1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemoryBuiltins.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/IR/Argument.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 92 93 static cl::opt<bool> PHICSEDebugHash( 94 "phicse-debug-hash", 95 #ifdef EXPENSIVE_CHECKS 96 cl::init(true), 97 #else 98 cl::init(false), 99 #endif 100 cl::Hidden, 101 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 102 "function is well-behaved w.r.t. its isEqual predicate")); 103 104 static cl::opt<unsigned> PHICSENumPHISmallSize( 105 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 106 cl::desc( 107 "When the basic block contains not more than this number of PHI nodes, " 108 "perform a (faster!) exhaustive search instead of set-driven one.")); 109 110 // Max recursion depth for collectBitParts used when detecting bswap and 111 // bitreverse idioms. 112 static const unsigned BitPartRecursionMaxDepth = 48; 113 114 //===----------------------------------------------------------------------===// 115 // Local constant propagation. 116 // 117 118 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 119 /// constant value, convert it into an unconditional branch to the constant 120 /// destination. This is a nontrivial operation because the successors of this 121 /// basic block must have their PHI nodes updated. 122 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 123 /// conditions and indirectbr addresses this might make dead if 124 /// DeleteDeadConditions is true. 125 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 126 const TargetLibraryInfo *TLI, 127 DomTreeUpdater *DTU) { 128 Instruction *T = BB->getTerminator(); 129 IRBuilder<> Builder(T); 130 131 // Branch - See if we are conditional jumping on constant 132 if (auto *BI = dyn_cast<BranchInst>(T)) { 133 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 134 135 BasicBlock *Dest1 = BI->getSuccessor(0); 136 BasicBlock *Dest2 = BI->getSuccessor(1); 137 138 if (Dest2 == Dest1) { // Conditional branch to same location? 139 // This branch matches something like this: 140 // br bool %cond, label %Dest, label %Dest 141 // and changes it into: br label %Dest 142 143 // Let the basic block know that we are letting go of one copy of it. 144 assert(BI->getParent() && "Terminator not inserted in block!"); 145 Dest1->removePredecessor(BI->getParent()); 146 147 // Replace the conditional branch with an unconditional one. 148 BranchInst *NewBI = Builder.CreateBr(Dest1); 149 150 // Transfer the metadata to the new branch instruction. 151 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 152 LLVMContext::MD_annotation}); 153 154 Value *Cond = BI->getCondition(); 155 BI->eraseFromParent(); 156 if (DeleteDeadConditions) 157 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 158 return true; 159 } 160 161 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 162 // Are we branching on constant? 163 // YES. Change to unconditional branch... 164 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 165 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 166 167 // Let the basic block know that we are letting go of it. Based on this, 168 // it will adjust it's PHI nodes. 169 OldDest->removePredecessor(BB); 170 171 // Replace the conditional branch with an unconditional one. 172 BranchInst *NewBI = Builder.CreateBr(Destination); 173 174 // Transfer the metadata to the new branch instruction. 175 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 176 LLVMContext::MD_annotation}); 177 178 BI->eraseFromParent(); 179 if (DTU) 180 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 181 return true; 182 } 183 184 return false; 185 } 186 187 if (auto *SI = dyn_cast<SwitchInst>(T)) { 188 // If we are switching on a constant, we can convert the switch to an 189 // unconditional branch. 190 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 191 BasicBlock *DefaultDest = SI->getDefaultDest(); 192 BasicBlock *TheOnlyDest = DefaultDest; 193 194 // If the default is unreachable, ignore it when searching for TheOnlyDest. 195 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 196 SI->getNumCases() > 0) { 197 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 198 } 199 200 bool Changed = false; 201 202 // Figure out which case it goes to. 203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 204 // Found case matching a constant operand? 205 if (i->getCaseValue() == CI) { 206 TheOnlyDest = i->getCaseSuccessor(); 207 break; 208 } 209 210 // Check to see if this branch is going to the same place as the default 211 // dest. If so, eliminate it as an explicit compare. 212 if (i->getCaseSuccessor() == DefaultDest) { 213 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 214 unsigned NCases = SI->getNumCases(); 215 // Fold the case metadata into the default if there will be any branches 216 // left, unless the metadata doesn't match the switch. 217 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 218 // Collect branch weights into a vector. 219 SmallVector<uint32_t, 8> Weights; 220 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 221 ++MD_i) { 222 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 223 Weights.push_back(CI->getValue().getZExtValue()); 224 } 225 // Merge weight of this case to the default weight. 226 unsigned idx = i->getCaseIndex(); 227 Weights[0] += Weights[idx+1]; 228 // Remove weight for this case. 229 std::swap(Weights[idx+1], Weights.back()); 230 Weights.pop_back(); 231 SI->setMetadata(LLVMContext::MD_prof, 232 MDBuilder(BB->getContext()). 233 createBranchWeights(Weights)); 234 } 235 // Remove this entry. 236 BasicBlock *ParentBB = SI->getParent(); 237 DefaultDest->removePredecessor(ParentBB); 238 i = SI->removeCase(i); 239 e = SI->case_end(); 240 Changed = true; 241 continue; 242 } 243 244 // Otherwise, check to see if the switch only branches to one destination. 245 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 246 // destinations. 247 if (i->getCaseSuccessor() != TheOnlyDest) 248 TheOnlyDest = nullptr; 249 250 // Increment this iterator as we haven't removed the case. 251 ++i; 252 } 253 254 if (CI && !TheOnlyDest) { 255 // Branching on a constant, but not any of the cases, go to the default 256 // successor. 257 TheOnlyDest = SI->getDefaultDest(); 258 } 259 260 // If we found a single destination that we can fold the switch into, do so 261 // now. 262 if (TheOnlyDest) { 263 // Insert the new branch. 264 Builder.CreateBr(TheOnlyDest); 265 BasicBlock *BB = SI->getParent(); 266 267 SmallSet<BasicBlock *, 8> RemovedSuccessors; 268 269 // Remove entries from PHI nodes which we no longer branch to... 270 BasicBlock *SuccToKeep = TheOnlyDest; 271 for (BasicBlock *Succ : successors(SI)) { 272 if (DTU && Succ != TheOnlyDest) 273 RemovedSuccessors.insert(Succ); 274 // Found case matching a constant operand? 275 if (Succ == SuccToKeep) { 276 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 277 } else { 278 Succ->removePredecessor(BB); 279 } 280 } 281 282 // Delete the old switch. 283 Value *Cond = SI->getCondition(); 284 SI->eraseFromParent(); 285 if (DeleteDeadConditions) 286 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 287 if (DTU) { 288 std::vector<DominatorTree::UpdateType> Updates; 289 Updates.reserve(RemovedSuccessors.size()); 290 for (auto *RemovedSuccessor : RemovedSuccessors) 291 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 292 DTU->applyUpdates(Updates); 293 } 294 return true; 295 } 296 297 if (SI->getNumCases() == 1) { 298 // Otherwise, we can fold this switch into a conditional branch 299 // instruction if it has only one non-default destination. 300 auto FirstCase = *SI->case_begin(); 301 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 302 FirstCase.getCaseValue(), "cond"); 303 304 // Insert the new branch. 305 BranchInst *NewBr = Builder.CreateCondBr(Cond, 306 FirstCase.getCaseSuccessor(), 307 SI->getDefaultDest()); 308 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 309 if (MD && MD->getNumOperands() == 3) { 310 ConstantInt *SICase = 311 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 312 ConstantInt *SIDef = 313 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 314 assert(SICase && SIDef); 315 // The TrueWeight should be the weight for the single case of SI. 316 NewBr->setMetadata(LLVMContext::MD_prof, 317 MDBuilder(BB->getContext()). 318 createBranchWeights(SICase->getValue().getZExtValue(), 319 SIDef->getValue().getZExtValue())); 320 } 321 322 // Update make.implicit metadata to the newly-created conditional branch. 323 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 324 if (MakeImplicitMD) 325 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 326 327 // Delete the old switch. 328 SI->eraseFromParent(); 329 return true; 330 } 331 return Changed; 332 } 333 334 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 335 // indirectbr blockaddress(@F, @BB) -> br label @BB 336 if (auto *BA = 337 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 338 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 339 SmallSet<BasicBlock *, 8> RemovedSuccessors; 340 341 // Insert the new branch. 342 Builder.CreateBr(TheOnlyDest); 343 344 BasicBlock *SuccToKeep = TheOnlyDest; 345 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 346 BasicBlock *DestBB = IBI->getDestination(i); 347 if (DTU && DestBB != TheOnlyDest) 348 RemovedSuccessors.insert(DestBB); 349 if (IBI->getDestination(i) == SuccToKeep) { 350 SuccToKeep = nullptr; 351 } else { 352 DestBB->removePredecessor(BB); 353 } 354 } 355 Value *Address = IBI->getAddress(); 356 IBI->eraseFromParent(); 357 if (DeleteDeadConditions) 358 // Delete pointer cast instructions. 359 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 360 361 // Also zap the blockaddress constant if there are no users remaining, 362 // otherwise the destination is still marked as having its address taken. 363 if (BA->use_empty()) 364 BA->destroyConstant(); 365 366 // If we didn't find our destination in the IBI successor list, then we 367 // have undefined behavior. Replace the unconditional branch with an 368 // 'unreachable' instruction. 369 if (SuccToKeep) { 370 BB->getTerminator()->eraseFromParent(); 371 new UnreachableInst(BB->getContext(), BB); 372 } 373 374 if (DTU) { 375 std::vector<DominatorTree::UpdateType> Updates; 376 Updates.reserve(RemovedSuccessors.size()); 377 for (auto *RemovedSuccessor : RemovedSuccessors) 378 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 379 DTU->applyUpdates(Updates); 380 } 381 return true; 382 } 383 } 384 385 return false; 386 } 387 388 //===----------------------------------------------------------------------===// 389 // Local dead code elimination. 390 // 391 392 /// isInstructionTriviallyDead - Return true if the result produced by the 393 /// instruction is not used, and the instruction has no side effects. 394 /// 395 bool llvm::isInstructionTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (!I->use_empty()) 398 return false; 399 return wouldInstructionBeTriviallyDead(I, TLI); 400 } 401 402 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 403 Instruction *I, const TargetLibraryInfo *TLI) { 404 // Instructions that are "markers" and have implied meaning on code around 405 // them (without explicit uses), are not dead on unused paths. 406 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 407 if (II->getIntrinsicID() == Intrinsic::stacksave || 408 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 409 II->isLifetimeStartOrEnd()) 410 return false; 411 return wouldInstructionBeTriviallyDead(I, TLI); 412 } 413 414 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 415 const TargetLibraryInfo *TLI) { 416 if (I->isTerminator()) 417 return false; 418 419 // We don't want the landingpad-like instructions removed by anything this 420 // general. 421 if (I->isEHPad()) 422 return false; 423 424 // We don't want debug info removed by anything this general, unless 425 // debug info is empty. 426 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 427 if (DDI->getAddress()) 428 return false; 429 return true; 430 } 431 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 432 if (DVI->hasArgList() || DVI->getValue(0)) 433 return false; 434 return true; 435 } 436 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 437 if (DLI->getLabel()) 438 return false; 439 return true; 440 } 441 442 if (!I->willReturn()) 443 return false; 444 445 if (!I->mayHaveSideEffects()) 446 return true; 447 448 // Special case intrinsics that "may have side effects" but can be deleted 449 // when dead. 450 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 451 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 452 if (II->getIntrinsicID() == Intrinsic::stacksave || 453 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 454 return true; 455 456 if (II->isLifetimeStartOrEnd()) { 457 auto *Arg = II->getArgOperand(1); 458 // Lifetime intrinsics are dead when their right-hand is undef. 459 if (isa<UndefValue>(Arg)) 460 return true; 461 // If the right-hand is an alloc, global, or argument and the only uses 462 // are lifetime intrinsics then the intrinsics are dead. 463 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 464 return llvm::all_of(Arg->uses(), [](Use &Use) { 465 if (IntrinsicInst *IntrinsicUse = 466 dyn_cast<IntrinsicInst>(Use.getUser())) 467 return IntrinsicUse->isLifetimeStartOrEnd(); 468 return false; 469 }); 470 return false; 471 } 472 473 // Assumptions are dead if their condition is trivially true. Guards on 474 // true are operationally no-ops. In the future we can consider more 475 // sophisticated tradeoffs for guards considering potential for check 476 // widening, but for now we keep things simple. 477 if ((II->getIntrinsicID() == Intrinsic::assume && 478 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 479 II->getIntrinsicID() == Intrinsic::experimental_guard) { 480 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 481 return !Cond->isZero(); 482 483 return false; 484 } 485 486 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 487 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 488 return ExBehavior.getValue() != fp::ebStrict; 489 } 490 } 491 492 if (isAllocationFn(I, TLI) && isAllocRemovable(cast<CallBase>(I), TLI)) 493 return true; 494 495 if (CallInst *CI = isFreeCall(I, TLI)) 496 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 497 return C->isNullValue() || isa<UndefValue>(C); 498 499 if (auto *Call = dyn_cast<CallBase>(I)) 500 if (isMathLibCallNoop(Call, TLI)) 501 return true; 502 503 return false; 504 } 505 506 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 507 /// trivially dead instruction, delete it. If that makes any of its operands 508 /// trivially dead, delete them too, recursively. Return true if any 509 /// instructions were deleted. 510 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 511 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 512 std::function<void(Value *)> AboutToDeleteCallback) { 513 Instruction *I = dyn_cast<Instruction>(V); 514 if (!I || !isInstructionTriviallyDead(I, TLI)) 515 return false; 516 517 SmallVector<WeakTrackingVH, 16> DeadInsts; 518 DeadInsts.push_back(I); 519 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 520 AboutToDeleteCallback); 521 522 return true; 523 } 524 525 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 526 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 527 MemorySSAUpdater *MSSAU, 528 std::function<void(Value *)> AboutToDeleteCallback) { 529 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 530 for (; S != E; ++S) { 531 auto *I = dyn_cast<Instruction>(DeadInsts[S]); 532 if (!I || !isInstructionTriviallyDead(I)) { 533 DeadInsts[S] = nullptr; 534 ++Alive; 535 } 536 } 537 if (Alive == E) 538 return false; 539 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 540 AboutToDeleteCallback); 541 return true; 542 } 543 544 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 545 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 546 MemorySSAUpdater *MSSAU, 547 std::function<void(Value *)> AboutToDeleteCallback) { 548 // Process the dead instruction list until empty. 549 while (!DeadInsts.empty()) { 550 Value *V = DeadInsts.pop_back_val(); 551 Instruction *I = cast_or_null<Instruction>(V); 552 if (!I) 553 continue; 554 assert(isInstructionTriviallyDead(I, TLI) && 555 "Live instruction found in dead worklist!"); 556 assert(I->use_empty() && "Instructions with uses are not dead."); 557 558 // Don't lose the debug info while deleting the instructions. 559 salvageDebugInfo(*I); 560 561 if (AboutToDeleteCallback) 562 AboutToDeleteCallback(I); 563 564 // Null out all of the instruction's operands to see if any operand becomes 565 // dead as we go. 566 for (Use &OpU : I->operands()) { 567 Value *OpV = OpU.get(); 568 OpU.set(nullptr); 569 570 if (!OpV->use_empty()) 571 continue; 572 573 // If the operand is an instruction that became dead as we nulled out the 574 // operand, and if it is 'trivially' dead, delete it in a future loop 575 // iteration. 576 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 577 if (isInstructionTriviallyDead(OpI, TLI)) 578 DeadInsts.push_back(OpI); 579 } 580 if (MSSAU) 581 MSSAU->removeMemoryAccess(I); 582 583 I->eraseFromParent(); 584 } 585 } 586 587 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 588 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 589 findDbgUsers(DbgUsers, I); 590 for (auto *DII : DbgUsers) { 591 Value *Undef = UndefValue::get(I->getType()); 592 DII->replaceVariableLocationOp(I, Undef); 593 } 594 return !DbgUsers.empty(); 595 } 596 597 /// areAllUsesEqual - Check whether the uses of a value are all the same. 598 /// This is similar to Instruction::hasOneUse() except this will also return 599 /// true when there are no uses or multiple uses that all refer to the same 600 /// value. 601 static bool areAllUsesEqual(Instruction *I) { 602 Value::user_iterator UI = I->user_begin(); 603 Value::user_iterator UE = I->user_end(); 604 if (UI == UE) 605 return true; 606 607 User *TheUse = *UI; 608 for (++UI; UI != UE; ++UI) { 609 if (*UI != TheUse) 610 return false; 611 } 612 return true; 613 } 614 615 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 616 /// dead PHI node, due to being a def-use chain of single-use nodes that 617 /// either forms a cycle or is terminated by a trivially dead instruction, 618 /// delete it. If that makes any of its operands trivially dead, delete them 619 /// too, recursively. Return true if a change was made. 620 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 621 const TargetLibraryInfo *TLI, 622 llvm::MemorySSAUpdater *MSSAU) { 623 SmallPtrSet<Instruction*, 4> Visited; 624 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 625 I = cast<Instruction>(*I->user_begin())) { 626 if (I->use_empty()) 627 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 628 629 // If we find an instruction more than once, we're on a cycle that 630 // won't prove fruitful. 631 if (!Visited.insert(I).second) { 632 // Break the cycle and delete the instruction and its operands. 633 I->replaceAllUsesWith(UndefValue::get(I->getType())); 634 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 635 return true; 636 } 637 } 638 return false; 639 } 640 641 static bool 642 simplifyAndDCEInstruction(Instruction *I, 643 SmallSetVector<Instruction *, 16> &WorkList, 644 const DataLayout &DL, 645 const TargetLibraryInfo *TLI) { 646 if (isInstructionTriviallyDead(I, TLI)) { 647 salvageDebugInfo(*I); 648 649 // Null out all of the instruction's operands to see if any operand becomes 650 // dead as we go. 651 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 652 Value *OpV = I->getOperand(i); 653 I->setOperand(i, nullptr); 654 655 if (!OpV->use_empty() || I == OpV) 656 continue; 657 658 // If the operand is an instruction that became dead as we nulled out the 659 // operand, and if it is 'trivially' dead, delete it in a future loop 660 // iteration. 661 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 662 if (isInstructionTriviallyDead(OpI, TLI)) 663 WorkList.insert(OpI); 664 } 665 666 I->eraseFromParent(); 667 668 return true; 669 } 670 671 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 672 // Add the users to the worklist. CAREFUL: an instruction can use itself, 673 // in the case of a phi node. 674 for (User *U : I->users()) { 675 if (U != I) { 676 WorkList.insert(cast<Instruction>(U)); 677 } 678 } 679 680 // Replace the instruction with its simplified value. 681 bool Changed = false; 682 if (!I->use_empty()) { 683 I->replaceAllUsesWith(SimpleV); 684 Changed = true; 685 } 686 if (isInstructionTriviallyDead(I, TLI)) { 687 I->eraseFromParent(); 688 Changed = true; 689 } 690 return Changed; 691 } 692 return false; 693 } 694 695 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 696 /// simplify any instructions in it and recursively delete dead instructions. 697 /// 698 /// This returns true if it changed the code, note that it can delete 699 /// instructions in other blocks as well in this block. 700 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 701 const TargetLibraryInfo *TLI) { 702 bool MadeChange = false; 703 const DataLayout &DL = BB->getModule()->getDataLayout(); 704 705 #ifndef NDEBUG 706 // In debug builds, ensure that the terminator of the block is never replaced 707 // or deleted by these simplifications. The idea of simplification is that it 708 // cannot introduce new instructions, and there is no way to replace the 709 // terminator of a block without introducing a new instruction. 710 AssertingVH<Instruction> TerminatorVH(&BB->back()); 711 #endif 712 713 SmallSetVector<Instruction *, 16> WorkList; 714 // Iterate over the original function, only adding insts to the worklist 715 // if they actually need to be revisited. This avoids having to pre-init 716 // the worklist with the entire function's worth of instructions. 717 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 718 BI != E;) { 719 assert(!BI->isTerminator()); 720 Instruction *I = &*BI; 721 ++BI; 722 723 // We're visiting this instruction now, so make sure it's not in the 724 // worklist from an earlier visit. 725 if (!WorkList.count(I)) 726 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 727 } 728 729 while (!WorkList.empty()) { 730 Instruction *I = WorkList.pop_back_val(); 731 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 732 } 733 return MadeChange; 734 } 735 736 //===----------------------------------------------------------------------===// 737 // Control Flow Graph Restructuring. 738 // 739 740 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 741 DomTreeUpdater *DTU) { 742 743 // If BB has single-entry PHI nodes, fold them. 744 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 745 Value *NewVal = PN->getIncomingValue(0); 746 // Replace self referencing PHI with undef, it must be dead. 747 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 748 PN->replaceAllUsesWith(NewVal); 749 PN->eraseFromParent(); 750 } 751 752 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 753 assert(PredBB && "Block doesn't have a single predecessor!"); 754 755 bool ReplaceEntryBB = PredBB->isEntryBlock(); 756 757 // DTU updates: Collect all the edges that enter 758 // PredBB. These dominator edges will be redirected to DestBB. 759 SmallVector<DominatorTree::UpdateType, 32> Updates; 760 761 if (DTU) { 762 // To avoid processing the same predecessor more than once. 763 SmallPtrSet<BasicBlock *, 2> SeenPreds; 764 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 765 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 766 // This predecessor of PredBB may already have DestBB as a successor. 767 if (PredOfPredBB != PredBB) 768 if (SeenPreds.insert(PredOfPredBB).second) 769 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 770 SeenPreds.clear(); 771 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 772 if (SeenPreds.insert(PredOfPredBB).second) 773 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 774 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 775 } 776 777 // Zap anything that took the address of DestBB. Not doing this will give the 778 // address an invalid value. 779 if (DestBB->hasAddressTaken()) { 780 BlockAddress *BA = BlockAddress::get(DestBB); 781 Constant *Replacement = 782 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 783 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 784 BA->getType())); 785 BA->destroyConstant(); 786 } 787 788 // Anything that branched to PredBB now branches to DestBB. 789 PredBB->replaceAllUsesWith(DestBB); 790 791 // Splice all the instructions from PredBB to DestBB. 792 PredBB->getTerminator()->eraseFromParent(); 793 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 794 new UnreachableInst(PredBB->getContext(), PredBB); 795 796 // If the PredBB is the entry block of the function, move DestBB up to 797 // become the entry block after we erase PredBB. 798 if (ReplaceEntryBB) 799 DestBB->moveAfter(PredBB); 800 801 if (DTU) { 802 assert(PredBB->getInstList().size() == 1 && 803 isa<UnreachableInst>(PredBB->getTerminator()) && 804 "The successor list of PredBB isn't empty before " 805 "applying corresponding DTU updates."); 806 DTU->applyUpdatesPermissive(Updates); 807 DTU->deleteBB(PredBB); 808 // Recalculation of DomTree is needed when updating a forward DomTree and 809 // the Entry BB is replaced. 810 if (ReplaceEntryBB && DTU->hasDomTree()) { 811 // The entry block was removed and there is no external interface for 812 // the dominator tree to be notified of this change. In this corner-case 813 // we recalculate the entire tree. 814 DTU->recalculate(*(DestBB->getParent())); 815 } 816 } 817 818 else { 819 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 820 } 821 } 822 823 /// Return true if we can choose one of these values to use in place of the 824 /// other. Note that we will always choose the non-undef value to keep. 825 static bool CanMergeValues(Value *First, Value *Second) { 826 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 827 } 828 829 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 830 /// branch to Succ, into Succ. 831 /// 832 /// Assumption: Succ is the single successor for BB. 833 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 834 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 835 836 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 837 << Succ->getName() << "\n"); 838 // Shortcut, if there is only a single predecessor it must be BB and merging 839 // is always safe 840 if (Succ->getSinglePredecessor()) return true; 841 842 // Make a list of the predecessors of BB 843 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 844 845 // Look at all the phi nodes in Succ, to see if they present a conflict when 846 // merging these blocks 847 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 848 PHINode *PN = cast<PHINode>(I); 849 850 // If the incoming value from BB is again a PHINode in 851 // BB which has the same incoming value for *PI as PN does, we can 852 // merge the phi nodes and then the blocks can still be merged 853 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 854 if (BBPN && BBPN->getParent() == BB) { 855 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 856 BasicBlock *IBB = PN->getIncomingBlock(PI); 857 if (BBPreds.count(IBB) && 858 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 859 PN->getIncomingValue(PI))) { 860 LLVM_DEBUG(dbgs() 861 << "Can't fold, phi node " << PN->getName() << " in " 862 << Succ->getName() << " is conflicting with " 863 << BBPN->getName() << " with regard to common predecessor " 864 << IBB->getName() << "\n"); 865 return false; 866 } 867 } 868 } else { 869 Value* Val = PN->getIncomingValueForBlock(BB); 870 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 871 // See if the incoming value for the common predecessor is equal to the 872 // one for BB, in which case this phi node will not prevent the merging 873 // of the block. 874 BasicBlock *IBB = PN->getIncomingBlock(PI); 875 if (BBPreds.count(IBB) && 876 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 877 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 878 << " in " << Succ->getName() 879 << " is conflicting with regard to common " 880 << "predecessor " << IBB->getName() << "\n"); 881 return false; 882 } 883 } 884 } 885 } 886 887 return true; 888 } 889 890 using PredBlockVector = SmallVector<BasicBlock *, 16>; 891 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 892 893 /// Determines the value to use as the phi node input for a block. 894 /// 895 /// Select between \p OldVal any value that we know flows from \p BB 896 /// to a particular phi on the basis of which one (if either) is not 897 /// undef. Update IncomingValues based on the selected value. 898 /// 899 /// \param OldVal The value we are considering selecting. 900 /// \param BB The block that the value flows in from. 901 /// \param IncomingValues A map from block-to-value for other phi inputs 902 /// that we have examined. 903 /// 904 /// \returns the selected value. 905 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 906 IncomingValueMap &IncomingValues) { 907 if (!isa<UndefValue>(OldVal)) { 908 assert((!IncomingValues.count(BB) || 909 IncomingValues.find(BB)->second == OldVal) && 910 "Expected OldVal to match incoming value from BB!"); 911 912 IncomingValues.insert(std::make_pair(BB, OldVal)); 913 return OldVal; 914 } 915 916 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 917 if (It != IncomingValues.end()) return It->second; 918 919 return OldVal; 920 } 921 922 /// Create a map from block to value for the operands of a 923 /// given phi. 924 /// 925 /// Create a map from block to value for each non-undef value flowing 926 /// into \p PN. 927 /// 928 /// \param PN The phi we are collecting the map for. 929 /// \param IncomingValues [out] The map from block to value for this phi. 930 static void gatherIncomingValuesToPhi(PHINode *PN, 931 IncomingValueMap &IncomingValues) { 932 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 933 BasicBlock *BB = PN->getIncomingBlock(i); 934 Value *V = PN->getIncomingValue(i); 935 936 if (!isa<UndefValue>(V)) 937 IncomingValues.insert(std::make_pair(BB, V)); 938 } 939 } 940 941 /// Replace the incoming undef values to a phi with the values 942 /// from a block-to-value map. 943 /// 944 /// \param PN The phi we are replacing the undefs in. 945 /// \param IncomingValues A map from block to value. 946 static void replaceUndefValuesInPhi(PHINode *PN, 947 const IncomingValueMap &IncomingValues) { 948 SmallVector<unsigned> TrueUndefOps; 949 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 950 Value *V = PN->getIncomingValue(i); 951 952 if (!isa<UndefValue>(V)) continue; 953 954 BasicBlock *BB = PN->getIncomingBlock(i); 955 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 956 957 // Keep track of undef/poison incoming values. Those must match, so we fix 958 // them up below if needed. 959 // Note: this is conservatively correct, but we could try harder and group 960 // the undef values per incoming basic block. 961 if (It == IncomingValues.end()) { 962 TrueUndefOps.push_back(i); 963 continue; 964 } 965 966 // There is a defined value for this incoming block, so map this undef 967 // incoming value to the defined value. 968 PN->setIncomingValue(i, It->second); 969 } 970 971 // If there are both undef and poison values incoming, then convert those 972 // values to undef. It is invalid to have different values for the same 973 // incoming block. 974 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 975 return isa<PoisonValue>(PN->getIncomingValue(i)); 976 }); 977 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 978 for (unsigned i : TrueUndefOps) 979 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 980 } 981 } 982 983 /// Replace a value flowing from a block to a phi with 984 /// potentially multiple instances of that value flowing from the 985 /// block's predecessors to the phi. 986 /// 987 /// \param BB The block with the value flowing into the phi. 988 /// \param BBPreds The predecessors of BB. 989 /// \param PN The phi that we are updating. 990 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 991 const PredBlockVector &BBPreds, 992 PHINode *PN) { 993 Value *OldVal = PN->removeIncomingValue(BB, false); 994 assert(OldVal && "No entry in PHI for Pred BB!"); 995 996 IncomingValueMap IncomingValues; 997 998 // We are merging two blocks - BB, and the block containing PN - and 999 // as a result we need to redirect edges from the predecessors of BB 1000 // to go to the block containing PN, and update PN 1001 // accordingly. Since we allow merging blocks in the case where the 1002 // predecessor and successor blocks both share some predecessors, 1003 // and where some of those common predecessors might have undef 1004 // values flowing into PN, we want to rewrite those values to be 1005 // consistent with the non-undef values. 1006 1007 gatherIncomingValuesToPhi(PN, IncomingValues); 1008 1009 // If this incoming value is one of the PHI nodes in BB, the new entries 1010 // in the PHI node are the entries from the old PHI. 1011 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1012 PHINode *OldValPN = cast<PHINode>(OldVal); 1013 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1014 // Note that, since we are merging phi nodes and BB and Succ might 1015 // have common predecessors, we could end up with a phi node with 1016 // identical incoming branches. This will be cleaned up later (and 1017 // will trigger asserts if we try to clean it up now, without also 1018 // simplifying the corresponding conditional branch). 1019 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1020 Value *PredVal = OldValPN->getIncomingValue(i); 1021 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1022 IncomingValues); 1023 1024 // And add a new incoming value for this predecessor for the 1025 // newly retargeted branch. 1026 PN->addIncoming(Selected, PredBB); 1027 } 1028 } else { 1029 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1030 // Update existing incoming values in PN for this 1031 // predecessor of BB. 1032 BasicBlock *PredBB = BBPreds[i]; 1033 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1034 IncomingValues); 1035 1036 // And add a new incoming value for this predecessor for the 1037 // newly retargeted branch. 1038 PN->addIncoming(Selected, PredBB); 1039 } 1040 } 1041 1042 replaceUndefValuesInPhi(PN, IncomingValues); 1043 } 1044 1045 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1046 DomTreeUpdater *DTU) { 1047 assert(BB != &BB->getParent()->getEntryBlock() && 1048 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1049 1050 // We can't eliminate infinite loops. 1051 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1052 if (BB == Succ) return false; 1053 1054 // Check to see if merging these blocks would cause conflicts for any of the 1055 // phi nodes in BB or Succ. If not, we can safely merge. 1056 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1057 1058 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1059 // has uses which will not disappear when the PHI nodes are merged. It is 1060 // possible to handle such cases, but difficult: it requires checking whether 1061 // BB dominates Succ, which is non-trivial to calculate in the case where 1062 // Succ has multiple predecessors. Also, it requires checking whether 1063 // constructing the necessary self-referential PHI node doesn't introduce any 1064 // conflicts; this isn't too difficult, but the previous code for doing this 1065 // was incorrect. 1066 // 1067 // Note that if this check finds a live use, BB dominates Succ, so BB is 1068 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1069 // folding the branch isn't profitable in that case anyway. 1070 if (!Succ->getSinglePredecessor()) { 1071 BasicBlock::iterator BBI = BB->begin(); 1072 while (isa<PHINode>(*BBI)) { 1073 for (Use &U : BBI->uses()) { 1074 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1075 if (PN->getIncomingBlock(U) != BB) 1076 return false; 1077 } else { 1078 return false; 1079 } 1080 } 1081 ++BBI; 1082 } 1083 } 1084 1085 // We cannot fold the block if it's a branch to an already present callbr 1086 // successor because that creates duplicate successors. 1087 for (BasicBlock *PredBB : predecessors(BB)) { 1088 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1089 if (Succ == CBI->getDefaultDest()) 1090 return false; 1091 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1092 if (Succ == CBI->getIndirectDest(i)) 1093 return false; 1094 } 1095 } 1096 1097 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1098 1099 SmallVector<DominatorTree::UpdateType, 32> Updates; 1100 if (DTU) { 1101 // To avoid processing the same predecessor more than once. 1102 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1103 // All predecessors of BB will be moved to Succ. 1104 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1105 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1106 for (auto *PredOfBB : predecessors(BB)) 1107 // This predecessor of BB may already have Succ as a successor. 1108 if (!PredsOfSucc.contains(PredOfBB)) 1109 if (SeenPreds.insert(PredOfBB).second) 1110 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1111 SeenPreds.clear(); 1112 for (auto *PredOfBB : predecessors(BB)) 1113 if (SeenPreds.insert(PredOfBB).second) 1114 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1115 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1116 } 1117 1118 if (isa<PHINode>(Succ->begin())) { 1119 // If there is more than one pred of succ, and there are PHI nodes in 1120 // the successor, then we need to add incoming edges for the PHI nodes 1121 // 1122 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1123 1124 // Loop over all of the PHI nodes in the successor of BB. 1125 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1126 PHINode *PN = cast<PHINode>(I); 1127 1128 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1129 } 1130 } 1131 1132 if (Succ->getSinglePredecessor()) { 1133 // BB is the only predecessor of Succ, so Succ will end up with exactly 1134 // the same predecessors BB had. 1135 1136 // Copy over any phi, debug or lifetime instruction. 1137 BB->getTerminator()->eraseFromParent(); 1138 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1139 BB->getInstList()); 1140 } else { 1141 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1142 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1143 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1144 PN->eraseFromParent(); 1145 } 1146 } 1147 1148 // If the unconditional branch we replaced contains llvm.loop metadata, we 1149 // add the metadata to the branch instructions in the predecessors. 1150 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1151 Instruction *TI = BB->getTerminator(); 1152 if (TI) 1153 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1154 for (BasicBlock *Pred : predecessors(BB)) 1155 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1156 1157 // Everything that jumped to BB now goes to Succ. 1158 BB->replaceAllUsesWith(Succ); 1159 if (!Succ->hasName()) Succ->takeName(BB); 1160 1161 // Clear the successor list of BB to match updates applying to DTU later. 1162 if (BB->getTerminator()) 1163 BB->getInstList().pop_back(); 1164 new UnreachableInst(BB->getContext(), BB); 1165 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1166 "applying corresponding DTU updates."); 1167 1168 if (DTU) 1169 DTU->applyUpdates(Updates); 1170 1171 DeleteDeadBlock(BB, DTU); 1172 1173 return true; 1174 } 1175 1176 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1177 // This implementation doesn't currently consider undef operands 1178 // specially. Theoretically, two phis which are identical except for 1179 // one having an undef where the other doesn't could be collapsed. 1180 1181 bool Changed = false; 1182 1183 // Examine each PHI. 1184 // Note that increment of I must *NOT* be in the iteration_expression, since 1185 // we don't want to immediately advance when we restart from the beginning. 1186 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1187 ++I; 1188 // Is there an identical PHI node in this basic block? 1189 // Note that we only look in the upper square's triangle, 1190 // we already checked that the lower triangle PHI's aren't identical. 1191 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1192 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1193 continue; 1194 // A duplicate. Replace this PHI with the base PHI. 1195 ++NumPHICSEs; 1196 DuplicatePN->replaceAllUsesWith(PN); 1197 DuplicatePN->eraseFromParent(); 1198 Changed = true; 1199 1200 // The RAUW can change PHIs that we already visited. 1201 I = BB->begin(); 1202 break; // Start over from the beginning. 1203 } 1204 } 1205 return Changed; 1206 } 1207 1208 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1209 // This implementation doesn't currently consider undef operands 1210 // specially. Theoretically, two phis which are identical except for 1211 // one having an undef where the other doesn't could be collapsed. 1212 1213 struct PHIDenseMapInfo { 1214 static PHINode *getEmptyKey() { 1215 return DenseMapInfo<PHINode *>::getEmptyKey(); 1216 } 1217 1218 static PHINode *getTombstoneKey() { 1219 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1220 } 1221 1222 static bool isSentinel(PHINode *PN) { 1223 return PN == getEmptyKey() || PN == getTombstoneKey(); 1224 } 1225 1226 // WARNING: this logic must be kept in sync with 1227 // Instruction::isIdenticalToWhenDefined()! 1228 static unsigned getHashValueImpl(PHINode *PN) { 1229 // Compute a hash value on the operands. Instcombine will likely have 1230 // sorted them, which helps expose duplicates, but we have to check all 1231 // the operands to be safe in case instcombine hasn't run. 1232 return static_cast<unsigned>(hash_combine( 1233 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1234 hash_combine_range(PN->block_begin(), PN->block_end()))); 1235 } 1236 1237 static unsigned getHashValue(PHINode *PN) { 1238 #ifndef NDEBUG 1239 // If -phicse-debug-hash was specified, return a constant -- this 1240 // will force all hashing to collide, so we'll exhaustively search 1241 // the table for a match, and the assertion in isEqual will fire if 1242 // there's a bug causing equal keys to hash differently. 1243 if (PHICSEDebugHash) 1244 return 0; 1245 #endif 1246 return getHashValueImpl(PN); 1247 } 1248 1249 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1250 if (isSentinel(LHS) || isSentinel(RHS)) 1251 return LHS == RHS; 1252 return LHS->isIdenticalTo(RHS); 1253 } 1254 1255 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1256 // These comparisons are nontrivial, so assert that equality implies 1257 // hash equality (DenseMap demands this as an invariant). 1258 bool Result = isEqualImpl(LHS, RHS); 1259 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1260 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1261 return Result; 1262 } 1263 }; 1264 1265 // Set of unique PHINodes. 1266 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1267 PHISet.reserve(4 * PHICSENumPHISmallSize); 1268 1269 // Examine each PHI. 1270 bool Changed = false; 1271 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1272 auto Inserted = PHISet.insert(PN); 1273 if (!Inserted.second) { 1274 // A duplicate. Replace this PHI with its duplicate. 1275 ++NumPHICSEs; 1276 PN->replaceAllUsesWith(*Inserted.first); 1277 PN->eraseFromParent(); 1278 Changed = true; 1279 1280 // The RAUW can change PHIs that we already visited. Start over from the 1281 // beginning. 1282 PHISet.clear(); 1283 I = BB->begin(); 1284 } 1285 } 1286 1287 return Changed; 1288 } 1289 1290 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1291 if ( 1292 #ifndef NDEBUG 1293 !PHICSEDebugHash && 1294 #endif 1295 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1296 return EliminateDuplicatePHINodesNaiveImpl(BB); 1297 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1298 } 1299 1300 /// If the specified pointer points to an object that we control, try to modify 1301 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1302 /// the value after the operation, which may be lower than PrefAlign. 1303 /// 1304 /// Increating value alignment isn't often possible though. If alignment is 1305 /// important, a more reliable approach is to simply align all global variables 1306 /// and allocation instructions to their preferred alignment from the beginning. 1307 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1308 const DataLayout &DL) { 1309 V = V->stripPointerCasts(); 1310 1311 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1312 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1313 // than the current alignment, as the known bits calculation should have 1314 // already taken it into account. However, this is not always the case, 1315 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1316 // doesn't. 1317 Align CurrentAlign = AI->getAlign(); 1318 if (PrefAlign <= CurrentAlign) 1319 return CurrentAlign; 1320 1321 // If the preferred alignment is greater than the natural stack alignment 1322 // then don't round up. This avoids dynamic stack realignment. 1323 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1324 return CurrentAlign; 1325 AI->setAlignment(PrefAlign); 1326 return PrefAlign; 1327 } 1328 1329 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1330 // TODO: as above, this shouldn't be necessary. 1331 Align CurrentAlign = GO->getPointerAlignment(DL); 1332 if (PrefAlign <= CurrentAlign) 1333 return CurrentAlign; 1334 1335 // If there is a large requested alignment and we can, bump up the alignment 1336 // of the global. If the memory we set aside for the global may not be the 1337 // memory used by the final program then it is impossible for us to reliably 1338 // enforce the preferred alignment. 1339 if (!GO->canIncreaseAlignment()) 1340 return CurrentAlign; 1341 1342 GO->setAlignment(PrefAlign); 1343 return PrefAlign; 1344 } 1345 1346 return Align(1); 1347 } 1348 1349 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1350 const DataLayout &DL, 1351 const Instruction *CxtI, 1352 AssumptionCache *AC, 1353 const DominatorTree *DT) { 1354 assert(V->getType()->isPointerTy() && 1355 "getOrEnforceKnownAlignment expects a pointer!"); 1356 1357 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1358 unsigned TrailZ = Known.countMinTrailingZeros(); 1359 1360 // Avoid trouble with ridiculously large TrailZ values, such as 1361 // those computed from a null pointer. 1362 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1363 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1364 1365 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1366 1367 if (PrefAlign && *PrefAlign > Alignment) 1368 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1369 1370 // We don't need to make any adjustment. 1371 return Alignment; 1372 } 1373 1374 ///===---------------------------------------------------------------------===// 1375 /// Dbg Intrinsic utilities 1376 /// 1377 1378 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1379 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1380 DIExpression *DIExpr, 1381 PHINode *APN) { 1382 // Since we can't guarantee that the original dbg.declare intrinsic 1383 // is removed by LowerDbgDeclare(), we need to make sure that we are 1384 // not inserting the same dbg.value intrinsic over and over. 1385 SmallVector<DbgValueInst *, 1> DbgValues; 1386 findDbgValues(DbgValues, APN); 1387 for (auto *DVI : DbgValues) { 1388 assert(is_contained(DVI->getValues(), APN)); 1389 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1390 return true; 1391 } 1392 return false; 1393 } 1394 1395 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1396 /// (or fragment of the variable) described by \p DII. 1397 /// 1398 /// This is primarily intended as a helper for the different 1399 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1400 /// converted describes an alloca'd variable, so we need to use the 1401 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1402 /// identified as covering an n-bit fragment, if the store size of i1 is at 1403 /// least n bits. 1404 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1405 const DataLayout &DL = DII->getModule()->getDataLayout(); 1406 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1407 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1408 assert(!ValueSize.isScalable() && 1409 "Fragments don't work on scalable types."); 1410 return ValueSize.getFixedSize() >= *FragmentSize; 1411 } 1412 // We can't always calculate the size of the DI variable (e.g. if it is a 1413 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1414 // intead. 1415 if (DII->isAddressOfVariable()) { 1416 // DII should have exactly 1 location when it is an address. 1417 assert(DII->getNumVariableLocationOps() == 1 && 1418 "address of variable must have exactly 1 location operand."); 1419 if (auto *AI = 1420 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1421 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1422 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1423 } 1424 } 1425 } 1426 // Could not determine size of variable. Conservatively return false. 1427 return false; 1428 } 1429 1430 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1431 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1432 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1433 /// case this DebugLoc leaks into any adjacent instructions. 1434 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1435 // Original dbg.declare must have a location. 1436 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1437 MDNode *Scope = DeclareLoc.getScope(); 1438 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1439 // Produce an unknown location with the correct scope / inlinedAt fields. 1440 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1441 } 1442 1443 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1444 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1445 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1446 StoreInst *SI, DIBuilder &Builder) { 1447 assert(DII->isAddressOfVariable()); 1448 auto *DIVar = DII->getVariable(); 1449 assert(DIVar && "Missing variable"); 1450 auto *DIExpr = DII->getExpression(); 1451 Value *DV = SI->getValueOperand(); 1452 1453 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1454 1455 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1456 // FIXME: If storing to a part of the variable described by the dbg.declare, 1457 // then we want to insert a dbg.value for the corresponding fragment. 1458 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1459 << *DII << '\n'); 1460 // For now, when there is a store to parts of the variable (but we do not 1461 // know which part) we insert an dbg.value intrinsic to indicate that we 1462 // know nothing about the variable's content. 1463 DV = UndefValue::get(DV->getType()); 1464 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1465 return; 1466 } 1467 1468 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1469 } 1470 1471 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1472 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1473 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1474 LoadInst *LI, DIBuilder &Builder) { 1475 auto *DIVar = DII->getVariable(); 1476 auto *DIExpr = DII->getExpression(); 1477 assert(DIVar && "Missing variable"); 1478 1479 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1480 // FIXME: If only referring to a part of the variable described by the 1481 // dbg.declare, then we want to insert a dbg.value for the corresponding 1482 // fragment. 1483 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1484 << *DII << '\n'); 1485 return; 1486 } 1487 1488 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1489 1490 // We are now tracking the loaded value instead of the address. In the 1491 // future if multi-location support is added to the IR, it might be 1492 // preferable to keep tracking both the loaded value and the original 1493 // address in case the alloca can not be elided. 1494 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1495 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1496 DbgValue->insertAfter(LI); 1497 } 1498 1499 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1500 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1501 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1502 PHINode *APN, DIBuilder &Builder) { 1503 auto *DIVar = DII->getVariable(); 1504 auto *DIExpr = DII->getExpression(); 1505 assert(DIVar && "Missing variable"); 1506 1507 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1508 return; 1509 1510 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1511 // FIXME: If only referring to a part of the variable described by the 1512 // dbg.declare, then we want to insert a dbg.value for the corresponding 1513 // fragment. 1514 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1515 << *DII << '\n'); 1516 return; 1517 } 1518 1519 BasicBlock *BB = APN->getParent(); 1520 auto InsertionPt = BB->getFirstInsertionPt(); 1521 1522 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1523 1524 // The block may be a catchswitch block, which does not have a valid 1525 // insertion point. 1526 // FIXME: Insert dbg.value markers in the successors when appropriate. 1527 if (InsertionPt != BB->end()) 1528 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1529 } 1530 1531 /// Determine whether this alloca is either a VLA or an array. 1532 static bool isArray(AllocaInst *AI) { 1533 return AI->isArrayAllocation() || 1534 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1535 } 1536 1537 /// Determine whether this alloca is a structure. 1538 static bool isStructure(AllocaInst *AI) { 1539 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1540 } 1541 1542 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1543 /// of llvm.dbg.value intrinsics. 1544 bool llvm::LowerDbgDeclare(Function &F) { 1545 bool Changed = false; 1546 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1547 SmallVector<DbgDeclareInst *, 4> Dbgs; 1548 for (auto &FI : F) 1549 for (Instruction &BI : FI) 1550 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1551 Dbgs.push_back(DDI); 1552 1553 if (Dbgs.empty()) 1554 return Changed; 1555 1556 for (auto &I : Dbgs) { 1557 DbgDeclareInst *DDI = I; 1558 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1559 // If this is an alloca for a scalar variable, insert a dbg.value 1560 // at each load and store to the alloca and erase the dbg.declare. 1561 // The dbg.values allow tracking a variable even if it is not 1562 // stored on the stack, while the dbg.declare can only describe 1563 // the stack slot (and at a lexical-scope granularity). Later 1564 // passes will attempt to elide the stack slot. 1565 if (!AI || isArray(AI) || isStructure(AI)) 1566 continue; 1567 1568 // A volatile load/store means that the alloca can't be elided anyway. 1569 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1570 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1571 return LI->isVolatile(); 1572 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1573 return SI->isVolatile(); 1574 return false; 1575 })) 1576 continue; 1577 1578 SmallVector<const Value *, 8> WorkList; 1579 WorkList.push_back(AI); 1580 while (!WorkList.empty()) { 1581 const Value *V = WorkList.pop_back_val(); 1582 for (auto &AIUse : V->uses()) { 1583 User *U = AIUse.getUser(); 1584 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1585 if (AIUse.getOperandNo() == 1) 1586 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1587 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1588 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1589 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1590 // This is a call by-value or some other instruction that takes a 1591 // pointer to the variable. Insert a *value* intrinsic that describes 1592 // the variable by dereferencing the alloca. 1593 if (!CI->isLifetimeStartOrEnd()) { 1594 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1595 auto *DerefExpr = 1596 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1597 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1598 NewLoc, CI); 1599 } 1600 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1601 if (BI->getType()->isPointerTy()) 1602 WorkList.push_back(BI); 1603 } 1604 } 1605 } 1606 DDI->eraseFromParent(); 1607 Changed = true; 1608 } 1609 1610 if (Changed) 1611 for (BasicBlock &BB : F) 1612 RemoveRedundantDbgInstrs(&BB); 1613 1614 return Changed; 1615 } 1616 1617 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1618 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1619 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1620 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1621 if (InsertedPHIs.size() == 0) 1622 return; 1623 1624 // Map existing PHI nodes to their dbg.values. 1625 ValueToValueMapTy DbgValueMap; 1626 for (auto &I : *BB) { 1627 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1628 for (Value *V : DbgII->location_ops()) 1629 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1630 DbgValueMap.insert({Loc, DbgII}); 1631 } 1632 } 1633 if (DbgValueMap.size() == 0) 1634 return; 1635 1636 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1637 // so that if a dbg.value is being rewritten to use more than one of the 1638 // inserted PHIs in the same destination BB, we can update the same dbg.value 1639 // with all the new PHIs instead of creating one copy for each. 1640 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1641 DbgVariableIntrinsic *> 1642 NewDbgValueMap; 1643 // Then iterate through the new PHIs and look to see if they use one of the 1644 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1645 // propagate the info through the new PHI. If we use more than one new PHI in 1646 // a single destination BB with the same old dbg.value, merge the updates so 1647 // that we get a single new dbg.value with all the new PHIs. 1648 for (auto PHI : InsertedPHIs) { 1649 BasicBlock *Parent = PHI->getParent(); 1650 // Avoid inserting an intrinsic into an EH block. 1651 if (Parent->getFirstNonPHI()->isEHPad()) 1652 continue; 1653 for (auto VI : PHI->operand_values()) { 1654 auto V = DbgValueMap.find(VI); 1655 if (V != DbgValueMap.end()) { 1656 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1657 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1658 if (NewDI == NewDbgValueMap.end()) { 1659 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1660 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1661 } 1662 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1663 // If PHI contains VI as an operand more than once, we may 1664 // replaced it in NewDbgII; confirm that it is present. 1665 if (is_contained(NewDbgII->location_ops(), VI)) 1666 NewDbgII->replaceVariableLocationOp(VI, PHI); 1667 } 1668 } 1669 } 1670 // Insert thew new dbg.values into their destination blocks. 1671 for (auto DI : NewDbgValueMap) { 1672 BasicBlock *Parent = DI.first.first; 1673 auto *NewDbgII = DI.second; 1674 auto InsertionPt = Parent->getFirstInsertionPt(); 1675 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1676 NewDbgII->insertBefore(&*InsertionPt); 1677 } 1678 } 1679 1680 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1681 DIBuilder &Builder, uint8_t DIExprFlags, 1682 int Offset) { 1683 auto DbgAddrs = FindDbgAddrUses(Address); 1684 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1685 const DebugLoc &Loc = DII->getDebugLoc(); 1686 auto *DIVar = DII->getVariable(); 1687 auto *DIExpr = DII->getExpression(); 1688 assert(DIVar && "Missing variable"); 1689 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1690 // Insert llvm.dbg.declare immediately before DII, and remove old 1691 // llvm.dbg.declare. 1692 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1693 DII->eraseFromParent(); 1694 } 1695 return !DbgAddrs.empty(); 1696 } 1697 1698 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1699 DIBuilder &Builder, int Offset) { 1700 const DebugLoc &Loc = DVI->getDebugLoc(); 1701 auto *DIVar = DVI->getVariable(); 1702 auto *DIExpr = DVI->getExpression(); 1703 assert(DIVar && "Missing variable"); 1704 1705 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1706 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1707 // it and give up. 1708 if (!DIExpr || DIExpr->getNumElements() < 1 || 1709 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1710 return; 1711 1712 // Insert the offset before the first deref. 1713 // We could just change the offset argument of dbg.value, but it's unsigned... 1714 if (Offset) 1715 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1716 1717 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1718 DVI->eraseFromParent(); 1719 } 1720 1721 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1722 DIBuilder &Builder, int Offset) { 1723 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1724 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1725 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1726 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1727 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1728 } 1729 1730 /// Where possible to salvage debug information for \p I do so 1731 /// and return True. If not possible mark undef and return False. 1732 void llvm::salvageDebugInfo(Instruction &I) { 1733 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1734 findDbgUsers(DbgUsers, &I); 1735 salvageDebugInfoForDbgValues(I, DbgUsers); 1736 } 1737 1738 void llvm::salvageDebugInfoForDbgValues( 1739 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1740 // These are arbitrary chosen limits on the maximum number of values and the 1741 // maximum size of a debug expression we can salvage up to, used for 1742 // performance reasons. 1743 const unsigned MaxDebugArgs = 16; 1744 const unsigned MaxExpressionSize = 128; 1745 bool Salvaged = false; 1746 1747 for (auto *DII : DbgUsers) { 1748 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1749 // are implicitly pointing out the value as a DWARF memory location 1750 // description. 1751 bool StackValue = isa<DbgValueInst>(DII); 1752 auto DIILocation = DII->location_ops(); 1753 assert( 1754 is_contained(DIILocation, &I) && 1755 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1756 SmallVector<Value *, 4> AdditionalValues; 1757 // `I` may appear more than once in DII's location ops, and each use of `I` 1758 // must be updated in the DIExpression and potentially have additional 1759 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1760 // DIILocation. 1761 Value *Op0 = nullptr; 1762 DIExpression *SalvagedExpr = DII->getExpression(); 1763 auto LocItr = find(DIILocation, &I); 1764 while (SalvagedExpr && LocItr != DIILocation.end()) { 1765 SmallVector<uint64_t, 16> Ops; 1766 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1767 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 1768 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 1769 if (!Op0) 1770 break; 1771 SalvagedExpr = 1772 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 1773 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1774 } 1775 // salvageDebugInfoImpl should fail on examining the first element of 1776 // DbgUsers, or none of them. 1777 if (!Op0) 1778 break; 1779 1780 DII->replaceVariableLocationOp(&I, Op0); 1781 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 1782 if (AdditionalValues.empty() && IsValidSalvageExpr) { 1783 DII->setExpression(SalvagedExpr); 1784 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 1785 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1786 MaxDebugArgs) { 1787 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1788 } else { 1789 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1790 // currently only valid for stack value expressions. 1791 // Also do not salvage if the resulting DIArgList would contain an 1792 // unreasonably large number of values. 1793 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1794 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1795 } 1796 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1797 Salvaged = true; 1798 } 1799 1800 if (Salvaged) 1801 return; 1802 1803 for (auto *DII : DbgUsers) { 1804 Value *Undef = UndefValue::get(I.getType()); 1805 DII->replaceVariableLocationOp(&I, Undef); 1806 } 1807 } 1808 1809 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1810 uint64_t CurrentLocOps, 1811 SmallVectorImpl<uint64_t> &Opcodes, 1812 SmallVectorImpl<Value *> &AdditionalValues) { 1813 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1814 // Rewrite a GEP into a DIExpression. 1815 MapVector<Value *, APInt> VariableOffsets; 1816 APInt ConstantOffset(BitWidth, 0); 1817 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1818 return nullptr; 1819 if (!VariableOffsets.empty() && !CurrentLocOps) { 1820 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1821 CurrentLocOps = 1; 1822 } 1823 for (auto Offset : VariableOffsets) { 1824 AdditionalValues.push_back(Offset.first); 1825 assert(Offset.second.isStrictlyPositive() && 1826 "Expected strictly positive multiplier for offset."); 1827 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1828 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1829 dwarf::DW_OP_plus}); 1830 } 1831 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1832 return GEP->getOperand(0); 1833 } 1834 1835 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1836 switch (Opcode) { 1837 case Instruction::Add: 1838 return dwarf::DW_OP_plus; 1839 case Instruction::Sub: 1840 return dwarf::DW_OP_minus; 1841 case Instruction::Mul: 1842 return dwarf::DW_OP_mul; 1843 case Instruction::SDiv: 1844 return dwarf::DW_OP_div; 1845 case Instruction::SRem: 1846 return dwarf::DW_OP_mod; 1847 case Instruction::Or: 1848 return dwarf::DW_OP_or; 1849 case Instruction::And: 1850 return dwarf::DW_OP_and; 1851 case Instruction::Xor: 1852 return dwarf::DW_OP_xor; 1853 case Instruction::Shl: 1854 return dwarf::DW_OP_shl; 1855 case Instruction::LShr: 1856 return dwarf::DW_OP_shr; 1857 case Instruction::AShr: 1858 return dwarf::DW_OP_shra; 1859 default: 1860 // TODO: Salvage from each kind of binop we know about. 1861 return 0; 1862 } 1863 } 1864 1865 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1866 SmallVectorImpl<uint64_t> &Opcodes, 1867 SmallVectorImpl<Value *> &AdditionalValues) { 1868 // Handle binary operations with constant integer operands as a special case. 1869 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1870 // Values wider than 64 bits cannot be represented within a DIExpression. 1871 if (ConstInt && ConstInt->getBitWidth() > 64) 1872 return nullptr; 1873 1874 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1875 // Push any Constant Int operand onto the expression stack. 1876 if (ConstInt) { 1877 uint64_t Val = ConstInt->getSExtValue(); 1878 // Add or Sub Instructions with a constant operand can potentially be 1879 // simplified. 1880 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1881 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1882 DIExpression::appendOffset(Opcodes, Offset); 1883 return BI->getOperand(0); 1884 } 1885 Opcodes.append({dwarf::DW_OP_constu, Val}); 1886 } else { 1887 if (!CurrentLocOps) { 1888 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1889 CurrentLocOps = 1; 1890 } 1891 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1892 AdditionalValues.push_back(BI->getOperand(1)); 1893 } 1894 1895 // Add salvaged binary operator to expression stack, if it has a valid 1896 // representation in a DIExpression. 1897 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1898 if (!DwarfBinOp) 1899 return nullptr; 1900 Opcodes.push_back(DwarfBinOp); 1901 return BI->getOperand(0); 1902 } 1903 1904 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 1905 SmallVectorImpl<uint64_t> &Ops, 1906 SmallVectorImpl<Value *> &AdditionalValues) { 1907 auto &M = *I.getModule(); 1908 auto &DL = M.getDataLayout(); 1909 1910 if (auto *CI = dyn_cast<CastInst>(&I)) { 1911 Value *FromValue = CI->getOperand(0); 1912 // No-op casts are irrelevant for debug info. 1913 if (CI->isNoopCast(DL)) { 1914 return FromValue; 1915 } 1916 1917 Type *Type = CI->getType(); 1918 if (Type->isPointerTy()) 1919 Type = DL.getIntPtrType(Type); 1920 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1921 if (Type->isVectorTy() || 1922 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 1923 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 1924 return nullptr; 1925 1926 llvm::Type *FromType = FromValue->getType(); 1927 if (FromType->isPointerTy()) 1928 FromType = DL.getIntPtrType(FromType); 1929 1930 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 1931 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1932 1933 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1934 isa<SExtInst>(&I)); 1935 Ops.append(ExtOps.begin(), ExtOps.end()); 1936 return FromValue; 1937 } 1938 1939 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 1940 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 1941 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 1942 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 1943 1944 // *Not* to do: we should not attempt to salvage load instructions, 1945 // because the validity and lifetime of a dbg.value containing 1946 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1947 return nullptr; 1948 } 1949 1950 /// A replacement for a dbg.value expression. 1951 using DbgValReplacement = Optional<DIExpression *>; 1952 1953 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1954 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1955 /// changes are made. 1956 static bool rewriteDebugUsers( 1957 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1958 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1959 // Find debug users of From. 1960 SmallVector<DbgVariableIntrinsic *, 1> Users; 1961 findDbgUsers(Users, &From); 1962 if (Users.empty()) 1963 return false; 1964 1965 // Prevent use-before-def of To. 1966 bool Changed = false; 1967 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1968 if (isa<Instruction>(&To)) { 1969 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1970 1971 for (auto *DII : Users) { 1972 // It's common to see a debug user between From and DomPoint. Move it 1973 // after DomPoint to preserve the variable update without any reordering. 1974 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1975 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1976 DII->moveAfter(&DomPoint); 1977 Changed = true; 1978 1979 // Users which otherwise aren't dominated by the replacement value must 1980 // be salvaged or deleted. 1981 } else if (!DT.dominates(&DomPoint, DII)) { 1982 UndefOrSalvage.insert(DII); 1983 } 1984 } 1985 } 1986 1987 // Update debug users without use-before-def risk. 1988 for (auto *DII : Users) { 1989 if (UndefOrSalvage.count(DII)) 1990 continue; 1991 1992 DbgValReplacement DVR = RewriteExpr(*DII); 1993 if (!DVR) 1994 continue; 1995 1996 DII->replaceVariableLocationOp(&From, &To); 1997 DII->setExpression(*DVR); 1998 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1999 Changed = true; 2000 } 2001 2002 if (!UndefOrSalvage.empty()) { 2003 // Try to salvage the remaining debug users. 2004 salvageDebugInfo(From); 2005 Changed = true; 2006 } 2007 2008 return Changed; 2009 } 2010 2011 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2012 /// losslessly preserve the bits and semantics of the value. This predicate is 2013 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2014 /// 2015 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2016 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2017 /// and also does not allow lossless pointer <-> integer conversions. 2018 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2019 Type *ToTy) { 2020 // Trivially compatible types. 2021 if (FromTy == ToTy) 2022 return true; 2023 2024 // Handle compatible pointer <-> integer conversions. 2025 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2026 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2027 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2028 !DL.isNonIntegralPointerType(ToTy); 2029 return SameSize && LosslessConversion; 2030 } 2031 2032 // TODO: This is not exhaustive. 2033 return false; 2034 } 2035 2036 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2037 Instruction &DomPoint, DominatorTree &DT) { 2038 // Exit early if From has no debug users. 2039 if (!From.isUsedByMetadata()) 2040 return false; 2041 2042 assert(&From != &To && "Can't replace something with itself"); 2043 2044 Type *FromTy = From.getType(); 2045 Type *ToTy = To.getType(); 2046 2047 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2048 return DII.getExpression(); 2049 }; 2050 2051 // Handle no-op conversions. 2052 Module &M = *From.getModule(); 2053 const DataLayout &DL = M.getDataLayout(); 2054 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2055 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2056 2057 // Handle integer-to-integer widening and narrowing. 2058 // FIXME: Use DW_OP_convert when it's available everywhere. 2059 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2060 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2061 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2062 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2063 2064 // When the width of the result grows, assume that a debugger will only 2065 // access the low `FromBits` bits when inspecting the source variable. 2066 if (FromBits < ToBits) 2067 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2068 2069 // The width of the result has shrunk. Use sign/zero extension to describe 2070 // the source variable's high bits. 2071 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2072 DILocalVariable *Var = DII.getVariable(); 2073 2074 // Without knowing signedness, sign/zero extension isn't possible. 2075 auto Signedness = Var->getSignedness(); 2076 if (!Signedness) 2077 return None; 2078 2079 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2080 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2081 Signed); 2082 }; 2083 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2084 } 2085 2086 // TODO: Floating-point conversions, vectors. 2087 return false; 2088 } 2089 2090 std::pair<unsigned, unsigned> 2091 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2092 unsigned NumDeadInst = 0; 2093 unsigned NumDeadDbgInst = 0; 2094 // Delete the instructions backwards, as it has a reduced likelihood of 2095 // having to update as many def-use and use-def chains. 2096 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2097 while (EndInst != &BB->front()) { 2098 // Delete the next to last instruction. 2099 Instruction *Inst = &*--EndInst->getIterator(); 2100 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2101 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2102 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2103 EndInst = Inst; 2104 continue; 2105 } 2106 if (isa<DbgInfoIntrinsic>(Inst)) 2107 ++NumDeadDbgInst; 2108 else 2109 ++NumDeadInst; 2110 Inst->eraseFromParent(); 2111 } 2112 return {NumDeadInst, NumDeadDbgInst}; 2113 } 2114 2115 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2116 DomTreeUpdater *DTU, 2117 MemorySSAUpdater *MSSAU) { 2118 BasicBlock *BB = I->getParent(); 2119 2120 if (MSSAU) 2121 MSSAU->changeToUnreachable(I); 2122 2123 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2124 2125 // Loop over all of the successors, removing BB's entry from any PHI 2126 // nodes. 2127 for (BasicBlock *Successor : successors(BB)) { 2128 Successor->removePredecessor(BB, PreserveLCSSA); 2129 if (DTU) 2130 UniqueSuccessors.insert(Successor); 2131 } 2132 auto *UI = new UnreachableInst(I->getContext(), I); 2133 UI->setDebugLoc(I->getDebugLoc()); 2134 2135 // All instructions after this are dead. 2136 unsigned NumInstrsRemoved = 0; 2137 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2138 while (BBI != BBE) { 2139 if (!BBI->use_empty()) 2140 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2141 BB->getInstList().erase(BBI++); 2142 ++NumInstrsRemoved; 2143 } 2144 if (DTU) { 2145 SmallVector<DominatorTree::UpdateType, 8> Updates; 2146 Updates.reserve(UniqueSuccessors.size()); 2147 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2148 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2149 DTU->applyUpdates(Updates); 2150 } 2151 return NumInstrsRemoved; 2152 } 2153 2154 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2155 SmallVector<Value *, 8> Args(II->args()); 2156 SmallVector<OperandBundleDef, 1> OpBundles; 2157 II->getOperandBundlesAsDefs(OpBundles); 2158 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2159 II->getCalledOperand(), Args, OpBundles); 2160 NewCall->setCallingConv(II->getCallingConv()); 2161 NewCall->setAttributes(II->getAttributes()); 2162 NewCall->setDebugLoc(II->getDebugLoc()); 2163 NewCall->copyMetadata(*II); 2164 2165 // If the invoke had profile metadata, try converting them for CallInst. 2166 uint64_t TotalWeight; 2167 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2168 // Set the total weight if it fits into i32, otherwise reset. 2169 MDBuilder MDB(NewCall->getContext()); 2170 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2171 ? nullptr 2172 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2173 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2174 } 2175 2176 return NewCall; 2177 } 2178 2179 // changeToCall - Convert the specified invoke into a normal call. 2180 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2181 CallInst *NewCall = createCallMatchingInvoke(II); 2182 NewCall->takeName(II); 2183 NewCall->insertBefore(II); 2184 II->replaceAllUsesWith(NewCall); 2185 2186 // Follow the call by a branch to the normal destination. 2187 BasicBlock *NormalDestBB = II->getNormalDest(); 2188 BranchInst::Create(NormalDestBB, II); 2189 2190 // Update PHI nodes in the unwind destination 2191 BasicBlock *BB = II->getParent(); 2192 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2193 UnwindDestBB->removePredecessor(BB); 2194 II->eraseFromParent(); 2195 if (DTU) 2196 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2197 return NewCall; 2198 } 2199 2200 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2201 BasicBlock *UnwindEdge, 2202 DomTreeUpdater *DTU) { 2203 BasicBlock *BB = CI->getParent(); 2204 2205 // Convert this function call into an invoke instruction. First, split the 2206 // basic block. 2207 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2208 CI->getName() + ".noexc"); 2209 2210 // Delete the unconditional branch inserted by SplitBlock 2211 BB->getInstList().pop_back(); 2212 2213 // Create the new invoke instruction. 2214 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2215 SmallVector<OperandBundleDef, 1> OpBundles; 2216 2217 CI->getOperandBundlesAsDefs(OpBundles); 2218 2219 // Note: we're round tripping operand bundles through memory here, and that 2220 // can potentially be avoided with a cleverer API design that we do not have 2221 // as of this time. 2222 2223 InvokeInst *II = 2224 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2225 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2226 II->setDebugLoc(CI->getDebugLoc()); 2227 II->setCallingConv(CI->getCallingConv()); 2228 II->setAttributes(CI->getAttributes()); 2229 2230 if (DTU) 2231 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2232 2233 // Make sure that anything using the call now uses the invoke! This also 2234 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2235 CI->replaceAllUsesWith(II); 2236 2237 // Delete the original call 2238 Split->getInstList().pop_front(); 2239 return Split; 2240 } 2241 2242 static bool markAliveBlocks(Function &F, 2243 SmallPtrSetImpl<BasicBlock *> &Reachable, 2244 DomTreeUpdater *DTU = nullptr) { 2245 SmallVector<BasicBlock*, 128> Worklist; 2246 BasicBlock *BB = &F.front(); 2247 Worklist.push_back(BB); 2248 Reachable.insert(BB); 2249 bool Changed = false; 2250 do { 2251 BB = Worklist.pop_back_val(); 2252 2253 // Do a quick scan of the basic block, turning any obviously unreachable 2254 // instructions into LLVM unreachable insts. The instruction combining pass 2255 // canonicalizes unreachable insts into stores to null or undef. 2256 for (Instruction &I : *BB) { 2257 if (auto *CI = dyn_cast<CallInst>(&I)) { 2258 Value *Callee = CI->getCalledOperand(); 2259 // Handle intrinsic calls. 2260 if (Function *F = dyn_cast<Function>(Callee)) { 2261 auto IntrinsicID = F->getIntrinsicID(); 2262 // Assumptions that are known to be false are equivalent to 2263 // unreachable. Also, if the condition is undefined, then we make the 2264 // choice most beneficial to the optimizer, and choose that to also be 2265 // unreachable. 2266 if (IntrinsicID == Intrinsic::assume) { 2267 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2268 // Don't insert a call to llvm.trap right before the unreachable. 2269 changeToUnreachable(CI, false, DTU); 2270 Changed = true; 2271 break; 2272 } 2273 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2274 // A call to the guard intrinsic bails out of the current 2275 // compilation unit if the predicate passed to it is false. If the 2276 // predicate is a constant false, then we know the guard will bail 2277 // out of the current compile unconditionally, so all code following 2278 // it is dead. 2279 // 2280 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2281 // guards to treat `undef` as `false` since a guard on `undef` can 2282 // still be useful for widening. 2283 if (match(CI->getArgOperand(0), m_Zero())) 2284 if (!isa<UnreachableInst>(CI->getNextNode())) { 2285 changeToUnreachable(CI->getNextNode(), false, DTU); 2286 Changed = true; 2287 break; 2288 } 2289 } 2290 } else if ((isa<ConstantPointerNull>(Callee) && 2291 !NullPointerIsDefined(CI->getFunction())) || 2292 isa<UndefValue>(Callee)) { 2293 changeToUnreachable(CI, false, DTU); 2294 Changed = true; 2295 break; 2296 } 2297 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2298 // If we found a call to a no-return function, insert an unreachable 2299 // instruction after it. Make sure there isn't *already* one there 2300 // though. 2301 if (!isa<UnreachableInst>(CI->getNextNode())) { 2302 // Don't insert a call to llvm.trap right before the unreachable. 2303 changeToUnreachable(CI->getNextNode(), false, DTU); 2304 Changed = true; 2305 } 2306 break; 2307 } 2308 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2309 // Store to undef and store to null are undefined and used to signal 2310 // that they should be changed to unreachable by passes that can't 2311 // modify the CFG. 2312 2313 // Don't touch volatile stores. 2314 if (SI->isVolatile()) continue; 2315 2316 Value *Ptr = SI->getOperand(1); 2317 2318 if (isa<UndefValue>(Ptr) || 2319 (isa<ConstantPointerNull>(Ptr) && 2320 !NullPointerIsDefined(SI->getFunction(), 2321 SI->getPointerAddressSpace()))) { 2322 changeToUnreachable(SI, false, DTU); 2323 Changed = true; 2324 break; 2325 } 2326 } 2327 } 2328 2329 Instruction *Terminator = BB->getTerminator(); 2330 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2331 // Turn invokes that call 'nounwind' functions into ordinary calls. 2332 Value *Callee = II->getCalledOperand(); 2333 if ((isa<ConstantPointerNull>(Callee) && 2334 !NullPointerIsDefined(BB->getParent())) || 2335 isa<UndefValue>(Callee)) { 2336 changeToUnreachable(II, false, DTU); 2337 Changed = true; 2338 } else { 2339 if (II->doesNotReturn() && 2340 !isa<UnreachableInst>(II->getNormalDest()->front())) { 2341 // If we found an invoke of a no-return function, 2342 // create a new empty basic block with an `unreachable` terminator, 2343 // and set it as the normal destination for the invoke, 2344 // unless that is already the case. 2345 // Note that the original normal destination could have other uses. 2346 BasicBlock *OrigNormalDest = II->getNormalDest(); 2347 OrigNormalDest->removePredecessor(II->getParent()); 2348 LLVMContext &Ctx = II->getContext(); 2349 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 2350 Ctx, OrigNormalDest->getName() + ".unreachable", 2351 II->getFunction(), OrigNormalDest); 2352 new UnreachableInst(Ctx, UnreachableNormalDest); 2353 II->setNormalDest(UnreachableNormalDest); 2354 if (DTU) 2355 DTU->applyUpdates( 2356 {{DominatorTree::Delete, BB, OrigNormalDest}, 2357 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 2358 Changed = true; 2359 } 2360 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2361 if (II->use_empty() && II->onlyReadsMemory()) { 2362 // jump to the normal destination branch. 2363 BasicBlock *NormalDestBB = II->getNormalDest(); 2364 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2365 BranchInst::Create(NormalDestBB, II); 2366 UnwindDestBB->removePredecessor(II->getParent()); 2367 II->eraseFromParent(); 2368 if (DTU) 2369 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2370 } else 2371 changeToCall(II, DTU); 2372 Changed = true; 2373 } 2374 } 2375 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2376 // Remove catchpads which cannot be reached. 2377 struct CatchPadDenseMapInfo { 2378 static CatchPadInst *getEmptyKey() { 2379 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2380 } 2381 2382 static CatchPadInst *getTombstoneKey() { 2383 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2384 } 2385 2386 static unsigned getHashValue(CatchPadInst *CatchPad) { 2387 return static_cast<unsigned>(hash_combine_range( 2388 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2389 } 2390 2391 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2392 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2393 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2394 return LHS == RHS; 2395 return LHS->isIdenticalTo(RHS); 2396 } 2397 }; 2398 2399 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2400 // Set of unique CatchPads. 2401 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2402 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2403 HandlerSet; 2404 detail::DenseSetEmpty Empty; 2405 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2406 E = CatchSwitch->handler_end(); 2407 I != E; ++I) { 2408 BasicBlock *HandlerBB = *I; 2409 if (DTU) 2410 ++NumPerSuccessorCases[HandlerBB]; 2411 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2412 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2413 if (DTU) 2414 --NumPerSuccessorCases[HandlerBB]; 2415 CatchSwitch->removeHandler(I); 2416 --I; 2417 --E; 2418 Changed = true; 2419 } 2420 } 2421 if (DTU) { 2422 std::vector<DominatorTree::UpdateType> Updates; 2423 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2424 if (I.second == 0) 2425 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2426 DTU->applyUpdates(Updates); 2427 } 2428 } 2429 2430 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2431 for (BasicBlock *Successor : successors(BB)) 2432 if (Reachable.insert(Successor).second) 2433 Worklist.push_back(Successor); 2434 } while (!Worklist.empty()); 2435 return Changed; 2436 } 2437 2438 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2439 Instruction *TI = BB->getTerminator(); 2440 2441 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2442 changeToCall(II, DTU); 2443 return; 2444 } 2445 2446 Instruction *NewTI; 2447 BasicBlock *UnwindDest; 2448 2449 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2450 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2451 UnwindDest = CRI->getUnwindDest(); 2452 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2453 auto *NewCatchSwitch = CatchSwitchInst::Create( 2454 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2455 CatchSwitch->getName(), CatchSwitch); 2456 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2457 NewCatchSwitch->addHandler(PadBB); 2458 2459 NewTI = NewCatchSwitch; 2460 UnwindDest = CatchSwitch->getUnwindDest(); 2461 } else { 2462 llvm_unreachable("Could not find unwind successor"); 2463 } 2464 2465 NewTI->takeName(TI); 2466 NewTI->setDebugLoc(TI->getDebugLoc()); 2467 UnwindDest->removePredecessor(BB); 2468 TI->replaceAllUsesWith(NewTI); 2469 TI->eraseFromParent(); 2470 if (DTU) 2471 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2472 } 2473 2474 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2475 /// if they are in a dead cycle. Return true if a change was made, false 2476 /// otherwise. 2477 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2478 MemorySSAUpdater *MSSAU) { 2479 SmallPtrSet<BasicBlock *, 16> Reachable; 2480 bool Changed = markAliveBlocks(F, Reachable, DTU); 2481 2482 // If there are unreachable blocks in the CFG... 2483 if (Reachable.size() == F.size()) 2484 return Changed; 2485 2486 assert(Reachable.size() < F.size()); 2487 2488 // Are there any blocks left to actually delete? 2489 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2490 for (BasicBlock &BB : F) { 2491 // Skip reachable basic blocks 2492 if (Reachable.count(&BB)) 2493 continue; 2494 // Skip already-deleted blocks 2495 if (DTU && DTU->isBBPendingDeletion(&BB)) 2496 continue; 2497 BlocksToRemove.insert(&BB); 2498 } 2499 2500 if (BlocksToRemove.empty()) 2501 return Changed; 2502 2503 Changed = true; 2504 NumRemoved += BlocksToRemove.size(); 2505 2506 if (MSSAU) 2507 MSSAU->removeBlocks(BlocksToRemove); 2508 2509 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2510 2511 return Changed; 2512 } 2513 2514 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2515 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2516 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2517 K->dropUnknownNonDebugMetadata(KnownIDs); 2518 K->getAllMetadataOtherThanDebugLoc(Metadata); 2519 for (const auto &MD : Metadata) { 2520 unsigned Kind = MD.first; 2521 MDNode *JMD = J->getMetadata(Kind); 2522 MDNode *KMD = MD.second; 2523 2524 switch (Kind) { 2525 default: 2526 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2527 break; 2528 case LLVMContext::MD_dbg: 2529 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2530 case LLVMContext::MD_tbaa: 2531 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2532 break; 2533 case LLVMContext::MD_alias_scope: 2534 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2535 break; 2536 case LLVMContext::MD_noalias: 2537 case LLVMContext::MD_mem_parallel_loop_access: 2538 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2539 break; 2540 case LLVMContext::MD_access_group: 2541 K->setMetadata(LLVMContext::MD_access_group, 2542 intersectAccessGroups(K, J)); 2543 break; 2544 case LLVMContext::MD_range: 2545 2546 // If K does move, use most generic range. Otherwise keep the range of 2547 // K. 2548 if (DoesKMove) 2549 // FIXME: If K does move, we should drop the range info and nonnull. 2550 // Currently this function is used with DoesKMove in passes 2551 // doing hoisting/sinking and the current behavior of using the 2552 // most generic range is correct in those cases. 2553 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2554 break; 2555 case LLVMContext::MD_fpmath: 2556 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2557 break; 2558 case LLVMContext::MD_invariant_load: 2559 // Only set the !invariant.load if it is present in both instructions. 2560 K->setMetadata(Kind, JMD); 2561 break; 2562 case LLVMContext::MD_nonnull: 2563 // If K does move, keep nonull if it is present in both instructions. 2564 if (DoesKMove) 2565 K->setMetadata(Kind, JMD); 2566 break; 2567 case LLVMContext::MD_invariant_group: 2568 // Preserve !invariant.group in K. 2569 break; 2570 case LLVMContext::MD_align: 2571 K->setMetadata(Kind, 2572 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2573 break; 2574 case LLVMContext::MD_dereferenceable: 2575 case LLVMContext::MD_dereferenceable_or_null: 2576 K->setMetadata(Kind, 2577 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2578 break; 2579 case LLVMContext::MD_preserve_access_index: 2580 // Preserve !preserve.access.index in K. 2581 break; 2582 } 2583 } 2584 // Set !invariant.group from J if J has it. If both instructions have it 2585 // then we will just pick it from J - even when they are different. 2586 // Also make sure that K is load or store - f.e. combining bitcast with load 2587 // could produce bitcast with invariant.group metadata, which is invalid. 2588 // FIXME: we should try to preserve both invariant.group md if they are 2589 // different, but right now instruction can only have one invariant.group. 2590 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2591 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2592 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2593 } 2594 2595 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2596 bool KDominatesJ) { 2597 unsigned KnownIDs[] = { 2598 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2599 LLVMContext::MD_noalias, LLVMContext::MD_range, 2600 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2601 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2602 LLVMContext::MD_dereferenceable, 2603 LLVMContext::MD_dereferenceable_or_null, 2604 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2605 combineMetadata(K, J, KnownIDs, KDominatesJ); 2606 } 2607 2608 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2609 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2610 Source.getAllMetadata(MD); 2611 MDBuilder MDB(Dest.getContext()); 2612 Type *NewType = Dest.getType(); 2613 const DataLayout &DL = Source.getModule()->getDataLayout(); 2614 for (const auto &MDPair : MD) { 2615 unsigned ID = MDPair.first; 2616 MDNode *N = MDPair.second; 2617 // Note, essentially every kind of metadata should be preserved here! This 2618 // routine is supposed to clone a load instruction changing *only its type*. 2619 // The only metadata it makes sense to drop is metadata which is invalidated 2620 // when the pointer type changes. This should essentially never be the case 2621 // in LLVM, but we explicitly switch over only known metadata to be 2622 // conservatively correct. If you are adding metadata to LLVM which pertains 2623 // to loads, you almost certainly want to add it here. 2624 switch (ID) { 2625 case LLVMContext::MD_dbg: 2626 case LLVMContext::MD_tbaa: 2627 case LLVMContext::MD_prof: 2628 case LLVMContext::MD_fpmath: 2629 case LLVMContext::MD_tbaa_struct: 2630 case LLVMContext::MD_invariant_load: 2631 case LLVMContext::MD_alias_scope: 2632 case LLVMContext::MD_noalias: 2633 case LLVMContext::MD_nontemporal: 2634 case LLVMContext::MD_mem_parallel_loop_access: 2635 case LLVMContext::MD_access_group: 2636 // All of these directly apply. 2637 Dest.setMetadata(ID, N); 2638 break; 2639 2640 case LLVMContext::MD_nonnull: 2641 copyNonnullMetadata(Source, N, Dest); 2642 break; 2643 2644 case LLVMContext::MD_align: 2645 case LLVMContext::MD_dereferenceable: 2646 case LLVMContext::MD_dereferenceable_or_null: 2647 // These only directly apply if the new type is also a pointer. 2648 if (NewType->isPointerTy()) 2649 Dest.setMetadata(ID, N); 2650 break; 2651 2652 case LLVMContext::MD_range: 2653 copyRangeMetadata(DL, Source, N, Dest); 2654 break; 2655 } 2656 } 2657 } 2658 2659 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2660 auto *ReplInst = dyn_cast<Instruction>(Repl); 2661 if (!ReplInst) 2662 return; 2663 2664 // Patch the replacement so that it is not more restrictive than the value 2665 // being replaced. 2666 // Note that if 'I' is a load being replaced by some operation, 2667 // for example, by an arithmetic operation, then andIRFlags() 2668 // would just erase all math flags from the original arithmetic 2669 // operation, which is clearly not wanted and not needed. 2670 if (!isa<LoadInst>(I)) 2671 ReplInst->andIRFlags(I); 2672 2673 // FIXME: If both the original and replacement value are part of the 2674 // same control-flow region (meaning that the execution of one 2675 // guarantees the execution of the other), then we can combine the 2676 // noalias scopes here and do better than the general conservative 2677 // answer used in combineMetadata(). 2678 2679 // In general, GVN unifies expressions over different control-flow 2680 // regions, and so we need a conservative combination of the noalias 2681 // scopes. 2682 static const unsigned KnownIDs[] = { 2683 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2684 LLVMContext::MD_noalias, LLVMContext::MD_range, 2685 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2686 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2687 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2688 combineMetadata(ReplInst, I, KnownIDs, false); 2689 } 2690 2691 template <typename RootType, typename DominatesFn> 2692 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2693 const RootType &Root, 2694 const DominatesFn &Dominates) { 2695 assert(From->getType() == To->getType()); 2696 2697 unsigned Count = 0; 2698 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2699 if (!Dominates(Root, U)) 2700 continue; 2701 U.set(To); 2702 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2703 << "' as " << *To << " in " << *U << "\n"); 2704 ++Count; 2705 } 2706 return Count; 2707 } 2708 2709 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2710 assert(From->getType() == To->getType()); 2711 auto *BB = From->getParent(); 2712 unsigned Count = 0; 2713 2714 for (Use &U : llvm::make_early_inc_range(From->uses())) { 2715 auto *I = cast<Instruction>(U.getUser()); 2716 if (I->getParent() == BB) 2717 continue; 2718 U.set(To); 2719 ++Count; 2720 } 2721 return Count; 2722 } 2723 2724 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2725 DominatorTree &DT, 2726 const BasicBlockEdge &Root) { 2727 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2728 return DT.dominates(Root, U); 2729 }; 2730 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2731 } 2732 2733 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2734 DominatorTree &DT, 2735 const BasicBlock *BB) { 2736 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2737 return DT.dominates(BB, U); 2738 }; 2739 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2740 } 2741 2742 bool llvm::callsGCLeafFunction(const CallBase *Call, 2743 const TargetLibraryInfo &TLI) { 2744 // Check if the function is specifically marked as a gc leaf function. 2745 if (Call->hasFnAttr("gc-leaf-function")) 2746 return true; 2747 if (const Function *F = Call->getCalledFunction()) { 2748 if (F->hasFnAttribute("gc-leaf-function")) 2749 return true; 2750 2751 if (auto IID = F->getIntrinsicID()) { 2752 // Most LLVM intrinsics do not take safepoints. 2753 return IID != Intrinsic::experimental_gc_statepoint && 2754 IID != Intrinsic::experimental_deoptimize && 2755 IID != Intrinsic::memcpy_element_unordered_atomic && 2756 IID != Intrinsic::memmove_element_unordered_atomic; 2757 } 2758 } 2759 2760 // Lib calls can be materialized by some passes, and won't be 2761 // marked as 'gc-leaf-function.' All available Libcalls are 2762 // GC-leaf. 2763 LibFunc LF; 2764 if (TLI.getLibFunc(*Call, LF)) { 2765 return TLI.has(LF); 2766 } 2767 2768 return false; 2769 } 2770 2771 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2772 LoadInst &NewLI) { 2773 auto *NewTy = NewLI.getType(); 2774 2775 // This only directly applies if the new type is also a pointer. 2776 if (NewTy->isPointerTy()) { 2777 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2778 return; 2779 } 2780 2781 // The only other translation we can do is to integral loads with !range 2782 // metadata. 2783 if (!NewTy->isIntegerTy()) 2784 return; 2785 2786 MDBuilder MDB(NewLI.getContext()); 2787 const Value *Ptr = OldLI.getPointerOperand(); 2788 auto *ITy = cast<IntegerType>(NewTy); 2789 auto *NullInt = ConstantExpr::getPtrToInt( 2790 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2791 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2792 NewLI.setMetadata(LLVMContext::MD_range, 2793 MDB.createRange(NonNullInt, NullInt)); 2794 } 2795 2796 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2797 MDNode *N, LoadInst &NewLI) { 2798 auto *NewTy = NewLI.getType(); 2799 2800 // Give up unless it is converted to a pointer where there is a single very 2801 // valuable mapping we can do reliably. 2802 // FIXME: It would be nice to propagate this in more ways, but the type 2803 // conversions make it hard. 2804 if (!NewTy->isPointerTy()) 2805 return; 2806 2807 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2808 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2809 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2810 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2811 } 2812 } 2813 2814 void llvm::dropDebugUsers(Instruction &I) { 2815 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2816 findDbgUsers(DbgUsers, &I); 2817 for (auto *DII : DbgUsers) 2818 DII->eraseFromParent(); 2819 } 2820 2821 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2822 BasicBlock *BB) { 2823 // Since we are moving the instructions out of its basic block, we do not 2824 // retain their original debug locations (DILocations) and debug intrinsic 2825 // instructions. 2826 // 2827 // Doing so would degrade the debugging experience and adversely affect the 2828 // accuracy of profiling information. 2829 // 2830 // Currently, when hoisting the instructions, we take the following actions: 2831 // - Remove their debug intrinsic instructions. 2832 // - Set their debug locations to the values from the insertion point. 2833 // 2834 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2835 // need to be deleted, is because there will not be any instructions with a 2836 // DILocation in either branch left after performing the transformation. We 2837 // can only insert a dbg.value after the two branches are joined again. 2838 // 2839 // See PR38762, PR39243 for more details. 2840 // 2841 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2842 // encode predicated DIExpressions that yield different results on different 2843 // code paths. 2844 2845 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2846 Instruction *I = &*II; 2847 I->dropUndefImplyingAttrsAndUnknownMetadata(); 2848 if (I->isUsedByMetadata()) 2849 dropDebugUsers(*I); 2850 if (I->isDebugOrPseudoInst()) { 2851 // Remove DbgInfo and pseudo probe Intrinsics. 2852 II = I->eraseFromParent(); 2853 continue; 2854 } 2855 I->setDebugLoc(InsertPt->getDebugLoc()); 2856 ++II; 2857 } 2858 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2859 BB->begin(), 2860 BB->getTerminator()->getIterator()); 2861 } 2862 2863 namespace { 2864 2865 /// A potential constituent of a bitreverse or bswap expression. See 2866 /// collectBitParts for a fuller explanation. 2867 struct BitPart { 2868 BitPart(Value *P, unsigned BW) : Provider(P) { 2869 Provenance.resize(BW); 2870 } 2871 2872 /// The Value that this is a bitreverse/bswap of. 2873 Value *Provider; 2874 2875 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2876 /// in Provider becomes bit B in the result of this expression. 2877 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2878 2879 enum { Unset = -1 }; 2880 }; 2881 2882 } // end anonymous namespace 2883 2884 /// Analyze the specified subexpression and see if it is capable of providing 2885 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2886 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2887 /// the output of the expression came from a corresponding bit in some other 2888 /// value. This function is recursive, and the end result is a mapping of 2889 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2890 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2891 /// 2892 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2893 /// that the expression deposits the low byte of %X into the high byte of the 2894 /// result and that all other bits are zero. This expression is accepted and a 2895 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2896 /// [0-7]. 2897 /// 2898 /// For vector types, all analysis is performed at the per-element level. No 2899 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2900 /// constant masks must be splatted across all elements. 2901 /// 2902 /// To avoid revisiting values, the BitPart results are memoized into the 2903 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2904 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2905 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2906 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2907 /// type instead to provide the same functionality. 2908 /// 2909 /// Because we pass around references into \c BPS, we must use a container that 2910 /// does not invalidate internal references (std::map instead of DenseMap). 2911 static const Optional<BitPart> & 2912 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2913 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2914 bool &FoundRoot) { 2915 auto I = BPS.find(V); 2916 if (I != BPS.end()) 2917 return I->second; 2918 2919 auto &Result = BPS[V] = None; 2920 auto BitWidth = V->getType()->getScalarSizeInBits(); 2921 2922 // Can't do integer/elements > 128 bits. 2923 if (BitWidth > 128) 2924 return Result; 2925 2926 // Prevent stack overflow by limiting the recursion depth 2927 if (Depth == BitPartRecursionMaxDepth) { 2928 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2929 return Result; 2930 } 2931 2932 if (auto *I = dyn_cast<Instruction>(V)) { 2933 Value *X, *Y; 2934 const APInt *C; 2935 2936 // If this is an or instruction, it may be an inner node of the bswap. 2937 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2938 // Check we have both sources and they are from the same provider. 2939 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2940 Depth + 1, FoundRoot); 2941 if (!A || !A->Provider) 2942 return Result; 2943 2944 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2945 Depth + 1, FoundRoot); 2946 if (!B || A->Provider != B->Provider) 2947 return Result; 2948 2949 // Try and merge the two together. 2950 Result = BitPart(A->Provider, BitWidth); 2951 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2952 if (A->Provenance[BitIdx] != BitPart::Unset && 2953 B->Provenance[BitIdx] != BitPart::Unset && 2954 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2955 return Result = None; 2956 2957 if (A->Provenance[BitIdx] == BitPart::Unset) 2958 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2959 else 2960 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2961 } 2962 2963 return Result; 2964 } 2965 2966 // If this is a logical shift by a constant, recurse then shift the result. 2967 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2968 const APInt &BitShift = *C; 2969 2970 // Ensure the shift amount is defined. 2971 if (BitShift.uge(BitWidth)) 2972 return Result; 2973 2974 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2975 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2976 return Result; 2977 2978 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2979 Depth + 1, FoundRoot); 2980 if (!Res) 2981 return Result; 2982 Result = Res; 2983 2984 // Perform the "shift" on BitProvenance. 2985 auto &P = Result->Provenance; 2986 if (I->getOpcode() == Instruction::Shl) { 2987 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2988 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2989 } else { 2990 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2991 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2992 } 2993 2994 return Result; 2995 } 2996 2997 // If this is a logical 'and' with a mask that clears bits, recurse then 2998 // unset the appropriate bits. 2999 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3000 const APInt &AndMask = *C; 3001 3002 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3003 // early exit. 3004 unsigned NumMaskedBits = AndMask.countPopulation(); 3005 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3006 return Result; 3007 3008 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3009 Depth + 1, FoundRoot); 3010 if (!Res) 3011 return Result; 3012 Result = Res; 3013 3014 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3015 // If the AndMask is zero for this bit, clear the bit. 3016 if (AndMask[BitIdx] == 0) 3017 Result->Provenance[BitIdx] = BitPart::Unset; 3018 return Result; 3019 } 3020 3021 // If this is a zext instruction zero extend the result. 3022 if (match(V, m_ZExt(m_Value(X)))) { 3023 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3024 Depth + 1, FoundRoot); 3025 if (!Res) 3026 return Result; 3027 3028 Result = BitPart(Res->Provider, BitWidth); 3029 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3030 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3031 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3032 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3033 Result->Provenance[BitIdx] = BitPart::Unset; 3034 return Result; 3035 } 3036 3037 // If this is a truncate instruction, extract the lower bits. 3038 if (match(V, m_Trunc(m_Value(X)))) { 3039 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3040 Depth + 1, FoundRoot); 3041 if (!Res) 3042 return Result; 3043 3044 Result = BitPart(Res->Provider, BitWidth); 3045 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3046 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3047 return Result; 3048 } 3049 3050 // BITREVERSE - most likely due to us previous matching a partial 3051 // bitreverse. 3052 if (match(V, m_BitReverse(m_Value(X)))) { 3053 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3054 Depth + 1, FoundRoot); 3055 if (!Res) 3056 return Result; 3057 3058 Result = BitPart(Res->Provider, BitWidth); 3059 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3060 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3061 return Result; 3062 } 3063 3064 // BSWAP - most likely due to us previous matching a partial bswap. 3065 if (match(V, m_BSwap(m_Value(X)))) { 3066 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3067 Depth + 1, FoundRoot); 3068 if (!Res) 3069 return Result; 3070 3071 unsigned ByteWidth = BitWidth / 8; 3072 Result = BitPart(Res->Provider, BitWidth); 3073 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3074 unsigned ByteBitOfs = ByteIdx * 8; 3075 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3076 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3077 Res->Provenance[ByteBitOfs + BitIdx]; 3078 } 3079 return Result; 3080 } 3081 3082 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3083 // amount (modulo). 3084 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3085 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3086 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3087 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3088 // We can treat fshr as a fshl by flipping the modulo amount. 3089 unsigned ModAmt = C->urem(BitWidth); 3090 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3091 ModAmt = BitWidth - ModAmt; 3092 3093 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3094 if (!MatchBitReversals && (ModAmt % 8) != 0) 3095 return Result; 3096 3097 // Check we have both sources and they are from the same provider. 3098 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3099 Depth + 1, FoundRoot); 3100 if (!LHS || !LHS->Provider) 3101 return Result; 3102 3103 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3104 Depth + 1, FoundRoot); 3105 if (!RHS || LHS->Provider != RHS->Provider) 3106 return Result; 3107 3108 unsigned StartBitRHS = BitWidth - ModAmt; 3109 Result = BitPart(LHS->Provider, BitWidth); 3110 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3111 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3112 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3113 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3114 return Result; 3115 } 3116 } 3117 3118 // If we've already found a root input value then we're never going to merge 3119 // these back together. 3120 if (FoundRoot) 3121 return Result; 3122 3123 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3124 // be the root input value to the bswap/bitreverse. 3125 FoundRoot = true; 3126 Result = BitPart(V, BitWidth); 3127 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3128 Result->Provenance[BitIdx] = BitIdx; 3129 return Result; 3130 } 3131 3132 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3133 unsigned BitWidth) { 3134 if (From % 8 != To % 8) 3135 return false; 3136 // Convert from bit indices to byte indices and check for a byte reversal. 3137 From >>= 3; 3138 To >>= 3; 3139 BitWidth >>= 3; 3140 return From == BitWidth - To - 1; 3141 } 3142 3143 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3144 unsigned BitWidth) { 3145 return From == BitWidth - To - 1; 3146 } 3147 3148 bool llvm::recognizeBSwapOrBitReverseIdiom( 3149 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3150 SmallVectorImpl<Instruction *> &InsertedInsts) { 3151 if (!match(I, m_Or(m_Value(), m_Value())) && 3152 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3153 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3154 return false; 3155 if (!MatchBSwaps && !MatchBitReversals) 3156 return false; 3157 Type *ITy = I->getType(); 3158 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3159 return false; // Can't do integer/elements > 128 bits. 3160 3161 // Try to find all the pieces corresponding to the bswap. 3162 bool FoundRoot = false; 3163 std::map<Value *, Optional<BitPart>> BPS; 3164 const auto &Res = 3165 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3166 if (!Res) 3167 return false; 3168 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3169 assert(all_of(BitProvenance, 3170 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3171 "Illegal bit provenance index"); 3172 3173 // If the upper bits are zero, then attempt to perform as a truncated op. 3174 Type *DemandedTy = ITy; 3175 if (BitProvenance.back() == BitPart::Unset) { 3176 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3177 BitProvenance = BitProvenance.drop_back(); 3178 if (BitProvenance.empty()) 3179 return false; // TODO - handle null value? 3180 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3181 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3182 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3183 } 3184 3185 // Check BitProvenance hasn't found a source larger than the result type. 3186 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3187 if (DemandedBW > ITy->getScalarSizeInBits()) 3188 return false; 3189 3190 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3191 // only byteswap values with an even number of bytes. 3192 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 3193 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3194 bool OKForBitReverse = MatchBitReversals; 3195 for (unsigned BitIdx = 0; 3196 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3197 if (BitProvenance[BitIdx] == BitPart::Unset) { 3198 DemandedMask.clearBit(BitIdx); 3199 continue; 3200 } 3201 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3202 DemandedBW); 3203 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3204 BitIdx, DemandedBW); 3205 } 3206 3207 Intrinsic::ID Intrin; 3208 if (OKForBSwap) 3209 Intrin = Intrinsic::bswap; 3210 else if (OKForBitReverse) 3211 Intrin = Intrinsic::bitreverse; 3212 else 3213 return false; 3214 3215 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3216 Value *Provider = Res->Provider; 3217 3218 // We may need to truncate the provider. 3219 if (DemandedTy != Provider->getType()) { 3220 auto *Trunc = 3221 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3222 InsertedInsts.push_back(Trunc); 3223 Provider = Trunc; 3224 } 3225 3226 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3227 InsertedInsts.push_back(Result); 3228 3229 if (!DemandedMask.isAllOnes()) { 3230 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3231 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3232 InsertedInsts.push_back(Result); 3233 } 3234 3235 // We may need to zeroextend back to the result type. 3236 if (ITy != Result->getType()) { 3237 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3238 InsertedInsts.push_back(ExtInst); 3239 } 3240 3241 return true; 3242 } 3243 3244 // CodeGen has special handling for some string functions that may replace 3245 // them with target-specific intrinsics. Since that'd skip our interceptors 3246 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3247 // we mark affected calls as NoBuiltin, which will disable optimization 3248 // in CodeGen. 3249 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3250 CallInst *CI, const TargetLibraryInfo *TLI) { 3251 Function *F = CI->getCalledFunction(); 3252 LibFunc Func; 3253 if (F && !F->hasLocalLinkage() && F->hasName() && 3254 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3255 !F->doesNotAccessMemory()) 3256 CI->addFnAttr(Attribute::NoBuiltin); 3257 } 3258 3259 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3260 // We can't have a PHI with a metadata type. 3261 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3262 return false; 3263 3264 // Early exit. 3265 if (!isa<Constant>(I->getOperand(OpIdx))) 3266 return true; 3267 3268 switch (I->getOpcode()) { 3269 default: 3270 return true; 3271 case Instruction::Call: 3272 case Instruction::Invoke: { 3273 const auto &CB = cast<CallBase>(*I); 3274 3275 // Can't handle inline asm. Skip it. 3276 if (CB.isInlineAsm()) 3277 return false; 3278 3279 // Constant bundle operands may need to retain their constant-ness for 3280 // correctness. 3281 if (CB.isBundleOperand(OpIdx)) 3282 return false; 3283 3284 if (OpIdx < CB.arg_size()) { 3285 // Some variadic intrinsics require constants in the variadic arguments, 3286 // which currently aren't markable as immarg. 3287 if (isa<IntrinsicInst>(CB) && 3288 OpIdx >= CB.getFunctionType()->getNumParams()) { 3289 // This is known to be OK for stackmap. 3290 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3291 } 3292 3293 // gcroot is a special case, since it requires a constant argument which 3294 // isn't also required to be a simple ConstantInt. 3295 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3296 return false; 3297 3298 // Some intrinsic operands are required to be immediates. 3299 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3300 } 3301 3302 // It is never allowed to replace the call argument to an intrinsic, but it 3303 // may be possible for a call. 3304 return !isa<IntrinsicInst>(CB); 3305 } 3306 case Instruction::ShuffleVector: 3307 // Shufflevector masks are constant. 3308 return OpIdx != 2; 3309 case Instruction::Switch: 3310 case Instruction::ExtractValue: 3311 // All operands apart from the first are constant. 3312 return OpIdx == 0; 3313 case Instruction::InsertValue: 3314 // All operands apart from the first and the second are constant. 3315 return OpIdx < 2; 3316 case Instruction::Alloca: 3317 // Static allocas (constant size in the entry block) are handled by 3318 // prologue/epilogue insertion so they're free anyway. We definitely don't 3319 // want to make them non-constant. 3320 return !cast<AllocaInst>(I)->isStaticAlloca(); 3321 case Instruction::GetElementPtr: 3322 if (OpIdx == 0) 3323 return true; 3324 gep_type_iterator It = gep_type_begin(I); 3325 for (auto E = std::next(It, OpIdx); It != E; ++It) 3326 if (It.isStruct()) 3327 return false; 3328 return true; 3329 } 3330 } 3331 3332 Value *llvm::invertCondition(Value *Condition) { 3333 // First: Check if it's a constant 3334 if (Constant *C = dyn_cast<Constant>(Condition)) 3335 return ConstantExpr::getNot(C); 3336 3337 // Second: If the condition is already inverted, return the original value 3338 Value *NotCondition; 3339 if (match(Condition, m_Not(m_Value(NotCondition)))) 3340 return NotCondition; 3341 3342 BasicBlock *Parent = nullptr; 3343 Instruction *Inst = dyn_cast<Instruction>(Condition); 3344 if (Inst) 3345 Parent = Inst->getParent(); 3346 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3347 Parent = &Arg->getParent()->getEntryBlock(); 3348 assert(Parent && "Unsupported condition to invert"); 3349 3350 // Third: Check all the users for an invert 3351 for (User *U : Condition->users()) 3352 if (Instruction *I = dyn_cast<Instruction>(U)) 3353 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3354 return I; 3355 3356 // Last option: Create a new instruction 3357 auto *Inverted = 3358 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3359 if (Inst && !isa<PHINode>(Inst)) 3360 Inverted->insertAfter(Inst); 3361 else 3362 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3363 return Inverted; 3364 } 3365 3366 bool llvm::inferAttributesFromOthers(Function &F) { 3367 // Note: We explicitly check for attributes rather than using cover functions 3368 // because some of the cover functions include the logic being implemented. 3369 3370 bool Changed = false; 3371 // readnone + not convergent implies nosync 3372 if (!F.hasFnAttribute(Attribute::NoSync) && 3373 F.doesNotAccessMemory() && !F.isConvergent()) { 3374 F.setNoSync(); 3375 Changed = true; 3376 } 3377 3378 // readonly implies nofree 3379 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3380 F.setDoesNotFreeMemory(); 3381 Changed = true; 3382 } 3383 3384 // willreturn implies mustprogress 3385 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3386 F.setMustProgress(); 3387 Changed = true; 3388 } 3389 3390 // TODO: There are a bunch of cases of restrictive memory effects we 3391 // can infer by inspecting arguments of argmemonly-ish functions. 3392 3393 return Changed; 3394 } 3395