1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/PseudoProbe.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/ErrorHandling.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/ValueMapper.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <climits> 84 #include <cstdint> 85 #include <iterator> 86 #include <map> 87 #include <utility> 88 89 using namespace llvm; 90 using namespace llvm::PatternMatch; 91 92 #define DEBUG_TYPE "local" 93 94 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 95 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 96 97 static cl::opt<bool> PHICSEDebugHash( 98 "phicse-debug-hash", 99 #ifdef EXPENSIVE_CHECKS 100 cl::init(true), 101 #else 102 cl::init(false), 103 #endif 104 cl::Hidden, 105 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 106 "function is well-behaved w.r.t. its isEqual predicate")); 107 108 static cl::opt<unsigned> PHICSENumPHISmallSize( 109 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 110 cl::desc( 111 "When the basic block contains not more than this number of PHI nodes, " 112 "perform a (faster!) exhaustive search instead of set-driven one.")); 113 114 // Max recursion depth for collectBitParts used when detecting bswap and 115 // bitreverse idioms 116 static const unsigned BitPartRecursionMaxDepth = 64; 117 118 //===----------------------------------------------------------------------===// 119 // Local constant propagation. 120 // 121 122 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 123 /// constant value, convert it into an unconditional branch to the constant 124 /// destination. This is a nontrivial operation because the successors of this 125 /// basic block must have their PHI nodes updated. 126 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 127 /// conditions and indirectbr addresses this might make dead if 128 /// DeleteDeadConditions is true. 129 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 130 const TargetLibraryInfo *TLI, 131 DomTreeUpdater *DTU) { 132 Instruction *T = BB->getTerminator(); 133 IRBuilder<> Builder(T); 134 135 // Branch - See if we are conditional jumping on constant 136 if (auto *BI = dyn_cast<BranchInst>(T)) { 137 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 138 139 BasicBlock *Dest1 = BI->getSuccessor(0); 140 BasicBlock *Dest2 = BI->getSuccessor(1); 141 142 if (Dest2 == Dest1) { // Conditional branch to same location? 143 // This branch matches something like this: 144 // br bool %cond, label %Dest, label %Dest 145 // and changes it into: br label %Dest 146 147 // Let the basic block know that we are letting go of one copy of it. 148 assert(BI->getParent() && "Terminator not inserted in block!"); 149 Dest1->removePredecessor(BI->getParent()); 150 151 // Replace the conditional branch with an unconditional one. 152 Builder.CreateBr(Dest1); 153 Value *Cond = BI->getCondition(); 154 BI->eraseFromParent(); 155 if (DeleteDeadConditions) 156 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 157 return true; 158 } 159 160 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 161 // Are we branching on constant? 162 // YES. Change to unconditional branch... 163 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 164 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 165 166 // Let the basic block know that we are letting go of it. Based on this, 167 // it will adjust it's PHI nodes. 168 OldDest->removePredecessor(BB); 169 170 // Replace the conditional branch with an unconditional one. 171 Builder.CreateBr(Destination); 172 BI->eraseFromParent(); 173 if (DTU) 174 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 175 return true; 176 } 177 178 return false; 179 } 180 181 if (auto *SI = dyn_cast<SwitchInst>(T)) { 182 // If we are switching on a constant, we can convert the switch to an 183 // unconditional branch. 184 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 185 BasicBlock *DefaultDest = SI->getDefaultDest(); 186 BasicBlock *TheOnlyDest = DefaultDest; 187 188 // If the default is unreachable, ignore it when searching for TheOnlyDest. 189 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 190 SI->getNumCases() > 0) { 191 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 192 } 193 194 bool Changed = false; 195 196 // Figure out which case it goes to. 197 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 198 // Found case matching a constant operand? 199 if (i->getCaseValue() == CI) { 200 TheOnlyDest = i->getCaseSuccessor(); 201 break; 202 } 203 204 // Check to see if this branch is going to the same place as the default 205 // dest. If so, eliminate it as an explicit compare. 206 if (i->getCaseSuccessor() == DefaultDest) { 207 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 208 unsigned NCases = SI->getNumCases(); 209 // Fold the case metadata into the default if there will be any branches 210 // left, unless the metadata doesn't match the switch. 211 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 212 // Collect branch weights into a vector. 213 SmallVector<uint32_t, 8> Weights; 214 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 215 ++MD_i) { 216 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 217 Weights.push_back(CI->getValue().getZExtValue()); 218 } 219 // Merge weight of this case to the default weight. 220 unsigned idx = i->getCaseIndex(); 221 Weights[0] += Weights[idx+1]; 222 // Remove weight for this case. 223 std::swap(Weights[idx+1], Weights.back()); 224 Weights.pop_back(); 225 SI->setMetadata(LLVMContext::MD_prof, 226 MDBuilder(BB->getContext()). 227 createBranchWeights(Weights)); 228 } 229 // Remove this entry. 230 BasicBlock *ParentBB = SI->getParent(); 231 DefaultDest->removePredecessor(ParentBB); 232 i = SI->removeCase(i); 233 e = SI->case_end(); 234 Changed = true; 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 261 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 262 263 // Remove entries from PHI nodes which we no longer branch to... 264 BasicBlock *SuccToKeep = TheOnlyDest; 265 for (BasicBlock *Succ : successors(SI)) { 266 if (DTU && Succ != TheOnlyDest) 267 RemovedSuccessors.insert(Succ); 268 // Found case matching a constant operand? 269 if (Succ == SuccToKeep) { 270 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 271 } else { 272 Succ->removePredecessor(BB); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) { 282 std::vector<DominatorTree::UpdateType> Updates; 283 Updates.reserve(RemovedSuccessors.size()); 284 for (auto *RemovedSuccessor : RemovedSuccessors) 285 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 286 DTU->applyUpdates(Updates); 287 } 288 return true; 289 } 290 291 if (SI->getNumCases() == 1) { 292 // Otherwise, we can fold this switch into a conditional branch 293 // instruction if it has only one non-default destination. 294 auto FirstCase = *SI->case_begin(); 295 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 296 FirstCase.getCaseValue(), "cond"); 297 298 // Insert the new branch. 299 BranchInst *NewBr = Builder.CreateCondBr(Cond, 300 FirstCase.getCaseSuccessor(), 301 SI->getDefaultDest()); 302 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 303 if (MD && MD->getNumOperands() == 3) { 304 ConstantInt *SICase = 305 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 306 ConstantInt *SIDef = 307 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 308 assert(SICase && SIDef); 309 // The TrueWeight should be the weight for the single case of SI. 310 NewBr->setMetadata(LLVMContext::MD_prof, 311 MDBuilder(BB->getContext()). 312 createBranchWeights(SICase->getValue().getZExtValue(), 313 SIDef->getValue().getZExtValue())); 314 } 315 316 // Update make.implicit metadata to the newly-created conditional branch. 317 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 318 if (MakeImplicitMD) 319 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 320 321 // Delete the old switch. 322 SI->eraseFromParent(); 323 return true; 324 } 325 return Changed; 326 } 327 328 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 329 // indirectbr blockaddress(@F, @BB) -> br label @BB 330 if (auto *BA = 331 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 332 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 333 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 334 335 // Insert the new branch. 336 Builder.CreateBr(TheOnlyDest); 337 338 BasicBlock *SuccToKeep = TheOnlyDest; 339 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 340 BasicBlock *DestBB = IBI->getDestination(i); 341 if (DTU && DestBB != TheOnlyDest) 342 RemovedSuccessors.insert(DestBB); 343 if (IBI->getDestination(i) == SuccToKeep) { 344 SuccToKeep = nullptr; 345 } else { 346 DestBB->removePredecessor(BB); 347 } 348 } 349 Value *Address = IBI->getAddress(); 350 IBI->eraseFromParent(); 351 if (DeleteDeadConditions) 352 // Delete pointer cast instructions. 353 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 354 355 // Also zap the blockaddress constant if there are no users remaining, 356 // otherwise the destination is still marked as having its address taken. 357 if (BA->use_empty()) 358 BA->destroyConstant(); 359 360 // If we didn't find our destination in the IBI successor list, then we 361 // have undefined behavior. Replace the unconditional branch with an 362 // 'unreachable' instruction. 363 if (SuccToKeep) { 364 BB->getTerminator()->eraseFromParent(); 365 new UnreachableInst(BB->getContext(), BB); 366 } 367 368 if (DTU) { 369 std::vector<DominatorTree::UpdateType> Updates; 370 Updates.reserve(RemovedSuccessors.size()); 371 for (auto *RemovedSuccessor : RemovedSuccessors) 372 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 373 DTU->applyUpdates(Updates); 374 } 375 return true; 376 } 377 } 378 379 return false; 380 } 381 382 //===----------------------------------------------------------------------===// 383 // Local dead code elimination. 384 // 385 386 /// isInstructionTriviallyDead - Return true if the result produced by the 387 /// instruction is not used, and the instruction has no side effects. 388 /// 389 bool llvm::isInstructionTriviallyDead(Instruction *I, 390 const TargetLibraryInfo *TLI) { 391 if (!I->use_empty()) 392 return false; 393 return wouldInstructionBeTriviallyDead(I, TLI); 394 } 395 396 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 397 const TargetLibraryInfo *TLI) { 398 if (I->isTerminator()) 399 return false; 400 401 // We don't want the landingpad-like instructions removed by anything this 402 // general. 403 if (I->isEHPad()) 404 return false; 405 406 // We don't want debug info removed by anything this general, unless 407 // debug info is empty. 408 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 409 if (DDI->getAddress()) 410 return false; 411 return true; 412 } 413 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 414 if (DVI->hasArgList() || DVI->getValue(0)) 415 return false; 416 return true; 417 } 418 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 419 if (DLI->getLabel()) 420 return false; 421 return true; 422 } 423 424 if (!I->willReturn()) 425 return false; 426 427 if (!I->mayHaveSideEffects()) 428 return true; 429 430 // Special case intrinsics that "may have side effects" but can be deleted 431 // when dead. 432 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 433 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 434 if (II->getIntrinsicID() == Intrinsic::stacksave || 435 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 436 return true; 437 438 if (II->isLifetimeStartOrEnd()) { 439 auto *Arg = II->getArgOperand(1); 440 // Lifetime intrinsics are dead when their right-hand is undef. 441 if (isa<UndefValue>(Arg)) 442 return true; 443 // If the right-hand is an alloc, global, or argument and the only uses 444 // are lifetime intrinsics then the intrinsics are dead. 445 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 446 return llvm::all_of(Arg->uses(), [](Use &Use) { 447 if (IntrinsicInst *IntrinsicUse = 448 dyn_cast<IntrinsicInst>(Use.getUser())) 449 return IntrinsicUse->isLifetimeStartOrEnd(); 450 return false; 451 }); 452 return false; 453 } 454 455 // Assumptions are dead if their condition is trivially true. Guards on 456 // true are operationally no-ops. In the future we can consider more 457 // sophisticated tradeoffs for guards considering potential for check 458 // widening, but for now we keep things simple. 459 if ((II->getIntrinsicID() == Intrinsic::assume && 460 isAssumeWithEmptyBundle(*II)) || 461 II->getIntrinsicID() == Intrinsic::experimental_guard) { 462 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 463 return !Cond->isZero(); 464 465 return false; 466 } 467 } 468 469 if (isAllocLikeFn(I, TLI)) 470 return true; 471 472 if (CallInst *CI = isFreeCall(I, TLI)) 473 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 474 return C->isNullValue() || isa<UndefValue>(C); 475 476 if (auto *Call = dyn_cast<CallBase>(I)) 477 if (isMathLibCallNoop(Call, TLI)) 478 return true; 479 480 return false; 481 } 482 483 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 484 /// trivially dead instruction, delete it. If that makes any of its operands 485 /// trivially dead, delete them too, recursively. Return true if any 486 /// instructions were deleted. 487 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 488 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 489 std::function<void(Value *)> AboutToDeleteCallback) { 490 Instruction *I = dyn_cast<Instruction>(V); 491 if (!I || !isInstructionTriviallyDead(I, TLI)) 492 return false; 493 494 SmallVector<WeakTrackingVH, 16> DeadInsts; 495 DeadInsts.push_back(I); 496 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 497 AboutToDeleteCallback); 498 499 return true; 500 } 501 502 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 503 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 504 MemorySSAUpdater *MSSAU, 505 std::function<void(Value *)> AboutToDeleteCallback) { 506 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 507 for (; S != E; ++S) { 508 auto *I = cast<Instruction>(DeadInsts[S]); 509 if (!isInstructionTriviallyDead(I)) { 510 DeadInsts[S] = nullptr; 511 ++Alive; 512 } 513 } 514 if (Alive == E) 515 return false; 516 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 517 AboutToDeleteCallback); 518 return true; 519 } 520 521 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 522 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 523 MemorySSAUpdater *MSSAU, 524 std::function<void(Value *)> AboutToDeleteCallback) { 525 // Process the dead instruction list until empty. 526 while (!DeadInsts.empty()) { 527 Value *V = DeadInsts.pop_back_val(); 528 Instruction *I = cast_or_null<Instruction>(V); 529 if (!I) 530 continue; 531 assert(isInstructionTriviallyDead(I, TLI) && 532 "Live instruction found in dead worklist!"); 533 assert(I->use_empty() && "Instructions with uses are not dead."); 534 535 // Don't lose the debug info while deleting the instructions. 536 salvageDebugInfo(*I); 537 538 if (AboutToDeleteCallback) 539 AboutToDeleteCallback(I); 540 541 // Null out all of the instruction's operands to see if any operand becomes 542 // dead as we go. 543 for (Use &OpU : I->operands()) { 544 Value *OpV = OpU.get(); 545 OpU.set(nullptr); 546 547 if (!OpV->use_empty()) 548 continue; 549 550 // If the operand is an instruction that became dead as we nulled out the 551 // operand, and if it is 'trivially' dead, delete it in a future loop 552 // iteration. 553 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 554 if (isInstructionTriviallyDead(OpI, TLI)) 555 DeadInsts.push_back(OpI); 556 } 557 if (MSSAU) 558 MSSAU->removeMemoryAccess(I); 559 560 I->eraseFromParent(); 561 } 562 } 563 564 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 565 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 566 findDbgUsers(DbgUsers, I); 567 for (auto *DII : DbgUsers) { 568 Value *Undef = UndefValue::get(I->getType()); 569 DII->replaceVariableLocationOp(I, Undef); 570 } 571 return !DbgUsers.empty(); 572 } 573 574 /// areAllUsesEqual - Check whether the uses of a value are all the same. 575 /// This is similar to Instruction::hasOneUse() except this will also return 576 /// true when there are no uses or multiple uses that all refer to the same 577 /// value. 578 static bool areAllUsesEqual(Instruction *I) { 579 Value::user_iterator UI = I->user_begin(); 580 Value::user_iterator UE = I->user_end(); 581 if (UI == UE) 582 return true; 583 584 User *TheUse = *UI; 585 for (++UI; UI != UE; ++UI) { 586 if (*UI != TheUse) 587 return false; 588 } 589 return true; 590 } 591 592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 593 /// dead PHI node, due to being a def-use chain of single-use nodes that 594 /// either forms a cycle or is terminated by a trivially dead instruction, 595 /// delete it. If that makes any of its operands trivially dead, delete them 596 /// too, recursively. Return true if a change was made. 597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 598 const TargetLibraryInfo *TLI, 599 llvm::MemorySSAUpdater *MSSAU) { 600 SmallPtrSet<Instruction*, 4> Visited; 601 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 602 I = cast<Instruction>(*I->user_begin())) { 603 if (I->use_empty()) 604 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 605 606 // If we find an instruction more than once, we're on a cycle that 607 // won't prove fruitful. 608 if (!Visited.insert(I).second) { 609 // Break the cycle and delete the instruction and its operands. 610 I->replaceAllUsesWith(UndefValue::get(I->getType())); 611 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 612 return true; 613 } 614 } 615 return false; 616 } 617 618 static bool 619 simplifyAndDCEInstruction(Instruction *I, 620 SmallSetVector<Instruction *, 16> &WorkList, 621 const DataLayout &DL, 622 const TargetLibraryInfo *TLI) { 623 if (isInstructionTriviallyDead(I, TLI)) { 624 salvageDebugInfo(*I); 625 626 // Null out all of the instruction's operands to see if any operand becomes 627 // dead as we go. 628 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 629 Value *OpV = I->getOperand(i); 630 I->setOperand(i, nullptr); 631 632 if (!OpV->use_empty() || I == OpV) 633 continue; 634 635 // If the operand is an instruction that became dead as we nulled out the 636 // operand, and if it is 'trivially' dead, delete it in a future loop 637 // iteration. 638 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 639 if (isInstructionTriviallyDead(OpI, TLI)) 640 WorkList.insert(OpI); 641 } 642 643 I->eraseFromParent(); 644 645 return true; 646 } 647 648 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 649 // Add the users to the worklist. CAREFUL: an instruction can use itself, 650 // in the case of a phi node. 651 for (User *U : I->users()) { 652 if (U != I) { 653 WorkList.insert(cast<Instruction>(U)); 654 } 655 } 656 657 // Replace the instruction with its simplified value. 658 bool Changed = false; 659 if (!I->use_empty()) { 660 I->replaceAllUsesWith(SimpleV); 661 Changed = true; 662 } 663 if (isInstructionTriviallyDead(I, TLI)) { 664 I->eraseFromParent(); 665 Changed = true; 666 } 667 return Changed; 668 } 669 return false; 670 } 671 672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 673 /// simplify any instructions in it and recursively delete dead instructions. 674 /// 675 /// This returns true if it changed the code, note that it can delete 676 /// instructions in other blocks as well in this block. 677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 678 const TargetLibraryInfo *TLI) { 679 bool MadeChange = false; 680 const DataLayout &DL = BB->getModule()->getDataLayout(); 681 682 #ifndef NDEBUG 683 // In debug builds, ensure that the terminator of the block is never replaced 684 // or deleted by these simplifications. The idea of simplification is that it 685 // cannot introduce new instructions, and there is no way to replace the 686 // terminator of a block without introducing a new instruction. 687 AssertingVH<Instruction> TerminatorVH(&BB->back()); 688 #endif 689 690 SmallSetVector<Instruction *, 16> WorkList; 691 // Iterate over the original function, only adding insts to the worklist 692 // if they actually need to be revisited. This avoids having to pre-init 693 // the worklist with the entire function's worth of instructions. 694 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 695 BI != E;) { 696 assert(!BI->isTerminator()); 697 Instruction *I = &*BI; 698 ++BI; 699 700 // We're visiting this instruction now, so make sure it's not in the 701 // worklist from an earlier visit. 702 if (!WorkList.count(I)) 703 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 704 } 705 706 while (!WorkList.empty()) { 707 Instruction *I = WorkList.pop_back_val(); 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 return MadeChange; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Control Flow Graph Restructuring. 715 // 716 717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 718 DomTreeUpdater *DTU) { 719 720 // If BB has single-entry PHI nodes, fold them. 721 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 722 Value *NewVal = PN->getIncomingValue(0); 723 // Replace self referencing PHI with undef, it must be dead. 724 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 725 PN->replaceAllUsesWith(NewVal); 726 PN->eraseFromParent(); 727 } 728 729 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 730 assert(PredBB && "Block doesn't have a single predecessor!"); 731 732 bool ReplaceEntryBB = false; 733 if (PredBB == &DestBB->getParent()->getEntryBlock()) 734 ReplaceEntryBB = true; 735 736 // DTU updates: Collect all the edges that enter 737 // PredBB. These dominator edges will be redirected to DestBB. 738 SmallVector<DominatorTree::UpdateType, 32> Updates; 739 740 if (DTU) { 741 for (BasicBlock *PredPredBB : predecessors(PredBB)) { 742 // This predecessor of PredBB may already have DestBB as a successor. 743 if (!llvm::is_contained(successors(PredPredBB), DestBB)) 744 Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB}); 745 Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB}); 746 } 747 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 748 } 749 750 // Zap anything that took the address of DestBB. Not doing this will give the 751 // address an invalid value. 752 if (DestBB->hasAddressTaken()) { 753 BlockAddress *BA = BlockAddress::get(DestBB); 754 Constant *Replacement = 755 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 756 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 757 BA->getType())); 758 BA->destroyConstant(); 759 } 760 761 // Anything that branched to PredBB now branches to DestBB. 762 PredBB->replaceAllUsesWith(DestBB); 763 764 // Splice all the instructions from PredBB to DestBB. 765 PredBB->getTerminator()->eraseFromParent(); 766 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 767 new UnreachableInst(PredBB->getContext(), PredBB); 768 769 // If the PredBB is the entry block of the function, move DestBB up to 770 // become the entry block after we erase PredBB. 771 if (ReplaceEntryBB) 772 DestBB->moveAfter(PredBB); 773 774 if (DTU) { 775 assert(PredBB->getInstList().size() == 1 && 776 isa<UnreachableInst>(PredBB->getTerminator()) && 777 "The successor list of PredBB isn't empty before " 778 "applying corresponding DTU updates."); 779 DTU->applyUpdatesPermissive(Updates); 780 DTU->deleteBB(PredBB); 781 // Recalculation of DomTree is needed when updating a forward DomTree and 782 // the Entry BB is replaced. 783 if (ReplaceEntryBB && DTU->hasDomTree()) { 784 // The entry block was removed and there is no external interface for 785 // the dominator tree to be notified of this change. In this corner-case 786 // we recalculate the entire tree. 787 DTU->recalculate(*(DestBB->getParent())); 788 } 789 } 790 791 else { 792 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 793 } 794 } 795 796 /// Return true if we can choose one of these values to use in place of the 797 /// other. Note that we will always choose the non-undef value to keep. 798 static bool CanMergeValues(Value *First, Value *Second) { 799 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 800 } 801 802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 803 /// branch to Succ, into Succ. 804 /// 805 /// Assumption: Succ is the single successor for BB. 806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 807 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 808 809 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 810 << Succ->getName() << "\n"); 811 // Shortcut, if there is only a single predecessor it must be BB and merging 812 // is always safe 813 if (Succ->getSinglePredecessor()) return true; 814 815 // Make a list of the predecessors of BB 816 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 817 818 // Look at all the phi nodes in Succ, to see if they present a conflict when 819 // merging these blocks 820 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 821 PHINode *PN = cast<PHINode>(I); 822 823 // If the incoming value from BB is again a PHINode in 824 // BB which has the same incoming value for *PI as PN does, we can 825 // merge the phi nodes and then the blocks can still be merged 826 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 827 if (BBPN && BBPN->getParent() == BB) { 828 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 829 BasicBlock *IBB = PN->getIncomingBlock(PI); 830 if (BBPreds.count(IBB) && 831 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 832 PN->getIncomingValue(PI))) { 833 LLVM_DEBUG(dbgs() 834 << "Can't fold, phi node " << PN->getName() << " in " 835 << Succ->getName() << " is conflicting with " 836 << BBPN->getName() << " with regard to common predecessor " 837 << IBB->getName() << "\n"); 838 return false; 839 } 840 } 841 } else { 842 Value* Val = PN->getIncomingValueForBlock(BB); 843 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 844 // See if the incoming value for the common predecessor is equal to the 845 // one for BB, in which case this phi node will not prevent the merging 846 // of the block. 847 BasicBlock *IBB = PN->getIncomingBlock(PI); 848 if (BBPreds.count(IBB) && 849 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 850 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 851 << " in " << Succ->getName() 852 << " is conflicting with regard to common " 853 << "predecessor " << IBB->getName() << "\n"); 854 return false; 855 } 856 } 857 } 858 } 859 860 return true; 861 } 862 863 using PredBlockVector = SmallVector<BasicBlock *, 16>; 864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 865 866 /// Determines the value to use as the phi node input for a block. 867 /// 868 /// Select between \p OldVal any value that we know flows from \p BB 869 /// to a particular phi on the basis of which one (if either) is not 870 /// undef. Update IncomingValues based on the selected value. 871 /// 872 /// \param OldVal The value we are considering selecting. 873 /// \param BB The block that the value flows in from. 874 /// \param IncomingValues A map from block-to-value for other phi inputs 875 /// that we have examined. 876 /// 877 /// \returns the selected value. 878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 879 IncomingValueMap &IncomingValues) { 880 if (!isa<UndefValue>(OldVal)) { 881 assert((!IncomingValues.count(BB) || 882 IncomingValues.find(BB)->second == OldVal) && 883 "Expected OldVal to match incoming value from BB!"); 884 885 IncomingValues.insert(std::make_pair(BB, OldVal)); 886 return OldVal; 887 } 888 889 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 890 if (It != IncomingValues.end()) return It->second; 891 892 return OldVal; 893 } 894 895 /// Create a map from block to value for the operands of a 896 /// given phi. 897 /// 898 /// Create a map from block to value for each non-undef value flowing 899 /// into \p PN. 900 /// 901 /// \param PN The phi we are collecting the map for. 902 /// \param IncomingValues [out] The map from block to value for this phi. 903 static void gatherIncomingValuesToPhi(PHINode *PN, 904 IncomingValueMap &IncomingValues) { 905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 906 BasicBlock *BB = PN->getIncomingBlock(i); 907 Value *V = PN->getIncomingValue(i); 908 909 if (!isa<UndefValue>(V)) 910 IncomingValues.insert(std::make_pair(BB, V)); 911 } 912 } 913 914 /// Replace the incoming undef values to a phi with the values 915 /// from a block-to-value map. 916 /// 917 /// \param PN The phi we are replacing the undefs in. 918 /// \param IncomingValues A map from block to value. 919 static void replaceUndefValuesInPhi(PHINode *PN, 920 const IncomingValueMap &IncomingValues) { 921 SmallVector<unsigned> TrueUndefOps; 922 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 923 Value *V = PN->getIncomingValue(i); 924 925 if (!isa<UndefValue>(V)) continue; 926 927 BasicBlock *BB = PN->getIncomingBlock(i); 928 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 929 930 // Keep track of undef/poison incoming values. Those must match, so we fix 931 // them up below if needed. 932 // Note: this is conservatively correct, but we could try harder and group 933 // the undef values per incoming basic block. 934 if (It == IncomingValues.end()) { 935 TrueUndefOps.push_back(i); 936 continue; 937 } 938 939 // There is a defined value for this incoming block, so map this undef 940 // incoming value to the defined value. 941 PN->setIncomingValue(i, It->second); 942 } 943 944 // If there are both undef and poison values incoming, then convert those 945 // values to undef. It is invalid to have different values for the same 946 // incoming block. 947 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 948 return isa<PoisonValue>(PN->getIncomingValue(i)); 949 }); 950 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 951 for (unsigned i : TrueUndefOps) 952 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 953 } 954 } 955 956 /// Replace a value flowing from a block to a phi with 957 /// potentially multiple instances of that value flowing from the 958 /// block's predecessors to the phi. 959 /// 960 /// \param BB The block with the value flowing into the phi. 961 /// \param BBPreds The predecessors of BB. 962 /// \param PN The phi that we are updating. 963 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 964 const PredBlockVector &BBPreds, 965 PHINode *PN) { 966 Value *OldVal = PN->removeIncomingValue(BB, false); 967 assert(OldVal && "No entry in PHI for Pred BB!"); 968 969 IncomingValueMap IncomingValues; 970 971 // We are merging two blocks - BB, and the block containing PN - and 972 // as a result we need to redirect edges from the predecessors of BB 973 // to go to the block containing PN, and update PN 974 // accordingly. Since we allow merging blocks in the case where the 975 // predecessor and successor blocks both share some predecessors, 976 // and where some of those common predecessors might have undef 977 // values flowing into PN, we want to rewrite those values to be 978 // consistent with the non-undef values. 979 980 gatherIncomingValuesToPhi(PN, IncomingValues); 981 982 // If this incoming value is one of the PHI nodes in BB, the new entries 983 // in the PHI node are the entries from the old PHI. 984 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 985 PHINode *OldValPN = cast<PHINode>(OldVal); 986 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 987 // Note that, since we are merging phi nodes and BB and Succ might 988 // have common predecessors, we could end up with a phi node with 989 // identical incoming branches. This will be cleaned up later (and 990 // will trigger asserts if we try to clean it up now, without also 991 // simplifying the corresponding conditional branch). 992 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 993 Value *PredVal = OldValPN->getIncomingValue(i); 994 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 995 IncomingValues); 996 997 // And add a new incoming value for this predecessor for the 998 // newly retargeted branch. 999 PN->addIncoming(Selected, PredBB); 1000 } 1001 } else { 1002 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1003 // Update existing incoming values in PN for this 1004 // predecessor of BB. 1005 BasicBlock *PredBB = BBPreds[i]; 1006 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1007 IncomingValues); 1008 1009 // And add a new incoming value for this predecessor for the 1010 // newly retargeted branch. 1011 PN->addIncoming(Selected, PredBB); 1012 } 1013 } 1014 1015 replaceUndefValuesInPhi(PN, IncomingValues); 1016 } 1017 1018 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1019 DomTreeUpdater *DTU) { 1020 assert(BB != &BB->getParent()->getEntryBlock() && 1021 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1022 1023 // We can't eliminate infinite loops. 1024 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1025 if (BB == Succ) return false; 1026 1027 // Check to see if merging these blocks would cause conflicts for any of the 1028 // phi nodes in BB or Succ. If not, we can safely merge. 1029 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1030 1031 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1032 // has uses which will not disappear when the PHI nodes are merged. It is 1033 // possible to handle such cases, but difficult: it requires checking whether 1034 // BB dominates Succ, which is non-trivial to calculate in the case where 1035 // Succ has multiple predecessors. Also, it requires checking whether 1036 // constructing the necessary self-referential PHI node doesn't introduce any 1037 // conflicts; this isn't too difficult, but the previous code for doing this 1038 // was incorrect. 1039 // 1040 // Note that if this check finds a live use, BB dominates Succ, so BB is 1041 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1042 // folding the branch isn't profitable in that case anyway. 1043 if (!Succ->getSinglePredecessor()) { 1044 BasicBlock::iterator BBI = BB->begin(); 1045 while (isa<PHINode>(*BBI)) { 1046 for (Use &U : BBI->uses()) { 1047 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1048 if (PN->getIncomingBlock(U) != BB) 1049 return false; 1050 } else { 1051 return false; 1052 } 1053 } 1054 ++BBI; 1055 } 1056 } 1057 1058 // We cannot fold the block if it's a branch to an already present callbr 1059 // successor because that creates duplicate successors. 1060 for (BasicBlock *PredBB : predecessors(BB)) { 1061 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1062 if (Succ == CBI->getDefaultDest()) 1063 return false; 1064 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1065 if (Succ == CBI->getIndirectDest(i)) 1066 return false; 1067 } 1068 } 1069 1070 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1071 1072 SmallVector<DominatorTree::UpdateType, 32> Updates; 1073 if (DTU) { 1074 // All predecessors of BB will be moved to Succ. 1075 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1076 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1077 for (auto *Predecessor : Predecessors) { 1078 // This predecessor of BB may already have Succ as a successor. 1079 if (!llvm::is_contained(successors(Predecessor), Succ)) 1080 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1081 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1082 } 1083 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1084 } 1085 1086 if (isa<PHINode>(Succ->begin())) { 1087 // If there is more than one pred of succ, and there are PHI nodes in 1088 // the successor, then we need to add incoming edges for the PHI nodes 1089 // 1090 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1091 1092 // Loop over all of the PHI nodes in the successor of BB. 1093 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1094 PHINode *PN = cast<PHINode>(I); 1095 1096 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1097 } 1098 } 1099 1100 if (Succ->getSinglePredecessor()) { 1101 // BB is the only predecessor of Succ, so Succ will end up with exactly 1102 // the same predecessors BB had. 1103 1104 // Copy over any phi, debug or lifetime instruction. 1105 BB->getTerminator()->eraseFromParent(); 1106 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1107 BB->getInstList()); 1108 } else { 1109 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1110 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1111 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1112 PN->eraseFromParent(); 1113 } 1114 } 1115 1116 // If the unconditional branch we replaced contains llvm.loop metadata, we 1117 // add the metadata to the branch instructions in the predecessors. 1118 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1119 Instruction *TI = BB->getTerminator(); 1120 if (TI) 1121 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1122 for (BasicBlock *Pred : predecessors(BB)) 1123 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1124 1125 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1126 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1127 // into Succ and mark them dangling. This should allow the counts inference a 1128 // chance to get a more reasonable weight for BB. 1129 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1130 1131 // Everything that jumped to BB now goes to Succ. 1132 BB->replaceAllUsesWith(Succ); 1133 if (!Succ->hasName()) Succ->takeName(BB); 1134 1135 // Clear the successor list of BB to match updates applying to DTU later. 1136 if (BB->getTerminator()) 1137 BB->getInstList().pop_back(); 1138 new UnreachableInst(BB->getContext(), BB); 1139 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1140 "applying corresponding DTU updates."); 1141 1142 if (DTU) { 1143 DTU->applyUpdates(Updates); 1144 DTU->deleteBB(BB); 1145 } else { 1146 BB->eraseFromParent(); // Delete the old basic block. 1147 } 1148 return true; 1149 } 1150 1151 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1152 // This implementation doesn't currently consider undef operands 1153 // specially. Theoretically, two phis which are identical except for 1154 // one having an undef where the other doesn't could be collapsed. 1155 1156 bool Changed = false; 1157 1158 // Examine each PHI. 1159 // Note that increment of I must *NOT* be in the iteration_expression, since 1160 // we don't want to immediately advance when we restart from the beginning. 1161 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1162 ++I; 1163 // Is there an identical PHI node in this basic block? 1164 // Note that we only look in the upper square's triangle, 1165 // we already checked that the lower triangle PHI's aren't identical. 1166 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1167 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1168 continue; 1169 // A duplicate. Replace this PHI with the base PHI. 1170 ++NumPHICSEs; 1171 DuplicatePN->replaceAllUsesWith(PN); 1172 DuplicatePN->eraseFromParent(); 1173 Changed = true; 1174 1175 // The RAUW can change PHIs that we already visited. 1176 I = BB->begin(); 1177 break; // Start over from the beginning. 1178 } 1179 } 1180 return Changed; 1181 } 1182 1183 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1184 // This implementation doesn't currently consider undef operands 1185 // specially. Theoretically, two phis which are identical except for 1186 // one having an undef where the other doesn't could be collapsed. 1187 1188 struct PHIDenseMapInfo { 1189 static PHINode *getEmptyKey() { 1190 return DenseMapInfo<PHINode *>::getEmptyKey(); 1191 } 1192 1193 static PHINode *getTombstoneKey() { 1194 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1195 } 1196 1197 static bool isSentinel(PHINode *PN) { 1198 return PN == getEmptyKey() || PN == getTombstoneKey(); 1199 } 1200 1201 // WARNING: this logic must be kept in sync with 1202 // Instruction::isIdenticalToWhenDefined()! 1203 static unsigned getHashValueImpl(PHINode *PN) { 1204 // Compute a hash value on the operands. Instcombine will likely have 1205 // sorted them, which helps expose duplicates, but we have to check all 1206 // the operands to be safe in case instcombine hasn't run. 1207 return static_cast<unsigned>(hash_combine( 1208 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1209 hash_combine_range(PN->block_begin(), PN->block_end()))); 1210 } 1211 1212 static unsigned getHashValue(PHINode *PN) { 1213 #ifndef NDEBUG 1214 // If -phicse-debug-hash was specified, return a constant -- this 1215 // will force all hashing to collide, so we'll exhaustively search 1216 // the table for a match, and the assertion in isEqual will fire if 1217 // there's a bug causing equal keys to hash differently. 1218 if (PHICSEDebugHash) 1219 return 0; 1220 #endif 1221 return getHashValueImpl(PN); 1222 } 1223 1224 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1225 if (isSentinel(LHS) || isSentinel(RHS)) 1226 return LHS == RHS; 1227 return LHS->isIdenticalTo(RHS); 1228 } 1229 1230 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1231 // These comparisons are nontrivial, so assert that equality implies 1232 // hash equality (DenseMap demands this as an invariant). 1233 bool Result = isEqualImpl(LHS, RHS); 1234 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1235 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1236 return Result; 1237 } 1238 }; 1239 1240 // Set of unique PHINodes. 1241 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1242 PHISet.reserve(4 * PHICSENumPHISmallSize); 1243 1244 // Examine each PHI. 1245 bool Changed = false; 1246 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1247 auto Inserted = PHISet.insert(PN); 1248 if (!Inserted.second) { 1249 // A duplicate. Replace this PHI with its duplicate. 1250 ++NumPHICSEs; 1251 PN->replaceAllUsesWith(*Inserted.first); 1252 PN->eraseFromParent(); 1253 Changed = true; 1254 1255 // The RAUW can change PHIs that we already visited. Start over from the 1256 // beginning. 1257 PHISet.clear(); 1258 I = BB->begin(); 1259 } 1260 } 1261 1262 return Changed; 1263 } 1264 1265 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1266 if ( 1267 #ifndef NDEBUG 1268 !PHICSEDebugHash && 1269 #endif 1270 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1271 return EliminateDuplicatePHINodesNaiveImpl(BB); 1272 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1273 } 1274 1275 /// If the specified pointer points to an object that we control, try to modify 1276 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1277 /// the value after the operation, which may be lower than PrefAlign. 1278 /// 1279 /// Increating value alignment isn't often possible though. If alignment is 1280 /// important, a more reliable approach is to simply align all global variables 1281 /// and allocation instructions to their preferred alignment from the beginning. 1282 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1283 const DataLayout &DL) { 1284 V = V->stripPointerCasts(); 1285 1286 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1287 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1288 // than the current alignment, as the known bits calculation should have 1289 // already taken it into account. However, this is not always the case, 1290 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1291 // doesn't. 1292 Align CurrentAlign = AI->getAlign(); 1293 if (PrefAlign <= CurrentAlign) 1294 return CurrentAlign; 1295 1296 // If the preferred alignment is greater than the natural stack alignment 1297 // then don't round up. This avoids dynamic stack realignment. 1298 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1299 return CurrentAlign; 1300 AI->setAlignment(PrefAlign); 1301 return PrefAlign; 1302 } 1303 1304 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1305 // TODO: as above, this shouldn't be necessary. 1306 Align CurrentAlign = GO->getPointerAlignment(DL); 1307 if (PrefAlign <= CurrentAlign) 1308 return CurrentAlign; 1309 1310 // If there is a large requested alignment and we can, bump up the alignment 1311 // of the global. If the memory we set aside for the global may not be the 1312 // memory used by the final program then it is impossible for us to reliably 1313 // enforce the preferred alignment. 1314 if (!GO->canIncreaseAlignment()) 1315 return CurrentAlign; 1316 1317 GO->setAlignment(PrefAlign); 1318 return PrefAlign; 1319 } 1320 1321 return Align(1); 1322 } 1323 1324 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1325 const DataLayout &DL, 1326 const Instruction *CxtI, 1327 AssumptionCache *AC, 1328 const DominatorTree *DT) { 1329 assert(V->getType()->isPointerTy() && 1330 "getOrEnforceKnownAlignment expects a pointer!"); 1331 1332 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1333 unsigned TrailZ = Known.countMinTrailingZeros(); 1334 1335 // Avoid trouble with ridiculously large TrailZ values, such as 1336 // those computed from a null pointer. 1337 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1338 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1339 1340 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1341 1342 if (PrefAlign && *PrefAlign > Alignment) 1343 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1344 1345 // We don't need to make any adjustment. 1346 return Alignment; 1347 } 1348 1349 ///===---------------------------------------------------------------------===// 1350 /// Dbg Intrinsic utilities 1351 /// 1352 1353 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1354 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1355 DIExpression *DIExpr, 1356 PHINode *APN) { 1357 // Since we can't guarantee that the original dbg.declare instrinsic 1358 // is removed by LowerDbgDeclare(), we need to make sure that we are 1359 // not inserting the same dbg.value intrinsic over and over. 1360 SmallVector<DbgValueInst *, 1> DbgValues; 1361 findDbgValues(DbgValues, APN); 1362 for (auto *DVI : DbgValues) { 1363 assert(is_contained(DVI->getValues(), APN)); 1364 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1365 return true; 1366 } 1367 return false; 1368 } 1369 1370 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1371 /// (or fragment of the variable) described by \p DII. 1372 /// 1373 /// This is primarily intended as a helper for the different 1374 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1375 /// converted describes an alloca'd variable, so we need to use the 1376 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1377 /// identified as covering an n-bit fragment, if the store size of i1 is at 1378 /// least n bits. 1379 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1380 const DataLayout &DL = DII->getModule()->getDataLayout(); 1381 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1382 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1383 assert(!ValueSize.isScalable() && 1384 "Fragments don't work on scalable types."); 1385 return ValueSize.getFixedSize() >= *FragmentSize; 1386 } 1387 // We can't always calculate the size of the DI variable (e.g. if it is a 1388 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1389 // intead. 1390 if (DII->isAddressOfVariable()) { 1391 // DII should have exactly 1 location when it is an address. 1392 assert(DII->getNumVariableLocationOps() == 1 && 1393 "address of variable must have exactly 1 location operand."); 1394 if (auto *AI = 1395 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1396 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1397 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1398 "Both sizes should agree on the scalable flag."); 1399 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1400 } 1401 } 1402 } 1403 // Could not determine size of variable. Conservatively return false. 1404 return false; 1405 } 1406 1407 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1408 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1409 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1410 /// case this DebugLoc leaks into any adjacent instructions. 1411 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1412 // Original dbg.declare must have a location. 1413 DebugLoc DeclareLoc = DII->getDebugLoc(); 1414 MDNode *Scope = DeclareLoc.getScope(); 1415 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1416 // Produce an unknown location with the correct scope / inlinedAt fields. 1417 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1418 } 1419 1420 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1421 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1422 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1423 StoreInst *SI, DIBuilder &Builder) { 1424 assert(DII->isAddressOfVariable()); 1425 auto *DIVar = DII->getVariable(); 1426 assert(DIVar && "Missing variable"); 1427 auto *DIExpr = DII->getExpression(); 1428 Value *DV = SI->getValueOperand(); 1429 1430 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1431 1432 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1433 // FIXME: If storing to a part of the variable described by the dbg.declare, 1434 // then we want to insert a dbg.value for the corresponding fragment. 1435 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1436 << *DII << '\n'); 1437 // For now, when there is a store to parts of the variable (but we do not 1438 // know which part) we insert an dbg.value instrinsic to indicate that we 1439 // know nothing about the variable's content. 1440 DV = UndefValue::get(DV->getType()); 1441 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1442 return; 1443 } 1444 1445 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1446 } 1447 1448 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1449 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1450 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1451 LoadInst *LI, DIBuilder &Builder) { 1452 auto *DIVar = DII->getVariable(); 1453 auto *DIExpr = DII->getExpression(); 1454 assert(DIVar && "Missing variable"); 1455 1456 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1457 // FIXME: If only referring to a part of the variable described by the 1458 // dbg.declare, then we want to insert a dbg.value for the corresponding 1459 // fragment. 1460 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1461 << *DII << '\n'); 1462 return; 1463 } 1464 1465 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1466 1467 // We are now tracking the loaded value instead of the address. In the 1468 // future if multi-location support is added to the IR, it might be 1469 // preferable to keep tracking both the loaded value and the original 1470 // address in case the alloca can not be elided. 1471 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1472 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1473 DbgValue->insertAfter(LI); 1474 } 1475 1476 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1477 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1478 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1479 PHINode *APN, DIBuilder &Builder) { 1480 auto *DIVar = DII->getVariable(); 1481 auto *DIExpr = DII->getExpression(); 1482 assert(DIVar && "Missing variable"); 1483 1484 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1485 return; 1486 1487 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1488 // FIXME: If only referring to a part of the variable described by the 1489 // dbg.declare, then we want to insert a dbg.value for the corresponding 1490 // fragment. 1491 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1492 << *DII << '\n'); 1493 return; 1494 } 1495 1496 BasicBlock *BB = APN->getParent(); 1497 auto InsertionPt = BB->getFirstInsertionPt(); 1498 1499 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1500 1501 // The block may be a catchswitch block, which does not have a valid 1502 // insertion point. 1503 // FIXME: Insert dbg.value markers in the successors when appropriate. 1504 if (InsertionPt != BB->end()) 1505 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1506 } 1507 1508 /// Determine whether this alloca is either a VLA or an array. 1509 static bool isArray(AllocaInst *AI) { 1510 return AI->isArrayAllocation() || 1511 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1512 } 1513 1514 /// Determine whether this alloca is a structure. 1515 static bool isStructure(AllocaInst *AI) { 1516 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1517 } 1518 1519 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1520 /// of llvm.dbg.value intrinsics. 1521 bool llvm::LowerDbgDeclare(Function &F) { 1522 bool Changed = false; 1523 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1524 SmallVector<DbgDeclareInst *, 4> Dbgs; 1525 for (auto &FI : F) 1526 for (Instruction &BI : FI) 1527 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1528 Dbgs.push_back(DDI); 1529 1530 if (Dbgs.empty()) 1531 return Changed; 1532 1533 for (auto &I : Dbgs) { 1534 DbgDeclareInst *DDI = I; 1535 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1536 // If this is an alloca for a scalar variable, insert a dbg.value 1537 // at each load and store to the alloca and erase the dbg.declare. 1538 // The dbg.values allow tracking a variable even if it is not 1539 // stored on the stack, while the dbg.declare can only describe 1540 // the stack slot (and at a lexical-scope granularity). Later 1541 // passes will attempt to elide the stack slot. 1542 if (!AI || isArray(AI) || isStructure(AI)) 1543 continue; 1544 1545 // A volatile load/store means that the alloca can't be elided anyway. 1546 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1547 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1548 return LI->isVolatile(); 1549 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1550 return SI->isVolatile(); 1551 return false; 1552 })) 1553 continue; 1554 1555 SmallVector<const Value *, 8> WorkList; 1556 WorkList.push_back(AI); 1557 while (!WorkList.empty()) { 1558 const Value *V = WorkList.pop_back_val(); 1559 for (auto &AIUse : V->uses()) { 1560 User *U = AIUse.getUser(); 1561 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1562 if (AIUse.getOperandNo() == 1) 1563 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1564 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1565 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1566 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1567 // This is a call by-value or some other instruction that takes a 1568 // pointer to the variable. Insert a *value* intrinsic that describes 1569 // the variable by dereferencing the alloca. 1570 if (!CI->isLifetimeStartOrEnd()) { 1571 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1572 auto *DerefExpr = 1573 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1574 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1575 NewLoc, CI); 1576 } 1577 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1578 if (BI->getType()->isPointerTy()) 1579 WorkList.push_back(BI); 1580 } 1581 } 1582 } 1583 DDI->eraseFromParent(); 1584 Changed = true; 1585 } 1586 1587 if (Changed) 1588 for (BasicBlock &BB : F) 1589 RemoveRedundantDbgInstrs(&BB); 1590 1591 return Changed; 1592 } 1593 1594 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1595 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1596 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1597 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1598 if (InsertedPHIs.size() == 0) 1599 return; 1600 1601 // Map existing PHI nodes to their dbg.values. 1602 ValueToValueMapTy DbgValueMap; 1603 for (auto &I : *BB) { 1604 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1605 for (Value *V : DbgII->location_ops()) 1606 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1607 DbgValueMap.insert({Loc, DbgII}); 1608 } 1609 } 1610 if (DbgValueMap.size() == 0) 1611 return; 1612 1613 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1614 // so that if a dbg.value is being rewritten to use more than one of the 1615 // inserted PHIs in the same destination BB, we can update the same dbg.value 1616 // with all the new PHIs instead of creating one copy for each. 1617 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1618 DbgVariableIntrinsic *> 1619 NewDbgValueMap; 1620 // Then iterate through the new PHIs and look to see if they use one of the 1621 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1622 // propagate the info through the new PHI. If we use more than one new PHI in 1623 // a single destination BB with the same old dbg.value, merge the updates so 1624 // that we get a single new dbg.value with all the new PHIs. 1625 for (auto PHI : InsertedPHIs) { 1626 BasicBlock *Parent = PHI->getParent(); 1627 // Avoid inserting an intrinsic into an EH block. 1628 if (Parent->getFirstNonPHI()->isEHPad()) 1629 continue; 1630 for (auto VI : PHI->operand_values()) { 1631 auto V = DbgValueMap.find(VI); 1632 if (V != DbgValueMap.end()) { 1633 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1634 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1635 if (NewDI == NewDbgValueMap.end()) { 1636 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1637 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1638 } 1639 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1640 // If PHI contains VI as an operand more than once, we may 1641 // replaced it in NewDbgII; confirm that it is present. 1642 if (is_contained(NewDbgII->location_ops(), VI)) 1643 NewDbgII->replaceVariableLocationOp(VI, PHI); 1644 } 1645 } 1646 } 1647 // Insert thew new dbg.values into their destination blocks. 1648 for (auto DI : NewDbgValueMap) { 1649 BasicBlock *Parent = DI.first.first; 1650 auto *NewDbgII = DI.second; 1651 auto InsertionPt = Parent->getFirstInsertionPt(); 1652 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1653 NewDbgII->insertBefore(&*InsertionPt); 1654 } 1655 } 1656 1657 /// Finds all intrinsics declaring local variables as living in the memory that 1658 /// 'V' points to. This may include a mix of dbg.declare and 1659 /// dbg.addr intrinsics. 1660 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1661 // This function is hot. Check whether the value has any metadata to avoid a 1662 // DenseMap lookup. 1663 if (!V->isUsedByMetadata()) 1664 return {}; 1665 auto *L = LocalAsMetadata::getIfExists(V); 1666 if (!L) 1667 return {}; 1668 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1669 if (!MDV) 1670 return {}; 1671 1672 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1673 for (User *U : MDV->users()) { 1674 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1675 if (DII->isAddressOfVariable()) 1676 Declares.push_back(DII); 1677 } 1678 1679 return Declares; 1680 } 1681 1682 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1683 TinyPtrVector<DbgDeclareInst *> DDIs; 1684 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1685 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1686 DDIs.push_back(DDI); 1687 return DDIs; 1688 } 1689 1690 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1691 // This function is hot. Check whether the value has any metadata to avoid a 1692 // DenseMap lookup. 1693 if (!V->isUsedByMetadata()) 1694 return; 1695 // TODO: If this value appears multiple times in a DIArgList, we should still 1696 // only add the owning DbgValueInst once; use this set to track ArgListUsers. 1697 // This behaviour can be removed when we can automatically remove duplicates. 1698 SmallPtrSet<DbgValueInst *, 4> EncounteredDbgValues; 1699 if (auto *L = LocalAsMetadata::getIfExists(V)) { 1700 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) { 1701 for (User *U : MDV->users()) 1702 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1703 DbgValues.push_back(DVI); 1704 } 1705 for (Metadata *AL : L->getAllArgListUsers()) { 1706 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) { 1707 for (User *U : MDV->users()) 1708 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1709 if (EncounteredDbgValues.insert(DVI).second) 1710 DbgValues.push_back(DVI); 1711 } 1712 } 1713 } 1714 } 1715 1716 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1717 Value *V) { 1718 // This function is hot. Check whether the value has any metadata to avoid a 1719 // DenseMap lookup. 1720 if (!V->isUsedByMetadata()) 1721 return; 1722 // TODO: If this value appears multiple times in a DIArgList, we should still 1723 // only add the owning DbgValueInst once; use this set to track ArgListUsers. 1724 // This behaviour can be removed when we can automatically remove duplicates. 1725 SmallPtrSet<DbgVariableIntrinsic *, 4> EncounteredDbgValues; 1726 if (auto *L = LocalAsMetadata::getIfExists(V)) { 1727 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) { 1728 for (User *U : MDV->users()) 1729 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1730 DbgUsers.push_back(DII); 1731 } 1732 for (Metadata *AL : L->getAllArgListUsers()) { 1733 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) { 1734 for (User *U : MDV->users()) 1735 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1736 if (EncounteredDbgValues.insert(DII).second) 1737 DbgUsers.push_back(DII); 1738 } 1739 } 1740 } 1741 } 1742 1743 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1744 DIBuilder &Builder, uint8_t DIExprFlags, 1745 int Offset) { 1746 auto DbgAddrs = FindDbgAddrUses(Address); 1747 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1748 DebugLoc Loc = DII->getDebugLoc(); 1749 auto *DIVar = DII->getVariable(); 1750 auto *DIExpr = DII->getExpression(); 1751 assert(DIVar && "Missing variable"); 1752 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1753 // Insert llvm.dbg.declare immediately before DII, and remove old 1754 // llvm.dbg.declare. 1755 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1756 DII->eraseFromParent(); 1757 } 1758 return !DbgAddrs.empty(); 1759 } 1760 1761 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1762 DIBuilder &Builder, int Offset) { 1763 DebugLoc Loc = DVI->getDebugLoc(); 1764 auto *DIVar = DVI->getVariable(); 1765 auto *DIExpr = DVI->getExpression(); 1766 assert(DIVar && "Missing variable"); 1767 1768 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1769 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1770 // it and give up. 1771 if (!DIExpr || DIExpr->getNumElements() < 1 || 1772 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1773 return; 1774 1775 // Insert the offset before the first deref. 1776 // We could just change the offset argument of dbg.value, but it's unsigned... 1777 if (Offset) 1778 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1779 1780 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1781 DVI->eraseFromParent(); 1782 } 1783 1784 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1785 DIBuilder &Builder, int Offset) { 1786 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1787 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1788 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1789 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1790 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1791 } 1792 1793 /// Where possible to salvage debug information for \p I do so 1794 /// and return True. If not possible mark undef and return False. 1795 void llvm::salvageDebugInfo(Instruction &I) { 1796 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1797 findDbgUsers(DbgUsers, &I); 1798 salvageDebugInfoForDbgValues(I, DbgUsers); 1799 } 1800 1801 void llvm::salvageDebugInfoForDbgValues( 1802 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1803 bool Salvaged = false; 1804 1805 for (auto *DII : DbgUsers) { 1806 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1807 // are implicitly pointing out the value as a DWARF memory location 1808 // description. 1809 bool StackValue = isa<DbgValueInst>(DII); 1810 auto DIILocation = DII->location_ops(); 1811 assert( 1812 is_contained(DIILocation, &I) && 1813 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1814 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1815 1816 DIExpression *DIExpr = 1817 salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo); 1818 1819 // salvageDebugInfoImpl should fail on examining the first element of 1820 // DbgUsers, or none of them. 1821 if (!DIExpr) 1822 break; 1823 1824 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1825 DII->setExpression(DIExpr); 1826 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1827 Salvaged = true; 1828 } 1829 1830 if (Salvaged) 1831 return; 1832 1833 for (auto *DII : DbgUsers) { 1834 Value *Undef = UndefValue::get(I.getType()); 1835 DII->replaceVariableLocationOp(&I, Undef); 1836 } 1837 } 1838 1839 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1840 SmallVectorImpl<uint64_t> &Opcodes) { 1841 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1842 // Rewrite a constant GEP into a DIExpression. 1843 APInt ConstantOffset(BitWidth, 0); 1844 if (!GEP->accumulateConstantOffset(DL, ConstantOffset)) 1845 return false; 1846 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1847 return true; 1848 } 1849 1850 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1851 switch (Opcode) { 1852 case Instruction::Add: 1853 return dwarf::DW_OP_plus; 1854 case Instruction::Sub: 1855 return dwarf::DW_OP_minus; 1856 case Instruction::Mul: 1857 return dwarf::DW_OP_mul; 1858 case Instruction::SDiv: 1859 return dwarf::DW_OP_div; 1860 case Instruction::SRem: 1861 return dwarf::DW_OP_mod; 1862 case Instruction::Or: 1863 return dwarf::DW_OP_or; 1864 case Instruction::And: 1865 return dwarf::DW_OP_and; 1866 case Instruction::Xor: 1867 return dwarf::DW_OP_xor; 1868 case Instruction::Shl: 1869 return dwarf::DW_OP_shl; 1870 case Instruction::LShr: 1871 return dwarf::DW_OP_shr; 1872 case Instruction::AShr: 1873 return dwarf::DW_OP_shra; 1874 default: 1875 // TODO: Salvage from each kind of binop we know about. 1876 return 0; 1877 } 1878 } 1879 1880 bool getSalvageOpsForBinOp(BinaryOperator *BI, 1881 SmallVectorImpl<uint64_t> &Opcodes) { 1882 // Rewrite binary operations with constant integer operands. 1883 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1884 if (!ConstInt || ConstInt->getBitWidth() > 64) 1885 return false; 1886 uint64_t Val = ConstInt->getSExtValue(); 1887 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1888 // Add or Sub Instructions with a constant operand can potentially be 1889 // simplified. 1890 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1891 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1892 DIExpression::appendOffset(Opcodes, Offset); 1893 return true; 1894 } 1895 // Add constant int operand to expression stack. 1896 Opcodes.append({dwarf::DW_OP_constu, Val}); 1897 1898 // Add salvaged binary operator to expression stack, if it has a valid 1899 // representation in a DIExpression. 1900 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1901 if (!DwarfBinOp) 1902 return false; 1903 Opcodes.push_back(DwarfBinOp); 1904 1905 return true; 1906 } 1907 1908 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1909 DIExpression *SrcDIExpr, 1910 bool WithStackValue, unsigned LocNo) { 1911 auto &M = *I.getModule(); 1912 auto &DL = M.getDataLayout(); 1913 1914 // Apply a vector of opcodes to the source DIExpression. 1915 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1916 DIExpression *DIExpr = SrcDIExpr; 1917 if (!Ops.empty()) { 1918 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1919 } 1920 return DIExpr; 1921 }; 1922 1923 // initializer-list helper for applying operators to the source DIExpression. 1924 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1925 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1926 return doSalvage(Ops); 1927 }; 1928 1929 if (auto *CI = dyn_cast<CastInst>(&I)) { 1930 // No-op casts are irrelevant for debug info. 1931 if (CI->isNoopCast(DL)) 1932 return SrcDIExpr; 1933 1934 Type *Type = CI->getType(); 1935 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1936 if (Type->isVectorTy() || 1937 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1938 return nullptr; 1939 1940 Value *FromValue = CI->getOperand(0); 1941 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1942 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1943 1944 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1945 isa<SExtInst>(&I))); 1946 } 1947 1948 SmallVector<uint64_t, 8> Ops; 1949 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1950 if (getSalvageOpsForGEP(GEP, DL, Ops)) 1951 return doSalvage(Ops); 1952 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1953 if (getSalvageOpsForBinOp(BI, Ops)) 1954 return doSalvage(Ops); 1955 } 1956 // *Not* to do: we should not attempt to salvage load instructions, 1957 // because the validity and lifetime of a dbg.value containing 1958 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1959 return nullptr; 1960 } 1961 1962 /// A replacement for a dbg.value expression. 1963 using DbgValReplacement = Optional<DIExpression *>; 1964 1965 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1966 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1967 /// changes are made. 1968 static bool rewriteDebugUsers( 1969 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1970 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1971 // Find debug users of From. 1972 SmallVector<DbgVariableIntrinsic *, 1> Users; 1973 findDbgUsers(Users, &From); 1974 if (Users.empty()) 1975 return false; 1976 1977 // Prevent use-before-def of To. 1978 bool Changed = false; 1979 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1980 if (isa<Instruction>(&To)) { 1981 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1982 1983 for (auto *DII : Users) { 1984 // It's common to see a debug user between From and DomPoint. Move it 1985 // after DomPoint to preserve the variable update without any reordering. 1986 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1987 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1988 DII->moveAfter(&DomPoint); 1989 Changed = true; 1990 1991 // Users which otherwise aren't dominated by the replacement value must 1992 // be salvaged or deleted. 1993 } else if (!DT.dominates(&DomPoint, DII)) { 1994 UndefOrSalvage.insert(DII); 1995 } 1996 } 1997 } 1998 1999 // Update debug users without use-before-def risk. 2000 for (auto *DII : Users) { 2001 if (UndefOrSalvage.count(DII)) 2002 continue; 2003 2004 DbgValReplacement DVR = RewriteExpr(*DII); 2005 if (!DVR) 2006 continue; 2007 2008 DII->replaceVariableLocationOp(&From, &To); 2009 DII->setExpression(*DVR); 2010 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2011 Changed = true; 2012 } 2013 2014 if (!UndefOrSalvage.empty()) { 2015 // Try to salvage the remaining debug users. 2016 salvageDebugInfo(From); 2017 Changed = true; 2018 } 2019 2020 return Changed; 2021 } 2022 2023 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2024 /// losslessly preserve the bits and semantics of the value. This predicate is 2025 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2026 /// 2027 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2028 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2029 /// and also does not allow lossless pointer <-> integer conversions. 2030 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2031 Type *ToTy) { 2032 // Trivially compatible types. 2033 if (FromTy == ToTy) 2034 return true; 2035 2036 // Handle compatible pointer <-> integer conversions. 2037 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2038 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2039 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2040 !DL.isNonIntegralPointerType(ToTy); 2041 return SameSize && LosslessConversion; 2042 } 2043 2044 // TODO: This is not exhaustive. 2045 return false; 2046 } 2047 2048 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2049 Instruction &DomPoint, DominatorTree &DT) { 2050 // Exit early if From has no debug users. 2051 if (!From.isUsedByMetadata()) 2052 return false; 2053 2054 assert(&From != &To && "Can't replace something with itself"); 2055 2056 Type *FromTy = From.getType(); 2057 Type *ToTy = To.getType(); 2058 2059 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2060 return DII.getExpression(); 2061 }; 2062 2063 // Handle no-op conversions. 2064 Module &M = *From.getModule(); 2065 const DataLayout &DL = M.getDataLayout(); 2066 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2067 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2068 2069 // Handle integer-to-integer widening and narrowing. 2070 // FIXME: Use DW_OP_convert when it's available everywhere. 2071 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2072 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2073 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2074 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2075 2076 // When the width of the result grows, assume that a debugger will only 2077 // access the low `FromBits` bits when inspecting the source variable. 2078 if (FromBits < ToBits) 2079 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2080 2081 // The width of the result has shrunk. Use sign/zero extension to describe 2082 // the source variable's high bits. 2083 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2084 DILocalVariable *Var = DII.getVariable(); 2085 2086 // Without knowing signedness, sign/zero extension isn't possible. 2087 auto Signedness = Var->getSignedness(); 2088 if (!Signedness) 2089 return None; 2090 2091 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2092 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2093 Signed); 2094 }; 2095 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2096 } 2097 2098 // TODO: Floating-point conversions, vectors. 2099 return false; 2100 } 2101 2102 std::pair<unsigned, unsigned> 2103 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2104 unsigned NumDeadInst = 0; 2105 unsigned NumDeadDbgInst = 0; 2106 // Delete the instructions backwards, as it has a reduced likelihood of 2107 // having to update as many def-use and use-def chains. 2108 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2109 while (EndInst != &BB->front()) { 2110 // Delete the next to last instruction. 2111 Instruction *Inst = &*--EndInst->getIterator(); 2112 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2113 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2114 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2115 EndInst = Inst; 2116 continue; 2117 } 2118 if (isa<DbgInfoIntrinsic>(Inst)) 2119 ++NumDeadDbgInst; 2120 else 2121 ++NumDeadInst; 2122 Inst->eraseFromParent(); 2123 } 2124 return {NumDeadInst, NumDeadDbgInst}; 2125 } 2126 2127 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2128 bool PreserveLCSSA, DomTreeUpdater *DTU, 2129 MemorySSAUpdater *MSSAU) { 2130 BasicBlock *BB = I->getParent(); 2131 2132 if (MSSAU) 2133 MSSAU->changeToUnreachable(I); 2134 2135 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2136 2137 // Loop over all of the successors, removing BB's entry from any PHI 2138 // nodes. 2139 for (BasicBlock *Successor : successors(BB)) { 2140 Successor->removePredecessor(BB, PreserveLCSSA); 2141 if (DTU) 2142 UniqueSuccessors.insert(Successor); 2143 } 2144 // Insert a call to llvm.trap right before this. This turns the undefined 2145 // behavior into a hard fail instead of falling through into random code. 2146 if (UseLLVMTrap) { 2147 Function *TrapFn = 2148 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2149 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2150 CallTrap->setDebugLoc(I->getDebugLoc()); 2151 } 2152 auto *UI = new UnreachableInst(I->getContext(), I); 2153 UI->setDebugLoc(I->getDebugLoc()); 2154 2155 // All instructions after this are dead. 2156 unsigned NumInstrsRemoved = 0; 2157 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2158 while (BBI != BBE) { 2159 if (!BBI->use_empty()) 2160 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2161 BB->getInstList().erase(BBI++); 2162 ++NumInstrsRemoved; 2163 } 2164 if (DTU) { 2165 SmallVector<DominatorTree::UpdateType, 8> Updates; 2166 Updates.reserve(UniqueSuccessors.size()); 2167 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2168 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2169 DTU->applyUpdates(Updates); 2170 } 2171 return NumInstrsRemoved; 2172 } 2173 2174 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2175 SmallVector<Value *, 8> Args(II->args()); 2176 SmallVector<OperandBundleDef, 1> OpBundles; 2177 II->getOperandBundlesAsDefs(OpBundles); 2178 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2179 II->getCalledOperand(), Args, OpBundles); 2180 NewCall->setCallingConv(II->getCallingConv()); 2181 NewCall->setAttributes(II->getAttributes()); 2182 NewCall->setDebugLoc(II->getDebugLoc()); 2183 NewCall->copyMetadata(*II); 2184 2185 // If the invoke had profile metadata, try converting them for CallInst. 2186 uint64_t TotalWeight; 2187 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2188 // Set the total weight if it fits into i32, otherwise reset. 2189 MDBuilder MDB(NewCall->getContext()); 2190 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2191 ? nullptr 2192 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2193 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2194 } 2195 2196 return NewCall; 2197 } 2198 2199 /// changeToCall - Convert the specified invoke into a normal call. 2200 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2201 CallInst *NewCall = createCallMatchingInvoke(II); 2202 NewCall->takeName(II); 2203 NewCall->insertBefore(II); 2204 II->replaceAllUsesWith(NewCall); 2205 2206 // Follow the call by a branch to the normal destination. 2207 BasicBlock *NormalDestBB = II->getNormalDest(); 2208 BranchInst::Create(NormalDestBB, II); 2209 2210 // Update PHI nodes in the unwind destination 2211 BasicBlock *BB = II->getParent(); 2212 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2213 UnwindDestBB->removePredecessor(BB); 2214 II->eraseFromParent(); 2215 if (DTU) 2216 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2217 } 2218 2219 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2220 BasicBlock *UnwindEdge, 2221 DomTreeUpdater *DTU) { 2222 BasicBlock *BB = CI->getParent(); 2223 2224 // Convert this function call into an invoke instruction. First, split the 2225 // basic block. 2226 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2227 CI->getName() + ".noexc"); 2228 2229 // Delete the unconditional branch inserted by SplitBlock 2230 BB->getInstList().pop_back(); 2231 2232 // Create the new invoke instruction. 2233 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2234 SmallVector<OperandBundleDef, 1> OpBundles; 2235 2236 CI->getOperandBundlesAsDefs(OpBundles); 2237 2238 // Note: we're round tripping operand bundles through memory here, and that 2239 // can potentially be avoided with a cleverer API design that we do not have 2240 // as of this time. 2241 2242 InvokeInst *II = 2243 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2244 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2245 II->setDebugLoc(CI->getDebugLoc()); 2246 II->setCallingConv(CI->getCallingConv()); 2247 II->setAttributes(CI->getAttributes()); 2248 2249 if (DTU) 2250 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2251 2252 // Make sure that anything using the call now uses the invoke! This also 2253 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2254 CI->replaceAllUsesWith(II); 2255 2256 // Delete the original call 2257 Split->getInstList().pop_front(); 2258 return Split; 2259 } 2260 2261 static bool markAliveBlocks(Function &F, 2262 SmallPtrSetImpl<BasicBlock *> &Reachable, 2263 DomTreeUpdater *DTU = nullptr) { 2264 SmallVector<BasicBlock*, 128> Worklist; 2265 BasicBlock *BB = &F.front(); 2266 Worklist.push_back(BB); 2267 Reachable.insert(BB); 2268 bool Changed = false; 2269 do { 2270 BB = Worklist.pop_back_val(); 2271 2272 // Do a quick scan of the basic block, turning any obviously unreachable 2273 // instructions into LLVM unreachable insts. The instruction combining pass 2274 // canonicalizes unreachable insts into stores to null or undef. 2275 for (Instruction &I : *BB) { 2276 if (auto *CI = dyn_cast<CallInst>(&I)) { 2277 Value *Callee = CI->getCalledOperand(); 2278 // Handle intrinsic calls. 2279 if (Function *F = dyn_cast<Function>(Callee)) { 2280 auto IntrinsicID = F->getIntrinsicID(); 2281 // Assumptions that are known to be false are equivalent to 2282 // unreachable. Also, if the condition is undefined, then we make the 2283 // choice most beneficial to the optimizer, and choose that to also be 2284 // unreachable. 2285 if (IntrinsicID == Intrinsic::assume) { 2286 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2287 // Don't insert a call to llvm.trap right before the unreachable. 2288 changeToUnreachable(CI, false, false, DTU); 2289 Changed = true; 2290 break; 2291 } 2292 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2293 // A call to the guard intrinsic bails out of the current 2294 // compilation unit if the predicate passed to it is false. If the 2295 // predicate is a constant false, then we know the guard will bail 2296 // out of the current compile unconditionally, so all code following 2297 // it is dead. 2298 // 2299 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2300 // guards to treat `undef` as `false` since a guard on `undef` can 2301 // still be useful for widening. 2302 if (match(CI->getArgOperand(0), m_Zero())) 2303 if (!isa<UnreachableInst>(CI->getNextNode())) { 2304 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2305 false, DTU); 2306 Changed = true; 2307 break; 2308 } 2309 } 2310 } else if ((isa<ConstantPointerNull>(Callee) && 2311 !NullPointerIsDefined(CI->getFunction())) || 2312 isa<UndefValue>(Callee)) { 2313 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2314 Changed = true; 2315 break; 2316 } 2317 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2318 // If we found a call to a no-return function, insert an unreachable 2319 // instruction after it. Make sure there isn't *already* one there 2320 // though. 2321 if (!isa<UnreachableInst>(CI->getNextNode())) { 2322 // Don't insert a call to llvm.trap right before the unreachable. 2323 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2324 Changed = true; 2325 } 2326 break; 2327 } 2328 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2329 // Store to undef and store to null are undefined and used to signal 2330 // that they should be changed to unreachable by passes that can't 2331 // modify the CFG. 2332 2333 // Don't touch volatile stores. 2334 if (SI->isVolatile()) continue; 2335 2336 Value *Ptr = SI->getOperand(1); 2337 2338 if (isa<UndefValue>(Ptr) || 2339 (isa<ConstantPointerNull>(Ptr) && 2340 !NullPointerIsDefined(SI->getFunction(), 2341 SI->getPointerAddressSpace()))) { 2342 changeToUnreachable(SI, true, false, DTU); 2343 Changed = true; 2344 break; 2345 } 2346 } 2347 } 2348 2349 Instruction *Terminator = BB->getTerminator(); 2350 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2351 // Turn invokes that call 'nounwind' functions into ordinary calls. 2352 Value *Callee = II->getCalledOperand(); 2353 if ((isa<ConstantPointerNull>(Callee) && 2354 !NullPointerIsDefined(BB->getParent())) || 2355 isa<UndefValue>(Callee)) { 2356 changeToUnreachable(II, true, false, DTU); 2357 Changed = true; 2358 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2359 if (II->use_empty() && II->onlyReadsMemory()) { 2360 // jump to the normal destination branch. 2361 BasicBlock *NormalDestBB = II->getNormalDest(); 2362 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2363 BranchInst::Create(NormalDestBB, II); 2364 UnwindDestBB->removePredecessor(II->getParent()); 2365 II->eraseFromParent(); 2366 if (DTU) 2367 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2368 } else 2369 changeToCall(II, DTU); 2370 Changed = true; 2371 } 2372 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2373 // Remove catchpads which cannot be reached. 2374 struct CatchPadDenseMapInfo { 2375 static CatchPadInst *getEmptyKey() { 2376 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2377 } 2378 2379 static CatchPadInst *getTombstoneKey() { 2380 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2381 } 2382 2383 static unsigned getHashValue(CatchPadInst *CatchPad) { 2384 return static_cast<unsigned>(hash_combine_range( 2385 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2386 } 2387 2388 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2389 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2390 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2391 return LHS == RHS; 2392 return LHS->isIdenticalTo(RHS); 2393 } 2394 }; 2395 2396 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2397 // Set of unique CatchPads. 2398 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2399 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2400 HandlerSet; 2401 detail::DenseSetEmpty Empty; 2402 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2403 E = CatchSwitch->handler_end(); 2404 I != E; ++I) { 2405 BasicBlock *HandlerBB = *I; 2406 ++NumPerSuccessorCases[HandlerBB]; 2407 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2408 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2409 --NumPerSuccessorCases[HandlerBB]; 2410 CatchSwitch->removeHandler(I); 2411 --I; 2412 --E; 2413 Changed = true; 2414 } 2415 } 2416 std::vector<DominatorTree::UpdateType> Updates; 2417 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2418 if (I.second == 0) 2419 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2420 if (DTU) 2421 DTU->applyUpdates(Updates); 2422 } 2423 2424 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2425 for (BasicBlock *Successor : successors(BB)) 2426 if (Reachable.insert(Successor).second) 2427 Worklist.push_back(Successor); 2428 } while (!Worklist.empty()); 2429 return Changed; 2430 } 2431 2432 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2433 Instruction *TI = BB->getTerminator(); 2434 2435 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2436 changeToCall(II, DTU); 2437 return; 2438 } 2439 2440 Instruction *NewTI; 2441 BasicBlock *UnwindDest; 2442 2443 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2444 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2445 UnwindDest = CRI->getUnwindDest(); 2446 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2447 auto *NewCatchSwitch = CatchSwitchInst::Create( 2448 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2449 CatchSwitch->getName(), CatchSwitch); 2450 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2451 NewCatchSwitch->addHandler(PadBB); 2452 2453 NewTI = NewCatchSwitch; 2454 UnwindDest = CatchSwitch->getUnwindDest(); 2455 } else { 2456 llvm_unreachable("Could not find unwind successor"); 2457 } 2458 2459 NewTI->takeName(TI); 2460 NewTI->setDebugLoc(TI->getDebugLoc()); 2461 UnwindDest->removePredecessor(BB); 2462 TI->replaceAllUsesWith(NewTI); 2463 TI->eraseFromParent(); 2464 if (DTU) 2465 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2466 } 2467 2468 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2469 /// if they are in a dead cycle. Return true if a change was made, false 2470 /// otherwise. 2471 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2472 MemorySSAUpdater *MSSAU) { 2473 SmallPtrSet<BasicBlock *, 16> Reachable; 2474 bool Changed = markAliveBlocks(F, Reachable, DTU); 2475 2476 // If there are unreachable blocks in the CFG... 2477 if (Reachable.size() == F.size()) 2478 return Changed; 2479 2480 assert(Reachable.size() < F.size()); 2481 2482 // Are there any blocks left to actually delete? 2483 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2484 for (BasicBlock &BB : F) { 2485 // Skip reachable basic blocks 2486 if (Reachable.count(&BB)) 2487 continue; 2488 // Skip already-deleted blocks 2489 if (DTU && DTU->isBBPendingDeletion(&BB)) 2490 continue; 2491 BlocksToRemove.insert(&BB); 2492 } 2493 2494 if (BlocksToRemove.empty()) 2495 return Changed; 2496 2497 Changed = true; 2498 NumRemoved += BlocksToRemove.size(); 2499 2500 if (MSSAU) 2501 MSSAU->removeBlocks(BlocksToRemove); 2502 2503 // Loop over all of the basic blocks that are up for removal, dropping all of 2504 // their internal references. Update DTU if available. 2505 std::vector<DominatorTree::UpdateType> Updates; 2506 for (auto *BB : BlocksToRemove) { 2507 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2508 for (BasicBlock *Successor : successors(BB)) { 2509 // Only remove references to BB in reachable successors of BB. 2510 if (Reachable.count(Successor)) 2511 Successor->removePredecessor(BB); 2512 if (DTU) 2513 UniqueSuccessors.insert(Successor); 2514 } 2515 BB->dropAllReferences(); 2516 if (DTU) { 2517 Instruction *TI = BB->getTerminator(); 2518 assert(TI && "Basic block should have a terminator"); 2519 // Terminators like invoke can have users. We have to replace their users, 2520 // before removing them. 2521 if (!TI->use_empty()) 2522 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2523 TI->eraseFromParent(); 2524 new UnreachableInst(BB->getContext(), BB); 2525 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2526 "applying corresponding DTU updates."); 2527 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2528 for (auto *UniqueSuccessor : UniqueSuccessors) 2529 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2530 } 2531 } 2532 2533 if (DTU) { 2534 DTU->applyUpdates(Updates); 2535 for (auto *BB : BlocksToRemove) 2536 DTU->deleteBB(BB); 2537 } else { 2538 for (auto *BB : BlocksToRemove) 2539 BB->eraseFromParent(); 2540 } 2541 2542 return Changed; 2543 } 2544 2545 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2546 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2547 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2548 K->dropUnknownNonDebugMetadata(KnownIDs); 2549 K->getAllMetadataOtherThanDebugLoc(Metadata); 2550 for (const auto &MD : Metadata) { 2551 unsigned Kind = MD.first; 2552 MDNode *JMD = J->getMetadata(Kind); 2553 MDNode *KMD = MD.second; 2554 2555 switch (Kind) { 2556 default: 2557 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2558 break; 2559 case LLVMContext::MD_dbg: 2560 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2561 case LLVMContext::MD_tbaa: 2562 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2563 break; 2564 case LLVMContext::MD_alias_scope: 2565 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2566 break; 2567 case LLVMContext::MD_noalias: 2568 case LLVMContext::MD_mem_parallel_loop_access: 2569 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2570 break; 2571 case LLVMContext::MD_access_group: 2572 K->setMetadata(LLVMContext::MD_access_group, 2573 intersectAccessGroups(K, J)); 2574 break; 2575 case LLVMContext::MD_range: 2576 2577 // If K does move, use most generic range. Otherwise keep the range of 2578 // K. 2579 if (DoesKMove) 2580 // FIXME: If K does move, we should drop the range info and nonnull. 2581 // Currently this function is used with DoesKMove in passes 2582 // doing hoisting/sinking and the current behavior of using the 2583 // most generic range is correct in those cases. 2584 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2585 break; 2586 case LLVMContext::MD_fpmath: 2587 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2588 break; 2589 case LLVMContext::MD_invariant_load: 2590 // Only set the !invariant.load if it is present in both instructions. 2591 K->setMetadata(Kind, JMD); 2592 break; 2593 case LLVMContext::MD_nonnull: 2594 // If K does move, keep nonull if it is present in both instructions. 2595 if (DoesKMove) 2596 K->setMetadata(Kind, JMD); 2597 break; 2598 case LLVMContext::MD_invariant_group: 2599 // Preserve !invariant.group in K. 2600 break; 2601 case LLVMContext::MD_align: 2602 K->setMetadata(Kind, 2603 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2604 break; 2605 case LLVMContext::MD_dereferenceable: 2606 case LLVMContext::MD_dereferenceable_or_null: 2607 K->setMetadata(Kind, 2608 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2609 break; 2610 case LLVMContext::MD_preserve_access_index: 2611 // Preserve !preserve.access.index in K. 2612 break; 2613 } 2614 } 2615 // Set !invariant.group from J if J has it. If both instructions have it 2616 // then we will just pick it from J - even when they are different. 2617 // Also make sure that K is load or store - f.e. combining bitcast with load 2618 // could produce bitcast with invariant.group metadata, which is invalid. 2619 // FIXME: we should try to preserve both invariant.group md if they are 2620 // different, but right now instruction can only have one invariant.group. 2621 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2622 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2623 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2624 } 2625 2626 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2627 bool KDominatesJ) { 2628 unsigned KnownIDs[] = { 2629 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2630 LLVMContext::MD_noalias, LLVMContext::MD_range, 2631 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2632 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2633 LLVMContext::MD_dereferenceable, 2634 LLVMContext::MD_dereferenceable_or_null, 2635 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2636 combineMetadata(K, J, KnownIDs, KDominatesJ); 2637 } 2638 2639 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2640 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2641 Source.getAllMetadata(MD); 2642 MDBuilder MDB(Dest.getContext()); 2643 Type *NewType = Dest.getType(); 2644 const DataLayout &DL = Source.getModule()->getDataLayout(); 2645 for (const auto &MDPair : MD) { 2646 unsigned ID = MDPair.first; 2647 MDNode *N = MDPair.second; 2648 // Note, essentially every kind of metadata should be preserved here! This 2649 // routine is supposed to clone a load instruction changing *only its type*. 2650 // The only metadata it makes sense to drop is metadata which is invalidated 2651 // when the pointer type changes. This should essentially never be the case 2652 // in LLVM, but we explicitly switch over only known metadata to be 2653 // conservatively correct. If you are adding metadata to LLVM which pertains 2654 // to loads, you almost certainly want to add it here. 2655 switch (ID) { 2656 case LLVMContext::MD_dbg: 2657 case LLVMContext::MD_tbaa: 2658 case LLVMContext::MD_prof: 2659 case LLVMContext::MD_fpmath: 2660 case LLVMContext::MD_tbaa_struct: 2661 case LLVMContext::MD_invariant_load: 2662 case LLVMContext::MD_alias_scope: 2663 case LLVMContext::MD_noalias: 2664 case LLVMContext::MD_nontemporal: 2665 case LLVMContext::MD_mem_parallel_loop_access: 2666 case LLVMContext::MD_access_group: 2667 // All of these directly apply. 2668 Dest.setMetadata(ID, N); 2669 break; 2670 2671 case LLVMContext::MD_nonnull: 2672 copyNonnullMetadata(Source, N, Dest); 2673 break; 2674 2675 case LLVMContext::MD_align: 2676 case LLVMContext::MD_dereferenceable: 2677 case LLVMContext::MD_dereferenceable_or_null: 2678 // These only directly apply if the new type is also a pointer. 2679 if (NewType->isPointerTy()) 2680 Dest.setMetadata(ID, N); 2681 break; 2682 2683 case LLVMContext::MD_range: 2684 copyRangeMetadata(DL, Source, N, Dest); 2685 break; 2686 } 2687 } 2688 } 2689 2690 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2691 auto *ReplInst = dyn_cast<Instruction>(Repl); 2692 if (!ReplInst) 2693 return; 2694 2695 // Patch the replacement so that it is not more restrictive than the value 2696 // being replaced. 2697 // Note that if 'I' is a load being replaced by some operation, 2698 // for example, by an arithmetic operation, then andIRFlags() 2699 // would just erase all math flags from the original arithmetic 2700 // operation, which is clearly not wanted and not needed. 2701 if (!isa<LoadInst>(I)) 2702 ReplInst->andIRFlags(I); 2703 2704 // FIXME: If both the original and replacement value are part of the 2705 // same control-flow region (meaning that the execution of one 2706 // guarantees the execution of the other), then we can combine the 2707 // noalias scopes here and do better than the general conservative 2708 // answer used in combineMetadata(). 2709 2710 // In general, GVN unifies expressions over different control-flow 2711 // regions, and so we need a conservative combination of the noalias 2712 // scopes. 2713 static const unsigned KnownIDs[] = { 2714 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2715 LLVMContext::MD_noalias, LLVMContext::MD_range, 2716 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2717 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2718 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2719 combineMetadata(ReplInst, I, KnownIDs, false); 2720 } 2721 2722 template <typename RootType, typename DominatesFn> 2723 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2724 const RootType &Root, 2725 const DominatesFn &Dominates) { 2726 assert(From->getType() == To->getType()); 2727 2728 unsigned Count = 0; 2729 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2730 UI != UE;) { 2731 Use &U = *UI++; 2732 if (!Dominates(Root, U)) 2733 continue; 2734 U.set(To); 2735 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2736 << "' as " << *To << " in " << *U << "\n"); 2737 ++Count; 2738 } 2739 return Count; 2740 } 2741 2742 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2743 assert(From->getType() == To->getType()); 2744 auto *BB = From->getParent(); 2745 unsigned Count = 0; 2746 2747 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2748 UI != UE;) { 2749 Use &U = *UI++; 2750 auto *I = cast<Instruction>(U.getUser()); 2751 if (I->getParent() == BB) 2752 continue; 2753 U.set(To); 2754 ++Count; 2755 } 2756 return Count; 2757 } 2758 2759 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2760 DominatorTree &DT, 2761 const BasicBlockEdge &Root) { 2762 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2763 return DT.dominates(Root, U); 2764 }; 2765 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2766 } 2767 2768 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2769 DominatorTree &DT, 2770 const BasicBlock *BB) { 2771 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2772 return DT.dominates(BB, U); 2773 }; 2774 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2775 } 2776 2777 bool llvm::callsGCLeafFunction(const CallBase *Call, 2778 const TargetLibraryInfo &TLI) { 2779 // Check if the function is specifically marked as a gc leaf function. 2780 if (Call->hasFnAttr("gc-leaf-function")) 2781 return true; 2782 if (const Function *F = Call->getCalledFunction()) { 2783 if (F->hasFnAttribute("gc-leaf-function")) 2784 return true; 2785 2786 if (auto IID = F->getIntrinsicID()) { 2787 // Most LLVM intrinsics do not take safepoints. 2788 return IID != Intrinsic::experimental_gc_statepoint && 2789 IID != Intrinsic::experimental_deoptimize && 2790 IID != Intrinsic::memcpy_element_unordered_atomic && 2791 IID != Intrinsic::memmove_element_unordered_atomic; 2792 } 2793 } 2794 2795 // Lib calls can be materialized by some passes, and won't be 2796 // marked as 'gc-leaf-function.' All available Libcalls are 2797 // GC-leaf. 2798 LibFunc LF; 2799 if (TLI.getLibFunc(*Call, LF)) { 2800 return TLI.has(LF); 2801 } 2802 2803 return false; 2804 } 2805 2806 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2807 LoadInst &NewLI) { 2808 auto *NewTy = NewLI.getType(); 2809 2810 // This only directly applies if the new type is also a pointer. 2811 if (NewTy->isPointerTy()) { 2812 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2813 return; 2814 } 2815 2816 // The only other translation we can do is to integral loads with !range 2817 // metadata. 2818 if (!NewTy->isIntegerTy()) 2819 return; 2820 2821 MDBuilder MDB(NewLI.getContext()); 2822 const Value *Ptr = OldLI.getPointerOperand(); 2823 auto *ITy = cast<IntegerType>(NewTy); 2824 auto *NullInt = ConstantExpr::getPtrToInt( 2825 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2826 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2827 NewLI.setMetadata(LLVMContext::MD_range, 2828 MDB.createRange(NonNullInt, NullInt)); 2829 } 2830 2831 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2832 MDNode *N, LoadInst &NewLI) { 2833 auto *NewTy = NewLI.getType(); 2834 2835 // Give up unless it is converted to a pointer where there is a single very 2836 // valuable mapping we can do reliably. 2837 // FIXME: It would be nice to propagate this in more ways, but the type 2838 // conversions make it hard. 2839 if (!NewTy->isPointerTy()) 2840 return; 2841 2842 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2843 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2844 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2845 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2846 } 2847 } 2848 2849 void llvm::dropDebugUsers(Instruction &I) { 2850 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2851 findDbgUsers(DbgUsers, &I); 2852 for (auto *DII : DbgUsers) 2853 DII->eraseFromParent(); 2854 } 2855 2856 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2857 BasicBlock *BB) { 2858 // Since we are moving the instructions out of its basic block, we do not 2859 // retain their original debug locations (DILocations) and debug intrinsic 2860 // instructions. 2861 // 2862 // Doing so would degrade the debugging experience and adversely affect the 2863 // accuracy of profiling information. 2864 // 2865 // Currently, when hoisting the instructions, we take the following actions: 2866 // - Remove their debug intrinsic instructions. 2867 // - Set their debug locations to the values from the insertion point. 2868 // 2869 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2870 // need to be deleted, is because there will not be any instructions with a 2871 // DILocation in either branch left after performing the transformation. We 2872 // can only insert a dbg.value after the two branches are joined again. 2873 // 2874 // See PR38762, PR39243 for more details. 2875 // 2876 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2877 // encode predicated DIExpressions that yield different results on different 2878 // code paths. 2879 2880 // A hoisted conditional probe should be treated as dangling so that it will 2881 // not be over-counted when the samples collected on the non-conditional path 2882 // are counted towards the conditional path. We leave it for the counts 2883 // inference algorithm to figure out a proper count for a danglng probe. 2884 moveAndDanglePseudoProbes(BB, InsertPt); 2885 2886 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2887 Instruction *I = &*II; 2888 I->dropUnknownNonDebugMetadata(); 2889 if (I->isUsedByMetadata()) 2890 dropDebugUsers(*I); 2891 if (isa<DbgInfoIntrinsic>(I)) { 2892 // Remove DbgInfo Intrinsics. 2893 II = I->eraseFromParent(); 2894 continue; 2895 } 2896 I->setDebugLoc(InsertPt->getDebugLoc()); 2897 ++II; 2898 } 2899 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2900 BB->begin(), 2901 BB->getTerminator()->getIterator()); 2902 } 2903 2904 namespace { 2905 2906 /// A potential constituent of a bitreverse or bswap expression. See 2907 /// collectBitParts for a fuller explanation. 2908 struct BitPart { 2909 BitPart(Value *P, unsigned BW) : Provider(P) { 2910 Provenance.resize(BW); 2911 } 2912 2913 /// The Value that this is a bitreverse/bswap of. 2914 Value *Provider; 2915 2916 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2917 /// in Provider becomes bit B in the result of this expression. 2918 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2919 2920 enum { Unset = -1 }; 2921 }; 2922 2923 } // end anonymous namespace 2924 2925 /// Analyze the specified subexpression and see if it is capable of providing 2926 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2927 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2928 /// the output of the expression came from a corresponding bit in some other 2929 /// value. This function is recursive, and the end result is a mapping of 2930 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2931 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2932 /// 2933 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2934 /// that the expression deposits the low byte of %X into the high byte of the 2935 /// result and that all other bits are zero. This expression is accepted and a 2936 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2937 /// [0-7]. 2938 /// 2939 /// For vector types, all analysis is performed at the per-element level. No 2940 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2941 /// constant masks must be splatted across all elements. 2942 /// 2943 /// To avoid revisiting values, the BitPart results are memoized into the 2944 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2945 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2946 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2947 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2948 /// type instead to provide the same functionality. 2949 /// 2950 /// Because we pass around references into \c BPS, we must use a container that 2951 /// does not invalidate internal references (std::map instead of DenseMap). 2952 static const Optional<BitPart> & 2953 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2954 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2955 auto I = BPS.find(V); 2956 if (I != BPS.end()) 2957 return I->second; 2958 2959 auto &Result = BPS[V] = None; 2960 auto BitWidth = V->getType()->getScalarSizeInBits(); 2961 2962 // Can't do integer/elements > 128 bits. 2963 if (BitWidth > 128) 2964 return Result; 2965 2966 // Prevent stack overflow by limiting the recursion depth 2967 if (Depth == BitPartRecursionMaxDepth) { 2968 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2969 return Result; 2970 } 2971 2972 if (auto *I = dyn_cast<Instruction>(V)) { 2973 Value *X, *Y; 2974 const APInt *C; 2975 2976 // If this is an or instruction, it may be an inner node of the bswap. 2977 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2978 const auto &A = 2979 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2980 const auto &B = 2981 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2982 if (!A || !B) 2983 return Result; 2984 2985 // Try and merge the two together. 2986 if (!A->Provider || A->Provider != B->Provider) 2987 return Result; 2988 2989 Result = BitPart(A->Provider, BitWidth); 2990 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2991 if (A->Provenance[BitIdx] != BitPart::Unset && 2992 B->Provenance[BitIdx] != BitPart::Unset && 2993 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2994 return Result = None; 2995 2996 if (A->Provenance[BitIdx] == BitPart::Unset) 2997 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2998 else 2999 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3000 } 3001 3002 return Result; 3003 } 3004 3005 // If this is a logical shift by a constant, recurse then shift the result. 3006 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3007 const APInt &BitShift = *C; 3008 3009 // Ensure the shift amount is defined. 3010 if (BitShift.uge(BitWidth)) 3011 return Result; 3012 3013 const auto &Res = 3014 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3015 if (!Res) 3016 return Result; 3017 Result = Res; 3018 3019 // Perform the "shift" on BitProvenance. 3020 auto &P = Result->Provenance; 3021 if (I->getOpcode() == Instruction::Shl) { 3022 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3023 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3024 } else { 3025 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3026 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3027 } 3028 3029 return Result; 3030 } 3031 3032 // If this is a logical 'and' with a mask that clears bits, recurse then 3033 // unset the appropriate bits. 3034 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3035 const APInt &AndMask = *C; 3036 3037 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3038 // early exit. 3039 unsigned NumMaskedBits = AndMask.countPopulation(); 3040 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3041 return Result; 3042 3043 const auto &Res = 3044 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3045 if (!Res) 3046 return Result; 3047 Result = Res; 3048 3049 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3050 // If the AndMask is zero for this bit, clear the bit. 3051 if (AndMask[BitIdx] == 0) 3052 Result->Provenance[BitIdx] = BitPart::Unset; 3053 return Result; 3054 } 3055 3056 // If this is a zext instruction zero extend the result. 3057 if (match(V, m_ZExt(m_Value(X)))) { 3058 const auto &Res = 3059 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3060 if (!Res) 3061 return Result; 3062 3063 Result = BitPart(Res->Provider, BitWidth); 3064 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3065 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3066 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3067 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3068 Result->Provenance[BitIdx] = BitPart::Unset; 3069 return Result; 3070 } 3071 3072 // If this is a truncate instruction, extract the lower bits. 3073 if (match(V, m_Trunc(m_Value(X)))) { 3074 const auto &Res = 3075 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3076 if (!Res) 3077 return Result; 3078 3079 Result = BitPart(Res->Provider, BitWidth); 3080 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3081 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3082 return Result; 3083 } 3084 3085 // BITREVERSE - most likely due to us previous matching a partial 3086 // bitreverse. 3087 if (match(V, m_BitReverse(m_Value(X)))) { 3088 const auto &Res = 3089 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3090 if (!Res) 3091 return Result; 3092 3093 Result = BitPart(Res->Provider, BitWidth); 3094 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3095 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3096 return Result; 3097 } 3098 3099 // BSWAP - most likely due to us previous matching a partial bswap. 3100 if (match(V, m_BSwap(m_Value(X)))) { 3101 const auto &Res = 3102 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3103 if (!Res) 3104 return Result; 3105 3106 unsigned ByteWidth = BitWidth / 8; 3107 Result = BitPart(Res->Provider, BitWidth); 3108 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3109 unsigned ByteBitOfs = ByteIdx * 8; 3110 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3111 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3112 Res->Provenance[ByteBitOfs + BitIdx]; 3113 } 3114 return Result; 3115 } 3116 3117 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3118 // amount (modulo). 3119 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3120 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3121 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3122 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3123 // We can treat fshr as a fshl by flipping the modulo amount. 3124 unsigned ModAmt = C->urem(BitWidth); 3125 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3126 ModAmt = BitWidth - ModAmt; 3127 3128 const auto &LHS = 3129 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3130 const auto &RHS = 3131 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3132 3133 // Check we have both sources and they are from the same provider. 3134 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3135 return Result; 3136 3137 unsigned StartBitRHS = BitWidth - ModAmt; 3138 Result = BitPart(LHS->Provider, BitWidth); 3139 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3140 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3141 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3142 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3143 return Result; 3144 } 3145 } 3146 3147 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3148 // the input value to the bswap/bitreverse. 3149 Result = BitPart(V, BitWidth); 3150 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3151 Result->Provenance[BitIdx] = BitIdx; 3152 return Result; 3153 } 3154 3155 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3156 unsigned BitWidth) { 3157 if (From % 8 != To % 8) 3158 return false; 3159 // Convert from bit indices to byte indices and check for a byte reversal. 3160 From >>= 3; 3161 To >>= 3; 3162 BitWidth >>= 3; 3163 return From == BitWidth - To - 1; 3164 } 3165 3166 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3167 unsigned BitWidth) { 3168 return From == BitWidth - To - 1; 3169 } 3170 3171 bool llvm::recognizeBSwapOrBitReverseIdiom( 3172 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3173 SmallVectorImpl<Instruction *> &InsertedInsts) { 3174 if (Operator::getOpcode(I) != Instruction::Or) 3175 return false; 3176 if (!MatchBSwaps && !MatchBitReversals) 3177 return false; 3178 Type *ITy = I->getType(); 3179 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3180 return false; // Can't do integer/elements > 128 bits. 3181 3182 Type *DemandedTy = ITy; 3183 if (I->hasOneUse()) 3184 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3185 DemandedTy = Trunc->getType(); 3186 3187 // Try to find all the pieces corresponding to the bswap. 3188 std::map<Value *, Optional<BitPart>> BPS; 3189 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3190 if (!Res) 3191 return false; 3192 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3193 assert(all_of(BitProvenance, 3194 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3195 "Illegal bit provenance index"); 3196 3197 // If the upper bits are zero, then attempt to perform as a truncated op. 3198 if (BitProvenance.back() == BitPart::Unset) { 3199 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3200 BitProvenance = BitProvenance.drop_back(); 3201 if (BitProvenance.empty()) 3202 return false; // TODO - handle null value? 3203 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3204 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3205 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3206 } 3207 3208 // Check BitProvenance hasn't found a source larger than the result type. 3209 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3210 if (DemandedBW > ITy->getScalarSizeInBits()) 3211 return false; 3212 3213 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3214 // only byteswap values with an even number of bytes. 3215 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3216 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3217 bool OKForBitReverse = MatchBitReversals; 3218 for (unsigned BitIdx = 0; 3219 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3220 if (BitProvenance[BitIdx] == BitPart::Unset) { 3221 DemandedMask.clearBit(BitIdx); 3222 continue; 3223 } 3224 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3225 DemandedBW); 3226 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3227 BitIdx, DemandedBW); 3228 } 3229 3230 Intrinsic::ID Intrin; 3231 if (OKForBSwap) 3232 Intrin = Intrinsic::bswap; 3233 else if (OKForBitReverse) 3234 Intrin = Intrinsic::bitreverse; 3235 else 3236 return false; 3237 3238 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3239 Value *Provider = Res->Provider; 3240 3241 // We may need to truncate the provider. 3242 if (DemandedTy != Provider->getType()) { 3243 auto *Trunc = 3244 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3245 InsertedInsts.push_back(Trunc); 3246 Provider = Trunc; 3247 } 3248 3249 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3250 InsertedInsts.push_back(Result); 3251 3252 if (!DemandedMask.isAllOnesValue()) { 3253 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3254 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3255 InsertedInsts.push_back(Result); 3256 } 3257 3258 // We may need to zeroextend back to the result type. 3259 if (ITy != Result->getType()) { 3260 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3261 InsertedInsts.push_back(ExtInst); 3262 } 3263 3264 return true; 3265 } 3266 3267 // CodeGen has special handling for some string functions that may replace 3268 // them with target-specific intrinsics. Since that'd skip our interceptors 3269 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3270 // we mark affected calls as NoBuiltin, which will disable optimization 3271 // in CodeGen. 3272 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3273 CallInst *CI, const TargetLibraryInfo *TLI) { 3274 Function *F = CI->getCalledFunction(); 3275 LibFunc Func; 3276 if (F && !F->hasLocalLinkage() && F->hasName() && 3277 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3278 !F->doesNotAccessMemory()) 3279 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3280 } 3281 3282 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3283 // We can't have a PHI with a metadata type. 3284 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3285 return false; 3286 3287 // Early exit. 3288 if (!isa<Constant>(I->getOperand(OpIdx))) 3289 return true; 3290 3291 switch (I->getOpcode()) { 3292 default: 3293 return true; 3294 case Instruction::Call: 3295 case Instruction::Invoke: { 3296 const auto &CB = cast<CallBase>(*I); 3297 3298 // Can't handle inline asm. Skip it. 3299 if (CB.isInlineAsm()) 3300 return false; 3301 3302 // Constant bundle operands may need to retain their constant-ness for 3303 // correctness. 3304 if (CB.isBundleOperand(OpIdx)) 3305 return false; 3306 3307 if (OpIdx < CB.getNumArgOperands()) { 3308 // Some variadic intrinsics require constants in the variadic arguments, 3309 // which currently aren't markable as immarg. 3310 if (isa<IntrinsicInst>(CB) && 3311 OpIdx >= CB.getFunctionType()->getNumParams()) { 3312 // This is known to be OK for stackmap. 3313 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3314 } 3315 3316 // gcroot is a special case, since it requires a constant argument which 3317 // isn't also required to be a simple ConstantInt. 3318 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3319 return false; 3320 3321 // Some intrinsic operands are required to be immediates. 3322 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3323 } 3324 3325 // It is never allowed to replace the call argument to an intrinsic, but it 3326 // may be possible for a call. 3327 return !isa<IntrinsicInst>(CB); 3328 } 3329 case Instruction::ShuffleVector: 3330 // Shufflevector masks are constant. 3331 return OpIdx != 2; 3332 case Instruction::Switch: 3333 case Instruction::ExtractValue: 3334 // All operands apart from the first are constant. 3335 return OpIdx == 0; 3336 case Instruction::InsertValue: 3337 // All operands apart from the first and the second are constant. 3338 return OpIdx < 2; 3339 case Instruction::Alloca: 3340 // Static allocas (constant size in the entry block) are handled by 3341 // prologue/epilogue insertion so they're free anyway. We definitely don't 3342 // want to make them non-constant. 3343 return !cast<AllocaInst>(I)->isStaticAlloca(); 3344 case Instruction::GetElementPtr: 3345 if (OpIdx == 0) 3346 return true; 3347 gep_type_iterator It = gep_type_begin(I); 3348 for (auto E = std::next(It, OpIdx); It != E; ++It) 3349 if (It.isStruct()) 3350 return false; 3351 return true; 3352 } 3353 } 3354 3355 Value *llvm::invertCondition(Value *Condition) { 3356 // First: Check if it's a constant 3357 if (Constant *C = dyn_cast<Constant>(Condition)) 3358 return ConstantExpr::getNot(C); 3359 3360 // Second: If the condition is already inverted, return the original value 3361 Value *NotCondition; 3362 if (match(Condition, m_Not(m_Value(NotCondition)))) 3363 return NotCondition; 3364 3365 BasicBlock *Parent = nullptr; 3366 Instruction *Inst = dyn_cast<Instruction>(Condition); 3367 if (Inst) 3368 Parent = Inst->getParent(); 3369 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3370 Parent = &Arg->getParent()->getEntryBlock(); 3371 assert(Parent && "Unsupported condition to invert"); 3372 3373 // Third: Check all the users for an invert 3374 for (User *U : Condition->users()) 3375 if (Instruction *I = dyn_cast<Instruction>(U)) 3376 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3377 return I; 3378 3379 // Last option: Create a new instruction 3380 auto *Inverted = 3381 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3382 if (Inst && !isa<PHINode>(Inst)) 3383 Inverted->insertAfter(Inst); 3384 else 3385 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3386 return Inverted; 3387 } 3388