2174   if (MSSAU)
2175     MSSAU->changeToUnreachable(I);
2176 
2177   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2178 
2179   // Loop over all of the successors, removing BB's entry from any PHI
2180   // nodes.
2181   for (BasicBlock *Successor : successors(BB)) {
2182     Successor->removePredecessor(BB, PreserveLCSSA);
2183     if (DTU)
2184       UniqueSuccessors.insert(Successor);
2185   }
2186   // Insert a call to llvm.trap right before this.  This turns the undefined
2187   // behavior into a hard fail instead of falling through into random code.
2188   if (UseLLVMTrap) {
2189     Function *TrapFn =
2190       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2191     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2192     CallTrap->setDebugLoc(I->getDebugLoc());
2193   }
2194   auto *UI = new UnreachableInst(I->getContext(), I);
2195   UI->setDebugLoc(I->getDebugLoc());
2196 
2197   // All instructions after this are dead.
2198   unsigned NumInstrsRemoved = 0;
2199   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2200   while (BBI != BBE) {
2201     if (!BBI->use_empty())
2202       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2203     BB->getInstList().erase(BBI++);
2204     ++NumInstrsRemoved;
2205   }
2206   if (DTU) {
2207     SmallVector<DominatorTree::UpdateType, 8> Updates;
2208     Updates.reserve(UniqueSuccessors.size());
2209     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2210       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2211     DTU->applyUpdates(Updates);
2212   }
2213   return NumInstrsRemoved;
2214 }
2215 
2216 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2217   SmallVector<Value *, 8> Args(II->args());
2218   SmallVector<OperandBundleDef, 1> OpBundles;
2219   II->getOperandBundlesAsDefs(OpBundles);
2220   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2221                                        II->getCalledOperand(), Args, OpBundles);
2222   NewCall->setCallingConv(II->getCallingConv());
2223   NewCall->setAttributes(II->getAttributes());
2224   NewCall->setDebugLoc(II->getDebugLoc());
2225   NewCall->copyMetadata(*II);
2226 
2227   // If the invoke had profile metadata, try converting them for CallInst.
2228   uint64_t TotalWeight;
2229   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2230     // Set the total weight if it fits into i32, otherwise reset.
2231     MDBuilder MDB(NewCall->getContext());
2232     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2233                           ? nullptr
2234                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2235     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2236   }
2237 
2238   return NewCall;
2239 }
2240 
2241 /// changeToCall - Convert the specified invoke into a normal call.
2242 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2243   CallInst *NewCall = createCallMatchingInvoke(II);
2244   NewCall->takeName(II);
2245   NewCall->insertBefore(II);
2246   II->replaceAllUsesWith(NewCall);
2247 
2248   // Follow the call by a branch to the normal destination.
2249   BasicBlock *NormalDestBB = II->getNormalDest();
2250   BranchInst::Create(NormalDestBB, II);
2251 
2252   // Update PHI nodes in the unwind destination
2253   BasicBlock *BB = II->getParent();
2254   BasicBlock *UnwindDestBB = II->getUnwindDest();
2255   UnwindDestBB->removePredecessor(BB);
2256   II->eraseFromParent();
2257   if (DTU)
2258     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2259 }
2260 
2261 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2262                                                    BasicBlock *UnwindEdge,
2263                                                    DomTreeUpdater *DTU) {
2264   BasicBlock *BB = CI->getParent();
2265 
2266   // Convert this function call into an invoke instruction.  First, split the
2267   // basic block.
2268   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2269                                  CI->getName() + ".noexc");
2270 
2271   // Delete the unconditional branch inserted by SplitBlock
2272   BB->getInstList().pop_back();
2273 
2274   // Create the new invoke instruction.
2275   SmallVector<Value *, 8> InvokeArgs(CI->args());
2276   SmallVector<OperandBundleDef, 1> OpBundles;
2277 
2278   CI->getOperandBundlesAsDefs(OpBundles);
2279 
2280   // Note: we're round tripping operand bundles through memory here, and that
2281   // can potentially be avoided with a cleverer API design that we do not have
2282   // as of this time.
2283 
2284   InvokeInst *II =
2285       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2286                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2287   II->setDebugLoc(CI->getDebugLoc());
2288   II->setCallingConv(CI->getCallingConv());
2289   II->setAttributes(CI->getAttributes());
2290 
2291   if (DTU)
2292     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2293 
2294   // Make sure that anything using the call now uses the invoke!  This also
2295   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2296   CI->replaceAllUsesWith(II);
2297 
2298   // Delete the original call
2299   Split->getInstList().pop_front();
2300   return Split;
2301 }
2302 
2303 static bool markAliveBlocks(Function &F,
2304                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2305                             DomTreeUpdater *DTU = nullptr) {
2306   SmallVector<BasicBlock*, 128> Worklist;
2307   BasicBlock *BB = &F.front();
2308   Worklist.push_back(BB);
2309   Reachable.insert(BB);
2310   bool Changed = false;
2311   do {
2312     BB = Worklist.pop_back_val();
2313 
2314     // Do a quick scan of the basic block, turning any obviously unreachable
2315     // instructions into LLVM unreachable insts.  The instruction combining pass
2316     // canonicalizes unreachable insts into stores to null or undef.
2317     for (Instruction &I : *BB) {
2318       if (auto *CI = dyn_cast<CallInst>(&I)) {
2319         Value *Callee = CI->getCalledOperand();
2320         // Handle intrinsic calls.
2321         if (Function *F = dyn_cast<Function>(Callee)) {
2322           auto IntrinsicID = F->getIntrinsicID();
2323           // Assumptions that are known to be false are equivalent to
2324           // unreachable. Also, if the condition is undefined, then we make the
2325           // choice most beneficial to the optimizer, and choose that to also be
2326           // unreachable.
2327           if (IntrinsicID == Intrinsic::assume) {
2328             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2329               // Don't insert a call to llvm.trap right before the unreachable.
2330               changeToUnreachable(CI, false, false, DTU);
2331               Changed = true;
2332               break;
2333             }
2334           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2335             // A call to the guard intrinsic bails out of the current
2336             // compilation unit if the predicate passed to it is false. If the
2337             // predicate is a constant false, then we know the guard will bail
2338             // out of the current compile unconditionally, so all code following
2339             // it is dead.
2340             //
2341             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2342             // guards to treat `undef` as `false` since a guard on `undef` can
2343             // still be useful for widening.
2344             if (match(CI->getArgOperand(0), m_Zero()))
2345               if (!isa<UnreachableInst>(CI->getNextNode())) {
2346                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2347                                     false, DTU);
2348                 Changed = true;
2349                 break;
2350               }
2351           }
2352         } else if ((isa<ConstantPointerNull>(Callee) &&
2353                     !NullPointerIsDefined(CI->getFunction())) ||
2354                    isa<UndefValue>(Callee)) {
2355           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2356           Changed = true;
2357           break;
2358         }
2359         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2360           // If we found a call to a no-return function, insert an unreachable
2361           // instruction after it.  Make sure there isn't *already* one there
2362           // though.
2363           if (!isa<UnreachableInst>(CI->getNextNode())) {
2364             // Don't insert a call to llvm.trap right before the unreachable.
2365             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2366             Changed = true;
2367           }
2368           break;
2369         }
2370       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2371         // Store to undef and store to null are undefined and used to signal
2372         // that they should be changed to unreachable by passes that can't
2373         // modify the CFG.
2374 
2375         // Don't touch volatile stores.
2376         if (SI->isVolatile()) continue;
2377 
2378         Value *Ptr = SI->getOperand(1);
2379 
2380         if (isa<UndefValue>(Ptr) ||
2381             (isa<ConstantPointerNull>(Ptr) &&
2382              !NullPointerIsDefined(SI->getFunction(),
2383                                    SI->getPointerAddressSpace()))) {
2384           changeToUnreachable(SI, true, false, DTU);
2385           Changed = true;
2386           break;
2387         }
2388       }
2389     }
2390 
2391     Instruction *Terminator = BB->getTerminator();
2392     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2393       // Turn invokes that call 'nounwind' functions into ordinary calls.
2394       Value *Callee = II->getCalledOperand();
2395       if ((isa<ConstantPointerNull>(Callee) &&
2396            !NullPointerIsDefined(BB->getParent())) ||
2397           isa<UndefValue>(Callee)) {
2398         changeToUnreachable(II, true, false, DTU);
2399         Changed = true;
2400       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2401         if (II->use_empty() && II->onlyReadsMemory()) {
2402           // jump to the normal destination branch.
2403           BasicBlock *NormalDestBB = II->getNormalDest();
2404           BasicBlock *UnwindDestBB = II->getUnwindDest();
2405           BranchInst::Create(NormalDestBB, II);
2406           UnwindDestBB->removePredecessor(II->getParent());
2407           II->eraseFromParent();
2408           if (DTU)
2409             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2410         } else
2411           changeToCall(II, DTU);
2412         Changed = true;
2413       }
2414     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2415       // Remove catchpads which cannot be reached.
2416       struct CatchPadDenseMapInfo {
2417         static CatchPadInst *getEmptyKey() {
2418           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2419         }
2420 
2421         static CatchPadInst *getTombstoneKey() {
2422           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2423         }
2424 
2425         static unsigned getHashValue(CatchPadInst *CatchPad) {
2426           return static_cast<unsigned>(hash_combine_range(
2427               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2428         }
2429 
2430         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2431           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2432               RHS == getEmptyKey() || RHS == getTombstoneKey())
2433             return LHS == RHS;
2434           return LHS->isIdenticalTo(RHS);
2435         }
2436       };
2437 
2438       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2439       // Set of unique CatchPads.
2440       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2441                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2442           HandlerSet;
2443       detail::DenseSetEmpty Empty;
2444       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2445                                              E = CatchSwitch->handler_end();
2446            I != E; ++I) {
2447         BasicBlock *HandlerBB = *I;
2448         if (DTU)
2449           ++NumPerSuccessorCases[HandlerBB];
2450         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2451         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2452           if (DTU)
2453             --NumPerSuccessorCases[HandlerBB];
2454           CatchSwitch->removeHandler(I);
2455           --I;
2456           --E;
2457           Changed = true;
2458         }
2459       }
2460       if (DTU) {
2461         std::vector<DominatorTree::UpdateType> Updates;
2462         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2463           if (I.second == 0)
2464             Updates.push_back({DominatorTree::Delete, BB, I.first});
2465         DTU->applyUpdates(Updates);
2466       }
2467     }
2468 
2469     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2470     for (BasicBlock *Successor : successors(BB))
2471       if (Reachable.insert(Successor).second)
2472         Worklist.push_back(Successor);
2473   } while (!Worklist.empty());
2474   return Changed;
2475 }
2476 
2477 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2478   Instruction *TI = BB->getTerminator();
2479 
2480   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2481     changeToCall(II, DTU);
2482     return;
2483   }
2484 
2485   Instruction *NewTI;
2486   BasicBlock *UnwindDest;
2487 
2488   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2489     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2490     UnwindDest = CRI->getUnwindDest();
2491   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2492     auto *NewCatchSwitch = CatchSwitchInst::Create(
2493         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2494         CatchSwitch->getName(), CatchSwitch);
2495     for (BasicBlock *PadBB : CatchSwitch->handlers())
2496       NewCatchSwitch->addHandler(PadBB);
2497 
2498     NewTI = NewCatchSwitch;
2499     UnwindDest = CatchSwitch->getUnwindDest();
2500   } else {
2501     llvm_unreachable("Could not find unwind successor");
2502   }
2503 
2504   NewTI->takeName(TI);
2505   NewTI->setDebugLoc(TI->getDebugLoc());
2506   UnwindDest->removePredecessor(BB);
2507   TI->replaceAllUsesWith(NewTI);
2508   TI->eraseFromParent();
2509   if (DTU)
2510     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2511 }
2512 
2513 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2514 /// if they are in a dead cycle.  Return true if a change was made, false
2515 /// otherwise.
2516 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2517                                    MemorySSAUpdater *MSSAU) {
2518   SmallPtrSet<BasicBlock *, 16> Reachable;
2519   bool Changed = markAliveBlocks(F, Reachable, DTU);
2520 
2521   // If there are unreachable blocks in the CFG...
2522   if (Reachable.size() == F.size())
2523     return Changed;
2524 
2525   assert(Reachable.size() < F.size());
2526 
2527   // Are there any blocks left to actually delete?
2528   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2529   for (BasicBlock &BB : F) {
2530     // Skip reachable basic blocks
2531     if (Reachable.count(&BB))
2532       continue;
2533     // Skip already-deleted blocks
2534     if (DTU && DTU->isBBPendingDeletion(&BB))
2535       continue;
2536     BlocksToRemove.insert(&BB);
2537   }
2538 
2539   if (BlocksToRemove.empty())
2540     return Changed;
2541 
2542   Changed = true;
2543   NumRemoved += BlocksToRemove.size();
2544 
2545   if (MSSAU)
2546     MSSAU->removeBlocks(BlocksToRemove);
2547 
2548   // Loop over all of the basic blocks that are up for removal, dropping all of
2549   // their internal references. Update DTU if available.
2550   std::vector<DominatorTree::UpdateType> Updates;
2551   for (auto *BB : BlocksToRemove) {
2552     SmallSet<BasicBlock *, 8> UniqueSuccessors;
2553     for (BasicBlock *Successor : successors(BB)) {
2554       // Only remove references to BB in reachable successors of BB.
2555       if (Reachable.count(Successor))
2556         Successor->removePredecessor(BB);
2557       if (DTU)
2558         UniqueSuccessors.insert(Successor);
2559     }
2560     BB->dropAllReferences();
2561     if (DTU) {
2562       Instruction *TI = BB->getTerminator();
2563       assert(TI && "Basic block should have a terminator");
2564       // Terminators like invoke can have users. We have to replace their users,
2565       // before removing them.
2566       if (!TI->use_empty())
2567         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2568       TI->eraseFromParent();
2569       new UnreachableInst(BB->getContext(), BB);
2570       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2571                                "applying corresponding DTU updates.");
2572       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2573       for (auto *UniqueSuccessor : UniqueSuccessors)
2574         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2575     }
2576   }
2577 
2578   if (DTU) {
2579     DTU->applyUpdates(Updates);
2580     for (auto *BB : BlocksToRemove)
2581       DTU->deleteBB(BB);
2582   } else {
2583     for (auto *BB : BlocksToRemove)
2584       BB->eraseFromParent();
2585   }
2586 
2587   return Changed;
2588 }
2589 
2590 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2591                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2592   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2593   K->dropUnknownNonDebugMetadata(KnownIDs);
2594   K->getAllMetadataOtherThanDebugLoc(Metadata);
2595   for (const auto &MD : Metadata) {
2596     unsigned Kind = MD.first;
2597     MDNode *JMD = J->getMetadata(Kind);
2598     MDNode *KMD = MD.second;
2599 
2600     switch (Kind) {
2601       default:
2602         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2603         break;
2604       case LLVMContext::MD_dbg:
2605         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2606       case LLVMContext::MD_tbaa:
2607         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2608         break;
2609       case LLVMContext::MD_alias_scope:
2610         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2611         break;
2612       case LLVMContext::MD_noalias:
2613       case LLVMContext::MD_mem_parallel_loop_access:
2614         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2615         break;
2616       case LLVMContext::MD_access_group:
2617         K->setMetadata(LLVMContext::MD_access_group,
2618                        intersectAccessGroups(K, J));
2619         break;
2620       case LLVMContext::MD_range:
2621 
2622         // If K does move, use most generic range. Otherwise keep the range of
2623         // K.
2624         if (DoesKMove)
2625           // FIXME: If K does move, we should drop the range info and nonnull.
2626           //        Currently this function is used with DoesKMove in passes
2627           //        doing hoisting/sinking and the current behavior of using the
2628           //        most generic range is correct in those cases.
2629           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2630         break;
2631       case LLVMContext::MD_fpmath:
2632         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2633         break;
2634       case LLVMContext::MD_invariant_load:
2635         // Only set the !invariant.load if it is present in both instructions.
2636         K->setMetadata(Kind, JMD);
2637         break;
2638       case LLVMContext::MD_nonnull:
2639         // If K does move, keep nonull if it is present in both instructions.
2640         if (DoesKMove)
2641           K->setMetadata(Kind, JMD);
2642         break;
2643       case LLVMContext::MD_invariant_group:
2644         // Preserve !invariant.group in K.
2645         break;
2646       case LLVMContext::MD_align:
2647         K->setMetadata(Kind,
2648           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2649         break;
2650       case LLVMContext::MD_dereferenceable:
2651       case LLVMContext::MD_dereferenceable_or_null:
2652         K->setMetadata(Kind,
2653           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2654         break;
2655       case LLVMContext::MD_preserve_access_index:
2656         // Preserve !preserve.access.index in K.
2657         break;
2658     }
2659   }
2660   // Set !invariant.group from J if J has it. If both instructions have it
2661   // then we will just pick it from J - even when they are different.
2662   // Also make sure that K is load or store - f.e. combining bitcast with load
2663   // could produce bitcast with invariant.group metadata, which is invalid.
2664   // FIXME: we should try to preserve both invariant.group md if they are
2665   // different, but right now instruction can only have one invariant.group.
2666   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2667     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2668       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2669 }
2670 
2671 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2672                                  bool KDominatesJ) {
2673   unsigned KnownIDs[] = {
2674       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2675       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2676       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2677       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2678       LLVMContext::MD_dereferenceable,
2679       LLVMContext::MD_dereferenceable_or_null,
2680       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2681   combineMetadata(K, J, KnownIDs, KDominatesJ);
2682 }
2683 
2684 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2685   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2686   Source.getAllMetadata(MD);
2687   MDBuilder MDB(Dest.getContext());
2688   Type *NewType = Dest.getType();
2689   const DataLayout &DL = Source.getModule()->getDataLayout();
2690   for (const auto &MDPair : MD) {
2691     unsigned ID = MDPair.first;
2692     MDNode *N = MDPair.second;
2693     // Note, essentially every kind of metadata should be preserved here! This
2694     // routine is supposed to clone a load instruction changing *only its type*.
2695     // The only metadata it makes sense to drop is metadata which is invalidated
2696     // when the pointer type changes. This should essentially never be the case
2697     // in LLVM, but we explicitly switch over only known metadata to be
2698     // conservatively correct. If you are adding metadata to LLVM which pertains
2699     // to loads, you almost certainly want to add it here.
2700     switch (ID) {
2701     case LLVMContext::MD_dbg:
2702     case LLVMContext::MD_tbaa:
2703     case LLVMContext::MD_prof:
2704     case LLVMContext::MD_fpmath:
2705     case LLVMContext::MD_tbaa_struct:
2706     case LLVMContext::MD_invariant_load:
2707     case LLVMContext::MD_alias_scope:
2708     case LLVMContext::MD_noalias:
2709     case LLVMContext::MD_nontemporal:
2710     case LLVMContext::MD_mem_parallel_loop_access:
2711     case LLVMContext::MD_access_group:
2712       // All of these directly apply.
2713       Dest.setMetadata(ID, N);
2714       break;
2715 
2716     case LLVMContext::MD_nonnull:
2717       copyNonnullMetadata(Source, N, Dest);
2718       break;
2719 
2720     case LLVMContext::MD_align:
2721     case LLVMContext::MD_dereferenceable:
2722     case LLVMContext::MD_dereferenceable_or_null:
2723       // These only directly apply if the new type is also a pointer.
2724       if (NewType->isPointerTy())
2725         Dest.setMetadata(ID, N);
2726       break;
2727 
2728     case LLVMContext::MD_range:
2729       copyRangeMetadata(DL, Source, N, Dest);
2730       break;
2731     }
2732   }
2733 }
2734 
2735 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2736   auto *ReplInst = dyn_cast<Instruction>(Repl);
2737   if (!ReplInst)
2738     return;
2739 
2740   // Patch the replacement so that it is not more restrictive than the value
2741   // being replaced.
2742   // Note that if 'I' is a load being replaced by some operation,
2743   // for example, by an arithmetic operation, then andIRFlags()
2744   // would just erase all math flags from the original arithmetic
2745   // operation, which is clearly not wanted and not needed.
2746   if (!isa<LoadInst>(I))
2747     ReplInst->andIRFlags(I);
2748 
2749   // FIXME: If both the original and replacement value are part of the
2750   // same control-flow region (meaning that the execution of one
2751   // guarantees the execution of the other), then we can combine the
2752   // noalias scopes here and do better than the general conservative
2753   // answer used in combineMetadata().
2754 
2755   // In general, GVN unifies expressions over different control-flow
2756   // regions, and so we need a conservative combination of the noalias
2757   // scopes.
2758   static const unsigned KnownIDs[] = {
2759       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2760       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2761       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2762       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2763       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2764   combineMetadata(ReplInst, I, KnownIDs, false);
2765 }
2766 
2767 template <typename RootType, typename DominatesFn>
2768 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2769                                          const RootType &Root,
2770                                          const DominatesFn &Dominates) {
2771   assert(From->getType() == To->getType());
2772 
2773   unsigned Count = 0;
2774   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2775        UI != UE;) {
2776     Use &U = *UI++;
2777     if (!Dominates(Root, U))
2778       continue;
2779     U.set(To);
2780     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2781                       << "' as " << *To << " in " << *U << "\n");
2782     ++Count;
2783   }
2784   return Count;
2785 }
2786 
2787 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2788    assert(From->getType() == To->getType());
2789    auto *BB = From->getParent();
2790    unsigned Count = 0;
2791 
2792   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2793        UI != UE;) {
2794     Use &U = *UI++;
2795     auto *I = cast<Instruction>(U.getUser());
2796     if (I->getParent() == BB)
2797       continue;
2798     U.set(To);
2799     ++Count;
2800   }
2801   return Count;
2802 }
2803 
2804 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2805                                         DominatorTree &DT,
2806                                         const BasicBlockEdge &Root) {
2807   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2808     return DT.dominates(Root, U);
2809   };
2810   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2811 }
2812 
2813 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2814                                         DominatorTree &DT,
2815                                         const BasicBlock *BB) {
2816   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2817     return DT.dominates(BB, U);
2818   };
2819   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2820 }
2821 
2822 bool llvm::callsGCLeafFunction(const CallBase *Call,
2823                                const TargetLibraryInfo &TLI) {
2824   // Check if the function is specifically marked as a gc leaf function.
2825   if (Call->hasFnAttr("gc-leaf-function"))
2826     return true;
2827   if (const Function *F = Call->getCalledFunction()) {
2828     if (F->hasFnAttribute("gc-leaf-function"))
2829       return true;
2830 
2831     if (auto IID = F->getIntrinsicID()) {
2832       // Most LLVM intrinsics do not take safepoints.
2833       return IID != Intrinsic::experimental_gc_statepoint &&
2834              IID != Intrinsic::experimental_deoptimize &&
2835              IID != Intrinsic::memcpy_element_unordered_atomic &&
2836              IID != Intrinsic::memmove_element_unordered_atomic;
2837     }
2838   }
2839 
2840   // Lib calls can be materialized by some passes, and won't be
2841   // marked as 'gc-leaf-function.' All available Libcalls are
2842   // GC-leaf.
2843   LibFunc LF;
2844   if (TLI.getLibFunc(*Call, LF)) {
2845     return TLI.has(LF);
2846   }
2847 
2848   return false;
2849 }
2850 
2851 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2852                                LoadInst &NewLI) {
2853   auto *NewTy = NewLI.getType();
2854 
2855   // This only directly applies if the new type is also a pointer.
2856   if (NewTy->isPointerTy()) {
2857     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2858     return;
2859   }
2860 
2861   // The only other translation we can do is to integral loads with !range
2862   // metadata.
2863   if (!NewTy->isIntegerTy())
2864     return;
2865 
2866   MDBuilder MDB(NewLI.getContext());
2867   const Value *Ptr = OldLI.getPointerOperand();
2868   auto *ITy = cast<IntegerType>(NewTy);
2869   auto *NullInt = ConstantExpr::getPtrToInt(
2870       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2871   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2872   NewLI.setMetadata(LLVMContext::MD_range,
2873                     MDB.createRange(NonNullInt, NullInt));
2874 }
2875 
2876 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2877                              MDNode *N, LoadInst &NewLI) {
2878   auto *NewTy = NewLI.getType();
2879 
2880   // Give up unless it is converted to a pointer where there is a single very
2881   // valuable mapping we can do reliably.
2882   // FIXME: It would be nice to propagate this in more ways, but the type
2883   // conversions make it hard.
2884   if (!NewTy->isPointerTy())
2885     return;
2886 
2887   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2888   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2889     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2890     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2891   }
2892 }
2893 
2894 void llvm::dropDebugUsers(Instruction &I) {
2895   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2896   findDbgUsers(DbgUsers, &I);
2897   for (auto *DII : DbgUsers)
2898     DII->eraseFromParent();
2899 }
2900 
2901 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2902                                     BasicBlock *BB) {
2903   // Since we are moving the instructions out of its basic block, we do not
2904   // retain their original debug locations (DILocations) and debug intrinsic
2905   // instructions.
2906   //
2907   // Doing so would degrade the debugging experience and adversely affect the
2908   // accuracy of profiling information.
2909   //
2910   // Currently, when hoisting the instructions, we take the following actions:
2911   // - Remove their debug intrinsic instructions.
2912   // - Set their debug locations to the values from the insertion point.
2913   //
2914   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2915   // need to be deleted, is because there will not be any instructions with a
2916   // DILocation in either branch left after performing the transformation. We
2917   // can only insert a dbg.value after the two branches are joined again.
2918   //
2919   // See PR38762, PR39243 for more details.
2920   //
2921   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2922   // encode predicated DIExpressions that yield different results on different
2923   // code paths.
2924 
2925   // A hoisted conditional probe should be treated as dangling so that it will
2926   // not be over-counted when the samples collected on the non-conditional path
2927   // are counted towards the conditional path. We leave it for the counts
2928   // inference algorithm to figure out a proper count for a danglng probe.
2929   moveAndDanglePseudoProbes(BB, InsertPt);
2930 
2931   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2932     Instruction *I = &*II;
2933     I->dropUnknownNonDebugMetadata();
2934     if (I->isUsedByMetadata())
2935       dropDebugUsers(*I);
2936     if (isa<DbgInfoIntrinsic>(I)) {
2937       // Remove DbgInfo Intrinsics.
2938       II = I->eraseFromParent();
2939       continue;
2940     }
2941     I->setDebugLoc(InsertPt->getDebugLoc());
2942     ++II;
2943   }
2944   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2945                                  BB->begin(),
2946                                  BB->getTerminator()->getIterator());
2947 }
2948 
2949 namespace {
2950 
2951 /// A potential constituent of a bitreverse or bswap expression. See
2952 /// collectBitParts for a fuller explanation.
2953 struct BitPart {
2954   BitPart(Value *P, unsigned BW) : Provider(P) {
2955     Provenance.resize(BW);
2956   }
2957 
2958   /// The Value that this is a bitreverse/bswap of.
2959   Value *Provider;
2960 
2961   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2962   /// in Provider becomes bit B in the result of this expression.
2963   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2964 
2965   enum { Unset = -1 };
2966 };
2967 
2968 } // end anonymous namespace
2969 
2970 /// Analyze the specified subexpression and see if it is capable of providing
2971 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2972 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2973 /// the output of the expression came from a corresponding bit in some other
2974 /// value. This function is recursive, and the end result is a mapping of
2975 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2976 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2977 ///
2978 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2979 /// that the expression deposits the low byte of %X into the high byte of the
2980 /// result and that all other bits are zero. This expression is accepted and a
2981 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2982 /// [0-7].
2983 ///
2984 /// For vector types, all analysis is performed at the per-element level. No
2985 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2986 /// constant masks must be splatted across all elements.
2987 ///
2988 /// To avoid revisiting values, the BitPart results are memoized into the
2989 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2990 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2991 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2992 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2993 /// type instead to provide the same functionality.
2994 ///
2995 /// Because we pass around references into \c BPS, we must use a container that
2996 /// does not invalidate internal references (std::map instead of DenseMap).
2997 static const Optional<BitPart> &
2998 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2999                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
3000   auto I = BPS.find(V);
3001   if (I != BPS.end())
3002     return I->second;
3003 
3004   auto &Result = BPS[V] = None;
3005   auto BitWidth = V->getType()->getScalarSizeInBits();
3006 
3007   // Can't do integer/elements > 128 bits.
3008   if (BitWidth > 128)
3009     return Result;
3010 
3011   // Prevent stack overflow by limiting the recursion depth
3012   if (Depth == BitPartRecursionMaxDepth) {
3013     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3014     return Result;
3015   }
3016 
3017   if (auto *I = dyn_cast<Instruction>(V)) {
3018     Value *X, *Y;
3019     const APInt *C;
3020 
3021     // If this is an or instruction, it may be an inner node of the bswap.
3022     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3023       const auto &A =
3024           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3025       const auto &B =
3026           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3027       if (!A || !B)
3028         return Result;
3029 
3030       // Try and merge the two together.
3031       if (!A->Provider || A->Provider != B->Provider)
3032         return Result;
3033 
3034       Result = BitPart(A->Provider, BitWidth);
3035       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3036         if (A->Provenance[BitIdx] != BitPart::Unset &&
3037             B->Provenance[BitIdx] != BitPart::Unset &&
3038             A->Provenance[BitIdx] != B->Provenance[BitIdx])
3039           return Result = None;
3040 
3041         if (A->Provenance[BitIdx] == BitPart::Unset)
3042           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3043         else
3044           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3045       }
3046 
3047       return Result;
3048     }
3049 
3050     // If this is a logical shift by a constant, recurse then shift the result.
3051     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3052       const APInt &BitShift = *C;
3053 
3054       // Ensure the shift amount is defined.
3055       if (BitShift.uge(BitWidth))
3056         return Result;
3057 
3058       const auto &Res =
3059           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3060       if (!Res)
3061         return Result;
3062       Result = Res;
3063 
3064       // Perform the "shift" on BitProvenance.
3065       auto &P = Result->Provenance;
3066       if (I->getOpcode() == Instruction::Shl) {
3067         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3068         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3069       } else {
3070         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3071         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3072       }
3073 
3074       return Result;
3075     }
3076 
3077     // If this is a logical 'and' with a mask that clears bits, recurse then
3078     // unset the appropriate bits.
3079     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3080       const APInt &AndMask = *C;
3081 
3082       // Check that the mask allows a multiple of 8 bits for a bswap, for an
3083       // early exit.
3084       unsigned NumMaskedBits = AndMask.countPopulation();
3085       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3086         return Result;
3087 
3088       const auto &Res =
3089           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3090       if (!Res)
3091         return Result;
3092       Result = Res;
3093 
3094       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3095         // If the AndMask is zero for this bit, clear the bit.
3096         if (AndMask[BitIdx] == 0)
3097           Result->Provenance[BitIdx] = BitPart::Unset;
3098       return Result;
3099     }
3100 
3101     // If this is a zext instruction zero extend the result.
3102     if (match(V, m_ZExt(m_Value(X)))) {
3103       const auto &Res =
3104           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3105       if (!Res)
3106         return Result;
3107 
3108       Result = BitPart(Res->Provider, BitWidth);
3109       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3110       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3111         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3112       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3113         Result->Provenance[BitIdx] = BitPart::Unset;
3114       return Result;
3115     }
3116 
3117     // If this is a truncate instruction, extract the lower bits.
3118     if (match(V, m_Trunc(m_Value(X)))) {
3119       const auto &Res =
3120           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3121       if (!Res)
3122         return Result;
3123 
3124       Result = BitPart(Res->Provider, BitWidth);
3125       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3126         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3127       return Result;
3128     }
3129 
3130     // BITREVERSE - most likely due to us previous matching a partial
3131     // bitreverse.
3132     if (match(V, m_BitReverse(m_Value(X)))) {
3133       const auto &Res =
3134           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3135       if (!Res)
3136         return Result;
3137 
3138       Result = BitPart(Res->Provider, BitWidth);
3139       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3140         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3141       return Result;
3142     }
3143 
3144     // BSWAP - most likely due to us previous matching a partial bswap.
3145     if (match(V, m_BSwap(m_Value(X)))) {
3146       const auto &Res =
3147           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3148       if (!Res)
3149         return Result;
3150 
3151       unsigned ByteWidth = BitWidth / 8;
3152       Result = BitPart(Res->Provider, BitWidth);
3153       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3154         unsigned ByteBitOfs = ByteIdx * 8;
3155         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3156           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3157               Res->Provenance[ByteBitOfs + BitIdx];
3158       }
3159       return Result;
3160     }
3161 
3162     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3163     // amount (modulo).
3164     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3165     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3166     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3167         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3168       // We can treat fshr as a fshl by flipping the modulo amount.
3169       unsigned ModAmt = C->urem(BitWidth);
3170       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3171         ModAmt = BitWidth - ModAmt;
3172 
3173       const auto &LHS =
3174           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3175       const auto &RHS =
3176           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3177 
3178       // Check we have both sources and they are from the same provider.
3179       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3180         return Result;
3181 
3182       unsigned StartBitRHS = BitWidth - ModAmt;
3183       Result = BitPart(LHS->Provider, BitWidth);
3184       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3185         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3186       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3187         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3188       return Result;
3189     }
3190   }
3191 
3192   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3193   // the input value to the bswap/bitreverse.
3194   Result = BitPart(V, BitWidth);
3195   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3196     Result->Provenance[BitIdx] = BitIdx;
3197   return Result;
3198 }
3199 
3200 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3201                                           unsigned BitWidth) {
3202   if (From % 8 != To % 8)
3203     return false;
3204   // Convert from bit indices to byte indices and check for a byte reversal.
3205   From >>= 3;
3206   To >>= 3;
3207   BitWidth >>= 3;
3208   return From == BitWidth - To - 1;
3209 }
3210 
3211 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3212                                                unsigned BitWidth) {
3213   return From == BitWidth - To - 1;
3214 }
3215 
3216 bool llvm::recognizeBSwapOrBitReverseIdiom(
3217     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3218     SmallVectorImpl<Instruction *> &InsertedInsts) {
3219   if (Operator::getOpcode(I) != Instruction::Or)
3220     return false;
3221   if (!MatchBSwaps && !MatchBitReversals)
3222     return false;
3223   Type *ITy = I->getType();
3224   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3225     return false;  // Can't do integer/elements > 128 bits.
3226 
3227   Type *DemandedTy = ITy;
3228   if (I->hasOneUse())
3229     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3230       DemandedTy = Trunc->getType();
3231 
3232   // Try to find all the pieces corresponding to the bswap.
3233   std::map<Value *, Optional<BitPart>> BPS;
3234   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3235   if (!Res)
3236     return false;
3237   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3238   assert(all_of(BitProvenance,
3239                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3240          "Illegal bit provenance index");
3241 
3242   // If the upper bits are zero, then attempt to perform as a truncated op.
3243   if (BitProvenance.back() == BitPart::Unset) {
3244     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3245       BitProvenance = BitProvenance.drop_back();
3246     if (BitProvenance.empty())
3247       return false; // TODO - handle null value?
3248     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3249     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3250       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3251   }
3252 
3253   // Check BitProvenance hasn't found a source larger than the result type.
3254   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3255   if (DemandedBW > ITy->getScalarSizeInBits())
3256     return false;
3257 
3258   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3259   // only byteswap values with an even number of bytes.
3260   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3261   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3262   bool OKForBitReverse = MatchBitReversals;
3263   for (unsigned BitIdx = 0;
3264        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3265     if (BitProvenance[BitIdx] == BitPart::Unset) {
3266       DemandedMask.clearBit(BitIdx);
3267       continue;
3268     }
3269     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3270                                                 DemandedBW);
3271     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3272                                                           BitIdx, DemandedBW);
3273   }
3274 
3275   Intrinsic::ID Intrin;
3276   if (OKForBSwap)
3277     Intrin = Intrinsic::bswap;
3278   else if (OKForBitReverse)
3279     Intrin = Intrinsic::bitreverse;
3280   else
3281     return false;
3282 
3283   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3284   Value *Provider = Res->Provider;
3285 
3286   // We may need to truncate the provider.
3287   if (DemandedTy != Provider->getType()) {
3288     auto *Trunc =
3289         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3290     InsertedInsts.push_back(Trunc);
3291     Provider = Trunc;
3292   }
3293 
3294   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3295   InsertedInsts.push_back(Result);
3296 
3297   if (!DemandedMask.isAllOnesValue()) {
3298     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3299     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3300     InsertedInsts.push_back(Result);
3301   }
3302 
3303   // We may need to zeroextend back to the result type.
3304   if (ITy != Result->getType()) {
3305     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3306     InsertedInsts.push_back(ExtInst);
3307   }
3308 
3309   return true;
3310 }
3311 
3312 // CodeGen has special handling for some string functions that may replace
3313 // them with target-specific intrinsics.  Since that'd skip our interceptors
3314 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3315 // we mark affected calls as NoBuiltin, which will disable optimization
3316 // in CodeGen.
3317 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3318     CallInst *CI, const TargetLibraryInfo *TLI) {
3319   Function *F = CI->getCalledFunction();
3320   LibFunc Func;
3321   if (F && !F->hasLocalLinkage() && F->hasName() &&
3322       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3323       !F->doesNotAccessMemory())
3324     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3325 }
3326 
3327 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3328   // We can't have a PHI with a metadata type.
3329   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3330     return false;
3331 
3332   // Early exit.
3333   if (!isa<Constant>(I->getOperand(OpIdx)))
3334     return true;
3335 
3336   switch (I->getOpcode()) {
3337   default:
3338     return true;
3339   case Instruction::Call:
3340   case Instruction::Invoke: {
3341     const auto &CB = cast<CallBase>(*I);
3342 
3343     // Can't handle inline asm. Skip it.
3344     if (CB.isInlineAsm())
3345       return false;
3346 
3347     // Constant bundle operands may need to retain their constant-ness for
3348     // correctness.
3349     if (CB.isBundleOperand(OpIdx))
3350       return false;
3351 
3352     if (OpIdx < CB.getNumArgOperands()) {
3353       // Some variadic intrinsics require constants in the variadic arguments,
3354       // which currently aren't markable as immarg.
3355       if (isa<IntrinsicInst>(CB) &&
3356           OpIdx >= CB.getFunctionType()->getNumParams()) {
3357         // This is known to be OK for stackmap.
3358         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3359       }
3360 
3361       // gcroot is a special case, since it requires a constant argument which
3362       // isn't also required to be a simple ConstantInt.
3363       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3364         return false;
3365 
3366       // Some intrinsic operands are required to be immediates.
3367       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3368     }
3369 
3370     // It is never allowed to replace the call argument to an intrinsic, but it
3371     // may be possible for a call.
3372     return !isa<IntrinsicInst>(CB);
3373   }
3374   case Instruction::ShuffleVector:
3375     // Shufflevector masks are constant.
3376     return OpIdx != 2;
3377   case Instruction::Switch:
3378   case Instruction::ExtractValue:
3379     // All operands apart from the first are constant.
3380     return OpIdx == 0;
3381   case Instruction::InsertValue:
3382     // All operands apart from the first and the second are constant.
3383     return OpIdx < 2;
3384   case Instruction::Alloca:
3385     // Static allocas (constant size in the entry block) are handled by
3386     // prologue/epilogue insertion so they're free anyway. We definitely don't
3387     // want to make them non-constant.
3388     return !cast<AllocaInst>(I)->isStaticAlloca();
3389   case Instruction::GetElementPtr:
3390     if (OpIdx == 0)
3391       return true;
3392     gep_type_iterator It = gep_type_begin(I);
3393     for (auto E = std::next(It, OpIdx); It != E; ++It)
3394       if (It.isStruct())
3395         return false;
3396     return true;
3397   }
3398 }
3399 
3400 Value *llvm::invertCondition(Value *Condition) {
3401   // First: Check if it's a constant
3402   if (Constant *C = dyn_cast<Constant>(Condition))
3403     return ConstantExpr::getNot(C);
3404 
3405   // Second: If the condition is already inverted, return the original value
3406   Value *NotCondition;
3407   if (match(Condition, m_Not(m_Value(NotCondition))))
3408     return NotCondition;
3409 
3410   BasicBlock *Parent = nullptr;
3411   Instruction *Inst = dyn_cast<Instruction>(Condition);
3412   if (Inst)
3413     Parent = Inst->getParent();
3414   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3415     Parent = &Arg->getParent()->getEntryBlock();
3416   assert(Parent && "Unsupported condition to invert");
3417 
3418   // Third: Check all the users for an invert
3419   for (User *U : Condition->users())
3420     if (Instruction *I = dyn_cast<Instruction>(U))
3421       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3422         return I;
3423 
3424   // Last option: Create a new instruction
3425   auto *Inverted =
3426       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3427   if (Inst && !isa<PHINode>(Inst))
3428     Inverted->insertAfter(Inst);
3429   else
3430     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3431   return Inverted;
3432 }
3433