1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 BranchInst *NewBI = Builder.CreateBr(Destination); 171 172 // Transfer the metadata to the new branch instruction. 173 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 174 LLVMContext::MD_annotation}); 175 176 BI->eraseFromParent(); 177 if (DTU) 178 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 179 return true; 180 } 181 182 return false; 183 } 184 185 if (auto *SI = dyn_cast<SwitchInst>(T)) { 186 // If we are switching on a constant, we can convert the switch to an 187 // unconditional branch. 188 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 189 BasicBlock *DefaultDest = SI->getDefaultDest(); 190 BasicBlock *TheOnlyDest = DefaultDest; 191 192 // If the default is unreachable, ignore it when searching for TheOnlyDest. 193 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 194 SI->getNumCases() > 0) { 195 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 196 } 197 198 bool Changed = false; 199 200 // Figure out which case it goes to. 201 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 202 // Found case matching a constant operand? 203 if (i->getCaseValue() == CI) { 204 TheOnlyDest = i->getCaseSuccessor(); 205 break; 206 } 207 208 // Check to see if this branch is going to the same place as the default 209 // dest. If so, eliminate it as an explicit compare. 210 if (i->getCaseSuccessor() == DefaultDest) { 211 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 212 unsigned NCases = SI->getNumCases(); 213 // Fold the case metadata into the default if there will be any branches 214 // left, unless the metadata doesn't match the switch. 215 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 216 // Collect branch weights into a vector. 217 SmallVector<uint32_t, 8> Weights; 218 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 219 ++MD_i) { 220 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 221 Weights.push_back(CI->getValue().getZExtValue()); 222 } 223 // Merge weight of this case to the default weight. 224 unsigned idx = i->getCaseIndex(); 225 Weights[0] += Weights[idx+1]; 226 // Remove weight for this case. 227 std::swap(Weights[idx+1], Weights.back()); 228 Weights.pop_back(); 229 SI->setMetadata(LLVMContext::MD_prof, 230 MDBuilder(BB->getContext()). 231 createBranchWeights(Weights)); 232 } 233 // Remove this entry. 234 BasicBlock *ParentBB = SI->getParent(); 235 DefaultDest->removePredecessor(ParentBB); 236 i = SI->removeCase(i); 237 e = SI->case_end(); 238 Changed = true; 239 continue; 240 } 241 242 // Otherwise, check to see if the switch only branches to one destination. 243 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 244 // destinations. 245 if (i->getCaseSuccessor() != TheOnlyDest) 246 TheOnlyDest = nullptr; 247 248 // Increment this iterator as we haven't removed the case. 249 ++i; 250 } 251 252 if (CI && !TheOnlyDest) { 253 // Branching on a constant, but not any of the cases, go to the default 254 // successor. 255 TheOnlyDest = SI->getDefaultDest(); 256 } 257 258 // If we found a single destination that we can fold the switch into, do so 259 // now. 260 if (TheOnlyDest) { 261 // Insert the new branch. 262 Builder.CreateBr(TheOnlyDest); 263 BasicBlock *BB = SI->getParent(); 264 265 SmallSet<BasicBlock *, 8> RemovedSuccessors; 266 267 // Remove entries from PHI nodes which we no longer branch to... 268 BasicBlock *SuccToKeep = TheOnlyDest; 269 for (BasicBlock *Succ : successors(SI)) { 270 if (DTU && Succ != TheOnlyDest) 271 RemovedSuccessors.insert(Succ); 272 // Found case matching a constant operand? 273 if (Succ == SuccToKeep) { 274 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 275 } else { 276 Succ->removePredecessor(BB); 277 } 278 } 279 280 // Delete the old switch. 281 Value *Cond = SI->getCondition(); 282 SI->eraseFromParent(); 283 if (DeleteDeadConditions) 284 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 285 if (DTU) { 286 std::vector<DominatorTree::UpdateType> Updates; 287 Updates.reserve(RemovedSuccessors.size()); 288 for (auto *RemovedSuccessor : RemovedSuccessors) 289 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 290 DTU->applyUpdates(Updates); 291 } 292 return true; 293 } 294 295 if (SI->getNumCases() == 1) { 296 // Otherwise, we can fold this switch into a conditional branch 297 // instruction if it has only one non-default destination. 298 auto FirstCase = *SI->case_begin(); 299 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 300 FirstCase.getCaseValue(), "cond"); 301 302 // Insert the new branch. 303 BranchInst *NewBr = Builder.CreateCondBr(Cond, 304 FirstCase.getCaseSuccessor(), 305 SI->getDefaultDest()); 306 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 307 if (MD && MD->getNumOperands() == 3) { 308 ConstantInt *SICase = 309 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 310 ConstantInt *SIDef = 311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 312 assert(SICase && SIDef); 313 // The TrueWeight should be the weight for the single case of SI. 314 NewBr->setMetadata(LLVMContext::MD_prof, 315 MDBuilder(BB->getContext()). 316 createBranchWeights(SICase->getValue().getZExtValue(), 317 SIDef->getValue().getZExtValue())); 318 } 319 320 // Update make.implicit metadata to the newly-created conditional branch. 321 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 322 if (MakeImplicitMD) 323 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 324 325 // Delete the old switch. 326 SI->eraseFromParent(); 327 return true; 328 } 329 return Changed; 330 } 331 332 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 333 // indirectbr blockaddress(@F, @BB) -> br label @BB 334 if (auto *BA = 335 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 336 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 337 SmallSet<BasicBlock *, 8> RemovedSuccessors; 338 339 // Insert the new branch. 340 Builder.CreateBr(TheOnlyDest); 341 342 BasicBlock *SuccToKeep = TheOnlyDest; 343 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 344 BasicBlock *DestBB = IBI->getDestination(i); 345 if (DTU && DestBB != TheOnlyDest) 346 RemovedSuccessors.insert(DestBB); 347 if (IBI->getDestination(i) == SuccToKeep) { 348 SuccToKeep = nullptr; 349 } else { 350 DestBB->removePredecessor(BB); 351 } 352 } 353 Value *Address = IBI->getAddress(); 354 IBI->eraseFromParent(); 355 if (DeleteDeadConditions) 356 // Delete pointer cast instructions. 357 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 358 359 // Also zap the blockaddress constant if there are no users remaining, 360 // otherwise the destination is still marked as having its address taken. 361 if (BA->use_empty()) 362 BA->destroyConstant(); 363 364 // If we didn't find our destination in the IBI successor list, then we 365 // have undefined behavior. Replace the unconditional branch with an 366 // 'unreachable' instruction. 367 if (SuccToKeep) { 368 BB->getTerminator()->eraseFromParent(); 369 new UnreachableInst(BB->getContext(), BB); 370 } 371 372 if (DTU) { 373 std::vector<DominatorTree::UpdateType> Updates; 374 Updates.reserve(RemovedSuccessors.size()); 375 for (auto *RemovedSuccessor : RemovedSuccessors) 376 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 377 DTU->applyUpdates(Updates); 378 } 379 return true; 380 } 381 } 382 383 return false; 384 } 385 386 //===----------------------------------------------------------------------===// 387 // Local dead code elimination. 388 // 389 390 /// isInstructionTriviallyDead - Return true if the result produced by the 391 /// instruction is not used, and the instruction has no side effects. 392 /// 393 bool llvm::isInstructionTriviallyDead(Instruction *I, 394 const TargetLibraryInfo *TLI) { 395 if (!I->use_empty()) 396 return false; 397 return wouldInstructionBeTriviallyDead(I, TLI); 398 } 399 400 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 401 const TargetLibraryInfo *TLI) { 402 if (I->isTerminator()) 403 return false; 404 405 // We don't want the landingpad-like instructions removed by anything this 406 // general. 407 if (I->isEHPad()) 408 return false; 409 410 // We don't want debug info removed by anything this general, unless 411 // debug info is empty. 412 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 413 if (DDI->getAddress()) 414 return false; 415 return true; 416 } 417 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 418 if (DVI->hasArgList() || DVI->getValue(0)) 419 return false; 420 return true; 421 } 422 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 423 if (DLI->getLabel()) 424 return false; 425 return true; 426 } 427 428 if (!I->willReturn()) 429 return false; 430 431 if (!I->mayHaveSideEffects()) 432 return true; 433 434 // Special case intrinsics that "may have side effects" but can be deleted 435 // when dead. 436 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 437 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 438 if (II->getIntrinsicID() == Intrinsic::stacksave || 439 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 440 return true; 441 442 if (II->isLifetimeStartOrEnd()) { 443 auto *Arg = II->getArgOperand(1); 444 // Lifetime intrinsics are dead when their right-hand is undef. 445 if (isa<UndefValue>(Arg)) 446 return true; 447 // If the right-hand is an alloc, global, or argument and the only uses 448 // are lifetime intrinsics then the intrinsics are dead. 449 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 450 return llvm::all_of(Arg->uses(), [](Use &Use) { 451 if (IntrinsicInst *IntrinsicUse = 452 dyn_cast<IntrinsicInst>(Use.getUser())) 453 return IntrinsicUse->isLifetimeStartOrEnd(); 454 return false; 455 }); 456 return false; 457 } 458 459 // Assumptions are dead if their condition is trivially true. Guards on 460 // true are operationally no-ops. In the future we can consider more 461 // sophisticated tradeoffs for guards considering potential for check 462 // widening, but for now we keep things simple. 463 if ((II->getIntrinsicID() == Intrinsic::assume && 464 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 465 II->getIntrinsicID() == Intrinsic::experimental_guard) { 466 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 467 return !Cond->isZero(); 468 469 return false; 470 } 471 } 472 473 if (isAllocLikeFn(I, TLI)) 474 return true; 475 476 if (CallInst *CI = isFreeCall(I, TLI)) 477 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 478 return C->isNullValue() || isa<UndefValue>(C); 479 480 if (auto *Call = dyn_cast<CallBase>(I)) 481 if (isMathLibCallNoop(Call, TLI)) 482 return true; 483 484 return false; 485 } 486 487 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 488 /// trivially dead instruction, delete it. If that makes any of its operands 489 /// trivially dead, delete them too, recursively. Return true if any 490 /// instructions were deleted. 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 492 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 493 std::function<void(Value *)> AboutToDeleteCallback) { 494 Instruction *I = dyn_cast<Instruction>(V); 495 if (!I || !isInstructionTriviallyDead(I, TLI)) 496 return false; 497 498 SmallVector<WeakTrackingVH, 16> DeadInsts; 499 DeadInsts.push_back(I); 500 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 501 AboutToDeleteCallback); 502 503 return true; 504 } 505 506 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 507 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 508 MemorySSAUpdater *MSSAU, 509 std::function<void(Value *)> AboutToDeleteCallback) { 510 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 511 for (; S != E; ++S) { 512 auto *I = cast<Instruction>(DeadInsts[S]); 513 if (!isInstructionTriviallyDead(I)) { 514 DeadInsts[S] = nullptr; 515 ++Alive; 516 } 517 } 518 if (Alive == E) 519 return false; 520 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 521 AboutToDeleteCallback); 522 return true; 523 } 524 525 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 526 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 527 MemorySSAUpdater *MSSAU, 528 std::function<void(Value *)> AboutToDeleteCallback) { 529 // Process the dead instruction list until empty. 530 while (!DeadInsts.empty()) { 531 Value *V = DeadInsts.pop_back_val(); 532 Instruction *I = cast_or_null<Instruction>(V); 533 if (!I) 534 continue; 535 assert(isInstructionTriviallyDead(I, TLI) && 536 "Live instruction found in dead worklist!"); 537 assert(I->use_empty() && "Instructions with uses are not dead."); 538 539 // Don't lose the debug info while deleting the instructions. 540 salvageDebugInfo(*I); 541 542 if (AboutToDeleteCallback) 543 AboutToDeleteCallback(I); 544 545 // Null out all of the instruction's operands to see if any operand becomes 546 // dead as we go. 547 for (Use &OpU : I->operands()) { 548 Value *OpV = OpU.get(); 549 OpU.set(nullptr); 550 551 if (!OpV->use_empty()) 552 continue; 553 554 // If the operand is an instruction that became dead as we nulled out the 555 // operand, and if it is 'trivially' dead, delete it in a future loop 556 // iteration. 557 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 558 if (isInstructionTriviallyDead(OpI, TLI)) 559 DeadInsts.push_back(OpI); 560 } 561 if (MSSAU) 562 MSSAU->removeMemoryAccess(I); 563 564 I->eraseFromParent(); 565 } 566 } 567 568 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 569 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 570 findDbgUsers(DbgUsers, I); 571 for (auto *DII : DbgUsers) { 572 Value *Undef = UndefValue::get(I->getType()); 573 DII->replaceVariableLocationOp(I, Undef); 574 } 575 return !DbgUsers.empty(); 576 } 577 578 /// areAllUsesEqual - Check whether the uses of a value are all the same. 579 /// This is similar to Instruction::hasOneUse() except this will also return 580 /// true when there are no uses or multiple uses that all refer to the same 581 /// value. 582 static bool areAllUsesEqual(Instruction *I) { 583 Value::user_iterator UI = I->user_begin(); 584 Value::user_iterator UE = I->user_end(); 585 if (UI == UE) 586 return true; 587 588 User *TheUse = *UI; 589 for (++UI; UI != UE; ++UI) { 590 if (*UI != TheUse) 591 return false; 592 } 593 return true; 594 } 595 596 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 597 /// dead PHI node, due to being a def-use chain of single-use nodes that 598 /// either forms a cycle or is terminated by a trivially dead instruction, 599 /// delete it. If that makes any of its operands trivially dead, delete them 600 /// too, recursively. Return true if a change was made. 601 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 602 const TargetLibraryInfo *TLI, 603 llvm::MemorySSAUpdater *MSSAU) { 604 SmallPtrSet<Instruction*, 4> Visited; 605 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 606 I = cast<Instruction>(*I->user_begin())) { 607 if (I->use_empty()) 608 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 609 610 // If we find an instruction more than once, we're on a cycle that 611 // won't prove fruitful. 612 if (!Visited.insert(I).second) { 613 // Break the cycle and delete the instruction and its operands. 614 I->replaceAllUsesWith(UndefValue::get(I->getType())); 615 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 616 return true; 617 } 618 } 619 return false; 620 } 621 622 static bool 623 simplifyAndDCEInstruction(Instruction *I, 624 SmallSetVector<Instruction *, 16> &WorkList, 625 const DataLayout &DL, 626 const TargetLibraryInfo *TLI) { 627 if (isInstructionTriviallyDead(I, TLI)) { 628 salvageDebugInfo(*I); 629 630 // Null out all of the instruction's operands to see if any operand becomes 631 // dead as we go. 632 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 633 Value *OpV = I->getOperand(i); 634 I->setOperand(i, nullptr); 635 636 if (!OpV->use_empty() || I == OpV) 637 continue; 638 639 // If the operand is an instruction that became dead as we nulled out the 640 // operand, and if it is 'trivially' dead, delete it in a future loop 641 // iteration. 642 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 643 if (isInstructionTriviallyDead(OpI, TLI)) 644 WorkList.insert(OpI); 645 } 646 647 I->eraseFromParent(); 648 649 return true; 650 } 651 652 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 653 // Add the users to the worklist. CAREFUL: an instruction can use itself, 654 // in the case of a phi node. 655 for (User *U : I->users()) { 656 if (U != I) { 657 WorkList.insert(cast<Instruction>(U)); 658 } 659 } 660 661 // Replace the instruction with its simplified value. 662 bool Changed = false; 663 if (!I->use_empty()) { 664 I->replaceAllUsesWith(SimpleV); 665 Changed = true; 666 } 667 if (isInstructionTriviallyDead(I, TLI)) { 668 I->eraseFromParent(); 669 Changed = true; 670 } 671 return Changed; 672 } 673 return false; 674 } 675 676 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 677 /// simplify any instructions in it and recursively delete dead instructions. 678 /// 679 /// This returns true if it changed the code, note that it can delete 680 /// instructions in other blocks as well in this block. 681 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 682 const TargetLibraryInfo *TLI) { 683 bool MadeChange = false; 684 const DataLayout &DL = BB->getModule()->getDataLayout(); 685 686 #ifndef NDEBUG 687 // In debug builds, ensure that the terminator of the block is never replaced 688 // or deleted by these simplifications. The idea of simplification is that it 689 // cannot introduce new instructions, and there is no way to replace the 690 // terminator of a block without introducing a new instruction. 691 AssertingVH<Instruction> TerminatorVH(&BB->back()); 692 #endif 693 694 SmallSetVector<Instruction *, 16> WorkList; 695 // Iterate over the original function, only adding insts to the worklist 696 // if they actually need to be revisited. This avoids having to pre-init 697 // the worklist with the entire function's worth of instructions. 698 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 699 BI != E;) { 700 assert(!BI->isTerminator()); 701 Instruction *I = &*BI; 702 ++BI; 703 704 // We're visiting this instruction now, so make sure it's not in the 705 // worklist from an earlier visit. 706 if (!WorkList.count(I)) 707 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 708 } 709 710 while (!WorkList.empty()) { 711 Instruction *I = WorkList.pop_back_val(); 712 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 713 } 714 return MadeChange; 715 } 716 717 //===----------------------------------------------------------------------===// 718 // Control Flow Graph Restructuring. 719 // 720 721 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 722 DomTreeUpdater *DTU) { 723 724 // If BB has single-entry PHI nodes, fold them. 725 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 726 Value *NewVal = PN->getIncomingValue(0); 727 // Replace self referencing PHI with undef, it must be dead. 728 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 729 PN->replaceAllUsesWith(NewVal); 730 PN->eraseFromParent(); 731 } 732 733 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 734 assert(PredBB && "Block doesn't have a single predecessor!"); 735 736 bool ReplaceEntryBB = false; 737 if (PredBB == &DestBB->getParent()->getEntryBlock()) 738 ReplaceEntryBB = true; 739 740 // DTU updates: Collect all the edges that enter 741 // PredBB. These dominator edges will be redirected to DestBB. 742 SmallVector<DominatorTree::UpdateType, 32> Updates; 743 744 if (DTU) { 745 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 746 pred_end(PredBB)); 747 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 748 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 749 // This predecessor of PredBB may already have DestBB as a successor. 750 if (PredOfPredBB != PredBB) 751 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 752 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 753 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 754 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 755 } 756 757 // Zap anything that took the address of DestBB. Not doing this will give the 758 // address an invalid value. 759 if (DestBB->hasAddressTaken()) { 760 BlockAddress *BA = BlockAddress::get(DestBB); 761 Constant *Replacement = 762 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 763 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 764 BA->getType())); 765 BA->destroyConstant(); 766 } 767 768 // Anything that branched to PredBB now branches to DestBB. 769 PredBB->replaceAllUsesWith(DestBB); 770 771 // Splice all the instructions from PredBB to DestBB. 772 PredBB->getTerminator()->eraseFromParent(); 773 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 774 new UnreachableInst(PredBB->getContext(), PredBB); 775 776 // If the PredBB is the entry block of the function, move DestBB up to 777 // become the entry block after we erase PredBB. 778 if (ReplaceEntryBB) 779 DestBB->moveAfter(PredBB); 780 781 if (DTU) { 782 assert(PredBB->getInstList().size() == 1 && 783 isa<UnreachableInst>(PredBB->getTerminator()) && 784 "The successor list of PredBB isn't empty before " 785 "applying corresponding DTU updates."); 786 DTU->applyUpdatesPermissive(Updates); 787 DTU->deleteBB(PredBB); 788 // Recalculation of DomTree is needed when updating a forward DomTree and 789 // the Entry BB is replaced. 790 if (ReplaceEntryBB && DTU->hasDomTree()) { 791 // The entry block was removed and there is no external interface for 792 // the dominator tree to be notified of this change. In this corner-case 793 // we recalculate the entire tree. 794 DTU->recalculate(*(DestBB->getParent())); 795 } 796 } 797 798 else { 799 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 800 } 801 } 802 803 /// Return true if we can choose one of these values to use in place of the 804 /// other. Note that we will always choose the non-undef value to keep. 805 static bool CanMergeValues(Value *First, Value *Second) { 806 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 807 } 808 809 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 810 /// branch to Succ, into Succ. 811 /// 812 /// Assumption: Succ is the single successor for BB. 813 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 814 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 815 816 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 817 << Succ->getName() << "\n"); 818 // Shortcut, if there is only a single predecessor it must be BB and merging 819 // is always safe 820 if (Succ->getSinglePredecessor()) return true; 821 822 // Make a list of the predecessors of BB 823 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 824 825 // Look at all the phi nodes in Succ, to see if they present a conflict when 826 // merging these blocks 827 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 828 PHINode *PN = cast<PHINode>(I); 829 830 // If the incoming value from BB is again a PHINode in 831 // BB which has the same incoming value for *PI as PN does, we can 832 // merge the phi nodes and then the blocks can still be merged 833 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 834 if (BBPN && BBPN->getParent() == BB) { 835 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 836 BasicBlock *IBB = PN->getIncomingBlock(PI); 837 if (BBPreds.count(IBB) && 838 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 839 PN->getIncomingValue(PI))) { 840 LLVM_DEBUG(dbgs() 841 << "Can't fold, phi node " << PN->getName() << " in " 842 << Succ->getName() << " is conflicting with " 843 << BBPN->getName() << " with regard to common predecessor " 844 << IBB->getName() << "\n"); 845 return false; 846 } 847 } 848 } else { 849 Value* Val = PN->getIncomingValueForBlock(BB); 850 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 851 // See if the incoming value for the common predecessor is equal to the 852 // one for BB, in which case this phi node will not prevent the merging 853 // of the block. 854 BasicBlock *IBB = PN->getIncomingBlock(PI); 855 if (BBPreds.count(IBB) && 856 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 857 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 858 << " in " << Succ->getName() 859 << " is conflicting with regard to common " 860 << "predecessor " << IBB->getName() << "\n"); 861 return false; 862 } 863 } 864 } 865 } 866 867 return true; 868 } 869 870 using PredBlockVector = SmallVector<BasicBlock *, 16>; 871 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 872 873 /// Determines the value to use as the phi node input for a block. 874 /// 875 /// Select between \p OldVal any value that we know flows from \p BB 876 /// to a particular phi on the basis of which one (if either) is not 877 /// undef. Update IncomingValues based on the selected value. 878 /// 879 /// \param OldVal The value we are considering selecting. 880 /// \param BB The block that the value flows in from. 881 /// \param IncomingValues A map from block-to-value for other phi inputs 882 /// that we have examined. 883 /// 884 /// \returns the selected value. 885 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 886 IncomingValueMap &IncomingValues) { 887 if (!isa<UndefValue>(OldVal)) { 888 assert((!IncomingValues.count(BB) || 889 IncomingValues.find(BB)->second == OldVal) && 890 "Expected OldVal to match incoming value from BB!"); 891 892 IncomingValues.insert(std::make_pair(BB, OldVal)); 893 return OldVal; 894 } 895 896 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 897 if (It != IncomingValues.end()) return It->second; 898 899 return OldVal; 900 } 901 902 /// Create a map from block to value for the operands of a 903 /// given phi. 904 /// 905 /// Create a map from block to value for each non-undef value flowing 906 /// into \p PN. 907 /// 908 /// \param PN The phi we are collecting the map for. 909 /// \param IncomingValues [out] The map from block to value for this phi. 910 static void gatherIncomingValuesToPhi(PHINode *PN, 911 IncomingValueMap &IncomingValues) { 912 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 913 BasicBlock *BB = PN->getIncomingBlock(i); 914 Value *V = PN->getIncomingValue(i); 915 916 if (!isa<UndefValue>(V)) 917 IncomingValues.insert(std::make_pair(BB, V)); 918 } 919 } 920 921 /// Replace the incoming undef values to a phi with the values 922 /// from a block-to-value map. 923 /// 924 /// \param PN The phi we are replacing the undefs in. 925 /// \param IncomingValues A map from block to value. 926 static void replaceUndefValuesInPhi(PHINode *PN, 927 const IncomingValueMap &IncomingValues) { 928 SmallVector<unsigned> TrueUndefOps; 929 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 930 Value *V = PN->getIncomingValue(i); 931 932 if (!isa<UndefValue>(V)) continue; 933 934 BasicBlock *BB = PN->getIncomingBlock(i); 935 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 936 937 // Keep track of undef/poison incoming values. Those must match, so we fix 938 // them up below if needed. 939 // Note: this is conservatively correct, but we could try harder and group 940 // the undef values per incoming basic block. 941 if (It == IncomingValues.end()) { 942 TrueUndefOps.push_back(i); 943 continue; 944 } 945 946 // There is a defined value for this incoming block, so map this undef 947 // incoming value to the defined value. 948 PN->setIncomingValue(i, It->second); 949 } 950 951 // If there are both undef and poison values incoming, then convert those 952 // values to undef. It is invalid to have different values for the same 953 // incoming block. 954 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 955 return isa<PoisonValue>(PN->getIncomingValue(i)); 956 }); 957 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 958 for (unsigned i : TrueUndefOps) 959 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 960 } 961 } 962 963 /// Replace a value flowing from a block to a phi with 964 /// potentially multiple instances of that value flowing from the 965 /// block's predecessors to the phi. 966 /// 967 /// \param BB The block with the value flowing into the phi. 968 /// \param BBPreds The predecessors of BB. 969 /// \param PN The phi that we are updating. 970 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 971 const PredBlockVector &BBPreds, 972 PHINode *PN) { 973 Value *OldVal = PN->removeIncomingValue(BB, false); 974 assert(OldVal && "No entry in PHI for Pred BB!"); 975 976 IncomingValueMap IncomingValues; 977 978 // We are merging two blocks - BB, and the block containing PN - and 979 // as a result we need to redirect edges from the predecessors of BB 980 // to go to the block containing PN, and update PN 981 // accordingly. Since we allow merging blocks in the case where the 982 // predecessor and successor blocks both share some predecessors, 983 // and where some of those common predecessors might have undef 984 // values flowing into PN, we want to rewrite those values to be 985 // consistent with the non-undef values. 986 987 gatherIncomingValuesToPhi(PN, IncomingValues); 988 989 // If this incoming value is one of the PHI nodes in BB, the new entries 990 // in the PHI node are the entries from the old PHI. 991 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 992 PHINode *OldValPN = cast<PHINode>(OldVal); 993 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 994 // Note that, since we are merging phi nodes and BB and Succ might 995 // have common predecessors, we could end up with a phi node with 996 // identical incoming branches. This will be cleaned up later (and 997 // will trigger asserts if we try to clean it up now, without also 998 // simplifying the corresponding conditional branch). 999 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1000 Value *PredVal = OldValPN->getIncomingValue(i); 1001 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1002 IncomingValues); 1003 1004 // And add a new incoming value for this predecessor for the 1005 // newly retargeted branch. 1006 PN->addIncoming(Selected, PredBB); 1007 } 1008 } else { 1009 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1010 // Update existing incoming values in PN for this 1011 // predecessor of BB. 1012 BasicBlock *PredBB = BBPreds[i]; 1013 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1014 IncomingValues); 1015 1016 // And add a new incoming value for this predecessor for the 1017 // newly retargeted branch. 1018 PN->addIncoming(Selected, PredBB); 1019 } 1020 } 1021 1022 replaceUndefValuesInPhi(PN, IncomingValues); 1023 } 1024 1025 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1026 DomTreeUpdater *DTU) { 1027 assert(BB != &BB->getParent()->getEntryBlock() && 1028 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1029 1030 // We can't eliminate infinite loops. 1031 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1032 if (BB == Succ) return false; 1033 1034 // Check to see if merging these blocks would cause conflicts for any of the 1035 // phi nodes in BB or Succ. If not, we can safely merge. 1036 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1037 1038 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1039 // has uses which will not disappear when the PHI nodes are merged. It is 1040 // possible to handle such cases, but difficult: it requires checking whether 1041 // BB dominates Succ, which is non-trivial to calculate in the case where 1042 // Succ has multiple predecessors. Also, it requires checking whether 1043 // constructing the necessary self-referential PHI node doesn't introduce any 1044 // conflicts; this isn't too difficult, but the previous code for doing this 1045 // was incorrect. 1046 // 1047 // Note that if this check finds a live use, BB dominates Succ, so BB is 1048 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1049 // folding the branch isn't profitable in that case anyway. 1050 if (!Succ->getSinglePredecessor()) { 1051 BasicBlock::iterator BBI = BB->begin(); 1052 while (isa<PHINode>(*BBI)) { 1053 for (Use &U : BBI->uses()) { 1054 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1055 if (PN->getIncomingBlock(U) != BB) 1056 return false; 1057 } else { 1058 return false; 1059 } 1060 } 1061 ++BBI; 1062 } 1063 } 1064 1065 // We cannot fold the block if it's a branch to an already present callbr 1066 // successor because that creates duplicate successors. 1067 for (BasicBlock *PredBB : predecessors(BB)) { 1068 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1069 if (Succ == CBI->getDefaultDest()) 1070 return false; 1071 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1072 if (Succ == CBI->getIndirectDest(i)) 1073 return false; 1074 } 1075 } 1076 1077 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1078 1079 SmallVector<DominatorTree::UpdateType, 32> Updates; 1080 if (DTU) { 1081 // All predecessors of BB will be moved to Succ. 1082 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1083 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1084 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1085 for (auto *PredOfBB : PredsOfBB) 1086 // This predecessor of BB may already have Succ as a successor. 1087 if (!PredsOfSucc.contains(PredOfBB)) 1088 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1089 for (auto *PredOfBB : PredsOfBB) 1090 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1091 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1092 } 1093 1094 if (isa<PHINode>(Succ->begin())) { 1095 // If there is more than one pred of succ, and there are PHI nodes in 1096 // the successor, then we need to add incoming edges for the PHI nodes 1097 // 1098 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1099 1100 // Loop over all of the PHI nodes in the successor of BB. 1101 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1102 PHINode *PN = cast<PHINode>(I); 1103 1104 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1105 } 1106 } 1107 1108 if (Succ->getSinglePredecessor()) { 1109 // BB is the only predecessor of Succ, so Succ will end up with exactly 1110 // the same predecessors BB had. 1111 1112 // Copy over any phi, debug or lifetime instruction. 1113 BB->getTerminator()->eraseFromParent(); 1114 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1115 BB->getInstList()); 1116 } else { 1117 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1118 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1119 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1120 PN->eraseFromParent(); 1121 } 1122 } 1123 1124 // If the unconditional branch we replaced contains llvm.loop metadata, we 1125 // add the metadata to the branch instructions in the predecessors. 1126 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1127 Instruction *TI = BB->getTerminator(); 1128 if (TI) 1129 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1130 for (BasicBlock *Pred : predecessors(BB)) 1131 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1132 1133 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1134 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1135 // into Succ and mark them dangling. This should allow the counts inference a 1136 // chance to get a more reasonable weight for BB. 1137 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1138 1139 // Everything that jumped to BB now goes to Succ. 1140 BB->replaceAllUsesWith(Succ); 1141 if (!Succ->hasName()) Succ->takeName(BB); 1142 1143 // Clear the successor list of BB to match updates applying to DTU later. 1144 if (BB->getTerminator()) 1145 BB->getInstList().pop_back(); 1146 new UnreachableInst(BB->getContext(), BB); 1147 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1148 "applying corresponding DTU updates."); 1149 1150 if (DTU) { 1151 DTU->applyUpdates(Updates); 1152 DTU->deleteBB(BB); 1153 } else { 1154 BB->eraseFromParent(); // Delete the old basic block. 1155 } 1156 return true; 1157 } 1158 1159 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1160 // This implementation doesn't currently consider undef operands 1161 // specially. Theoretically, two phis which are identical except for 1162 // one having an undef where the other doesn't could be collapsed. 1163 1164 bool Changed = false; 1165 1166 // Examine each PHI. 1167 // Note that increment of I must *NOT* be in the iteration_expression, since 1168 // we don't want to immediately advance when we restart from the beginning. 1169 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1170 ++I; 1171 // Is there an identical PHI node in this basic block? 1172 // Note that we only look in the upper square's triangle, 1173 // we already checked that the lower triangle PHI's aren't identical. 1174 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1175 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1176 continue; 1177 // A duplicate. Replace this PHI with the base PHI. 1178 ++NumPHICSEs; 1179 DuplicatePN->replaceAllUsesWith(PN); 1180 DuplicatePN->eraseFromParent(); 1181 Changed = true; 1182 1183 // The RAUW can change PHIs that we already visited. 1184 I = BB->begin(); 1185 break; // Start over from the beginning. 1186 } 1187 } 1188 return Changed; 1189 } 1190 1191 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1192 // This implementation doesn't currently consider undef operands 1193 // specially. Theoretically, two phis which are identical except for 1194 // one having an undef where the other doesn't could be collapsed. 1195 1196 struct PHIDenseMapInfo { 1197 static PHINode *getEmptyKey() { 1198 return DenseMapInfo<PHINode *>::getEmptyKey(); 1199 } 1200 1201 static PHINode *getTombstoneKey() { 1202 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1203 } 1204 1205 static bool isSentinel(PHINode *PN) { 1206 return PN == getEmptyKey() || PN == getTombstoneKey(); 1207 } 1208 1209 // WARNING: this logic must be kept in sync with 1210 // Instruction::isIdenticalToWhenDefined()! 1211 static unsigned getHashValueImpl(PHINode *PN) { 1212 // Compute a hash value on the operands. Instcombine will likely have 1213 // sorted them, which helps expose duplicates, but we have to check all 1214 // the operands to be safe in case instcombine hasn't run. 1215 return static_cast<unsigned>(hash_combine( 1216 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1217 hash_combine_range(PN->block_begin(), PN->block_end()))); 1218 } 1219 1220 static unsigned getHashValue(PHINode *PN) { 1221 #ifndef NDEBUG 1222 // If -phicse-debug-hash was specified, return a constant -- this 1223 // will force all hashing to collide, so we'll exhaustively search 1224 // the table for a match, and the assertion in isEqual will fire if 1225 // there's a bug causing equal keys to hash differently. 1226 if (PHICSEDebugHash) 1227 return 0; 1228 #endif 1229 return getHashValueImpl(PN); 1230 } 1231 1232 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1233 if (isSentinel(LHS) || isSentinel(RHS)) 1234 return LHS == RHS; 1235 return LHS->isIdenticalTo(RHS); 1236 } 1237 1238 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1239 // These comparisons are nontrivial, so assert that equality implies 1240 // hash equality (DenseMap demands this as an invariant). 1241 bool Result = isEqualImpl(LHS, RHS); 1242 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1243 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1244 return Result; 1245 } 1246 }; 1247 1248 // Set of unique PHINodes. 1249 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1250 PHISet.reserve(4 * PHICSENumPHISmallSize); 1251 1252 // Examine each PHI. 1253 bool Changed = false; 1254 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1255 auto Inserted = PHISet.insert(PN); 1256 if (!Inserted.second) { 1257 // A duplicate. Replace this PHI with its duplicate. 1258 ++NumPHICSEs; 1259 PN->replaceAllUsesWith(*Inserted.first); 1260 PN->eraseFromParent(); 1261 Changed = true; 1262 1263 // The RAUW can change PHIs that we already visited. Start over from the 1264 // beginning. 1265 PHISet.clear(); 1266 I = BB->begin(); 1267 } 1268 } 1269 1270 return Changed; 1271 } 1272 1273 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1274 if ( 1275 #ifndef NDEBUG 1276 !PHICSEDebugHash && 1277 #endif 1278 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1279 return EliminateDuplicatePHINodesNaiveImpl(BB); 1280 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1281 } 1282 1283 /// If the specified pointer points to an object that we control, try to modify 1284 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1285 /// the value after the operation, which may be lower than PrefAlign. 1286 /// 1287 /// Increating value alignment isn't often possible though. If alignment is 1288 /// important, a more reliable approach is to simply align all global variables 1289 /// and allocation instructions to their preferred alignment from the beginning. 1290 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1291 const DataLayout &DL) { 1292 V = V->stripPointerCasts(); 1293 1294 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1295 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1296 // than the current alignment, as the known bits calculation should have 1297 // already taken it into account. However, this is not always the case, 1298 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1299 // doesn't. 1300 Align CurrentAlign = AI->getAlign(); 1301 if (PrefAlign <= CurrentAlign) 1302 return CurrentAlign; 1303 1304 // If the preferred alignment is greater than the natural stack alignment 1305 // then don't round up. This avoids dynamic stack realignment. 1306 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1307 return CurrentAlign; 1308 AI->setAlignment(PrefAlign); 1309 return PrefAlign; 1310 } 1311 1312 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1313 // TODO: as above, this shouldn't be necessary. 1314 Align CurrentAlign = GO->getPointerAlignment(DL); 1315 if (PrefAlign <= CurrentAlign) 1316 return CurrentAlign; 1317 1318 // If there is a large requested alignment and we can, bump up the alignment 1319 // of the global. If the memory we set aside for the global may not be the 1320 // memory used by the final program then it is impossible for us to reliably 1321 // enforce the preferred alignment. 1322 if (!GO->canIncreaseAlignment()) 1323 return CurrentAlign; 1324 1325 GO->setAlignment(PrefAlign); 1326 return PrefAlign; 1327 } 1328 1329 return Align(1); 1330 } 1331 1332 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1333 const DataLayout &DL, 1334 const Instruction *CxtI, 1335 AssumptionCache *AC, 1336 const DominatorTree *DT) { 1337 assert(V->getType()->isPointerTy() && 1338 "getOrEnforceKnownAlignment expects a pointer!"); 1339 1340 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1341 unsigned TrailZ = Known.countMinTrailingZeros(); 1342 1343 // Avoid trouble with ridiculously large TrailZ values, such as 1344 // those computed from a null pointer. 1345 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1346 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1347 1348 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1349 1350 if (PrefAlign && *PrefAlign > Alignment) 1351 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1352 1353 // We don't need to make any adjustment. 1354 return Alignment; 1355 } 1356 1357 ///===---------------------------------------------------------------------===// 1358 /// Dbg Intrinsic utilities 1359 /// 1360 1361 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1362 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1363 DIExpression *DIExpr, 1364 PHINode *APN) { 1365 // Since we can't guarantee that the original dbg.declare instrinsic 1366 // is removed by LowerDbgDeclare(), we need to make sure that we are 1367 // not inserting the same dbg.value intrinsic over and over. 1368 SmallVector<DbgValueInst *, 1> DbgValues; 1369 findDbgValues(DbgValues, APN); 1370 for (auto *DVI : DbgValues) { 1371 assert(is_contained(DVI->getValues(), APN)); 1372 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1373 return true; 1374 } 1375 return false; 1376 } 1377 1378 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1379 /// (or fragment of the variable) described by \p DII. 1380 /// 1381 /// This is primarily intended as a helper for the different 1382 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1383 /// converted describes an alloca'd variable, so we need to use the 1384 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1385 /// identified as covering an n-bit fragment, if the store size of i1 is at 1386 /// least n bits. 1387 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1388 const DataLayout &DL = DII->getModule()->getDataLayout(); 1389 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1390 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1391 assert(!ValueSize.isScalable() && 1392 "Fragments don't work on scalable types."); 1393 return ValueSize.getFixedSize() >= *FragmentSize; 1394 } 1395 // We can't always calculate the size of the DI variable (e.g. if it is a 1396 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1397 // intead. 1398 if (DII->isAddressOfVariable()) { 1399 // DII should have exactly 1 location when it is an address. 1400 assert(DII->getNumVariableLocationOps() == 1 && 1401 "address of variable must have exactly 1 location operand."); 1402 if (auto *AI = 1403 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1404 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1405 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1406 "Both sizes should agree on the scalable flag."); 1407 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1408 } 1409 } 1410 } 1411 // Could not determine size of variable. Conservatively return false. 1412 return false; 1413 } 1414 1415 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1416 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1417 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1418 /// case this DebugLoc leaks into any adjacent instructions. 1419 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1420 // Original dbg.declare must have a location. 1421 DebugLoc DeclareLoc = DII->getDebugLoc(); 1422 MDNode *Scope = DeclareLoc.getScope(); 1423 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1424 // Produce an unknown location with the correct scope / inlinedAt fields. 1425 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1426 } 1427 1428 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1429 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1430 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1431 StoreInst *SI, DIBuilder &Builder) { 1432 assert(DII->isAddressOfVariable()); 1433 auto *DIVar = DII->getVariable(); 1434 assert(DIVar && "Missing variable"); 1435 auto *DIExpr = DII->getExpression(); 1436 Value *DV = SI->getValueOperand(); 1437 1438 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1439 1440 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1441 // FIXME: If storing to a part of the variable described by the dbg.declare, 1442 // then we want to insert a dbg.value for the corresponding fragment. 1443 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1444 << *DII << '\n'); 1445 // For now, when there is a store to parts of the variable (but we do not 1446 // know which part) we insert an dbg.value instrinsic to indicate that we 1447 // know nothing about the variable's content. 1448 DV = UndefValue::get(DV->getType()); 1449 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1450 return; 1451 } 1452 1453 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1454 } 1455 1456 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1457 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1458 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1459 LoadInst *LI, DIBuilder &Builder) { 1460 auto *DIVar = DII->getVariable(); 1461 auto *DIExpr = DII->getExpression(); 1462 assert(DIVar && "Missing variable"); 1463 1464 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1465 // FIXME: If only referring to a part of the variable described by the 1466 // dbg.declare, then we want to insert a dbg.value for the corresponding 1467 // fragment. 1468 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1469 << *DII << '\n'); 1470 return; 1471 } 1472 1473 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1474 1475 // We are now tracking the loaded value instead of the address. In the 1476 // future if multi-location support is added to the IR, it might be 1477 // preferable to keep tracking both the loaded value and the original 1478 // address in case the alloca can not be elided. 1479 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1480 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1481 DbgValue->insertAfter(LI); 1482 } 1483 1484 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1485 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1486 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1487 PHINode *APN, DIBuilder &Builder) { 1488 auto *DIVar = DII->getVariable(); 1489 auto *DIExpr = DII->getExpression(); 1490 assert(DIVar && "Missing variable"); 1491 1492 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1493 return; 1494 1495 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1496 // FIXME: If only referring to a part of the variable described by the 1497 // dbg.declare, then we want to insert a dbg.value for the corresponding 1498 // fragment. 1499 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1500 << *DII << '\n'); 1501 return; 1502 } 1503 1504 BasicBlock *BB = APN->getParent(); 1505 auto InsertionPt = BB->getFirstInsertionPt(); 1506 1507 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1508 1509 // The block may be a catchswitch block, which does not have a valid 1510 // insertion point. 1511 // FIXME: Insert dbg.value markers in the successors when appropriate. 1512 if (InsertionPt != BB->end()) 1513 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1514 } 1515 1516 /// Determine whether this alloca is either a VLA or an array. 1517 static bool isArray(AllocaInst *AI) { 1518 return AI->isArrayAllocation() || 1519 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1520 } 1521 1522 /// Determine whether this alloca is a structure. 1523 static bool isStructure(AllocaInst *AI) { 1524 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1525 } 1526 1527 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1528 /// of llvm.dbg.value intrinsics. 1529 bool llvm::LowerDbgDeclare(Function &F) { 1530 bool Changed = false; 1531 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1532 SmallVector<DbgDeclareInst *, 4> Dbgs; 1533 for (auto &FI : F) 1534 for (Instruction &BI : FI) 1535 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1536 Dbgs.push_back(DDI); 1537 1538 if (Dbgs.empty()) 1539 return Changed; 1540 1541 for (auto &I : Dbgs) { 1542 DbgDeclareInst *DDI = I; 1543 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1544 // If this is an alloca for a scalar variable, insert a dbg.value 1545 // at each load and store to the alloca and erase the dbg.declare. 1546 // The dbg.values allow tracking a variable even if it is not 1547 // stored on the stack, while the dbg.declare can only describe 1548 // the stack slot (and at a lexical-scope granularity). Later 1549 // passes will attempt to elide the stack slot. 1550 if (!AI || isArray(AI) || isStructure(AI)) 1551 continue; 1552 1553 // A volatile load/store means that the alloca can't be elided anyway. 1554 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1555 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1556 return LI->isVolatile(); 1557 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1558 return SI->isVolatile(); 1559 return false; 1560 })) 1561 continue; 1562 1563 SmallVector<const Value *, 8> WorkList; 1564 WorkList.push_back(AI); 1565 while (!WorkList.empty()) { 1566 const Value *V = WorkList.pop_back_val(); 1567 for (auto &AIUse : V->uses()) { 1568 User *U = AIUse.getUser(); 1569 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1570 if (AIUse.getOperandNo() == 1) 1571 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1572 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1573 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1574 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1575 // This is a call by-value or some other instruction that takes a 1576 // pointer to the variable. Insert a *value* intrinsic that describes 1577 // the variable by dereferencing the alloca. 1578 if (!CI->isLifetimeStartOrEnd()) { 1579 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1580 auto *DerefExpr = 1581 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1582 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1583 NewLoc, CI); 1584 } 1585 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1586 if (BI->getType()->isPointerTy()) 1587 WorkList.push_back(BI); 1588 } 1589 } 1590 } 1591 DDI->eraseFromParent(); 1592 Changed = true; 1593 } 1594 1595 if (Changed) 1596 for (BasicBlock &BB : F) 1597 RemoveRedundantDbgInstrs(&BB); 1598 1599 return Changed; 1600 } 1601 1602 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1603 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1604 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1605 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1606 if (InsertedPHIs.size() == 0) 1607 return; 1608 1609 // Map existing PHI nodes to their dbg.values. 1610 ValueToValueMapTy DbgValueMap; 1611 for (auto &I : *BB) { 1612 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1613 for (Value *V : DbgII->location_ops()) 1614 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1615 DbgValueMap.insert({Loc, DbgII}); 1616 } 1617 } 1618 if (DbgValueMap.size() == 0) 1619 return; 1620 1621 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1622 // so that if a dbg.value is being rewritten to use more than one of the 1623 // inserted PHIs in the same destination BB, we can update the same dbg.value 1624 // with all the new PHIs instead of creating one copy for each. 1625 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1626 DbgVariableIntrinsic *> 1627 NewDbgValueMap; 1628 // Then iterate through the new PHIs and look to see if they use one of the 1629 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1630 // propagate the info through the new PHI. If we use more than one new PHI in 1631 // a single destination BB with the same old dbg.value, merge the updates so 1632 // that we get a single new dbg.value with all the new PHIs. 1633 for (auto PHI : InsertedPHIs) { 1634 BasicBlock *Parent = PHI->getParent(); 1635 // Avoid inserting an intrinsic into an EH block. 1636 if (Parent->getFirstNonPHI()->isEHPad()) 1637 continue; 1638 for (auto VI : PHI->operand_values()) { 1639 auto V = DbgValueMap.find(VI); 1640 if (V != DbgValueMap.end()) { 1641 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1642 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1643 if (NewDI == NewDbgValueMap.end()) { 1644 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1645 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1646 } 1647 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1648 // If PHI contains VI as an operand more than once, we may 1649 // replaced it in NewDbgII; confirm that it is present. 1650 if (is_contained(NewDbgII->location_ops(), VI)) 1651 NewDbgII->replaceVariableLocationOp(VI, PHI); 1652 } 1653 } 1654 } 1655 // Insert thew new dbg.values into their destination blocks. 1656 for (auto DI : NewDbgValueMap) { 1657 BasicBlock *Parent = DI.first.first; 1658 auto *NewDbgII = DI.second; 1659 auto InsertionPt = Parent->getFirstInsertionPt(); 1660 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1661 NewDbgII->insertBefore(&*InsertionPt); 1662 } 1663 } 1664 1665 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1666 DIBuilder &Builder, uint8_t DIExprFlags, 1667 int Offset) { 1668 auto DbgAddrs = FindDbgAddrUses(Address); 1669 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1670 DebugLoc Loc = DII->getDebugLoc(); 1671 auto *DIVar = DII->getVariable(); 1672 auto *DIExpr = DII->getExpression(); 1673 assert(DIVar && "Missing variable"); 1674 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1675 // Insert llvm.dbg.declare immediately before DII, and remove old 1676 // llvm.dbg.declare. 1677 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1678 DII->eraseFromParent(); 1679 } 1680 return !DbgAddrs.empty(); 1681 } 1682 1683 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1684 DIBuilder &Builder, int Offset) { 1685 DebugLoc Loc = DVI->getDebugLoc(); 1686 auto *DIVar = DVI->getVariable(); 1687 auto *DIExpr = DVI->getExpression(); 1688 assert(DIVar && "Missing variable"); 1689 1690 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1691 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1692 // it and give up. 1693 if (!DIExpr || DIExpr->getNumElements() < 1 || 1694 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1695 return; 1696 1697 // Insert the offset before the first deref. 1698 // We could just change the offset argument of dbg.value, but it's unsigned... 1699 if (Offset) 1700 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1701 1702 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1703 DVI->eraseFromParent(); 1704 } 1705 1706 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1707 DIBuilder &Builder, int Offset) { 1708 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1709 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1710 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1711 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1712 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1713 } 1714 1715 /// Where possible to salvage debug information for \p I do so 1716 /// and return True. If not possible mark undef and return False. 1717 void llvm::salvageDebugInfo(Instruction &I) { 1718 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1719 findDbgUsers(DbgUsers, &I); 1720 salvageDebugInfoForDbgValues(I, DbgUsers); 1721 } 1722 1723 void llvm::salvageDebugInfoForDbgValues( 1724 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1725 bool Salvaged = false; 1726 1727 for (auto *DII : DbgUsers) { 1728 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1729 // are implicitly pointing out the value as a DWARF memory location 1730 // description. 1731 bool StackValue = isa<DbgValueInst>(DII); 1732 auto DIILocation = DII->location_ops(); 1733 assert( 1734 is_contained(DIILocation, &I) && 1735 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1736 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1737 SmallVector<Value *, 4> AdditionalValues; 1738 DIExpression *SalvagedExpr = salvageDebugInfoImpl( 1739 I, DII->getExpression(), StackValue, LocNo, AdditionalValues); 1740 1741 // salvageDebugInfoImpl should fail on examining the first element of 1742 // DbgUsers, or none of them. 1743 if (!SalvagedExpr) 1744 break; 1745 1746 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1747 if (AdditionalValues.empty()) { 1748 DII->setExpression(SalvagedExpr); 1749 } else if (isa<DbgValueInst>(DII)) { 1750 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1751 } else { 1752 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1753 // currently only valid for stack value expressions. 1754 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1755 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1756 } 1757 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1758 Salvaged = true; 1759 } 1760 1761 if (Salvaged) 1762 return; 1763 1764 for (auto *DII : DbgUsers) { 1765 Value *Undef = UndefValue::get(I.getType()); 1766 DII->replaceVariableLocationOp(&I, Undef); 1767 } 1768 } 1769 1770 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1771 uint64_t CurrentLocOps, 1772 SmallVectorImpl<uint64_t> &Opcodes, 1773 SmallVectorImpl<Value *> &AdditionalValues) { 1774 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1775 // Rewrite a GEP into a DIExpression. 1776 SmallDenseMap<Value *, APInt, 8> VariableOffsets; 1777 APInt ConstantOffset(BitWidth, 0); 1778 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1779 return false; 1780 if (!VariableOffsets.empty() && !CurrentLocOps) { 1781 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1782 CurrentLocOps = 1; 1783 } 1784 for (auto Offset : VariableOffsets) { 1785 AdditionalValues.push_back(Offset.first); 1786 assert(Offset.second.isStrictlyPositive() && 1787 "Expected strictly positive multiplier for offset."); 1788 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1789 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1790 dwarf::DW_OP_plus}); 1791 } 1792 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1793 return true; 1794 } 1795 1796 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1797 switch (Opcode) { 1798 case Instruction::Add: 1799 return dwarf::DW_OP_plus; 1800 case Instruction::Sub: 1801 return dwarf::DW_OP_minus; 1802 case Instruction::Mul: 1803 return dwarf::DW_OP_mul; 1804 case Instruction::SDiv: 1805 return dwarf::DW_OP_div; 1806 case Instruction::SRem: 1807 return dwarf::DW_OP_mod; 1808 case Instruction::Or: 1809 return dwarf::DW_OP_or; 1810 case Instruction::And: 1811 return dwarf::DW_OP_and; 1812 case Instruction::Xor: 1813 return dwarf::DW_OP_xor; 1814 case Instruction::Shl: 1815 return dwarf::DW_OP_shl; 1816 case Instruction::LShr: 1817 return dwarf::DW_OP_shr; 1818 case Instruction::AShr: 1819 return dwarf::DW_OP_shra; 1820 default: 1821 // TODO: Salvage from each kind of binop we know about. 1822 return 0; 1823 } 1824 } 1825 1826 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1827 SmallVectorImpl<uint64_t> &Opcodes, 1828 SmallVectorImpl<Value *> &AdditionalValues) { 1829 // Handle binary operations with constant integer operands as a special case. 1830 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1831 // Values wider than 64 bits cannot be represented within a DIExpression. 1832 if (ConstInt && ConstInt->getBitWidth() > 64) 1833 return false; 1834 1835 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1836 // Push any Constant Int operand onto the expression stack. 1837 if (ConstInt) { 1838 uint64_t Val = ConstInt->getSExtValue(); 1839 // Add or Sub Instructions with a constant operand can potentially be 1840 // simplified. 1841 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1842 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1843 DIExpression::appendOffset(Opcodes, Offset); 1844 return true; 1845 } 1846 Opcodes.append({dwarf::DW_OP_constu, Val}); 1847 } else { 1848 if (!CurrentLocOps) { 1849 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1850 CurrentLocOps = 1; 1851 } 1852 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1853 AdditionalValues.push_back(BI->getOperand(1)); 1854 } 1855 1856 // Add salvaged binary operator to expression stack, if it has a valid 1857 // representation in a DIExpression. 1858 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1859 if (!DwarfBinOp) 1860 return false; 1861 Opcodes.push_back(DwarfBinOp); 1862 1863 return true; 1864 } 1865 1866 DIExpression * 1867 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr, 1868 bool WithStackValue, unsigned LocNo, 1869 SmallVectorImpl<Value *> &AdditionalValues) { 1870 uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands(); 1871 auto &M = *I.getModule(); 1872 auto &DL = M.getDataLayout(); 1873 1874 // Apply a vector of opcodes to the source DIExpression. 1875 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1876 DIExpression *DIExpr = SrcDIExpr; 1877 if (!Ops.empty()) { 1878 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1879 } 1880 return DIExpr; 1881 }; 1882 1883 // initializer-list helper for applying operators to the source DIExpression. 1884 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) { 1885 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1886 return doSalvage(Ops); 1887 }; 1888 1889 if (auto *CI = dyn_cast<CastInst>(&I)) { 1890 // No-op casts are irrelevant for debug info. 1891 if (CI->isNoopCast(DL)) 1892 return SrcDIExpr; 1893 1894 Type *Type = CI->getType(); 1895 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1896 if (Type->isVectorTy() || 1897 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1898 return nullptr; 1899 1900 Value *FromValue = CI->getOperand(0); 1901 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1902 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1903 1904 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1905 isa<SExtInst>(&I))); 1906 } 1907 1908 SmallVector<uint64_t, 8> Ops; 1909 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1910 if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues)) 1911 return doSalvage(Ops); 1912 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1913 if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues)) 1914 return doSalvage(Ops); 1915 } 1916 // *Not* to do: we should not attempt to salvage load instructions, 1917 // because the validity and lifetime of a dbg.value containing 1918 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1919 return nullptr; 1920 } 1921 1922 /// A replacement for a dbg.value expression. 1923 using DbgValReplacement = Optional<DIExpression *>; 1924 1925 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1926 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1927 /// changes are made. 1928 static bool rewriteDebugUsers( 1929 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1930 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1931 // Find debug users of From. 1932 SmallVector<DbgVariableIntrinsic *, 1> Users; 1933 findDbgUsers(Users, &From); 1934 if (Users.empty()) 1935 return false; 1936 1937 // Prevent use-before-def of To. 1938 bool Changed = false; 1939 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1940 if (isa<Instruction>(&To)) { 1941 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1942 1943 for (auto *DII : Users) { 1944 // It's common to see a debug user between From and DomPoint. Move it 1945 // after DomPoint to preserve the variable update without any reordering. 1946 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1947 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1948 DII->moveAfter(&DomPoint); 1949 Changed = true; 1950 1951 // Users which otherwise aren't dominated by the replacement value must 1952 // be salvaged or deleted. 1953 } else if (!DT.dominates(&DomPoint, DII)) { 1954 UndefOrSalvage.insert(DII); 1955 } 1956 } 1957 } 1958 1959 // Update debug users without use-before-def risk. 1960 for (auto *DII : Users) { 1961 if (UndefOrSalvage.count(DII)) 1962 continue; 1963 1964 DbgValReplacement DVR = RewriteExpr(*DII); 1965 if (!DVR) 1966 continue; 1967 1968 DII->replaceVariableLocationOp(&From, &To); 1969 DII->setExpression(*DVR); 1970 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1971 Changed = true; 1972 } 1973 1974 if (!UndefOrSalvage.empty()) { 1975 // Try to salvage the remaining debug users. 1976 salvageDebugInfo(From); 1977 Changed = true; 1978 } 1979 1980 return Changed; 1981 } 1982 1983 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1984 /// losslessly preserve the bits and semantics of the value. This predicate is 1985 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1986 /// 1987 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1988 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1989 /// and also does not allow lossless pointer <-> integer conversions. 1990 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1991 Type *ToTy) { 1992 // Trivially compatible types. 1993 if (FromTy == ToTy) 1994 return true; 1995 1996 // Handle compatible pointer <-> integer conversions. 1997 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1998 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1999 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2000 !DL.isNonIntegralPointerType(ToTy); 2001 return SameSize && LosslessConversion; 2002 } 2003 2004 // TODO: This is not exhaustive. 2005 return false; 2006 } 2007 2008 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2009 Instruction &DomPoint, DominatorTree &DT) { 2010 // Exit early if From has no debug users. 2011 if (!From.isUsedByMetadata()) 2012 return false; 2013 2014 assert(&From != &To && "Can't replace something with itself"); 2015 2016 Type *FromTy = From.getType(); 2017 Type *ToTy = To.getType(); 2018 2019 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2020 return DII.getExpression(); 2021 }; 2022 2023 // Handle no-op conversions. 2024 Module &M = *From.getModule(); 2025 const DataLayout &DL = M.getDataLayout(); 2026 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2027 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2028 2029 // Handle integer-to-integer widening and narrowing. 2030 // FIXME: Use DW_OP_convert when it's available everywhere. 2031 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2032 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2033 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2034 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2035 2036 // When the width of the result grows, assume that a debugger will only 2037 // access the low `FromBits` bits when inspecting the source variable. 2038 if (FromBits < ToBits) 2039 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2040 2041 // The width of the result has shrunk. Use sign/zero extension to describe 2042 // the source variable's high bits. 2043 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2044 DILocalVariable *Var = DII.getVariable(); 2045 2046 // Without knowing signedness, sign/zero extension isn't possible. 2047 auto Signedness = Var->getSignedness(); 2048 if (!Signedness) 2049 return None; 2050 2051 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2052 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2053 Signed); 2054 }; 2055 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2056 } 2057 2058 // TODO: Floating-point conversions, vectors. 2059 return false; 2060 } 2061 2062 std::pair<unsigned, unsigned> 2063 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2064 unsigned NumDeadInst = 0; 2065 unsigned NumDeadDbgInst = 0; 2066 // Delete the instructions backwards, as it has a reduced likelihood of 2067 // having to update as many def-use and use-def chains. 2068 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2069 while (EndInst != &BB->front()) { 2070 // Delete the next to last instruction. 2071 Instruction *Inst = &*--EndInst->getIterator(); 2072 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2073 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2074 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2075 EndInst = Inst; 2076 continue; 2077 } 2078 if (isa<DbgInfoIntrinsic>(Inst)) 2079 ++NumDeadDbgInst; 2080 else 2081 ++NumDeadInst; 2082 Inst->eraseFromParent(); 2083 } 2084 return {NumDeadInst, NumDeadDbgInst}; 2085 } 2086 2087 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2088 bool PreserveLCSSA, DomTreeUpdater *DTU, 2089 MemorySSAUpdater *MSSAU) { 2090 BasicBlock *BB = I->getParent(); 2091 2092 if (MSSAU) 2093 MSSAU->changeToUnreachable(I); 2094 2095 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2096 2097 // Loop over all of the successors, removing BB's entry from any PHI 2098 // nodes. 2099 for (BasicBlock *Successor : successors(BB)) { 2100 Successor->removePredecessor(BB, PreserveLCSSA); 2101 if (DTU) 2102 UniqueSuccessors.insert(Successor); 2103 } 2104 // Insert a call to llvm.trap right before this. This turns the undefined 2105 // behavior into a hard fail instead of falling through into random code. 2106 if (UseLLVMTrap) { 2107 Function *TrapFn = 2108 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2109 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2110 CallTrap->setDebugLoc(I->getDebugLoc()); 2111 } 2112 auto *UI = new UnreachableInst(I->getContext(), I); 2113 UI->setDebugLoc(I->getDebugLoc()); 2114 2115 // All instructions after this are dead. 2116 unsigned NumInstrsRemoved = 0; 2117 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2118 while (BBI != BBE) { 2119 if (!BBI->use_empty()) 2120 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2121 BB->getInstList().erase(BBI++); 2122 ++NumInstrsRemoved; 2123 } 2124 if (DTU) { 2125 SmallVector<DominatorTree::UpdateType, 8> Updates; 2126 Updates.reserve(UniqueSuccessors.size()); 2127 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2128 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2129 DTU->applyUpdates(Updates); 2130 } 2131 return NumInstrsRemoved; 2132 } 2133 2134 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2135 SmallVector<Value *, 8> Args(II->args()); 2136 SmallVector<OperandBundleDef, 1> OpBundles; 2137 II->getOperandBundlesAsDefs(OpBundles); 2138 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2139 II->getCalledOperand(), Args, OpBundles); 2140 NewCall->setCallingConv(II->getCallingConv()); 2141 NewCall->setAttributes(II->getAttributes()); 2142 NewCall->setDebugLoc(II->getDebugLoc()); 2143 NewCall->copyMetadata(*II); 2144 2145 // If the invoke had profile metadata, try converting them for CallInst. 2146 uint64_t TotalWeight; 2147 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2148 // Set the total weight if it fits into i32, otherwise reset. 2149 MDBuilder MDB(NewCall->getContext()); 2150 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2151 ? nullptr 2152 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2153 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2154 } 2155 2156 return NewCall; 2157 } 2158 2159 /// changeToCall - Convert the specified invoke into a normal call. 2160 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2161 CallInst *NewCall = createCallMatchingInvoke(II); 2162 NewCall->takeName(II); 2163 NewCall->insertBefore(II); 2164 II->replaceAllUsesWith(NewCall); 2165 2166 // Follow the call by a branch to the normal destination. 2167 BasicBlock *NormalDestBB = II->getNormalDest(); 2168 BranchInst::Create(NormalDestBB, II); 2169 2170 // Update PHI nodes in the unwind destination 2171 BasicBlock *BB = II->getParent(); 2172 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2173 UnwindDestBB->removePredecessor(BB); 2174 II->eraseFromParent(); 2175 if (DTU) 2176 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2177 } 2178 2179 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2180 BasicBlock *UnwindEdge, 2181 DomTreeUpdater *DTU) { 2182 BasicBlock *BB = CI->getParent(); 2183 2184 // Convert this function call into an invoke instruction. First, split the 2185 // basic block. 2186 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2187 CI->getName() + ".noexc"); 2188 2189 // Delete the unconditional branch inserted by SplitBlock 2190 BB->getInstList().pop_back(); 2191 2192 // Create the new invoke instruction. 2193 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2194 SmallVector<OperandBundleDef, 1> OpBundles; 2195 2196 CI->getOperandBundlesAsDefs(OpBundles); 2197 2198 // Note: we're round tripping operand bundles through memory here, and that 2199 // can potentially be avoided with a cleverer API design that we do not have 2200 // as of this time. 2201 2202 InvokeInst *II = 2203 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2204 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2205 II->setDebugLoc(CI->getDebugLoc()); 2206 II->setCallingConv(CI->getCallingConv()); 2207 II->setAttributes(CI->getAttributes()); 2208 2209 if (DTU) 2210 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2211 2212 // Make sure that anything using the call now uses the invoke! This also 2213 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2214 CI->replaceAllUsesWith(II); 2215 2216 // Delete the original call 2217 Split->getInstList().pop_front(); 2218 return Split; 2219 } 2220 2221 static bool markAliveBlocks(Function &F, 2222 SmallPtrSetImpl<BasicBlock *> &Reachable, 2223 DomTreeUpdater *DTU = nullptr) { 2224 SmallVector<BasicBlock*, 128> Worklist; 2225 BasicBlock *BB = &F.front(); 2226 Worklist.push_back(BB); 2227 Reachable.insert(BB); 2228 bool Changed = false; 2229 do { 2230 BB = Worklist.pop_back_val(); 2231 2232 // Do a quick scan of the basic block, turning any obviously unreachable 2233 // instructions into LLVM unreachable insts. The instruction combining pass 2234 // canonicalizes unreachable insts into stores to null or undef. 2235 for (Instruction &I : *BB) { 2236 if (auto *CI = dyn_cast<CallInst>(&I)) { 2237 Value *Callee = CI->getCalledOperand(); 2238 // Handle intrinsic calls. 2239 if (Function *F = dyn_cast<Function>(Callee)) { 2240 auto IntrinsicID = F->getIntrinsicID(); 2241 // Assumptions that are known to be false are equivalent to 2242 // unreachable. Also, if the condition is undefined, then we make the 2243 // choice most beneficial to the optimizer, and choose that to also be 2244 // unreachable. 2245 if (IntrinsicID == Intrinsic::assume) { 2246 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2247 // Don't insert a call to llvm.trap right before the unreachable. 2248 changeToUnreachable(CI, false, false, DTU); 2249 Changed = true; 2250 break; 2251 } 2252 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2253 // A call to the guard intrinsic bails out of the current 2254 // compilation unit if the predicate passed to it is false. If the 2255 // predicate is a constant false, then we know the guard will bail 2256 // out of the current compile unconditionally, so all code following 2257 // it is dead. 2258 // 2259 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2260 // guards to treat `undef` as `false` since a guard on `undef` can 2261 // still be useful for widening. 2262 if (match(CI->getArgOperand(0), m_Zero())) 2263 if (!isa<UnreachableInst>(CI->getNextNode())) { 2264 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2265 false, DTU); 2266 Changed = true; 2267 break; 2268 } 2269 } 2270 } else if ((isa<ConstantPointerNull>(Callee) && 2271 !NullPointerIsDefined(CI->getFunction())) || 2272 isa<UndefValue>(Callee)) { 2273 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2274 Changed = true; 2275 break; 2276 } 2277 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2278 // If we found a call to a no-return function, insert an unreachable 2279 // instruction after it. Make sure there isn't *already* one there 2280 // though. 2281 if (!isa<UnreachableInst>(CI->getNextNode())) { 2282 // Don't insert a call to llvm.trap right before the unreachable. 2283 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2284 Changed = true; 2285 } 2286 break; 2287 } 2288 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2289 // Store to undef and store to null are undefined and used to signal 2290 // that they should be changed to unreachable by passes that can't 2291 // modify the CFG. 2292 2293 // Don't touch volatile stores. 2294 if (SI->isVolatile()) continue; 2295 2296 Value *Ptr = SI->getOperand(1); 2297 2298 if (isa<UndefValue>(Ptr) || 2299 (isa<ConstantPointerNull>(Ptr) && 2300 !NullPointerIsDefined(SI->getFunction(), 2301 SI->getPointerAddressSpace()))) { 2302 changeToUnreachable(SI, true, false, DTU); 2303 Changed = true; 2304 break; 2305 } 2306 } 2307 } 2308 2309 Instruction *Terminator = BB->getTerminator(); 2310 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2311 // Turn invokes that call 'nounwind' functions into ordinary calls. 2312 Value *Callee = II->getCalledOperand(); 2313 if ((isa<ConstantPointerNull>(Callee) && 2314 !NullPointerIsDefined(BB->getParent())) || 2315 isa<UndefValue>(Callee)) { 2316 changeToUnreachable(II, true, false, DTU); 2317 Changed = true; 2318 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2319 if (II->use_empty() && II->onlyReadsMemory()) { 2320 // jump to the normal destination branch. 2321 BasicBlock *NormalDestBB = II->getNormalDest(); 2322 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2323 BranchInst::Create(NormalDestBB, II); 2324 UnwindDestBB->removePredecessor(II->getParent()); 2325 II->eraseFromParent(); 2326 if (DTU) 2327 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2328 } else 2329 changeToCall(II, DTU); 2330 Changed = true; 2331 } 2332 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2333 // Remove catchpads which cannot be reached. 2334 struct CatchPadDenseMapInfo { 2335 static CatchPadInst *getEmptyKey() { 2336 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2337 } 2338 2339 static CatchPadInst *getTombstoneKey() { 2340 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2341 } 2342 2343 static unsigned getHashValue(CatchPadInst *CatchPad) { 2344 return static_cast<unsigned>(hash_combine_range( 2345 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2346 } 2347 2348 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2349 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2350 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2351 return LHS == RHS; 2352 return LHS->isIdenticalTo(RHS); 2353 } 2354 }; 2355 2356 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2357 // Set of unique CatchPads. 2358 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2359 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2360 HandlerSet; 2361 detail::DenseSetEmpty Empty; 2362 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2363 E = CatchSwitch->handler_end(); 2364 I != E; ++I) { 2365 BasicBlock *HandlerBB = *I; 2366 if (DTU) 2367 ++NumPerSuccessorCases[HandlerBB]; 2368 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2369 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2370 if (DTU) 2371 --NumPerSuccessorCases[HandlerBB]; 2372 CatchSwitch->removeHandler(I); 2373 --I; 2374 --E; 2375 Changed = true; 2376 } 2377 } 2378 if (DTU) { 2379 std::vector<DominatorTree::UpdateType> Updates; 2380 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2381 if (I.second == 0) 2382 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2383 DTU->applyUpdates(Updates); 2384 } 2385 } 2386 2387 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2388 for (BasicBlock *Successor : successors(BB)) 2389 if (Reachable.insert(Successor).second) 2390 Worklist.push_back(Successor); 2391 } while (!Worklist.empty()); 2392 return Changed; 2393 } 2394 2395 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2396 Instruction *TI = BB->getTerminator(); 2397 2398 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2399 changeToCall(II, DTU); 2400 return; 2401 } 2402 2403 Instruction *NewTI; 2404 BasicBlock *UnwindDest; 2405 2406 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2407 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2408 UnwindDest = CRI->getUnwindDest(); 2409 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2410 auto *NewCatchSwitch = CatchSwitchInst::Create( 2411 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2412 CatchSwitch->getName(), CatchSwitch); 2413 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2414 NewCatchSwitch->addHandler(PadBB); 2415 2416 NewTI = NewCatchSwitch; 2417 UnwindDest = CatchSwitch->getUnwindDest(); 2418 } else { 2419 llvm_unreachable("Could not find unwind successor"); 2420 } 2421 2422 NewTI->takeName(TI); 2423 NewTI->setDebugLoc(TI->getDebugLoc()); 2424 UnwindDest->removePredecessor(BB); 2425 TI->replaceAllUsesWith(NewTI); 2426 TI->eraseFromParent(); 2427 if (DTU) 2428 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2429 } 2430 2431 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2432 /// if they are in a dead cycle. Return true if a change was made, false 2433 /// otherwise. 2434 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2435 MemorySSAUpdater *MSSAU) { 2436 SmallPtrSet<BasicBlock *, 16> Reachable; 2437 bool Changed = markAliveBlocks(F, Reachable, DTU); 2438 2439 // If there are unreachable blocks in the CFG... 2440 if (Reachable.size() == F.size()) 2441 return Changed; 2442 2443 assert(Reachable.size() < F.size()); 2444 2445 // Are there any blocks left to actually delete? 2446 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2447 for (BasicBlock &BB : F) { 2448 // Skip reachable basic blocks 2449 if (Reachable.count(&BB)) 2450 continue; 2451 // Skip already-deleted blocks 2452 if (DTU && DTU->isBBPendingDeletion(&BB)) 2453 continue; 2454 BlocksToRemove.insert(&BB); 2455 } 2456 2457 if (BlocksToRemove.empty()) 2458 return Changed; 2459 2460 Changed = true; 2461 NumRemoved += BlocksToRemove.size(); 2462 2463 if (MSSAU) 2464 MSSAU->removeBlocks(BlocksToRemove); 2465 2466 // Loop over all of the basic blocks that are up for removal, dropping all of 2467 // their internal references. Update DTU if available. 2468 std::vector<DominatorTree::UpdateType> Updates; 2469 for (auto *BB : BlocksToRemove) { 2470 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2471 for (BasicBlock *Successor : successors(BB)) { 2472 // Only remove references to BB in reachable successors of BB. 2473 if (Reachable.count(Successor)) 2474 Successor->removePredecessor(BB); 2475 if (DTU) 2476 UniqueSuccessors.insert(Successor); 2477 } 2478 BB->dropAllReferences(); 2479 if (DTU) { 2480 Instruction *TI = BB->getTerminator(); 2481 assert(TI && "Basic block should have a terminator"); 2482 // Terminators like invoke can have users. We have to replace their users, 2483 // before removing them. 2484 if (!TI->use_empty()) 2485 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2486 TI->eraseFromParent(); 2487 new UnreachableInst(BB->getContext(), BB); 2488 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2489 "applying corresponding DTU updates."); 2490 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2491 for (auto *UniqueSuccessor : UniqueSuccessors) 2492 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2493 } 2494 } 2495 2496 if (DTU) { 2497 DTU->applyUpdates(Updates); 2498 for (auto *BB : BlocksToRemove) 2499 DTU->deleteBB(BB); 2500 } else { 2501 for (auto *BB : BlocksToRemove) 2502 BB->eraseFromParent(); 2503 } 2504 2505 return Changed; 2506 } 2507 2508 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2509 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2510 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2511 K->dropUnknownNonDebugMetadata(KnownIDs); 2512 K->getAllMetadataOtherThanDebugLoc(Metadata); 2513 for (const auto &MD : Metadata) { 2514 unsigned Kind = MD.first; 2515 MDNode *JMD = J->getMetadata(Kind); 2516 MDNode *KMD = MD.second; 2517 2518 switch (Kind) { 2519 default: 2520 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2521 break; 2522 case LLVMContext::MD_dbg: 2523 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2524 case LLVMContext::MD_tbaa: 2525 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2526 break; 2527 case LLVMContext::MD_alias_scope: 2528 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2529 break; 2530 case LLVMContext::MD_noalias: 2531 case LLVMContext::MD_mem_parallel_loop_access: 2532 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2533 break; 2534 case LLVMContext::MD_access_group: 2535 K->setMetadata(LLVMContext::MD_access_group, 2536 intersectAccessGroups(K, J)); 2537 break; 2538 case LLVMContext::MD_range: 2539 2540 // If K does move, use most generic range. Otherwise keep the range of 2541 // K. 2542 if (DoesKMove) 2543 // FIXME: If K does move, we should drop the range info and nonnull. 2544 // Currently this function is used with DoesKMove in passes 2545 // doing hoisting/sinking and the current behavior of using the 2546 // most generic range is correct in those cases. 2547 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2548 break; 2549 case LLVMContext::MD_fpmath: 2550 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2551 break; 2552 case LLVMContext::MD_invariant_load: 2553 // Only set the !invariant.load if it is present in both instructions. 2554 K->setMetadata(Kind, JMD); 2555 break; 2556 case LLVMContext::MD_nonnull: 2557 // If K does move, keep nonull if it is present in both instructions. 2558 if (DoesKMove) 2559 K->setMetadata(Kind, JMD); 2560 break; 2561 case LLVMContext::MD_invariant_group: 2562 // Preserve !invariant.group in K. 2563 break; 2564 case LLVMContext::MD_align: 2565 K->setMetadata(Kind, 2566 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2567 break; 2568 case LLVMContext::MD_dereferenceable: 2569 case LLVMContext::MD_dereferenceable_or_null: 2570 K->setMetadata(Kind, 2571 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2572 break; 2573 case LLVMContext::MD_preserve_access_index: 2574 // Preserve !preserve.access.index in K. 2575 break; 2576 } 2577 } 2578 // Set !invariant.group from J if J has it. If both instructions have it 2579 // then we will just pick it from J - even when they are different. 2580 // Also make sure that K is load or store - f.e. combining bitcast with load 2581 // could produce bitcast with invariant.group metadata, which is invalid. 2582 // FIXME: we should try to preserve both invariant.group md if they are 2583 // different, but right now instruction can only have one invariant.group. 2584 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2585 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2586 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2587 } 2588 2589 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2590 bool KDominatesJ) { 2591 unsigned KnownIDs[] = { 2592 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2593 LLVMContext::MD_noalias, LLVMContext::MD_range, 2594 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2595 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2596 LLVMContext::MD_dereferenceable, 2597 LLVMContext::MD_dereferenceable_or_null, 2598 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2599 combineMetadata(K, J, KnownIDs, KDominatesJ); 2600 } 2601 2602 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2603 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2604 Source.getAllMetadata(MD); 2605 MDBuilder MDB(Dest.getContext()); 2606 Type *NewType = Dest.getType(); 2607 const DataLayout &DL = Source.getModule()->getDataLayout(); 2608 for (const auto &MDPair : MD) { 2609 unsigned ID = MDPair.first; 2610 MDNode *N = MDPair.second; 2611 // Note, essentially every kind of metadata should be preserved here! This 2612 // routine is supposed to clone a load instruction changing *only its type*. 2613 // The only metadata it makes sense to drop is metadata which is invalidated 2614 // when the pointer type changes. This should essentially never be the case 2615 // in LLVM, but we explicitly switch over only known metadata to be 2616 // conservatively correct. If you are adding metadata to LLVM which pertains 2617 // to loads, you almost certainly want to add it here. 2618 switch (ID) { 2619 case LLVMContext::MD_dbg: 2620 case LLVMContext::MD_tbaa: 2621 case LLVMContext::MD_prof: 2622 case LLVMContext::MD_fpmath: 2623 case LLVMContext::MD_tbaa_struct: 2624 case LLVMContext::MD_invariant_load: 2625 case LLVMContext::MD_alias_scope: 2626 case LLVMContext::MD_noalias: 2627 case LLVMContext::MD_nontemporal: 2628 case LLVMContext::MD_mem_parallel_loop_access: 2629 case LLVMContext::MD_access_group: 2630 // All of these directly apply. 2631 Dest.setMetadata(ID, N); 2632 break; 2633 2634 case LLVMContext::MD_nonnull: 2635 copyNonnullMetadata(Source, N, Dest); 2636 break; 2637 2638 case LLVMContext::MD_align: 2639 case LLVMContext::MD_dereferenceable: 2640 case LLVMContext::MD_dereferenceable_or_null: 2641 // These only directly apply if the new type is also a pointer. 2642 if (NewType->isPointerTy()) 2643 Dest.setMetadata(ID, N); 2644 break; 2645 2646 case LLVMContext::MD_range: 2647 copyRangeMetadata(DL, Source, N, Dest); 2648 break; 2649 } 2650 } 2651 } 2652 2653 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2654 auto *ReplInst = dyn_cast<Instruction>(Repl); 2655 if (!ReplInst) 2656 return; 2657 2658 // Patch the replacement so that it is not more restrictive than the value 2659 // being replaced. 2660 // Note that if 'I' is a load being replaced by some operation, 2661 // for example, by an arithmetic operation, then andIRFlags() 2662 // would just erase all math flags from the original arithmetic 2663 // operation, which is clearly not wanted and not needed. 2664 if (!isa<LoadInst>(I)) 2665 ReplInst->andIRFlags(I); 2666 2667 // FIXME: If both the original and replacement value are part of the 2668 // same control-flow region (meaning that the execution of one 2669 // guarantees the execution of the other), then we can combine the 2670 // noalias scopes here and do better than the general conservative 2671 // answer used in combineMetadata(). 2672 2673 // In general, GVN unifies expressions over different control-flow 2674 // regions, and so we need a conservative combination of the noalias 2675 // scopes. 2676 static const unsigned KnownIDs[] = { 2677 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2678 LLVMContext::MD_noalias, LLVMContext::MD_range, 2679 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2680 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2681 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2682 combineMetadata(ReplInst, I, KnownIDs, false); 2683 } 2684 2685 template <typename RootType, typename DominatesFn> 2686 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2687 const RootType &Root, 2688 const DominatesFn &Dominates) { 2689 assert(From->getType() == To->getType()); 2690 2691 unsigned Count = 0; 2692 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2693 UI != UE;) { 2694 Use &U = *UI++; 2695 if (!Dominates(Root, U)) 2696 continue; 2697 U.set(To); 2698 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2699 << "' as " << *To << " in " << *U << "\n"); 2700 ++Count; 2701 } 2702 return Count; 2703 } 2704 2705 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2706 assert(From->getType() == To->getType()); 2707 auto *BB = From->getParent(); 2708 unsigned Count = 0; 2709 2710 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2711 UI != UE;) { 2712 Use &U = *UI++; 2713 auto *I = cast<Instruction>(U.getUser()); 2714 if (I->getParent() == BB) 2715 continue; 2716 U.set(To); 2717 ++Count; 2718 } 2719 return Count; 2720 } 2721 2722 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2723 DominatorTree &DT, 2724 const BasicBlockEdge &Root) { 2725 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2726 return DT.dominates(Root, U); 2727 }; 2728 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2729 } 2730 2731 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2732 DominatorTree &DT, 2733 const BasicBlock *BB) { 2734 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2735 return DT.dominates(BB, U); 2736 }; 2737 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2738 } 2739 2740 bool llvm::callsGCLeafFunction(const CallBase *Call, 2741 const TargetLibraryInfo &TLI) { 2742 // Check if the function is specifically marked as a gc leaf function. 2743 if (Call->hasFnAttr("gc-leaf-function")) 2744 return true; 2745 if (const Function *F = Call->getCalledFunction()) { 2746 if (F->hasFnAttribute("gc-leaf-function")) 2747 return true; 2748 2749 if (auto IID = F->getIntrinsicID()) { 2750 // Most LLVM intrinsics do not take safepoints. 2751 return IID != Intrinsic::experimental_gc_statepoint && 2752 IID != Intrinsic::experimental_deoptimize && 2753 IID != Intrinsic::memcpy_element_unordered_atomic && 2754 IID != Intrinsic::memmove_element_unordered_atomic; 2755 } 2756 } 2757 2758 // Lib calls can be materialized by some passes, and won't be 2759 // marked as 'gc-leaf-function.' All available Libcalls are 2760 // GC-leaf. 2761 LibFunc LF; 2762 if (TLI.getLibFunc(*Call, LF)) { 2763 return TLI.has(LF); 2764 } 2765 2766 return false; 2767 } 2768 2769 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2770 LoadInst &NewLI) { 2771 auto *NewTy = NewLI.getType(); 2772 2773 // This only directly applies if the new type is also a pointer. 2774 if (NewTy->isPointerTy()) { 2775 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2776 return; 2777 } 2778 2779 // The only other translation we can do is to integral loads with !range 2780 // metadata. 2781 if (!NewTy->isIntegerTy()) 2782 return; 2783 2784 MDBuilder MDB(NewLI.getContext()); 2785 const Value *Ptr = OldLI.getPointerOperand(); 2786 auto *ITy = cast<IntegerType>(NewTy); 2787 auto *NullInt = ConstantExpr::getPtrToInt( 2788 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2789 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2790 NewLI.setMetadata(LLVMContext::MD_range, 2791 MDB.createRange(NonNullInt, NullInt)); 2792 } 2793 2794 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2795 MDNode *N, LoadInst &NewLI) { 2796 auto *NewTy = NewLI.getType(); 2797 2798 // Give up unless it is converted to a pointer where there is a single very 2799 // valuable mapping we can do reliably. 2800 // FIXME: It would be nice to propagate this in more ways, but the type 2801 // conversions make it hard. 2802 if (!NewTy->isPointerTy()) 2803 return; 2804 2805 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2806 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2807 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2808 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2809 } 2810 } 2811 2812 void llvm::dropDebugUsers(Instruction &I) { 2813 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2814 findDbgUsers(DbgUsers, &I); 2815 for (auto *DII : DbgUsers) 2816 DII->eraseFromParent(); 2817 } 2818 2819 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2820 BasicBlock *BB) { 2821 // Since we are moving the instructions out of its basic block, we do not 2822 // retain their original debug locations (DILocations) and debug intrinsic 2823 // instructions. 2824 // 2825 // Doing so would degrade the debugging experience and adversely affect the 2826 // accuracy of profiling information. 2827 // 2828 // Currently, when hoisting the instructions, we take the following actions: 2829 // - Remove their debug intrinsic instructions. 2830 // - Set their debug locations to the values from the insertion point. 2831 // 2832 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2833 // need to be deleted, is because there will not be any instructions with a 2834 // DILocation in either branch left after performing the transformation. We 2835 // can only insert a dbg.value after the two branches are joined again. 2836 // 2837 // See PR38762, PR39243 for more details. 2838 // 2839 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2840 // encode predicated DIExpressions that yield different results on different 2841 // code paths. 2842 2843 // A hoisted conditional probe should be treated as dangling so that it will 2844 // not be over-counted when the samples collected on the non-conditional path 2845 // are counted towards the conditional path. We leave it for the counts 2846 // inference algorithm to figure out a proper count for a danglng probe. 2847 moveAndDanglePseudoProbes(BB, InsertPt); 2848 2849 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2850 Instruction *I = &*II; 2851 I->dropUnknownNonDebugMetadata(); 2852 if (I->isUsedByMetadata()) 2853 dropDebugUsers(*I); 2854 if (isa<DbgInfoIntrinsic>(I)) { 2855 // Remove DbgInfo Intrinsics. 2856 II = I->eraseFromParent(); 2857 continue; 2858 } 2859 I->setDebugLoc(InsertPt->getDebugLoc()); 2860 ++II; 2861 } 2862 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2863 BB->begin(), 2864 BB->getTerminator()->getIterator()); 2865 } 2866 2867 namespace { 2868 2869 /// A potential constituent of a bitreverse or bswap expression. See 2870 /// collectBitParts for a fuller explanation. 2871 struct BitPart { 2872 BitPart(Value *P, unsigned BW) : Provider(P) { 2873 Provenance.resize(BW); 2874 } 2875 2876 /// The Value that this is a bitreverse/bswap of. 2877 Value *Provider; 2878 2879 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2880 /// in Provider becomes bit B in the result of this expression. 2881 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2882 2883 enum { Unset = -1 }; 2884 }; 2885 2886 } // end anonymous namespace 2887 2888 /// Analyze the specified subexpression and see if it is capable of providing 2889 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2890 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2891 /// the output of the expression came from a corresponding bit in some other 2892 /// value. This function is recursive, and the end result is a mapping of 2893 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2894 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2895 /// 2896 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2897 /// that the expression deposits the low byte of %X into the high byte of the 2898 /// result and that all other bits are zero. This expression is accepted and a 2899 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2900 /// [0-7]. 2901 /// 2902 /// For vector types, all analysis is performed at the per-element level. No 2903 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2904 /// constant masks must be splatted across all elements. 2905 /// 2906 /// To avoid revisiting values, the BitPart results are memoized into the 2907 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2908 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2909 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2910 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2911 /// type instead to provide the same functionality. 2912 /// 2913 /// Because we pass around references into \c BPS, we must use a container that 2914 /// does not invalidate internal references (std::map instead of DenseMap). 2915 static const Optional<BitPart> & 2916 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2917 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2918 auto I = BPS.find(V); 2919 if (I != BPS.end()) 2920 return I->second; 2921 2922 auto &Result = BPS[V] = None; 2923 auto BitWidth = V->getType()->getScalarSizeInBits(); 2924 2925 // Can't do integer/elements > 128 bits. 2926 if (BitWidth > 128) 2927 return Result; 2928 2929 // Prevent stack overflow by limiting the recursion depth 2930 if (Depth == BitPartRecursionMaxDepth) { 2931 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2932 return Result; 2933 } 2934 2935 if (auto *I = dyn_cast<Instruction>(V)) { 2936 Value *X, *Y; 2937 const APInt *C; 2938 2939 // If this is an or instruction, it may be an inner node of the bswap. 2940 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2941 const auto &A = 2942 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2943 const auto &B = 2944 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2945 if (!A || !B) 2946 return Result; 2947 2948 // Try and merge the two together. 2949 if (!A->Provider || A->Provider != B->Provider) 2950 return Result; 2951 2952 Result = BitPart(A->Provider, BitWidth); 2953 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2954 if (A->Provenance[BitIdx] != BitPart::Unset && 2955 B->Provenance[BitIdx] != BitPart::Unset && 2956 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2957 return Result = None; 2958 2959 if (A->Provenance[BitIdx] == BitPart::Unset) 2960 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2961 else 2962 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2963 } 2964 2965 return Result; 2966 } 2967 2968 // If this is a logical shift by a constant, recurse then shift the result. 2969 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2970 const APInt &BitShift = *C; 2971 2972 // Ensure the shift amount is defined. 2973 if (BitShift.uge(BitWidth)) 2974 return Result; 2975 2976 const auto &Res = 2977 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2978 if (!Res) 2979 return Result; 2980 Result = Res; 2981 2982 // Perform the "shift" on BitProvenance. 2983 auto &P = Result->Provenance; 2984 if (I->getOpcode() == Instruction::Shl) { 2985 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2986 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2987 } else { 2988 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2989 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2990 } 2991 2992 return Result; 2993 } 2994 2995 // If this is a logical 'and' with a mask that clears bits, recurse then 2996 // unset the appropriate bits. 2997 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2998 const APInt &AndMask = *C; 2999 3000 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3001 // early exit. 3002 unsigned NumMaskedBits = AndMask.countPopulation(); 3003 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3004 return Result; 3005 3006 const auto &Res = 3007 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3008 if (!Res) 3009 return Result; 3010 Result = Res; 3011 3012 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3013 // If the AndMask is zero for this bit, clear the bit. 3014 if (AndMask[BitIdx] == 0) 3015 Result->Provenance[BitIdx] = BitPart::Unset; 3016 return Result; 3017 } 3018 3019 // If this is a zext instruction zero extend the result. 3020 if (match(V, m_ZExt(m_Value(X)))) { 3021 const auto &Res = 3022 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3023 if (!Res) 3024 return Result; 3025 3026 Result = BitPart(Res->Provider, BitWidth); 3027 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3028 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3029 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3030 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3031 Result->Provenance[BitIdx] = BitPart::Unset; 3032 return Result; 3033 } 3034 3035 // If this is a truncate instruction, extract the lower bits. 3036 if (match(V, m_Trunc(m_Value(X)))) { 3037 const auto &Res = 3038 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3039 if (!Res) 3040 return Result; 3041 3042 Result = BitPart(Res->Provider, BitWidth); 3043 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3044 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3045 return Result; 3046 } 3047 3048 // BITREVERSE - most likely due to us previous matching a partial 3049 // bitreverse. 3050 if (match(V, m_BitReverse(m_Value(X)))) { 3051 const auto &Res = 3052 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3053 if (!Res) 3054 return Result; 3055 3056 Result = BitPart(Res->Provider, BitWidth); 3057 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3058 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3059 return Result; 3060 } 3061 3062 // BSWAP - most likely due to us previous matching a partial bswap. 3063 if (match(V, m_BSwap(m_Value(X)))) { 3064 const auto &Res = 3065 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3066 if (!Res) 3067 return Result; 3068 3069 unsigned ByteWidth = BitWidth / 8; 3070 Result = BitPart(Res->Provider, BitWidth); 3071 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3072 unsigned ByteBitOfs = ByteIdx * 8; 3073 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3074 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3075 Res->Provenance[ByteBitOfs + BitIdx]; 3076 } 3077 return Result; 3078 } 3079 3080 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3081 // amount (modulo). 3082 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3083 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3084 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3085 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3086 // We can treat fshr as a fshl by flipping the modulo amount. 3087 unsigned ModAmt = C->urem(BitWidth); 3088 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3089 ModAmt = BitWidth - ModAmt; 3090 3091 const auto &LHS = 3092 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3093 const auto &RHS = 3094 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3095 3096 // Check we have both sources and they are from the same provider. 3097 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3098 return Result; 3099 3100 unsigned StartBitRHS = BitWidth - ModAmt; 3101 Result = BitPart(LHS->Provider, BitWidth); 3102 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3103 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3104 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3105 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3106 return Result; 3107 } 3108 } 3109 3110 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3111 // the input value to the bswap/bitreverse. 3112 Result = BitPart(V, BitWidth); 3113 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3114 Result->Provenance[BitIdx] = BitIdx; 3115 return Result; 3116 } 3117 3118 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3119 unsigned BitWidth) { 3120 if (From % 8 != To % 8) 3121 return false; 3122 // Convert from bit indices to byte indices and check for a byte reversal. 3123 From >>= 3; 3124 To >>= 3; 3125 BitWidth >>= 3; 3126 return From == BitWidth - To - 1; 3127 } 3128 3129 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3130 unsigned BitWidth) { 3131 return From == BitWidth - To - 1; 3132 } 3133 3134 bool llvm::recognizeBSwapOrBitReverseIdiom( 3135 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3136 SmallVectorImpl<Instruction *> &InsertedInsts) { 3137 if (Operator::getOpcode(I) != Instruction::Or) 3138 return false; 3139 if (!MatchBSwaps && !MatchBitReversals) 3140 return false; 3141 Type *ITy = I->getType(); 3142 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3143 return false; // Can't do integer/elements > 128 bits. 3144 3145 Type *DemandedTy = ITy; 3146 if (I->hasOneUse()) 3147 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3148 DemandedTy = Trunc->getType(); 3149 3150 // Try to find all the pieces corresponding to the bswap. 3151 std::map<Value *, Optional<BitPart>> BPS; 3152 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3153 if (!Res) 3154 return false; 3155 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3156 assert(all_of(BitProvenance, 3157 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3158 "Illegal bit provenance index"); 3159 3160 // If the upper bits are zero, then attempt to perform as a truncated op. 3161 if (BitProvenance.back() == BitPart::Unset) { 3162 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3163 BitProvenance = BitProvenance.drop_back(); 3164 if (BitProvenance.empty()) 3165 return false; // TODO - handle null value? 3166 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3167 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3168 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3169 } 3170 3171 // Check BitProvenance hasn't found a source larger than the result type. 3172 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3173 if (DemandedBW > ITy->getScalarSizeInBits()) 3174 return false; 3175 3176 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3177 // only byteswap values with an even number of bytes. 3178 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3179 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3180 bool OKForBitReverse = MatchBitReversals; 3181 for (unsigned BitIdx = 0; 3182 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3183 if (BitProvenance[BitIdx] == BitPart::Unset) { 3184 DemandedMask.clearBit(BitIdx); 3185 continue; 3186 } 3187 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3188 DemandedBW); 3189 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3190 BitIdx, DemandedBW); 3191 } 3192 3193 Intrinsic::ID Intrin; 3194 if (OKForBSwap) 3195 Intrin = Intrinsic::bswap; 3196 else if (OKForBitReverse) 3197 Intrin = Intrinsic::bitreverse; 3198 else 3199 return false; 3200 3201 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3202 Value *Provider = Res->Provider; 3203 3204 // We may need to truncate the provider. 3205 if (DemandedTy != Provider->getType()) { 3206 auto *Trunc = 3207 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3208 InsertedInsts.push_back(Trunc); 3209 Provider = Trunc; 3210 } 3211 3212 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3213 InsertedInsts.push_back(Result); 3214 3215 if (!DemandedMask.isAllOnesValue()) { 3216 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3217 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3218 InsertedInsts.push_back(Result); 3219 } 3220 3221 // We may need to zeroextend back to the result type. 3222 if (ITy != Result->getType()) { 3223 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3224 InsertedInsts.push_back(ExtInst); 3225 } 3226 3227 return true; 3228 } 3229 3230 // CodeGen has special handling for some string functions that may replace 3231 // them with target-specific intrinsics. Since that'd skip our interceptors 3232 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3233 // we mark affected calls as NoBuiltin, which will disable optimization 3234 // in CodeGen. 3235 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3236 CallInst *CI, const TargetLibraryInfo *TLI) { 3237 Function *F = CI->getCalledFunction(); 3238 LibFunc Func; 3239 if (F && !F->hasLocalLinkage() && F->hasName() && 3240 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3241 !F->doesNotAccessMemory()) 3242 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3243 } 3244 3245 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3246 // We can't have a PHI with a metadata type. 3247 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3248 return false; 3249 3250 // Early exit. 3251 if (!isa<Constant>(I->getOperand(OpIdx))) 3252 return true; 3253 3254 switch (I->getOpcode()) { 3255 default: 3256 return true; 3257 case Instruction::Call: 3258 case Instruction::Invoke: { 3259 const auto &CB = cast<CallBase>(*I); 3260 3261 // Can't handle inline asm. Skip it. 3262 if (CB.isInlineAsm()) 3263 return false; 3264 3265 // Constant bundle operands may need to retain their constant-ness for 3266 // correctness. 3267 if (CB.isBundleOperand(OpIdx)) 3268 return false; 3269 3270 if (OpIdx < CB.getNumArgOperands()) { 3271 // Some variadic intrinsics require constants in the variadic arguments, 3272 // which currently aren't markable as immarg. 3273 if (isa<IntrinsicInst>(CB) && 3274 OpIdx >= CB.getFunctionType()->getNumParams()) { 3275 // This is known to be OK for stackmap. 3276 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3277 } 3278 3279 // gcroot is a special case, since it requires a constant argument which 3280 // isn't also required to be a simple ConstantInt. 3281 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3282 return false; 3283 3284 // Some intrinsic operands are required to be immediates. 3285 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3286 } 3287 3288 // It is never allowed to replace the call argument to an intrinsic, but it 3289 // may be possible for a call. 3290 return !isa<IntrinsicInst>(CB); 3291 } 3292 case Instruction::ShuffleVector: 3293 // Shufflevector masks are constant. 3294 return OpIdx != 2; 3295 case Instruction::Switch: 3296 case Instruction::ExtractValue: 3297 // All operands apart from the first are constant. 3298 return OpIdx == 0; 3299 case Instruction::InsertValue: 3300 // All operands apart from the first and the second are constant. 3301 return OpIdx < 2; 3302 case Instruction::Alloca: 3303 // Static allocas (constant size in the entry block) are handled by 3304 // prologue/epilogue insertion so they're free anyway. We definitely don't 3305 // want to make them non-constant. 3306 return !cast<AllocaInst>(I)->isStaticAlloca(); 3307 case Instruction::GetElementPtr: 3308 if (OpIdx == 0) 3309 return true; 3310 gep_type_iterator It = gep_type_begin(I); 3311 for (auto E = std::next(It, OpIdx); It != E; ++It) 3312 if (It.isStruct()) 3313 return false; 3314 return true; 3315 } 3316 } 3317 3318 Value *llvm::invertCondition(Value *Condition) { 3319 // First: Check if it's a constant 3320 if (Constant *C = dyn_cast<Constant>(Condition)) 3321 return ConstantExpr::getNot(C); 3322 3323 // Second: If the condition is already inverted, return the original value 3324 Value *NotCondition; 3325 if (match(Condition, m_Not(m_Value(NotCondition)))) 3326 return NotCondition; 3327 3328 BasicBlock *Parent = nullptr; 3329 Instruction *Inst = dyn_cast<Instruction>(Condition); 3330 if (Inst) 3331 Parent = Inst->getParent(); 3332 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3333 Parent = &Arg->getParent()->getEntryBlock(); 3334 assert(Parent && "Unsupported condition to invert"); 3335 3336 // Third: Check all the users for an invert 3337 for (User *U : Condition->users()) 3338 if (Instruction *I = dyn_cast<Instruction>(U)) 3339 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3340 return I; 3341 3342 // Last option: Create a new instruction 3343 auto *Inverted = 3344 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3345 if (Inst && !isa<PHINode>(Inst)) 3346 Inverted->insertAfter(Inst); 3347 else 3348 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3349 return Inverted; 3350 } 3351 3352 bool llvm::inferAttributesFromOthers(Function &F) { 3353 // Note: We explicitly check for attributes rather than using cover functions 3354 // because some of the cover functions include the logic being implemented. 3355 3356 bool Changed = false; 3357 // readnone + not convergent implies nosync 3358 if (!F.hasFnAttribute(Attribute::NoSync) && 3359 F.doesNotAccessMemory() && !F.isConvergent()) { 3360 F.setNoSync(); 3361 Changed = true; 3362 } 3363 3364 // readonly implies nofree 3365 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3366 F.setDoesNotFreeMemory(); 3367 Changed = true; 3368 } 3369 3370 // willreturn implies mustprogress 3371 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3372 F.setMustProgress(); 3373 Changed = true; 3374 } 3375 3376 // TODO: There are a bunch of cases of restrictive memory effects we 3377 // can infer by inspecting arguments of argmemonly-ish functions. 3378 3379 return Changed; 3380 } 3381