1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/ConstantRange.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DIBuilder.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalObject.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 96 // Max recursion depth for collectBitParts used when detecting bswap and 97 // bitreverse idioms 98 static const unsigned BitPartRecursionMaxDepth = 64; 99 100 //===----------------------------------------------------------------------===// 101 // Local constant propagation. 102 // 103 104 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 105 /// constant value, convert it into an unconditional branch to the constant 106 /// destination. This is a nontrivial operation because the successors of this 107 /// basic block must have their PHI nodes updated. 108 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 109 /// conditions and indirectbr addresses this might make dead if 110 /// DeleteDeadConditions is true. 111 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 112 const TargetLibraryInfo *TLI, 113 DomTreeUpdater *DTU) { 114 Instruction *T = BB->getTerminator(); 115 IRBuilder<> Builder(T); 116 117 // Branch - See if we are conditional jumping on constant 118 if (auto *BI = dyn_cast<BranchInst>(T)) { 119 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 120 BasicBlock *Dest1 = BI->getSuccessor(0); 121 BasicBlock *Dest2 = BI->getSuccessor(1); 122 123 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 124 // Are we branching on constant? 125 // YES. Change to unconditional branch... 126 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 127 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 128 129 // Let the basic block know that we are letting go of it. Based on this, 130 // it will adjust it's PHI nodes. 131 OldDest->removePredecessor(BB); 132 133 // Replace the conditional branch with an unconditional one. 134 Builder.CreateBr(Destination); 135 BI->eraseFromParent(); 136 if (DTU) 137 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 138 return true; 139 } 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 return false; 159 } 160 161 if (auto *SI = dyn_cast<SwitchInst>(T)) { 162 // If we are switching on a constant, we can convert the switch to an 163 // unconditional branch. 164 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 165 BasicBlock *DefaultDest = SI->getDefaultDest(); 166 BasicBlock *TheOnlyDest = DefaultDest; 167 168 // If the default is unreachable, ignore it when searching for TheOnlyDest. 169 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 170 SI->getNumCases() > 0) { 171 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 172 } 173 174 // Figure out which case it goes to. 175 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 176 // Found case matching a constant operand? 177 if (i->getCaseValue() == CI) { 178 TheOnlyDest = i->getCaseSuccessor(); 179 break; 180 } 181 182 // Check to see if this branch is going to the same place as the default 183 // dest. If so, eliminate it as an explicit compare. 184 if (i->getCaseSuccessor() == DefaultDest) { 185 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 186 unsigned NCases = SI->getNumCases(); 187 // Fold the case metadata into the default if there will be any branches 188 // left, unless the metadata doesn't match the switch. 189 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 190 // Collect branch weights into a vector. 191 SmallVector<uint32_t, 8> Weights; 192 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 193 ++MD_i) { 194 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 195 Weights.push_back(CI->getValue().getZExtValue()); 196 } 197 // Merge weight of this case to the default weight. 198 unsigned idx = i->getCaseIndex(); 199 Weights[0] += Weights[idx+1]; 200 // Remove weight for this case. 201 std::swap(Weights[idx+1], Weights.back()); 202 Weights.pop_back(); 203 SI->setMetadata(LLVMContext::MD_prof, 204 MDBuilder(BB->getContext()). 205 createBranchWeights(Weights)); 206 } 207 // Remove this entry. 208 BasicBlock *ParentBB = SI->getParent(); 209 DefaultDest->removePredecessor(ParentBB); 210 i = SI->removeCase(i); 211 e = SI->case_end(); 212 if (DTU) 213 DTU->applyUpdatesPermissive( 214 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 215 continue; 216 } 217 218 // Otherwise, check to see if the switch only branches to one destination. 219 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 220 // destinations. 221 if (i->getCaseSuccessor() != TheOnlyDest) 222 TheOnlyDest = nullptr; 223 224 // Increment this iterator as we haven't removed the case. 225 ++i; 226 } 227 228 if (CI && !TheOnlyDest) { 229 // Branching on a constant, but not any of the cases, go to the default 230 // successor. 231 TheOnlyDest = SI->getDefaultDest(); 232 } 233 234 // If we found a single destination that we can fold the switch into, do so 235 // now. 236 if (TheOnlyDest) { 237 // Insert the new branch. 238 Builder.CreateBr(TheOnlyDest); 239 BasicBlock *BB = SI->getParent(); 240 std::vector <DominatorTree::UpdateType> Updates; 241 if (DTU) 242 Updates.reserve(SI->getNumSuccessors() - 1); 243 244 // Remove entries from PHI nodes which we no longer branch to... 245 for (BasicBlock *Succ : successors(SI)) { 246 // Found case matching a constant operand? 247 if (Succ == TheOnlyDest) { 248 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 249 } else { 250 Succ->removePredecessor(BB); 251 if (DTU) 252 Updates.push_back({DominatorTree::Delete, BB, Succ}); 253 } 254 } 255 256 // Delete the old switch. 257 Value *Cond = SI->getCondition(); 258 SI->eraseFromParent(); 259 if (DeleteDeadConditions) 260 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 261 if (DTU) 262 DTU->applyUpdatesPermissive(Updates); 263 return true; 264 } 265 266 if (SI->getNumCases() == 1) { 267 // Otherwise, we can fold this switch into a conditional branch 268 // instruction if it has only one non-default destination. 269 auto FirstCase = *SI->case_begin(); 270 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 271 FirstCase.getCaseValue(), "cond"); 272 273 // Insert the new branch. 274 BranchInst *NewBr = Builder.CreateCondBr(Cond, 275 FirstCase.getCaseSuccessor(), 276 SI->getDefaultDest()); 277 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 278 if (MD && MD->getNumOperands() == 3) { 279 ConstantInt *SICase = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 281 ConstantInt *SIDef = 282 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 283 assert(SICase && SIDef); 284 // The TrueWeight should be the weight for the single case of SI. 285 NewBr->setMetadata(LLVMContext::MD_prof, 286 MDBuilder(BB->getContext()). 287 createBranchWeights(SICase->getValue().getZExtValue(), 288 SIDef->getValue().getZExtValue())); 289 } 290 291 // Update make.implicit metadata to the newly-created conditional branch. 292 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 293 if (MakeImplicitMD) 294 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 295 296 // Delete the old switch. 297 SI->eraseFromParent(); 298 return true; 299 } 300 return false; 301 } 302 303 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 304 // indirectbr blockaddress(@F, @BB) -> br label @BB 305 if (auto *BA = 306 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 307 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 308 std::vector <DominatorTree::UpdateType> Updates; 309 if (DTU) 310 Updates.reserve(IBI->getNumDestinations() - 1); 311 312 // Insert the new branch. 313 Builder.CreateBr(TheOnlyDest); 314 315 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 316 if (IBI->getDestination(i) == TheOnlyDest) { 317 TheOnlyDest = nullptr; 318 } else { 319 BasicBlock *ParentBB = IBI->getParent(); 320 BasicBlock *DestBB = IBI->getDestination(i); 321 DestBB->removePredecessor(ParentBB); 322 if (DTU) 323 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 324 } 325 } 326 Value *Address = IBI->getAddress(); 327 IBI->eraseFromParent(); 328 if (DeleteDeadConditions) 329 // Delete pointer cast instructions. 330 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 331 332 // Also zap the blockaddress constant if there are no users remaining, 333 // otherwise the destination is still marked as having its address taken. 334 if (BA->use_empty()) 335 BA->destroyConstant(); 336 337 // If we didn't find our destination in the IBI successor list, then we 338 // have undefined behavior. Replace the unconditional branch with an 339 // 'unreachable' instruction. 340 if (TheOnlyDest) { 341 BB->getTerminator()->eraseFromParent(); 342 new UnreachableInst(BB->getContext(), BB); 343 } 344 345 if (DTU) 346 DTU->applyUpdatesPermissive(Updates); 347 return true; 348 } 349 } 350 351 return false; 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Local dead code elimination. 356 // 357 358 /// isInstructionTriviallyDead - Return true if the result produced by the 359 /// instruction is not used, and the instruction has no side effects. 360 /// 361 bool llvm::isInstructionTriviallyDead(Instruction *I, 362 const TargetLibraryInfo *TLI) { 363 if (!I->use_empty()) 364 return false; 365 return wouldInstructionBeTriviallyDead(I, TLI); 366 } 367 368 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 369 const TargetLibraryInfo *TLI) { 370 if (I->isTerminator()) 371 return false; 372 373 // We don't want the landingpad-like instructions removed by anything this 374 // general. 375 if (I->isEHPad()) 376 return false; 377 378 // We don't want debug info removed by anything this general, unless 379 // debug info is empty. 380 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 381 if (DDI->getAddress()) 382 return false; 383 return true; 384 } 385 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 386 if (DVI->getValue()) 387 return false; 388 return true; 389 } 390 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 391 if (DLI->getLabel()) 392 return false; 393 return true; 394 } 395 396 if (!I->mayHaveSideEffects()) 397 return true; 398 399 // Special case intrinsics that "may have side effects" but can be deleted 400 // when dead. 401 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 402 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 403 if (II->getIntrinsicID() == Intrinsic::stacksave || 404 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 405 return true; 406 407 // Lifetime intrinsics are dead when their right-hand is undef. 408 if (II->isLifetimeStartOrEnd()) 409 return isa<UndefValue>(II->getArgOperand(1)); 410 411 // Assumptions are dead if their condition is trivially true. Guards on 412 // true are operationally no-ops. In the future we can consider more 413 // sophisticated tradeoffs for guards considering potential for check 414 // widening, but for now we keep things simple. 415 if ((II->getIntrinsicID() == Intrinsic::assume && 416 isAssumeWithEmptyBundle(*II)) || 417 II->getIntrinsicID() == Intrinsic::experimental_guard) { 418 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 419 return !Cond->isZero(); 420 421 return false; 422 } 423 } 424 425 if (isAllocLikeFn(I, TLI)) 426 return true; 427 428 if (CallInst *CI = isFreeCall(I, TLI)) 429 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 430 return C->isNullValue() || isa<UndefValue>(C); 431 432 if (auto *Call = dyn_cast<CallBase>(I)) 433 if (isMathLibCallNoop(Call, TLI)) 434 return true; 435 436 return false; 437 } 438 439 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 440 /// trivially dead instruction, delete it. If that makes any of its operands 441 /// trivially dead, delete them too, recursively. Return true if any 442 /// instructions were deleted. 443 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 444 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 445 Instruction *I = dyn_cast<Instruction>(V); 446 if (!I || !isInstructionTriviallyDead(I, TLI)) 447 return false; 448 449 SmallVector<WeakTrackingVH, 16> DeadInsts; 450 DeadInsts.push_back(I); 451 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 452 453 return true; 454 } 455 456 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 457 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 458 MemorySSAUpdater *MSSAU) { 459 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 460 for (; S != E; ++S) { 461 auto *I = cast<Instruction>(DeadInsts[S]); 462 if (!isInstructionTriviallyDead(I)) { 463 DeadInsts[S] = nullptr; 464 ++Alive; 465 } 466 } 467 if (Alive == E) 468 return false; 469 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 470 return true; 471 } 472 473 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 474 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 475 MemorySSAUpdater *MSSAU) { 476 // Process the dead instruction list until empty. 477 while (!DeadInsts.empty()) { 478 Value *V = DeadInsts.pop_back_val(); 479 Instruction *I = cast_or_null<Instruction>(V); 480 if (!I) 481 continue; 482 assert(isInstructionTriviallyDead(I, TLI) && 483 "Live instruction found in dead worklist!"); 484 assert(I->use_empty() && "Instructions with uses are not dead."); 485 486 // Don't lose the debug info while deleting the instructions. 487 salvageDebugInfo(*I); 488 489 // Null out all of the instruction's operands to see if any operand becomes 490 // dead as we go. 491 for (Use &OpU : I->operands()) { 492 Value *OpV = OpU.get(); 493 OpU.set(nullptr); 494 495 if (!OpV->use_empty()) 496 continue; 497 498 // If the operand is an instruction that became dead as we nulled out the 499 // operand, and if it is 'trivially' dead, delete it in a future loop 500 // iteration. 501 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 502 if (isInstructionTriviallyDead(OpI, TLI)) 503 DeadInsts.push_back(OpI); 504 } 505 if (MSSAU) 506 MSSAU->removeMemoryAccess(I); 507 508 I->eraseFromParent(); 509 } 510 } 511 512 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 513 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 514 findDbgUsers(DbgUsers, I); 515 for (auto *DII : DbgUsers) { 516 Value *Undef = UndefValue::get(I->getType()); 517 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 518 ValueAsMetadata::get(Undef))); 519 } 520 return !DbgUsers.empty(); 521 } 522 523 /// areAllUsesEqual - Check whether the uses of a value are all the same. 524 /// This is similar to Instruction::hasOneUse() except this will also return 525 /// true when there are no uses or multiple uses that all refer to the same 526 /// value. 527 static bool areAllUsesEqual(Instruction *I) { 528 Value::user_iterator UI = I->user_begin(); 529 Value::user_iterator UE = I->user_end(); 530 if (UI == UE) 531 return true; 532 533 User *TheUse = *UI; 534 for (++UI; UI != UE; ++UI) { 535 if (*UI != TheUse) 536 return false; 537 } 538 return true; 539 } 540 541 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 542 /// dead PHI node, due to being a def-use chain of single-use nodes that 543 /// either forms a cycle or is terminated by a trivially dead instruction, 544 /// delete it. If that makes any of its operands trivially dead, delete them 545 /// too, recursively. Return true if a change was made. 546 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 547 const TargetLibraryInfo *TLI, 548 llvm::MemorySSAUpdater *MSSAU) { 549 SmallPtrSet<Instruction*, 4> Visited; 550 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 551 I = cast<Instruction>(*I->user_begin())) { 552 if (I->use_empty()) 553 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 554 555 // If we find an instruction more than once, we're on a cycle that 556 // won't prove fruitful. 557 if (!Visited.insert(I).second) { 558 // Break the cycle and delete the instruction and its operands. 559 I->replaceAllUsesWith(UndefValue::get(I->getType())); 560 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 561 return true; 562 } 563 } 564 return false; 565 } 566 567 static bool 568 simplifyAndDCEInstruction(Instruction *I, 569 SmallSetVector<Instruction *, 16> &WorkList, 570 const DataLayout &DL, 571 const TargetLibraryInfo *TLI) { 572 if (isInstructionTriviallyDead(I, TLI)) { 573 salvageDebugInfo(*I); 574 575 // Null out all of the instruction's operands to see if any operand becomes 576 // dead as we go. 577 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 578 Value *OpV = I->getOperand(i); 579 I->setOperand(i, nullptr); 580 581 if (!OpV->use_empty() || I == OpV) 582 continue; 583 584 // If the operand is an instruction that became dead as we nulled out the 585 // operand, and if it is 'trivially' dead, delete it in a future loop 586 // iteration. 587 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 588 if (isInstructionTriviallyDead(OpI, TLI)) 589 WorkList.insert(OpI); 590 } 591 592 I->eraseFromParent(); 593 594 return true; 595 } 596 597 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 598 // Add the users to the worklist. CAREFUL: an instruction can use itself, 599 // in the case of a phi node. 600 for (User *U : I->users()) { 601 if (U != I) { 602 WorkList.insert(cast<Instruction>(U)); 603 } 604 } 605 606 // Replace the instruction with its simplified value. 607 bool Changed = false; 608 if (!I->use_empty()) { 609 I->replaceAllUsesWith(SimpleV); 610 Changed = true; 611 } 612 if (isInstructionTriviallyDead(I, TLI)) { 613 I->eraseFromParent(); 614 Changed = true; 615 } 616 return Changed; 617 } 618 return false; 619 } 620 621 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 622 /// simplify any instructions in it and recursively delete dead instructions. 623 /// 624 /// This returns true if it changed the code, note that it can delete 625 /// instructions in other blocks as well in this block. 626 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 627 const TargetLibraryInfo *TLI) { 628 bool MadeChange = false; 629 const DataLayout &DL = BB->getModule()->getDataLayout(); 630 631 #ifndef NDEBUG 632 // In debug builds, ensure that the terminator of the block is never replaced 633 // or deleted by these simplifications. The idea of simplification is that it 634 // cannot introduce new instructions, and there is no way to replace the 635 // terminator of a block without introducing a new instruction. 636 AssertingVH<Instruction> TerminatorVH(&BB->back()); 637 #endif 638 639 SmallSetVector<Instruction *, 16> WorkList; 640 // Iterate over the original function, only adding insts to the worklist 641 // if they actually need to be revisited. This avoids having to pre-init 642 // the worklist with the entire function's worth of instructions. 643 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 644 BI != E;) { 645 assert(!BI->isTerminator()); 646 Instruction *I = &*BI; 647 ++BI; 648 649 // We're visiting this instruction now, so make sure it's not in the 650 // worklist from an earlier visit. 651 if (!WorkList.count(I)) 652 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 653 } 654 655 while (!WorkList.empty()) { 656 Instruction *I = WorkList.pop_back_val(); 657 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 658 } 659 return MadeChange; 660 } 661 662 //===----------------------------------------------------------------------===// 663 // Control Flow Graph Restructuring. 664 // 665 666 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 667 DomTreeUpdater *DTU) { 668 // This only adjusts blocks with PHI nodes. 669 if (!isa<PHINode>(BB->begin())) 670 return; 671 672 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 673 // them down. This will leave us with single entry phi nodes and other phis 674 // that can be removed. 675 BB->removePredecessor(Pred, true); 676 677 WeakTrackingVH PhiIt = &BB->front(); 678 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 679 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 680 Value *OldPhiIt = PhiIt; 681 682 if (!recursivelySimplifyInstruction(PN)) 683 continue; 684 685 // If recursive simplification ended up deleting the next PHI node we would 686 // iterate to, then our iterator is invalid, restart scanning from the top 687 // of the block. 688 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 689 } 690 if (DTU) 691 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 692 } 693 694 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 695 DomTreeUpdater *DTU) { 696 697 // If BB has single-entry PHI nodes, fold them. 698 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 699 Value *NewVal = PN->getIncomingValue(0); 700 // Replace self referencing PHI with undef, it must be dead. 701 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 702 PN->replaceAllUsesWith(NewVal); 703 PN->eraseFromParent(); 704 } 705 706 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 707 assert(PredBB && "Block doesn't have a single predecessor!"); 708 709 bool ReplaceEntryBB = false; 710 if (PredBB == &DestBB->getParent()->getEntryBlock()) 711 ReplaceEntryBB = true; 712 713 // DTU updates: Collect all the edges that enter 714 // PredBB. These dominator edges will be redirected to DestBB. 715 SmallVector<DominatorTree::UpdateType, 32> Updates; 716 717 if (DTU) { 718 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 719 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 720 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 721 // This predecessor of PredBB may already have DestBB as a successor. 722 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 723 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 724 } 725 } 726 727 // Zap anything that took the address of DestBB. Not doing this will give the 728 // address an invalid value. 729 if (DestBB->hasAddressTaken()) { 730 BlockAddress *BA = BlockAddress::get(DestBB); 731 Constant *Replacement = 732 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 733 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 734 BA->getType())); 735 BA->destroyConstant(); 736 } 737 738 // Anything that branched to PredBB now branches to DestBB. 739 PredBB->replaceAllUsesWith(DestBB); 740 741 // Splice all the instructions from PredBB to DestBB. 742 PredBB->getTerminator()->eraseFromParent(); 743 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 744 new UnreachableInst(PredBB->getContext(), PredBB); 745 746 // If the PredBB is the entry block of the function, move DestBB up to 747 // become the entry block after we erase PredBB. 748 if (ReplaceEntryBB) 749 DestBB->moveAfter(PredBB); 750 751 if (DTU) { 752 assert(PredBB->getInstList().size() == 1 && 753 isa<UnreachableInst>(PredBB->getTerminator()) && 754 "The successor list of PredBB isn't empty before " 755 "applying corresponding DTU updates."); 756 DTU->applyUpdatesPermissive(Updates); 757 DTU->deleteBB(PredBB); 758 // Recalculation of DomTree is needed when updating a forward DomTree and 759 // the Entry BB is replaced. 760 if (ReplaceEntryBB && DTU->hasDomTree()) { 761 // The entry block was removed and there is no external interface for 762 // the dominator tree to be notified of this change. In this corner-case 763 // we recalculate the entire tree. 764 DTU->recalculate(*(DestBB->getParent())); 765 } 766 } 767 768 else { 769 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 770 } 771 } 772 773 /// Return true if we can choose one of these values to use in place of the 774 /// other. Note that we will always choose the non-undef value to keep. 775 static bool CanMergeValues(Value *First, Value *Second) { 776 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 777 } 778 779 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 780 /// branch to Succ, into Succ. 781 /// 782 /// Assumption: Succ is the single successor for BB. 783 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 784 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 785 786 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 787 << Succ->getName() << "\n"); 788 // Shortcut, if there is only a single predecessor it must be BB and merging 789 // is always safe 790 if (Succ->getSinglePredecessor()) return true; 791 792 // Make a list of the predecessors of BB 793 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 794 795 // Look at all the phi nodes in Succ, to see if they present a conflict when 796 // merging these blocks 797 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 798 PHINode *PN = cast<PHINode>(I); 799 800 // If the incoming value from BB is again a PHINode in 801 // BB which has the same incoming value for *PI as PN does, we can 802 // merge the phi nodes and then the blocks can still be merged 803 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 804 if (BBPN && BBPN->getParent() == BB) { 805 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 806 BasicBlock *IBB = PN->getIncomingBlock(PI); 807 if (BBPreds.count(IBB) && 808 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 809 PN->getIncomingValue(PI))) { 810 LLVM_DEBUG(dbgs() 811 << "Can't fold, phi node " << PN->getName() << " in " 812 << Succ->getName() << " is conflicting with " 813 << BBPN->getName() << " with regard to common predecessor " 814 << IBB->getName() << "\n"); 815 return false; 816 } 817 } 818 } else { 819 Value* Val = PN->getIncomingValueForBlock(BB); 820 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 821 // See if the incoming value for the common predecessor is equal to the 822 // one for BB, in which case this phi node will not prevent the merging 823 // of the block. 824 BasicBlock *IBB = PN->getIncomingBlock(PI); 825 if (BBPreds.count(IBB) && 826 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 827 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 828 << " in " << Succ->getName() 829 << " is conflicting with regard to common " 830 << "predecessor " << IBB->getName() << "\n"); 831 return false; 832 } 833 } 834 } 835 } 836 837 return true; 838 } 839 840 using PredBlockVector = SmallVector<BasicBlock *, 16>; 841 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 842 843 /// Determines the value to use as the phi node input for a block. 844 /// 845 /// Select between \p OldVal any value that we know flows from \p BB 846 /// to a particular phi on the basis of which one (if either) is not 847 /// undef. Update IncomingValues based on the selected value. 848 /// 849 /// \param OldVal The value we are considering selecting. 850 /// \param BB The block that the value flows in from. 851 /// \param IncomingValues A map from block-to-value for other phi inputs 852 /// that we have examined. 853 /// 854 /// \returns the selected value. 855 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 856 IncomingValueMap &IncomingValues) { 857 if (!isa<UndefValue>(OldVal)) { 858 assert((!IncomingValues.count(BB) || 859 IncomingValues.find(BB)->second == OldVal) && 860 "Expected OldVal to match incoming value from BB!"); 861 862 IncomingValues.insert(std::make_pair(BB, OldVal)); 863 return OldVal; 864 } 865 866 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 867 if (It != IncomingValues.end()) return It->second; 868 869 return OldVal; 870 } 871 872 /// Create a map from block to value for the operands of a 873 /// given phi. 874 /// 875 /// Create a map from block to value for each non-undef value flowing 876 /// into \p PN. 877 /// 878 /// \param PN The phi we are collecting the map for. 879 /// \param IncomingValues [out] The map from block to value for this phi. 880 static void gatherIncomingValuesToPhi(PHINode *PN, 881 IncomingValueMap &IncomingValues) { 882 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 883 BasicBlock *BB = PN->getIncomingBlock(i); 884 Value *V = PN->getIncomingValue(i); 885 886 if (!isa<UndefValue>(V)) 887 IncomingValues.insert(std::make_pair(BB, V)); 888 } 889 } 890 891 /// Replace the incoming undef values to a phi with the values 892 /// from a block-to-value map. 893 /// 894 /// \param PN The phi we are replacing the undefs in. 895 /// \param IncomingValues A map from block to value. 896 static void replaceUndefValuesInPhi(PHINode *PN, 897 const IncomingValueMap &IncomingValues) { 898 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 899 Value *V = PN->getIncomingValue(i); 900 901 if (!isa<UndefValue>(V)) continue; 902 903 BasicBlock *BB = PN->getIncomingBlock(i); 904 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 905 if (It == IncomingValues.end()) continue; 906 907 PN->setIncomingValue(i, It->second); 908 } 909 } 910 911 /// Replace a value flowing from a block to a phi with 912 /// potentially multiple instances of that value flowing from the 913 /// block's predecessors to the phi. 914 /// 915 /// \param BB The block with the value flowing into the phi. 916 /// \param BBPreds The predecessors of BB. 917 /// \param PN The phi that we are updating. 918 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 919 const PredBlockVector &BBPreds, 920 PHINode *PN) { 921 Value *OldVal = PN->removeIncomingValue(BB, false); 922 assert(OldVal && "No entry in PHI for Pred BB!"); 923 924 IncomingValueMap IncomingValues; 925 926 // We are merging two blocks - BB, and the block containing PN - and 927 // as a result we need to redirect edges from the predecessors of BB 928 // to go to the block containing PN, and update PN 929 // accordingly. Since we allow merging blocks in the case where the 930 // predecessor and successor blocks both share some predecessors, 931 // and where some of those common predecessors might have undef 932 // values flowing into PN, we want to rewrite those values to be 933 // consistent with the non-undef values. 934 935 gatherIncomingValuesToPhi(PN, IncomingValues); 936 937 // If this incoming value is one of the PHI nodes in BB, the new entries 938 // in the PHI node are the entries from the old PHI. 939 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 940 PHINode *OldValPN = cast<PHINode>(OldVal); 941 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 942 // Note that, since we are merging phi nodes and BB and Succ might 943 // have common predecessors, we could end up with a phi node with 944 // identical incoming branches. This will be cleaned up later (and 945 // will trigger asserts if we try to clean it up now, without also 946 // simplifying the corresponding conditional branch). 947 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 948 Value *PredVal = OldValPN->getIncomingValue(i); 949 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 950 IncomingValues); 951 952 // And add a new incoming value for this predecessor for the 953 // newly retargeted branch. 954 PN->addIncoming(Selected, PredBB); 955 } 956 } else { 957 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 958 // Update existing incoming values in PN for this 959 // predecessor of BB. 960 BasicBlock *PredBB = BBPreds[i]; 961 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 962 IncomingValues); 963 964 // And add a new incoming value for this predecessor for the 965 // newly retargeted branch. 966 PN->addIncoming(Selected, PredBB); 967 } 968 } 969 970 replaceUndefValuesInPhi(PN, IncomingValues); 971 } 972 973 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 974 DomTreeUpdater *DTU) { 975 assert(BB != &BB->getParent()->getEntryBlock() && 976 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 977 978 // We can't eliminate infinite loops. 979 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 980 if (BB == Succ) return false; 981 982 // Check to see if merging these blocks would cause conflicts for any of the 983 // phi nodes in BB or Succ. If not, we can safely merge. 984 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 985 986 // Check for cases where Succ has multiple predecessors and a PHI node in BB 987 // has uses which will not disappear when the PHI nodes are merged. It is 988 // possible to handle such cases, but difficult: it requires checking whether 989 // BB dominates Succ, which is non-trivial to calculate in the case where 990 // Succ has multiple predecessors. Also, it requires checking whether 991 // constructing the necessary self-referential PHI node doesn't introduce any 992 // conflicts; this isn't too difficult, but the previous code for doing this 993 // was incorrect. 994 // 995 // Note that if this check finds a live use, BB dominates Succ, so BB is 996 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 997 // folding the branch isn't profitable in that case anyway. 998 if (!Succ->getSinglePredecessor()) { 999 BasicBlock::iterator BBI = BB->begin(); 1000 while (isa<PHINode>(*BBI)) { 1001 for (Use &U : BBI->uses()) { 1002 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1003 if (PN->getIncomingBlock(U) != BB) 1004 return false; 1005 } else { 1006 return false; 1007 } 1008 } 1009 ++BBI; 1010 } 1011 } 1012 1013 // We cannot fold the block if it's a branch to an already present callbr 1014 // successor because that creates duplicate successors. 1015 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1016 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1017 if (Succ == CBI->getDefaultDest()) 1018 return false; 1019 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1020 if (Succ == CBI->getIndirectDest(i)) 1021 return false; 1022 } 1023 } 1024 1025 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1026 1027 SmallVector<DominatorTree::UpdateType, 32> Updates; 1028 if (DTU) { 1029 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1030 // All predecessors of BB will be moved to Succ. 1031 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1032 Updates.push_back({DominatorTree::Delete, *I, BB}); 1033 // This predecessor of BB may already have Succ as a successor. 1034 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1035 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1036 } 1037 } 1038 1039 if (isa<PHINode>(Succ->begin())) { 1040 // If there is more than one pred of succ, and there are PHI nodes in 1041 // the successor, then we need to add incoming edges for the PHI nodes 1042 // 1043 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1044 1045 // Loop over all of the PHI nodes in the successor of BB. 1046 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1047 PHINode *PN = cast<PHINode>(I); 1048 1049 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1050 } 1051 } 1052 1053 if (Succ->getSinglePredecessor()) { 1054 // BB is the only predecessor of Succ, so Succ will end up with exactly 1055 // the same predecessors BB had. 1056 1057 // Copy over any phi, debug or lifetime instruction. 1058 BB->getTerminator()->eraseFromParent(); 1059 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1060 BB->getInstList()); 1061 } else { 1062 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1063 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1064 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1065 PN->eraseFromParent(); 1066 } 1067 } 1068 1069 // If the unconditional branch we replaced contains llvm.loop metadata, we 1070 // add the metadata to the branch instructions in the predecessors. 1071 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1072 Instruction *TI = BB->getTerminator(); 1073 if (TI) 1074 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1075 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1076 BasicBlock *Pred = *PI; 1077 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1078 } 1079 1080 // Everything that jumped to BB now goes to Succ. 1081 BB->replaceAllUsesWith(Succ); 1082 if (!Succ->hasName()) Succ->takeName(BB); 1083 1084 // Clear the successor list of BB to match updates applying to DTU later. 1085 if (BB->getTerminator()) 1086 BB->getInstList().pop_back(); 1087 new UnreachableInst(BB->getContext(), BB); 1088 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1089 "applying corresponding DTU updates."); 1090 1091 if (DTU) { 1092 DTU->applyUpdatesPermissive(Updates); 1093 DTU->deleteBB(BB); 1094 } else { 1095 BB->eraseFromParent(); // Delete the old basic block. 1096 } 1097 return true; 1098 } 1099 1100 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1101 // This implementation doesn't currently consider undef operands 1102 // specially. Theoretically, two phis which are identical except for 1103 // one having an undef where the other doesn't could be collapsed. 1104 1105 struct PHIDenseMapInfo { 1106 static PHINode *getEmptyKey() { 1107 return DenseMapInfo<PHINode *>::getEmptyKey(); 1108 } 1109 1110 static PHINode *getTombstoneKey() { 1111 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1112 } 1113 1114 static unsigned getHashValue(PHINode *PN) { 1115 // Compute a hash value on the operands. Instcombine will likely have 1116 // sorted them, which helps expose duplicates, but we have to check all 1117 // the operands to be safe in case instcombine hasn't run. 1118 return static_cast<unsigned>(hash_combine( 1119 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1120 hash_combine_range(PN->block_begin(), PN->block_end()))); 1121 } 1122 1123 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1124 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1125 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1126 return LHS == RHS; 1127 return LHS->isIdenticalTo(RHS); 1128 } 1129 }; 1130 1131 // Set of unique PHINodes. 1132 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1133 1134 // Examine each PHI. 1135 bool Changed = false; 1136 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1137 auto Inserted = PHISet.insert(PN); 1138 if (!Inserted.second) { 1139 // A duplicate. Replace this PHI with its duplicate. 1140 PN->replaceAllUsesWith(*Inserted.first); 1141 PN->eraseFromParent(); 1142 Changed = true; 1143 1144 // The RAUW can change PHIs that we already visited. Start over from the 1145 // beginning. 1146 PHISet.clear(); 1147 I = BB->begin(); 1148 } 1149 } 1150 1151 return Changed; 1152 } 1153 1154 /// enforceKnownAlignment - If the specified pointer points to an object that 1155 /// we control, modify the object's alignment to PrefAlign. This isn't 1156 /// often possible though. If alignment is important, a more reliable approach 1157 /// is to simply align all global variables and allocation instructions to 1158 /// their preferred alignment from the beginning. 1159 static Align enforceKnownAlignment(Value *V, Align Alignment, Align PrefAlign, 1160 const DataLayout &DL) { 1161 assert(PrefAlign > Alignment); 1162 1163 V = V->stripPointerCasts(); 1164 1165 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1166 // TODO: ideally, computeKnownBits ought to have used 1167 // AllocaInst::getAlignment() in its computation already, making 1168 // the below max redundant. But, as it turns out, 1169 // stripPointerCasts recurses through infinite layers of bitcasts, 1170 // while computeKnownBits is not allowed to traverse more than 6 1171 // levels. 1172 Alignment = max(AI->getAlign(), Alignment); 1173 if (PrefAlign <= Alignment) 1174 return Alignment; 1175 1176 // If the preferred alignment is greater than the natural stack alignment 1177 // then don't round up. This avoids dynamic stack realignment. 1178 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1179 return Alignment; 1180 AI->setAlignment(PrefAlign); 1181 return PrefAlign; 1182 } 1183 1184 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1185 // TODO: as above, this shouldn't be necessary. 1186 Alignment = max(GO->getAlign(), Alignment); 1187 if (PrefAlign <= Alignment) 1188 return Alignment; 1189 1190 // If there is a large requested alignment and we can, bump up the alignment 1191 // of the global. If the memory we set aside for the global may not be the 1192 // memory used by the final program then it is impossible for us to reliably 1193 // enforce the preferred alignment. 1194 if (!GO->canIncreaseAlignment()) 1195 return Alignment; 1196 1197 GO->setAlignment(PrefAlign); 1198 return PrefAlign; 1199 } 1200 1201 return Alignment; 1202 } 1203 1204 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1205 const DataLayout &DL, 1206 const Instruction *CxtI, 1207 AssumptionCache *AC, 1208 const DominatorTree *DT) { 1209 assert(V->getType()->isPointerTy() && 1210 "getOrEnforceKnownAlignment expects a pointer!"); 1211 1212 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1213 unsigned TrailZ = Known.countMinTrailingZeros(); 1214 1215 // Avoid trouble with ridiculously large TrailZ values, such as 1216 // those computed from a null pointer. 1217 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1218 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1219 1220 Align Alignment = Align(1u << std::min(Known.getBitWidth() - 1, TrailZ)); 1221 1222 if (PrefAlign && *PrefAlign > Alignment) 1223 Alignment = enforceKnownAlignment(V, Alignment, *PrefAlign, DL); 1224 1225 // We don't need to make any adjustment. 1226 return Alignment; 1227 } 1228 1229 ///===---------------------------------------------------------------------===// 1230 /// Dbg Intrinsic utilities 1231 /// 1232 1233 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1234 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1235 DIExpression *DIExpr, 1236 PHINode *APN) { 1237 // Since we can't guarantee that the original dbg.declare instrinsic 1238 // is removed by LowerDbgDeclare(), we need to make sure that we are 1239 // not inserting the same dbg.value intrinsic over and over. 1240 SmallVector<DbgValueInst *, 1> DbgValues; 1241 findDbgValues(DbgValues, APN); 1242 for (auto *DVI : DbgValues) { 1243 assert(DVI->getValue() == APN); 1244 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1245 return true; 1246 } 1247 return false; 1248 } 1249 1250 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1251 /// (or fragment of the variable) described by \p DII. 1252 /// 1253 /// This is primarily intended as a helper for the different 1254 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1255 /// converted describes an alloca'd variable, so we need to use the 1256 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1257 /// identified as covering an n-bit fragment, if the store size of i1 is at 1258 /// least n bits. 1259 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1260 const DataLayout &DL = DII->getModule()->getDataLayout(); 1261 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1262 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1263 return ValueSize >= *FragmentSize; 1264 // We can't always calculate the size of the DI variable (e.g. if it is a 1265 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1266 // intead. 1267 if (DII->isAddressOfVariable()) 1268 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1269 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1270 return ValueSize >= *FragmentSize; 1271 // Could not determine size of variable. Conservatively return false. 1272 return false; 1273 } 1274 1275 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1276 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1277 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1278 /// case this DebugLoc leaks into any adjacent instructions. 1279 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1280 // Original dbg.declare must have a location. 1281 DebugLoc DeclareLoc = DII->getDebugLoc(); 1282 MDNode *Scope = DeclareLoc.getScope(); 1283 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1284 // Produce an unknown location with the correct scope / inlinedAt fields. 1285 return DebugLoc::get(0, 0, Scope, InlinedAt); 1286 } 1287 1288 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1289 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1290 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1291 StoreInst *SI, DIBuilder &Builder) { 1292 assert(DII->isAddressOfVariable()); 1293 auto *DIVar = DII->getVariable(); 1294 assert(DIVar && "Missing variable"); 1295 auto *DIExpr = DII->getExpression(); 1296 Value *DV = SI->getValueOperand(); 1297 1298 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1299 1300 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1301 // FIXME: If storing to a part of the variable described by the dbg.declare, 1302 // then we want to insert a dbg.value for the corresponding fragment. 1303 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1304 << *DII << '\n'); 1305 // For now, when there is a store to parts of the variable (but we do not 1306 // know which part) we insert an dbg.value instrinsic to indicate that we 1307 // know nothing about the variable's content. 1308 DV = UndefValue::get(DV->getType()); 1309 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1310 return; 1311 } 1312 1313 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1314 } 1315 1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1319 LoadInst *LI, DIBuilder &Builder) { 1320 auto *DIVar = DII->getVariable(); 1321 auto *DIExpr = DII->getExpression(); 1322 assert(DIVar && "Missing variable"); 1323 1324 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1325 // FIXME: If only referring to a part of the variable described by the 1326 // dbg.declare, then we want to insert a dbg.value for the corresponding 1327 // fragment. 1328 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1329 << *DII << '\n'); 1330 return; 1331 } 1332 1333 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1334 1335 // We are now tracking the loaded value instead of the address. In the 1336 // future if multi-location support is added to the IR, it might be 1337 // preferable to keep tracking both the loaded value and the original 1338 // address in case the alloca can not be elided. 1339 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1340 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1341 DbgValue->insertAfter(LI); 1342 } 1343 1344 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1345 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1346 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1347 PHINode *APN, DIBuilder &Builder) { 1348 auto *DIVar = DII->getVariable(); 1349 auto *DIExpr = DII->getExpression(); 1350 assert(DIVar && "Missing variable"); 1351 1352 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1353 return; 1354 1355 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1356 // FIXME: If only referring to a part of the variable described by the 1357 // dbg.declare, then we want to insert a dbg.value for the corresponding 1358 // fragment. 1359 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1360 << *DII << '\n'); 1361 return; 1362 } 1363 1364 BasicBlock *BB = APN->getParent(); 1365 auto InsertionPt = BB->getFirstInsertionPt(); 1366 1367 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1368 1369 // The block may be a catchswitch block, which does not have a valid 1370 // insertion point. 1371 // FIXME: Insert dbg.value markers in the successors when appropriate. 1372 if (InsertionPt != BB->end()) 1373 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1374 } 1375 1376 /// Determine whether this alloca is either a VLA or an array. 1377 static bool isArray(AllocaInst *AI) { 1378 return AI->isArrayAllocation() || 1379 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1380 } 1381 1382 /// Determine whether this alloca is a structure. 1383 static bool isStructure(AllocaInst *AI) { 1384 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1385 } 1386 1387 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1388 /// of llvm.dbg.value intrinsics. 1389 bool llvm::LowerDbgDeclare(Function &F) { 1390 bool Changed = false; 1391 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1392 SmallVector<DbgDeclareInst *, 4> Dbgs; 1393 for (auto &FI : F) 1394 for (Instruction &BI : FI) 1395 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1396 Dbgs.push_back(DDI); 1397 1398 if (Dbgs.empty()) 1399 return Changed; 1400 1401 for (auto &I : Dbgs) { 1402 DbgDeclareInst *DDI = I; 1403 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1404 // If this is an alloca for a scalar variable, insert a dbg.value 1405 // at each load and store to the alloca and erase the dbg.declare. 1406 // The dbg.values allow tracking a variable even if it is not 1407 // stored on the stack, while the dbg.declare can only describe 1408 // the stack slot (and at a lexical-scope granularity). Later 1409 // passes will attempt to elide the stack slot. 1410 if (!AI || isArray(AI) || isStructure(AI)) 1411 continue; 1412 1413 // A volatile load/store means that the alloca can't be elided anyway. 1414 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1415 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1416 return LI->isVolatile(); 1417 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1418 return SI->isVolatile(); 1419 return false; 1420 })) 1421 continue; 1422 1423 SmallVector<const Value *, 8> WorkList; 1424 WorkList.push_back(AI); 1425 while (!WorkList.empty()) { 1426 const Value *V = WorkList.pop_back_val(); 1427 for (auto &AIUse : V->uses()) { 1428 User *U = AIUse.getUser(); 1429 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1430 if (AIUse.getOperandNo() == 1) 1431 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1432 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1433 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1434 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1435 // This is a call by-value or some other instruction that takes a 1436 // pointer to the variable. Insert a *value* intrinsic that describes 1437 // the variable by dereferencing the alloca. 1438 if (!CI->isLifetimeStartOrEnd()) { 1439 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1440 auto *DerefExpr = 1441 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1442 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1443 NewLoc, CI); 1444 } 1445 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1446 if (BI->getType()->isPointerTy()) 1447 WorkList.push_back(BI); 1448 } 1449 } 1450 } 1451 DDI->eraseFromParent(); 1452 Changed = true; 1453 } 1454 1455 if (Changed) 1456 for (BasicBlock &BB : F) 1457 RemoveRedundantDbgInstrs(&BB); 1458 1459 return Changed; 1460 } 1461 1462 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1463 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1464 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1465 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1466 if (InsertedPHIs.size() == 0) 1467 return; 1468 1469 // Map existing PHI nodes to their dbg.values. 1470 ValueToValueMapTy DbgValueMap; 1471 for (auto &I : *BB) { 1472 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1473 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1474 DbgValueMap.insert({Loc, DbgII}); 1475 } 1476 } 1477 if (DbgValueMap.size() == 0) 1478 return; 1479 1480 // Then iterate through the new PHIs and look to see if they use one of the 1481 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1482 // propagate the info through the new PHI. 1483 LLVMContext &C = BB->getContext(); 1484 for (auto PHI : InsertedPHIs) { 1485 BasicBlock *Parent = PHI->getParent(); 1486 // Avoid inserting an intrinsic into an EH block. 1487 if (Parent->getFirstNonPHI()->isEHPad()) 1488 continue; 1489 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1490 for (auto VI : PHI->operand_values()) { 1491 auto V = DbgValueMap.find(VI); 1492 if (V != DbgValueMap.end()) { 1493 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1494 Instruction *NewDbgII = DbgII->clone(); 1495 NewDbgII->setOperand(0, PhiMAV); 1496 auto InsertionPt = Parent->getFirstInsertionPt(); 1497 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1498 NewDbgII->insertBefore(&*InsertionPt); 1499 } 1500 } 1501 } 1502 } 1503 1504 /// Finds all intrinsics declaring local variables as living in the memory that 1505 /// 'V' points to. This may include a mix of dbg.declare and 1506 /// dbg.addr intrinsics. 1507 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1508 // This function is hot. Check whether the value has any metadata to avoid a 1509 // DenseMap lookup. 1510 if (!V->isUsedByMetadata()) 1511 return {}; 1512 auto *L = LocalAsMetadata::getIfExists(V); 1513 if (!L) 1514 return {}; 1515 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1516 if (!MDV) 1517 return {}; 1518 1519 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1520 for (User *U : MDV->users()) { 1521 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1522 if (DII->isAddressOfVariable()) 1523 Declares.push_back(DII); 1524 } 1525 1526 return Declares; 1527 } 1528 1529 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1530 TinyPtrVector<DbgDeclareInst *> DDIs; 1531 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1532 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1533 DDIs.push_back(DDI); 1534 return DDIs; 1535 } 1536 1537 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1538 // This function is hot. Check whether the value has any metadata to avoid a 1539 // DenseMap lookup. 1540 if (!V->isUsedByMetadata()) 1541 return; 1542 if (auto *L = LocalAsMetadata::getIfExists(V)) 1543 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1544 for (User *U : MDV->users()) 1545 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1546 DbgValues.push_back(DVI); 1547 } 1548 1549 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1550 Value *V) { 1551 // This function is hot. Check whether the value has any metadata to avoid a 1552 // DenseMap lookup. 1553 if (!V->isUsedByMetadata()) 1554 return; 1555 if (auto *L = LocalAsMetadata::getIfExists(V)) 1556 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1557 for (User *U : MDV->users()) 1558 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1559 DbgUsers.push_back(DII); 1560 } 1561 1562 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1563 DIBuilder &Builder, uint8_t DIExprFlags, 1564 int Offset) { 1565 auto DbgAddrs = FindDbgAddrUses(Address); 1566 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1567 DebugLoc Loc = DII->getDebugLoc(); 1568 auto *DIVar = DII->getVariable(); 1569 auto *DIExpr = DII->getExpression(); 1570 assert(DIVar && "Missing variable"); 1571 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1572 // Insert llvm.dbg.declare immediately before DII, and remove old 1573 // llvm.dbg.declare. 1574 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1575 DII->eraseFromParent(); 1576 } 1577 return !DbgAddrs.empty(); 1578 } 1579 1580 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1581 DIBuilder &Builder, int Offset) { 1582 DebugLoc Loc = DVI->getDebugLoc(); 1583 auto *DIVar = DVI->getVariable(); 1584 auto *DIExpr = DVI->getExpression(); 1585 assert(DIVar && "Missing variable"); 1586 1587 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1588 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1589 // it and give up. 1590 if (!DIExpr || DIExpr->getNumElements() < 1 || 1591 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1592 return; 1593 1594 // Insert the offset before the first deref. 1595 // We could just change the offset argument of dbg.value, but it's unsigned... 1596 if (Offset) 1597 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1598 1599 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1600 DVI->eraseFromParent(); 1601 } 1602 1603 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1604 DIBuilder &Builder, int Offset) { 1605 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1606 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1607 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1608 Use &U = *UI++; 1609 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1610 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1611 } 1612 } 1613 1614 /// Wrap \p V in a ValueAsMetadata instance. 1615 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1616 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1617 } 1618 1619 bool llvm::salvageDebugInfo(Instruction &I) { 1620 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1621 findDbgUsers(DbgUsers, &I); 1622 if (DbgUsers.empty()) 1623 return false; 1624 1625 return salvageDebugInfoForDbgValues(I, DbgUsers); 1626 } 1627 1628 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1629 if (!salvageDebugInfo(I)) 1630 replaceDbgUsesWithUndef(&I); 1631 } 1632 1633 bool llvm::salvageDebugInfoForDbgValues( 1634 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1635 auto &Ctx = I.getContext(); 1636 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1637 1638 for (auto *DII : DbgUsers) { 1639 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1640 // are implicitly pointing out the value as a DWARF memory location 1641 // description. 1642 bool StackValue = isa<DbgValueInst>(DII); 1643 1644 DIExpression *DIExpr = 1645 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1646 1647 // salvageDebugInfoImpl should fail on examining the first element of 1648 // DbgUsers, or none of them. 1649 if (!DIExpr) 1650 return false; 1651 1652 DII->setOperand(0, wrapMD(I.getOperand(0))); 1653 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1654 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1655 } 1656 1657 return true; 1658 } 1659 1660 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1661 DIExpression *SrcDIExpr, 1662 bool WithStackValue) { 1663 auto &M = *I.getModule(); 1664 auto &DL = M.getDataLayout(); 1665 1666 // Apply a vector of opcodes to the source DIExpression. 1667 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1668 DIExpression *DIExpr = SrcDIExpr; 1669 if (!Ops.empty()) { 1670 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1671 } 1672 return DIExpr; 1673 }; 1674 1675 // Apply the given offset to the source DIExpression. 1676 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1677 SmallVector<uint64_t, 8> Ops; 1678 DIExpression::appendOffset(Ops, Offset); 1679 return doSalvage(Ops); 1680 }; 1681 1682 // initializer-list helper for applying operators to the source DIExpression. 1683 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1684 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1685 return doSalvage(Ops); 1686 }; 1687 1688 if (auto *CI = dyn_cast<CastInst>(&I)) { 1689 // No-op casts and zexts are irrelevant for debug info. 1690 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1691 return SrcDIExpr; 1692 1693 Type *Type = CI->getType(); 1694 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1695 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1696 return nullptr; 1697 1698 Value *FromValue = CI->getOperand(0); 1699 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1700 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1701 1702 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1703 isa<SExtInst>(&I))); 1704 } 1705 1706 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1707 unsigned BitWidth = 1708 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1709 // Rewrite a constant GEP into a DIExpression. 1710 APInt Offset(BitWidth, 0); 1711 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1712 return applyOffset(Offset.getSExtValue()); 1713 } else { 1714 return nullptr; 1715 } 1716 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1717 // Rewrite binary operations with constant integer operands. 1718 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1719 if (!ConstInt || ConstInt->getBitWidth() > 64) 1720 return nullptr; 1721 1722 uint64_t Val = ConstInt->getSExtValue(); 1723 switch (BI->getOpcode()) { 1724 case Instruction::Add: 1725 return applyOffset(Val); 1726 case Instruction::Sub: 1727 return applyOffset(-int64_t(Val)); 1728 case Instruction::Mul: 1729 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1730 case Instruction::SDiv: 1731 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1732 case Instruction::SRem: 1733 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1734 case Instruction::Or: 1735 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1736 case Instruction::And: 1737 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1738 case Instruction::Xor: 1739 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1740 case Instruction::Shl: 1741 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1742 case Instruction::LShr: 1743 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1744 case Instruction::AShr: 1745 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1746 default: 1747 // TODO: Salvage constants from each kind of binop we know about. 1748 return nullptr; 1749 } 1750 // *Not* to do: we should not attempt to salvage load instructions, 1751 // because the validity and lifetime of a dbg.value containing 1752 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1753 } 1754 return nullptr; 1755 } 1756 1757 /// A replacement for a dbg.value expression. 1758 using DbgValReplacement = Optional<DIExpression *>; 1759 1760 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1761 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1762 /// changes are made. 1763 static bool rewriteDebugUsers( 1764 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1765 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1766 // Find debug users of From. 1767 SmallVector<DbgVariableIntrinsic *, 1> Users; 1768 findDbgUsers(Users, &From); 1769 if (Users.empty()) 1770 return false; 1771 1772 // Prevent use-before-def of To. 1773 bool Changed = false; 1774 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1775 if (isa<Instruction>(&To)) { 1776 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1777 1778 for (auto *DII : Users) { 1779 // It's common to see a debug user between From and DomPoint. Move it 1780 // after DomPoint to preserve the variable update without any reordering. 1781 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1782 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1783 DII->moveAfter(&DomPoint); 1784 Changed = true; 1785 1786 // Users which otherwise aren't dominated by the replacement value must 1787 // be salvaged or deleted. 1788 } else if (!DT.dominates(&DomPoint, DII)) { 1789 UndefOrSalvage.insert(DII); 1790 } 1791 } 1792 } 1793 1794 // Update debug users without use-before-def risk. 1795 for (auto *DII : Users) { 1796 if (UndefOrSalvage.count(DII)) 1797 continue; 1798 1799 LLVMContext &Ctx = DII->getContext(); 1800 DbgValReplacement DVR = RewriteExpr(*DII); 1801 if (!DVR) 1802 continue; 1803 1804 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1805 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1806 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1807 Changed = true; 1808 } 1809 1810 if (!UndefOrSalvage.empty()) { 1811 // Try to salvage the remaining debug users. 1812 salvageDebugInfoOrMarkUndef(From); 1813 Changed = true; 1814 } 1815 1816 return Changed; 1817 } 1818 1819 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1820 /// losslessly preserve the bits and semantics of the value. This predicate is 1821 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1822 /// 1823 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1824 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1825 /// and also does not allow lossless pointer <-> integer conversions. 1826 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1827 Type *ToTy) { 1828 // Trivially compatible types. 1829 if (FromTy == ToTy) 1830 return true; 1831 1832 // Handle compatible pointer <-> integer conversions. 1833 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1834 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1835 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1836 !DL.isNonIntegralPointerType(ToTy); 1837 return SameSize && LosslessConversion; 1838 } 1839 1840 // TODO: This is not exhaustive. 1841 return false; 1842 } 1843 1844 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1845 Instruction &DomPoint, DominatorTree &DT) { 1846 // Exit early if From has no debug users. 1847 if (!From.isUsedByMetadata()) 1848 return false; 1849 1850 assert(&From != &To && "Can't replace something with itself"); 1851 1852 Type *FromTy = From.getType(); 1853 Type *ToTy = To.getType(); 1854 1855 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1856 return DII.getExpression(); 1857 }; 1858 1859 // Handle no-op conversions. 1860 Module &M = *From.getModule(); 1861 const DataLayout &DL = M.getDataLayout(); 1862 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1863 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1864 1865 // Handle integer-to-integer widening and narrowing. 1866 // FIXME: Use DW_OP_convert when it's available everywhere. 1867 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1868 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1869 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1870 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1871 1872 // When the width of the result grows, assume that a debugger will only 1873 // access the low `FromBits` bits when inspecting the source variable. 1874 if (FromBits < ToBits) 1875 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1876 1877 // The width of the result has shrunk. Use sign/zero extension to describe 1878 // the source variable's high bits. 1879 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1880 DILocalVariable *Var = DII.getVariable(); 1881 1882 // Without knowing signedness, sign/zero extension isn't possible. 1883 auto Signedness = Var->getSignedness(); 1884 if (!Signedness) 1885 return None; 1886 1887 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1888 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1889 Signed); 1890 }; 1891 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1892 } 1893 1894 // TODO: Floating-point conversions, vectors. 1895 return false; 1896 } 1897 1898 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1899 unsigned NumDeadInst = 0; 1900 // Delete the instructions backwards, as it has a reduced likelihood of 1901 // having to update as many def-use and use-def chains. 1902 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1903 while (EndInst != &BB->front()) { 1904 // Delete the next to last instruction. 1905 Instruction *Inst = &*--EndInst->getIterator(); 1906 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1907 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1908 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1909 EndInst = Inst; 1910 continue; 1911 } 1912 if (!isa<DbgInfoIntrinsic>(Inst)) 1913 ++NumDeadInst; 1914 Inst->eraseFromParent(); 1915 } 1916 return NumDeadInst; 1917 } 1918 1919 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1920 bool PreserveLCSSA, DomTreeUpdater *DTU, 1921 MemorySSAUpdater *MSSAU) { 1922 BasicBlock *BB = I->getParent(); 1923 std::vector <DominatorTree::UpdateType> Updates; 1924 1925 if (MSSAU) 1926 MSSAU->changeToUnreachable(I); 1927 1928 // Loop over all of the successors, removing BB's entry from any PHI 1929 // nodes. 1930 if (DTU) 1931 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1932 for (BasicBlock *Successor : successors(BB)) { 1933 Successor->removePredecessor(BB, PreserveLCSSA); 1934 if (DTU) 1935 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1936 } 1937 // Insert a call to llvm.trap right before this. This turns the undefined 1938 // behavior into a hard fail instead of falling through into random code. 1939 if (UseLLVMTrap) { 1940 Function *TrapFn = 1941 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1942 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1943 CallTrap->setDebugLoc(I->getDebugLoc()); 1944 } 1945 auto *UI = new UnreachableInst(I->getContext(), I); 1946 UI->setDebugLoc(I->getDebugLoc()); 1947 1948 // All instructions after this are dead. 1949 unsigned NumInstrsRemoved = 0; 1950 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1951 while (BBI != BBE) { 1952 if (!BBI->use_empty()) 1953 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1954 BB->getInstList().erase(BBI++); 1955 ++NumInstrsRemoved; 1956 } 1957 if (DTU) 1958 DTU->applyUpdatesPermissive(Updates); 1959 return NumInstrsRemoved; 1960 } 1961 1962 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1963 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1964 SmallVector<OperandBundleDef, 1> OpBundles; 1965 II->getOperandBundlesAsDefs(OpBundles); 1966 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1967 II->getCalledValue(), Args, OpBundles); 1968 NewCall->setCallingConv(II->getCallingConv()); 1969 NewCall->setAttributes(II->getAttributes()); 1970 NewCall->setDebugLoc(II->getDebugLoc()); 1971 NewCall->copyMetadata(*II); 1972 return NewCall; 1973 } 1974 1975 /// changeToCall - Convert the specified invoke into a normal call. 1976 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1977 CallInst *NewCall = createCallMatchingInvoke(II); 1978 NewCall->takeName(II); 1979 NewCall->insertBefore(II); 1980 II->replaceAllUsesWith(NewCall); 1981 1982 // Follow the call by a branch to the normal destination. 1983 BasicBlock *NormalDestBB = II->getNormalDest(); 1984 BranchInst::Create(NormalDestBB, II); 1985 1986 // Update PHI nodes in the unwind destination 1987 BasicBlock *BB = II->getParent(); 1988 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1989 UnwindDestBB->removePredecessor(BB); 1990 II->eraseFromParent(); 1991 if (DTU) 1992 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1993 } 1994 1995 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1996 BasicBlock *UnwindEdge) { 1997 BasicBlock *BB = CI->getParent(); 1998 1999 // Convert this function call into an invoke instruction. First, split the 2000 // basic block. 2001 BasicBlock *Split = 2002 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2003 2004 // Delete the unconditional branch inserted by splitBasicBlock 2005 BB->getInstList().pop_back(); 2006 2007 // Create the new invoke instruction. 2008 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2009 SmallVector<OperandBundleDef, 1> OpBundles; 2010 2011 CI->getOperandBundlesAsDefs(OpBundles); 2012 2013 // Note: we're round tripping operand bundles through memory here, and that 2014 // can potentially be avoided with a cleverer API design that we do not have 2015 // as of this time. 2016 2017 InvokeInst *II = 2018 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2019 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2020 II->setDebugLoc(CI->getDebugLoc()); 2021 II->setCallingConv(CI->getCallingConv()); 2022 II->setAttributes(CI->getAttributes()); 2023 2024 // Make sure that anything using the call now uses the invoke! This also 2025 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2026 CI->replaceAllUsesWith(II); 2027 2028 // Delete the original call 2029 Split->getInstList().pop_front(); 2030 return Split; 2031 } 2032 2033 static bool markAliveBlocks(Function &F, 2034 SmallPtrSetImpl<BasicBlock *> &Reachable, 2035 DomTreeUpdater *DTU = nullptr) { 2036 SmallVector<BasicBlock*, 128> Worklist; 2037 BasicBlock *BB = &F.front(); 2038 Worklist.push_back(BB); 2039 Reachable.insert(BB); 2040 bool Changed = false; 2041 do { 2042 BB = Worklist.pop_back_val(); 2043 2044 // Do a quick scan of the basic block, turning any obviously unreachable 2045 // instructions into LLVM unreachable insts. The instruction combining pass 2046 // canonicalizes unreachable insts into stores to null or undef. 2047 for (Instruction &I : *BB) { 2048 if (auto *CI = dyn_cast<CallInst>(&I)) { 2049 Value *Callee = CI->getCalledValue(); 2050 // Handle intrinsic calls. 2051 if (Function *F = dyn_cast<Function>(Callee)) { 2052 auto IntrinsicID = F->getIntrinsicID(); 2053 // Assumptions that are known to be false are equivalent to 2054 // unreachable. Also, if the condition is undefined, then we make the 2055 // choice most beneficial to the optimizer, and choose that to also be 2056 // unreachable. 2057 if (IntrinsicID == Intrinsic::assume) { 2058 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2059 // Don't insert a call to llvm.trap right before the unreachable. 2060 changeToUnreachable(CI, false, false, DTU); 2061 Changed = true; 2062 break; 2063 } 2064 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2065 // A call to the guard intrinsic bails out of the current 2066 // compilation unit if the predicate passed to it is false. If the 2067 // predicate is a constant false, then we know the guard will bail 2068 // out of the current compile unconditionally, so all code following 2069 // it is dead. 2070 // 2071 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2072 // guards to treat `undef` as `false` since a guard on `undef` can 2073 // still be useful for widening. 2074 if (match(CI->getArgOperand(0), m_Zero())) 2075 if (!isa<UnreachableInst>(CI->getNextNode())) { 2076 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2077 false, DTU); 2078 Changed = true; 2079 break; 2080 } 2081 } 2082 } else if ((isa<ConstantPointerNull>(Callee) && 2083 !NullPointerIsDefined(CI->getFunction())) || 2084 isa<UndefValue>(Callee)) { 2085 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2086 Changed = true; 2087 break; 2088 } 2089 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2090 // If we found a call to a no-return function, insert an unreachable 2091 // instruction after it. Make sure there isn't *already* one there 2092 // though. 2093 if (!isa<UnreachableInst>(CI->getNextNode())) { 2094 // Don't insert a call to llvm.trap right before the unreachable. 2095 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2096 Changed = true; 2097 } 2098 break; 2099 } 2100 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2101 // Store to undef and store to null are undefined and used to signal 2102 // that they should be changed to unreachable by passes that can't 2103 // modify the CFG. 2104 2105 // Don't touch volatile stores. 2106 if (SI->isVolatile()) continue; 2107 2108 Value *Ptr = SI->getOperand(1); 2109 2110 if (isa<UndefValue>(Ptr) || 2111 (isa<ConstantPointerNull>(Ptr) && 2112 !NullPointerIsDefined(SI->getFunction(), 2113 SI->getPointerAddressSpace()))) { 2114 changeToUnreachable(SI, true, false, DTU); 2115 Changed = true; 2116 break; 2117 } 2118 } 2119 } 2120 2121 Instruction *Terminator = BB->getTerminator(); 2122 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2123 // Turn invokes that call 'nounwind' functions into ordinary calls. 2124 Value *Callee = II->getCalledValue(); 2125 if ((isa<ConstantPointerNull>(Callee) && 2126 !NullPointerIsDefined(BB->getParent())) || 2127 isa<UndefValue>(Callee)) { 2128 changeToUnreachable(II, true, false, DTU); 2129 Changed = true; 2130 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2131 if (II->use_empty() && II->onlyReadsMemory()) { 2132 // jump to the normal destination branch. 2133 BasicBlock *NormalDestBB = II->getNormalDest(); 2134 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2135 BranchInst::Create(NormalDestBB, II); 2136 UnwindDestBB->removePredecessor(II->getParent()); 2137 II->eraseFromParent(); 2138 if (DTU) 2139 DTU->applyUpdatesPermissive( 2140 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2141 } else 2142 changeToCall(II, DTU); 2143 Changed = true; 2144 } 2145 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2146 // Remove catchpads which cannot be reached. 2147 struct CatchPadDenseMapInfo { 2148 static CatchPadInst *getEmptyKey() { 2149 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2150 } 2151 2152 static CatchPadInst *getTombstoneKey() { 2153 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2154 } 2155 2156 static unsigned getHashValue(CatchPadInst *CatchPad) { 2157 return static_cast<unsigned>(hash_combine_range( 2158 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2159 } 2160 2161 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2162 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2163 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2164 return LHS == RHS; 2165 return LHS->isIdenticalTo(RHS); 2166 } 2167 }; 2168 2169 // Set of unique CatchPads. 2170 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2171 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2172 HandlerSet; 2173 detail::DenseSetEmpty Empty; 2174 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2175 E = CatchSwitch->handler_end(); 2176 I != E; ++I) { 2177 BasicBlock *HandlerBB = *I; 2178 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2179 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2180 CatchSwitch->removeHandler(I); 2181 --I; 2182 --E; 2183 Changed = true; 2184 } 2185 } 2186 } 2187 2188 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2189 for (BasicBlock *Successor : successors(BB)) 2190 if (Reachable.insert(Successor).second) 2191 Worklist.push_back(Successor); 2192 } while (!Worklist.empty()); 2193 return Changed; 2194 } 2195 2196 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2197 Instruction *TI = BB->getTerminator(); 2198 2199 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2200 changeToCall(II, DTU); 2201 return; 2202 } 2203 2204 Instruction *NewTI; 2205 BasicBlock *UnwindDest; 2206 2207 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2208 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2209 UnwindDest = CRI->getUnwindDest(); 2210 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2211 auto *NewCatchSwitch = CatchSwitchInst::Create( 2212 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2213 CatchSwitch->getName(), CatchSwitch); 2214 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2215 NewCatchSwitch->addHandler(PadBB); 2216 2217 NewTI = NewCatchSwitch; 2218 UnwindDest = CatchSwitch->getUnwindDest(); 2219 } else { 2220 llvm_unreachable("Could not find unwind successor"); 2221 } 2222 2223 NewTI->takeName(TI); 2224 NewTI->setDebugLoc(TI->getDebugLoc()); 2225 UnwindDest->removePredecessor(BB); 2226 TI->replaceAllUsesWith(NewTI); 2227 TI->eraseFromParent(); 2228 if (DTU) 2229 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2230 } 2231 2232 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2233 /// if they are in a dead cycle. Return true if a change was made, false 2234 /// otherwise. 2235 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2236 MemorySSAUpdater *MSSAU) { 2237 SmallPtrSet<BasicBlock *, 16> Reachable; 2238 bool Changed = markAliveBlocks(F, Reachable, DTU); 2239 2240 // If there are unreachable blocks in the CFG... 2241 if (Reachable.size() == F.size()) 2242 return Changed; 2243 2244 assert(Reachable.size() < F.size()); 2245 NumRemoved += F.size() - Reachable.size(); 2246 2247 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2248 for (BasicBlock &BB : F) { 2249 // Skip reachable basic blocks 2250 if (Reachable.find(&BB) != Reachable.end()) 2251 continue; 2252 DeadBlockSet.insert(&BB); 2253 } 2254 2255 if (MSSAU) 2256 MSSAU->removeBlocks(DeadBlockSet); 2257 2258 // Loop over all of the basic blocks that are not reachable, dropping all of 2259 // their internal references. Update DTU if available. 2260 std::vector<DominatorTree::UpdateType> Updates; 2261 for (auto *BB : DeadBlockSet) { 2262 for (BasicBlock *Successor : successors(BB)) { 2263 if (!DeadBlockSet.count(Successor)) 2264 Successor->removePredecessor(BB); 2265 if (DTU) 2266 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2267 } 2268 BB->dropAllReferences(); 2269 if (DTU) { 2270 Instruction *TI = BB->getTerminator(); 2271 assert(TI && "Basic block should have a terminator"); 2272 // Terminators like invoke can have users. We have to replace their users, 2273 // before removing them. 2274 if (!TI->use_empty()) 2275 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2276 TI->eraseFromParent(); 2277 new UnreachableInst(BB->getContext(), BB); 2278 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2279 "applying corresponding DTU updates."); 2280 } 2281 } 2282 2283 if (DTU) { 2284 DTU->applyUpdatesPermissive(Updates); 2285 bool Deleted = false; 2286 for (auto *BB : DeadBlockSet) { 2287 if (DTU->isBBPendingDeletion(BB)) 2288 --NumRemoved; 2289 else 2290 Deleted = true; 2291 DTU->deleteBB(BB); 2292 } 2293 if (!Deleted) 2294 return false; 2295 } else { 2296 for (auto *BB : DeadBlockSet) 2297 BB->eraseFromParent(); 2298 } 2299 2300 return true; 2301 } 2302 2303 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2304 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2305 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2306 K->dropUnknownNonDebugMetadata(KnownIDs); 2307 K->getAllMetadataOtherThanDebugLoc(Metadata); 2308 for (const auto &MD : Metadata) { 2309 unsigned Kind = MD.first; 2310 MDNode *JMD = J->getMetadata(Kind); 2311 MDNode *KMD = MD.second; 2312 2313 switch (Kind) { 2314 default: 2315 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2316 break; 2317 case LLVMContext::MD_dbg: 2318 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2319 case LLVMContext::MD_tbaa: 2320 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2321 break; 2322 case LLVMContext::MD_alias_scope: 2323 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2324 break; 2325 case LLVMContext::MD_noalias: 2326 case LLVMContext::MD_mem_parallel_loop_access: 2327 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2328 break; 2329 case LLVMContext::MD_access_group: 2330 K->setMetadata(LLVMContext::MD_access_group, 2331 intersectAccessGroups(K, J)); 2332 break; 2333 case LLVMContext::MD_range: 2334 2335 // If K does move, use most generic range. Otherwise keep the range of 2336 // K. 2337 if (DoesKMove) 2338 // FIXME: If K does move, we should drop the range info and nonnull. 2339 // Currently this function is used with DoesKMove in passes 2340 // doing hoisting/sinking and the current behavior of using the 2341 // most generic range is correct in those cases. 2342 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2343 break; 2344 case LLVMContext::MD_fpmath: 2345 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2346 break; 2347 case LLVMContext::MD_invariant_load: 2348 // Only set the !invariant.load if it is present in both instructions. 2349 K->setMetadata(Kind, JMD); 2350 break; 2351 case LLVMContext::MD_nonnull: 2352 // If K does move, keep nonull if it is present in both instructions. 2353 if (DoesKMove) 2354 K->setMetadata(Kind, JMD); 2355 break; 2356 case LLVMContext::MD_invariant_group: 2357 // Preserve !invariant.group in K. 2358 break; 2359 case LLVMContext::MD_align: 2360 K->setMetadata(Kind, 2361 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2362 break; 2363 case LLVMContext::MD_dereferenceable: 2364 case LLVMContext::MD_dereferenceable_or_null: 2365 K->setMetadata(Kind, 2366 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2367 break; 2368 case LLVMContext::MD_preserve_access_index: 2369 // Preserve !preserve.access.index in K. 2370 break; 2371 } 2372 } 2373 // Set !invariant.group from J if J has it. If both instructions have it 2374 // then we will just pick it from J - even when they are different. 2375 // Also make sure that K is load or store - f.e. combining bitcast with load 2376 // could produce bitcast with invariant.group metadata, which is invalid. 2377 // FIXME: we should try to preserve both invariant.group md if they are 2378 // different, but right now instruction can only have one invariant.group. 2379 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2380 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2381 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2382 } 2383 2384 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2385 bool KDominatesJ) { 2386 unsigned KnownIDs[] = { 2387 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2388 LLVMContext::MD_noalias, LLVMContext::MD_range, 2389 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2390 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2391 LLVMContext::MD_dereferenceable, 2392 LLVMContext::MD_dereferenceable_or_null, 2393 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2394 combineMetadata(K, J, KnownIDs, KDominatesJ); 2395 } 2396 2397 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2398 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2399 Source.getAllMetadata(MD); 2400 MDBuilder MDB(Dest.getContext()); 2401 Type *NewType = Dest.getType(); 2402 const DataLayout &DL = Source.getModule()->getDataLayout(); 2403 for (const auto &MDPair : MD) { 2404 unsigned ID = MDPair.first; 2405 MDNode *N = MDPair.second; 2406 // Note, essentially every kind of metadata should be preserved here! This 2407 // routine is supposed to clone a load instruction changing *only its type*. 2408 // The only metadata it makes sense to drop is metadata which is invalidated 2409 // when the pointer type changes. This should essentially never be the case 2410 // in LLVM, but we explicitly switch over only known metadata to be 2411 // conservatively correct. If you are adding metadata to LLVM which pertains 2412 // to loads, you almost certainly want to add it here. 2413 switch (ID) { 2414 case LLVMContext::MD_dbg: 2415 case LLVMContext::MD_tbaa: 2416 case LLVMContext::MD_prof: 2417 case LLVMContext::MD_fpmath: 2418 case LLVMContext::MD_tbaa_struct: 2419 case LLVMContext::MD_invariant_load: 2420 case LLVMContext::MD_alias_scope: 2421 case LLVMContext::MD_noalias: 2422 case LLVMContext::MD_nontemporal: 2423 case LLVMContext::MD_mem_parallel_loop_access: 2424 case LLVMContext::MD_access_group: 2425 // All of these directly apply. 2426 Dest.setMetadata(ID, N); 2427 break; 2428 2429 case LLVMContext::MD_nonnull: 2430 copyNonnullMetadata(Source, N, Dest); 2431 break; 2432 2433 case LLVMContext::MD_align: 2434 case LLVMContext::MD_dereferenceable: 2435 case LLVMContext::MD_dereferenceable_or_null: 2436 // These only directly apply if the new type is also a pointer. 2437 if (NewType->isPointerTy()) 2438 Dest.setMetadata(ID, N); 2439 break; 2440 2441 case LLVMContext::MD_range: 2442 copyRangeMetadata(DL, Source, N, Dest); 2443 break; 2444 } 2445 } 2446 } 2447 2448 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2449 auto *ReplInst = dyn_cast<Instruction>(Repl); 2450 if (!ReplInst) 2451 return; 2452 2453 // Patch the replacement so that it is not more restrictive than the value 2454 // being replaced. 2455 // Note that if 'I' is a load being replaced by some operation, 2456 // for example, by an arithmetic operation, then andIRFlags() 2457 // would just erase all math flags from the original arithmetic 2458 // operation, which is clearly not wanted and not needed. 2459 if (!isa<LoadInst>(I)) 2460 ReplInst->andIRFlags(I); 2461 2462 // FIXME: If both the original and replacement value are part of the 2463 // same control-flow region (meaning that the execution of one 2464 // guarantees the execution of the other), then we can combine the 2465 // noalias scopes here and do better than the general conservative 2466 // answer used in combineMetadata(). 2467 2468 // In general, GVN unifies expressions over different control-flow 2469 // regions, and so we need a conservative combination of the noalias 2470 // scopes. 2471 static const unsigned KnownIDs[] = { 2472 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2473 LLVMContext::MD_noalias, LLVMContext::MD_range, 2474 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2475 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2476 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2477 combineMetadata(ReplInst, I, KnownIDs, false); 2478 } 2479 2480 template <typename RootType, typename DominatesFn> 2481 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2482 const RootType &Root, 2483 const DominatesFn &Dominates) { 2484 assert(From->getType() == To->getType()); 2485 2486 unsigned Count = 0; 2487 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2488 UI != UE;) { 2489 Use &U = *UI++; 2490 if (!Dominates(Root, U)) 2491 continue; 2492 U.set(To); 2493 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2494 << "' as " << *To << " in " << *U << "\n"); 2495 ++Count; 2496 } 2497 return Count; 2498 } 2499 2500 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2501 assert(From->getType() == To->getType()); 2502 auto *BB = From->getParent(); 2503 unsigned Count = 0; 2504 2505 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2506 UI != UE;) { 2507 Use &U = *UI++; 2508 auto *I = cast<Instruction>(U.getUser()); 2509 if (I->getParent() == BB) 2510 continue; 2511 U.set(To); 2512 ++Count; 2513 } 2514 return Count; 2515 } 2516 2517 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2518 DominatorTree &DT, 2519 const BasicBlockEdge &Root) { 2520 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2521 return DT.dominates(Root, U); 2522 }; 2523 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2524 } 2525 2526 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2527 DominatorTree &DT, 2528 const BasicBlock *BB) { 2529 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2530 auto *I = cast<Instruction>(U.getUser())->getParent(); 2531 return DT.properlyDominates(BB, I); 2532 }; 2533 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2534 } 2535 2536 bool llvm::callsGCLeafFunction(const CallBase *Call, 2537 const TargetLibraryInfo &TLI) { 2538 // Check if the function is specifically marked as a gc leaf function. 2539 if (Call->hasFnAttr("gc-leaf-function")) 2540 return true; 2541 if (const Function *F = Call->getCalledFunction()) { 2542 if (F->hasFnAttribute("gc-leaf-function")) 2543 return true; 2544 2545 if (auto IID = F->getIntrinsicID()) 2546 // Most LLVM intrinsics do not take safepoints. 2547 return IID != Intrinsic::experimental_gc_statepoint && 2548 IID != Intrinsic::experimental_deoptimize; 2549 } 2550 2551 // Lib calls can be materialized by some passes, and won't be 2552 // marked as 'gc-leaf-function.' All available Libcalls are 2553 // GC-leaf. 2554 LibFunc LF; 2555 if (TLI.getLibFunc(*Call, LF)) { 2556 return TLI.has(LF); 2557 } 2558 2559 return false; 2560 } 2561 2562 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2563 LoadInst &NewLI) { 2564 auto *NewTy = NewLI.getType(); 2565 2566 // This only directly applies if the new type is also a pointer. 2567 if (NewTy->isPointerTy()) { 2568 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2569 return; 2570 } 2571 2572 // The only other translation we can do is to integral loads with !range 2573 // metadata. 2574 if (!NewTy->isIntegerTy()) 2575 return; 2576 2577 MDBuilder MDB(NewLI.getContext()); 2578 const Value *Ptr = OldLI.getPointerOperand(); 2579 auto *ITy = cast<IntegerType>(NewTy); 2580 auto *NullInt = ConstantExpr::getPtrToInt( 2581 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2582 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2583 NewLI.setMetadata(LLVMContext::MD_range, 2584 MDB.createRange(NonNullInt, NullInt)); 2585 } 2586 2587 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2588 MDNode *N, LoadInst &NewLI) { 2589 auto *NewTy = NewLI.getType(); 2590 2591 // Give up unless it is converted to a pointer where there is a single very 2592 // valuable mapping we can do reliably. 2593 // FIXME: It would be nice to propagate this in more ways, but the type 2594 // conversions make it hard. 2595 if (!NewTy->isPointerTy()) 2596 return; 2597 2598 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2599 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2600 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2601 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2602 } 2603 } 2604 2605 void llvm::dropDebugUsers(Instruction &I) { 2606 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2607 findDbgUsers(DbgUsers, &I); 2608 for (auto *DII : DbgUsers) 2609 DII->eraseFromParent(); 2610 } 2611 2612 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2613 BasicBlock *BB) { 2614 // Since we are moving the instructions out of its basic block, we do not 2615 // retain their original debug locations (DILocations) and debug intrinsic 2616 // instructions. 2617 // 2618 // Doing so would degrade the debugging experience and adversely affect the 2619 // accuracy of profiling information. 2620 // 2621 // Currently, when hoisting the instructions, we take the following actions: 2622 // - Remove their debug intrinsic instructions. 2623 // - Set their debug locations to the values from the insertion point. 2624 // 2625 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2626 // need to be deleted, is because there will not be any instructions with a 2627 // DILocation in either branch left after performing the transformation. We 2628 // can only insert a dbg.value after the two branches are joined again. 2629 // 2630 // See PR38762, PR39243 for more details. 2631 // 2632 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2633 // encode predicated DIExpressions that yield different results on different 2634 // code paths. 2635 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2636 Instruction *I = &*II; 2637 I->dropUnknownNonDebugMetadata(); 2638 if (I->isUsedByMetadata()) 2639 dropDebugUsers(*I); 2640 if (isa<DbgInfoIntrinsic>(I)) { 2641 // Remove DbgInfo Intrinsics. 2642 II = I->eraseFromParent(); 2643 continue; 2644 } 2645 I->setDebugLoc(InsertPt->getDebugLoc()); 2646 ++II; 2647 } 2648 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2649 BB->begin(), 2650 BB->getTerminator()->getIterator()); 2651 } 2652 2653 namespace { 2654 2655 /// A potential constituent of a bitreverse or bswap expression. See 2656 /// collectBitParts for a fuller explanation. 2657 struct BitPart { 2658 BitPart(Value *P, unsigned BW) : Provider(P) { 2659 Provenance.resize(BW); 2660 } 2661 2662 /// The Value that this is a bitreverse/bswap of. 2663 Value *Provider; 2664 2665 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2666 /// in Provider becomes bit B in the result of this expression. 2667 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2668 2669 enum { Unset = -1 }; 2670 }; 2671 2672 } // end anonymous namespace 2673 2674 /// Analyze the specified subexpression and see if it is capable of providing 2675 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2676 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2677 /// the output of the expression came from a corresponding bit in some other 2678 /// value. This function is recursive, and the end result is a mapping of 2679 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2680 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2681 /// 2682 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2683 /// that the expression deposits the low byte of %X into the high byte of the 2684 /// result and that all other bits are zero. This expression is accepted and a 2685 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2686 /// [0-7]. 2687 /// 2688 /// To avoid revisiting values, the BitPart results are memoized into the 2689 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2690 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2691 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2692 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2693 /// type instead to provide the same functionality. 2694 /// 2695 /// Because we pass around references into \c BPS, we must use a container that 2696 /// does not invalidate internal references (std::map instead of DenseMap). 2697 static const Optional<BitPart> & 2698 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2699 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2700 auto I = BPS.find(V); 2701 if (I != BPS.end()) 2702 return I->second; 2703 2704 auto &Result = BPS[V] = None; 2705 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2706 2707 // Prevent stack overflow by limiting the recursion depth 2708 if (Depth == BitPartRecursionMaxDepth) { 2709 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2710 return Result; 2711 } 2712 2713 if (Instruction *I = dyn_cast<Instruction>(V)) { 2714 // If this is an or instruction, it may be an inner node of the bswap. 2715 if (I->getOpcode() == Instruction::Or) { 2716 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2717 MatchBitReversals, BPS, Depth + 1); 2718 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2719 MatchBitReversals, BPS, Depth + 1); 2720 if (!A || !B) 2721 return Result; 2722 2723 // Try and merge the two together. 2724 if (!A->Provider || A->Provider != B->Provider) 2725 return Result; 2726 2727 Result = BitPart(A->Provider, BitWidth); 2728 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2729 if (A->Provenance[i] != BitPart::Unset && 2730 B->Provenance[i] != BitPart::Unset && 2731 A->Provenance[i] != B->Provenance[i]) 2732 return Result = None; 2733 2734 if (A->Provenance[i] == BitPart::Unset) 2735 Result->Provenance[i] = B->Provenance[i]; 2736 else 2737 Result->Provenance[i] = A->Provenance[i]; 2738 } 2739 2740 return Result; 2741 } 2742 2743 // If this is a logical shift by a constant, recurse then shift the result. 2744 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2745 unsigned BitShift = 2746 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2747 // Ensure the shift amount is defined. 2748 if (BitShift > BitWidth) 2749 return Result; 2750 2751 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2752 MatchBitReversals, BPS, Depth + 1); 2753 if (!Res) 2754 return Result; 2755 Result = Res; 2756 2757 // Perform the "shift" on BitProvenance. 2758 auto &P = Result->Provenance; 2759 if (I->getOpcode() == Instruction::Shl) { 2760 P.erase(std::prev(P.end(), BitShift), P.end()); 2761 P.insert(P.begin(), BitShift, BitPart::Unset); 2762 } else { 2763 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2764 P.insert(P.end(), BitShift, BitPart::Unset); 2765 } 2766 2767 return Result; 2768 } 2769 2770 // If this is a logical 'and' with a mask that clears bits, recurse then 2771 // unset the appropriate bits. 2772 if (I->getOpcode() == Instruction::And && 2773 isa<ConstantInt>(I->getOperand(1))) { 2774 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2775 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2776 2777 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2778 // early exit. 2779 unsigned NumMaskedBits = AndMask.countPopulation(); 2780 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2781 return Result; 2782 2783 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2784 MatchBitReversals, BPS, Depth + 1); 2785 if (!Res) 2786 return Result; 2787 Result = Res; 2788 2789 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2790 // If the AndMask is zero for this bit, clear the bit. 2791 if ((AndMask & Bit) == 0) 2792 Result->Provenance[i] = BitPart::Unset; 2793 return Result; 2794 } 2795 2796 // If this is a zext instruction zero extend the result. 2797 if (I->getOpcode() == Instruction::ZExt) { 2798 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2799 MatchBitReversals, BPS, Depth + 1); 2800 if (!Res) 2801 return Result; 2802 2803 Result = BitPart(Res->Provider, BitWidth); 2804 auto NarrowBitWidth = 2805 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2806 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2807 Result->Provenance[i] = Res->Provenance[i]; 2808 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2809 Result->Provenance[i] = BitPart::Unset; 2810 return Result; 2811 } 2812 } 2813 2814 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2815 // the input value to the bswap/bitreverse. 2816 Result = BitPart(V, BitWidth); 2817 for (unsigned i = 0; i < BitWidth; ++i) 2818 Result->Provenance[i] = i; 2819 return Result; 2820 } 2821 2822 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2823 unsigned BitWidth) { 2824 if (From % 8 != To % 8) 2825 return false; 2826 // Convert from bit indices to byte indices and check for a byte reversal. 2827 From >>= 3; 2828 To >>= 3; 2829 BitWidth >>= 3; 2830 return From == BitWidth - To - 1; 2831 } 2832 2833 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2834 unsigned BitWidth) { 2835 return From == BitWidth - To - 1; 2836 } 2837 2838 bool llvm::recognizeBSwapOrBitReverseIdiom( 2839 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2840 SmallVectorImpl<Instruction *> &InsertedInsts) { 2841 if (Operator::getOpcode(I) != Instruction::Or) 2842 return false; 2843 if (!MatchBSwaps && !MatchBitReversals) 2844 return false; 2845 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2846 if (!ITy || ITy->getBitWidth() > 128) 2847 return false; // Can't do vectors or integers > 128 bits. 2848 unsigned BW = ITy->getBitWidth(); 2849 2850 unsigned DemandedBW = BW; 2851 IntegerType *DemandedTy = ITy; 2852 if (I->hasOneUse()) { 2853 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2854 DemandedTy = cast<IntegerType>(Trunc->getType()); 2855 DemandedBW = DemandedTy->getBitWidth(); 2856 } 2857 } 2858 2859 // Try to find all the pieces corresponding to the bswap. 2860 std::map<Value *, Optional<BitPart>> BPS; 2861 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2862 if (!Res) 2863 return false; 2864 auto &BitProvenance = Res->Provenance; 2865 2866 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2867 // only byteswap values with an even number of bytes. 2868 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2869 for (unsigned i = 0; i < DemandedBW; ++i) { 2870 OKForBSwap &= 2871 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2872 OKForBitReverse &= 2873 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2874 } 2875 2876 Intrinsic::ID Intrin; 2877 if (OKForBSwap && MatchBSwaps) 2878 Intrin = Intrinsic::bswap; 2879 else if (OKForBitReverse && MatchBitReversals) 2880 Intrin = Intrinsic::bitreverse; 2881 else 2882 return false; 2883 2884 if (ITy != DemandedTy) { 2885 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2886 Value *Provider = Res->Provider; 2887 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2888 // We may need to truncate the provider. 2889 if (DemandedTy != ProviderTy) { 2890 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2891 "trunc", I); 2892 InsertedInsts.push_back(Trunc); 2893 Provider = Trunc; 2894 } 2895 auto *CI = CallInst::Create(F, Provider, "rev", I); 2896 InsertedInsts.push_back(CI); 2897 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2898 InsertedInsts.push_back(ExtInst); 2899 return true; 2900 } 2901 2902 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2903 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2904 return true; 2905 } 2906 2907 // CodeGen has special handling for some string functions that may replace 2908 // them with target-specific intrinsics. Since that'd skip our interceptors 2909 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2910 // we mark affected calls as NoBuiltin, which will disable optimization 2911 // in CodeGen. 2912 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2913 CallInst *CI, const TargetLibraryInfo *TLI) { 2914 Function *F = CI->getCalledFunction(); 2915 LibFunc Func; 2916 if (F && !F->hasLocalLinkage() && F->hasName() && 2917 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2918 !F->doesNotAccessMemory()) 2919 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2920 } 2921 2922 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2923 // We can't have a PHI with a metadata type. 2924 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2925 return false; 2926 2927 // Early exit. 2928 if (!isa<Constant>(I->getOperand(OpIdx))) 2929 return true; 2930 2931 switch (I->getOpcode()) { 2932 default: 2933 return true; 2934 case Instruction::Call: 2935 case Instruction::Invoke: { 2936 ImmutableCallSite CS(I); 2937 2938 // Can't handle inline asm. Skip it. 2939 if (CS.isInlineAsm()) 2940 return false; 2941 2942 // Constant bundle operands may need to retain their constant-ness for 2943 // correctness. 2944 if (CS.isBundleOperand(OpIdx)) 2945 return false; 2946 2947 if (OpIdx < CS.getNumArgOperands()) { 2948 // Some variadic intrinsics require constants in the variadic arguments, 2949 // which currently aren't markable as immarg. 2950 if (CS.isIntrinsic() && OpIdx >= CS.getFunctionType()->getNumParams()) { 2951 // This is known to be OK for stackmap. 2952 return CS.getIntrinsicID() == Intrinsic::experimental_stackmap; 2953 } 2954 2955 // gcroot is a special case, since it requires a constant argument which 2956 // isn't also required to be a simple ConstantInt. 2957 if (CS.getIntrinsicID() == Intrinsic::gcroot) 2958 return false; 2959 2960 // Some intrinsic operands are required to be immediates. 2961 return !CS.paramHasAttr(OpIdx, Attribute::ImmArg); 2962 } 2963 2964 // It is never allowed to replace the call argument to an intrinsic, but it 2965 // may be possible for a call. 2966 return !CS.isIntrinsic(); 2967 } 2968 case Instruction::ShuffleVector: 2969 // Shufflevector masks are constant. 2970 return OpIdx != 2; 2971 case Instruction::Switch: 2972 case Instruction::ExtractValue: 2973 // All operands apart from the first are constant. 2974 return OpIdx == 0; 2975 case Instruction::InsertValue: 2976 // All operands apart from the first and the second are constant. 2977 return OpIdx < 2; 2978 case Instruction::Alloca: 2979 // Static allocas (constant size in the entry block) are handled by 2980 // prologue/epilogue insertion so they're free anyway. We definitely don't 2981 // want to make them non-constant. 2982 return !cast<AllocaInst>(I)->isStaticAlloca(); 2983 case Instruction::GetElementPtr: 2984 if (OpIdx == 0) 2985 return true; 2986 gep_type_iterator It = gep_type_begin(I); 2987 for (auto E = std::next(It, OpIdx); It != E; ++It) 2988 if (It.isStruct()) 2989 return false; 2990 return true; 2991 } 2992 } 2993 2994 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2995 AllocaInst *llvm::findAllocaForValue(Value *V, 2996 AllocaForValueMapTy &AllocaForValue) { 2997 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2998 return AI; 2999 // See if we've already calculated (or started to calculate) alloca for a 3000 // given value. 3001 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 3002 if (I != AllocaForValue.end()) 3003 return I->second; 3004 // Store 0 while we're calculating alloca for value V to avoid 3005 // infinite recursion if the value references itself. 3006 AllocaForValue[V] = nullptr; 3007 AllocaInst *Res = nullptr; 3008 if (CastInst *CI = dyn_cast<CastInst>(V)) 3009 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 3010 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 3011 for (Value *IncValue : PN->incoming_values()) { 3012 // Allow self-referencing phi-nodes. 3013 if (IncValue == PN) 3014 continue; 3015 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 3016 // AI for incoming values should exist and should all be equal. 3017 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 3018 return nullptr; 3019 Res = IncValueAI; 3020 } 3021 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3022 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3023 } else { 3024 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3025 << *V << "\n"); 3026 } 3027 if (Res) 3028 AllocaForValue[V] = Res; 3029 return Res; 3030 } 3031 3032 Value *llvm::invertCondition(Value *Condition) { 3033 // First: Check if it's a constant 3034 if (Constant *C = dyn_cast<Constant>(Condition)) 3035 return ConstantExpr::getNot(C); 3036 3037 // Second: If the condition is already inverted, return the original value 3038 Value *NotCondition; 3039 if (match(Condition, m_Not(m_Value(NotCondition)))) 3040 return NotCondition; 3041 3042 if (Instruction *Inst = dyn_cast<Instruction>(Condition)) { 3043 // Third: Check all the users for an invert 3044 BasicBlock *Parent = Inst->getParent(); 3045 for (User *U : Condition->users()) 3046 if (Instruction *I = dyn_cast<Instruction>(U)) 3047 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3048 return I; 3049 3050 // Last option: Create a new instruction 3051 auto Inverted = BinaryOperator::CreateNot(Inst, ""); 3052 if (isa<PHINode>(Inst)) { 3053 // FIXME: This fails if the inversion is to be used in a 3054 // subsequent PHINode in the same basic block. 3055 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3056 } else { 3057 Inverted->insertAfter(Inst); 3058 } 3059 return Inverted; 3060 } 3061 3062 if (Argument *Arg = dyn_cast<Argument>(Condition)) { 3063 BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock(); 3064 return BinaryOperator::CreateNot(Condition, Arg->getName() + ".inv", 3065 &*EntryBlock.getFirstInsertionPt()); 3066 } 3067 3068 llvm_unreachable("Unhandled condition to invert"); 3069 } 3070