1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/DomTreeUpdater.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 //===----------------------------------------------------------------------===//
95 //  Local constant propagation.
96 //
97 
98 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
99 /// constant value, convert it into an unconditional branch to the constant
100 /// destination.  This is a nontrivial operation because the successors of this
101 /// basic block must have their PHI nodes updated.
102 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
103 /// conditions and indirectbr addresses this might make dead if
104 /// DeleteDeadConditions is true.
105 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
106                                   const TargetLibraryInfo *TLI,
107                                   DomTreeUpdater *DTU) {
108   Instruction *T = BB->getTerminator();
109   IRBuilder<> Builder(T);
110 
111   // Branch - See if we are conditional jumping on constant
112   if (auto *BI = dyn_cast<BranchInst>(T)) {
113     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
114     BasicBlock *Dest1 = BI->getSuccessor(0);
115     BasicBlock *Dest2 = BI->getSuccessor(1);
116 
117     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
118       // Are we branching on constant?
119       // YES.  Change to unconditional branch...
120       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
121       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
122 
123       // Let the basic block know that we are letting go of it.  Based on this,
124       // it will adjust it's PHI nodes.
125       OldDest->removePredecessor(BB);
126 
127       // Replace the conditional branch with an unconditional one.
128       Builder.CreateBr(Destination);
129       BI->eraseFromParent();
130       if (DTU)
131         DTU->deleteEdgeRelaxed(BB, OldDest);
132       return true;
133     }
134 
135     if (Dest2 == Dest1) {       // Conditional branch to same location?
136       // This branch matches something like this:
137       //     br bool %cond, label %Dest, label %Dest
138       // and changes it into:  br label %Dest
139 
140       // Let the basic block know that we are letting go of one copy of it.
141       assert(BI->getParent() && "Terminator not inserted in block!");
142       Dest1->removePredecessor(BI->getParent());
143 
144       // Replace the conditional branch with an unconditional one.
145       Builder.CreateBr(Dest1);
146       Value *Cond = BI->getCondition();
147       BI->eraseFromParent();
148       if (DeleteDeadConditions)
149         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
150       return true;
151     }
152     return false;
153   }
154 
155   if (auto *SI = dyn_cast<SwitchInst>(T)) {
156     // If we are switching on a constant, we can convert the switch to an
157     // unconditional branch.
158     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
159     BasicBlock *DefaultDest = SI->getDefaultDest();
160     BasicBlock *TheOnlyDest = DefaultDest;
161 
162     // If the default is unreachable, ignore it when searching for TheOnlyDest.
163     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
164         SI->getNumCases() > 0) {
165       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
166     }
167 
168     // Figure out which case it goes to.
169     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
170       // Found case matching a constant operand?
171       if (i->getCaseValue() == CI) {
172         TheOnlyDest = i->getCaseSuccessor();
173         break;
174       }
175 
176       // Check to see if this branch is going to the same place as the default
177       // dest.  If so, eliminate it as an explicit compare.
178       if (i->getCaseSuccessor() == DefaultDest) {
179         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
180         unsigned NCases = SI->getNumCases();
181         // Fold the case metadata into the default if there will be any branches
182         // left, unless the metadata doesn't match the switch.
183         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
184           // Collect branch weights into a vector.
185           SmallVector<uint32_t, 8> Weights;
186           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
187                ++MD_i) {
188             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
189             Weights.push_back(CI->getValue().getZExtValue());
190           }
191           // Merge weight of this case to the default weight.
192           unsigned idx = i->getCaseIndex();
193           Weights[0] += Weights[idx+1];
194           // Remove weight for this case.
195           std::swap(Weights[idx+1], Weights.back());
196           Weights.pop_back();
197           SI->setMetadata(LLVMContext::MD_prof,
198                           MDBuilder(BB->getContext()).
199                           createBranchWeights(Weights));
200         }
201         // Remove this entry.
202         BasicBlock *ParentBB = SI->getParent();
203         DefaultDest->removePredecessor(ParentBB);
204         i = SI->removeCase(i);
205         e = SI->case_end();
206         if (DTU)
207           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
208         continue;
209       }
210 
211       // Otherwise, check to see if the switch only branches to one destination.
212       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
213       // destinations.
214       if (i->getCaseSuccessor() != TheOnlyDest)
215         TheOnlyDest = nullptr;
216 
217       // Increment this iterator as we haven't removed the case.
218       ++i;
219     }
220 
221     if (CI && !TheOnlyDest) {
222       // Branching on a constant, but not any of the cases, go to the default
223       // successor.
224       TheOnlyDest = SI->getDefaultDest();
225     }
226 
227     // If we found a single destination that we can fold the switch into, do so
228     // now.
229     if (TheOnlyDest) {
230       // Insert the new branch.
231       Builder.CreateBr(TheOnlyDest);
232       BasicBlock *BB = SI->getParent();
233       std::vector <DominatorTree::UpdateType> Updates;
234       if (DTU)
235         Updates.reserve(SI->getNumSuccessors() - 1);
236 
237       // Remove entries from PHI nodes which we no longer branch to...
238       for (BasicBlock *Succ : successors(SI)) {
239         // Found case matching a constant operand?
240         if (Succ == TheOnlyDest) {
241           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
242         } else {
243           Succ->removePredecessor(BB);
244           if (DTU)
245             Updates.push_back({DominatorTree::Delete, BB, Succ});
246         }
247       }
248 
249       // Delete the old switch.
250       Value *Cond = SI->getCondition();
251       SI->eraseFromParent();
252       if (DeleteDeadConditions)
253         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
254       if (DTU)
255         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
256       return true;
257     }
258 
259     if (SI->getNumCases() == 1) {
260       // Otherwise, we can fold this switch into a conditional branch
261       // instruction if it has only one non-default destination.
262       auto FirstCase = *SI->case_begin();
263       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
264           FirstCase.getCaseValue(), "cond");
265 
266       // Insert the new branch.
267       BranchInst *NewBr = Builder.CreateCondBr(Cond,
268                                                FirstCase.getCaseSuccessor(),
269                                                SI->getDefaultDest());
270       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
271       if (MD && MD->getNumOperands() == 3) {
272         ConstantInt *SICase =
273             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
274         ConstantInt *SIDef =
275             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
276         assert(SICase && SIDef);
277         // The TrueWeight should be the weight for the single case of SI.
278         NewBr->setMetadata(LLVMContext::MD_prof,
279                         MDBuilder(BB->getContext()).
280                         createBranchWeights(SICase->getValue().getZExtValue(),
281                                             SIDef->getValue().getZExtValue()));
282       }
283 
284       // Update make.implicit metadata to the newly-created conditional branch.
285       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
286       if (MakeImplicitMD)
287         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
288 
289       // Delete the old switch.
290       SI->eraseFromParent();
291       return true;
292     }
293     return false;
294   }
295 
296   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
297     // indirectbr blockaddress(@F, @BB) -> br label @BB
298     if (auto *BA =
299           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
300       BasicBlock *TheOnlyDest = BA->getBasicBlock();
301       std::vector <DominatorTree::UpdateType> Updates;
302       if (DTU)
303         Updates.reserve(IBI->getNumDestinations() - 1);
304 
305       // Insert the new branch.
306       Builder.CreateBr(TheOnlyDest);
307 
308       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
309         if (IBI->getDestination(i) == TheOnlyDest) {
310           TheOnlyDest = nullptr;
311         } else {
312           BasicBlock *ParentBB = IBI->getParent();
313           BasicBlock *DestBB = IBI->getDestination(i);
314           DestBB->removePredecessor(ParentBB);
315           if (DTU)
316             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
317         }
318       }
319       Value *Address = IBI->getAddress();
320       IBI->eraseFromParent();
321       if (DeleteDeadConditions)
322         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
323 
324       // If we didn't find our destination in the IBI successor list, then we
325       // have undefined behavior.  Replace the unconditional branch with an
326       // 'unreachable' instruction.
327       if (TheOnlyDest) {
328         BB->getTerminator()->eraseFromParent();
329         new UnreachableInst(BB->getContext(), BB);
330       }
331 
332       if (DTU)
333         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
334       return true;
335     }
336   }
337 
338   return false;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Local dead code elimination.
343 //
344 
345 /// isInstructionTriviallyDead - Return true if the result produced by the
346 /// instruction is not used, and the instruction has no side effects.
347 ///
348 bool llvm::isInstructionTriviallyDead(Instruction *I,
349                                       const TargetLibraryInfo *TLI) {
350   if (!I->use_empty())
351     return false;
352   return wouldInstructionBeTriviallyDead(I, TLI);
353 }
354 
355 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
356                                            const TargetLibraryInfo *TLI) {
357   if (I->isTerminator())
358     return false;
359 
360   // We don't want the landingpad-like instructions removed by anything this
361   // general.
362   if (I->isEHPad())
363     return false;
364 
365   // We don't want debug info removed by anything this general, unless
366   // debug info is empty.
367   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
368     if (DDI->getAddress())
369       return false;
370     return true;
371   }
372   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
373     if (DVI->getValue())
374       return false;
375     return true;
376   }
377   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
378     if (DLI->getLabel())
379       return false;
380     return true;
381   }
382 
383   if (!I->mayHaveSideEffects())
384     return true;
385 
386   // Special case intrinsics that "may have side effects" but can be deleted
387   // when dead.
388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
389     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
390     if (II->getIntrinsicID() == Intrinsic::stacksave ||
391         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
392       return true;
393 
394     // Lifetime intrinsics are dead when their right-hand is undef.
395     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
396         II->getIntrinsicID() == Intrinsic::lifetime_end)
397       return isa<UndefValue>(II->getArgOperand(1));
398 
399     // Assumptions are dead if their condition is trivially true.  Guards on
400     // true are operationally no-ops.  In the future we can consider more
401     // sophisticated tradeoffs for guards considering potential for check
402     // widening, but for now we keep things simple.
403     if (II->getIntrinsicID() == Intrinsic::assume ||
404         II->getIntrinsicID() == Intrinsic::experimental_guard) {
405       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
406         return !Cond->isZero();
407 
408       return false;
409     }
410   }
411 
412   if (isAllocLikeFn(I, TLI))
413     return true;
414 
415   if (CallInst *CI = isFreeCall(I, TLI))
416     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
417       return C->isNullValue() || isa<UndefValue>(C);
418 
419   if (CallSite CS = CallSite(I))
420     if (isMathLibCallNoop(CS, TLI))
421       return true;
422 
423   return false;
424 }
425 
426 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
427 /// trivially dead instruction, delete it.  If that makes any of its operands
428 /// trivially dead, delete them too, recursively.  Return true if any
429 /// instructions were deleted.
430 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
431     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
445     MemorySSAUpdater *MSSAU) {
446   // Process the dead instruction list until empty.
447   while (!DeadInsts.empty()) {
448     Instruction &I = *DeadInsts.pop_back_val();
449     assert(I.use_empty() && "Instructions with uses are not dead.");
450     assert(isInstructionTriviallyDead(&I, TLI) &&
451            "Live instruction found in dead worklist!");
452 
453     // Don't lose the debug info while deleting the instructions.
454     salvageDebugInfo(I);
455 
456     // Null out all of the instruction's operands to see if any operand becomes
457     // dead as we go.
458     for (Use &OpU : I.operands()) {
459       Value *OpV = OpU.get();
460       OpU.set(nullptr);
461 
462       if (!OpV->use_empty())
463         continue;
464 
465       // If the operand is an instruction that became dead as we nulled out the
466       // operand, and if it is 'trivially' dead, delete it in a future loop
467       // iteration.
468       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
469         if (isInstructionTriviallyDead(OpI, TLI))
470           DeadInsts.push_back(OpI);
471     }
472     if (MSSAU)
473       MSSAU->removeMemoryAccess(&I);
474 
475     I.eraseFromParent();
476   }
477 }
478 
479 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
480   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
481   findDbgUsers(DbgUsers, I);
482   for (auto *DII : DbgUsers) {
483     Value *Undef = UndefValue::get(I->getType());
484     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
485                                             ValueAsMetadata::get(Undef)));
486   }
487   return !DbgUsers.empty();
488 }
489 
490 /// areAllUsesEqual - Check whether the uses of a value are all the same.
491 /// This is similar to Instruction::hasOneUse() except this will also return
492 /// true when there are no uses or multiple uses that all refer to the same
493 /// value.
494 static bool areAllUsesEqual(Instruction *I) {
495   Value::user_iterator UI = I->user_begin();
496   Value::user_iterator UE = I->user_end();
497   if (UI == UE)
498     return true;
499 
500   User *TheUse = *UI;
501   for (++UI; UI != UE; ++UI) {
502     if (*UI != TheUse)
503       return false;
504   }
505   return true;
506 }
507 
508 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
509 /// dead PHI node, due to being a def-use chain of single-use nodes that
510 /// either forms a cycle or is terminated by a trivially dead instruction,
511 /// delete it.  If that makes any of its operands trivially dead, delete them
512 /// too, recursively.  Return true if a change was made.
513 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
514                                         const TargetLibraryInfo *TLI) {
515   SmallPtrSet<Instruction*, 4> Visited;
516   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
517        I = cast<Instruction>(*I->user_begin())) {
518     if (I->use_empty())
519       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
520 
521     // If we find an instruction more than once, we're on a cycle that
522     // won't prove fruitful.
523     if (!Visited.insert(I).second) {
524       // Break the cycle and delete the instruction and its operands.
525       I->replaceAllUsesWith(UndefValue::get(I->getType()));
526       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
527       return true;
528     }
529   }
530   return false;
531 }
532 
533 static bool
534 simplifyAndDCEInstruction(Instruction *I,
535                           SmallSetVector<Instruction *, 16> &WorkList,
536                           const DataLayout &DL,
537                           const TargetLibraryInfo *TLI) {
538   if (isInstructionTriviallyDead(I, TLI)) {
539     salvageDebugInfo(*I);
540 
541     // Null out all of the instruction's operands to see if any operand becomes
542     // dead as we go.
543     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
544       Value *OpV = I->getOperand(i);
545       I->setOperand(i, nullptr);
546 
547       if (!OpV->use_empty() || I == OpV)
548         continue;
549 
550       // If the operand is an instruction that became dead as we nulled out the
551       // operand, and if it is 'trivially' dead, delete it in a future loop
552       // iteration.
553       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
554         if (isInstructionTriviallyDead(OpI, TLI))
555           WorkList.insert(OpI);
556     }
557 
558     I->eraseFromParent();
559 
560     return true;
561   }
562 
563   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
564     // Add the users to the worklist. CAREFUL: an instruction can use itself,
565     // in the case of a phi node.
566     for (User *U : I->users()) {
567       if (U != I) {
568         WorkList.insert(cast<Instruction>(U));
569       }
570     }
571 
572     // Replace the instruction with its simplified value.
573     bool Changed = false;
574     if (!I->use_empty()) {
575       I->replaceAllUsesWith(SimpleV);
576       Changed = true;
577     }
578     if (isInstructionTriviallyDead(I, TLI)) {
579       I->eraseFromParent();
580       Changed = true;
581     }
582     return Changed;
583   }
584   return false;
585 }
586 
587 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
588 /// simplify any instructions in it and recursively delete dead instructions.
589 ///
590 /// This returns true if it changed the code, note that it can delete
591 /// instructions in other blocks as well in this block.
592 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
593                                        const TargetLibraryInfo *TLI) {
594   bool MadeChange = false;
595   const DataLayout &DL = BB->getModule()->getDataLayout();
596 
597 #ifndef NDEBUG
598   // In debug builds, ensure that the terminator of the block is never replaced
599   // or deleted by these simplifications. The idea of simplification is that it
600   // cannot introduce new instructions, and there is no way to replace the
601   // terminator of a block without introducing a new instruction.
602   AssertingVH<Instruction> TerminatorVH(&BB->back());
603 #endif
604 
605   SmallSetVector<Instruction *, 16> WorkList;
606   // Iterate over the original function, only adding insts to the worklist
607   // if they actually need to be revisited. This avoids having to pre-init
608   // the worklist with the entire function's worth of instructions.
609   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
610        BI != E;) {
611     assert(!BI->isTerminator());
612     Instruction *I = &*BI;
613     ++BI;
614 
615     // We're visiting this instruction now, so make sure it's not in the
616     // worklist from an earlier visit.
617     if (!WorkList.count(I))
618       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
619   }
620 
621   while (!WorkList.empty()) {
622     Instruction *I = WorkList.pop_back_val();
623     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
624   }
625   return MadeChange;
626 }
627 
628 //===----------------------------------------------------------------------===//
629 //  Control Flow Graph Restructuring.
630 //
631 
632 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
633 /// method is called when we're about to delete Pred as a predecessor of BB.  If
634 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
635 ///
636 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
637 /// nodes that collapse into identity values.  For example, if we have:
638 ///   x = phi(1, 0, 0, 0)
639 ///   y = and x, z
640 ///
641 /// .. and delete the predecessor corresponding to the '1', this will attempt to
642 /// recursively fold the and to 0.
643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
644                                         DomTreeUpdater *DTU) {
645   // This only adjusts blocks with PHI nodes.
646   if (!isa<PHINode>(BB->begin()))
647     return;
648 
649   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
650   // them down.  This will leave us with single entry phi nodes and other phis
651   // that can be removed.
652   BB->removePredecessor(Pred, true);
653 
654   WeakTrackingVH PhiIt = &BB->front();
655   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
656     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
657     Value *OldPhiIt = PhiIt;
658 
659     if (!recursivelySimplifyInstruction(PN))
660       continue;
661 
662     // If recursive simplification ended up deleting the next PHI node we would
663     // iterate to, then our iterator is invalid, restart scanning from the top
664     // of the block.
665     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666   }
667   if (DTU)
668     DTU->deleteEdgeRelaxed(Pred, BB);
669 }
670 
671 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
672 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
673 /// between them, moving the instructions in the predecessor into DestBB and
674 /// deleting the predecessor block.
675 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
676                                        DomTreeUpdater *DTU) {
677 
678   // If BB has single-entry PHI nodes, fold them.
679   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
680     Value *NewVal = PN->getIncomingValue(0);
681     // Replace self referencing PHI with undef, it must be dead.
682     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
683     PN->replaceAllUsesWith(NewVal);
684     PN->eraseFromParent();
685   }
686 
687   BasicBlock *PredBB = DestBB->getSinglePredecessor();
688   assert(PredBB && "Block doesn't have a single predecessor!");
689 
690   bool ReplaceEntryBB = false;
691   if (PredBB == &DestBB->getParent()->getEntryBlock())
692     ReplaceEntryBB = true;
693 
694   // DTU updates: Collect all the edges that enter
695   // PredBB. These dominator edges will be redirected to DestBB.
696   SmallVector<DominatorTree::UpdateType, 32> Updates;
697 
698   if (DTU) {
699     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
700     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
701       Updates.push_back({DominatorTree::Delete, *I, PredBB});
702       // This predecessor of PredBB may already have DestBB as a successor.
703       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
704         Updates.push_back({DominatorTree::Insert, *I, DestBB});
705     }
706   }
707 
708   // Zap anything that took the address of DestBB.  Not doing this will give the
709   // address an invalid value.
710   if (DestBB->hasAddressTaken()) {
711     BlockAddress *BA = BlockAddress::get(DestBB);
712     Constant *Replacement =
713       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
714     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
715                                                      BA->getType()));
716     BA->destroyConstant();
717   }
718 
719   // Anything that branched to PredBB now branches to DestBB.
720   PredBB->replaceAllUsesWith(DestBB);
721 
722   // Splice all the instructions from PredBB to DestBB.
723   PredBB->getTerminator()->eraseFromParent();
724   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
725   new UnreachableInst(PredBB->getContext(), PredBB);
726 
727   // If the PredBB is the entry block of the function, move DestBB up to
728   // become the entry block after we erase PredBB.
729   if (ReplaceEntryBB)
730     DestBB->moveAfter(PredBB);
731 
732   if (DTU) {
733     assert(PredBB->getInstList().size() == 1 &&
734            isa<UnreachableInst>(PredBB->getTerminator()) &&
735            "The successor list of PredBB isn't empty before "
736            "applying corresponding DTU updates.");
737     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
738     DTU->deleteBB(PredBB);
739     // Recalculation of DomTree is needed when updating a forward DomTree and
740     // the Entry BB is replaced.
741     if (ReplaceEntryBB && DTU->hasDomTree()) {
742       // The entry block was removed and there is no external interface for
743       // the dominator tree to be notified of this change. In this corner-case
744       // we recalculate the entire tree.
745       DTU->recalculate(*(DestBB->getParent()));
746     }
747   }
748 
749   else {
750     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
751   }
752 }
753 
754 /// CanMergeValues - Return true if we can choose one of these values to use
755 /// in place of the other. Note that we will always choose the non-undef
756 /// value to keep.
757 static bool CanMergeValues(Value *First, Value *Second) {
758   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
759 }
760 
761 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
762 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
763 ///
764 /// Assumption: Succ is the single successor for BB.
765 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
766   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
767 
768   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
769                     << Succ->getName() << "\n");
770   // Shortcut, if there is only a single predecessor it must be BB and merging
771   // is always safe
772   if (Succ->getSinglePredecessor()) return true;
773 
774   // Make a list of the predecessors of BB
775   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
776 
777   // Look at all the phi nodes in Succ, to see if they present a conflict when
778   // merging these blocks
779   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
780     PHINode *PN = cast<PHINode>(I);
781 
782     // If the incoming value from BB is again a PHINode in
783     // BB which has the same incoming value for *PI as PN does, we can
784     // merge the phi nodes and then the blocks can still be merged
785     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
786     if (BBPN && BBPN->getParent() == BB) {
787       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
788         BasicBlock *IBB = PN->getIncomingBlock(PI);
789         if (BBPreds.count(IBB) &&
790             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
791                             PN->getIncomingValue(PI))) {
792           LLVM_DEBUG(dbgs()
793                      << "Can't fold, phi node " << PN->getName() << " in "
794                      << Succ->getName() << " is conflicting with "
795                      << BBPN->getName() << " with regard to common predecessor "
796                      << IBB->getName() << "\n");
797           return false;
798         }
799       }
800     } else {
801       Value* Val = PN->getIncomingValueForBlock(BB);
802       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
803         // See if the incoming value for the common predecessor is equal to the
804         // one for BB, in which case this phi node will not prevent the merging
805         // of the block.
806         BasicBlock *IBB = PN->getIncomingBlock(PI);
807         if (BBPreds.count(IBB) &&
808             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
809           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
810                             << " in " << Succ->getName()
811                             << " is conflicting with regard to common "
812                             << "predecessor " << IBB->getName() << "\n");
813           return false;
814         }
815       }
816     }
817   }
818 
819   return true;
820 }
821 
822 using PredBlockVector = SmallVector<BasicBlock *, 16>;
823 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
824 
825 /// Determines the value to use as the phi node input for a block.
826 ///
827 /// Select between \p OldVal any value that we know flows from \p BB
828 /// to a particular phi on the basis of which one (if either) is not
829 /// undef. Update IncomingValues based on the selected value.
830 ///
831 /// \param OldVal The value we are considering selecting.
832 /// \param BB The block that the value flows in from.
833 /// \param IncomingValues A map from block-to-value for other phi inputs
834 /// that we have examined.
835 ///
836 /// \returns the selected value.
837 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
838                                           IncomingValueMap &IncomingValues) {
839   if (!isa<UndefValue>(OldVal)) {
840     assert((!IncomingValues.count(BB) ||
841             IncomingValues.find(BB)->second == OldVal) &&
842            "Expected OldVal to match incoming value from BB!");
843 
844     IncomingValues.insert(std::make_pair(BB, OldVal));
845     return OldVal;
846   }
847 
848   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
849   if (It != IncomingValues.end()) return It->second;
850 
851   return OldVal;
852 }
853 
854 /// Create a map from block to value for the operands of a
855 /// given phi.
856 ///
857 /// Create a map from block to value for each non-undef value flowing
858 /// into \p PN.
859 ///
860 /// \param PN The phi we are collecting the map for.
861 /// \param IncomingValues [out] The map from block to value for this phi.
862 static void gatherIncomingValuesToPhi(PHINode *PN,
863                                       IncomingValueMap &IncomingValues) {
864   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
865     BasicBlock *BB = PN->getIncomingBlock(i);
866     Value *V = PN->getIncomingValue(i);
867 
868     if (!isa<UndefValue>(V))
869       IncomingValues.insert(std::make_pair(BB, V));
870   }
871 }
872 
873 /// Replace the incoming undef values to a phi with the values
874 /// from a block-to-value map.
875 ///
876 /// \param PN The phi we are replacing the undefs in.
877 /// \param IncomingValues A map from block to value.
878 static void replaceUndefValuesInPhi(PHINode *PN,
879                                     const IncomingValueMap &IncomingValues) {
880   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
881     Value *V = PN->getIncomingValue(i);
882 
883     if (!isa<UndefValue>(V)) continue;
884 
885     BasicBlock *BB = PN->getIncomingBlock(i);
886     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
887     if (It == IncomingValues.end()) continue;
888 
889     PN->setIncomingValue(i, It->second);
890   }
891 }
892 
893 /// Replace a value flowing from a block to a phi with
894 /// potentially multiple instances of that value flowing from the
895 /// block's predecessors to the phi.
896 ///
897 /// \param BB The block with the value flowing into the phi.
898 /// \param BBPreds The predecessors of BB.
899 /// \param PN The phi that we are updating.
900 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
901                                                 const PredBlockVector &BBPreds,
902                                                 PHINode *PN) {
903   Value *OldVal = PN->removeIncomingValue(BB, false);
904   assert(OldVal && "No entry in PHI for Pred BB!");
905 
906   IncomingValueMap IncomingValues;
907 
908   // We are merging two blocks - BB, and the block containing PN - and
909   // as a result we need to redirect edges from the predecessors of BB
910   // to go to the block containing PN, and update PN
911   // accordingly. Since we allow merging blocks in the case where the
912   // predecessor and successor blocks both share some predecessors,
913   // and where some of those common predecessors might have undef
914   // values flowing into PN, we want to rewrite those values to be
915   // consistent with the non-undef values.
916 
917   gatherIncomingValuesToPhi(PN, IncomingValues);
918 
919   // If this incoming value is one of the PHI nodes in BB, the new entries
920   // in the PHI node are the entries from the old PHI.
921   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
922     PHINode *OldValPN = cast<PHINode>(OldVal);
923     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
924       // Note that, since we are merging phi nodes and BB and Succ might
925       // have common predecessors, we could end up with a phi node with
926       // identical incoming branches. This will be cleaned up later (and
927       // will trigger asserts if we try to clean it up now, without also
928       // simplifying the corresponding conditional branch).
929       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
930       Value *PredVal = OldValPN->getIncomingValue(i);
931       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
932                                                     IncomingValues);
933 
934       // And add a new incoming value for this predecessor for the
935       // newly retargeted branch.
936       PN->addIncoming(Selected, PredBB);
937     }
938   } else {
939     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
940       // Update existing incoming values in PN for this
941       // predecessor of BB.
942       BasicBlock *PredBB = BBPreds[i];
943       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
944                                                     IncomingValues);
945 
946       // And add a new incoming value for this predecessor for the
947       // newly retargeted branch.
948       PN->addIncoming(Selected, PredBB);
949     }
950   }
951 
952   replaceUndefValuesInPhi(PN, IncomingValues);
953 }
954 
955 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
956 /// unconditional branch, and contains no instructions other than PHI nodes,
957 /// potential side-effect free intrinsics and the branch.  If possible,
958 /// eliminate BB by rewriting all the predecessors to branch to the successor
959 /// block and return true.  If we can't transform, return false.
960 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
961                                                    DomTreeUpdater *DTU) {
962   assert(BB != &BB->getParent()->getEntryBlock() &&
963          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
964 
965   // We can't eliminate infinite loops.
966   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
967   if (BB == Succ) return false;
968 
969   // Check to see if merging these blocks would cause conflicts for any of the
970   // phi nodes in BB or Succ. If not, we can safely merge.
971   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
972 
973   // Check for cases where Succ has multiple predecessors and a PHI node in BB
974   // has uses which will not disappear when the PHI nodes are merged.  It is
975   // possible to handle such cases, but difficult: it requires checking whether
976   // BB dominates Succ, which is non-trivial to calculate in the case where
977   // Succ has multiple predecessors.  Also, it requires checking whether
978   // constructing the necessary self-referential PHI node doesn't introduce any
979   // conflicts; this isn't too difficult, but the previous code for doing this
980   // was incorrect.
981   //
982   // Note that if this check finds a live use, BB dominates Succ, so BB is
983   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
984   // folding the branch isn't profitable in that case anyway.
985   if (!Succ->getSinglePredecessor()) {
986     BasicBlock::iterator BBI = BB->begin();
987     while (isa<PHINode>(*BBI)) {
988       for (Use &U : BBI->uses()) {
989         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
990           if (PN->getIncomingBlock(U) != BB)
991             return false;
992         } else {
993           return false;
994         }
995       }
996       ++BBI;
997     }
998   }
999 
1000   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1001 
1002   SmallVector<DominatorTree::UpdateType, 32> Updates;
1003   if (DTU) {
1004     Updates.push_back({DominatorTree::Delete, BB, Succ});
1005     // All predecessors of BB will be moved to Succ.
1006     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1007       Updates.push_back({DominatorTree::Delete, *I, BB});
1008       // This predecessor of BB may already have Succ as a successor.
1009       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1010         Updates.push_back({DominatorTree::Insert, *I, Succ});
1011     }
1012   }
1013 
1014   if (isa<PHINode>(Succ->begin())) {
1015     // If there is more than one pred of succ, and there are PHI nodes in
1016     // the successor, then we need to add incoming edges for the PHI nodes
1017     //
1018     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1019 
1020     // Loop over all of the PHI nodes in the successor of BB.
1021     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1022       PHINode *PN = cast<PHINode>(I);
1023 
1024       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1025     }
1026   }
1027 
1028   if (Succ->getSinglePredecessor()) {
1029     // BB is the only predecessor of Succ, so Succ will end up with exactly
1030     // the same predecessors BB had.
1031 
1032     // Copy over any phi, debug or lifetime instruction.
1033     BB->getTerminator()->eraseFromParent();
1034     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1035                                BB->getInstList());
1036   } else {
1037     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1038       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1039       assert(PN->use_empty() && "There shouldn't be any uses here!");
1040       PN->eraseFromParent();
1041     }
1042   }
1043 
1044   // If the unconditional branch we replaced contains llvm.loop metadata, we
1045   // add the metadata to the branch instructions in the predecessors.
1046   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1047   Instruction *TI = BB->getTerminator();
1048   if (TI)
1049     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1050       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1051         BasicBlock *Pred = *PI;
1052         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1053       }
1054 
1055   // Everything that jumped to BB now goes to Succ.
1056   BB->replaceAllUsesWith(Succ);
1057   if (!Succ->hasName()) Succ->takeName(BB);
1058 
1059   // Clear the successor list of BB to match updates applying to DTU later.
1060   if (BB->getTerminator())
1061     BB->getInstList().pop_back();
1062   new UnreachableInst(BB->getContext(), BB);
1063   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1064                            "applying corresponding DTU updates.");
1065 
1066   if (DTU) {
1067     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1068     DTU->deleteBB(BB);
1069   } else {
1070     BB->eraseFromParent(); // Delete the old basic block.
1071   }
1072   return true;
1073 }
1074 
1075 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1076 /// nodes in this block. This doesn't try to be clever about PHI nodes
1077 /// which differ only in the order of the incoming values, but instcombine
1078 /// orders them so it usually won't matter.
1079 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1080   // This implementation doesn't currently consider undef operands
1081   // specially. Theoretically, two phis which are identical except for
1082   // one having an undef where the other doesn't could be collapsed.
1083 
1084   struct PHIDenseMapInfo {
1085     static PHINode *getEmptyKey() {
1086       return DenseMapInfo<PHINode *>::getEmptyKey();
1087     }
1088 
1089     static PHINode *getTombstoneKey() {
1090       return DenseMapInfo<PHINode *>::getTombstoneKey();
1091     }
1092 
1093     static unsigned getHashValue(PHINode *PN) {
1094       // Compute a hash value on the operands. Instcombine will likely have
1095       // sorted them, which helps expose duplicates, but we have to check all
1096       // the operands to be safe in case instcombine hasn't run.
1097       return static_cast<unsigned>(hash_combine(
1098           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1099           hash_combine_range(PN->block_begin(), PN->block_end())));
1100     }
1101 
1102     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1103       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1104           RHS == getEmptyKey() || RHS == getTombstoneKey())
1105         return LHS == RHS;
1106       return LHS->isIdenticalTo(RHS);
1107     }
1108   };
1109 
1110   // Set of unique PHINodes.
1111   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1112 
1113   // Examine each PHI.
1114   bool Changed = false;
1115   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1116     auto Inserted = PHISet.insert(PN);
1117     if (!Inserted.second) {
1118       // A duplicate. Replace this PHI with its duplicate.
1119       PN->replaceAllUsesWith(*Inserted.first);
1120       PN->eraseFromParent();
1121       Changed = true;
1122 
1123       // The RAUW can change PHIs that we already visited. Start over from the
1124       // beginning.
1125       PHISet.clear();
1126       I = BB->begin();
1127     }
1128   }
1129 
1130   return Changed;
1131 }
1132 
1133 /// enforceKnownAlignment - If the specified pointer points to an object that
1134 /// we control, modify the object's alignment to PrefAlign. This isn't
1135 /// often possible though. If alignment is important, a more reliable approach
1136 /// is to simply align all global variables and allocation instructions to
1137 /// their preferred alignment from the beginning.
1138 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1139                                       unsigned PrefAlign,
1140                                       const DataLayout &DL) {
1141   assert(PrefAlign > Align);
1142 
1143   V = V->stripPointerCasts();
1144 
1145   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1146     // TODO: ideally, computeKnownBits ought to have used
1147     // AllocaInst::getAlignment() in its computation already, making
1148     // the below max redundant. But, as it turns out,
1149     // stripPointerCasts recurses through infinite layers of bitcasts,
1150     // while computeKnownBits is not allowed to traverse more than 6
1151     // levels.
1152     Align = std::max(AI->getAlignment(), Align);
1153     if (PrefAlign <= Align)
1154       return Align;
1155 
1156     // If the preferred alignment is greater than the natural stack alignment
1157     // then don't round up. This avoids dynamic stack realignment.
1158     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1159       return Align;
1160     AI->setAlignment(PrefAlign);
1161     return PrefAlign;
1162   }
1163 
1164   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1165     // TODO: as above, this shouldn't be necessary.
1166     Align = std::max(GO->getAlignment(), Align);
1167     if (PrefAlign <= Align)
1168       return Align;
1169 
1170     // If there is a large requested alignment and we can, bump up the alignment
1171     // of the global.  If the memory we set aside for the global may not be the
1172     // memory used by the final program then it is impossible for us to reliably
1173     // enforce the preferred alignment.
1174     if (!GO->canIncreaseAlignment())
1175       return Align;
1176 
1177     GO->setAlignment(PrefAlign);
1178     return PrefAlign;
1179   }
1180 
1181   return Align;
1182 }
1183 
1184 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1185                                           const DataLayout &DL,
1186                                           const Instruction *CxtI,
1187                                           AssumptionCache *AC,
1188                                           const DominatorTree *DT) {
1189   assert(V->getType()->isPointerTy() &&
1190          "getOrEnforceKnownAlignment expects a pointer!");
1191 
1192   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1193   unsigned TrailZ = Known.countMinTrailingZeros();
1194 
1195   // Avoid trouble with ridiculously large TrailZ values, such as
1196   // those computed from a null pointer.
1197   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1198 
1199   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1200 
1201   // LLVM doesn't support alignments larger than this currently.
1202   Align = std::min(Align, +Value::MaximumAlignment);
1203 
1204   if (PrefAlign > Align)
1205     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1206 
1207   // We don't need to make any adjustment.
1208   return Align;
1209 }
1210 
1211 ///===---------------------------------------------------------------------===//
1212 ///  Dbg Intrinsic utilities
1213 ///
1214 
1215 /// See if there is a dbg.value intrinsic for DIVar before I.
1216 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1217                               Instruction *I) {
1218   // Since we can't guarantee that the original dbg.declare instrinsic
1219   // is removed by LowerDbgDeclare(), we need to make sure that we are
1220   // not inserting the same dbg.value intrinsic over and over.
1221   BasicBlock::InstListType::iterator PrevI(I);
1222   if (PrevI != I->getParent()->getInstList().begin()) {
1223     --PrevI;
1224     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1225       if (DVI->getValue() == I->getOperand(0) &&
1226           DVI->getVariable() == DIVar &&
1227           DVI->getExpression() == DIExpr)
1228         return true;
1229   }
1230   return false;
1231 }
1232 
1233 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1234 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1235                              DIExpression *DIExpr,
1236                              PHINode *APN) {
1237   // Since we can't guarantee that the original dbg.declare instrinsic
1238   // is removed by LowerDbgDeclare(), we need to make sure that we are
1239   // not inserting the same dbg.value intrinsic over and over.
1240   SmallVector<DbgValueInst *, 1> DbgValues;
1241   findDbgValues(DbgValues, APN);
1242   for (auto *DVI : DbgValues) {
1243     assert(DVI->getValue() == APN);
1244     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1245       return true;
1246   }
1247   return false;
1248 }
1249 
1250 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1251 /// (or fragment of the variable) described by \p DII.
1252 ///
1253 /// This is primarily intended as a helper for the different
1254 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1255 /// converted describes an alloca'd variable, so we need to use the
1256 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1257 /// identified as covering an n-bit fragment, if the store size of i1 is at
1258 /// least n bits.
1259 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1260   const DataLayout &DL = DII->getModule()->getDataLayout();
1261   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1262   if (auto FragmentSize = DII->getFragmentSizeInBits())
1263     return ValueSize >= *FragmentSize;
1264   // We can't always calculate the size of the DI variable (e.g. if it is a
1265   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1266   // intead.
1267   if (DII->isAddressOfVariable())
1268     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1269       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1270         return ValueSize >= *FragmentSize;
1271   // Could not determine size of variable. Conservatively return false.
1272   return false;
1273 }
1274 
1275 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1276 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1277 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1278                                            StoreInst *SI, DIBuilder &Builder) {
1279   assert(DII->isAddressOfVariable());
1280   auto *DIVar = DII->getVariable();
1281   assert(DIVar && "Missing variable");
1282   auto *DIExpr = DII->getExpression();
1283   Value *DV = SI->getOperand(0);
1284 
1285   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1286     // FIXME: If storing to a part of the variable described by the dbg.declare,
1287     // then we want to insert a dbg.value for the corresponding fragment.
1288     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1289                       << *DII << '\n');
1290     // For now, when there is a store to parts of the variable (but we do not
1291     // know which part) we insert an dbg.value instrinsic to indicate that we
1292     // know nothing about the variable's content.
1293     DV = UndefValue::get(DV->getType());
1294     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1295       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1296                                       SI);
1297     return;
1298   }
1299 
1300   // If an argument is zero extended then use argument directly. The ZExt
1301   // may be zapped by an optimization pass in future.
1302   Argument *ExtendedArg = nullptr;
1303   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1304     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1305   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1306     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1307   if (ExtendedArg) {
1308     // If this DII was already describing only a fragment of a variable, ensure
1309     // that fragment is appropriately narrowed here.
1310     // But if a fragment wasn't used, describe the value as the original
1311     // argument (rather than the zext or sext) so that it remains described even
1312     // if the sext/zext is optimized away. This widens the variable description,
1313     // leaving it up to the consumer to know how the smaller value may be
1314     // represented in a larger register.
1315     if (auto Fragment = DIExpr->getFragmentInfo()) {
1316       unsigned FragmentOffset = Fragment->OffsetInBits;
1317       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1318                                    DIExpr->elements_end() - 3);
1319       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1320       Ops.push_back(FragmentOffset);
1321       const DataLayout &DL = DII->getModule()->getDataLayout();
1322       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1323       DIExpr = Builder.createExpression(Ops);
1324     }
1325     DV = ExtendedArg;
1326   }
1327   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1328     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1329                                     SI);
1330 }
1331 
1332 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1333 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1334 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1335                                            LoadInst *LI, DIBuilder &Builder) {
1336   auto *DIVar = DII->getVariable();
1337   auto *DIExpr = DII->getExpression();
1338   assert(DIVar && "Missing variable");
1339 
1340   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1341     return;
1342 
1343   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1344     // FIXME: If only referring to a part of the variable described by the
1345     // dbg.declare, then we want to insert a dbg.value for the corresponding
1346     // fragment.
1347     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1348                       << *DII << '\n');
1349     return;
1350   }
1351 
1352   // We are now tracking the loaded value instead of the address. In the
1353   // future if multi-location support is added to the IR, it might be
1354   // preferable to keep tracking both the loaded value and the original
1355   // address in case the alloca can not be elided.
1356   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1357       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1358   DbgValue->insertAfter(LI);
1359 }
1360 
1361 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1362 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1363 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1364                                            PHINode *APN, DIBuilder &Builder) {
1365   auto *DIVar = DII->getVariable();
1366   auto *DIExpr = DII->getExpression();
1367   assert(DIVar && "Missing variable");
1368 
1369   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1370     return;
1371 
1372   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1373     // FIXME: If only referring to a part of the variable described by the
1374     // dbg.declare, then we want to insert a dbg.value for the corresponding
1375     // fragment.
1376     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1377                       << *DII << '\n');
1378     return;
1379   }
1380 
1381   BasicBlock *BB = APN->getParent();
1382   auto InsertionPt = BB->getFirstInsertionPt();
1383 
1384   // The block may be a catchswitch block, which does not have a valid
1385   // insertion point.
1386   // FIXME: Insert dbg.value markers in the successors when appropriate.
1387   if (InsertionPt != BB->end())
1388     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1389                                     &*InsertionPt);
1390 }
1391 
1392 /// Determine whether this alloca is either a VLA or an array.
1393 static bool isArray(AllocaInst *AI) {
1394   return AI->isArrayAllocation() ||
1395     AI->getType()->getElementType()->isArrayTy();
1396 }
1397 
1398 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1399 /// of llvm.dbg.value intrinsics.
1400 bool llvm::LowerDbgDeclare(Function &F) {
1401   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1402   SmallVector<DbgDeclareInst *, 4> Dbgs;
1403   for (auto &FI : F)
1404     for (Instruction &BI : FI)
1405       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1406         Dbgs.push_back(DDI);
1407 
1408   if (Dbgs.empty())
1409     return false;
1410 
1411   for (auto &I : Dbgs) {
1412     DbgDeclareInst *DDI = I;
1413     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1414     // If this is an alloca for a scalar variable, insert a dbg.value
1415     // at each load and store to the alloca and erase the dbg.declare.
1416     // The dbg.values allow tracking a variable even if it is not
1417     // stored on the stack, while the dbg.declare can only describe
1418     // the stack slot (and at a lexical-scope granularity). Later
1419     // passes will attempt to elide the stack slot.
1420     if (!AI || isArray(AI))
1421       continue;
1422 
1423     // A volatile load/store means that the alloca can't be elided anyway.
1424     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1425           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1426             return LI->isVolatile();
1427           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1428             return SI->isVolatile();
1429           return false;
1430         }))
1431       continue;
1432 
1433     for (auto &AIUse : AI->uses()) {
1434       User *U = AIUse.getUser();
1435       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1436         if (AIUse.getOperandNo() == 1)
1437           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1438       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1439         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1440       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1441         // This is a call by-value or some other instruction that takes a
1442         // pointer to the variable. Insert a *value* intrinsic that describes
1443         // the variable by dereferencing the alloca.
1444         auto *DerefExpr =
1445             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1446         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1447                                     DDI->getDebugLoc(), CI);
1448       }
1449     }
1450     DDI->eraseFromParent();
1451   }
1452   return true;
1453 }
1454 
1455 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1456 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1457                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1458   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1459   if (InsertedPHIs.size() == 0)
1460     return;
1461 
1462   // Map existing PHI nodes to their dbg.values.
1463   ValueToValueMapTy DbgValueMap;
1464   for (auto &I : *BB) {
1465     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1466       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1467         DbgValueMap.insert({Loc, DbgII});
1468     }
1469   }
1470   if (DbgValueMap.size() == 0)
1471     return;
1472 
1473   // Then iterate through the new PHIs and look to see if they use one of the
1474   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1475   // propagate the info through the new PHI.
1476   LLVMContext &C = BB->getContext();
1477   for (auto PHI : InsertedPHIs) {
1478     BasicBlock *Parent = PHI->getParent();
1479     // Avoid inserting an intrinsic into an EH block.
1480     if (Parent->getFirstNonPHI()->isEHPad())
1481       continue;
1482     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1483     for (auto VI : PHI->operand_values()) {
1484       auto V = DbgValueMap.find(VI);
1485       if (V != DbgValueMap.end()) {
1486         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1487         Instruction *NewDbgII = DbgII->clone();
1488         NewDbgII->setOperand(0, PhiMAV);
1489         auto InsertionPt = Parent->getFirstInsertionPt();
1490         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1491         NewDbgII->insertBefore(&*InsertionPt);
1492       }
1493     }
1494   }
1495 }
1496 
1497 /// Finds all intrinsics declaring local variables as living in the memory that
1498 /// 'V' points to. This may include a mix of dbg.declare and
1499 /// dbg.addr intrinsics.
1500 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1501   // This function is hot. Check whether the value has any metadata to avoid a
1502   // DenseMap lookup.
1503   if (!V->isUsedByMetadata())
1504     return {};
1505   auto *L = LocalAsMetadata::getIfExists(V);
1506   if (!L)
1507     return {};
1508   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1509   if (!MDV)
1510     return {};
1511 
1512   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1513   for (User *U : MDV->users()) {
1514     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1515       if (DII->isAddressOfVariable())
1516         Declares.push_back(DII);
1517   }
1518 
1519   return Declares;
1520 }
1521 
1522 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1523   // This function is hot. Check whether the value has any metadata to avoid a
1524   // DenseMap lookup.
1525   if (!V->isUsedByMetadata())
1526     return;
1527   if (auto *L = LocalAsMetadata::getIfExists(V))
1528     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1529       for (User *U : MDV->users())
1530         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1531           DbgValues.push_back(DVI);
1532 }
1533 
1534 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1535                         Value *V) {
1536   // This function is hot. Check whether the value has any metadata to avoid a
1537   // DenseMap lookup.
1538   if (!V->isUsedByMetadata())
1539     return;
1540   if (auto *L = LocalAsMetadata::getIfExists(V))
1541     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1542       for (User *U : MDV->users())
1543         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1544           DbgUsers.push_back(DII);
1545 }
1546 
1547 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1548                              Instruction *InsertBefore, DIBuilder &Builder,
1549                              bool DerefBefore, int Offset, bool DerefAfter) {
1550   auto DbgAddrs = FindDbgAddrUses(Address);
1551   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1552     DebugLoc Loc = DII->getDebugLoc();
1553     auto *DIVar = DII->getVariable();
1554     auto *DIExpr = DII->getExpression();
1555     assert(DIVar && "Missing variable");
1556     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1557     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1558     // llvm.dbg.declare.
1559     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1560     if (DII == InsertBefore)
1561       InsertBefore = InsertBefore->getNextNode();
1562     DII->eraseFromParent();
1563   }
1564   return !DbgAddrs.empty();
1565 }
1566 
1567 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1568                                       DIBuilder &Builder, bool DerefBefore,
1569                                       int Offset, bool DerefAfter) {
1570   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1571                            DerefBefore, Offset, DerefAfter);
1572 }
1573 
1574 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1575                                         DIBuilder &Builder, int Offset) {
1576   DebugLoc Loc = DVI->getDebugLoc();
1577   auto *DIVar = DVI->getVariable();
1578   auto *DIExpr = DVI->getExpression();
1579   assert(DIVar && "Missing variable");
1580 
1581   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1582   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1583   // it and give up.
1584   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1585       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1586     return;
1587 
1588   // Insert the offset immediately after the first deref.
1589   // We could just change the offset argument of dbg.value, but it's unsigned...
1590   if (Offset) {
1591     SmallVector<uint64_t, 4> Ops;
1592     Ops.push_back(dwarf::DW_OP_deref);
1593     DIExpression::appendOffset(Ops, Offset);
1594     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1595     DIExpr = Builder.createExpression(Ops);
1596   }
1597 
1598   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1599   DVI->eraseFromParent();
1600 }
1601 
1602 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1603                                     DIBuilder &Builder, int Offset) {
1604   if (auto *L = LocalAsMetadata::getIfExists(AI))
1605     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1606       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1607         Use &U = *UI++;
1608         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1609           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1610       }
1611 }
1612 
1613 /// Wrap \p V in a ValueAsMetadata instance.
1614 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1615   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1616 }
1617 
1618 bool llvm::salvageDebugInfo(Instruction &I) {
1619   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1620   findDbgUsers(DbgUsers, &I);
1621   if (DbgUsers.empty())
1622     return false;
1623 
1624   auto &M = *I.getModule();
1625   auto &DL = M.getDataLayout();
1626   auto &Ctx = I.getContext();
1627   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1628 
1629   auto doSalvage = [&](DbgVariableIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1630     auto *DIExpr = DII->getExpression();
1631     if (!Ops.empty()) {
1632       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1633       // are implicitly pointing out the value as a DWARF memory location
1634       // description.
1635       bool WithStackValue = isa<DbgValueInst>(DII);
1636       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1637     }
1638     DII->setOperand(0, wrapMD(I.getOperand(0)));
1639     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1640     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1641   };
1642 
1643   auto applyOffset = [&](DbgVariableIntrinsic *DII, uint64_t Offset) {
1644     SmallVector<uint64_t, 8> Ops;
1645     DIExpression::appendOffset(Ops, Offset);
1646     doSalvage(DII, Ops);
1647   };
1648 
1649   auto applyOps = [&](DbgVariableIntrinsic *DII,
1650                       std::initializer_list<uint64_t> Opcodes) {
1651     SmallVector<uint64_t, 8> Ops(Opcodes);
1652     doSalvage(DII, Ops);
1653   };
1654 
1655   if (auto *CI = dyn_cast<CastInst>(&I)) {
1656     if (!CI->isNoopCast(DL))
1657       return false;
1658 
1659     // No-op casts are irrelevant for debug info.
1660     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1661     for (auto *DII : DbgUsers) {
1662       DII->setOperand(0, CastSrc);
1663       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1664     }
1665     return true;
1666   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1667     unsigned BitWidth =
1668         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1669     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1670     // arithmetic to compute the variable's *value* in the DIExpression, we
1671     // need to mark the expression with a DW_OP_stack_value.
1672     APInt Offset(BitWidth, 0);
1673     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1674       for (auto *DII : DbgUsers)
1675         applyOffset(DII, Offset.getSExtValue());
1676     return true;
1677   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1678     // Rewrite binary operations with constant integer operands.
1679     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1680     if (!ConstInt || ConstInt->getBitWidth() > 64)
1681       return false;
1682 
1683     uint64_t Val = ConstInt->getSExtValue();
1684     for (auto *DII : DbgUsers) {
1685       switch (BI->getOpcode()) {
1686       case Instruction::Add:
1687         applyOffset(DII, Val);
1688         break;
1689       case Instruction::Sub:
1690         applyOffset(DII, -int64_t(Val));
1691         break;
1692       case Instruction::Mul:
1693         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1694         break;
1695       case Instruction::SDiv:
1696         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1697         break;
1698       case Instruction::SRem:
1699         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1700         break;
1701       case Instruction::Or:
1702         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1703         break;
1704       case Instruction::And:
1705         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1706         break;
1707       case Instruction::Xor:
1708         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1709         break;
1710       case Instruction::Shl:
1711         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1712         break;
1713       case Instruction::LShr:
1714         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1715         break;
1716       case Instruction::AShr:
1717         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1718         break;
1719       default:
1720         // TODO: Salvage constants from each kind of binop we know about.
1721         return false;
1722       }
1723     }
1724     return true;
1725   } else if (isa<LoadInst>(&I)) {
1726     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1727     for (auto *DII : DbgUsers) {
1728       // Rewrite the load into DW_OP_deref.
1729       auto *DIExpr = DII->getExpression();
1730       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1731       DII->setOperand(0, AddrMD);
1732       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1733       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1734     }
1735     return true;
1736   }
1737   return false;
1738 }
1739 
1740 /// A replacement for a dbg.value expression.
1741 using DbgValReplacement = Optional<DIExpression *>;
1742 
1743 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1744 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1745 /// changes are made.
1746 static bool rewriteDebugUsers(
1747     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1748     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1749   // Find debug users of From.
1750   SmallVector<DbgVariableIntrinsic *, 1> Users;
1751   findDbgUsers(Users, &From);
1752   if (Users.empty())
1753     return false;
1754 
1755   // Prevent use-before-def of To.
1756   bool Changed = false;
1757   SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage;
1758   if (isa<Instruction>(&To)) {
1759     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1760 
1761     for (auto *DII : Users) {
1762       // It's common to see a debug user between From and DomPoint. Move it
1763       // after DomPoint to preserve the variable update without any reordering.
1764       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1765         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1766         DII->moveAfter(&DomPoint);
1767         Changed = true;
1768 
1769       // Users which otherwise aren't dominated by the replacement value must
1770       // be salvaged or deleted.
1771       } else if (!DT.dominates(&DomPoint, DII)) {
1772         DeleteOrSalvage.insert(DII);
1773       }
1774     }
1775   }
1776 
1777   // Update debug users without use-before-def risk.
1778   for (auto *DII : Users) {
1779     if (DeleteOrSalvage.count(DII))
1780       continue;
1781 
1782     LLVMContext &Ctx = DII->getContext();
1783     DbgValReplacement DVR = RewriteExpr(*DII);
1784     if (!DVR)
1785       continue;
1786 
1787     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1788     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1789     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1790     Changed = true;
1791   }
1792 
1793   if (!DeleteOrSalvage.empty()) {
1794     // Try to salvage the remaining debug users.
1795     Changed |= salvageDebugInfo(From);
1796 
1797     // Delete the debug users which weren't salvaged.
1798     for (auto *DII : DeleteOrSalvage) {
1799       if (DII->getVariableLocation() == &From) {
1800         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1801         DII->eraseFromParent();
1802         Changed = true;
1803       }
1804     }
1805   }
1806 
1807   return Changed;
1808 }
1809 
1810 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1811 /// losslessly preserve the bits and semantics of the value. This predicate is
1812 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1813 ///
1814 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1815 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1816 /// and also does not allow lossless pointer <-> integer conversions.
1817 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1818                                          Type *ToTy) {
1819   // Trivially compatible types.
1820   if (FromTy == ToTy)
1821     return true;
1822 
1823   // Handle compatible pointer <-> integer conversions.
1824   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1825     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1826     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1827                               !DL.isNonIntegralPointerType(ToTy);
1828     return SameSize && LosslessConversion;
1829   }
1830 
1831   // TODO: This is not exhaustive.
1832   return false;
1833 }
1834 
1835 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1836                                  Instruction &DomPoint, DominatorTree &DT) {
1837   // Exit early if From has no debug users.
1838   if (!From.isUsedByMetadata())
1839     return false;
1840 
1841   assert(&From != &To && "Can't replace something with itself");
1842 
1843   Type *FromTy = From.getType();
1844   Type *ToTy = To.getType();
1845 
1846   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1847     return DII.getExpression();
1848   };
1849 
1850   // Handle no-op conversions.
1851   Module &M = *From.getModule();
1852   const DataLayout &DL = M.getDataLayout();
1853   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1854     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1855 
1856   // Handle integer-to-integer widening and narrowing.
1857   // FIXME: Use DW_OP_convert when it's available everywhere.
1858   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1859     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1860     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1861     assert(FromBits != ToBits && "Unexpected no-op conversion");
1862 
1863     // When the width of the result grows, assume that a debugger will only
1864     // access the low `FromBits` bits when inspecting the source variable.
1865     if (FromBits < ToBits)
1866       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1867 
1868     // The width of the result has shrunk. Use sign/zero extension to describe
1869     // the source variable's high bits.
1870     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1871       DILocalVariable *Var = DII.getVariable();
1872 
1873       // Without knowing signedness, sign/zero extension isn't possible.
1874       auto Signedness = Var->getSignedness();
1875       if (!Signedness)
1876         return None;
1877 
1878       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1879 
1880       if (!Signed) {
1881         // In the unsigned case, assume that a debugger will initialize the
1882         // high bits to 0 and do a no-op conversion.
1883         return Identity(DII);
1884       } else {
1885         // In the signed case, the high bits are given by sign extension, i.e:
1886         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1887         // Calculate the high bits and OR them together with the low bits.
1888         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1889                                       (ToBits - 1), dwarf::DW_OP_shr,
1890                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1891                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1892         return DIExpression::appendToStack(DII.getExpression(), Ops);
1893       }
1894     };
1895     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1896   }
1897 
1898   // TODO: Floating-point conversions, vectors.
1899   return false;
1900 }
1901 
1902 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1903   unsigned NumDeadInst = 0;
1904   // Delete the instructions backwards, as it has a reduced likelihood of
1905   // having to update as many def-use and use-def chains.
1906   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1907   while (EndInst != &BB->front()) {
1908     // Delete the next to last instruction.
1909     Instruction *Inst = &*--EndInst->getIterator();
1910     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1911       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1912     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1913       EndInst = Inst;
1914       continue;
1915     }
1916     if (!isa<DbgInfoIntrinsic>(Inst))
1917       ++NumDeadInst;
1918     Inst->eraseFromParent();
1919   }
1920   return NumDeadInst;
1921 }
1922 
1923 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1924                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1925   BasicBlock *BB = I->getParent();
1926   std::vector <DominatorTree::UpdateType> Updates;
1927 
1928   // Loop over all of the successors, removing BB's entry from any PHI
1929   // nodes.
1930   if (DTU)
1931     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1932   for (BasicBlock *Successor : successors(BB)) {
1933     Successor->removePredecessor(BB, PreserveLCSSA);
1934     if (DTU)
1935       Updates.push_back({DominatorTree::Delete, BB, Successor});
1936   }
1937   // Insert a call to llvm.trap right before this.  This turns the undefined
1938   // behavior into a hard fail instead of falling through into random code.
1939   if (UseLLVMTrap) {
1940     Function *TrapFn =
1941       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1942     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1943     CallTrap->setDebugLoc(I->getDebugLoc());
1944   }
1945   auto *UI = new UnreachableInst(I->getContext(), I);
1946   UI->setDebugLoc(I->getDebugLoc());
1947 
1948   // All instructions after this are dead.
1949   unsigned NumInstrsRemoved = 0;
1950   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1951   while (BBI != BBE) {
1952     if (!BBI->use_empty())
1953       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1954     BB->getInstList().erase(BBI++);
1955     ++NumInstrsRemoved;
1956   }
1957   if (DTU)
1958     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1959   return NumInstrsRemoved;
1960 }
1961 
1962 /// changeToCall - Convert the specified invoke into a normal call.
1963 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1964   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1965   SmallVector<OperandBundleDef, 1> OpBundles;
1966   II->getOperandBundlesAsDefs(OpBundles);
1967   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1968                                        "", II);
1969   NewCall->takeName(II);
1970   NewCall->setCallingConv(II->getCallingConv());
1971   NewCall->setAttributes(II->getAttributes());
1972   NewCall->setDebugLoc(II->getDebugLoc());
1973   II->replaceAllUsesWith(NewCall);
1974 
1975   // Follow the call by a branch to the normal destination.
1976   BasicBlock *NormalDestBB = II->getNormalDest();
1977   BranchInst::Create(NormalDestBB, II);
1978 
1979   // Update PHI nodes in the unwind destination
1980   BasicBlock *BB = II->getParent();
1981   BasicBlock *UnwindDestBB = II->getUnwindDest();
1982   UnwindDestBB->removePredecessor(BB);
1983   II->eraseFromParent();
1984   if (DTU)
1985     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1986 }
1987 
1988 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1989                                                    BasicBlock *UnwindEdge) {
1990   BasicBlock *BB = CI->getParent();
1991 
1992   // Convert this function call into an invoke instruction.  First, split the
1993   // basic block.
1994   BasicBlock *Split =
1995       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1996 
1997   // Delete the unconditional branch inserted by splitBasicBlock
1998   BB->getInstList().pop_back();
1999 
2000   // Create the new invoke instruction.
2001   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2002   SmallVector<OperandBundleDef, 1> OpBundles;
2003 
2004   CI->getOperandBundlesAsDefs(OpBundles);
2005 
2006   // Note: we're round tripping operand bundles through memory here, and that
2007   // can potentially be avoided with a cleverer API design that we do not have
2008   // as of this time.
2009 
2010   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
2011                                       InvokeArgs, OpBundles, CI->getName(), BB);
2012   II->setDebugLoc(CI->getDebugLoc());
2013   II->setCallingConv(CI->getCallingConv());
2014   II->setAttributes(CI->getAttributes());
2015 
2016   // Make sure that anything using the call now uses the invoke!  This also
2017   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2018   CI->replaceAllUsesWith(II);
2019 
2020   // Delete the original call
2021   Split->getInstList().pop_front();
2022   return Split;
2023 }
2024 
2025 static bool markAliveBlocks(Function &F,
2026                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2027                             DomTreeUpdater *DTU = nullptr) {
2028   SmallVector<BasicBlock*, 128> Worklist;
2029   BasicBlock *BB = &F.front();
2030   Worklist.push_back(BB);
2031   Reachable.insert(BB);
2032   bool Changed = false;
2033   do {
2034     BB = Worklist.pop_back_val();
2035 
2036     // Do a quick scan of the basic block, turning any obviously unreachable
2037     // instructions into LLVM unreachable insts.  The instruction combining pass
2038     // canonicalizes unreachable insts into stores to null or undef.
2039     for (Instruction &I : *BB) {
2040       if (auto *CI = dyn_cast<CallInst>(&I)) {
2041         Value *Callee = CI->getCalledValue();
2042         // Handle intrinsic calls.
2043         if (Function *F = dyn_cast<Function>(Callee)) {
2044           auto IntrinsicID = F->getIntrinsicID();
2045           // Assumptions that are known to be false are equivalent to
2046           // unreachable. Also, if the condition is undefined, then we make the
2047           // choice most beneficial to the optimizer, and choose that to also be
2048           // unreachable.
2049           if (IntrinsicID == Intrinsic::assume) {
2050             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2051               // Don't insert a call to llvm.trap right before the unreachable.
2052               changeToUnreachable(CI, false, false, DTU);
2053               Changed = true;
2054               break;
2055             }
2056           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2057             // A call to the guard intrinsic bails out of the current
2058             // compilation unit if the predicate passed to it is false. If the
2059             // predicate is a constant false, then we know the guard will bail
2060             // out of the current compile unconditionally, so all code following
2061             // it is dead.
2062             //
2063             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2064             // guards to treat `undef` as `false` since a guard on `undef` can
2065             // still be useful for widening.
2066             if (match(CI->getArgOperand(0), m_Zero()))
2067               if (!isa<UnreachableInst>(CI->getNextNode())) {
2068                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2069                                     false, DTU);
2070                 Changed = true;
2071                 break;
2072               }
2073           }
2074         } else if ((isa<ConstantPointerNull>(Callee) &&
2075                     !NullPointerIsDefined(CI->getFunction())) ||
2076                    isa<UndefValue>(Callee)) {
2077           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2078           Changed = true;
2079           break;
2080         }
2081         if (CI->doesNotReturn()) {
2082           // If we found a call to a no-return function, insert an unreachable
2083           // instruction after it.  Make sure there isn't *already* one there
2084           // though.
2085           if (!isa<UnreachableInst>(CI->getNextNode())) {
2086             // Don't insert a call to llvm.trap right before the unreachable.
2087             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2088             Changed = true;
2089           }
2090           break;
2091         }
2092       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2093         // Store to undef and store to null are undefined and used to signal
2094         // that they should be changed to unreachable by passes that can't
2095         // modify the CFG.
2096 
2097         // Don't touch volatile stores.
2098         if (SI->isVolatile()) continue;
2099 
2100         Value *Ptr = SI->getOperand(1);
2101 
2102         if (isa<UndefValue>(Ptr) ||
2103             (isa<ConstantPointerNull>(Ptr) &&
2104              !NullPointerIsDefined(SI->getFunction(),
2105                                    SI->getPointerAddressSpace()))) {
2106           changeToUnreachable(SI, true, false, DTU);
2107           Changed = true;
2108           break;
2109         }
2110       }
2111     }
2112 
2113     Instruction *Terminator = BB->getTerminator();
2114     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2115       // Turn invokes that call 'nounwind' functions into ordinary calls.
2116       Value *Callee = II->getCalledValue();
2117       if ((isa<ConstantPointerNull>(Callee) &&
2118            !NullPointerIsDefined(BB->getParent())) ||
2119           isa<UndefValue>(Callee)) {
2120         changeToUnreachable(II, true, false, DTU);
2121         Changed = true;
2122       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2123         if (II->use_empty() && II->onlyReadsMemory()) {
2124           // jump to the normal destination branch.
2125           BasicBlock *NormalDestBB = II->getNormalDest();
2126           BasicBlock *UnwindDestBB = II->getUnwindDest();
2127           BranchInst::Create(NormalDestBB, II);
2128           UnwindDestBB->removePredecessor(II->getParent());
2129           II->eraseFromParent();
2130           if (DTU)
2131             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2132         } else
2133           changeToCall(II, DTU);
2134         Changed = true;
2135       }
2136     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2137       // Remove catchpads which cannot be reached.
2138       struct CatchPadDenseMapInfo {
2139         static CatchPadInst *getEmptyKey() {
2140           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2141         }
2142 
2143         static CatchPadInst *getTombstoneKey() {
2144           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2145         }
2146 
2147         static unsigned getHashValue(CatchPadInst *CatchPad) {
2148           return static_cast<unsigned>(hash_combine_range(
2149               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2150         }
2151 
2152         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2153           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2154               RHS == getEmptyKey() || RHS == getTombstoneKey())
2155             return LHS == RHS;
2156           return LHS->isIdenticalTo(RHS);
2157         }
2158       };
2159 
2160       // Set of unique CatchPads.
2161       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2162                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2163           HandlerSet;
2164       detail::DenseSetEmpty Empty;
2165       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2166                                              E = CatchSwitch->handler_end();
2167            I != E; ++I) {
2168         BasicBlock *HandlerBB = *I;
2169         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2170         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2171           CatchSwitch->removeHandler(I);
2172           --I;
2173           --E;
2174           Changed = true;
2175         }
2176       }
2177     }
2178 
2179     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2180     for (BasicBlock *Successor : successors(BB))
2181       if (Reachable.insert(Successor).second)
2182         Worklist.push_back(Successor);
2183   } while (!Worklist.empty());
2184   return Changed;
2185 }
2186 
2187 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2188   Instruction *TI = BB->getTerminator();
2189 
2190   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2191     changeToCall(II, DTU);
2192     return;
2193   }
2194 
2195   Instruction *NewTI;
2196   BasicBlock *UnwindDest;
2197 
2198   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2199     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2200     UnwindDest = CRI->getUnwindDest();
2201   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2202     auto *NewCatchSwitch = CatchSwitchInst::Create(
2203         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2204         CatchSwitch->getName(), CatchSwitch);
2205     for (BasicBlock *PadBB : CatchSwitch->handlers())
2206       NewCatchSwitch->addHandler(PadBB);
2207 
2208     NewTI = NewCatchSwitch;
2209     UnwindDest = CatchSwitch->getUnwindDest();
2210   } else {
2211     llvm_unreachable("Could not find unwind successor");
2212   }
2213 
2214   NewTI->takeName(TI);
2215   NewTI->setDebugLoc(TI->getDebugLoc());
2216   UnwindDest->removePredecessor(BB);
2217   TI->replaceAllUsesWith(NewTI);
2218   TI->eraseFromParent();
2219   if (DTU)
2220     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2221 }
2222 
2223 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2224 /// if they are in a dead cycle.  Return true if a change was made, false
2225 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2226 /// after modifying the CFG.
2227 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2228                                    DomTreeUpdater *DTU,
2229                                    MemorySSAUpdater *MSSAU) {
2230   SmallPtrSet<BasicBlock*, 16> Reachable;
2231   bool Changed = markAliveBlocks(F, Reachable, DTU);
2232 
2233   // If there are unreachable blocks in the CFG...
2234   if (Reachable.size() == F.size())
2235     return Changed;
2236 
2237   assert(Reachable.size() < F.size());
2238   NumRemoved += F.size()-Reachable.size();
2239 
2240   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
2241   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2242     auto *BB = &*I;
2243     if (Reachable.count(BB))
2244       continue;
2245     DeadBlockSet.insert(BB);
2246   }
2247 
2248   if (MSSAU)
2249     MSSAU->removeBlocks(DeadBlockSet);
2250 
2251   // Loop over all of the basic blocks that are not reachable, dropping all of
2252   // their internal references. Update DTU and LVI if available.
2253   std::vector<DominatorTree::UpdateType> Updates;
2254   for (auto *BB : DeadBlockSet) {
2255     for (BasicBlock *Successor : successors(BB)) {
2256       if (!DeadBlockSet.count(Successor))
2257         Successor->removePredecessor(BB);
2258       if (DTU)
2259         Updates.push_back({DominatorTree::Delete, BB, Successor});
2260     }
2261     if (LVI)
2262       LVI->eraseBlock(BB);
2263     BB->dropAllReferences();
2264   }
2265   for (Function::iterator I = ++F.begin(); I != F.end();) {
2266     auto *BB = &*I;
2267     if (Reachable.count(BB)) {
2268       ++I;
2269       continue;
2270     }
2271     if (DTU) {
2272       // Remove the terminator of BB to clear the successor list of BB.
2273       if (BB->getTerminator())
2274         BB->getInstList().pop_back();
2275       new UnreachableInst(BB->getContext(), BB);
2276       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2277                                "applying corresponding DTU updates.");
2278       ++I;
2279     } else {
2280       I = F.getBasicBlockList().erase(I);
2281     }
2282   }
2283 
2284   if (DTU) {
2285     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2286     bool Deleted = false;
2287     for (auto *BB : DeadBlockSet) {
2288       if (DTU->isBBPendingDeletion(BB))
2289         --NumRemoved;
2290       else
2291         Deleted = true;
2292       DTU->deleteBB(BB);
2293     }
2294     if (!Deleted)
2295       return false;
2296   }
2297   return true;
2298 }
2299 
2300 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2301                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2302   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2303   K->dropUnknownNonDebugMetadata(KnownIDs);
2304   K->getAllMetadataOtherThanDebugLoc(Metadata);
2305   for (const auto &MD : Metadata) {
2306     unsigned Kind = MD.first;
2307     MDNode *JMD = J->getMetadata(Kind);
2308     MDNode *KMD = MD.second;
2309 
2310     switch (Kind) {
2311       default:
2312         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2313         break;
2314       case LLVMContext::MD_dbg:
2315         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2316       case LLVMContext::MD_tbaa:
2317         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2318         break;
2319       case LLVMContext::MD_alias_scope:
2320         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2321         break;
2322       case LLVMContext::MD_noalias:
2323       case LLVMContext::MD_mem_parallel_loop_access:
2324         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2325         break;
2326       case LLVMContext::MD_range:
2327 
2328         // If K does move, use most generic range. Otherwise keep the range of
2329         // K.
2330         if (DoesKMove)
2331           // FIXME: If K does move, we should drop the range info and nonnull.
2332           //        Currently this function is used with DoesKMove in passes
2333           //        doing hoisting/sinking and the current behavior of using the
2334           //        most generic range is correct in those cases.
2335           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2336         break;
2337       case LLVMContext::MD_fpmath:
2338         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2339         break;
2340       case LLVMContext::MD_invariant_load:
2341         // Only set the !invariant.load if it is present in both instructions.
2342         K->setMetadata(Kind, JMD);
2343         break;
2344       case LLVMContext::MD_nonnull:
2345         // If K does move, keep nonull if it is present in both instructions.
2346         if (DoesKMove)
2347           K->setMetadata(Kind, JMD);
2348         break;
2349       case LLVMContext::MD_invariant_group:
2350         // Preserve !invariant.group in K.
2351         break;
2352       case LLVMContext::MD_align:
2353         K->setMetadata(Kind,
2354           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2355         break;
2356       case LLVMContext::MD_dereferenceable:
2357       case LLVMContext::MD_dereferenceable_or_null:
2358         K->setMetadata(Kind,
2359           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2360         break;
2361     }
2362   }
2363   // Set !invariant.group from J if J has it. If both instructions have it
2364   // then we will just pick it from J - even when they are different.
2365   // Also make sure that K is load or store - f.e. combining bitcast with load
2366   // could produce bitcast with invariant.group metadata, which is invalid.
2367   // FIXME: we should try to preserve both invariant.group md if they are
2368   // different, but right now instruction can only have one invariant.group.
2369   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2370     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2371       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2372 }
2373 
2374 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2375                                  bool KDominatesJ) {
2376   unsigned KnownIDs[] = {
2377       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2378       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2379       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2380       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2381       LLVMContext::MD_dereferenceable,
2382       LLVMContext::MD_dereferenceable_or_null};
2383   combineMetadata(K, J, KnownIDs, KDominatesJ);
2384 }
2385 
2386 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2387   auto *ReplInst = dyn_cast<Instruction>(Repl);
2388   if (!ReplInst)
2389     return;
2390 
2391   // Patch the replacement so that it is not more restrictive than the value
2392   // being replaced.
2393   // Note that if 'I' is a load being replaced by some operation,
2394   // for example, by an arithmetic operation, then andIRFlags()
2395   // would just erase all math flags from the original arithmetic
2396   // operation, which is clearly not wanted and not needed.
2397   if (!isa<LoadInst>(I))
2398     ReplInst->andIRFlags(I);
2399 
2400   // FIXME: If both the original and replacement value are part of the
2401   // same control-flow region (meaning that the execution of one
2402   // guarantees the execution of the other), then we can combine the
2403   // noalias scopes here and do better than the general conservative
2404   // answer used in combineMetadata().
2405 
2406   // In general, GVN unifies expressions over different control-flow
2407   // regions, and so we need a conservative combination of the noalias
2408   // scopes.
2409   static const unsigned KnownIDs[] = {
2410       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2411       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2412       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2413       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull};
2414   combineMetadata(ReplInst, I, KnownIDs, false);
2415 }
2416 
2417 template <typename RootType, typename DominatesFn>
2418 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2419                                          const RootType &Root,
2420                                          const DominatesFn &Dominates) {
2421   assert(From->getType() == To->getType());
2422 
2423   unsigned Count = 0;
2424   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2425        UI != UE;) {
2426     Use &U = *UI++;
2427     if (!Dominates(Root, U))
2428       continue;
2429     U.set(To);
2430     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2431                       << "' as " << *To << " in " << *U << "\n");
2432     ++Count;
2433   }
2434   return Count;
2435 }
2436 
2437 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2438    assert(From->getType() == To->getType());
2439    auto *BB = From->getParent();
2440    unsigned Count = 0;
2441 
2442   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2443        UI != UE;) {
2444     Use &U = *UI++;
2445     auto *I = cast<Instruction>(U.getUser());
2446     if (I->getParent() == BB)
2447       continue;
2448     U.set(To);
2449     ++Count;
2450   }
2451   return Count;
2452 }
2453 
2454 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2455                                         DominatorTree &DT,
2456                                         const BasicBlockEdge &Root) {
2457   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2458     return DT.dominates(Root, U);
2459   };
2460   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2461 }
2462 
2463 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2464                                         DominatorTree &DT,
2465                                         const BasicBlock *BB) {
2466   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2467     auto *I = cast<Instruction>(U.getUser())->getParent();
2468     return DT.properlyDominates(BB, I);
2469   };
2470   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2471 }
2472 
2473 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2474                                const TargetLibraryInfo &TLI) {
2475   // Check if the function is specifically marked as a gc leaf function.
2476   if (CS.hasFnAttr("gc-leaf-function"))
2477     return true;
2478   if (const Function *F = CS.getCalledFunction()) {
2479     if (F->hasFnAttribute("gc-leaf-function"))
2480       return true;
2481 
2482     if (auto IID = F->getIntrinsicID())
2483       // Most LLVM intrinsics do not take safepoints.
2484       return IID != Intrinsic::experimental_gc_statepoint &&
2485              IID != Intrinsic::experimental_deoptimize;
2486   }
2487 
2488   // Lib calls can be materialized by some passes, and won't be
2489   // marked as 'gc-leaf-function.' All available Libcalls are
2490   // GC-leaf.
2491   LibFunc LF;
2492   if (TLI.getLibFunc(CS, LF)) {
2493     return TLI.has(LF);
2494   }
2495 
2496   return false;
2497 }
2498 
2499 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2500                                LoadInst &NewLI) {
2501   auto *NewTy = NewLI.getType();
2502 
2503   // This only directly applies if the new type is also a pointer.
2504   if (NewTy->isPointerTy()) {
2505     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2506     return;
2507   }
2508 
2509   // The only other translation we can do is to integral loads with !range
2510   // metadata.
2511   if (!NewTy->isIntegerTy())
2512     return;
2513 
2514   MDBuilder MDB(NewLI.getContext());
2515   const Value *Ptr = OldLI.getPointerOperand();
2516   auto *ITy = cast<IntegerType>(NewTy);
2517   auto *NullInt = ConstantExpr::getPtrToInt(
2518       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2519   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2520   NewLI.setMetadata(LLVMContext::MD_range,
2521                     MDB.createRange(NonNullInt, NullInt));
2522 }
2523 
2524 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2525                              MDNode *N, LoadInst &NewLI) {
2526   auto *NewTy = NewLI.getType();
2527 
2528   // Give up unless it is converted to a pointer where there is a single very
2529   // valuable mapping we can do reliably.
2530   // FIXME: It would be nice to propagate this in more ways, but the type
2531   // conversions make it hard.
2532   if (!NewTy->isPointerTy())
2533     return;
2534 
2535   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2536   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2537     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2538     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2539   }
2540 }
2541 
2542 void llvm::dropDebugUsers(Instruction &I) {
2543   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2544   findDbgUsers(DbgUsers, &I);
2545   for (auto *DII : DbgUsers)
2546     DII->eraseFromParent();
2547 }
2548 
2549 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2550                                     BasicBlock *BB) {
2551   // Since we are moving the instructions out of its basic block, we do not
2552   // retain their original debug locations (DILocations) and debug intrinsic
2553   // instructions (dbg.values).
2554   //
2555   // Doing so would degrade the debugging experience and adversely affect the
2556   // accuracy of profiling information.
2557   //
2558   // Currently, when hoisting the instructions, we take the following actions:
2559   // - Remove their dbg.values.
2560   // - Set their debug locations to the values from the insertion point.
2561   //
2562   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2563   // need to be deleted, is because there will not be any instructions with a
2564   // DILocation in either branch left after performing the transformation. We
2565   // can only insert a dbg.value after the two branches are joined again.
2566   //
2567   // See PR38762, PR39243 for more details.
2568   //
2569   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2570   // encode predicated DIExpressions that yield different results on different
2571   // code paths.
2572   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2573     Instruction *I = &*II;
2574     I->dropUnknownNonDebugMetadata();
2575     if (I->isUsedByMetadata())
2576       dropDebugUsers(*I);
2577     if (isa<DbgVariableIntrinsic>(I)) {
2578       // Remove DbgInfo Intrinsics.
2579       II = I->eraseFromParent();
2580       continue;
2581     }
2582     I->setDebugLoc(InsertPt->getDebugLoc());
2583     ++II;
2584   }
2585   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2586                                  BB->begin(),
2587                                  BB->getTerminator()->getIterator());
2588 }
2589 
2590 namespace {
2591 
2592 /// A potential constituent of a bitreverse or bswap expression. See
2593 /// collectBitParts for a fuller explanation.
2594 struct BitPart {
2595   BitPart(Value *P, unsigned BW) : Provider(P) {
2596     Provenance.resize(BW);
2597   }
2598 
2599   /// The Value that this is a bitreverse/bswap of.
2600   Value *Provider;
2601 
2602   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2603   /// in Provider becomes bit B in the result of this expression.
2604   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2605 
2606   enum { Unset = -1 };
2607 };
2608 
2609 } // end anonymous namespace
2610 
2611 /// Analyze the specified subexpression and see if it is capable of providing
2612 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2613 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2614 /// the output of the expression came from a corresponding bit in some other
2615 /// value. This function is recursive, and the end result is a mapping of
2616 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2617 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2618 ///
2619 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2620 /// that the expression deposits the low byte of %X into the high byte of the
2621 /// result and that all other bits are zero. This expression is accepted and a
2622 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2623 /// [0-7].
2624 ///
2625 /// To avoid revisiting values, the BitPart results are memoized into the
2626 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2627 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2628 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2629 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2630 /// type instead to provide the same functionality.
2631 ///
2632 /// Because we pass around references into \c BPS, we must use a container that
2633 /// does not invalidate internal references (std::map instead of DenseMap).
2634 static const Optional<BitPart> &
2635 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2636                 std::map<Value *, Optional<BitPart>> &BPS) {
2637   auto I = BPS.find(V);
2638   if (I != BPS.end())
2639     return I->second;
2640 
2641   auto &Result = BPS[V] = None;
2642   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2643 
2644   if (Instruction *I = dyn_cast<Instruction>(V)) {
2645     // If this is an or instruction, it may be an inner node of the bswap.
2646     if (I->getOpcode() == Instruction::Or) {
2647       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2648                                 MatchBitReversals, BPS);
2649       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2650                                 MatchBitReversals, BPS);
2651       if (!A || !B)
2652         return Result;
2653 
2654       // Try and merge the two together.
2655       if (!A->Provider || A->Provider != B->Provider)
2656         return Result;
2657 
2658       Result = BitPart(A->Provider, BitWidth);
2659       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2660         if (A->Provenance[i] != BitPart::Unset &&
2661             B->Provenance[i] != BitPart::Unset &&
2662             A->Provenance[i] != B->Provenance[i])
2663           return Result = None;
2664 
2665         if (A->Provenance[i] == BitPart::Unset)
2666           Result->Provenance[i] = B->Provenance[i];
2667         else
2668           Result->Provenance[i] = A->Provenance[i];
2669       }
2670 
2671       return Result;
2672     }
2673 
2674     // If this is a logical shift by a constant, recurse then shift the result.
2675     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2676       unsigned BitShift =
2677           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2678       // Ensure the shift amount is defined.
2679       if (BitShift > BitWidth)
2680         return Result;
2681 
2682       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2683                                   MatchBitReversals, BPS);
2684       if (!Res)
2685         return Result;
2686       Result = Res;
2687 
2688       // Perform the "shift" on BitProvenance.
2689       auto &P = Result->Provenance;
2690       if (I->getOpcode() == Instruction::Shl) {
2691         P.erase(std::prev(P.end(), BitShift), P.end());
2692         P.insert(P.begin(), BitShift, BitPart::Unset);
2693       } else {
2694         P.erase(P.begin(), std::next(P.begin(), BitShift));
2695         P.insert(P.end(), BitShift, BitPart::Unset);
2696       }
2697 
2698       return Result;
2699     }
2700 
2701     // If this is a logical 'and' with a mask that clears bits, recurse then
2702     // unset the appropriate bits.
2703     if (I->getOpcode() == Instruction::And &&
2704         isa<ConstantInt>(I->getOperand(1))) {
2705       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2706       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2707 
2708       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2709       // early exit.
2710       unsigned NumMaskedBits = AndMask.countPopulation();
2711       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2712         return Result;
2713 
2714       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2715                                   MatchBitReversals, BPS);
2716       if (!Res)
2717         return Result;
2718       Result = Res;
2719 
2720       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2721         // If the AndMask is zero for this bit, clear the bit.
2722         if ((AndMask & Bit) == 0)
2723           Result->Provenance[i] = BitPart::Unset;
2724       return Result;
2725     }
2726 
2727     // If this is a zext instruction zero extend the result.
2728     if (I->getOpcode() == Instruction::ZExt) {
2729       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2730                                   MatchBitReversals, BPS);
2731       if (!Res)
2732         return Result;
2733 
2734       Result = BitPart(Res->Provider, BitWidth);
2735       auto NarrowBitWidth =
2736           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2737       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2738         Result->Provenance[i] = Res->Provenance[i];
2739       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2740         Result->Provenance[i] = BitPart::Unset;
2741       return Result;
2742     }
2743   }
2744 
2745   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2746   // the input value to the bswap/bitreverse.
2747   Result = BitPart(V, BitWidth);
2748   for (unsigned i = 0; i < BitWidth; ++i)
2749     Result->Provenance[i] = i;
2750   return Result;
2751 }
2752 
2753 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2754                                           unsigned BitWidth) {
2755   if (From % 8 != To % 8)
2756     return false;
2757   // Convert from bit indices to byte indices and check for a byte reversal.
2758   From >>= 3;
2759   To >>= 3;
2760   BitWidth >>= 3;
2761   return From == BitWidth - To - 1;
2762 }
2763 
2764 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2765                                                unsigned BitWidth) {
2766   return From == BitWidth - To - 1;
2767 }
2768 
2769 bool llvm::recognizeBSwapOrBitReverseIdiom(
2770     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2771     SmallVectorImpl<Instruction *> &InsertedInsts) {
2772   if (Operator::getOpcode(I) != Instruction::Or)
2773     return false;
2774   if (!MatchBSwaps && !MatchBitReversals)
2775     return false;
2776   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2777   if (!ITy || ITy->getBitWidth() > 128)
2778     return false;   // Can't do vectors or integers > 128 bits.
2779   unsigned BW = ITy->getBitWidth();
2780 
2781   unsigned DemandedBW = BW;
2782   IntegerType *DemandedTy = ITy;
2783   if (I->hasOneUse()) {
2784     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2785       DemandedTy = cast<IntegerType>(Trunc->getType());
2786       DemandedBW = DemandedTy->getBitWidth();
2787     }
2788   }
2789 
2790   // Try to find all the pieces corresponding to the bswap.
2791   std::map<Value *, Optional<BitPart>> BPS;
2792   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2793   if (!Res)
2794     return false;
2795   auto &BitProvenance = Res->Provenance;
2796 
2797   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2798   // only byteswap values with an even number of bytes.
2799   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2800   for (unsigned i = 0; i < DemandedBW; ++i) {
2801     OKForBSwap &=
2802         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2803     OKForBitReverse &=
2804         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2805   }
2806 
2807   Intrinsic::ID Intrin;
2808   if (OKForBSwap && MatchBSwaps)
2809     Intrin = Intrinsic::bswap;
2810   else if (OKForBitReverse && MatchBitReversals)
2811     Intrin = Intrinsic::bitreverse;
2812   else
2813     return false;
2814 
2815   if (ITy != DemandedTy) {
2816     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2817     Value *Provider = Res->Provider;
2818     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2819     // We may need to truncate the provider.
2820     if (DemandedTy != ProviderTy) {
2821       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2822                                      "trunc", I);
2823       InsertedInsts.push_back(Trunc);
2824       Provider = Trunc;
2825     }
2826     auto *CI = CallInst::Create(F, Provider, "rev", I);
2827     InsertedInsts.push_back(CI);
2828     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2829     InsertedInsts.push_back(ExtInst);
2830     return true;
2831   }
2832 
2833   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2834   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2835   return true;
2836 }
2837 
2838 // CodeGen has special handling for some string functions that may replace
2839 // them with target-specific intrinsics.  Since that'd skip our interceptors
2840 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2841 // we mark affected calls as NoBuiltin, which will disable optimization
2842 // in CodeGen.
2843 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2844     CallInst *CI, const TargetLibraryInfo *TLI) {
2845   Function *F = CI->getCalledFunction();
2846   LibFunc Func;
2847   if (F && !F->hasLocalLinkage() && F->hasName() &&
2848       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2849       !F->doesNotAccessMemory())
2850     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2851 }
2852 
2853 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2854   // We can't have a PHI with a metadata type.
2855   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2856     return false;
2857 
2858   // Early exit.
2859   if (!isa<Constant>(I->getOperand(OpIdx)))
2860     return true;
2861 
2862   switch (I->getOpcode()) {
2863   default:
2864     return true;
2865   case Instruction::Call:
2866   case Instruction::Invoke:
2867     // Can't handle inline asm. Skip it.
2868     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2869       return false;
2870     // Many arithmetic intrinsics have no issue taking a
2871     // variable, however it's hard to distingish these from
2872     // specials such as @llvm.frameaddress that require a constant.
2873     if (isa<IntrinsicInst>(I))
2874       return false;
2875 
2876     // Constant bundle operands may need to retain their constant-ness for
2877     // correctness.
2878     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2879       return false;
2880     return true;
2881   case Instruction::ShuffleVector:
2882     // Shufflevector masks are constant.
2883     return OpIdx != 2;
2884   case Instruction::Switch:
2885   case Instruction::ExtractValue:
2886     // All operands apart from the first are constant.
2887     return OpIdx == 0;
2888   case Instruction::InsertValue:
2889     // All operands apart from the first and the second are constant.
2890     return OpIdx < 2;
2891   case Instruction::Alloca:
2892     // Static allocas (constant size in the entry block) are handled by
2893     // prologue/epilogue insertion so they're free anyway. We definitely don't
2894     // want to make them non-constant.
2895     return !cast<AllocaInst>(I)->isStaticAlloca();
2896   case Instruction::GetElementPtr:
2897     if (OpIdx == 0)
2898       return true;
2899     gep_type_iterator It = gep_type_begin(I);
2900     for (auto E = std::next(It, OpIdx); It != E; ++It)
2901       if (It.isStruct())
2902         return false;
2903     return true;
2904   }
2905 }
2906