1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalObject.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstdint>
80 #include <iterator>
81 #include <map>
82 #include <utility>
83 
84 using namespace llvm;
85 using namespace llvm::PatternMatch;
86 
87 #define DEBUG_TYPE "local"
88 
89 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
90 
91 //===----------------------------------------------------------------------===//
92 //  Local constant propagation.
93 //
94 
95 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
96 /// constant value, convert it into an unconditional branch to the constant
97 /// destination.  This is a nontrivial operation because the successors of this
98 /// basic block must have their PHI nodes updated.
99 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
100 /// conditions and indirectbr addresses this might make dead if
101 /// DeleteDeadConditions is true.
102 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
103                                   const TargetLibraryInfo *TLI) {
104   TerminatorInst *T = BB->getTerminator();
105   IRBuilder<> Builder(T);
106 
107   // Branch - See if we are conditional jumping on constant
108   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
109     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
110     BasicBlock *Dest1 = BI->getSuccessor(0);
111     BasicBlock *Dest2 = BI->getSuccessor(1);
112 
113     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
114       // Are we branching on constant?
115       // YES.  Change to unconditional branch...
116       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
117       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
118 
119       //cerr << "Function: " << T->getParent()->getParent()
120       //     << "\nRemoving branch from " << T->getParent()
121       //     << "\n\nTo: " << OldDest << endl;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       return true;
131     }
132 
133     if (Dest2 == Dest1) {       // Conditional branch to same location?
134       // This branch matches something like this:
135       //     br bool %cond, label %Dest, label %Dest
136       // and changes it into:  br label %Dest
137 
138       // Let the basic block know that we are letting go of one copy of it.
139       assert(BI->getParent() && "Terminator not inserted in block!");
140       Dest1->removePredecessor(BI->getParent());
141 
142       // Replace the conditional branch with an unconditional one.
143       Builder.CreateBr(Dest1);
144       Value *Cond = BI->getCondition();
145       BI->eraseFromParent();
146       if (DeleteDeadConditions)
147         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
148       return true;
149     }
150     return false;
151   }
152 
153   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
154     // If we are switching on a constant, we can convert the switch to an
155     // unconditional branch.
156     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
157     BasicBlock *DefaultDest = SI->getDefaultDest();
158     BasicBlock *TheOnlyDest = DefaultDest;
159 
160     // If the default is unreachable, ignore it when searching for TheOnlyDest.
161     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
162         SI->getNumCases() > 0) {
163       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
164     }
165 
166     // Figure out which case it goes to.
167     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
168       // Found case matching a constant operand?
169       if (i->getCaseValue() == CI) {
170         TheOnlyDest = i->getCaseSuccessor();
171         break;
172       }
173 
174       // Check to see if this branch is going to the same place as the default
175       // dest.  If so, eliminate it as an explicit compare.
176       if (i->getCaseSuccessor() == DefaultDest) {
177         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
178         unsigned NCases = SI->getNumCases();
179         // Fold the case metadata into the default if there will be any branches
180         // left, unless the metadata doesn't match the switch.
181         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
182           // Collect branch weights into a vector.
183           SmallVector<uint32_t, 8> Weights;
184           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
185                ++MD_i) {
186             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
187             Weights.push_back(CI->getValue().getZExtValue());
188           }
189           // Merge weight of this case to the default weight.
190           unsigned idx = i->getCaseIndex();
191           Weights[0] += Weights[idx+1];
192           // Remove weight for this case.
193           std::swap(Weights[idx+1], Weights.back());
194           Weights.pop_back();
195           SI->setMetadata(LLVMContext::MD_prof,
196                           MDBuilder(BB->getContext()).
197                           createBranchWeights(Weights));
198         }
199         // Remove this entry.
200         DefaultDest->removePredecessor(SI->getParent());
201         i = SI->removeCase(i);
202         e = SI->case_end();
203         continue;
204       }
205 
206       // Otherwise, check to see if the switch only branches to one destination.
207       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
208       // destinations.
209       if (i->getCaseSuccessor() != TheOnlyDest)
210         TheOnlyDest = nullptr;
211 
212       // Increment this iterator as we haven't removed the case.
213       ++i;
214     }
215 
216     if (CI && !TheOnlyDest) {
217       // Branching on a constant, but not any of the cases, go to the default
218       // successor.
219       TheOnlyDest = SI->getDefaultDest();
220     }
221 
222     // If we found a single destination that we can fold the switch into, do so
223     // now.
224     if (TheOnlyDest) {
225       // Insert the new branch.
226       Builder.CreateBr(TheOnlyDest);
227       BasicBlock *BB = SI->getParent();
228 
229       // Remove entries from PHI nodes which we no longer branch to...
230       for (BasicBlock *Succ : SI->successors()) {
231         // Found case matching a constant operand?
232         if (Succ == TheOnlyDest)
233           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
234         else
235           Succ->removePredecessor(BB);
236       }
237 
238       // Delete the old switch.
239       Value *Cond = SI->getCondition();
240       SI->eraseFromParent();
241       if (DeleteDeadConditions)
242         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
243       return true;
244     }
245 
246     if (SI->getNumCases() == 1) {
247       // Otherwise, we can fold this switch into a conditional branch
248       // instruction if it has only one non-default destination.
249       auto FirstCase = *SI->case_begin();
250       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
251           FirstCase.getCaseValue(), "cond");
252 
253       // Insert the new branch.
254       BranchInst *NewBr = Builder.CreateCondBr(Cond,
255                                                FirstCase.getCaseSuccessor(),
256                                                SI->getDefaultDest());
257       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
258       if (MD && MD->getNumOperands() == 3) {
259         ConstantInt *SICase =
260             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
261         ConstantInt *SIDef =
262             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
263         assert(SICase && SIDef);
264         // The TrueWeight should be the weight for the single case of SI.
265         NewBr->setMetadata(LLVMContext::MD_prof,
266                         MDBuilder(BB->getContext()).
267                         createBranchWeights(SICase->getValue().getZExtValue(),
268                                             SIDef->getValue().getZExtValue()));
269       }
270 
271       // Update make.implicit metadata to the newly-created conditional branch.
272       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
273       if (MakeImplicitMD)
274         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
275 
276       // Delete the old switch.
277       SI->eraseFromParent();
278       return true;
279     }
280     return false;
281   }
282 
283   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
284     // indirectbr blockaddress(@F, @BB) -> br label @BB
285     if (BlockAddress *BA =
286           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
287       BasicBlock *TheOnlyDest = BA->getBasicBlock();
288       // Insert the new branch.
289       Builder.CreateBr(TheOnlyDest);
290 
291       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
292         if (IBI->getDestination(i) == TheOnlyDest)
293           TheOnlyDest = nullptr;
294         else
295           IBI->getDestination(i)->removePredecessor(IBI->getParent());
296       }
297       Value *Address = IBI->getAddress();
298       IBI->eraseFromParent();
299       if (DeleteDeadConditions)
300         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
301 
302       // If we didn't find our destination in the IBI successor list, then we
303       // have undefined behavior.  Replace the unconditional branch with an
304       // 'unreachable' instruction.
305       if (TheOnlyDest) {
306         BB->getTerminator()->eraseFromParent();
307         new UnreachableInst(BB->getContext(), BB);
308       }
309 
310       return true;
311     }
312   }
313 
314   return false;
315 }
316 
317 //===----------------------------------------------------------------------===//
318 //  Local dead code elimination.
319 //
320 
321 /// isInstructionTriviallyDead - Return true if the result produced by the
322 /// instruction is not used, and the instruction has no side effects.
323 ///
324 bool llvm::isInstructionTriviallyDead(Instruction *I,
325                                       const TargetLibraryInfo *TLI) {
326   if (!I->use_empty())
327     return false;
328   return wouldInstructionBeTriviallyDead(I, TLI);
329 }
330 
331 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
332                                            const TargetLibraryInfo *TLI) {
333   if (isa<TerminatorInst>(I))
334     return false;
335 
336   // We don't want the landingpad-like instructions removed by anything this
337   // general.
338   if (I->isEHPad())
339     return false;
340 
341   // We don't want debug info removed by anything this general, unless
342   // debug info is empty.
343   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
344     if (DDI->getAddress())
345       return false;
346     return true;
347   }
348   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
349     if (DVI->getValue())
350       return false;
351     return true;
352   }
353 
354   if (!I->mayHaveSideEffects())
355     return true;
356 
357   // Special case intrinsics that "may have side effects" but can be deleted
358   // when dead.
359   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
360     // Safe to delete llvm.stacksave if dead.
361     if (II->getIntrinsicID() == Intrinsic::stacksave)
362       return true;
363 
364     // Lifetime intrinsics are dead when their right-hand is undef.
365     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
366         II->getIntrinsicID() == Intrinsic::lifetime_end)
367       return isa<UndefValue>(II->getArgOperand(1));
368 
369     // Assumptions are dead if their condition is trivially true.  Guards on
370     // true are operationally no-ops.  In the future we can consider more
371     // sophisticated tradeoffs for guards considering potential for check
372     // widening, but for now we keep things simple.
373     if (II->getIntrinsicID() == Intrinsic::assume ||
374         II->getIntrinsicID() == Intrinsic::experimental_guard) {
375       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
376         return !Cond->isZero();
377 
378       return false;
379     }
380   }
381 
382   if (isAllocLikeFn(I, TLI))
383     return true;
384 
385   if (CallInst *CI = isFreeCall(I, TLI))
386     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
387       return C->isNullValue() || isa<UndefValue>(C);
388 
389   if (CallSite CS = CallSite(I))
390     if (isMathLibCallNoop(CS, TLI))
391       return true;
392 
393   return false;
394 }
395 
396 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
397 /// trivially dead instruction, delete it.  If that makes any of its operands
398 /// trivially dead, delete them too, recursively.  Return true if any
399 /// instructions were deleted.
400 bool
401 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
402                                                  const TargetLibraryInfo *TLI) {
403   Instruction *I = dyn_cast<Instruction>(V);
404   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
405     return false;
406 
407   SmallVector<Instruction*, 16> DeadInsts;
408   DeadInsts.push_back(I);
409 
410   do {
411     I = DeadInsts.pop_back_val();
412 
413     // Null out all of the instruction's operands to see if any operand becomes
414     // dead as we go.
415     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
416       Value *OpV = I->getOperand(i);
417       I->setOperand(i, nullptr);
418 
419       if (!OpV->use_empty()) continue;
420 
421       // If the operand is an instruction that became dead as we nulled out the
422       // operand, and if it is 'trivially' dead, delete it in a future loop
423       // iteration.
424       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
425         if (isInstructionTriviallyDead(OpI, TLI))
426           DeadInsts.push_back(OpI);
427     }
428 
429     I->eraseFromParent();
430   } while (!DeadInsts.empty());
431 
432   return true;
433 }
434 
435 /// areAllUsesEqual - Check whether the uses of a value are all the same.
436 /// This is similar to Instruction::hasOneUse() except this will also return
437 /// true when there are no uses or multiple uses that all refer to the same
438 /// value.
439 static bool areAllUsesEqual(Instruction *I) {
440   Value::user_iterator UI = I->user_begin();
441   Value::user_iterator UE = I->user_end();
442   if (UI == UE)
443     return true;
444 
445   User *TheUse = *UI;
446   for (++UI; UI != UE; ++UI) {
447     if (*UI != TheUse)
448       return false;
449   }
450   return true;
451 }
452 
453 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
454 /// dead PHI node, due to being a def-use chain of single-use nodes that
455 /// either forms a cycle or is terminated by a trivially dead instruction,
456 /// delete it.  If that makes any of its operands trivially dead, delete them
457 /// too, recursively.  Return true if a change was made.
458 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
459                                         const TargetLibraryInfo *TLI) {
460   SmallPtrSet<Instruction*, 4> Visited;
461   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
462        I = cast<Instruction>(*I->user_begin())) {
463     if (I->use_empty())
464       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
465 
466     // If we find an instruction more than once, we're on a cycle that
467     // won't prove fruitful.
468     if (!Visited.insert(I).second) {
469       // Break the cycle and delete the instruction and its operands.
470       I->replaceAllUsesWith(UndefValue::get(I->getType()));
471       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
472       return true;
473     }
474   }
475   return false;
476 }
477 
478 static bool
479 simplifyAndDCEInstruction(Instruction *I,
480                           SmallSetVector<Instruction *, 16> &WorkList,
481                           const DataLayout &DL,
482                           const TargetLibraryInfo *TLI) {
483   if (isInstructionTriviallyDead(I, TLI)) {
484     // Null out all of the instruction's operands to see if any operand becomes
485     // dead as we go.
486     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
487       Value *OpV = I->getOperand(i);
488       I->setOperand(i, nullptr);
489 
490       if (!OpV->use_empty() || I == OpV)
491         continue;
492 
493       // If the operand is an instruction that became dead as we nulled out the
494       // operand, and if it is 'trivially' dead, delete it in a future loop
495       // iteration.
496       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
497         if (isInstructionTriviallyDead(OpI, TLI))
498           WorkList.insert(OpI);
499     }
500 
501     I->eraseFromParent();
502 
503     return true;
504   }
505 
506   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
507     // Add the users to the worklist. CAREFUL: an instruction can use itself,
508     // in the case of a phi node.
509     for (User *U : I->users()) {
510       if (U != I) {
511         WorkList.insert(cast<Instruction>(U));
512       }
513     }
514 
515     // Replace the instruction with its simplified value.
516     bool Changed = false;
517     if (!I->use_empty()) {
518       I->replaceAllUsesWith(SimpleV);
519       Changed = true;
520     }
521     if (isInstructionTriviallyDead(I, TLI)) {
522       I->eraseFromParent();
523       Changed = true;
524     }
525     return Changed;
526   }
527   return false;
528 }
529 
530 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
531 /// simplify any instructions in it and recursively delete dead instructions.
532 ///
533 /// This returns true if it changed the code, note that it can delete
534 /// instructions in other blocks as well in this block.
535 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
536                                        const TargetLibraryInfo *TLI) {
537   bool MadeChange = false;
538   const DataLayout &DL = BB->getModule()->getDataLayout();
539 
540 #ifndef NDEBUG
541   // In debug builds, ensure that the terminator of the block is never replaced
542   // or deleted by these simplifications. The idea of simplification is that it
543   // cannot introduce new instructions, and there is no way to replace the
544   // terminator of a block without introducing a new instruction.
545   AssertingVH<Instruction> TerminatorVH(&BB->back());
546 #endif
547 
548   SmallSetVector<Instruction *, 16> WorkList;
549   // Iterate over the original function, only adding insts to the worklist
550   // if they actually need to be revisited. This avoids having to pre-init
551   // the worklist with the entire function's worth of instructions.
552   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
553        BI != E;) {
554     assert(!BI->isTerminator());
555     Instruction *I = &*BI;
556     ++BI;
557 
558     // We're visiting this instruction now, so make sure it's not in the
559     // worklist from an earlier visit.
560     if (!WorkList.count(I))
561       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
562   }
563 
564   while (!WorkList.empty()) {
565     Instruction *I = WorkList.pop_back_val();
566     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
567   }
568   return MadeChange;
569 }
570 
571 //===----------------------------------------------------------------------===//
572 //  Control Flow Graph Restructuring.
573 //
574 
575 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
576 /// method is called when we're about to delete Pred as a predecessor of BB.  If
577 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
578 ///
579 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
580 /// nodes that collapse into identity values.  For example, if we have:
581 ///   x = phi(1, 0, 0, 0)
582 ///   y = and x, z
583 ///
584 /// .. and delete the predecessor corresponding to the '1', this will attempt to
585 /// recursively fold the and to 0.
586 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
587   // This only adjusts blocks with PHI nodes.
588   if (!isa<PHINode>(BB->begin()))
589     return;
590 
591   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
592   // them down.  This will leave us with single entry phi nodes and other phis
593   // that can be removed.
594   BB->removePredecessor(Pred, true);
595 
596   WeakTrackingVH PhiIt = &BB->front();
597   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
598     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
599     Value *OldPhiIt = PhiIt;
600 
601     if (!recursivelySimplifyInstruction(PN))
602       continue;
603 
604     // If recursive simplification ended up deleting the next PHI node we would
605     // iterate to, then our iterator is invalid, restart scanning from the top
606     // of the block.
607     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
608   }
609 }
610 
611 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
612 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
613 /// between them, moving the instructions in the predecessor into DestBB and
614 /// deleting the predecessor block.
615 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
616   // If BB has single-entry PHI nodes, fold them.
617   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
618     Value *NewVal = PN->getIncomingValue(0);
619     // Replace self referencing PHI with undef, it must be dead.
620     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
621     PN->replaceAllUsesWith(NewVal);
622     PN->eraseFromParent();
623   }
624 
625   BasicBlock *PredBB = DestBB->getSinglePredecessor();
626   assert(PredBB && "Block doesn't have a single predecessor!");
627 
628   // Zap anything that took the address of DestBB.  Not doing this will give the
629   // address an invalid value.
630   if (DestBB->hasAddressTaken()) {
631     BlockAddress *BA = BlockAddress::get(DestBB);
632     Constant *Replacement =
633       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
634     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
635                                                      BA->getType()));
636     BA->destroyConstant();
637   }
638 
639   // Anything that branched to PredBB now branches to DestBB.
640   PredBB->replaceAllUsesWith(DestBB);
641 
642   // Splice all the instructions from PredBB to DestBB.
643   PredBB->getTerminator()->eraseFromParent();
644   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
645 
646   // If the PredBB is the entry block of the function, move DestBB up to
647   // become the entry block after we erase PredBB.
648   if (PredBB == &DestBB->getParent()->getEntryBlock())
649     DestBB->moveAfter(PredBB);
650 
651   if (DT) {
652     // For some irreducible CFG we end up having forward-unreachable blocks
653     // so check if getNode returns a valid node before updating the domtree.
654     if (DomTreeNode *DTN = DT->getNode(PredBB)) {
655       BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
656       DT->changeImmediateDominator(DestBB, PredBBIDom);
657       DT->eraseNode(PredBB);
658     }
659   }
660   // Nuke BB.
661   PredBB->eraseFromParent();
662 }
663 
664 /// CanMergeValues - Return true if we can choose one of these values to use
665 /// in place of the other. Note that we will always choose the non-undef
666 /// value to keep.
667 static bool CanMergeValues(Value *First, Value *Second) {
668   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
669 }
670 
671 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
672 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
673 ///
674 /// Assumption: Succ is the single successor for BB.
675 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
676   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
677 
678   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
679         << Succ->getName() << "\n");
680   // Shortcut, if there is only a single predecessor it must be BB and merging
681   // is always safe
682   if (Succ->getSinglePredecessor()) return true;
683 
684   // Make a list of the predecessors of BB
685   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
686 
687   // Look at all the phi nodes in Succ, to see if they present a conflict when
688   // merging these blocks
689   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
690     PHINode *PN = cast<PHINode>(I);
691 
692     // If the incoming value from BB is again a PHINode in
693     // BB which has the same incoming value for *PI as PN does, we can
694     // merge the phi nodes and then the blocks can still be merged
695     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
696     if (BBPN && BBPN->getParent() == BB) {
697       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
698         BasicBlock *IBB = PN->getIncomingBlock(PI);
699         if (BBPreds.count(IBB) &&
700             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
701                             PN->getIncomingValue(PI))) {
702           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
703                 << Succ->getName() << " is conflicting with "
704                 << BBPN->getName() << " with regard to common predecessor "
705                 << IBB->getName() << "\n");
706           return false;
707         }
708       }
709     } else {
710       Value* Val = PN->getIncomingValueForBlock(BB);
711       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
712         // See if the incoming value for the common predecessor is equal to the
713         // one for BB, in which case this phi node will not prevent the merging
714         // of the block.
715         BasicBlock *IBB = PN->getIncomingBlock(PI);
716         if (BBPreds.count(IBB) &&
717             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
718           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
719                 << Succ->getName() << " is conflicting with regard to common "
720                 << "predecessor " << IBB->getName() << "\n");
721           return false;
722         }
723       }
724     }
725   }
726 
727   return true;
728 }
729 
730 using PredBlockVector = SmallVector<BasicBlock *, 16>;
731 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
732 
733 /// \brief Determines the value to use as the phi node input for a block.
734 ///
735 /// Select between \p OldVal any value that we know flows from \p BB
736 /// to a particular phi on the basis of which one (if either) is not
737 /// undef. Update IncomingValues based on the selected value.
738 ///
739 /// \param OldVal The value we are considering selecting.
740 /// \param BB The block that the value flows in from.
741 /// \param IncomingValues A map from block-to-value for other phi inputs
742 /// that we have examined.
743 ///
744 /// \returns the selected value.
745 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
746                                           IncomingValueMap &IncomingValues) {
747   if (!isa<UndefValue>(OldVal)) {
748     assert((!IncomingValues.count(BB) ||
749             IncomingValues.find(BB)->second == OldVal) &&
750            "Expected OldVal to match incoming value from BB!");
751 
752     IncomingValues.insert(std::make_pair(BB, OldVal));
753     return OldVal;
754   }
755 
756   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
757   if (It != IncomingValues.end()) return It->second;
758 
759   return OldVal;
760 }
761 
762 /// \brief Create a map from block to value for the operands of a
763 /// given phi.
764 ///
765 /// Create a map from block to value for each non-undef value flowing
766 /// into \p PN.
767 ///
768 /// \param PN The phi we are collecting the map for.
769 /// \param IncomingValues [out] The map from block to value for this phi.
770 static void gatherIncomingValuesToPhi(PHINode *PN,
771                                       IncomingValueMap &IncomingValues) {
772   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
773     BasicBlock *BB = PN->getIncomingBlock(i);
774     Value *V = PN->getIncomingValue(i);
775 
776     if (!isa<UndefValue>(V))
777       IncomingValues.insert(std::make_pair(BB, V));
778   }
779 }
780 
781 /// \brief Replace the incoming undef values to a phi with the values
782 /// from a block-to-value map.
783 ///
784 /// \param PN The phi we are replacing the undefs in.
785 /// \param IncomingValues A map from block to value.
786 static void replaceUndefValuesInPhi(PHINode *PN,
787                                     const IncomingValueMap &IncomingValues) {
788   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
789     Value *V = PN->getIncomingValue(i);
790 
791     if (!isa<UndefValue>(V)) continue;
792 
793     BasicBlock *BB = PN->getIncomingBlock(i);
794     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
795     if (It == IncomingValues.end()) continue;
796 
797     PN->setIncomingValue(i, It->second);
798   }
799 }
800 
801 /// \brief Replace a value flowing from a block to a phi with
802 /// potentially multiple instances of that value flowing from the
803 /// block's predecessors to the phi.
804 ///
805 /// \param BB The block with the value flowing into the phi.
806 /// \param BBPreds The predecessors of BB.
807 /// \param PN The phi that we are updating.
808 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
809                                                 const PredBlockVector &BBPreds,
810                                                 PHINode *PN) {
811   Value *OldVal = PN->removeIncomingValue(BB, false);
812   assert(OldVal && "No entry in PHI for Pred BB!");
813 
814   IncomingValueMap IncomingValues;
815 
816   // We are merging two blocks - BB, and the block containing PN - and
817   // as a result we need to redirect edges from the predecessors of BB
818   // to go to the block containing PN, and update PN
819   // accordingly. Since we allow merging blocks in the case where the
820   // predecessor and successor blocks both share some predecessors,
821   // and where some of those common predecessors might have undef
822   // values flowing into PN, we want to rewrite those values to be
823   // consistent with the non-undef values.
824 
825   gatherIncomingValuesToPhi(PN, IncomingValues);
826 
827   // If this incoming value is one of the PHI nodes in BB, the new entries
828   // in the PHI node are the entries from the old PHI.
829   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
830     PHINode *OldValPN = cast<PHINode>(OldVal);
831     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
832       // Note that, since we are merging phi nodes and BB and Succ might
833       // have common predecessors, we could end up with a phi node with
834       // identical incoming branches. This will be cleaned up later (and
835       // will trigger asserts if we try to clean it up now, without also
836       // simplifying the corresponding conditional branch).
837       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
838       Value *PredVal = OldValPN->getIncomingValue(i);
839       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
840                                                     IncomingValues);
841 
842       // And add a new incoming value for this predecessor for the
843       // newly retargeted branch.
844       PN->addIncoming(Selected, PredBB);
845     }
846   } else {
847     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
848       // Update existing incoming values in PN for this
849       // predecessor of BB.
850       BasicBlock *PredBB = BBPreds[i];
851       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
852                                                     IncomingValues);
853 
854       // And add a new incoming value for this predecessor for the
855       // newly retargeted branch.
856       PN->addIncoming(Selected, PredBB);
857     }
858   }
859 
860   replaceUndefValuesInPhi(PN, IncomingValues);
861 }
862 
863 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
864 /// unconditional branch, and contains no instructions other than PHI nodes,
865 /// potential side-effect free intrinsics and the branch.  If possible,
866 /// eliminate BB by rewriting all the predecessors to branch to the successor
867 /// block and return true.  If we can't transform, return false.
868 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
869   assert(BB != &BB->getParent()->getEntryBlock() &&
870          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
871 
872   // We can't eliminate infinite loops.
873   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
874   if (BB == Succ) return false;
875 
876   // Check to see if merging these blocks would cause conflicts for any of the
877   // phi nodes in BB or Succ. If not, we can safely merge.
878   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
879 
880   // Check for cases where Succ has multiple predecessors and a PHI node in BB
881   // has uses which will not disappear when the PHI nodes are merged.  It is
882   // possible to handle such cases, but difficult: it requires checking whether
883   // BB dominates Succ, which is non-trivial to calculate in the case where
884   // Succ has multiple predecessors.  Also, it requires checking whether
885   // constructing the necessary self-referential PHI node doesn't introduce any
886   // conflicts; this isn't too difficult, but the previous code for doing this
887   // was incorrect.
888   //
889   // Note that if this check finds a live use, BB dominates Succ, so BB is
890   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
891   // folding the branch isn't profitable in that case anyway.
892   if (!Succ->getSinglePredecessor()) {
893     BasicBlock::iterator BBI = BB->begin();
894     while (isa<PHINode>(*BBI)) {
895       for (Use &U : BBI->uses()) {
896         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
897           if (PN->getIncomingBlock(U) != BB)
898             return false;
899         } else {
900           return false;
901         }
902       }
903       ++BBI;
904     }
905   }
906 
907   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
908 
909   if (isa<PHINode>(Succ->begin())) {
910     // If there is more than one pred of succ, and there are PHI nodes in
911     // the successor, then we need to add incoming edges for the PHI nodes
912     //
913     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
914 
915     // Loop over all of the PHI nodes in the successor of BB.
916     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
917       PHINode *PN = cast<PHINode>(I);
918 
919       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
920     }
921   }
922 
923   if (Succ->getSinglePredecessor()) {
924     // BB is the only predecessor of Succ, so Succ will end up with exactly
925     // the same predecessors BB had.
926 
927     // Copy over any phi, debug or lifetime instruction.
928     BB->getTerminator()->eraseFromParent();
929     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
930                                BB->getInstList());
931   } else {
932     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
933       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
934       assert(PN->use_empty() && "There shouldn't be any uses here!");
935       PN->eraseFromParent();
936     }
937   }
938 
939   // If the unconditional branch we replaced contains llvm.loop metadata, we
940   // add the metadata to the branch instructions in the predecessors.
941   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
942   Instruction *TI = BB->getTerminator();
943   if (TI)
944     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
945       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
946         BasicBlock *Pred = *PI;
947         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
948       }
949 
950   // Everything that jumped to BB now goes to Succ.
951   BB->replaceAllUsesWith(Succ);
952   if (!Succ->hasName()) Succ->takeName(BB);
953   BB->eraseFromParent();              // Delete the old basic block.
954   return true;
955 }
956 
957 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
958 /// nodes in this block. This doesn't try to be clever about PHI nodes
959 /// which differ only in the order of the incoming values, but instcombine
960 /// orders them so it usually won't matter.
961 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
962   // This implementation doesn't currently consider undef operands
963   // specially. Theoretically, two phis which are identical except for
964   // one having an undef where the other doesn't could be collapsed.
965 
966   struct PHIDenseMapInfo {
967     static PHINode *getEmptyKey() {
968       return DenseMapInfo<PHINode *>::getEmptyKey();
969     }
970 
971     static PHINode *getTombstoneKey() {
972       return DenseMapInfo<PHINode *>::getTombstoneKey();
973     }
974 
975     static unsigned getHashValue(PHINode *PN) {
976       // Compute a hash value on the operands. Instcombine will likely have
977       // sorted them, which helps expose duplicates, but we have to check all
978       // the operands to be safe in case instcombine hasn't run.
979       return static_cast<unsigned>(hash_combine(
980           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
981           hash_combine_range(PN->block_begin(), PN->block_end())));
982     }
983 
984     static bool isEqual(PHINode *LHS, PHINode *RHS) {
985       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
986           RHS == getEmptyKey() || RHS == getTombstoneKey())
987         return LHS == RHS;
988       return LHS->isIdenticalTo(RHS);
989     }
990   };
991 
992   // Set of unique PHINodes.
993   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
994 
995   // Examine each PHI.
996   bool Changed = false;
997   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
998     auto Inserted = PHISet.insert(PN);
999     if (!Inserted.second) {
1000       // A duplicate. Replace this PHI with its duplicate.
1001       PN->replaceAllUsesWith(*Inserted.first);
1002       PN->eraseFromParent();
1003       Changed = true;
1004 
1005       // The RAUW can change PHIs that we already visited. Start over from the
1006       // beginning.
1007       PHISet.clear();
1008       I = BB->begin();
1009     }
1010   }
1011 
1012   return Changed;
1013 }
1014 
1015 /// enforceKnownAlignment - If the specified pointer points to an object that
1016 /// we control, modify the object's alignment to PrefAlign. This isn't
1017 /// often possible though. If alignment is important, a more reliable approach
1018 /// is to simply align all global variables and allocation instructions to
1019 /// their preferred alignment from the beginning.
1020 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1021                                       unsigned PrefAlign,
1022                                       const DataLayout &DL) {
1023   assert(PrefAlign > Align);
1024 
1025   V = V->stripPointerCasts();
1026 
1027   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1028     // TODO: ideally, computeKnownBits ought to have used
1029     // AllocaInst::getAlignment() in its computation already, making
1030     // the below max redundant. But, as it turns out,
1031     // stripPointerCasts recurses through infinite layers of bitcasts,
1032     // while computeKnownBits is not allowed to traverse more than 6
1033     // levels.
1034     Align = std::max(AI->getAlignment(), Align);
1035     if (PrefAlign <= Align)
1036       return Align;
1037 
1038     // If the preferred alignment is greater than the natural stack alignment
1039     // then don't round up. This avoids dynamic stack realignment.
1040     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1041       return Align;
1042     AI->setAlignment(PrefAlign);
1043     return PrefAlign;
1044   }
1045 
1046   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1047     // TODO: as above, this shouldn't be necessary.
1048     Align = std::max(GO->getAlignment(), Align);
1049     if (PrefAlign <= Align)
1050       return Align;
1051 
1052     // If there is a large requested alignment and we can, bump up the alignment
1053     // of the global.  If the memory we set aside for the global may not be the
1054     // memory used by the final program then it is impossible for us to reliably
1055     // enforce the preferred alignment.
1056     if (!GO->canIncreaseAlignment())
1057       return Align;
1058 
1059     GO->setAlignment(PrefAlign);
1060     return PrefAlign;
1061   }
1062 
1063   return Align;
1064 }
1065 
1066 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1067                                           const DataLayout &DL,
1068                                           const Instruction *CxtI,
1069                                           AssumptionCache *AC,
1070                                           const DominatorTree *DT) {
1071   assert(V->getType()->isPointerTy() &&
1072          "getOrEnforceKnownAlignment expects a pointer!");
1073 
1074   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1075   unsigned TrailZ = Known.countMinTrailingZeros();
1076 
1077   // Avoid trouble with ridiculously large TrailZ values, such as
1078   // those computed from a null pointer.
1079   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1080 
1081   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1082 
1083   // LLVM doesn't support alignments larger than this currently.
1084   Align = std::min(Align, +Value::MaximumAlignment);
1085 
1086   if (PrefAlign > Align)
1087     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1088 
1089   // We don't need to make any adjustment.
1090   return Align;
1091 }
1092 
1093 ///===---------------------------------------------------------------------===//
1094 ///  Dbg Intrinsic utilities
1095 ///
1096 
1097 /// See if there is a dbg.value intrinsic for DIVar before I.
1098 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1099                               Instruction *I) {
1100   // Since we can't guarantee that the original dbg.declare instrinsic
1101   // is removed by LowerDbgDeclare(), we need to make sure that we are
1102   // not inserting the same dbg.value intrinsic over and over.
1103   BasicBlock::InstListType::iterator PrevI(I);
1104   if (PrevI != I->getParent()->getInstList().begin()) {
1105     --PrevI;
1106     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1107       if (DVI->getValue() == I->getOperand(0) &&
1108           DVI->getVariable() == DIVar &&
1109           DVI->getExpression() == DIExpr)
1110         return true;
1111   }
1112   return false;
1113 }
1114 
1115 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1116 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1117                              DIExpression *DIExpr,
1118                              PHINode *APN) {
1119   // Since we can't guarantee that the original dbg.declare instrinsic
1120   // is removed by LowerDbgDeclare(), we need to make sure that we are
1121   // not inserting the same dbg.value intrinsic over and over.
1122   SmallVector<DbgValueInst *, 1> DbgValues;
1123   findDbgValues(DbgValues, APN);
1124   for (auto *DVI : DbgValues) {
1125     assert(DVI->getValue() == APN);
1126     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1127       return true;
1128   }
1129   return false;
1130 }
1131 
1132 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1133 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1134 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1135                                            StoreInst *SI, DIBuilder &Builder) {
1136   assert(DII->isAddressOfVariable());
1137   auto *DIVar = DII->getVariable();
1138   assert(DIVar && "Missing variable");
1139   auto *DIExpr = DII->getExpression();
1140   Value *DV = SI->getOperand(0);
1141 
1142   // If an argument is zero extended then use argument directly. The ZExt
1143   // may be zapped by an optimization pass in future.
1144   Argument *ExtendedArg = nullptr;
1145   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1146     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1147   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1148     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1149   if (ExtendedArg) {
1150     // If this DII was already describing only a fragment of a variable, ensure
1151     // that fragment is appropriately narrowed here.
1152     // But if a fragment wasn't used, describe the value as the original
1153     // argument (rather than the zext or sext) so that it remains described even
1154     // if the sext/zext is optimized away. This widens the variable description,
1155     // leaving it up to the consumer to know how the smaller value may be
1156     // represented in a larger register.
1157     if (auto Fragment = DIExpr->getFragmentInfo()) {
1158       unsigned FragmentOffset = Fragment->OffsetInBits;
1159       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1160                                    DIExpr->elements_end() - 3);
1161       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1162       Ops.push_back(FragmentOffset);
1163       const DataLayout &DL = DII->getModule()->getDataLayout();
1164       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1165       DIExpr = Builder.createExpression(Ops);
1166     }
1167     DV = ExtendedArg;
1168   }
1169   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1170     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1171                                     SI);
1172 }
1173 
1174 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1175 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1176 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1177                                            LoadInst *LI, DIBuilder &Builder) {
1178   auto *DIVar = DII->getVariable();
1179   auto *DIExpr = DII->getExpression();
1180   assert(DIVar && "Missing variable");
1181 
1182   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1183     return;
1184 
1185   // We are now tracking the loaded value instead of the address. In the
1186   // future if multi-location support is added to the IR, it might be
1187   // preferable to keep tracking both the loaded value and the original
1188   // address in case the alloca can not be elided.
1189   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1190       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1191   DbgValue->insertAfter(LI);
1192 }
1193 
1194 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1195 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1196 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1197                                            PHINode *APN, DIBuilder &Builder) {
1198   auto *DIVar = DII->getVariable();
1199   auto *DIExpr = DII->getExpression();
1200   assert(DIVar && "Missing variable");
1201 
1202   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1203     return;
1204 
1205   BasicBlock *BB = APN->getParent();
1206   auto InsertionPt = BB->getFirstInsertionPt();
1207 
1208   // The block may be a catchswitch block, which does not have a valid
1209   // insertion point.
1210   // FIXME: Insert dbg.value markers in the successors when appropriate.
1211   if (InsertionPt != BB->end())
1212     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1213                                     &*InsertionPt);
1214 }
1215 
1216 /// Determine whether this alloca is either a VLA or an array.
1217 static bool isArray(AllocaInst *AI) {
1218   return AI->isArrayAllocation() ||
1219     AI->getType()->getElementType()->isArrayTy();
1220 }
1221 
1222 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1223 /// of llvm.dbg.value intrinsics.
1224 bool llvm::LowerDbgDeclare(Function &F) {
1225   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1226   SmallVector<DbgDeclareInst *, 4> Dbgs;
1227   for (auto &FI : F)
1228     for (Instruction &BI : FI)
1229       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1230         Dbgs.push_back(DDI);
1231 
1232   if (Dbgs.empty())
1233     return false;
1234 
1235   for (auto &I : Dbgs) {
1236     DbgDeclareInst *DDI = I;
1237     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1238     // If this is an alloca for a scalar variable, insert a dbg.value
1239     // at each load and store to the alloca and erase the dbg.declare.
1240     // The dbg.values allow tracking a variable even if it is not
1241     // stored on the stack, while the dbg.declare can only describe
1242     // the stack slot (and at a lexical-scope granularity). Later
1243     // passes will attempt to elide the stack slot.
1244     if (AI && !isArray(AI)) {
1245       for (auto &AIUse : AI->uses()) {
1246         User *U = AIUse.getUser();
1247         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1248           if (AIUse.getOperandNo() == 1)
1249             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1250         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1251           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1252         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1253           // This is a call by-value or some other instruction that
1254           // takes a pointer to the variable. Insert a *value*
1255           // intrinsic that describes the alloca.
1256           DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
1257                                       DDI->getExpression(), DDI->getDebugLoc(),
1258                                       CI);
1259         }
1260       }
1261       DDI->eraseFromParent();
1262     }
1263   }
1264   return true;
1265 }
1266 
1267 /// Finds all intrinsics declaring local variables as living in the memory that
1268 /// 'V' points to. This may include a mix of dbg.declare and
1269 /// dbg.addr intrinsics.
1270 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1271   auto *L = LocalAsMetadata::getIfExists(V);
1272   if (!L)
1273     return {};
1274   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1275   if (!MDV)
1276     return {};
1277 
1278   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1279   for (User *U : MDV->users()) {
1280     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1281       if (DII->isAddressOfVariable())
1282         Declares.push_back(DII);
1283   }
1284 
1285   return Declares;
1286 }
1287 
1288 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1289   if (auto *L = LocalAsMetadata::getIfExists(V))
1290     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1291       for (User *U : MDV->users())
1292         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1293           DbgValues.push_back(DVI);
1294 }
1295 
1296 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1297                              Instruction *InsertBefore, DIBuilder &Builder,
1298                              bool Deref, int Offset) {
1299   auto DbgAddrs = FindDbgAddrUses(Address);
1300   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1301     DebugLoc Loc = DII->getDebugLoc();
1302     auto *DIVar = DII->getVariable();
1303     auto *DIExpr = DII->getExpression();
1304     assert(DIVar && "Missing variable");
1305     DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
1306     // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
1307     // llvm.dbg.declare.
1308     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1309     if (DII == InsertBefore)
1310       InsertBefore = &*std::next(InsertBefore->getIterator());
1311     DII->eraseFromParent();
1312   }
1313   return !DbgAddrs.empty();
1314 }
1315 
1316 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1317                                       DIBuilder &Builder, bool Deref, int Offset) {
1318   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1319                            Deref, Offset);
1320 }
1321 
1322 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1323                                         DIBuilder &Builder, int Offset) {
1324   DebugLoc Loc = DVI->getDebugLoc();
1325   auto *DIVar = DVI->getVariable();
1326   auto *DIExpr = DVI->getExpression();
1327   assert(DIVar && "Missing variable");
1328 
1329   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1330   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1331   // it and give up.
1332   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1333       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1334     return;
1335 
1336   // Insert the offset immediately after the first deref.
1337   // We could just change the offset argument of dbg.value, but it's unsigned...
1338   if (Offset) {
1339     SmallVector<uint64_t, 4> Ops;
1340     Ops.push_back(dwarf::DW_OP_deref);
1341     DIExpression::appendOffset(Ops, Offset);
1342     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1343     DIExpr = Builder.createExpression(Ops);
1344   }
1345 
1346   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1347   DVI->eraseFromParent();
1348 }
1349 
1350 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1351                                     DIBuilder &Builder, int Offset) {
1352   if (auto *L = LocalAsMetadata::getIfExists(AI))
1353     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1354       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1355         Use &U = *UI++;
1356         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1357           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1358       }
1359 }
1360 
1361 void llvm::salvageDebugInfo(Instruction &I) {
1362   SmallVector<DbgValueInst *, 1> DbgValues;
1363   auto &M = *I.getModule();
1364 
1365   auto wrapMD = [&](Value *V) {
1366     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1367   };
1368 
1369   auto applyOffset = [&](DbgValueInst *DVI, uint64_t Offset) {
1370     auto *DIExpr = DVI->getExpression();
1371     DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref, Offset,
1372                                    DIExpression::WithStackValue);
1373     DVI->setOperand(0, wrapMD(I.getOperand(0)));
1374     DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1375     DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1376   };
1377 
1378   if (isa<BitCastInst>(&I) || isa<IntToPtrInst>(&I)) {
1379     findDbgValues(DbgValues, &I);
1380     for (auto *DVI : DbgValues) {
1381       // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
1382       // to use the cast's source.
1383       DVI->setOperand(0, wrapMD(I.getOperand(0)));
1384       DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1385     }
1386   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1387     findDbgValues(DbgValues, &I);
1388     for (auto *DVI : DbgValues) {
1389       unsigned BitWidth =
1390           M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
1391       APInt Offset(BitWidth, 0);
1392       // Rewrite a constant GEP into a DIExpression.  Since we are performing
1393       // arithmetic to compute the variable's *value* in the DIExpression, we
1394       // need to mark the expression with a DW_OP_stack_value.
1395       if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1396         // GEP offsets are i32 and thus always fit into an int64_t.
1397         applyOffset(DVI, Offset.getSExtValue());
1398     }
1399   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1400     if (BI->getOpcode() == Instruction::Add)
1401       if (auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)))
1402         if (ConstInt->getBitWidth() <= 64) {
1403           APInt Offset = ConstInt->getValue();
1404           findDbgValues(DbgValues, &I);
1405           for (auto *DVI : DbgValues)
1406             applyOffset(DVI, Offset.getSExtValue());
1407         }
1408   } else if (isa<LoadInst>(&I)) {
1409     findDbgValues(DbgValues, &I);
1410     for (auto *DVI : DbgValues) {
1411       // Rewrite the load into DW_OP_deref.
1412       auto *DIExpr = DVI->getExpression();
1413       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1414       DVI->setOperand(0, wrapMD(I.getOperand(0)));
1415       DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
1416       DEBUG(dbgs() << "SALVAGE:  " << *DVI << '\n');
1417     }
1418   }
1419 }
1420 
1421 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1422   unsigned NumDeadInst = 0;
1423   // Delete the instructions backwards, as it has a reduced likelihood of
1424   // having to update as many def-use and use-def chains.
1425   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1426   while (EndInst != &BB->front()) {
1427     // Delete the next to last instruction.
1428     Instruction *Inst = &*--EndInst->getIterator();
1429     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1430       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1431     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1432       EndInst = Inst;
1433       continue;
1434     }
1435     if (!isa<DbgInfoIntrinsic>(Inst))
1436       ++NumDeadInst;
1437     Inst->eraseFromParent();
1438   }
1439   return NumDeadInst;
1440 }
1441 
1442 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1443                                    bool PreserveLCSSA) {
1444   BasicBlock *BB = I->getParent();
1445   // Loop over all of the successors, removing BB's entry from any PHI
1446   // nodes.
1447   for (BasicBlock *Successor : successors(BB))
1448     Successor->removePredecessor(BB, PreserveLCSSA);
1449 
1450   // Insert a call to llvm.trap right before this.  This turns the undefined
1451   // behavior into a hard fail instead of falling through into random code.
1452   if (UseLLVMTrap) {
1453     Function *TrapFn =
1454       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1455     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1456     CallTrap->setDebugLoc(I->getDebugLoc());
1457   }
1458   new UnreachableInst(I->getContext(), I);
1459 
1460   // All instructions after this are dead.
1461   unsigned NumInstrsRemoved = 0;
1462   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1463   while (BBI != BBE) {
1464     if (!BBI->use_empty())
1465       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1466     BB->getInstList().erase(BBI++);
1467     ++NumInstrsRemoved;
1468   }
1469   return NumInstrsRemoved;
1470 }
1471 
1472 /// changeToCall - Convert the specified invoke into a normal call.
1473 static void changeToCall(InvokeInst *II) {
1474   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1475   SmallVector<OperandBundleDef, 1> OpBundles;
1476   II->getOperandBundlesAsDefs(OpBundles);
1477   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1478                                        "", II);
1479   NewCall->takeName(II);
1480   NewCall->setCallingConv(II->getCallingConv());
1481   NewCall->setAttributes(II->getAttributes());
1482   NewCall->setDebugLoc(II->getDebugLoc());
1483   II->replaceAllUsesWith(NewCall);
1484 
1485   // Follow the call by a branch to the normal destination.
1486   BranchInst::Create(II->getNormalDest(), II);
1487 
1488   // Update PHI nodes in the unwind destination
1489   II->getUnwindDest()->removePredecessor(II->getParent());
1490   II->eraseFromParent();
1491 }
1492 
1493 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1494                                                    BasicBlock *UnwindEdge) {
1495   BasicBlock *BB = CI->getParent();
1496 
1497   // Convert this function call into an invoke instruction.  First, split the
1498   // basic block.
1499   BasicBlock *Split =
1500       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1501 
1502   // Delete the unconditional branch inserted by splitBasicBlock
1503   BB->getInstList().pop_back();
1504 
1505   // Create the new invoke instruction.
1506   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1507   SmallVector<OperandBundleDef, 1> OpBundles;
1508 
1509   CI->getOperandBundlesAsDefs(OpBundles);
1510 
1511   // Note: we're round tripping operand bundles through memory here, and that
1512   // can potentially be avoided with a cleverer API design that we do not have
1513   // as of this time.
1514 
1515   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1516                                       InvokeArgs, OpBundles, CI->getName(), BB);
1517   II->setDebugLoc(CI->getDebugLoc());
1518   II->setCallingConv(CI->getCallingConv());
1519   II->setAttributes(CI->getAttributes());
1520 
1521   // Make sure that anything using the call now uses the invoke!  This also
1522   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1523   CI->replaceAllUsesWith(II);
1524 
1525   // Delete the original call
1526   Split->getInstList().pop_front();
1527   return Split;
1528 }
1529 
1530 static bool markAliveBlocks(Function &F,
1531                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1532   SmallVector<BasicBlock*, 128> Worklist;
1533   BasicBlock *BB = &F.front();
1534   Worklist.push_back(BB);
1535   Reachable.insert(BB);
1536   bool Changed = false;
1537   do {
1538     BB = Worklist.pop_back_val();
1539 
1540     // Do a quick scan of the basic block, turning any obviously unreachable
1541     // instructions into LLVM unreachable insts.  The instruction combining pass
1542     // canonicalizes unreachable insts into stores to null or undef.
1543     for (Instruction &I : *BB) {
1544       // Assumptions that are known to be false are equivalent to unreachable.
1545       // Also, if the condition is undefined, then we make the choice most
1546       // beneficial to the optimizer, and choose that to also be unreachable.
1547       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1548         if (II->getIntrinsicID() == Intrinsic::assume) {
1549           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1550             // Don't insert a call to llvm.trap right before the unreachable.
1551             changeToUnreachable(II, false);
1552             Changed = true;
1553             break;
1554           }
1555         }
1556 
1557         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1558           // A call to the guard intrinsic bails out of the current compilation
1559           // unit if the predicate passed to it is false.  If the predicate is a
1560           // constant false, then we know the guard will bail out of the current
1561           // compile unconditionally, so all code following it is dead.
1562           //
1563           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1564           // guards to treat `undef` as `false` since a guard on `undef` can
1565           // still be useful for widening.
1566           if (match(II->getArgOperand(0), m_Zero()))
1567             if (!isa<UnreachableInst>(II->getNextNode())) {
1568               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1569               Changed = true;
1570               break;
1571             }
1572         }
1573       }
1574 
1575       if (auto *CI = dyn_cast<CallInst>(&I)) {
1576         Value *Callee = CI->getCalledValue();
1577         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1578           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
1579           Changed = true;
1580           break;
1581         }
1582         if (CI->doesNotReturn()) {
1583           // If we found a call to a no-return function, insert an unreachable
1584           // instruction after it.  Make sure there isn't *already* one there
1585           // though.
1586           if (!isa<UnreachableInst>(CI->getNextNode())) {
1587             // Don't insert a call to llvm.trap right before the unreachable.
1588             changeToUnreachable(CI->getNextNode(), false);
1589             Changed = true;
1590           }
1591           break;
1592         }
1593       }
1594 
1595       // Store to undef and store to null are undefined and used to signal that
1596       // they should be changed to unreachable by passes that can't modify the
1597       // CFG.
1598       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1599         // Don't touch volatile stores.
1600         if (SI->isVolatile()) continue;
1601 
1602         Value *Ptr = SI->getOperand(1);
1603 
1604         if (isa<UndefValue>(Ptr) ||
1605             (isa<ConstantPointerNull>(Ptr) &&
1606              SI->getPointerAddressSpace() == 0)) {
1607           changeToUnreachable(SI, true);
1608           Changed = true;
1609           break;
1610         }
1611       }
1612     }
1613 
1614     TerminatorInst *Terminator = BB->getTerminator();
1615     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1616       // Turn invokes that call 'nounwind' functions into ordinary calls.
1617       Value *Callee = II->getCalledValue();
1618       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1619         changeToUnreachable(II, true);
1620         Changed = true;
1621       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1622         if (II->use_empty() && II->onlyReadsMemory()) {
1623           // jump to the normal destination branch.
1624           BranchInst::Create(II->getNormalDest(), II);
1625           II->getUnwindDest()->removePredecessor(II->getParent());
1626           II->eraseFromParent();
1627         } else
1628           changeToCall(II);
1629         Changed = true;
1630       }
1631     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1632       // Remove catchpads which cannot be reached.
1633       struct CatchPadDenseMapInfo {
1634         static CatchPadInst *getEmptyKey() {
1635           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1636         }
1637 
1638         static CatchPadInst *getTombstoneKey() {
1639           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1640         }
1641 
1642         static unsigned getHashValue(CatchPadInst *CatchPad) {
1643           return static_cast<unsigned>(hash_combine_range(
1644               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1645         }
1646 
1647         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1648           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1649               RHS == getEmptyKey() || RHS == getTombstoneKey())
1650             return LHS == RHS;
1651           return LHS->isIdenticalTo(RHS);
1652         }
1653       };
1654 
1655       // Set of unique CatchPads.
1656       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1657                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1658           HandlerSet;
1659       detail::DenseSetEmpty Empty;
1660       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1661                                              E = CatchSwitch->handler_end();
1662            I != E; ++I) {
1663         BasicBlock *HandlerBB = *I;
1664         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1665         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1666           CatchSwitch->removeHandler(I);
1667           --I;
1668           --E;
1669           Changed = true;
1670         }
1671       }
1672     }
1673 
1674     Changed |= ConstantFoldTerminator(BB, true);
1675     for (BasicBlock *Successor : successors(BB))
1676       if (Reachable.insert(Successor).second)
1677         Worklist.push_back(Successor);
1678   } while (!Worklist.empty());
1679   return Changed;
1680 }
1681 
1682 void llvm::removeUnwindEdge(BasicBlock *BB) {
1683   TerminatorInst *TI = BB->getTerminator();
1684 
1685   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1686     changeToCall(II);
1687     return;
1688   }
1689 
1690   TerminatorInst *NewTI;
1691   BasicBlock *UnwindDest;
1692 
1693   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1694     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1695     UnwindDest = CRI->getUnwindDest();
1696   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1697     auto *NewCatchSwitch = CatchSwitchInst::Create(
1698         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1699         CatchSwitch->getName(), CatchSwitch);
1700     for (BasicBlock *PadBB : CatchSwitch->handlers())
1701       NewCatchSwitch->addHandler(PadBB);
1702 
1703     NewTI = NewCatchSwitch;
1704     UnwindDest = CatchSwitch->getUnwindDest();
1705   } else {
1706     llvm_unreachable("Could not find unwind successor");
1707   }
1708 
1709   NewTI->takeName(TI);
1710   NewTI->setDebugLoc(TI->getDebugLoc());
1711   UnwindDest->removePredecessor(BB);
1712   TI->replaceAllUsesWith(NewTI);
1713   TI->eraseFromParent();
1714 }
1715 
1716 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
1717 /// if they are in a dead cycle.  Return true if a change was made, false
1718 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
1719 /// after modifying the CFG.
1720 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1721   SmallPtrSet<BasicBlock*, 16> Reachable;
1722   bool Changed = markAliveBlocks(F, Reachable);
1723 
1724   // If there are unreachable blocks in the CFG...
1725   if (Reachable.size() == F.size())
1726     return Changed;
1727 
1728   assert(Reachable.size() < F.size());
1729   NumRemoved += F.size()-Reachable.size();
1730 
1731   // Loop over all of the basic blocks that are not reachable, dropping all of
1732   // their internal references...
1733   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1734     if (Reachable.count(&*BB))
1735       continue;
1736 
1737     for (BasicBlock *Successor : successors(&*BB))
1738       if (Reachable.count(Successor))
1739         Successor->removePredecessor(&*BB);
1740     if (LVI)
1741       LVI->eraseBlock(&*BB);
1742     BB->dropAllReferences();
1743   }
1744 
1745   for (Function::iterator I = ++F.begin(); I != F.end();)
1746     if (!Reachable.count(&*I))
1747       I = F.getBasicBlockList().erase(I);
1748     else
1749       ++I;
1750 
1751   return true;
1752 }
1753 
1754 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1755                            ArrayRef<unsigned> KnownIDs) {
1756   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1757   K->dropUnknownNonDebugMetadata(KnownIDs);
1758   K->getAllMetadataOtherThanDebugLoc(Metadata);
1759   for (const auto &MD : Metadata) {
1760     unsigned Kind = MD.first;
1761     MDNode *JMD = J->getMetadata(Kind);
1762     MDNode *KMD = MD.second;
1763 
1764     switch (Kind) {
1765       default:
1766         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1767         break;
1768       case LLVMContext::MD_dbg:
1769         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1770       case LLVMContext::MD_tbaa:
1771         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1772         break;
1773       case LLVMContext::MD_alias_scope:
1774         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1775         break;
1776       case LLVMContext::MD_noalias:
1777       case LLVMContext::MD_mem_parallel_loop_access:
1778         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1779         break;
1780       case LLVMContext::MD_range:
1781         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1782         break;
1783       case LLVMContext::MD_fpmath:
1784         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1785         break;
1786       case LLVMContext::MD_invariant_load:
1787         // Only set the !invariant.load if it is present in both instructions.
1788         K->setMetadata(Kind, JMD);
1789         break;
1790       case LLVMContext::MD_nonnull:
1791         // Only set the !nonnull if it is present in both instructions.
1792         K->setMetadata(Kind, JMD);
1793         break;
1794       case LLVMContext::MD_invariant_group:
1795         // Preserve !invariant.group in K.
1796         break;
1797       case LLVMContext::MD_align:
1798         K->setMetadata(Kind,
1799           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1800         break;
1801       case LLVMContext::MD_dereferenceable:
1802       case LLVMContext::MD_dereferenceable_or_null:
1803         K->setMetadata(Kind,
1804           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1805         break;
1806     }
1807   }
1808   // Set !invariant.group from J if J has it. If both instructions have it
1809   // then we will just pick it from J - even when they are different.
1810   // Also make sure that K is load or store - f.e. combining bitcast with load
1811   // could produce bitcast with invariant.group metadata, which is invalid.
1812   // FIXME: we should try to preserve both invariant.group md if they are
1813   // different, but right now instruction can only have one invariant.group.
1814   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1815     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1816       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1817 }
1818 
1819 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1820   unsigned KnownIDs[] = {
1821       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1822       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1823       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1824       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1825       LLVMContext::MD_dereferenceable,
1826       LLVMContext::MD_dereferenceable_or_null};
1827   combineMetadata(K, J, KnownIDs);
1828 }
1829 
1830 template <typename RootType, typename DominatesFn>
1831 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
1832                                          const RootType &Root,
1833                                          const DominatesFn &Dominates) {
1834   assert(From->getType() == To->getType());
1835 
1836   unsigned Count = 0;
1837   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1838        UI != UE;) {
1839     Use &U = *UI++;
1840     if (!Dominates(Root, U))
1841       continue;
1842     U.set(To);
1843     DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1844                  << *To << " in " << *U << "\n");
1845     ++Count;
1846   }
1847   return Count;
1848 }
1849 
1850 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
1851    assert(From->getType() == To->getType());
1852    auto *BB = From->getParent();
1853    unsigned Count = 0;
1854 
1855   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1856        UI != UE;) {
1857     Use &U = *UI++;
1858     auto *I = cast<Instruction>(U.getUser());
1859     if (I->getParent() == BB)
1860       continue;
1861     U.set(To);
1862     ++Count;
1863   }
1864   return Count;
1865 }
1866 
1867 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1868                                         DominatorTree &DT,
1869                                         const BasicBlockEdge &Root) {
1870   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
1871     return DT.dominates(Root, U);
1872   };
1873   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
1874 }
1875 
1876 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1877                                         DominatorTree &DT,
1878                                         const BasicBlock *BB) {
1879   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
1880     auto *I = cast<Instruction>(U.getUser())->getParent();
1881     return DT.properlyDominates(BB, I);
1882   };
1883   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
1884 }
1885 
1886 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
1887                                const TargetLibraryInfo &TLI) {
1888   // Check if the function is specifically marked as a gc leaf function.
1889   if (CS.hasFnAttr("gc-leaf-function"))
1890     return true;
1891   if (const Function *F = CS.getCalledFunction()) {
1892     if (F->hasFnAttribute("gc-leaf-function"))
1893       return true;
1894 
1895     if (auto IID = F->getIntrinsicID())
1896       // Most LLVM intrinsics do not take safepoints.
1897       return IID != Intrinsic::experimental_gc_statepoint &&
1898              IID != Intrinsic::experimental_deoptimize;
1899   }
1900 
1901   // Lib calls can be materialized by some passes, and won't be
1902   // marked as 'gc-leaf-function.' All available Libcalls are
1903   // GC-leaf.
1904   LibFunc LF;
1905   if (TLI.getLibFunc(CS, LF)) {
1906     return TLI.has(LF);
1907   }
1908 
1909   return false;
1910 }
1911 
1912 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
1913                                LoadInst &NewLI) {
1914   auto *NewTy = NewLI.getType();
1915 
1916   // This only directly applies if the new type is also a pointer.
1917   if (NewTy->isPointerTy()) {
1918     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
1919     return;
1920   }
1921 
1922   // The only other translation we can do is to integral loads with !range
1923   // metadata.
1924   if (!NewTy->isIntegerTy())
1925     return;
1926 
1927   MDBuilder MDB(NewLI.getContext());
1928   const Value *Ptr = OldLI.getPointerOperand();
1929   auto *ITy = cast<IntegerType>(NewTy);
1930   auto *NullInt = ConstantExpr::getPtrToInt(
1931       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
1932   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
1933   NewLI.setMetadata(LLVMContext::MD_range,
1934                     MDB.createRange(NonNullInt, NullInt));
1935 }
1936 
1937 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
1938                              MDNode *N, LoadInst &NewLI) {
1939   auto *NewTy = NewLI.getType();
1940 
1941   // Give up unless it is converted to a pointer where there is a single very
1942   // valuable mapping we can do reliably.
1943   // FIXME: It would be nice to propagate this in more ways, but the type
1944   // conversions make it hard.
1945   if (!NewTy->isPointerTy())
1946     return;
1947 
1948   unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
1949   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
1950     MDNode *NN = MDNode::get(OldLI.getContext(), None);
1951     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
1952   }
1953 }
1954 
1955 namespace {
1956 
1957 /// A potential constituent of a bitreverse or bswap expression. See
1958 /// collectBitParts for a fuller explanation.
1959 struct BitPart {
1960   BitPart(Value *P, unsigned BW) : Provider(P) {
1961     Provenance.resize(BW);
1962   }
1963 
1964   /// The Value that this is a bitreverse/bswap of.
1965   Value *Provider;
1966 
1967   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1968   /// in Provider becomes bit B in the result of this expression.
1969   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1970 
1971   enum { Unset = -1 };
1972 };
1973 
1974 } // end anonymous namespace
1975 
1976 /// Analyze the specified subexpression and see if it is capable of providing
1977 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1978 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1979 /// the output of the expression came from a corresponding bit in some other
1980 /// value. This function is recursive, and the end result is a mapping of
1981 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1982 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1983 ///
1984 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1985 /// that the expression deposits the low byte of %X into the high byte of the
1986 /// result and that all other bits are zero. This expression is accepted and a
1987 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1988 /// [0-7].
1989 ///
1990 /// To avoid revisiting values, the BitPart results are memoized into the
1991 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1992 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1993 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1994 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1995 /// type instead to provide the same functionality.
1996 ///
1997 /// Because we pass around references into \c BPS, we must use a container that
1998 /// does not invalidate internal references (std::map instead of DenseMap).
1999 static const Optional<BitPart> &
2000 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2001                 std::map<Value *, Optional<BitPart>> &BPS) {
2002   auto I = BPS.find(V);
2003   if (I != BPS.end())
2004     return I->second;
2005 
2006   auto &Result = BPS[V] = None;
2007   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2008 
2009   if (Instruction *I = dyn_cast<Instruction>(V)) {
2010     // If this is an or instruction, it may be an inner node of the bswap.
2011     if (I->getOpcode() == Instruction::Or) {
2012       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2013                                 MatchBitReversals, BPS);
2014       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2015                                 MatchBitReversals, BPS);
2016       if (!A || !B)
2017         return Result;
2018 
2019       // Try and merge the two together.
2020       if (!A->Provider || A->Provider != B->Provider)
2021         return Result;
2022 
2023       Result = BitPart(A->Provider, BitWidth);
2024       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2025         if (A->Provenance[i] != BitPart::Unset &&
2026             B->Provenance[i] != BitPart::Unset &&
2027             A->Provenance[i] != B->Provenance[i])
2028           return Result = None;
2029 
2030         if (A->Provenance[i] == BitPart::Unset)
2031           Result->Provenance[i] = B->Provenance[i];
2032         else
2033           Result->Provenance[i] = A->Provenance[i];
2034       }
2035 
2036       return Result;
2037     }
2038 
2039     // If this is a logical shift by a constant, recurse then shift the result.
2040     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2041       unsigned BitShift =
2042           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2043       // Ensure the shift amount is defined.
2044       if (BitShift > BitWidth)
2045         return Result;
2046 
2047       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2048                                   MatchBitReversals, BPS);
2049       if (!Res)
2050         return Result;
2051       Result = Res;
2052 
2053       // Perform the "shift" on BitProvenance.
2054       auto &P = Result->Provenance;
2055       if (I->getOpcode() == Instruction::Shl) {
2056         P.erase(std::prev(P.end(), BitShift), P.end());
2057         P.insert(P.begin(), BitShift, BitPart::Unset);
2058       } else {
2059         P.erase(P.begin(), std::next(P.begin(), BitShift));
2060         P.insert(P.end(), BitShift, BitPart::Unset);
2061       }
2062 
2063       return Result;
2064     }
2065 
2066     // If this is a logical 'and' with a mask that clears bits, recurse then
2067     // unset the appropriate bits.
2068     if (I->getOpcode() == Instruction::And &&
2069         isa<ConstantInt>(I->getOperand(1))) {
2070       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2071       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2072 
2073       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2074       // early exit.
2075       unsigned NumMaskedBits = AndMask.countPopulation();
2076       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2077         return Result;
2078 
2079       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2080                                   MatchBitReversals, BPS);
2081       if (!Res)
2082         return Result;
2083       Result = Res;
2084 
2085       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2086         // If the AndMask is zero for this bit, clear the bit.
2087         if ((AndMask & Bit) == 0)
2088           Result->Provenance[i] = BitPart::Unset;
2089       return Result;
2090     }
2091 
2092     // If this is a zext instruction zero extend the result.
2093     if (I->getOpcode() == Instruction::ZExt) {
2094       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2095                                   MatchBitReversals, BPS);
2096       if (!Res)
2097         return Result;
2098 
2099       Result = BitPart(Res->Provider, BitWidth);
2100       auto NarrowBitWidth =
2101           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2102       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2103         Result->Provenance[i] = Res->Provenance[i];
2104       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2105         Result->Provenance[i] = BitPart::Unset;
2106       return Result;
2107     }
2108   }
2109 
2110   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2111   // the input value to the bswap/bitreverse.
2112   Result = BitPart(V, BitWidth);
2113   for (unsigned i = 0; i < BitWidth; ++i)
2114     Result->Provenance[i] = i;
2115   return Result;
2116 }
2117 
2118 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2119                                           unsigned BitWidth) {
2120   if (From % 8 != To % 8)
2121     return false;
2122   // Convert from bit indices to byte indices and check for a byte reversal.
2123   From >>= 3;
2124   To >>= 3;
2125   BitWidth >>= 3;
2126   return From == BitWidth - To - 1;
2127 }
2128 
2129 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2130                                                unsigned BitWidth) {
2131   return From == BitWidth - To - 1;
2132 }
2133 
2134 /// Given an OR instruction, check to see if this is a bitreverse
2135 /// idiom. If so, insert the new intrinsic and return true.
2136 bool llvm::recognizeBSwapOrBitReverseIdiom(
2137     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2138     SmallVectorImpl<Instruction *> &InsertedInsts) {
2139   if (Operator::getOpcode(I) != Instruction::Or)
2140     return false;
2141   if (!MatchBSwaps && !MatchBitReversals)
2142     return false;
2143   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2144   if (!ITy || ITy->getBitWidth() > 128)
2145     return false;   // Can't do vectors or integers > 128 bits.
2146   unsigned BW = ITy->getBitWidth();
2147 
2148   unsigned DemandedBW = BW;
2149   IntegerType *DemandedTy = ITy;
2150   if (I->hasOneUse()) {
2151     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2152       DemandedTy = cast<IntegerType>(Trunc->getType());
2153       DemandedBW = DemandedTy->getBitWidth();
2154     }
2155   }
2156 
2157   // Try to find all the pieces corresponding to the bswap.
2158   std::map<Value *, Optional<BitPart>> BPS;
2159   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2160   if (!Res)
2161     return false;
2162   auto &BitProvenance = Res->Provenance;
2163 
2164   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2165   // only byteswap values with an even number of bytes.
2166   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2167   for (unsigned i = 0; i < DemandedBW; ++i) {
2168     OKForBSwap &=
2169         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2170     OKForBitReverse &=
2171         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2172   }
2173 
2174   Intrinsic::ID Intrin;
2175   if (OKForBSwap && MatchBSwaps)
2176     Intrin = Intrinsic::bswap;
2177   else if (OKForBitReverse && MatchBitReversals)
2178     Intrin = Intrinsic::bitreverse;
2179   else
2180     return false;
2181 
2182   if (ITy != DemandedTy) {
2183     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2184     Value *Provider = Res->Provider;
2185     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2186     // We may need to truncate the provider.
2187     if (DemandedTy != ProviderTy) {
2188       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2189                                      "trunc", I);
2190       InsertedInsts.push_back(Trunc);
2191       Provider = Trunc;
2192     }
2193     auto *CI = CallInst::Create(F, Provider, "rev", I);
2194     InsertedInsts.push_back(CI);
2195     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2196     InsertedInsts.push_back(ExtInst);
2197     return true;
2198   }
2199 
2200   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2201   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2202   return true;
2203 }
2204 
2205 // CodeGen has special handling for some string functions that may replace
2206 // them with target-specific intrinsics.  Since that'd skip our interceptors
2207 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2208 // we mark affected calls as NoBuiltin, which will disable optimization
2209 // in CodeGen.
2210 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2211     CallInst *CI, const TargetLibraryInfo *TLI) {
2212   Function *F = CI->getCalledFunction();
2213   LibFunc Func;
2214   if (F && !F->hasLocalLinkage() && F->hasName() &&
2215       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2216       !F->doesNotAccessMemory())
2217     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2218 }
2219 
2220 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2221   // We can't have a PHI with a metadata type.
2222   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2223     return false;
2224 
2225   // Early exit.
2226   if (!isa<Constant>(I->getOperand(OpIdx)))
2227     return true;
2228 
2229   switch (I->getOpcode()) {
2230   default:
2231     return true;
2232   case Instruction::Call:
2233   case Instruction::Invoke:
2234     // Can't handle inline asm. Skip it.
2235     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2236       return false;
2237     // Many arithmetic intrinsics have no issue taking a
2238     // variable, however it's hard to distingish these from
2239     // specials such as @llvm.frameaddress that require a constant.
2240     if (isa<IntrinsicInst>(I))
2241       return false;
2242 
2243     // Constant bundle operands may need to retain their constant-ness for
2244     // correctness.
2245     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2246       return false;
2247     return true;
2248   case Instruction::ShuffleVector:
2249     // Shufflevector masks are constant.
2250     return OpIdx != 2;
2251   case Instruction::Switch:
2252   case Instruction::ExtractValue:
2253     // All operands apart from the first are constant.
2254     return OpIdx == 0;
2255   case Instruction::InsertValue:
2256     // All operands apart from the first and the second are constant.
2257     return OpIdx < 2;
2258   case Instruction::Alloca:
2259     // Static allocas (constant size in the entry block) are handled by
2260     // prologue/epilogue insertion so they're free anyway. We definitely don't
2261     // want to make them non-constant.
2262     return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
2263   case Instruction::GetElementPtr:
2264     if (OpIdx == 0)
2265       return true;
2266     gep_type_iterator It = gep_type_begin(I);
2267     for (auto E = std::next(It, OpIdx); It != E; ++It)
2268       if (It.isStruct())
2269         return false;
2270     return true;
2271   }
2272 }
2273