1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms
115 static const unsigned BitPartRecursionMaxDepth = 64;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       Builder.CreateBr(Dest1);
152       Value *Cond = BI->getCondition();
153       BI->eraseFromParent();
154       if (DeleteDeadConditions)
155         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
156       return true;
157     }
158 
159     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
160       // Are we branching on constant?
161       // YES.  Change to unconditional branch...
162       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
163       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
164 
165       // Let the basic block know that we are letting go of it.  Based on this,
166       // it will adjust it's PHI nodes.
167       OldDest->removePredecessor(BB);
168 
169       // Replace the conditional branch with an unconditional one.
170       Builder.CreateBr(Destination);
171       BI->eraseFromParent();
172       if (DTU)
173         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
174       return true;
175     }
176 
177     return false;
178   }
179 
180   if (auto *SI = dyn_cast<SwitchInst>(T)) {
181     // If we are switching on a constant, we can convert the switch to an
182     // unconditional branch.
183     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
184     BasicBlock *DefaultDest = SI->getDefaultDest();
185     BasicBlock *TheOnlyDest = DefaultDest;
186 
187     // If the default is unreachable, ignore it when searching for TheOnlyDest.
188     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
189         SI->getNumCases() > 0) {
190       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
191     }
192 
193     bool Changed = false;
194 
195     // Figure out which case it goes to.
196     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
197       // Found case matching a constant operand?
198       if (i->getCaseValue() == CI) {
199         TheOnlyDest = i->getCaseSuccessor();
200         break;
201       }
202 
203       // Check to see if this branch is going to the same place as the default
204       // dest.  If so, eliminate it as an explicit compare.
205       if (i->getCaseSuccessor() == DefaultDest) {
206         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
207         unsigned NCases = SI->getNumCases();
208         // Fold the case metadata into the default if there will be any branches
209         // left, unless the metadata doesn't match the switch.
210         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
211           // Collect branch weights into a vector.
212           SmallVector<uint32_t, 8> Weights;
213           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
214                ++MD_i) {
215             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
216             Weights.push_back(CI->getValue().getZExtValue());
217           }
218           // Merge weight of this case to the default weight.
219           unsigned idx = i->getCaseIndex();
220           Weights[0] += Weights[idx+1];
221           // Remove weight for this case.
222           std::swap(Weights[idx+1], Weights.back());
223           Weights.pop_back();
224           SI->setMetadata(LLVMContext::MD_prof,
225                           MDBuilder(BB->getContext()).
226                           createBranchWeights(Weights));
227         }
228         // Remove this entry.
229         BasicBlock *ParentBB = SI->getParent();
230         DefaultDest->removePredecessor(ParentBB);
231         i = SI->removeCase(i);
232         e = SI->case_end();
233         Changed = true;
234         continue;
235       }
236 
237       // Otherwise, check to see if the switch only branches to one destination.
238       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
239       // destinations.
240       if (i->getCaseSuccessor() != TheOnlyDest)
241         TheOnlyDest = nullptr;
242 
243       // Increment this iterator as we haven't removed the case.
244       ++i;
245     }
246 
247     if (CI && !TheOnlyDest) {
248       // Branching on a constant, but not any of the cases, go to the default
249       // successor.
250       TheOnlyDest = SI->getDefaultDest();
251     }
252 
253     // If we found a single destination that we can fold the switch into, do so
254     // now.
255     if (TheOnlyDest) {
256       // Insert the new branch.
257       Builder.CreateBr(TheOnlyDest);
258       BasicBlock *BB = SI->getParent();
259 
260       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
261 
262       // Remove entries from PHI nodes which we no longer branch to...
263       BasicBlock *SuccToKeep = TheOnlyDest;
264       for (BasicBlock *Succ : successors(SI)) {
265         if (DTU && Succ != TheOnlyDest)
266           RemovedSuccessors.insert(Succ);
267         // Found case matching a constant operand?
268         if (Succ == SuccToKeep) {
269           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
270         } else {
271           Succ->removePredecessor(BB);
272         }
273       }
274 
275       // Delete the old switch.
276       Value *Cond = SI->getCondition();
277       SI->eraseFromParent();
278       if (DeleteDeadConditions)
279         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
280       if (DTU) {
281         std::vector<DominatorTree::UpdateType> Updates;
282         Updates.reserve(RemovedSuccessors.size());
283         for (auto *RemovedSuccessor : RemovedSuccessors)
284           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
285         DTU->applyUpdates(Updates);
286       }
287       return true;
288     }
289 
290     if (SI->getNumCases() == 1) {
291       // Otherwise, we can fold this switch into a conditional branch
292       // instruction if it has only one non-default destination.
293       auto FirstCase = *SI->case_begin();
294       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
295           FirstCase.getCaseValue(), "cond");
296 
297       // Insert the new branch.
298       BranchInst *NewBr = Builder.CreateCondBr(Cond,
299                                                FirstCase.getCaseSuccessor(),
300                                                SI->getDefaultDest());
301       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
302       if (MD && MD->getNumOperands() == 3) {
303         ConstantInt *SICase =
304             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
305         ConstantInt *SIDef =
306             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
307         assert(SICase && SIDef);
308         // The TrueWeight should be the weight for the single case of SI.
309         NewBr->setMetadata(LLVMContext::MD_prof,
310                         MDBuilder(BB->getContext()).
311                         createBranchWeights(SICase->getValue().getZExtValue(),
312                                             SIDef->getValue().getZExtValue()));
313       }
314 
315       // Update make.implicit metadata to the newly-created conditional branch.
316       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
317       if (MakeImplicitMD)
318         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
319 
320       // Delete the old switch.
321       SI->eraseFromParent();
322       return true;
323     }
324     return Changed;
325   }
326 
327   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
328     // indirectbr blockaddress(@F, @BB) -> br label @BB
329     if (auto *BA =
330           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
331       BasicBlock *TheOnlyDest = BA->getBasicBlock();
332       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
333 
334       // Insert the new branch.
335       Builder.CreateBr(TheOnlyDest);
336 
337       BasicBlock *SuccToKeep = TheOnlyDest;
338       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
339         BasicBlock *DestBB = IBI->getDestination(i);
340         if (DTU && DestBB != TheOnlyDest)
341           RemovedSuccessors.insert(DestBB);
342         if (IBI->getDestination(i) == SuccToKeep) {
343           SuccToKeep = nullptr;
344         } else {
345           DestBB->removePredecessor(BB);
346         }
347       }
348       Value *Address = IBI->getAddress();
349       IBI->eraseFromParent();
350       if (DeleteDeadConditions)
351         // Delete pointer cast instructions.
352         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
353 
354       // Also zap the blockaddress constant if there are no users remaining,
355       // otherwise the destination is still marked as having its address taken.
356       if (BA->use_empty())
357         BA->destroyConstant();
358 
359       // If we didn't find our destination in the IBI successor list, then we
360       // have undefined behavior.  Replace the unconditional branch with an
361       // 'unreachable' instruction.
362       if (SuccToKeep) {
363         BB->getTerminator()->eraseFromParent();
364         new UnreachableInst(BB->getContext(), BB);
365       }
366 
367       if (DTU) {
368         std::vector<DominatorTree::UpdateType> Updates;
369         Updates.reserve(RemovedSuccessors.size());
370         for (auto *RemovedSuccessor : RemovedSuccessors)
371           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
372         DTU->applyUpdates(Updates);
373       }
374       return true;
375     }
376   }
377 
378   return false;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //  Local dead code elimination.
383 //
384 
385 /// isInstructionTriviallyDead - Return true if the result produced by the
386 /// instruction is not used, and the instruction has no side effects.
387 ///
388 bool llvm::isInstructionTriviallyDead(Instruction *I,
389                                       const TargetLibraryInfo *TLI) {
390   if (!I->use_empty())
391     return false;
392   return wouldInstructionBeTriviallyDead(I, TLI);
393 }
394 
395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
396                                            const TargetLibraryInfo *TLI) {
397   if (I->isTerminator())
398     return false;
399 
400   // We don't want the landingpad-like instructions removed by anything this
401   // general.
402   if (I->isEHPad())
403     return false;
404 
405   // We don't want debug info removed by anything this general, unless
406   // debug info is empty.
407   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
408     if (DDI->getAddress())
409       return false;
410     return true;
411   }
412   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
413     if (DVI->getValue())
414       return false;
415     return true;
416   }
417   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
418     if (DLI->getLabel())
419       return false;
420     return true;
421   }
422 
423   if (!I->willReturn())
424     return false;
425 
426   if (!I->mayHaveSideEffects())
427     return true;
428 
429   // Special case intrinsics that "may have side effects" but can be deleted
430   // when dead.
431   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
432     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
433     if (II->getIntrinsicID() == Intrinsic::stacksave ||
434         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
435       return true;
436 
437     if (II->isLifetimeStartOrEnd()) {
438       auto *Arg = II->getArgOperand(1);
439       // Lifetime intrinsics are dead when their right-hand is undef.
440       if (isa<UndefValue>(Arg))
441         return true;
442       // If the right-hand is an alloc, global, or argument and the only uses
443       // are lifetime intrinsics then the intrinsics are dead.
444       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
445         return llvm::all_of(Arg->uses(), [](Use &Use) {
446           if (IntrinsicInst *IntrinsicUse =
447                   dyn_cast<IntrinsicInst>(Use.getUser()))
448             return IntrinsicUse->isLifetimeStartOrEnd();
449           return false;
450         });
451       return false;
452     }
453 
454     // Assumptions are dead if their condition is trivially true.  Guards on
455     // true are operationally no-ops.  In the future we can consider more
456     // sophisticated tradeoffs for guards considering potential for check
457     // widening, but for now we keep things simple.
458     if ((II->getIntrinsicID() == Intrinsic::assume &&
459          isAssumeWithEmptyBundle(*II)) ||
460         II->getIntrinsicID() == Intrinsic::experimental_guard) {
461       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
462         return !Cond->isZero();
463 
464       return false;
465     }
466   }
467 
468   if (isAllocLikeFn(I, TLI))
469     return true;
470 
471   if (CallInst *CI = isFreeCall(I, TLI))
472     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
473       return C->isNullValue() || isa<UndefValue>(C);
474 
475   if (auto *Call = dyn_cast<CallBase>(I))
476     if (isMathLibCallNoop(Call, TLI))
477       return true;
478 
479   return false;
480 }
481 
482 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
483 /// trivially dead instruction, delete it.  If that makes any of its operands
484 /// trivially dead, delete them too, recursively.  Return true if any
485 /// instructions were deleted.
486 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
487     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
488     std::function<void(Value *)> AboutToDeleteCallback) {
489   Instruction *I = dyn_cast<Instruction>(V);
490   if (!I || !isInstructionTriviallyDead(I, TLI))
491     return false;
492 
493   SmallVector<WeakTrackingVH, 16> DeadInsts;
494   DeadInsts.push_back(I);
495   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
496                                              AboutToDeleteCallback);
497 
498   return true;
499 }
500 
501 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
502     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
503     MemorySSAUpdater *MSSAU,
504     std::function<void(Value *)> AboutToDeleteCallback) {
505   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
506   for (; S != E; ++S) {
507     auto *I = cast<Instruction>(DeadInsts[S]);
508     if (!isInstructionTriviallyDead(I)) {
509       DeadInsts[S] = nullptr;
510       ++Alive;
511     }
512   }
513   if (Alive == E)
514     return false;
515   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
516                                              AboutToDeleteCallback);
517   return true;
518 }
519 
520 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
521     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
522     MemorySSAUpdater *MSSAU,
523     std::function<void(Value *)> AboutToDeleteCallback) {
524   // Process the dead instruction list until empty.
525   while (!DeadInsts.empty()) {
526     Value *V = DeadInsts.pop_back_val();
527     Instruction *I = cast_or_null<Instruction>(V);
528     if (!I)
529       continue;
530     assert(isInstructionTriviallyDead(I, TLI) &&
531            "Live instruction found in dead worklist!");
532     assert(I->use_empty() && "Instructions with uses are not dead.");
533 
534     // Don't lose the debug info while deleting the instructions.
535     salvageDebugInfo(*I);
536 
537     if (AboutToDeleteCallback)
538       AboutToDeleteCallback(I);
539 
540     // Null out all of the instruction's operands to see if any operand becomes
541     // dead as we go.
542     for (Use &OpU : I->operands()) {
543       Value *OpV = OpU.get();
544       OpU.set(nullptr);
545 
546       if (!OpV->use_empty())
547         continue;
548 
549       // If the operand is an instruction that became dead as we nulled out the
550       // operand, and if it is 'trivially' dead, delete it in a future loop
551       // iteration.
552       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553         if (isInstructionTriviallyDead(OpI, TLI))
554           DeadInsts.push_back(OpI);
555     }
556     if (MSSAU)
557       MSSAU->removeMemoryAccess(I);
558 
559     I->eraseFromParent();
560   }
561 }
562 
563 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
564   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
565   findDbgUsers(DbgUsers, I);
566   for (auto *DII : DbgUsers) {
567     Value *Undef = UndefValue::get(I->getType());
568     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
569                                             ValueAsMetadata::get(Undef)));
570   }
571   return !DbgUsers.empty();
572 }
573 
574 /// areAllUsesEqual - Check whether the uses of a value are all the same.
575 /// This is similar to Instruction::hasOneUse() except this will also return
576 /// true when there are no uses or multiple uses that all refer to the same
577 /// value.
578 static bool areAllUsesEqual(Instruction *I) {
579   Value::user_iterator UI = I->user_begin();
580   Value::user_iterator UE = I->user_end();
581   if (UI == UE)
582     return true;
583 
584   User *TheUse = *UI;
585   for (++UI; UI != UE; ++UI) {
586     if (*UI != TheUse)
587       return false;
588   }
589   return true;
590 }
591 
592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
593 /// dead PHI node, due to being a def-use chain of single-use nodes that
594 /// either forms a cycle or is terminated by a trivially dead instruction,
595 /// delete it.  If that makes any of its operands trivially dead, delete them
596 /// too, recursively.  Return true if a change was made.
597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
598                                         const TargetLibraryInfo *TLI,
599                                         llvm::MemorySSAUpdater *MSSAU) {
600   SmallPtrSet<Instruction*, 4> Visited;
601   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
602        I = cast<Instruction>(*I->user_begin())) {
603     if (I->use_empty())
604       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
605 
606     // If we find an instruction more than once, we're on a cycle that
607     // won't prove fruitful.
608     if (!Visited.insert(I).second) {
609       // Break the cycle and delete the instruction and its operands.
610       I->replaceAllUsesWith(UndefValue::get(I->getType()));
611       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
612       return true;
613     }
614   }
615   return false;
616 }
617 
618 static bool
619 simplifyAndDCEInstruction(Instruction *I,
620                           SmallSetVector<Instruction *, 16> &WorkList,
621                           const DataLayout &DL,
622                           const TargetLibraryInfo *TLI) {
623   if (isInstructionTriviallyDead(I, TLI)) {
624     salvageDebugInfo(*I);
625 
626     // Null out all of the instruction's operands to see if any operand becomes
627     // dead as we go.
628     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
629       Value *OpV = I->getOperand(i);
630       I->setOperand(i, nullptr);
631 
632       if (!OpV->use_empty() || I == OpV)
633         continue;
634 
635       // If the operand is an instruction that became dead as we nulled out the
636       // operand, and if it is 'trivially' dead, delete it in a future loop
637       // iteration.
638       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
639         if (isInstructionTriviallyDead(OpI, TLI))
640           WorkList.insert(OpI);
641     }
642 
643     I->eraseFromParent();
644 
645     return true;
646   }
647 
648   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
649     // Add the users to the worklist. CAREFUL: an instruction can use itself,
650     // in the case of a phi node.
651     for (User *U : I->users()) {
652       if (U != I) {
653         WorkList.insert(cast<Instruction>(U));
654       }
655     }
656 
657     // Replace the instruction with its simplified value.
658     bool Changed = false;
659     if (!I->use_empty()) {
660       I->replaceAllUsesWith(SimpleV);
661       Changed = true;
662     }
663     if (isInstructionTriviallyDead(I, TLI)) {
664       I->eraseFromParent();
665       Changed = true;
666     }
667     return Changed;
668   }
669   return false;
670 }
671 
672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
673 /// simplify any instructions in it and recursively delete dead instructions.
674 ///
675 /// This returns true if it changed the code, note that it can delete
676 /// instructions in other blocks as well in this block.
677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
678                                        const TargetLibraryInfo *TLI) {
679   bool MadeChange = false;
680   const DataLayout &DL = BB->getModule()->getDataLayout();
681 
682 #ifndef NDEBUG
683   // In debug builds, ensure that the terminator of the block is never replaced
684   // or deleted by these simplifications. The idea of simplification is that it
685   // cannot introduce new instructions, and there is no way to replace the
686   // terminator of a block without introducing a new instruction.
687   AssertingVH<Instruction> TerminatorVH(&BB->back());
688 #endif
689 
690   SmallSetVector<Instruction *, 16> WorkList;
691   // Iterate over the original function, only adding insts to the worklist
692   // if they actually need to be revisited. This avoids having to pre-init
693   // the worklist with the entire function's worth of instructions.
694   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
695        BI != E;) {
696     assert(!BI->isTerminator());
697     Instruction *I = &*BI;
698     ++BI;
699 
700     // We're visiting this instruction now, so make sure it's not in the
701     // worklist from an earlier visit.
702     if (!WorkList.count(I))
703       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
704   }
705 
706   while (!WorkList.empty()) {
707     Instruction *I = WorkList.pop_back_val();
708     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709   }
710   return MadeChange;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 //  Control Flow Graph Restructuring.
715 //
716 
717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
718                                        DomTreeUpdater *DTU) {
719 
720   // If BB has single-entry PHI nodes, fold them.
721   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
722     Value *NewVal = PN->getIncomingValue(0);
723     // Replace self referencing PHI with undef, it must be dead.
724     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
725     PN->replaceAllUsesWith(NewVal);
726     PN->eraseFromParent();
727   }
728 
729   BasicBlock *PredBB = DestBB->getSinglePredecessor();
730   assert(PredBB && "Block doesn't have a single predecessor!");
731 
732   bool ReplaceEntryBB = false;
733   if (PredBB == &DestBB->getParent()->getEntryBlock())
734     ReplaceEntryBB = true;
735 
736   // DTU updates: Collect all the edges that enter
737   // PredBB. These dominator edges will be redirected to DestBB.
738   SmallVector<DominatorTree::UpdateType, 32> Updates;
739 
740   if (DTU) {
741     for (BasicBlock *PredPredBB : predecessors(PredBB)) {
742       // This predecessor of PredBB may already have DestBB as a successor.
743       if (!llvm::is_contained(successors(PredPredBB), DestBB))
744         Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB});
745       Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB});
746     }
747     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
748   }
749 
750   // Zap anything that took the address of DestBB.  Not doing this will give the
751   // address an invalid value.
752   if (DestBB->hasAddressTaken()) {
753     BlockAddress *BA = BlockAddress::get(DestBB);
754     Constant *Replacement =
755       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
756     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
757                                                      BA->getType()));
758     BA->destroyConstant();
759   }
760 
761   // Anything that branched to PredBB now branches to DestBB.
762   PredBB->replaceAllUsesWith(DestBB);
763 
764   // Splice all the instructions from PredBB to DestBB.
765   PredBB->getTerminator()->eraseFromParent();
766   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
767   new UnreachableInst(PredBB->getContext(), PredBB);
768 
769   // If the PredBB is the entry block of the function, move DestBB up to
770   // become the entry block after we erase PredBB.
771   if (ReplaceEntryBB)
772     DestBB->moveAfter(PredBB);
773 
774   if (DTU) {
775     assert(PredBB->getInstList().size() == 1 &&
776            isa<UnreachableInst>(PredBB->getTerminator()) &&
777            "The successor list of PredBB isn't empty before "
778            "applying corresponding DTU updates.");
779     DTU->applyUpdatesPermissive(Updates);
780     DTU->deleteBB(PredBB);
781     // Recalculation of DomTree is needed when updating a forward DomTree and
782     // the Entry BB is replaced.
783     if (ReplaceEntryBB && DTU->hasDomTree()) {
784       // The entry block was removed and there is no external interface for
785       // the dominator tree to be notified of this change. In this corner-case
786       // we recalculate the entire tree.
787       DTU->recalculate(*(DestBB->getParent()));
788     }
789   }
790 
791   else {
792     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
793   }
794 }
795 
796 /// Return true if we can choose one of these values to use in place of the
797 /// other. Note that we will always choose the non-undef value to keep.
798 static bool CanMergeValues(Value *First, Value *Second) {
799   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
800 }
801 
802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
803 /// branch to Succ, into Succ.
804 ///
805 /// Assumption: Succ is the single successor for BB.
806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
807   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
808 
809   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
810                     << Succ->getName() << "\n");
811   // Shortcut, if there is only a single predecessor it must be BB and merging
812   // is always safe
813   if (Succ->getSinglePredecessor()) return true;
814 
815   // Make a list of the predecessors of BB
816   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
817 
818   // Look at all the phi nodes in Succ, to see if they present a conflict when
819   // merging these blocks
820   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
821     PHINode *PN = cast<PHINode>(I);
822 
823     // If the incoming value from BB is again a PHINode in
824     // BB which has the same incoming value for *PI as PN does, we can
825     // merge the phi nodes and then the blocks can still be merged
826     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
827     if (BBPN && BBPN->getParent() == BB) {
828       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
829         BasicBlock *IBB = PN->getIncomingBlock(PI);
830         if (BBPreds.count(IBB) &&
831             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
832                             PN->getIncomingValue(PI))) {
833           LLVM_DEBUG(dbgs()
834                      << "Can't fold, phi node " << PN->getName() << " in "
835                      << Succ->getName() << " is conflicting with "
836                      << BBPN->getName() << " with regard to common predecessor "
837                      << IBB->getName() << "\n");
838           return false;
839         }
840       }
841     } else {
842       Value* Val = PN->getIncomingValueForBlock(BB);
843       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
844         // See if the incoming value for the common predecessor is equal to the
845         // one for BB, in which case this phi node will not prevent the merging
846         // of the block.
847         BasicBlock *IBB = PN->getIncomingBlock(PI);
848         if (BBPreds.count(IBB) &&
849             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
850           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
851                             << " in " << Succ->getName()
852                             << " is conflicting with regard to common "
853                             << "predecessor " << IBB->getName() << "\n");
854           return false;
855         }
856       }
857     }
858   }
859 
860   return true;
861 }
862 
863 using PredBlockVector = SmallVector<BasicBlock *, 16>;
864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
865 
866 /// Determines the value to use as the phi node input for a block.
867 ///
868 /// Select between \p OldVal any value that we know flows from \p BB
869 /// to a particular phi on the basis of which one (if either) is not
870 /// undef. Update IncomingValues based on the selected value.
871 ///
872 /// \param OldVal The value we are considering selecting.
873 /// \param BB The block that the value flows in from.
874 /// \param IncomingValues A map from block-to-value for other phi inputs
875 /// that we have examined.
876 ///
877 /// \returns the selected value.
878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
879                                           IncomingValueMap &IncomingValues) {
880   if (!isa<UndefValue>(OldVal)) {
881     assert((!IncomingValues.count(BB) ||
882             IncomingValues.find(BB)->second == OldVal) &&
883            "Expected OldVal to match incoming value from BB!");
884 
885     IncomingValues.insert(std::make_pair(BB, OldVal));
886     return OldVal;
887   }
888 
889   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
890   if (It != IncomingValues.end()) return It->second;
891 
892   return OldVal;
893 }
894 
895 /// Create a map from block to value for the operands of a
896 /// given phi.
897 ///
898 /// Create a map from block to value for each non-undef value flowing
899 /// into \p PN.
900 ///
901 /// \param PN The phi we are collecting the map for.
902 /// \param IncomingValues [out] The map from block to value for this phi.
903 static void gatherIncomingValuesToPhi(PHINode *PN,
904                                       IncomingValueMap &IncomingValues) {
905   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906     BasicBlock *BB = PN->getIncomingBlock(i);
907     Value *V = PN->getIncomingValue(i);
908 
909     if (!isa<UndefValue>(V))
910       IncomingValues.insert(std::make_pair(BB, V));
911   }
912 }
913 
914 /// Replace the incoming undef values to a phi with the values
915 /// from a block-to-value map.
916 ///
917 /// \param PN The phi we are replacing the undefs in.
918 /// \param IncomingValues A map from block to value.
919 static void replaceUndefValuesInPhi(PHINode *PN,
920                                     const IncomingValueMap &IncomingValues) {
921   SmallVector<unsigned> TrueUndefOps;
922   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
923     Value *V = PN->getIncomingValue(i);
924 
925     if (!isa<UndefValue>(V)) continue;
926 
927     BasicBlock *BB = PN->getIncomingBlock(i);
928     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
929 
930     // Keep track of undef/poison incoming values. Those must match, so we fix
931     // them up below if needed.
932     // Note: this is conservatively correct, but we could try harder and group
933     // the undef values per incoming basic block.
934     if (It == IncomingValues.end()) {
935       TrueUndefOps.push_back(i);
936       continue;
937     }
938 
939     // There is a defined value for this incoming block, so map this undef
940     // incoming value to the defined value.
941     PN->setIncomingValue(i, It->second);
942   }
943 
944   // If there are both undef and poison values incoming, then convert those
945   // values to undef. It is invalid to have different values for the same
946   // incoming block.
947   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
948     return isa<PoisonValue>(PN->getIncomingValue(i));
949   });
950   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
951     for (unsigned i : TrueUndefOps)
952       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
953   }
954 }
955 
956 /// Replace a value flowing from a block to a phi with
957 /// potentially multiple instances of that value flowing from the
958 /// block's predecessors to the phi.
959 ///
960 /// \param BB The block with the value flowing into the phi.
961 /// \param BBPreds The predecessors of BB.
962 /// \param PN The phi that we are updating.
963 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
964                                                 const PredBlockVector &BBPreds,
965                                                 PHINode *PN) {
966   Value *OldVal = PN->removeIncomingValue(BB, false);
967   assert(OldVal && "No entry in PHI for Pred BB!");
968 
969   IncomingValueMap IncomingValues;
970 
971   // We are merging two blocks - BB, and the block containing PN - and
972   // as a result we need to redirect edges from the predecessors of BB
973   // to go to the block containing PN, and update PN
974   // accordingly. Since we allow merging blocks in the case where the
975   // predecessor and successor blocks both share some predecessors,
976   // and where some of those common predecessors might have undef
977   // values flowing into PN, we want to rewrite those values to be
978   // consistent with the non-undef values.
979 
980   gatherIncomingValuesToPhi(PN, IncomingValues);
981 
982   // If this incoming value is one of the PHI nodes in BB, the new entries
983   // in the PHI node are the entries from the old PHI.
984   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
985     PHINode *OldValPN = cast<PHINode>(OldVal);
986     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
987       // Note that, since we are merging phi nodes and BB and Succ might
988       // have common predecessors, we could end up with a phi node with
989       // identical incoming branches. This will be cleaned up later (and
990       // will trigger asserts if we try to clean it up now, without also
991       // simplifying the corresponding conditional branch).
992       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
993       Value *PredVal = OldValPN->getIncomingValue(i);
994       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
995                                                     IncomingValues);
996 
997       // And add a new incoming value for this predecessor for the
998       // newly retargeted branch.
999       PN->addIncoming(Selected, PredBB);
1000     }
1001   } else {
1002     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1003       // Update existing incoming values in PN for this
1004       // predecessor of BB.
1005       BasicBlock *PredBB = BBPreds[i];
1006       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1007                                                     IncomingValues);
1008 
1009       // And add a new incoming value for this predecessor for the
1010       // newly retargeted branch.
1011       PN->addIncoming(Selected, PredBB);
1012     }
1013   }
1014 
1015   replaceUndefValuesInPhi(PN, IncomingValues);
1016 }
1017 
1018 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1019                                                    DomTreeUpdater *DTU) {
1020   assert(BB != &BB->getParent()->getEntryBlock() &&
1021          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1022 
1023   // We can't eliminate infinite loops.
1024   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1025   if (BB == Succ) return false;
1026 
1027   // Check to see if merging these blocks would cause conflicts for any of the
1028   // phi nodes in BB or Succ. If not, we can safely merge.
1029   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1030 
1031   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1032   // has uses which will not disappear when the PHI nodes are merged.  It is
1033   // possible to handle such cases, but difficult: it requires checking whether
1034   // BB dominates Succ, which is non-trivial to calculate in the case where
1035   // Succ has multiple predecessors.  Also, it requires checking whether
1036   // constructing the necessary self-referential PHI node doesn't introduce any
1037   // conflicts; this isn't too difficult, but the previous code for doing this
1038   // was incorrect.
1039   //
1040   // Note that if this check finds a live use, BB dominates Succ, so BB is
1041   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1042   // folding the branch isn't profitable in that case anyway.
1043   if (!Succ->getSinglePredecessor()) {
1044     BasicBlock::iterator BBI = BB->begin();
1045     while (isa<PHINode>(*BBI)) {
1046       for (Use &U : BBI->uses()) {
1047         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1048           if (PN->getIncomingBlock(U) != BB)
1049             return false;
1050         } else {
1051           return false;
1052         }
1053       }
1054       ++BBI;
1055     }
1056   }
1057 
1058   // We cannot fold the block if it's a branch to an already present callbr
1059   // successor because that creates duplicate successors.
1060   for (BasicBlock *PredBB : predecessors(BB)) {
1061     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1062       if (Succ == CBI->getDefaultDest())
1063         return false;
1064       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1065         if (Succ == CBI->getIndirectDest(i))
1066           return false;
1067     }
1068   }
1069 
1070   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1071 
1072   SmallVector<DominatorTree::UpdateType, 32> Updates;
1073   if (DTU) {
1074     // All predecessors of BB will be moved to Succ.
1075     SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1076     Updates.reserve(Updates.size() + 2 * Predecessors.size());
1077     for (auto *Predecessor : Predecessors) {
1078       // This predecessor of BB may already have Succ as a successor.
1079       if (!llvm::is_contained(successors(Predecessor), Succ))
1080         Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1081       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1082     }
1083     Updates.push_back({DominatorTree::Delete, BB, Succ});
1084   }
1085 
1086   if (isa<PHINode>(Succ->begin())) {
1087     // If there is more than one pred of succ, and there are PHI nodes in
1088     // the successor, then we need to add incoming edges for the PHI nodes
1089     //
1090     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1091 
1092     // Loop over all of the PHI nodes in the successor of BB.
1093     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1094       PHINode *PN = cast<PHINode>(I);
1095 
1096       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1097     }
1098   }
1099 
1100   if (Succ->getSinglePredecessor()) {
1101     // BB is the only predecessor of Succ, so Succ will end up with exactly
1102     // the same predecessors BB had.
1103 
1104     // Copy over any phi, debug or lifetime instruction.
1105     BB->getTerminator()->eraseFromParent();
1106     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1107                                BB->getInstList());
1108   } else {
1109     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1110       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1111       assert(PN->use_empty() && "There shouldn't be any uses here!");
1112       PN->eraseFromParent();
1113     }
1114   }
1115 
1116   // If the unconditional branch we replaced contains llvm.loop metadata, we
1117   // add the metadata to the branch instructions in the predecessors.
1118   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1119   Instruction *TI = BB->getTerminator();
1120   if (TI)
1121     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1122       for (BasicBlock *Pred : predecessors(BB))
1123         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1124 
1125   // Everything that jumped to BB now goes to Succ.
1126   BB->replaceAllUsesWith(Succ);
1127   if (!Succ->hasName()) Succ->takeName(BB);
1128 
1129   // Clear the successor list of BB to match updates applying to DTU later.
1130   if (BB->getTerminator())
1131     BB->getInstList().pop_back();
1132   new UnreachableInst(BB->getContext(), BB);
1133   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1134                            "applying corresponding DTU updates.");
1135 
1136   if (DTU) {
1137     DTU->applyUpdates(Updates);
1138     DTU->deleteBB(BB);
1139   } else {
1140     BB->eraseFromParent(); // Delete the old basic block.
1141   }
1142   return true;
1143 }
1144 
1145 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1146   // This implementation doesn't currently consider undef operands
1147   // specially. Theoretically, two phis which are identical except for
1148   // one having an undef where the other doesn't could be collapsed.
1149 
1150   bool Changed = false;
1151 
1152   // Examine each PHI.
1153   // Note that increment of I must *NOT* be in the iteration_expression, since
1154   // we don't want to immediately advance when we restart from the beginning.
1155   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1156     ++I;
1157     // Is there an identical PHI node in this basic block?
1158     // Note that we only look in the upper square's triangle,
1159     // we already checked that the lower triangle PHI's aren't identical.
1160     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1161       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1162         continue;
1163       // A duplicate. Replace this PHI with the base PHI.
1164       ++NumPHICSEs;
1165       DuplicatePN->replaceAllUsesWith(PN);
1166       DuplicatePN->eraseFromParent();
1167       Changed = true;
1168 
1169       // The RAUW can change PHIs that we already visited.
1170       I = BB->begin();
1171       break; // Start over from the beginning.
1172     }
1173   }
1174   return Changed;
1175 }
1176 
1177 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1178   // This implementation doesn't currently consider undef operands
1179   // specially. Theoretically, two phis which are identical except for
1180   // one having an undef where the other doesn't could be collapsed.
1181 
1182   struct PHIDenseMapInfo {
1183     static PHINode *getEmptyKey() {
1184       return DenseMapInfo<PHINode *>::getEmptyKey();
1185     }
1186 
1187     static PHINode *getTombstoneKey() {
1188       return DenseMapInfo<PHINode *>::getTombstoneKey();
1189     }
1190 
1191     static bool isSentinel(PHINode *PN) {
1192       return PN == getEmptyKey() || PN == getTombstoneKey();
1193     }
1194 
1195     // WARNING: this logic must be kept in sync with
1196     //          Instruction::isIdenticalToWhenDefined()!
1197     static unsigned getHashValueImpl(PHINode *PN) {
1198       // Compute a hash value on the operands. Instcombine will likely have
1199       // sorted them, which helps expose duplicates, but we have to check all
1200       // the operands to be safe in case instcombine hasn't run.
1201       return static_cast<unsigned>(hash_combine(
1202           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1203           hash_combine_range(PN->block_begin(), PN->block_end())));
1204     }
1205 
1206     static unsigned getHashValue(PHINode *PN) {
1207 #ifndef NDEBUG
1208       // If -phicse-debug-hash was specified, return a constant -- this
1209       // will force all hashing to collide, so we'll exhaustively search
1210       // the table for a match, and the assertion in isEqual will fire if
1211       // there's a bug causing equal keys to hash differently.
1212       if (PHICSEDebugHash)
1213         return 0;
1214 #endif
1215       return getHashValueImpl(PN);
1216     }
1217 
1218     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1219       if (isSentinel(LHS) || isSentinel(RHS))
1220         return LHS == RHS;
1221       return LHS->isIdenticalTo(RHS);
1222     }
1223 
1224     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1225       // These comparisons are nontrivial, so assert that equality implies
1226       // hash equality (DenseMap demands this as an invariant).
1227       bool Result = isEqualImpl(LHS, RHS);
1228       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1229              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1230       return Result;
1231     }
1232   };
1233 
1234   // Set of unique PHINodes.
1235   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1236   PHISet.reserve(4 * PHICSENumPHISmallSize);
1237 
1238   // Examine each PHI.
1239   bool Changed = false;
1240   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1241     auto Inserted = PHISet.insert(PN);
1242     if (!Inserted.second) {
1243       // A duplicate. Replace this PHI with its duplicate.
1244       ++NumPHICSEs;
1245       PN->replaceAllUsesWith(*Inserted.first);
1246       PN->eraseFromParent();
1247       Changed = true;
1248 
1249       // The RAUW can change PHIs that we already visited. Start over from the
1250       // beginning.
1251       PHISet.clear();
1252       I = BB->begin();
1253     }
1254   }
1255 
1256   return Changed;
1257 }
1258 
1259 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1260   if (
1261 #ifndef NDEBUG
1262       !PHICSEDebugHash &&
1263 #endif
1264       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1265     return EliminateDuplicatePHINodesNaiveImpl(BB);
1266   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1267 }
1268 
1269 /// If the specified pointer points to an object that we control, try to modify
1270 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1271 /// the value after the operation, which may be lower than PrefAlign.
1272 ///
1273 /// Increating value alignment isn't often possible though. If alignment is
1274 /// important, a more reliable approach is to simply align all global variables
1275 /// and allocation instructions to their preferred alignment from the beginning.
1276 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1277                                  const DataLayout &DL) {
1278   V = V->stripPointerCasts();
1279 
1280   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1281     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1282     // than the current alignment, as the known bits calculation should have
1283     // already taken it into account. However, this is not always the case,
1284     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1285     // doesn't.
1286     Align CurrentAlign = AI->getAlign();
1287     if (PrefAlign <= CurrentAlign)
1288       return CurrentAlign;
1289 
1290     // If the preferred alignment is greater than the natural stack alignment
1291     // then don't round up. This avoids dynamic stack realignment.
1292     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1293       return CurrentAlign;
1294     AI->setAlignment(PrefAlign);
1295     return PrefAlign;
1296   }
1297 
1298   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1299     // TODO: as above, this shouldn't be necessary.
1300     Align CurrentAlign = GO->getPointerAlignment(DL);
1301     if (PrefAlign <= CurrentAlign)
1302       return CurrentAlign;
1303 
1304     // If there is a large requested alignment and we can, bump up the alignment
1305     // of the global.  If the memory we set aside for the global may not be the
1306     // memory used by the final program then it is impossible for us to reliably
1307     // enforce the preferred alignment.
1308     if (!GO->canIncreaseAlignment())
1309       return CurrentAlign;
1310 
1311     GO->setAlignment(PrefAlign);
1312     return PrefAlign;
1313   }
1314 
1315   return Align(1);
1316 }
1317 
1318 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1319                                        const DataLayout &DL,
1320                                        const Instruction *CxtI,
1321                                        AssumptionCache *AC,
1322                                        const DominatorTree *DT) {
1323   assert(V->getType()->isPointerTy() &&
1324          "getOrEnforceKnownAlignment expects a pointer!");
1325 
1326   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1327   unsigned TrailZ = Known.countMinTrailingZeros();
1328 
1329   // Avoid trouble with ridiculously large TrailZ values, such as
1330   // those computed from a null pointer.
1331   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1332   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1333 
1334   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1335 
1336   if (PrefAlign && *PrefAlign > Alignment)
1337     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1338 
1339   // We don't need to make any adjustment.
1340   return Alignment;
1341 }
1342 
1343 ///===---------------------------------------------------------------------===//
1344 ///  Dbg Intrinsic utilities
1345 ///
1346 
1347 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1348 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1349                              DIExpression *DIExpr,
1350                              PHINode *APN) {
1351   // Since we can't guarantee that the original dbg.declare instrinsic
1352   // is removed by LowerDbgDeclare(), we need to make sure that we are
1353   // not inserting the same dbg.value intrinsic over and over.
1354   SmallVector<DbgValueInst *, 1> DbgValues;
1355   findDbgValues(DbgValues, APN);
1356   for (auto *DVI : DbgValues) {
1357     assert(DVI->getValue() == APN);
1358     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1359       return true;
1360   }
1361   return false;
1362 }
1363 
1364 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1365 /// (or fragment of the variable) described by \p DII.
1366 ///
1367 /// This is primarily intended as a helper for the different
1368 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1369 /// converted describes an alloca'd variable, so we need to use the
1370 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1371 /// identified as covering an n-bit fragment, if the store size of i1 is at
1372 /// least n bits.
1373 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1374   const DataLayout &DL = DII->getModule()->getDataLayout();
1375   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1376   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1377     assert(!ValueSize.isScalable() &&
1378            "Fragments don't work on scalable types.");
1379     return ValueSize.getFixedSize() >= *FragmentSize;
1380   }
1381   // We can't always calculate the size of the DI variable (e.g. if it is a
1382   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1383   // intead.
1384   if (DII->isAddressOfVariable())
1385     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1386       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1387         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1388                "Both sizes should agree on the scalable flag.");
1389         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1390       }
1391   // Could not determine size of variable. Conservatively return false.
1392   return false;
1393 }
1394 
1395 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1396 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1397 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1398 /// case this DebugLoc leaks into any adjacent instructions.
1399 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1400   // Original dbg.declare must have a location.
1401   DebugLoc DeclareLoc = DII->getDebugLoc();
1402   MDNode *Scope = DeclareLoc.getScope();
1403   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1404   // Produce an unknown location with the correct scope / inlinedAt fields.
1405   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1406 }
1407 
1408 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1409 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1410 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1411                                            StoreInst *SI, DIBuilder &Builder) {
1412   assert(DII->isAddressOfVariable());
1413   auto *DIVar = DII->getVariable();
1414   assert(DIVar && "Missing variable");
1415   auto *DIExpr = DII->getExpression();
1416   Value *DV = SI->getValueOperand();
1417 
1418   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1419 
1420   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1421     // FIXME: If storing to a part of the variable described by the dbg.declare,
1422     // then we want to insert a dbg.value for the corresponding fragment.
1423     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1424                       << *DII << '\n');
1425     // For now, when there is a store to parts of the variable (but we do not
1426     // know which part) we insert an dbg.value instrinsic to indicate that we
1427     // know nothing about the variable's content.
1428     DV = UndefValue::get(DV->getType());
1429     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1430     return;
1431   }
1432 
1433   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1434 }
1435 
1436 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1437 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1438 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1439                                            LoadInst *LI, DIBuilder &Builder) {
1440   auto *DIVar = DII->getVariable();
1441   auto *DIExpr = DII->getExpression();
1442   assert(DIVar && "Missing variable");
1443 
1444   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1445     // FIXME: If only referring to a part of the variable described by the
1446     // dbg.declare, then we want to insert a dbg.value for the corresponding
1447     // fragment.
1448     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1449                       << *DII << '\n');
1450     return;
1451   }
1452 
1453   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1454 
1455   // We are now tracking the loaded value instead of the address. In the
1456   // future if multi-location support is added to the IR, it might be
1457   // preferable to keep tracking both the loaded value and the original
1458   // address in case the alloca can not be elided.
1459   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1460       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1461   DbgValue->insertAfter(LI);
1462 }
1463 
1464 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1465 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1466 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1467                                            PHINode *APN, DIBuilder &Builder) {
1468   auto *DIVar = DII->getVariable();
1469   auto *DIExpr = DII->getExpression();
1470   assert(DIVar && "Missing variable");
1471 
1472   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1473     return;
1474 
1475   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1476     // FIXME: If only referring to a part of the variable described by the
1477     // dbg.declare, then we want to insert a dbg.value for the corresponding
1478     // fragment.
1479     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1480                       << *DII << '\n');
1481     return;
1482   }
1483 
1484   BasicBlock *BB = APN->getParent();
1485   auto InsertionPt = BB->getFirstInsertionPt();
1486 
1487   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1488 
1489   // The block may be a catchswitch block, which does not have a valid
1490   // insertion point.
1491   // FIXME: Insert dbg.value markers in the successors when appropriate.
1492   if (InsertionPt != BB->end())
1493     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1494 }
1495 
1496 /// Determine whether this alloca is either a VLA or an array.
1497 static bool isArray(AllocaInst *AI) {
1498   return AI->isArrayAllocation() ||
1499          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1500 }
1501 
1502 /// Determine whether this alloca is a structure.
1503 static bool isStructure(AllocaInst *AI) {
1504   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1505 }
1506 
1507 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1508 /// of llvm.dbg.value intrinsics.
1509 bool llvm::LowerDbgDeclare(Function &F) {
1510   bool Changed = false;
1511   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1512   SmallVector<DbgDeclareInst *, 4> Dbgs;
1513   for (auto &FI : F)
1514     for (Instruction &BI : FI)
1515       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1516         Dbgs.push_back(DDI);
1517 
1518   if (Dbgs.empty())
1519     return Changed;
1520 
1521   for (auto &I : Dbgs) {
1522     DbgDeclareInst *DDI = I;
1523     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1524     // If this is an alloca for a scalar variable, insert a dbg.value
1525     // at each load and store to the alloca and erase the dbg.declare.
1526     // The dbg.values allow tracking a variable even if it is not
1527     // stored on the stack, while the dbg.declare can only describe
1528     // the stack slot (and at a lexical-scope granularity). Later
1529     // passes will attempt to elide the stack slot.
1530     if (!AI || isArray(AI) || isStructure(AI))
1531       continue;
1532 
1533     // A volatile load/store means that the alloca can't be elided anyway.
1534     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1535           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1536             return LI->isVolatile();
1537           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1538             return SI->isVolatile();
1539           return false;
1540         }))
1541       continue;
1542 
1543     SmallVector<const Value *, 8> WorkList;
1544     WorkList.push_back(AI);
1545     while (!WorkList.empty()) {
1546       const Value *V = WorkList.pop_back_val();
1547       for (auto &AIUse : V->uses()) {
1548         User *U = AIUse.getUser();
1549         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1550           if (AIUse.getOperandNo() == 1)
1551             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1552         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1553           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1554         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1555           // This is a call by-value or some other instruction that takes a
1556           // pointer to the variable. Insert a *value* intrinsic that describes
1557           // the variable by dereferencing the alloca.
1558           if (!CI->isLifetimeStartOrEnd()) {
1559             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1560             auto *DerefExpr =
1561                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1562             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1563                                         NewLoc, CI);
1564           }
1565         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1566           if (BI->getType()->isPointerTy())
1567             WorkList.push_back(BI);
1568         }
1569       }
1570     }
1571     DDI->eraseFromParent();
1572     Changed = true;
1573   }
1574 
1575   if (Changed)
1576   for (BasicBlock &BB : F)
1577     RemoveRedundantDbgInstrs(&BB);
1578 
1579   return Changed;
1580 }
1581 
1582 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1583 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1584                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1585   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1586   if (InsertedPHIs.size() == 0)
1587     return;
1588 
1589   // Map existing PHI nodes to their dbg.values.
1590   ValueToValueMapTy DbgValueMap;
1591   for (auto &I : *BB) {
1592     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1593       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1594         DbgValueMap.insert({Loc, DbgII});
1595     }
1596   }
1597   if (DbgValueMap.size() == 0)
1598     return;
1599 
1600   // Then iterate through the new PHIs and look to see if they use one of the
1601   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1602   // propagate the info through the new PHI.
1603   LLVMContext &C = BB->getContext();
1604   for (auto PHI : InsertedPHIs) {
1605     BasicBlock *Parent = PHI->getParent();
1606     // Avoid inserting an intrinsic into an EH block.
1607     if (Parent->getFirstNonPHI()->isEHPad())
1608       continue;
1609     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1610     for (auto VI : PHI->operand_values()) {
1611       auto V = DbgValueMap.find(VI);
1612       if (V != DbgValueMap.end()) {
1613         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1614         Instruction *NewDbgII = DbgII->clone();
1615         NewDbgII->setOperand(0, PhiMAV);
1616         auto InsertionPt = Parent->getFirstInsertionPt();
1617         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1618         NewDbgII->insertBefore(&*InsertionPt);
1619       }
1620     }
1621   }
1622 }
1623 
1624 /// Finds all intrinsics declaring local variables as living in the memory that
1625 /// 'V' points to. This may include a mix of dbg.declare and
1626 /// dbg.addr intrinsics.
1627 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1628   // This function is hot. Check whether the value has any metadata to avoid a
1629   // DenseMap lookup.
1630   if (!V->isUsedByMetadata())
1631     return {};
1632   auto *L = LocalAsMetadata::getIfExists(V);
1633   if (!L)
1634     return {};
1635   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1636   if (!MDV)
1637     return {};
1638 
1639   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1640   for (User *U : MDV->users()) {
1641     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1642       if (DII->isAddressOfVariable())
1643         Declares.push_back(DII);
1644   }
1645 
1646   return Declares;
1647 }
1648 
1649 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1650   TinyPtrVector<DbgDeclareInst *> DDIs;
1651   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1652     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1653       DDIs.push_back(DDI);
1654   return DDIs;
1655 }
1656 
1657 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1658   // This function is hot. Check whether the value has any metadata to avoid a
1659   // DenseMap lookup.
1660   if (!V->isUsedByMetadata())
1661     return;
1662   if (auto *L = LocalAsMetadata::getIfExists(V))
1663     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1664       for (User *U : MDV->users())
1665         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1666           DbgValues.push_back(DVI);
1667 }
1668 
1669 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1670                         Value *V) {
1671   // This function is hot. Check whether the value has any metadata to avoid a
1672   // DenseMap lookup.
1673   if (!V->isUsedByMetadata())
1674     return;
1675   if (auto *L = LocalAsMetadata::getIfExists(V))
1676     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1677       for (User *U : MDV->users())
1678         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1679           DbgUsers.push_back(DII);
1680 }
1681 
1682 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1683                              DIBuilder &Builder, uint8_t DIExprFlags,
1684                              int Offset) {
1685   auto DbgAddrs = FindDbgAddrUses(Address);
1686   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1687     DebugLoc Loc = DII->getDebugLoc();
1688     auto *DIVar = DII->getVariable();
1689     auto *DIExpr = DII->getExpression();
1690     assert(DIVar && "Missing variable");
1691     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1692     // Insert llvm.dbg.declare immediately before DII, and remove old
1693     // llvm.dbg.declare.
1694     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1695     DII->eraseFromParent();
1696   }
1697   return !DbgAddrs.empty();
1698 }
1699 
1700 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1701                                         DIBuilder &Builder, int Offset) {
1702   DebugLoc Loc = DVI->getDebugLoc();
1703   auto *DIVar = DVI->getVariable();
1704   auto *DIExpr = DVI->getExpression();
1705   assert(DIVar && "Missing variable");
1706 
1707   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1708   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1709   // it and give up.
1710   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1711       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1712     return;
1713 
1714   // Insert the offset before the first deref.
1715   // We could just change the offset argument of dbg.value, but it's unsigned...
1716   if (Offset)
1717     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1718 
1719   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1720   DVI->eraseFromParent();
1721 }
1722 
1723 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1724                                     DIBuilder &Builder, int Offset) {
1725   if (auto *L = LocalAsMetadata::getIfExists(AI))
1726     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1727       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1728         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1729           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1730 }
1731 
1732 /// Wrap \p V in a ValueAsMetadata instance.
1733 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1734   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1735 }
1736 
1737 /// Where possible to salvage debug information for \p I do so
1738 /// and return True. If not possible mark undef and return False.
1739 void llvm::salvageDebugInfo(Instruction &I) {
1740   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1741   findDbgUsers(DbgUsers, &I);
1742   salvageDebugInfoForDbgValues(I, DbgUsers);
1743 }
1744 
1745 void llvm::salvageDebugInfoForDbgValues(
1746     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1747   auto &Ctx = I.getContext();
1748   bool Salvaged = false;
1749   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1750 
1751   for (auto *DII : DbgUsers) {
1752     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1753     // are implicitly pointing out the value as a DWARF memory location
1754     // description.
1755     bool StackValue = isa<DbgValueInst>(DII);
1756 
1757     DIExpression *DIExpr =
1758         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1759 
1760     // salvageDebugInfoImpl should fail on examining the first element of
1761     // DbgUsers, or none of them.
1762     if (!DIExpr)
1763       break;
1764 
1765     DII->setOperand(0, wrapMD(I.getOperand(0)));
1766     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1767     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1768     Salvaged = true;
1769   }
1770 
1771   if (Salvaged)
1772     return;
1773 
1774   for (auto *DII : DbgUsers) {
1775     Value *Undef = UndefValue::get(I.getType());
1776     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1777                                             ValueAsMetadata::get(Undef)));
1778   }
1779 }
1780 
1781 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1782                                          DIExpression *SrcDIExpr,
1783                                          bool WithStackValue) {
1784   auto &M = *I.getModule();
1785   auto &DL = M.getDataLayout();
1786 
1787   // Apply a vector of opcodes to the source DIExpression.
1788   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1789     DIExpression *DIExpr = SrcDIExpr;
1790     if (!Ops.empty()) {
1791       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1792     }
1793     return DIExpr;
1794   };
1795 
1796   // Apply the given offset to the source DIExpression.
1797   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1798     SmallVector<uint64_t, 8> Ops;
1799     DIExpression::appendOffset(Ops, Offset);
1800     return doSalvage(Ops);
1801   };
1802 
1803   // initializer-list helper for applying operators to the source DIExpression.
1804   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1805     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1806     return doSalvage(Ops);
1807   };
1808 
1809   if (auto *CI = dyn_cast<CastInst>(&I)) {
1810     // No-op casts are irrelevant for debug info.
1811     if (CI->isNoopCast(DL))
1812       return SrcDIExpr;
1813 
1814     Type *Type = CI->getType();
1815     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1816     if (Type->isVectorTy() ||
1817         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1818       return nullptr;
1819 
1820     Value *FromValue = CI->getOperand(0);
1821     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1822     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1823 
1824     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1825                                             isa<SExtInst>(&I)));
1826   }
1827 
1828   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1829     unsigned BitWidth =
1830         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1831     // Rewrite a constant GEP into a DIExpression.
1832     APInt Offset(BitWidth, 0);
1833     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1834       return applyOffset(Offset.getSExtValue());
1835     } else {
1836       return nullptr;
1837     }
1838   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1839     // Rewrite binary operations with constant integer operands.
1840     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1841     if (!ConstInt || ConstInt->getBitWidth() > 64)
1842       return nullptr;
1843 
1844     uint64_t Val = ConstInt->getSExtValue();
1845     switch (BI->getOpcode()) {
1846     case Instruction::Add:
1847       return applyOffset(Val);
1848     case Instruction::Sub:
1849       return applyOffset(-int64_t(Val));
1850     case Instruction::Mul:
1851       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1852     case Instruction::SDiv:
1853       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1854     case Instruction::SRem:
1855       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1856     case Instruction::Or:
1857       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1858     case Instruction::And:
1859       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1860     case Instruction::Xor:
1861       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1862     case Instruction::Shl:
1863       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1864     case Instruction::LShr:
1865       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1866     case Instruction::AShr:
1867       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1868     default:
1869       // TODO: Salvage constants from each kind of binop we know about.
1870       return nullptr;
1871     }
1872     // *Not* to do: we should not attempt to salvage load instructions,
1873     // because the validity and lifetime of a dbg.value containing
1874     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1875   }
1876   return nullptr;
1877 }
1878 
1879 /// A replacement for a dbg.value expression.
1880 using DbgValReplacement = Optional<DIExpression *>;
1881 
1882 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1883 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1884 /// changes are made.
1885 static bool rewriteDebugUsers(
1886     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1887     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1888   // Find debug users of From.
1889   SmallVector<DbgVariableIntrinsic *, 1> Users;
1890   findDbgUsers(Users, &From);
1891   if (Users.empty())
1892     return false;
1893 
1894   // Prevent use-before-def of To.
1895   bool Changed = false;
1896   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1897   if (isa<Instruction>(&To)) {
1898     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1899 
1900     for (auto *DII : Users) {
1901       // It's common to see a debug user between From and DomPoint. Move it
1902       // after DomPoint to preserve the variable update without any reordering.
1903       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1904         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1905         DII->moveAfter(&DomPoint);
1906         Changed = true;
1907 
1908       // Users which otherwise aren't dominated by the replacement value must
1909       // be salvaged or deleted.
1910       } else if (!DT.dominates(&DomPoint, DII)) {
1911         UndefOrSalvage.insert(DII);
1912       }
1913     }
1914   }
1915 
1916   // Update debug users without use-before-def risk.
1917   for (auto *DII : Users) {
1918     if (UndefOrSalvage.count(DII))
1919       continue;
1920 
1921     LLVMContext &Ctx = DII->getContext();
1922     DbgValReplacement DVR = RewriteExpr(*DII);
1923     if (!DVR)
1924       continue;
1925 
1926     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1927     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1928     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1929     Changed = true;
1930   }
1931 
1932   if (!UndefOrSalvage.empty()) {
1933     // Try to salvage the remaining debug users.
1934     salvageDebugInfo(From);
1935     Changed = true;
1936   }
1937 
1938   return Changed;
1939 }
1940 
1941 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1942 /// losslessly preserve the bits and semantics of the value. This predicate is
1943 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1944 ///
1945 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1946 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1947 /// and also does not allow lossless pointer <-> integer conversions.
1948 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1949                                          Type *ToTy) {
1950   // Trivially compatible types.
1951   if (FromTy == ToTy)
1952     return true;
1953 
1954   // Handle compatible pointer <-> integer conversions.
1955   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1956     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1957     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1958                               !DL.isNonIntegralPointerType(ToTy);
1959     return SameSize && LosslessConversion;
1960   }
1961 
1962   // TODO: This is not exhaustive.
1963   return false;
1964 }
1965 
1966 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1967                                  Instruction &DomPoint, DominatorTree &DT) {
1968   // Exit early if From has no debug users.
1969   if (!From.isUsedByMetadata())
1970     return false;
1971 
1972   assert(&From != &To && "Can't replace something with itself");
1973 
1974   Type *FromTy = From.getType();
1975   Type *ToTy = To.getType();
1976 
1977   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1978     return DII.getExpression();
1979   };
1980 
1981   // Handle no-op conversions.
1982   Module &M = *From.getModule();
1983   const DataLayout &DL = M.getDataLayout();
1984   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1985     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1986 
1987   // Handle integer-to-integer widening and narrowing.
1988   // FIXME: Use DW_OP_convert when it's available everywhere.
1989   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1990     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1991     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1992     assert(FromBits != ToBits && "Unexpected no-op conversion");
1993 
1994     // When the width of the result grows, assume that a debugger will only
1995     // access the low `FromBits` bits when inspecting the source variable.
1996     if (FromBits < ToBits)
1997       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1998 
1999     // The width of the result has shrunk. Use sign/zero extension to describe
2000     // the source variable's high bits.
2001     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2002       DILocalVariable *Var = DII.getVariable();
2003 
2004       // Without knowing signedness, sign/zero extension isn't possible.
2005       auto Signedness = Var->getSignedness();
2006       if (!Signedness)
2007         return None;
2008 
2009       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2010       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2011                                      Signed);
2012     };
2013     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2014   }
2015 
2016   // TODO: Floating-point conversions, vectors.
2017   return false;
2018 }
2019 
2020 std::pair<unsigned, unsigned>
2021 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2022   unsigned NumDeadInst = 0;
2023   unsigned NumDeadDbgInst = 0;
2024   // Delete the instructions backwards, as it has a reduced likelihood of
2025   // having to update as many def-use and use-def chains.
2026   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2027   while (EndInst != &BB->front()) {
2028     // Delete the next to last instruction.
2029     Instruction *Inst = &*--EndInst->getIterator();
2030     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2031       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2032     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2033       EndInst = Inst;
2034       continue;
2035     }
2036     if (isa<DbgInfoIntrinsic>(Inst))
2037       ++NumDeadDbgInst;
2038     else
2039       ++NumDeadInst;
2040     Inst->eraseFromParent();
2041   }
2042   return {NumDeadInst, NumDeadDbgInst};
2043 }
2044 
2045 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2046                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2047                                    MemorySSAUpdater *MSSAU) {
2048   BasicBlock *BB = I->getParent();
2049 
2050   if (MSSAU)
2051     MSSAU->changeToUnreachable(I);
2052 
2053   SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2054 
2055   // Loop over all of the successors, removing BB's entry from any PHI
2056   // nodes.
2057   for (BasicBlock *Successor : successors(BB)) {
2058     Successor->removePredecessor(BB, PreserveLCSSA);
2059     if (DTU)
2060       UniqueSuccessors.insert(Successor);
2061   }
2062   // Insert a call to llvm.trap right before this.  This turns the undefined
2063   // behavior into a hard fail instead of falling through into random code.
2064   if (UseLLVMTrap) {
2065     Function *TrapFn =
2066       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2067     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2068     CallTrap->setDebugLoc(I->getDebugLoc());
2069   }
2070   auto *UI = new UnreachableInst(I->getContext(), I);
2071   UI->setDebugLoc(I->getDebugLoc());
2072 
2073   // All instructions after this are dead.
2074   unsigned NumInstrsRemoved = 0;
2075   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2076   while (BBI != BBE) {
2077     if (!BBI->use_empty())
2078       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2079     BB->getInstList().erase(BBI++);
2080     ++NumInstrsRemoved;
2081   }
2082   if (DTU) {
2083     SmallVector<DominatorTree::UpdateType, 8> Updates;
2084     Updates.reserve(UniqueSuccessors.size());
2085     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2086       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2087     DTU->applyUpdates(Updates);
2088   }
2089   return NumInstrsRemoved;
2090 }
2091 
2092 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2093   SmallVector<Value *, 8> Args(II->args());
2094   SmallVector<OperandBundleDef, 1> OpBundles;
2095   II->getOperandBundlesAsDefs(OpBundles);
2096   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2097                                        II->getCalledOperand(), Args, OpBundles);
2098   NewCall->setCallingConv(II->getCallingConv());
2099   NewCall->setAttributes(II->getAttributes());
2100   NewCall->setDebugLoc(II->getDebugLoc());
2101   NewCall->copyMetadata(*II);
2102 
2103   // If the invoke had profile metadata, try converting them for CallInst.
2104   uint64_t TotalWeight;
2105   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2106     // Set the total weight if it fits into i32, otherwise reset.
2107     MDBuilder MDB(NewCall->getContext());
2108     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2109                           ? nullptr
2110                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2111     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2112   }
2113 
2114   return NewCall;
2115 }
2116 
2117 /// changeToCall - Convert the specified invoke into a normal call.
2118 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2119   CallInst *NewCall = createCallMatchingInvoke(II);
2120   NewCall->takeName(II);
2121   NewCall->insertBefore(II);
2122   II->replaceAllUsesWith(NewCall);
2123 
2124   // Follow the call by a branch to the normal destination.
2125   BasicBlock *NormalDestBB = II->getNormalDest();
2126   BranchInst::Create(NormalDestBB, II);
2127 
2128   // Update PHI nodes in the unwind destination
2129   BasicBlock *BB = II->getParent();
2130   BasicBlock *UnwindDestBB = II->getUnwindDest();
2131   UnwindDestBB->removePredecessor(BB);
2132   II->eraseFromParent();
2133   if (DTU)
2134     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2135 }
2136 
2137 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2138                                                    BasicBlock *UnwindEdge,
2139                                                    DomTreeUpdater *DTU) {
2140   BasicBlock *BB = CI->getParent();
2141 
2142   // Convert this function call into an invoke instruction.  First, split the
2143   // basic block.
2144   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2145                                  CI->getName() + ".noexc");
2146 
2147   // Delete the unconditional branch inserted by SplitBlock
2148   BB->getInstList().pop_back();
2149 
2150   // Create the new invoke instruction.
2151   SmallVector<Value *, 8> InvokeArgs(CI->args());
2152   SmallVector<OperandBundleDef, 1> OpBundles;
2153 
2154   CI->getOperandBundlesAsDefs(OpBundles);
2155 
2156   // Note: we're round tripping operand bundles through memory here, and that
2157   // can potentially be avoided with a cleverer API design that we do not have
2158   // as of this time.
2159 
2160   InvokeInst *II =
2161       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2162                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2163   II->setDebugLoc(CI->getDebugLoc());
2164   II->setCallingConv(CI->getCallingConv());
2165   II->setAttributes(CI->getAttributes());
2166 
2167   if (DTU)
2168     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2169 
2170   // Make sure that anything using the call now uses the invoke!  This also
2171   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2172   CI->replaceAllUsesWith(II);
2173 
2174   // Delete the original call
2175   Split->getInstList().pop_front();
2176   return Split;
2177 }
2178 
2179 static bool markAliveBlocks(Function &F,
2180                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2181                             DomTreeUpdater *DTU = nullptr) {
2182   SmallVector<BasicBlock*, 128> Worklist;
2183   BasicBlock *BB = &F.front();
2184   Worklist.push_back(BB);
2185   Reachable.insert(BB);
2186   bool Changed = false;
2187   do {
2188     BB = Worklist.pop_back_val();
2189 
2190     // Do a quick scan of the basic block, turning any obviously unreachable
2191     // instructions into LLVM unreachable insts.  The instruction combining pass
2192     // canonicalizes unreachable insts into stores to null or undef.
2193     for (Instruction &I : *BB) {
2194       if (auto *CI = dyn_cast<CallInst>(&I)) {
2195         Value *Callee = CI->getCalledOperand();
2196         // Handle intrinsic calls.
2197         if (Function *F = dyn_cast<Function>(Callee)) {
2198           auto IntrinsicID = F->getIntrinsicID();
2199           // Assumptions that are known to be false are equivalent to
2200           // unreachable. Also, if the condition is undefined, then we make the
2201           // choice most beneficial to the optimizer, and choose that to also be
2202           // unreachable.
2203           if (IntrinsicID == Intrinsic::assume) {
2204             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2205               // Don't insert a call to llvm.trap right before the unreachable.
2206               changeToUnreachable(CI, false, false, DTU);
2207               Changed = true;
2208               break;
2209             }
2210           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2211             // A call to the guard intrinsic bails out of the current
2212             // compilation unit if the predicate passed to it is false. If the
2213             // predicate is a constant false, then we know the guard will bail
2214             // out of the current compile unconditionally, so all code following
2215             // it is dead.
2216             //
2217             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2218             // guards to treat `undef` as `false` since a guard on `undef` can
2219             // still be useful for widening.
2220             if (match(CI->getArgOperand(0), m_Zero()))
2221               if (!isa<UnreachableInst>(CI->getNextNode())) {
2222                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2223                                     false, DTU);
2224                 Changed = true;
2225                 break;
2226               }
2227           }
2228         } else if ((isa<ConstantPointerNull>(Callee) &&
2229                     !NullPointerIsDefined(CI->getFunction())) ||
2230                    isa<UndefValue>(Callee)) {
2231           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2232           Changed = true;
2233           break;
2234         }
2235         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2236           // If we found a call to a no-return function, insert an unreachable
2237           // instruction after it.  Make sure there isn't *already* one there
2238           // though.
2239           if (!isa<UnreachableInst>(CI->getNextNode())) {
2240             // Don't insert a call to llvm.trap right before the unreachable.
2241             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2242             Changed = true;
2243           }
2244           break;
2245         }
2246       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2247         // Store to undef and store to null are undefined and used to signal
2248         // that they should be changed to unreachable by passes that can't
2249         // modify the CFG.
2250 
2251         // Don't touch volatile stores.
2252         if (SI->isVolatile()) continue;
2253 
2254         Value *Ptr = SI->getOperand(1);
2255 
2256         if (isa<UndefValue>(Ptr) ||
2257             (isa<ConstantPointerNull>(Ptr) &&
2258              !NullPointerIsDefined(SI->getFunction(),
2259                                    SI->getPointerAddressSpace()))) {
2260           changeToUnreachable(SI, true, false, DTU);
2261           Changed = true;
2262           break;
2263         }
2264       }
2265     }
2266 
2267     Instruction *Terminator = BB->getTerminator();
2268     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2269       // Turn invokes that call 'nounwind' functions into ordinary calls.
2270       Value *Callee = II->getCalledOperand();
2271       if ((isa<ConstantPointerNull>(Callee) &&
2272            !NullPointerIsDefined(BB->getParent())) ||
2273           isa<UndefValue>(Callee)) {
2274         changeToUnreachable(II, true, false, DTU);
2275         Changed = true;
2276       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2277         if (II->use_empty() && II->onlyReadsMemory()) {
2278           // jump to the normal destination branch.
2279           BasicBlock *NormalDestBB = II->getNormalDest();
2280           BasicBlock *UnwindDestBB = II->getUnwindDest();
2281           BranchInst::Create(NormalDestBB, II);
2282           UnwindDestBB->removePredecessor(II->getParent());
2283           II->eraseFromParent();
2284           if (DTU)
2285             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2286         } else
2287           changeToCall(II, DTU);
2288         Changed = true;
2289       }
2290     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2291       // Remove catchpads which cannot be reached.
2292       struct CatchPadDenseMapInfo {
2293         static CatchPadInst *getEmptyKey() {
2294           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2295         }
2296 
2297         static CatchPadInst *getTombstoneKey() {
2298           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2299         }
2300 
2301         static unsigned getHashValue(CatchPadInst *CatchPad) {
2302           return static_cast<unsigned>(hash_combine_range(
2303               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2304         }
2305 
2306         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2307           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2308               RHS == getEmptyKey() || RHS == getTombstoneKey())
2309             return LHS == RHS;
2310           return LHS->isIdenticalTo(RHS);
2311         }
2312       };
2313 
2314       SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2315       // Set of unique CatchPads.
2316       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2317                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2318           HandlerSet;
2319       detail::DenseSetEmpty Empty;
2320       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2321                                              E = CatchSwitch->handler_end();
2322            I != E; ++I) {
2323         BasicBlock *HandlerBB = *I;
2324         ++NumPerSuccessorCases[HandlerBB];
2325         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2326         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2327           --NumPerSuccessorCases[HandlerBB];
2328           CatchSwitch->removeHandler(I);
2329           --I;
2330           --E;
2331           Changed = true;
2332         }
2333       }
2334       std::vector<DominatorTree::UpdateType> Updates;
2335       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2336         if (I.second == 0)
2337           Updates.push_back({DominatorTree::Delete, BB, I.first});
2338       if (DTU)
2339         DTU->applyUpdates(Updates);
2340     }
2341 
2342     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2343     for (BasicBlock *Successor : successors(BB))
2344       if (Reachable.insert(Successor).second)
2345         Worklist.push_back(Successor);
2346   } while (!Worklist.empty());
2347   return Changed;
2348 }
2349 
2350 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2351   Instruction *TI = BB->getTerminator();
2352 
2353   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2354     changeToCall(II, DTU);
2355     return;
2356   }
2357 
2358   Instruction *NewTI;
2359   BasicBlock *UnwindDest;
2360 
2361   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2362     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2363     UnwindDest = CRI->getUnwindDest();
2364   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2365     auto *NewCatchSwitch = CatchSwitchInst::Create(
2366         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2367         CatchSwitch->getName(), CatchSwitch);
2368     for (BasicBlock *PadBB : CatchSwitch->handlers())
2369       NewCatchSwitch->addHandler(PadBB);
2370 
2371     NewTI = NewCatchSwitch;
2372     UnwindDest = CatchSwitch->getUnwindDest();
2373   } else {
2374     llvm_unreachable("Could not find unwind successor");
2375   }
2376 
2377   NewTI->takeName(TI);
2378   NewTI->setDebugLoc(TI->getDebugLoc());
2379   UnwindDest->removePredecessor(BB);
2380   TI->replaceAllUsesWith(NewTI);
2381   TI->eraseFromParent();
2382   if (DTU)
2383     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2384 }
2385 
2386 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2387 /// if they are in a dead cycle.  Return true if a change was made, false
2388 /// otherwise.
2389 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2390                                    MemorySSAUpdater *MSSAU) {
2391   SmallPtrSet<BasicBlock *, 16> Reachable;
2392   bool Changed = markAliveBlocks(F, Reachable, DTU);
2393 
2394   // If there are unreachable blocks in the CFG...
2395   if (Reachable.size() == F.size())
2396     return Changed;
2397 
2398   assert(Reachable.size() < F.size());
2399 
2400   // Are there any blocks left to actually delete?
2401   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2402   for (BasicBlock &BB : F) {
2403     // Skip reachable basic blocks
2404     if (Reachable.count(&BB))
2405       continue;
2406     // Skip already-deleted blocks
2407     if (DTU && DTU->isBBPendingDeletion(&BB))
2408       continue;
2409     BlocksToRemove.insert(&BB);
2410   }
2411 
2412   if (BlocksToRemove.empty())
2413     return Changed;
2414 
2415   Changed = true;
2416   NumRemoved += BlocksToRemove.size();
2417 
2418   if (MSSAU)
2419     MSSAU->removeBlocks(BlocksToRemove);
2420 
2421   // Loop over all of the basic blocks that are up for removal, dropping all of
2422   // their internal references. Update DTU if available.
2423   std::vector<DominatorTree::UpdateType> Updates;
2424   for (auto *BB : BlocksToRemove) {
2425     SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2426     for (BasicBlock *Successor : successors(BB)) {
2427       // Only remove references to BB in reachable successors of BB.
2428       if (Reachable.count(Successor))
2429         Successor->removePredecessor(BB);
2430       if (DTU)
2431         UniqueSuccessors.insert(Successor);
2432     }
2433     BB->dropAllReferences();
2434     if (DTU) {
2435       Instruction *TI = BB->getTerminator();
2436       assert(TI && "Basic block should have a terminator");
2437       // Terminators like invoke can have users. We have to replace their users,
2438       // before removing them.
2439       if (!TI->use_empty())
2440         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2441       TI->eraseFromParent();
2442       new UnreachableInst(BB->getContext(), BB);
2443       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2444                                "applying corresponding DTU updates.");
2445       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2446       for (auto *UniqueSuccessor : UniqueSuccessors)
2447         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2448     }
2449   }
2450 
2451   if (DTU) {
2452     DTU->applyUpdates(Updates);
2453     for (auto *BB : BlocksToRemove)
2454       DTU->deleteBB(BB);
2455   } else {
2456     for (auto *BB : BlocksToRemove)
2457       BB->eraseFromParent();
2458   }
2459 
2460   return Changed;
2461 }
2462 
2463 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2464                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2465   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2466   K->dropUnknownNonDebugMetadata(KnownIDs);
2467   K->getAllMetadataOtherThanDebugLoc(Metadata);
2468   for (const auto &MD : Metadata) {
2469     unsigned Kind = MD.first;
2470     MDNode *JMD = J->getMetadata(Kind);
2471     MDNode *KMD = MD.second;
2472 
2473     switch (Kind) {
2474       default:
2475         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2476         break;
2477       case LLVMContext::MD_dbg:
2478         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2479       case LLVMContext::MD_tbaa:
2480         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2481         break;
2482       case LLVMContext::MD_alias_scope:
2483         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2484         break;
2485       case LLVMContext::MD_noalias:
2486       case LLVMContext::MD_mem_parallel_loop_access:
2487         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2488         break;
2489       case LLVMContext::MD_access_group:
2490         K->setMetadata(LLVMContext::MD_access_group,
2491                        intersectAccessGroups(K, J));
2492         break;
2493       case LLVMContext::MD_range:
2494 
2495         // If K does move, use most generic range. Otherwise keep the range of
2496         // K.
2497         if (DoesKMove)
2498           // FIXME: If K does move, we should drop the range info and nonnull.
2499           //        Currently this function is used with DoesKMove in passes
2500           //        doing hoisting/sinking and the current behavior of using the
2501           //        most generic range is correct in those cases.
2502           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2503         break;
2504       case LLVMContext::MD_fpmath:
2505         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2506         break;
2507       case LLVMContext::MD_invariant_load:
2508         // Only set the !invariant.load if it is present in both instructions.
2509         K->setMetadata(Kind, JMD);
2510         break;
2511       case LLVMContext::MD_nonnull:
2512         // If K does move, keep nonull if it is present in both instructions.
2513         if (DoesKMove)
2514           K->setMetadata(Kind, JMD);
2515         break;
2516       case LLVMContext::MD_invariant_group:
2517         // Preserve !invariant.group in K.
2518         break;
2519       case LLVMContext::MD_align:
2520         K->setMetadata(Kind,
2521           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2522         break;
2523       case LLVMContext::MD_dereferenceable:
2524       case LLVMContext::MD_dereferenceable_or_null:
2525         K->setMetadata(Kind,
2526           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2527         break;
2528       case LLVMContext::MD_preserve_access_index:
2529         // Preserve !preserve.access.index in K.
2530         break;
2531     }
2532   }
2533   // Set !invariant.group from J if J has it. If both instructions have it
2534   // then we will just pick it from J - even when they are different.
2535   // Also make sure that K is load or store - f.e. combining bitcast with load
2536   // could produce bitcast with invariant.group metadata, which is invalid.
2537   // FIXME: we should try to preserve both invariant.group md if they are
2538   // different, but right now instruction can only have one invariant.group.
2539   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2540     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2541       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2542 }
2543 
2544 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2545                                  bool KDominatesJ) {
2546   unsigned KnownIDs[] = {
2547       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2548       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2549       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2550       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2551       LLVMContext::MD_dereferenceable,
2552       LLVMContext::MD_dereferenceable_or_null,
2553       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2554   combineMetadata(K, J, KnownIDs, KDominatesJ);
2555 }
2556 
2557 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2558   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2559   Source.getAllMetadata(MD);
2560   MDBuilder MDB(Dest.getContext());
2561   Type *NewType = Dest.getType();
2562   const DataLayout &DL = Source.getModule()->getDataLayout();
2563   for (const auto &MDPair : MD) {
2564     unsigned ID = MDPair.first;
2565     MDNode *N = MDPair.second;
2566     // Note, essentially every kind of metadata should be preserved here! This
2567     // routine is supposed to clone a load instruction changing *only its type*.
2568     // The only metadata it makes sense to drop is metadata which is invalidated
2569     // when the pointer type changes. This should essentially never be the case
2570     // in LLVM, but we explicitly switch over only known metadata to be
2571     // conservatively correct. If you are adding metadata to LLVM which pertains
2572     // to loads, you almost certainly want to add it here.
2573     switch (ID) {
2574     case LLVMContext::MD_dbg:
2575     case LLVMContext::MD_tbaa:
2576     case LLVMContext::MD_prof:
2577     case LLVMContext::MD_fpmath:
2578     case LLVMContext::MD_tbaa_struct:
2579     case LLVMContext::MD_invariant_load:
2580     case LLVMContext::MD_alias_scope:
2581     case LLVMContext::MD_noalias:
2582     case LLVMContext::MD_nontemporal:
2583     case LLVMContext::MD_mem_parallel_loop_access:
2584     case LLVMContext::MD_access_group:
2585       // All of these directly apply.
2586       Dest.setMetadata(ID, N);
2587       break;
2588 
2589     case LLVMContext::MD_nonnull:
2590       copyNonnullMetadata(Source, N, Dest);
2591       break;
2592 
2593     case LLVMContext::MD_align:
2594     case LLVMContext::MD_dereferenceable:
2595     case LLVMContext::MD_dereferenceable_or_null:
2596       // These only directly apply if the new type is also a pointer.
2597       if (NewType->isPointerTy())
2598         Dest.setMetadata(ID, N);
2599       break;
2600 
2601     case LLVMContext::MD_range:
2602       copyRangeMetadata(DL, Source, N, Dest);
2603       break;
2604     }
2605   }
2606 }
2607 
2608 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2609   auto *ReplInst = dyn_cast<Instruction>(Repl);
2610   if (!ReplInst)
2611     return;
2612 
2613   // Patch the replacement so that it is not more restrictive than the value
2614   // being replaced.
2615   // Note that if 'I' is a load being replaced by some operation,
2616   // for example, by an arithmetic operation, then andIRFlags()
2617   // would just erase all math flags from the original arithmetic
2618   // operation, which is clearly not wanted and not needed.
2619   if (!isa<LoadInst>(I))
2620     ReplInst->andIRFlags(I);
2621 
2622   // FIXME: If both the original and replacement value are part of the
2623   // same control-flow region (meaning that the execution of one
2624   // guarantees the execution of the other), then we can combine the
2625   // noalias scopes here and do better than the general conservative
2626   // answer used in combineMetadata().
2627 
2628   // In general, GVN unifies expressions over different control-flow
2629   // regions, and so we need a conservative combination of the noalias
2630   // scopes.
2631   static const unsigned KnownIDs[] = {
2632       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2633       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2634       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2635       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2636       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2637   combineMetadata(ReplInst, I, KnownIDs, false);
2638 }
2639 
2640 template <typename RootType, typename DominatesFn>
2641 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2642                                          const RootType &Root,
2643                                          const DominatesFn &Dominates) {
2644   assert(From->getType() == To->getType());
2645 
2646   unsigned Count = 0;
2647   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2648        UI != UE;) {
2649     Use &U = *UI++;
2650     if (!Dominates(Root, U))
2651       continue;
2652     U.set(To);
2653     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2654                       << "' as " << *To << " in " << *U << "\n");
2655     ++Count;
2656   }
2657   return Count;
2658 }
2659 
2660 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2661    assert(From->getType() == To->getType());
2662    auto *BB = From->getParent();
2663    unsigned Count = 0;
2664 
2665   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2666        UI != UE;) {
2667     Use &U = *UI++;
2668     auto *I = cast<Instruction>(U.getUser());
2669     if (I->getParent() == BB)
2670       continue;
2671     U.set(To);
2672     ++Count;
2673   }
2674   return Count;
2675 }
2676 
2677 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2678                                         DominatorTree &DT,
2679                                         const BasicBlockEdge &Root) {
2680   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2681     return DT.dominates(Root, U);
2682   };
2683   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2684 }
2685 
2686 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2687                                         DominatorTree &DT,
2688                                         const BasicBlock *BB) {
2689   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2690     auto *I = cast<Instruction>(U.getUser())->getParent();
2691     return DT.properlyDominates(BB, I);
2692   };
2693   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2694 }
2695 
2696 bool llvm::callsGCLeafFunction(const CallBase *Call,
2697                                const TargetLibraryInfo &TLI) {
2698   // Check if the function is specifically marked as a gc leaf function.
2699   if (Call->hasFnAttr("gc-leaf-function"))
2700     return true;
2701   if (const Function *F = Call->getCalledFunction()) {
2702     if (F->hasFnAttribute("gc-leaf-function"))
2703       return true;
2704 
2705     if (auto IID = F->getIntrinsicID()) {
2706       // Most LLVM intrinsics do not take safepoints.
2707       return IID != Intrinsic::experimental_gc_statepoint &&
2708              IID != Intrinsic::experimental_deoptimize &&
2709              IID != Intrinsic::memcpy_element_unordered_atomic &&
2710              IID != Intrinsic::memmove_element_unordered_atomic;
2711     }
2712   }
2713 
2714   // Lib calls can be materialized by some passes, and won't be
2715   // marked as 'gc-leaf-function.' All available Libcalls are
2716   // GC-leaf.
2717   LibFunc LF;
2718   if (TLI.getLibFunc(*Call, LF)) {
2719     return TLI.has(LF);
2720   }
2721 
2722   return false;
2723 }
2724 
2725 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2726                                LoadInst &NewLI) {
2727   auto *NewTy = NewLI.getType();
2728 
2729   // This only directly applies if the new type is also a pointer.
2730   if (NewTy->isPointerTy()) {
2731     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2732     return;
2733   }
2734 
2735   // The only other translation we can do is to integral loads with !range
2736   // metadata.
2737   if (!NewTy->isIntegerTy())
2738     return;
2739 
2740   MDBuilder MDB(NewLI.getContext());
2741   const Value *Ptr = OldLI.getPointerOperand();
2742   auto *ITy = cast<IntegerType>(NewTy);
2743   auto *NullInt = ConstantExpr::getPtrToInt(
2744       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2745   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2746   NewLI.setMetadata(LLVMContext::MD_range,
2747                     MDB.createRange(NonNullInt, NullInt));
2748 }
2749 
2750 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2751                              MDNode *N, LoadInst &NewLI) {
2752   auto *NewTy = NewLI.getType();
2753 
2754   // Give up unless it is converted to a pointer where there is a single very
2755   // valuable mapping we can do reliably.
2756   // FIXME: It would be nice to propagate this in more ways, but the type
2757   // conversions make it hard.
2758   if (!NewTy->isPointerTy())
2759     return;
2760 
2761   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2762   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2763     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2764     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2765   }
2766 }
2767 
2768 void llvm::dropDebugUsers(Instruction &I) {
2769   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2770   findDbgUsers(DbgUsers, &I);
2771   for (auto *DII : DbgUsers)
2772     DII->eraseFromParent();
2773 }
2774 
2775 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2776                                     BasicBlock *BB) {
2777   // Since we are moving the instructions out of its basic block, we do not
2778   // retain their original debug locations (DILocations) and debug intrinsic
2779   // instructions.
2780   //
2781   // Doing so would degrade the debugging experience and adversely affect the
2782   // accuracy of profiling information.
2783   //
2784   // Currently, when hoisting the instructions, we take the following actions:
2785   // - Remove their debug intrinsic instructions.
2786   // - Set their debug locations to the values from the insertion point.
2787   //
2788   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2789   // need to be deleted, is because there will not be any instructions with a
2790   // DILocation in either branch left after performing the transformation. We
2791   // can only insert a dbg.value after the two branches are joined again.
2792   //
2793   // See PR38762, PR39243 for more details.
2794   //
2795   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2796   // encode predicated DIExpressions that yield different results on different
2797   // code paths.
2798   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2799     Instruction *I = &*II;
2800     I->dropUnknownNonDebugMetadata();
2801     if (I->isUsedByMetadata())
2802       dropDebugUsers(*I);
2803     if (isa<DbgInfoIntrinsic>(I)) {
2804       // Remove DbgInfo Intrinsics.
2805       II = I->eraseFromParent();
2806       continue;
2807     }
2808     I->setDebugLoc(InsertPt->getDebugLoc());
2809     ++II;
2810   }
2811   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2812                                  BB->begin(),
2813                                  BB->getTerminator()->getIterator());
2814 }
2815 
2816 namespace {
2817 
2818 /// A potential constituent of a bitreverse or bswap expression. See
2819 /// collectBitParts for a fuller explanation.
2820 struct BitPart {
2821   BitPart(Value *P, unsigned BW) : Provider(P) {
2822     Provenance.resize(BW);
2823   }
2824 
2825   /// The Value that this is a bitreverse/bswap of.
2826   Value *Provider;
2827 
2828   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2829   /// in Provider becomes bit B in the result of this expression.
2830   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2831 
2832   enum { Unset = -1 };
2833 };
2834 
2835 } // end anonymous namespace
2836 
2837 /// Analyze the specified subexpression and see if it is capable of providing
2838 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2839 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2840 /// the output of the expression came from a corresponding bit in some other
2841 /// value. This function is recursive, and the end result is a mapping of
2842 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2843 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2844 ///
2845 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2846 /// that the expression deposits the low byte of %X into the high byte of the
2847 /// result and that all other bits are zero. This expression is accepted and a
2848 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2849 /// [0-7].
2850 ///
2851 /// For vector types, all analysis is performed at the per-element level. No
2852 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2853 /// constant masks must be splatted across all elements.
2854 ///
2855 /// To avoid revisiting values, the BitPart results are memoized into the
2856 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2857 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2858 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2859 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2860 /// type instead to provide the same functionality.
2861 ///
2862 /// Because we pass around references into \c BPS, we must use a container that
2863 /// does not invalidate internal references (std::map instead of DenseMap).
2864 static const Optional<BitPart> &
2865 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2866                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2867   auto I = BPS.find(V);
2868   if (I != BPS.end())
2869     return I->second;
2870 
2871   auto &Result = BPS[V] = None;
2872   auto BitWidth = V->getType()->getScalarSizeInBits();
2873 
2874   // Can't do integer/elements > 128 bits.
2875   if (BitWidth > 128)
2876     return Result;
2877 
2878   // Prevent stack overflow by limiting the recursion depth
2879   if (Depth == BitPartRecursionMaxDepth) {
2880     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2881     return Result;
2882   }
2883 
2884   if (auto *I = dyn_cast<Instruction>(V)) {
2885     Value *X, *Y;
2886     const APInt *C;
2887 
2888     // If this is an or instruction, it may be an inner node of the bswap.
2889     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2890       const auto &A =
2891           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2892       const auto &B =
2893           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2894       if (!A || !B)
2895         return Result;
2896 
2897       // Try and merge the two together.
2898       if (!A->Provider || A->Provider != B->Provider)
2899         return Result;
2900 
2901       Result = BitPart(A->Provider, BitWidth);
2902       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2903         if (A->Provenance[BitIdx] != BitPart::Unset &&
2904             B->Provenance[BitIdx] != BitPart::Unset &&
2905             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2906           return Result = None;
2907 
2908         if (A->Provenance[BitIdx] == BitPart::Unset)
2909           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2910         else
2911           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2912       }
2913 
2914       return Result;
2915     }
2916 
2917     // If this is a logical shift by a constant, recurse then shift the result.
2918     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2919       const APInt &BitShift = *C;
2920 
2921       // Ensure the shift amount is defined.
2922       if (BitShift.uge(BitWidth))
2923         return Result;
2924 
2925       const auto &Res =
2926           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2927       if (!Res)
2928         return Result;
2929       Result = Res;
2930 
2931       // Perform the "shift" on BitProvenance.
2932       auto &P = Result->Provenance;
2933       if (I->getOpcode() == Instruction::Shl) {
2934         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2935         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2936       } else {
2937         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2938         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2939       }
2940 
2941       return Result;
2942     }
2943 
2944     // If this is a logical 'and' with a mask that clears bits, recurse then
2945     // unset the appropriate bits.
2946     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2947       const APInt &AndMask = *C;
2948 
2949       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2950       // early exit.
2951       unsigned NumMaskedBits = AndMask.countPopulation();
2952       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2953         return Result;
2954 
2955       const auto &Res =
2956           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2957       if (!Res)
2958         return Result;
2959       Result = Res;
2960 
2961       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2962         // If the AndMask is zero for this bit, clear the bit.
2963         if (AndMask[BitIdx] == 0)
2964           Result->Provenance[BitIdx] = BitPart::Unset;
2965       return Result;
2966     }
2967 
2968     // If this is a zext instruction zero extend the result.
2969     if (match(V, m_ZExt(m_Value(X)))) {
2970       const auto &Res =
2971           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2972       if (!Res)
2973         return Result;
2974 
2975       Result = BitPart(Res->Provider, BitWidth);
2976       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2977       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2978         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2979       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2980         Result->Provenance[BitIdx] = BitPart::Unset;
2981       return Result;
2982     }
2983 
2984     // If this is a truncate instruction, extract the lower bits.
2985     if (match(V, m_Trunc(m_Value(X)))) {
2986       const auto &Res =
2987           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2988       if (!Res)
2989         return Result;
2990 
2991       Result = BitPart(Res->Provider, BitWidth);
2992       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2993         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2994       return Result;
2995     }
2996 
2997     // BITREVERSE - most likely due to us previous matching a partial
2998     // bitreverse.
2999     if (match(V, m_BitReverse(m_Value(X)))) {
3000       const auto &Res =
3001           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3002       if (!Res)
3003         return Result;
3004 
3005       Result = BitPart(Res->Provider, BitWidth);
3006       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3007         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3008       return Result;
3009     }
3010 
3011     // BSWAP - most likely due to us previous matching a partial bswap.
3012     if (match(V, m_BSwap(m_Value(X)))) {
3013       const auto &Res =
3014           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3015       if (!Res)
3016         return Result;
3017 
3018       unsigned ByteWidth = BitWidth / 8;
3019       Result = BitPart(Res->Provider, BitWidth);
3020       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3021         unsigned ByteBitOfs = ByteIdx * 8;
3022         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3023           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3024               Res->Provenance[ByteBitOfs + BitIdx];
3025       }
3026       return Result;
3027     }
3028 
3029     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3030     // amount (modulo).
3031     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3032     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3033     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3034         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3035       // We can treat fshr as a fshl by flipping the modulo amount.
3036       unsigned ModAmt = C->urem(BitWidth);
3037       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3038         ModAmt = BitWidth - ModAmt;
3039 
3040       const auto &LHS =
3041           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3042       const auto &RHS =
3043           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3044 
3045       // Check we have both sources and they are from the same provider.
3046       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3047         return Result;
3048 
3049       unsigned StartBitRHS = BitWidth - ModAmt;
3050       Result = BitPart(LHS->Provider, BitWidth);
3051       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3052         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3053       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3054         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3055       return Result;
3056     }
3057   }
3058 
3059   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3060   // the input value to the bswap/bitreverse.
3061   Result = BitPart(V, BitWidth);
3062   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3063     Result->Provenance[BitIdx] = BitIdx;
3064   return Result;
3065 }
3066 
3067 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3068                                           unsigned BitWidth) {
3069   if (From % 8 != To % 8)
3070     return false;
3071   // Convert from bit indices to byte indices and check for a byte reversal.
3072   From >>= 3;
3073   To >>= 3;
3074   BitWidth >>= 3;
3075   return From == BitWidth - To - 1;
3076 }
3077 
3078 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3079                                                unsigned BitWidth) {
3080   return From == BitWidth - To - 1;
3081 }
3082 
3083 bool llvm::recognizeBSwapOrBitReverseIdiom(
3084     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3085     SmallVectorImpl<Instruction *> &InsertedInsts) {
3086   if (Operator::getOpcode(I) != Instruction::Or)
3087     return false;
3088   if (!MatchBSwaps && !MatchBitReversals)
3089     return false;
3090   Type *ITy = I->getType();
3091   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3092     return false;  // Can't do integer/elements > 128 bits.
3093 
3094   Type *DemandedTy = ITy;
3095   if (I->hasOneUse())
3096     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3097       DemandedTy = Trunc->getType();
3098 
3099   // Try to find all the pieces corresponding to the bswap.
3100   std::map<Value *, Optional<BitPart>> BPS;
3101   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3102   if (!Res)
3103     return false;
3104   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3105   assert(all_of(BitProvenance,
3106                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3107          "Illegal bit provenance index");
3108 
3109   // If the upper bits are zero, then attempt to perform as a truncated op.
3110   if (BitProvenance.back() == BitPart::Unset) {
3111     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3112       BitProvenance = BitProvenance.drop_back();
3113     if (BitProvenance.empty())
3114       return false; // TODO - handle null value?
3115     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3116     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3117       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3118   }
3119 
3120   // Check BitProvenance hasn't found a source larger than the result type.
3121   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3122   if (DemandedBW > ITy->getScalarSizeInBits())
3123     return false;
3124 
3125   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3126   // only byteswap values with an even number of bytes.
3127   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3128   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3129   bool OKForBitReverse = MatchBitReversals;
3130   for (unsigned BitIdx = 0;
3131        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3132     if (BitProvenance[BitIdx] == BitPart::Unset) {
3133       DemandedMask.clearBit(BitIdx);
3134       continue;
3135     }
3136     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3137                                                 DemandedBW);
3138     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3139                                                           BitIdx, DemandedBW);
3140   }
3141 
3142   Intrinsic::ID Intrin;
3143   if (OKForBSwap)
3144     Intrin = Intrinsic::bswap;
3145   else if (OKForBitReverse)
3146     Intrin = Intrinsic::bitreverse;
3147   else
3148     return false;
3149 
3150   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3151   Value *Provider = Res->Provider;
3152 
3153   // We may need to truncate the provider.
3154   if (DemandedTy != Provider->getType()) {
3155     auto *Trunc =
3156         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3157     InsertedInsts.push_back(Trunc);
3158     Provider = Trunc;
3159   }
3160 
3161   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3162   InsertedInsts.push_back(Result);
3163 
3164   if (!DemandedMask.isAllOnesValue()) {
3165     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3166     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3167     InsertedInsts.push_back(Result);
3168   }
3169 
3170   // We may need to zeroextend back to the result type.
3171   if (ITy != Result->getType()) {
3172     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3173     InsertedInsts.push_back(ExtInst);
3174   }
3175 
3176   return true;
3177 }
3178 
3179 // CodeGen has special handling for some string functions that may replace
3180 // them with target-specific intrinsics.  Since that'd skip our interceptors
3181 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3182 // we mark affected calls as NoBuiltin, which will disable optimization
3183 // in CodeGen.
3184 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3185     CallInst *CI, const TargetLibraryInfo *TLI) {
3186   Function *F = CI->getCalledFunction();
3187   LibFunc Func;
3188   if (F && !F->hasLocalLinkage() && F->hasName() &&
3189       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3190       !F->doesNotAccessMemory())
3191     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3192 }
3193 
3194 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3195   // We can't have a PHI with a metadata type.
3196   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3197     return false;
3198 
3199   // Early exit.
3200   if (!isa<Constant>(I->getOperand(OpIdx)))
3201     return true;
3202 
3203   switch (I->getOpcode()) {
3204   default:
3205     return true;
3206   case Instruction::Call:
3207   case Instruction::Invoke: {
3208     const auto &CB = cast<CallBase>(*I);
3209 
3210     // Can't handle inline asm. Skip it.
3211     if (CB.isInlineAsm())
3212       return false;
3213 
3214     // Constant bundle operands may need to retain their constant-ness for
3215     // correctness.
3216     if (CB.isBundleOperand(OpIdx))
3217       return false;
3218 
3219     if (OpIdx < CB.getNumArgOperands()) {
3220       // Some variadic intrinsics require constants in the variadic arguments,
3221       // which currently aren't markable as immarg.
3222       if (isa<IntrinsicInst>(CB) &&
3223           OpIdx >= CB.getFunctionType()->getNumParams()) {
3224         // This is known to be OK for stackmap.
3225         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3226       }
3227 
3228       // gcroot is a special case, since it requires a constant argument which
3229       // isn't also required to be a simple ConstantInt.
3230       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3231         return false;
3232 
3233       // Some intrinsic operands are required to be immediates.
3234       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3235     }
3236 
3237     // It is never allowed to replace the call argument to an intrinsic, but it
3238     // may be possible for a call.
3239     return !isa<IntrinsicInst>(CB);
3240   }
3241   case Instruction::ShuffleVector:
3242     // Shufflevector masks are constant.
3243     return OpIdx != 2;
3244   case Instruction::Switch:
3245   case Instruction::ExtractValue:
3246     // All operands apart from the first are constant.
3247     return OpIdx == 0;
3248   case Instruction::InsertValue:
3249     // All operands apart from the first and the second are constant.
3250     return OpIdx < 2;
3251   case Instruction::Alloca:
3252     // Static allocas (constant size in the entry block) are handled by
3253     // prologue/epilogue insertion so they're free anyway. We definitely don't
3254     // want to make them non-constant.
3255     return !cast<AllocaInst>(I)->isStaticAlloca();
3256   case Instruction::GetElementPtr:
3257     if (OpIdx == 0)
3258       return true;
3259     gep_type_iterator It = gep_type_begin(I);
3260     for (auto E = std::next(It, OpIdx); It != E; ++It)
3261       if (It.isStruct())
3262         return false;
3263     return true;
3264   }
3265 }
3266 
3267 Value *llvm::invertCondition(Value *Condition) {
3268   // First: Check if it's a constant
3269   if (Constant *C = dyn_cast<Constant>(Condition))
3270     return ConstantExpr::getNot(C);
3271 
3272   // Second: If the condition is already inverted, return the original value
3273   Value *NotCondition;
3274   if (match(Condition, m_Not(m_Value(NotCondition))))
3275     return NotCondition;
3276 
3277   BasicBlock *Parent = nullptr;
3278   Instruction *Inst = dyn_cast<Instruction>(Condition);
3279   if (Inst)
3280     Parent = Inst->getParent();
3281   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3282     Parent = &Arg->getParent()->getEntryBlock();
3283   assert(Parent && "Unsupported condition to invert");
3284 
3285   // Third: Check all the users for an invert
3286   for (User *U : Condition->users())
3287     if (Instruction *I = dyn_cast<Instruction>(U))
3288       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3289         return I;
3290 
3291   // Last option: Create a new instruction
3292   auto *Inverted =
3293       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3294   if (Inst && !isa<PHINode>(Inst))
3295     Inverted->insertAfter(Inst);
3296   else
3297     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3298   return Inverted;
3299 }
3300