1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 406 const TargetLibraryInfo *TLI) { 407 if (I->isTerminator()) 408 return false; 409 410 // We don't want the landingpad-like instructions removed by anything this 411 // general. 412 if (I->isEHPad()) 413 return false; 414 415 // We don't want debug info removed by anything this general, unless 416 // debug info is empty. 417 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 418 if (DDI->getAddress()) 419 return false; 420 return true; 421 } 422 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 423 if (DVI->hasArgList() || DVI->getValue(0)) 424 return false; 425 return true; 426 } 427 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 428 if (DLI->getLabel()) 429 return false; 430 return true; 431 } 432 433 if (!I->willReturn()) 434 return false; 435 436 if (!I->mayHaveSideEffects()) 437 return true; 438 439 // Special case intrinsics that "may have side effects" but can be deleted 440 // when dead. 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 442 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 443 if (II->getIntrinsicID() == Intrinsic::stacksave || 444 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 445 return true; 446 447 if (II->isLifetimeStartOrEnd()) { 448 auto *Arg = II->getArgOperand(1); 449 // Lifetime intrinsics are dead when their right-hand is undef. 450 if (isa<UndefValue>(Arg)) 451 return true; 452 // If the right-hand is an alloc, global, or argument and the only uses 453 // are lifetime intrinsics then the intrinsics are dead. 454 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 455 return llvm::all_of(Arg->uses(), [](Use &Use) { 456 if (IntrinsicInst *IntrinsicUse = 457 dyn_cast<IntrinsicInst>(Use.getUser())) 458 return IntrinsicUse->isLifetimeStartOrEnd(); 459 return false; 460 }); 461 return false; 462 } 463 464 // Assumptions are dead if their condition is trivially true. Guards on 465 // true are operationally no-ops. In the future we can consider more 466 // sophisticated tradeoffs for guards considering potential for check 467 // widening, but for now we keep things simple. 468 if ((II->getIntrinsicID() == Intrinsic::assume && 469 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 470 II->getIntrinsicID() == Intrinsic::experimental_guard) { 471 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 472 return !Cond->isZero(); 473 474 return false; 475 } 476 } 477 478 if (isAllocLikeFn(I, TLI)) 479 return true; 480 481 if (CallInst *CI = isFreeCall(I, TLI)) 482 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 483 return C->isNullValue() || isa<UndefValue>(C); 484 485 if (auto *Call = dyn_cast<CallBase>(I)) 486 if (isMathLibCallNoop(Call, TLI)) 487 return true; 488 489 return false; 490 } 491 492 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 493 /// trivially dead instruction, delete it. If that makes any of its operands 494 /// trivially dead, delete them too, recursively. Return true if any 495 /// instructions were deleted. 496 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 497 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 498 std::function<void(Value *)> AboutToDeleteCallback) { 499 Instruction *I = dyn_cast<Instruction>(V); 500 if (!I || !isInstructionTriviallyDead(I, TLI)) 501 return false; 502 503 SmallVector<WeakTrackingVH, 16> DeadInsts; 504 DeadInsts.push_back(I); 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 508 return true; 509 } 510 511 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 512 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 513 MemorySSAUpdater *MSSAU, 514 std::function<void(Value *)> AboutToDeleteCallback) { 515 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 516 for (; S != E; ++S) { 517 auto *I = cast<Instruction>(DeadInsts[S]); 518 if (!isInstructionTriviallyDead(I)) { 519 DeadInsts[S] = nullptr; 520 ++Alive; 521 } 522 } 523 if (Alive == E) 524 return false; 525 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 526 AboutToDeleteCallback); 527 return true; 528 } 529 530 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 531 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 532 MemorySSAUpdater *MSSAU, 533 std::function<void(Value *)> AboutToDeleteCallback) { 534 // Process the dead instruction list until empty. 535 while (!DeadInsts.empty()) { 536 Value *V = DeadInsts.pop_back_val(); 537 Instruction *I = cast_or_null<Instruction>(V); 538 if (!I) 539 continue; 540 assert(isInstructionTriviallyDead(I, TLI) && 541 "Live instruction found in dead worklist!"); 542 assert(I->use_empty() && "Instructions with uses are not dead."); 543 544 // Don't lose the debug info while deleting the instructions. 545 salvageDebugInfo(*I); 546 547 if (AboutToDeleteCallback) 548 AboutToDeleteCallback(I); 549 550 // Null out all of the instruction's operands to see if any operand becomes 551 // dead as we go. 552 for (Use &OpU : I->operands()) { 553 Value *OpV = OpU.get(); 554 OpU.set(nullptr); 555 556 if (!OpV->use_empty()) 557 continue; 558 559 // If the operand is an instruction that became dead as we nulled out the 560 // operand, and if it is 'trivially' dead, delete it in a future loop 561 // iteration. 562 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 563 if (isInstructionTriviallyDead(OpI, TLI)) 564 DeadInsts.push_back(OpI); 565 } 566 if (MSSAU) 567 MSSAU->removeMemoryAccess(I); 568 569 I->eraseFromParent(); 570 } 571 } 572 573 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 574 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 575 findDbgUsers(DbgUsers, I); 576 for (auto *DII : DbgUsers) { 577 Value *Undef = UndefValue::get(I->getType()); 578 DII->replaceVariableLocationOp(I, Undef); 579 } 580 return !DbgUsers.empty(); 581 } 582 583 /// areAllUsesEqual - Check whether the uses of a value are all the same. 584 /// This is similar to Instruction::hasOneUse() except this will also return 585 /// true when there are no uses or multiple uses that all refer to the same 586 /// value. 587 static bool areAllUsesEqual(Instruction *I) { 588 Value::user_iterator UI = I->user_begin(); 589 Value::user_iterator UE = I->user_end(); 590 if (UI == UE) 591 return true; 592 593 User *TheUse = *UI; 594 for (++UI; UI != UE; ++UI) { 595 if (*UI != TheUse) 596 return false; 597 } 598 return true; 599 } 600 601 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 602 /// dead PHI node, due to being a def-use chain of single-use nodes that 603 /// either forms a cycle or is terminated by a trivially dead instruction, 604 /// delete it. If that makes any of its operands trivially dead, delete them 605 /// too, recursively. Return true if a change was made. 606 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 607 const TargetLibraryInfo *TLI, 608 llvm::MemorySSAUpdater *MSSAU) { 609 SmallPtrSet<Instruction*, 4> Visited; 610 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 611 I = cast<Instruction>(*I->user_begin())) { 612 if (I->use_empty()) 613 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 614 615 // If we find an instruction more than once, we're on a cycle that 616 // won't prove fruitful. 617 if (!Visited.insert(I).second) { 618 // Break the cycle and delete the instruction and its operands. 619 I->replaceAllUsesWith(UndefValue::get(I->getType())); 620 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 621 return true; 622 } 623 } 624 return false; 625 } 626 627 static bool 628 simplifyAndDCEInstruction(Instruction *I, 629 SmallSetVector<Instruction *, 16> &WorkList, 630 const DataLayout &DL, 631 const TargetLibraryInfo *TLI) { 632 if (isInstructionTriviallyDead(I, TLI)) { 633 salvageDebugInfo(*I); 634 635 // Null out all of the instruction's operands to see if any operand becomes 636 // dead as we go. 637 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 638 Value *OpV = I->getOperand(i); 639 I->setOperand(i, nullptr); 640 641 if (!OpV->use_empty() || I == OpV) 642 continue; 643 644 // If the operand is an instruction that became dead as we nulled out the 645 // operand, and if it is 'trivially' dead, delete it in a future loop 646 // iteration. 647 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 648 if (isInstructionTriviallyDead(OpI, TLI)) 649 WorkList.insert(OpI); 650 } 651 652 I->eraseFromParent(); 653 654 return true; 655 } 656 657 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 658 // Add the users to the worklist. CAREFUL: an instruction can use itself, 659 // in the case of a phi node. 660 for (User *U : I->users()) { 661 if (U != I) { 662 WorkList.insert(cast<Instruction>(U)); 663 } 664 } 665 666 // Replace the instruction with its simplified value. 667 bool Changed = false; 668 if (!I->use_empty()) { 669 I->replaceAllUsesWith(SimpleV); 670 Changed = true; 671 } 672 if (isInstructionTriviallyDead(I, TLI)) { 673 I->eraseFromParent(); 674 Changed = true; 675 } 676 return Changed; 677 } 678 return false; 679 } 680 681 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 682 /// simplify any instructions in it and recursively delete dead instructions. 683 /// 684 /// This returns true if it changed the code, note that it can delete 685 /// instructions in other blocks as well in this block. 686 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 687 const TargetLibraryInfo *TLI) { 688 bool MadeChange = false; 689 const DataLayout &DL = BB->getModule()->getDataLayout(); 690 691 #ifndef NDEBUG 692 // In debug builds, ensure that the terminator of the block is never replaced 693 // or deleted by these simplifications. The idea of simplification is that it 694 // cannot introduce new instructions, and there is no way to replace the 695 // terminator of a block without introducing a new instruction. 696 AssertingVH<Instruction> TerminatorVH(&BB->back()); 697 #endif 698 699 SmallSetVector<Instruction *, 16> WorkList; 700 // Iterate over the original function, only adding insts to the worklist 701 // if they actually need to be revisited. This avoids having to pre-init 702 // the worklist with the entire function's worth of instructions. 703 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 704 BI != E;) { 705 assert(!BI->isTerminator()); 706 Instruction *I = &*BI; 707 ++BI; 708 709 // We're visiting this instruction now, so make sure it's not in the 710 // worklist from an earlier visit. 711 if (!WorkList.count(I)) 712 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 713 } 714 715 while (!WorkList.empty()) { 716 Instruction *I = WorkList.pop_back_val(); 717 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 718 } 719 return MadeChange; 720 } 721 722 //===----------------------------------------------------------------------===// 723 // Control Flow Graph Restructuring. 724 // 725 726 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 727 DomTreeUpdater *DTU) { 728 729 // If BB has single-entry PHI nodes, fold them. 730 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 731 Value *NewVal = PN->getIncomingValue(0); 732 // Replace self referencing PHI with undef, it must be dead. 733 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 734 PN->replaceAllUsesWith(NewVal); 735 PN->eraseFromParent(); 736 } 737 738 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 739 assert(PredBB && "Block doesn't have a single predecessor!"); 740 741 bool ReplaceEntryBB = false; 742 if (PredBB == &DestBB->getParent()->getEntryBlock()) 743 ReplaceEntryBB = true; 744 745 // DTU updates: Collect all the edges that enter 746 // PredBB. These dominator edges will be redirected to DestBB. 747 SmallVector<DominatorTree::UpdateType, 32> Updates; 748 749 if (DTU) { 750 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 751 pred_end(PredBB)); 752 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 753 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 754 // This predecessor of PredBB may already have DestBB as a successor. 755 if (PredOfPredBB != PredBB) 756 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 757 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 758 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 759 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 760 } 761 762 // Zap anything that took the address of DestBB. Not doing this will give the 763 // address an invalid value. 764 if (DestBB->hasAddressTaken()) { 765 BlockAddress *BA = BlockAddress::get(DestBB); 766 Constant *Replacement = 767 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 768 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 769 BA->getType())); 770 BA->destroyConstant(); 771 } 772 773 // Anything that branched to PredBB now branches to DestBB. 774 PredBB->replaceAllUsesWith(DestBB); 775 776 // Splice all the instructions from PredBB to DestBB. 777 PredBB->getTerminator()->eraseFromParent(); 778 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 779 new UnreachableInst(PredBB->getContext(), PredBB); 780 781 // If the PredBB is the entry block of the function, move DestBB up to 782 // become the entry block after we erase PredBB. 783 if (ReplaceEntryBB) 784 DestBB->moveAfter(PredBB); 785 786 if (DTU) { 787 assert(PredBB->getInstList().size() == 1 && 788 isa<UnreachableInst>(PredBB->getTerminator()) && 789 "The successor list of PredBB isn't empty before " 790 "applying corresponding DTU updates."); 791 DTU->applyUpdatesPermissive(Updates); 792 DTU->deleteBB(PredBB); 793 // Recalculation of DomTree is needed when updating a forward DomTree and 794 // the Entry BB is replaced. 795 if (ReplaceEntryBB && DTU->hasDomTree()) { 796 // The entry block was removed and there is no external interface for 797 // the dominator tree to be notified of this change. In this corner-case 798 // we recalculate the entire tree. 799 DTU->recalculate(*(DestBB->getParent())); 800 } 801 } 802 803 else { 804 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 805 } 806 } 807 808 /// Return true if we can choose one of these values to use in place of the 809 /// other. Note that we will always choose the non-undef value to keep. 810 static bool CanMergeValues(Value *First, Value *Second) { 811 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 812 } 813 814 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 815 /// branch to Succ, into Succ. 816 /// 817 /// Assumption: Succ is the single successor for BB. 818 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 819 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 820 821 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 822 << Succ->getName() << "\n"); 823 // Shortcut, if there is only a single predecessor it must be BB and merging 824 // is always safe 825 if (Succ->getSinglePredecessor()) return true; 826 827 // Make a list of the predecessors of BB 828 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 829 830 // Look at all the phi nodes in Succ, to see if they present a conflict when 831 // merging these blocks 832 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 833 PHINode *PN = cast<PHINode>(I); 834 835 // If the incoming value from BB is again a PHINode in 836 // BB which has the same incoming value for *PI as PN does, we can 837 // merge the phi nodes and then the blocks can still be merged 838 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 839 if (BBPN && BBPN->getParent() == BB) { 840 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 841 BasicBlock *IBB = PN->getIncomingBlock(PI); 842 if (BBPreds.count(IBB) && 843 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 844 PN->getIncomingValue(PI))) { 845 LLVM_DEBUG(dbgs() 846 << "Can't fold, phi node " << PN->getName() << " in " 847 << Succ->getName() << " is conflicting with " 848 << BBPN->getName() << " with regard to common predecessor " 849 << IBB->getName() << "\n"); 850 return false; 851 } 852 } 853 } else { 854 Value* Val = PN->getIncomingValueForBlock(BB); 855 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 856 // See if the incoming value for the common predecessor is equal to the 857 // one for BB, in which case this phi node will not prevent the merging 858 // of the block. 859 BasicBlock *IBB = PN->getIncomingBlock(PI); 860 if (BBPreds.count(IBB) && 861 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 862 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 863 << " in " << Succ->getName() 864 << " is conflicting with regard to common " 865 << "predecessor " << IBB->getName() << "\n"); 866 return false; 867 } 868 } 869 } 870 } 871 872 return true; 873 } 874 875 using PredBlockVector = SmallVector<BasicBlock *, 16>; 876 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 877 878 /// Determines the value to use as the phi node input for a block. 879 /// 880 /// Select between \p OldVal any value that we know flows from \p BB 881 /// to a particular phi on the basis of which one (if either) is not 882 /// undef. Update IncomingValues based on the selected value. 883 /// 884 /// \param OldVal The value we are considering selecting. 885 /// \param BB The block that the value flows in from. 886 /// \param IncomingValues A map from block-to-value for other phi inputs 887 /// that we have examined. 888 /// 889 /// \returns the selected value. 890 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 891 IncomingValueMap &IncomingValues) { 892 if (!isa<UndefValue>(OldVal)) { 893 assert((!IncomingValues.count(BB) || 894 IncomingValues.find(BB)->second == OldVal) && 895 "Expected OldVal to match incoming value from BB!"); 896 897 IncomingValues.insert(std::make_pair(BB, OldVal)); 898 return OldVal; 899 } 900 901 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 902 if (It != IncomingValues.end()) return It->second; 903 904 return OldVal; 905 } 906 907 /// Create a map from block to value for the operands of a 908 /// given phi. 909 /// 910 /// Create a map from block to value for each non-undef value flowing 911 /// into \p PN. 912 /// 913 /// \param PN The phi we are collecting the map for. 914 /// \param IncomingValues [out] The map from block to value for this phi. 915 static void gatherIncomingValuesToPhi(PHINode *PN, 916 IncomingValueMap &IncomingValues) { 917 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 918 BasicBlock *BB = PN->getIncomingBlock(i); 919 Value *V = PN->getIncomingValue(i); 920 921 if (!isa<UndefValue>(V)) 922 IncomingValues.insert(std::make_pair(BB, V)); 923 } 924 } 925 926 /// Replace the incoming undef values to a phi with the values 927 /// from a block-to-value map. 928 /// 929 /// \param PN The phi we are replacing the undefs in. 930 /// \param IncomingValues A map from block to value. 931 static void replaceUndefValuesInPhi(PHINode *PN, 932 const IncomingValueMap &IncomingValues) { 933 SmallVector<unsigned> TrueUndefOps; 934 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 935 Value *V = PN->getIncomingValue(i); 936 937 if (!isa<UndefValue>(V)) continue; 938 939 BasicBlock *BB = PN->getIncomingBlock(i); 940 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 941 942 // Keep track of undef/poison incoming values. Those must match, so we fix 943 // them up below if needed. 944 // Note: this is conservatively correct, but we could try harder and group 945 // the undef values per incoming basic block. 946 if (It == IncomingValues.end()) { 947 TrueUndefOps.push_back(i); 948 continue; 949 } 950 951 // There is a defined value for this incoming block, so map this undef 952 // incoming value to the defined value. 953 PN->setIncomingValue(i, It->second); 954 } 955 956 // If there are both undef and poison values incoming, then convert those 957 // values to undef. It is invalid to have different values for the same 958 // incoming block. 959 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 960 return isa<PoisonValue>(PN->getIncomingValue(i)); 961 }); 962 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 963 for (unsigned i : TrueUndefOps) 964 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 965 } 966 } 967 968 /// Replace a value flowing from a block to a phi with 969 /// potentially multiple instances of that value flowing from the 970 /// block's predecessors to the phi. 971 /// 972 /// \param BB The block with the value flowing into the phi. 973 /// \param BBPreds The predecessors of BB. 974 /// \param PN The phi that we are updating. 975 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 976 const PredBlockVector &BBPreds, 977 PHINode *PN) { 978 Value *OldVal = PN->removeIncomingValue(BB, false); 979 assert(OldVal && "No entry in PHI for Pred BB!"); 980 981 IncomingValueMap IncomingValues; 982 983 // We are merging two blocks - BB, and the block containing PN - and 984 // as a result we need to redirect edges from the predecessors of BB 985 // to go to the block containing PN, and update PN 986 // accordingly. Since we allow merging blocks in the case where the 987 // predecessor and successor blocks both share some predecessors, 988 // and where some of those common predecessors might have undef 989 // values flowing into PN, we want to rewrite those values to be 990 // consistent with the non-undef values. 991 992 gatherIncomingValuesToPhi(PN, IncomingValues); 993 994 // If this incoming value is one of the PHI nodes in BB, the new entries 995 // in the PHI node are the entries from the old PHI. 996 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 997 PHINode *OldValPN = cast<PHINode>(OldVal); 998 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 999 // Note that, since we are merging phi nodes and BB and Succ might 1000 // have common predecessors, we could end up with a phi node with 1001 // identical incoming branches. This will be cleaned up later (and 1002 // will trigger asserts if we try to clean it up now, without also 1003 // simplifying the corresponding conditional branch). 1004 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1005 Value *PredVal = OldValPN->getIncomingValue(i); 1006 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1007 IncomingValues); 1008 1009 // And add a new incoming value for this predecessor for the 1010 // newly retargeted branch. 1011 PN->addIncoming(Selected, PredBB); 1012 } 1013 } else { 1014 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1015 // Update existing incoming values in PN for this 1016 // predecessor of BB. 1017 BasicBlock *PredBB = BBPreds[i]; 1018 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1019 IncomingValues); 1020 1021 // And add a new incoming value for this predecessor for the 1022 // newly retargeted branch. 1023 PN->addIncoming(Selected, PredBB); 1024 } 1025 } 1026 1027 replaceUndefValuesInPhi(PN, IncomingValues); 1028 } 1029 1030 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1031 DomTreeUpdater *DTU) { 1032 assert(BB != &BB->getParent()->getEntryBlock() && 1033 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1034 1035 // We can't eliminate infinite loops. 1036 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1037 if (BB == Succ) return false; 1038 1039 // Check to see if merging these blocks would cause conflicts for any of the 1040 // phi nodes in BB or Succ. If not, we can safely merge. 1041 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1042 1043 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1044 // has uses which will not disappear when the PHI nodes are merged. It is 1045 // possible to handle such cases, but difficult: it requires checking whether 1046 // BB dominates Succ, which is non-trivial to calculate in the case where 1047 // Succ has multiple predecessors. Also, it requires checking whether 1048 // constructing the necessary self-referential PHI node doesn't introduce any 1049 // conflicts; this isn't too difficult, but the previous code for doing this 1050 // was incorrect. 1051 // 1052 // Note that if this check finds a live use, BB dominates Succ, so BB is 1053 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1054 // folding the branch isn't profitable in that case anyway. 1055 if (!Succ->getSinglePredecessor()) { 1056 BasicBlock::iterator BBI = BB->begin(); 1057 while (isa<PHINode>(*BBI)) { 1058 for (Use &U : BBI->uses()) { 1059 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1060 if (PN->getIncomingBlock(U) != BB) 1061 return false; 1062 } else { 1063 return false; 1064 } 1065 } 1066 ++BBI; 1067 } 1068 } 1069 1070 // We cannot fold the block if it's a branch to an already present callbr 1071 // successor because that creates duplicate successors. 1072 for (BasicBlock *PredBB : predecessors(BB)) { 1073 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1074 if (Succ == CBI->getDefaultDest()) 1075 return false; 1076 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1077 if (Succ == CBI->getIndirectDest(i)) 1078 return false; 1079 } 1080 } 1081 1082 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1083 1084 SmallVector<DominatorTree::UpdateType, 32> Updates; 1085 if (DTU) { 1086 // All predecessors of BB will be moved to Succ. 1087 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1088 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1089 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1090 for (auto *PredOfBB : PredsOfBB) 1091 // This predecessor of BB may already have Succ as a successor. 1092 if (!PredsOfSucc.contains(PredOfBB)) 1093 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1094 for (auto *PredOfBB : PredsOfBB) 1095 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1096 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1097 } 1098 1099 if (isa<PHINode>(Succ->begin())) { 1100 // If there is more than one pred of succ, and there are PHI nodes in 1101 // the successor, then we need to add incoming edges for the PHI nodes 1102 // 1103 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1104 1105 // Loop over all of the PHI nodes in the successor of BB. 1106 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1107 PHINode *PN = cast<PHINode>(I); 1108 1109 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1110 } 1111 } 1112 1113 if (Succ->getSinglePredecessor()) { 1114 // BB is the only predecessor of Succ, so Succ will end up with exactly 1115 // the same predecessors BB had. 1116 1117 // Copy over any phi, debug or lifetime instruction. 1118 BB->getTerminator()->eraseFromParent(); 1119 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1120 BB->getInstList()); 1121 } else { 1122 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1123 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1124 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1125 PN->eraseFromParent(); 1126 } 1127 } 1128 1129 // If the unconditional branch we replaced contains llvm.loop metadata, we 1130 // add the metadata to the branch instructions in the predecessors. 1131 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1132 Instruction *TI = BB->getTerminator(); 1133 if (TI) 1134 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1135 for (BasicBlock *Pred : predecessors(BB)) 1136 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1137 1138 // For AutoFDO, since BB is going to be removed, we won't be able to sample 1139 // it. To avoid assigning a zero weight for BB, move all its pseudo probes 1140 // into Succ and mark them dangling. This should allow the counts inference a 1141 // chance to get a more reasonable weight for BB. 1142 moveAndDanglePseudoProbes(BB, &*Succ->getFirstInsertionPt()); 1143 1144 // Everything that jumped to BB now goes to Succ. 1145 BB->replaceAllUsesWith(Succ); 1146 if (!Succ->hasName()) Succ->takeName(BB); 1147 1148 // Clear the successor list of BB to match updates applying to DTU later. 1149 if (BB->getTerminator()) 1150 BB->getInstList().pop_back(); 1151 new UnreachableInst(BB->getContext(), BB); 1152 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1153 "applying corresponding DTU updates."); 1154 1155 if (DTU) { 1156 DTU->applyUpdates(Updates); 1157 DTU->deleteBB(BB); 1158 } else { 1159 BB->eraseFromParent(); // Delete the old basic block. 1160 } 1161 return true; 1162 } 1163 1164 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1165 // This implementation doesn't currently consider undef operands 1166 // specially. Theoretically, two phis which are identical except for 1167 // one having an undef where the other doesn't could be collapsed. 1168 1169 bool Changed = false; 1170 1171 // Examine each PHI. 1172 // Note that increment of I must *NOT* be in the iteration_expression, since 1173 // we don't want to immediately advance when we restart from the beginning. 1174 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1175 ++I; 1176 // Is there an identical PHI node in this basic block? 1177 // Note that we only look in the upper square's triangle, 1178 // we already checked that the lower triangle PHI's aren't identical. 1179 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1180 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1181 continue; 1182 // A duplicate. Replace this PHI with the base PHI. 1183 ++NumPHICSEs; 1184 DuplicatePN->replaceAllUsesWith(PN); 1185 DuplicatePN->eraseFromParent(); 1186 Changed = true; 1187 1188 // The RAUW can change PHIs that we already visited. 1189 I = BB->begin(); 1190 break; // Start over from the beginning. 1191 } 1192 } 1193 return Changed; 1194 } 1195 1196 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1197 // This implementation doesn't currently consider undef operands 1198 // specially. Theoretically, two phis which are identical except for 1199 // one having an undef where the other doesn't could be collapsed. 1200 1201 struct PHIDenseMapInfo { 1202 static PHINode *getEmptyKey() { 1203 return DenseMapInfo<PHINode *>::getEmptyKey(); 1204 } 1205 1206 static PHINode *getTombstoneKey() { 1207 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1208 } 1209 1210 static bool isSentinel(PHINode *PN) { 1211 return PN == getEmptyKey() || PN == getTombstoneKey(); 1212 } 1213 1214 // WARNING: this logic must be kept in sync with 1215 // Instruction::isIdenticalToWhenDefined()! 1216 static unsigned getHashValueImpl(PHINode *PN) { 1217 // Compute a hash value on the operands. Instcombine will likely have 1218 // sorted them, which helps expose duplicates, but we have to check all 1219 // the operands to be safe in case instcombine hasn't run. 1220 return static_cast<unsigned>(hash_combine( 1221 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1222 hash_combine_range(PN->block_begin(), PN->block_end()))); 1223 } 1224 1225 static unsigned getHashValue(PHINode *PN) { 1226 #ifndef NDEBUG 1227 // If -phicse-debug-hash was specified, return a constant -- this 1228 // will force all hashing to collide, so we'll exhaustively search 1229 // the table for a match, and the assertion in isEqual will fire if 1230 // there's a bug causing equal keys to hash differently. 1231 if (PHICSEDebugHash) 1232 return 0; 1233 #endif 1234 return getHashValueImpl(PN); 1235 } 1236 1237 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1238 if (isSentinel(LHS) || isSentinel(RHS)) 1239 return LHS == RHS; 1240 return LHS->isIdenticalTo(RHS); 1241 } 1242 1243 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1244 // These comparisons are nontrivial, so assert that equality implies 1245 // hash equality (DenseMap demands this as an invariant). 1246 bool Result = isEqualImpl(LHS, RHS); 1247 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1248 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1249 return Result; 1250 } 1251 }; 1252 1253 // Set of unique PHINodes. 1254 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1255 PHISet.reserve(4 * PHICSENumPHISmallSize); 1256 1257 // Examine each PHI. 1258 bool Changed = false; 1259 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1260 auto Inserted = PHISet.insert(PN); 1261 if (!Inserted.second) { 1262 // A duplicate. Replace this PHI with its duplicate. 1263 ++NumPHICSEs; 1264 PN->replaceAllUsesWith(*Inserted.first); 1265 PN->eraseFromParent(); 1266 Changed = true; 1267 1268 // The RAUW can change PHIs that we already visited. Start over from the 1269 // beginning. 1270 PHISet.clear(); 1271 I = BB->begin(); 1272 } 1273 } 1274 1275 return Changed; 1276 } 1277 1278 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1279 if ( 1280 #ifndef NDEBUG 1281 !PHICSEDebugHash && 1282 #endif 1283 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1284 return EliminateDuplicatePHINodesNaiveImpl(BB); 1285 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1286 } 1287 1288 /// If the specified pointer points to an object that we control, try to modify 1289 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1290 /// the value after the operation, which may be lower than PrefAlign. 1291 /// 1292 /// Increating value alignment isn't often possible though. If alignment is 1293 /// important, a more reliable approach is to simply align all global variables 1294 /// and allocation instructions to their preferred alignment from the beginning. 1295 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1296 const DataLayout &DL) { 1297 V = V->stripPointerCasts(); 1298 1299 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1300 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1301 // than the current alignment, as the known bits calculation should have 1302 // already taken it into account. However, this is not always the case, 1303 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1304 // doesn't. 1305 Align CurrentAlign = AI->getAlign(); 1306 if (PrefAlign <= CurrentAlign) 1307 return CurrentAlign; 1308 1309 // If the preferred alignment is greater than the natural stack alignment 1310 // then don't round up. This avoids dynamic stack realignment. 1311 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1312 return CurrentAlign; 1313 AI->setAlignment(PrefAlign); 1314 return PrefAlign; 1315 } 1316 1317 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1318 // TODO: as above, this shouldn't be necessary. 1319 Align CurrentAlign = GO->getPointerAlignment(DL); 1320 if (PrefAlign <= CurrentAlign) 1321 return CurrentAlign; 1322 1323 // If there is a large requested alignment and we can, bump up the alignment 1324 // of the global. If the memory we set aside for the global may not be the 1325 // memory used by the final program then it is impossible for us to reliably 1326 // enforce the preferred alignment. 1327 if (!GO->canIncreaseAlignment()) 1328 return CurrentAlign; 1329 1330 GO->setAlignment(PrefAlign); 1331 return PrefAlign; 1332 } 1333 1334 return Align(1); 1335 } 1336 1337 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1338 const DataLayout &DL, 1339 const Instruction *CxtI, 1340 AssumptionCache *AC, 1341 const DominatorTree *DT) { 1342 assert(V->getType()->isPointerTy() && 1343 "getOrEnforceKnownAlignment expects a pointer!"); 1344 1345 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1346 unsigned TrailZ = Known.countMinTrailingZeros(); 1347 1348 // Avoid trouble with ridiculously large TrailZ values, such as 1349 // those computed from a null pointer. 1350 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1351 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1352 1353 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1354 1355 if (PrefAlign && *PrefAlign > Alignment) 1356 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1357 1358 // We don't need to make any adjustment. 1359 return Alignment; 1360 } 1361 1362 ///===---------------------------------------------------------------------===// 1363 /// Dbg Intrinsic utilities 1364 /// 1365 1366 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1367 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1368 DIExpression *DIExpr, 1369 PHINode *APN) { 1370 // Since we can't guarantee that the original dbg.declare instrinsic 1371 // is removed by LowerDbgDeclare(), we need to make sure that we are 1372 // not inserting the same dbg.value intrinsic over and over. 1373 SmallVector<DbgValueInst *, 1> DbgValues; 1374 findDbgValues(DbgValues, APN); 1375 for (auto *DVI : DbgValues) { 1376 assert(is_contained(DVI->getValues(), APN)); 1377 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1378 return true; 1379 } 1380 return false; 1381 } 1382 1383 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1384 /// (or fragment of the variable) described by \p DII. 1385 /// 1386 /// This is primarily intended as a helper for the different 1387 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1388 /// converted describes an alloca'd variable, so we need to use the 1389 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1390 /// identified as covering an n-bit fragment, if the store size of i1 is at 1391 /// least n bits. 1392 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1393 const DataLayout &DL = DII->getModule()->getDataLayout(); 1394 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1395 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1396 assert(!ValueSize.isScalable() && 1397 "Fragments don't work on scalable types."); 1398 return ValueSize.getFixedSize() >= *FragmentSize; 1399 } 1400 // We can't always calculate the size of the DI variable (e.g. if it is a 1401 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1402 // intead. 1403 if (DII->isAddressOfVariable()) { 1404 // DII should have exactly 1 location when it is an address. 1405 assert(DII->getNumVariableLocationOps() == 1 && 1406 "address of variable must have exactly 1 location operand."); 1407 if (auto *AI = 1408 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1409 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1410 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1411 "Both sizes should agree on the scalable flag."); 1412 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1413 } 1414 } 1415 } 1416 // Could not determine size of variable. Conservatively return false. 1417 return false; 1418 } 1419 1420 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1421 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1422 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1423 /// case this DebugLoc leaks into any adjacent instructions. 1424 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1425 // Original dbg.declare must have a location. 1426 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1427 MDNode *Scope = DeclareLoc.getScope(); 1428 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1429 // Produce an unknown location with the correct scope / inlinedAt fields. 1430 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1431 } 1432 1433 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1434 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1435 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1436 StoreInst *SI, DIBuilder &Builder) { 1437 assert(DII->isAddressOfVariable()); 1438 auto *DIVar = DII->getVariable(); 1439 assert(DIVar && "Missing variable"); 1440 auto *DIExpr = DII->getExpression(); 1441 Value *DV = SI->getValueOperand(); 1442 1443 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1444 1445 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1446 // FIXME: If storing to a part of the variable described by the dbg.declare, 1447 // then we want to insert a dbg.value for the corresponding fragment. 1448 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1449 << *DII << '\n'); 1450 // For now, when there is a store to parts of the variable (but we do not 1451 // know which part) we insert an dbg.value instrinsic to indicate that we 1452 // know nothing about the variable's content. 1453 DV = UndefValue::get(DV->getType()); 1454 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1455 return; 1456 } 1457 1458 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1459 } 1460 1461 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1462 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1463 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1464 LoadInst *LI, DIBuilder &Builder) { 1465 auto *DIVar = DII->getVariable(); 1466 auto *DIExpr = DII->getExpression(); 1467 assert(DIVar && "Missing variable"); 1468 1469 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1470 // FIXME: If only referring to a part of the variable described by the 1471 // dbg.declare, then we want to insert a dbg.value for the corresponding 1472 // fragment. 1473 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1474 << *DII << '\n'); 1475 return; 1476 } 1477 1478 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1479 1480 // We are now tracking the loaded value instead of the address. In the 1481 // future if multi-location support is added to the IR, it might be 1482 // preferable to keep tracking both the loaded value and the original 1483 // address in case the alloca can not be elided. 1484 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1485 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1486 DbgValue->insertAfter(LI); 1487 } 1488 1489 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1490 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1491 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1492 PHINode *APN, DIBuilder &Builder) { 1493 auto *DIVar = DII->getVariable(); 1494 auto *DIExpr = DII->getExpression(); 1495 assert(DIVar && "Missing variable"); 1496 1497 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1498 return; 1499 1500 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1501 // FIXME: If only referring to a part of the variable described by the 1502 // dbg.declare, then we want to insert a dbg.value for the corresponding 1503 // fragment. 1504 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1505 << *DII << '\n'); 1506 return; 1507 } 1508 1509 BasicBlock *BB = APN->getParent(); 1510 auto InsertionPt = BB->getFirstInsertionPt(); 1511 1512 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1513 1514 // The block may be a catchswitch block, which does not have a valid 1515 // insertion point. 1516 // FIXME: Insert dbg.value markers in the successors when appropriate. 1517 if (InsertionPt != BB->end()) 1518 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1519 } 1520 1521 /// Determine whether this alloca is either a VLA or an array. 1522 static bool isArray(AllocaInst *AI) { 1523 return AI->isArrayAllocation() || 1524 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1525 } 1526 1527 /// Determine whether this alloca is a structure. 1528 static bool isStructure(AllocaInst *AI) { 1529 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1530 } 1531 1532 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1533 /// of llvm.dbg.value intrinsics. 1534 bool llvm::LowerDbgDeclare(Function &F) { 1535 bool Changed = false; 1536 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1537 SmallVector<DbgDeclareInst *, 4> Dbgs; 1538 for (auto &FI : F) 1539 for (Instruction &BI : FI) 1540 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1541 Dbgs.push_back(DDI); 1542 1543 if (Dbgs.empty()) 1544 return Changed; 1545 1546 for (auto &I : Dbgs) { 1547 DbgDeclareInst *DDI = I; 1548 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1549 // If this is an alloca for a scalar variable, insert a dbg.value 1550 // at each load and store to the alloca and erase the dbg.declare. 1551 // The dbg.values allow tracking a variable even if it is not 1552 // stored on the stack, while the dbg.declare can only describe 1553 // the stack slot (and at a lexical-scope granularity). Later 1554 // passes will attempt to elide the stack slot. 1555 if (!AI || isArray(AI) || isStructure(AI)) 1556 continue; 1557 1558 // A volatile load/store means that the alloca can't be elided anyway. 1559 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1560 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1561 return LI->isVolatile(); 1562 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1563 return SI->isVolatile(); 1564 return false; 1565 })) 1566 continue; 1567 1568 SmallVector<const Value *, 8> WorkList; 1569 WorkList.push_back(AI); 1570 while (!WorkList.empty()) { 1571 const Value *V = WorkList.pop_back_val(); 1572 for (auto &AIUse : V->uses()) { 1573 User *U = AIUse.getUser(); 1574 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1575 if (AIUse.getOperandNo() == 1) 1576 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1577 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1578 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1579 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1580 // This is a call by-value or some other instruction that takes a 1581 // pointer to the variable. Insert a *value* intrinsic that describes 1582 // the variable by dereferencing the alloca. 1583 if (!CI->isLifetimeStartOrEnd()) { 1584 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1585 auto *DerefExpr = 1586 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1587 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1588 NewLoc, CI); 1589 } 1590 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1591 if (BI->getType()->isPointerTy()) 1592 WorkList.push_back(BI); 1593 } 1594 } 1595 } 1596 DDI->eraseFromParent(); 1597 Changed = true; 1598 } 1599 1600 if (Changed) 1601 for (BasicBlock &BB : F) 1602 RemoveRedundantDbgInstrs(&BB); 1603 1604 return Changed; 1605 } 1606 1607 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1608 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1609 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1610 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1611 if (InsertedPHIs.size() == 0) 1612 return; 1613 1614 // Map existing PHI nodes to their dbg.values. 1615 ValueToValueMapTy DbgValueMap; 1616 for (auto &I : *BB) { 1617 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1618 for (Value *V : DbgII->location_ops()) 1619 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1620 DbgValueMap.insert({Loc, DbgII}); 1621 } 1622 } 1623 if (DbgValueMap.size() == 0) 1624 return; 1625 1626 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1627 // so that if a dbg.value is being rewritten to use more than one of the 1628 // inserted PHIs in the same destination BB, we can update the same dbg.value 1629 // with all the new PHIs instead of creating one copy for each. 1630 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1631 DbgVariableIntrinsic *> 1632 NewDbgValueMap; 1633 // Then iterate through the new PHIs and look to see if they use one of the 1634 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1635 // propagate the info through the new PHI. If we use more than one new PHI in 1636 // a single destination BB with the same old dbg.value, merge the updates so 1637 // that we get a single new dbg.value with all the new PHIs. 1638 for (auto PHI : InsertedPHIs) { 1639 BasicBlock *Parent = PHI->getParent(); 1640 // Avoid inserting an intrinsic into an EH block. 1641 if (Parent->getFirstNonPHI()->isEHPad()) 1642 continue; 1643 for (auto VI : PHI->operand_values()) { 1644 auto V = DbgValueMap.find(VI); 1645 if (V != DbgValueMap.end()) { 1646 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1647 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1648 if (NewDI == NewDbgValueMap.end()) { 1649 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1650 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1651 } 1652 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1653 // If PHI contains VI as an operand more than once, we may 1654 // replaced it in NewDbgII; confirm that it is present. 1655 if (is_contained(NewDbgII->location_ops(), VI)) 1656 NewDbgII->replaceVariableLocationOp(VI, PHI); 1657 } 1658 } 1659 } 1660 // Insert thew new dbg.values into their destination blocks. 1661 for (auto DI : NewDbgValueMap) { 1662 BasicBlock *Parent = DI.first.first; 1663 auto *NewDbgII = DI.second; 1664 auto InsertionPt = Parent->getFirstInsertionPt(); 1665 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1666 NewDbgII->insertBefore(&*InsertionPt); 1667 } 1668 } 1669 1670 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1671 DIBuilder &Builder, uint8_t DIExprFlags, 1672 int Offset) { 1673 auto DbgAddrs = FindDbgAddrUses(Address); 1674 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1675 const DebugLoc &Loc = DII->getDebugLoc(); 1676 auto *DIVar = DII->getVariable(); 1677 auto *DIExpr = DII->getExpression(); 1678 assert(DIVar && "Missing variable"); 1679 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1680 // Insert llvm.dbg.declare immediately before DII, and remove old 1681 // llvm.dbg.declare. 1682 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1683 DII->eraseFromParent(); 1684 } 1685 return !DbgAddrs.empty(); 1686 } 1687 1688 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1689 DIBuilder &Builder, int Offset) { 1690 const DebugLoc &Loc = DVI->getDebugLoc(); 1691 auto *DIVar = DVI->getVariable(); 1692 auto *DIExpr = DVI->getExpression(); 1693 assert(DIVar && "Missing variable"); 1694 1695 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1696 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1697 // it and give up. 1698 if (!DIExpr || DIExpr->getNumElements() < 1 || 1699 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1700 return; 1701 1702 // Insert the offset before the first deref. 1703 // We could just change the offset argument of dbg.value, but it's unsigned... 1704 if (Offset) 1705 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1706 1707 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1708 DVI->eraseFromParent(); 1709 } 1710 1711 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1712 DIBuilder &Builder, int Offset) { 1713 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1714 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1715 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1716 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1717 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1718 } 1719 1720 /// Where possible to salvage debug information for \p I do so 1721 /// and return True. If not possible mark undef and return False. 1722 void llvm::salvageDebugInfo(Instruction &I) { 1723 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1724 findDbgUsers(DbgUsers, &I); 1725 salvageDebugInfoForDbgValues(I, DbgUsers); 1726 } 1727 1728 void llvm::salvageDebugInfoForDbgValues( 1729 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1730 bool Salvaged = false; 1731 1732 for (auto *DII : DbgUsers) { 1733 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1734 // are implicitly pointing out the value as a DWARF memory location 1735 // description. 1736 bool StackValue = isa<DbgValueInst>(DII); 1737 auto DIILocation = DII->location_ops(); 1738 assert( 1739 is_contained(DIILocation, &I) && 1740 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1741 unsigned LocNo = std::distance(DIILocation.begin(), find(DIILocation, &I)); 1742 1743 DIExpression *DIExpr = 1744 salvageDebugInfoImpl(I, DII->getExpression(), StackValue, LocNo); 1745 1746 // salvageDebugInfoImpl should fail on examining the first element of 1747 // DbgUsers, or none of them. 1748 if (!DIExpr) 1749 break; 1750 1751 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1752 DII->setExpression(DIExpr); 1753 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1754 Salvaged = true; 1755 } 1756 1757 if (Salvaged) 1758 return; 1759 1760 for (auto *DII : DbgUsers) { 1761 Value *Undef = UndefValue::get(I.getType()); 1762 DII->replaceVariableLocationOp(&I, Undef); 1763 } 1764 } 1765 1766 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1767 SmallVectorImpl<uint64_t> &Opcodes) { 1768 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1769 // Rewrite a constant GEP into a DIExpression. 1770 APInt ConstantOffset(BitWidth, 0); 1771 if (!GEP->accumulateConstantOffset(DL, ConstantOffset)) 1772 return false; 1773 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1774 return true; 1775 } 1776 1777 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1778 switch (Opcode) { 1779 case Instruction::Add: 1780 return dwarf::DW_OP_plus; 1781 case Instruction::Sub: 1782 return dwarf::DW_OP_minus; 1783 case Instruction::Mul: 1784 return dwarf::DW_OP_mul; 1785 case Instruction::SDiv: 1786 return dwarf::DW_OP_div; 1787 case Instruction::SRem: 1788 return dwarf::DW_OP_mod; 1789 case Instruction::Or: 1790 return dwarf::DW_OP_or; 1791 case Instruction::And: 1792 return dwarf::DW_OP_and; 1793 case Instruction::Xor: 1794 return dwarf::DW_OP_xor; 1795 case Instruction::Shl: 1796 return dwarf::DW_OP_shl; 1797 case Instruction::LShr: 1798 return dwarf::DW_OP_shr; 1799 case Instruction::AShr: 1800 return dwarf::DW_OP_shra; 1801 default: 1802 // TODO: Salvage from each kind of binop we know about. 1803 return 0; 1804 } 1805 } 1806 1807 bool getSalvageOpsForBinOp(BinaryOperator *BI, 1808 SmallVectorImpl<uint64_t> &Opcodes) { 1809 // Rewrite binary operations with constant integer operands. 1810 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1811 if (!ConstInt || ConstInt->getBitWidth() > 64) 1812 return false; 1813 uint64_t Val = ConstInt->getSExtValue(); 1814 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1815 // Add or Sub Instructions with a constant operand can potentially be 1816 // simplified. 1817 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1818 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1819 DIExpression::appendOffset(Opcodes, Offset); 1820 return true; 1821 } 1822 // Add constant int operand to expression stack. 1823 Opcodes.append({dwarf::DW_OP_constu, Val}); 1824 1825 // Add salvaged binary operator to expression stack, if it has a valid 1826 // representation in a DIExpression. 1827 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1828 if (!DwarfBinOp) 1829 return false; 1830 Opcodes.push_back(DwarfBinOp); 1831 1832 return true; 1833 } 1834 1835 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1836 DIExpression *SrcDIExpr, 1837 bool WithStackValue, unsigned LocNo) { 1838 auto &M = *I.getModule(); 1839 auto &DL = M.getDataLayout(); 1840 1841 // Apply a vector of opcodes to the source DIExpression. 1842 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1843 DIExpression *DIExpr = SrcDIExpr; 1844 if (!Ops.empty()) { 1845 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1846 } 1847 return DIExpr; 1848 }; 1849 1850 // initializer-list helper for applying operators to the source DIExpression. 1851 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1852 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1853 return doSalvage(Ops); 1854 }; 1855 1856 if (auto *CI = dyn_cast<CastInst>(&I)) { 1857 // No-op casts are irrelevant for debug info. 1858 if (CI->isNoopCast(DL)) 1859 return SrcDIExpr; 1860 1861 Type *Type = CI->getType(); 1862 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1863 if (Type->isVectorTy() || 1864 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1865 return nullptr; 1866 1867 Value *FromValue = CI->getOperand(0); 1868 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1869 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1870 1871 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1872 isa<SExtInst>(&I))); 1873 } 1874 1875 SmallVector<uint64_t, 8> Ops; 1876 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1877 if (getSalvageOpsForGEP(GEP, DL, Ops)) 1878 return doSalvage(Ops); 1879 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1880 if (getSalvageOpsForBinOp(BI, Ops)) 1881 return doSalvage(Ops); 1882 } 1883 // *Not* to do: we should not attempt to salvage load instructions, 1884 // because the validity and lifetime of a dbg.value containing 1885 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1886 return nullptr; 1887 } 1888 1889 /// A replacement for a dbg.value expression. 1890 using DbgValReplacement = Optional<DIExpression *>; 1891 1892 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1893 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1894 /// changes are made. 1895 static bool rewriteDebugUsers( 1896 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1897 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1898 // Find debug users of From. 1899 SmallVector<DbgVariableIntrinsic *, 1> Users; 1900 findDbgUsers(Users, &From); 1901 if (Users.empty()) 1902 return false; 1903 1904 // Prevent use-before-def of To. 1905 bool Changed = false; 1906 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1907 if (isa<Instruction>(&To)) { 1908 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1909 1910 for (auto *DII : Users) { 1911 // It's common to see a debug user between From and DomPoint. Move it 1912 // after DomPoint to preserve the variable update without any reordering. 1913 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1914 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1915 DII->moveAfter(&DomPoint); 1916 Changed = true; 1917 1918 // Users which otherwise aren't dominated by the replacement value must 1919 // be salvaged or deleted. 1920 } else if (!DT.dominates(&DomPoint, DII)) { 1921 UndefOrSalvage.insert(DII); 1922 } 1923 } 1924 } 1925 1926 // Update debug users without use-before-def risk. 1927 for (auto *DII : Users) { 1928 if (UndefOrSalvage.count(DII)) 1929 continue; 1930 1931 DbgValReplacement DVR = RewriteExpr(*DII); 1932 if (!DVR) 1933 continue; 1934 1935 DII->replaceVariableLocationOp(&From, &To); 1936 DII->setExpression(*DVR); 1937 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1938 Changed = true; 1939 } 1940 1941 if (!UndefOrSalvage.empty()) { 1942 // Try to salvage the remaining debug users. 1943 salvageDebugInfo(From); 1944 Changed = true; 1945 } 1946 1947 return Changed; 1948 } 1949 1950 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1951 /// losslessly preserve the bits and semantics of the value. This predicate is 1952 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1953 /// 1954 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1955 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1956 /// and also does not allow lossless pointer <-> integer conversions. 1957 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1958 Type *ToTy) { 1959 // Trivially compatible types. 1960 if (FromTy == ToTy) 1961 return true; 1962 1963 // Handle compatible pointer <-> integer conversions. 1964 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1965 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1966 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1967 !DL.isNonIntegralPointerType(ToTy); 1968 return SameSize && LosslessConversion; 1969 } 1970 1971 // TODO: This is not exhaustive. 1972 return false; 1973 } 1974 1975 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1976 Instruction &DomPoint, DominatorTree &DT) { 1977 // Exit early if From has no debug users. 1978 if (!From.isUsedByMetadata()) 1979 return false; 1980 1981 assert(&From != &To && "Can't replace something with itself"); 1982 1983 Type *FromTy = From.getType(); 1984 Type *ToTy = To.getType(); 1985 1986 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1987 return DII.getExpression(); 1988 }; 1989 1990 // Handle no-op conversions. 1991 Module &M = *From.getModule(); 1992 const DataLayout &DL = M.getDataLayout(); 1993 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1994 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1995 1996 // Handle integer-to-integer widening and narrowing. 1997 // FIXME: Use DW_OP_convert when it's available everywhere. 1998 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1999 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2000 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2001 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2002 2003 // When the width of the result grows, assume that a debugger will only 2004 // access the low `FromBits` bits when inspecting the source variable. 2005 if (FromBits < ToBits) 2006 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2007 2008 // The width of the result has shrunk. Use sign/zero extension to describe 2009 // the source variable's high bits. 2010 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2011 DILocalVariable *Var = DII.getVariable(); 2012 2013 // Without knowing signedness, sign/zero extension isn't possible. 2014 auto Signedness = Var->getSignedness(); 2015 if (!Signedness) 2016 return None; 2017 2018 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2019 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2020 Signed); 2021 }; 2022 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2023 } 2024 2025 // TODO: Floating-point conversions, vectors. 2026 return false; 2027 } 2028 2029 std::pair<unsigned, unsigned> 2030 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2031 unsigned NumDeadInst = 0; 2032 unsigned NumDeadDbgInst = 0; 2033 // Delete the instructions backwards, as it has a reduced likelihood of 2034 // having to update as many def-use and use-def chains. 2035 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2036 while (EndInst != &BB->front()) { 2037 // Delete the next to last instruction. 2038 Instruction *Inst = &*--EndInst->getIterator(); 2039 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2040 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2041 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2042 EndInst = Inst; 2043 continue; 2044 } 2045 if (isa<DbgInfoIntrinsic>(Inst)) 2046 ++NumDeadDbgInst; 2047 else 2048 ++NumDeadInst; 2049 Inst->eraseFromParent(); 2050 } 2051 return {NumDeadInst, NumDeadDbgInst}; 2052 } 2053 2054 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2055 bool PreserveLCSSA, DomTreeUpdater *DTU, 2056 MemorySSAUpdater *MSSAU) { 2057 BasicBlock *BB = I->getParent(); 2058 2059 if (MSSAU) 2060 MSSAU->changeToUnreachable(I); 2061 2062 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2063 2064 // Loop over all of the successors, removing BB's entry from any PHI 2065 // nodes. 2066 for (BasicBlock *Successor : successors(BB)) { 2067 Successor->removePredecessor(BB, PreserveLCSSA); 2068 if (DTU) 2069 UniqueSuccessors.insert(Successor); 2070 } 2071 // Insert a call to llvm.trap right before this. This turns the undefined 2072 // behavior into a hard fail instead of falling through into random code. 2073 if (UseLLVMTrap) { 2074 Function *TrapFn = 2075 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2076 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2077 CallTrap->setDebugLoc(I->getDebugLoc()); 2078 } 2079 auto *UI = new UnreachableInst(I->getContext(), I); 2080 UI->setDebugLoc(I->getDebugLoc()); 2081 2082 // All instructions after this are dead. 2083 unsigned NumInstrsRemoved = 0; 2084 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2085 while (BBI != BBE) { 2086 if (!BBI->use_empty()) 2087 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2088 BB->getInstList().erase(BBI++); 2089 ++NumInstrsRemoved; 2090 } 2091 if (DTU) { 2092 SmallVector<DominatorTree::UpdateType, 8> Updates; 2093 Updates.reserve(UniqueSuccessors.size()); 2094 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2095 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2096 DTU->applyUpdates(Updates); 2097 } 2098 return NumInstrsRemoved; 2099 } 2100 2101 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2102 SmallVector<Value *, 8> Args(II->args()); 2103 SmallVector<OperandBundleDef, 1> OpBundles; 2104 II->getOperandBundlesAsDefs(OpBundles); 2105 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2106 II->getCalledOperand(), Args, OpBundles); 2107 NewCall->setCallingConv(II->getCallingConv()); 2108 NewCall->setAttributes(II->getAttributes()); 2109 NewCall->setDebugLoc(II->getDebugLoc()); 2110 NewCall->copyMetadata(*II); 2111 2112 // If the invoke had profile metadata, try converting them for CallInst. 2113 uint64_t TotalWeight; 2114 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2115 // Set the total weight if it fits into i32, otherwise reset. 2116 MDBuilder MDB(NewCall->getContext()); 2117 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2118 ? nullptr 2119 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2120 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2121 } 2122 2123 return NewCall; 2124 } 2125 2126 /// changeToCall - Convert the specified invoke into a normal call. 2127 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2128 CallInst *NewCall = createCallMatchingInvoke(II); 2129 NewCall->takeName(II); 2130 NewCall->insertBefore(II); 2131 II->replaceAllUsesWith(NewCall); 2132 2133 // Follow the call by a branch to the normal destination. 2134 BasicBlock *NormalDestBB = II->getNormalDest(); 2135 BranchInst::Create(NormalDestBB, II); 2136 2137 // Update PHI nodes in the unwind destination 2138 BasicBlock *BB = II->getParent(); 2139 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2140 UnwindDestBB->removePredecessor(BB); 2141 II->eraseFromParent(); 2142 if (DTU) 2143 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2144 } 2145 2146 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2147 BasicBlock *UnwindEdge, 2148 DomTreeUpdater *DTU) { 2149 BasicBlock *BB = CI->getParent(); 2150 2151 // Convert this function call into an invoke instruction. First, split the 2152 // basic block. 2153 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2154 CI->getName() + ".noexc"); 2155 2156 // Delete the unconditional branch inserted by SplitBlock 2157 BB->getInstList().pop_back(); 2158 2159 // Create the new invoke instruction. 2160 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2161 SmallVector<OperandBundleDef, 1> OpBundles; 2162 2163 CI->getOperandBundlesAsDefs(OpBundles); 2164 2165 // Note: we're round tripping operand bundles through memory here, and that 2166 // can potentially be avoided with a cleverer API design that we do not have 2167 // as of this time. 2168 2169 InvokeInst *II = 2170 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2171 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2172 II->setDebugLoc(CI->getDebugLoc()); 2173 II->setCallingConv(CI->getCallingConv()); 2174 II->setAttributes(CI->getAttributes()); 2175 2176 if (DTU) 2177 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2178 2179 // Make sure that anything using the call now uses the invoke! This also 2180 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2181 CI->replaceAllUsesWith(II); 2182 2183 // Delete the original call 2184 Split->getInstList().pop_front(); 2185 return Split; 2186 } 2187 2188 static bool markAliveBlocks(Function &F, 2189 SmallPtrSetImpl<BasicBlock *> &Reachable, 2190 DomTreeUpdater *DTU = nullptr) { 2191 SmallVector<BasicBlock*, 128> Worklist; 2192 BasicBlock *BB = &F.front(); 2193 Worklist.push_back(BB); 2194 Reachable.insert(BB); 2195 bool Changed = false; 2196 do { 2197 BB = Worklist.pop_back_val(); 2198 2199 // Do a quick scan of the basic block, turning any obviously unreachable 2200 // instructions into LLVM unreachable insts. The instruction combining pass 2201 // canonicalizes unreachable insts into stores to null or undef. 2202 for (Instruction &I : *BB) { 2203 if (auto *CI = dyn_cast<CallInst>(&I)) { 2204 Value *Callee = CI->getCalledOperand(); 2205 // Handle intrinsic calls. 2206 if (Function *F = dyn_cast<Function>(Callee)) { 2207 auto IntrinsicID = F->getIntrinsicID(); 2208 // Assumptions that are known to be false are equivalent to 2209 // unreachable. Also, if the condition is undefined, then we make the 2210 // choice most beneficial to the optimizer, and choose that to also be 2211 // unreachable. 2212 if (IntrinsicID == Intrinsic::assume) { 2213 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2214 // Don't insert a call to llvm.trap right before the unreachable. 2215 changeToUnreachable(CI, false, false, DTU); 2216 Changed = true; 2217 break; 2218 } 2219 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2220 // A call to the guard intrinsic bails out of the current 2221 // compilation unit if the predicate passed to it is false. If the 2222 // predicate is a constant false, then we know the guard will bail 2223 // out of the current compile unconditionally, so all code following 2224 // it is dead. 2225 // 2226 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2227 // guards to treat `undef` as `false` since a guard on `undef` can 2228 // still be useful for widening. 2229 if (match(CI->getArgOperand(0), m_Zero())) 2230 if (!isa<UnreachableInst>(CI->getNextNode())) { 2231 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2232 false, DTU); 2233 Changed = true; 2234 break; 2235 } 2236 } 2237 } else if ((isa<ConstantPointerNull>(Callee) && 2238 !NullPointerIsDefined(CI->getFunction())) || 2239 isa<UndefValue>(Callee)) { 2240 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2241 Changed = true; 2242 break; 2243 } 2244 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2245 // If we found a call to a no-return function, insert an unreachable 2246 // instruction after it. Make sure there isn't *already* one there 2247 // though. 2248 if (!isa<UnreachableInst>(CI->getNextNode())) { 2249 // Don't insert a call to llvm.trap right before the unreachable. 2250 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2251 Changed = true; 2252 } 2253 break; 2254 } 2255 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2256 // Store to undef and store to null are undefined and used to signal 2257 // that they should be changed to unreachable by passes that can't 2258 // modify the CFG. 2259 2260 // Don't touch volatile stores. 2261 if (SI->isVolatile()) continue; 2262 2263 Value *Ptr = SI->getOperand(1); 2264 2265 if (isa<UndefValue>(Ptr) || 2266 (isa<ConstantPointerNull>(Ptr) && 2267 !NullPointerIsDefined(SI->getFunction(), 2268 SI->getPointerAddressSpace()))) { 2269 changeToUnreachable(SI, true, false, DTU); 2270 Changed = true; 2271 break; 2272 } 2273 } 2274 } 2275 2276 Instruction *Terminator = BB->getTerminator(); 2277 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2278 // Turn invokes that call 'nounwind' functions into ordinary calls. 2279 Value *Callee = II->getCalledOperand(); 2280 if ((isa<ConstantPointerNull>(Callee) && 2281 !NullPointerIsDefined(BB->getParent())) || 2282 isa<UndefValue>(Callee)) { 2283 changeToUnreachable(II, true, false, DTU); 2284 Changed = true; 2285 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2286 if (II->use_empty() && II->onlyReadsMemory()) { 2287 // jump to the normal destination branch. 2288 BasicBlock *NormalDestBB = II->getNormalDest(); 2289 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2290 BranchInst::Create(NormalDestBB, II); 2291 UnwindDestBB->removePredecessor(II->getParent()); 2292 II->eraseFromParent(); 2293 if (DTU) 2294 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2295 } else 2296 changeToCall(II, DTU); 2297 Changed = true; 2298 } 2299 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2300 // Remove catchpads which cannot be reached. 2301 struct CatchPadDenseMapInfo { 2302 static CatchPadInst *getEmptyKey() { 2303 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2304 } 2305 2306 static CatchPadInst *getTombstoneKey() { 2307 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2308 } 2309 2310 static unsigned getHashValue(CatchPadInst *CatchPad) { 2311 return static_cast<unsigned>(hash_combine_range( 2312 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2313 } 2314 2315 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2316 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2317 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2318 return LHS == RHS; 2319 return LHS->isIdenticalTo(RHS); 2320 } 2321 }; 2322 2323 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2324 // Set of unique CatchPads. 2325 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2326 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2327 HandlerSet; 2328 detail::DenseSetEmpty Empty; 2329 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2330 E = CatchSwitch->handler_end(); 2331 I != E; ++I) { 2332 BasicBlock *HandlerBB = *I; 2333 if (DTU) 2334 ++NumPerSuccessorCases[HandlerBB]; 2335 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2336 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2337 if (DTU) 2338 --NumPerSuccessorCases[HandlerBB]; 2339 CatchSwitch->removeHandler(I); 2340 --I; 2341 --E; 2342 Changed = true; 2343 } 2344 } 2345 if (DTU) { 2346 std::vector<DominatorTree::UpdateType> Updates; 2347 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2348 if (I.second == 0) 2349 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2350 DTU->applyUpdates(Updates); 2351 } 2352 } 2353 2354 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2355 for (BasicBlock *Successor : successors(BB)) 2356 if (Reachable.insert(Successor).second) 2357 Worklist.push_back(Successor); 2358 } while (!Worklist.empty()); 2359 return Changed; 2360 } 2361 2362 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2363 Instruction *TI = BB->getTerminator(); 2364 2365 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2366 changeToCall(II, DTU); 2367 return; 2368 } 2369 2370 Instruction *NewTI; 2371 BasicBlock *UnwindDest; 2372 2373 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2374 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2375 UnwindDest = CRI->getUnwindDest(); 2376 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2377 auto *NewCatchSwitch = CatchSwitchInst::Create( 2378 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2379 CatchSwitch->getName(), CatchSwitch); 2380 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2381 NewCatchSwitch->addHandler(PadBB); 2382 2383 NewTI = NewCatchSwitch; 2384 UnwindDest = CatchSwitch->getUnwindDest(); 2385 } else { 2386 llvm_unreachable("Could not find unwind successor"); 2387 } 2388 2389 NewTI->takeName(TI); 2390 NewTI->setDebugLoc(TI->getDebugLoc()); 2391 UnwindDest->removePredecessor(BB); 2392 TI->replaceAllUsesWith(NewTI); 2393 TI->eraseFromParent(); 2394 if (DTU) 2395 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2396 } 2397 2398 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2399 /// if they are in a dead cycle. Return true if a change was made, false 2400 /// otherwise. 2401 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2402 MemorySSAUpdater *MSSAU) { 2403 SmallPtrSet<BasicBlock *, 16> Reachable; 2404 bool Changed = markAliveBlocks(F, Reachable, DTU); 2405 2406 // If there are unreachable blocks in the CFG... 2407 if (Reachable.size() == F.size()) 2408 return Changed; 2409 2410 assert(Reachable.size() < F.size()); 2411 2412 // Are there any blocks left to actually delete? 2413 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2414 for (BasicBlock &BB : F) { 2415 // Skip reachable basic blocks 2416 if (Reachable.count(&BB)) 2417 continue; 2418 // Skip already-deleted blocks 2419 if (DTU && DTU->isBBPendingDeletion(&BB)) 2420 continue; 2421 BlocksToRemove.insert(&BB); 2422 } 2423 2424 if (BlocksToRemove.empty()) 2425 return Changed; 2426 2427 Changed = true; 2428 NumRemoved += BlocksToRemove.size(); 2429 2430 if (MSSAU) 2431 MSSAU->removeBlocks(BlocksToRemove); 2432 2433 // Loop over all of the basic blocks that are up for removal, dropping all of 2434 // their internal references. Update DTU if available. 2435 std::vector<DominatorTree::UpdateType> Updates; 2436 for (auto *BB : BlocksToRemove) { 2437 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2438 for (BasicBlock *Successor : successors(BB)) { 2439 // Only remove references to BB in reachable successors of BB. 2440 if (Reachable.count(Successor)) 2441 Successor->removePredecessor(BB); 2442 if (DTU) 2443 UniqueSuccessors.insert(Successor); 2444 } 2445 BB->dropAllReferences(); 2446 if (DTU) { 2447 Instruction *TI = BB->getTerminator(); 2448 assert(TI && "Basic block should have a terminator"); 2449 // Terminators like invoke can have users. We have to replace their users, 2450 // before removing them. 2451 if (!TI->use_empty()) 2452 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2453 TI->eraseFromParent(); 2454 new UnreachableInst(BB->getContext(), BB); 2455 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2456 "applying corresponding DTU updates."); 2457 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2458 for (auto *UniqueSuccessor : UniqueSuccessors) 2459 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2460 } 2461 } 2462 2463 if (DTU) { 2464 DTU->applyUpdates(Updates); 2465 for (auto *BB : BlocksToRemove) 2466 DTU->deleteBB(BB); 2467 } else { 2468 for (auto *BB : BlocksToRemove) 2469 BB->eraseFromParent(); 2470 } 2471 2472 return Changed; 2473 } 2474 2475 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2476 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2477 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2478 K->dropUnknownNonDebugMetadata(KnownIDs); 2479 K->getAllMetadataOtherThanDebugLoc(Metadata); 2480 for (const auto &MD : Metadata) { 2481 unsigned Kind = MD.first; 2482 MDNode *JMD = J->getMetadata(Kind); 2483 MDNode *KMD = MD.second; 2484 2485 switch (Kind) { 2486 default: 2487 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2488 break; 2489 case LLVMContext::MD_dbg: 2490 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2491 case LLVMContext::MD_tbaa: 2492 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2493 break; 2494 case LLVMContext::MD_alias_scope: 2495 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2496 break; 2497 case LLVMContext::MD_noalias: 2498 case LLVMContext::MD_mem_parallel_loop_access: 2499 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2500 break; 2501 case LLVMContext::MD_access_group: 2502 K->setMetadata(LLVMContext::MD_access_group, 2503 intersectAccessGroups(K, J)); 2504 break; 2505 case LLVMContext::MD_range: 2506 2507 // If K does move, use most generic range. Otherwise keep the range of 2508 // K. 2509 if (DoesKMove) 2510 // FIXME: If K does move, we should drop the range info and nonnull. 2511 // Currently this function is used with DoesKMove in passes 2512 // doing hoisting/sinking and the current behavior of using the 2513 // most generic range is correct in those cases. 2514 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2515 break; 2516 case LLVMContext::MD_fpmath: 2517 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2518 break; 2519 case LLVMContext::MD_invariant_load: 2520 // Only set the !invariant.load if it is present in both instructions. 2521 K->setMetadata(Kind, JMD); 2522 break; 2523 case LLVMContext::MD_nonnull: 2524 // If K does move, keep nonull if it is present in both instructions. 2525 if (DoesKMove) 2526 K->setMetadata(Kind, JMD); 2527 break; 2528 case LLVMContext::MD_invariant_group: 2529 // Preserve !invariant.group in K. 2530 break; 2531 case LLVMContext::MD_align: 2532 K->setMetadata(Kind, 2533 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2534 break; 2535 case LLVMContext::MD_dereferenceable: 2536 case LLVMContext::MD_dereferenceable_or_null: 2537 K->setMetadata(Kind, 2538 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2539 break; 2540 case LLVMContext::MD_preserve_access_index: 2541 // Preserve !preserve.access.index in K. 2542 break; 2543 } 2544 } 2545 // Set !invariant.group from J if J has it. If both instructions have it 2546 // then we will just pick it from J - even when they are different. 2547 // Also make sure that K is load or store - f.e. combining bitcast with load 2548 // could produce bitcast with invariant.group metadata, which is invalid. 2549 // FIXME: we should try to preserve both invariant.group md if they are 2550 // different, but right now instruction can only have one invariant.group. 2551 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2552 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2553 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2554 } 2555 2556 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2557 bool KDominatesJ) { 2558 unsigned KnownIDs[] = { 2559 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2560 LLVMContext::MD_noalias, LLVMContext::MD_range, 2561 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2562 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2563 LLVMContext::MD_dereferenceable, 2564 LLVMContext::MD_dereferenceable_or_null, 2565 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2566 combineMetadata(K, J, KnownIDs, KDominatesJ); 2567 } 2568 2569 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2570 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2571 Source.getAllMetadata(MD); 2572 MDBuilder MDB(Dest.getContext()); 2573 Type *NewType = Dest.getType(); 2574 const DataLayout &DL = Source.getModule()->getDataLayout(); 2575 for (const auto &MDPair : MD) { 2576 unsigned ID = MDPair.first; 2577 MDNode *N = MDPair.second; 2578 // Note, essentially every kind of metadata should be preserved here! This 2579 // routine is supposed to clone a load instruction changing *only its type*. 2580 // The only metadata it makes sense to drop is metadata which is invalidated 2581 // when the pointer type changes. This should essentially never be the case 2582 // in LLVM, but we explicitly switch over only known metadata to be 2583 // conservatively correct. If you are adding metadata to LLVM which pertains 2584 // to loads, you almost certainly want to add it here. 2585 switch (ID) { 2586 case LLVMContext::MD_dbg: 2587 case LLVMContext::MD_tbaa: 2588 case LLVMContext::MD_prof: 2589 case LLVMContext::MD_fpmath: 2590 case LLVMContext::MD_tbaa_struct: 2591 case LLVMContext::MD_invariant_load: 2592 case LLVMContext::MD_alias_scope: 2593 case LLVMContext::MD_noalias: 2594 case LLVMContext::MD_nontemporal: 2595 case LLVMContext::MD_mem_parallel_loop_access: 2596 case LLVMContext::MD_access_group: 2597 // All of these directly apply. 2598 Dest.setMetadata(ID, N); 2599 break; 2600 2601 case LLVMContext::MD_nonnull: 2602 copyNonnullMetadata(Source, N, Dest); 2603 break; 2604 2605 case LLVMContext::MD_align: 2606 case LLVMContext::MD_dereferenceable: 2607 case LLVMContext::MD_dereferenceable_or_null: 2608 // These only directly apply if the new type is also a pointer. 2609 if (NewType->isPointerTy()) 2610 Dest.setMetadata(ID, N); 2611 break; 2612 2613 case LLVMContext::MD_range: 2614 copyRangeMetadata(DL, Source, N, Dest); 2615 break; 2616 } 2617 } 2618 } 2619 2620 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2621 auto *ReplInst = dyn_cast<Instruction>(Repl); 2622 if (!ReplInst) 2623 return; 2624 2625 // Patch the replacement so that it is not more restrictive than the value 2626 // being replaced. 2627 // Note that if 'I' is a load being replaced by some operation, 2628 // for example, by an arithmetic operation, then andIRFlags() 2629 // would just erase all math flags from the original arithmetic 2630 // operation, which is clearly not wanted and not needed. 2631 if (!isa<LoadInst>(I)) 2632 ReplInst->andIRFlags(I); 2633 2634 // FIXME: If both the original and replacement value are part of the 2635 // same control-flow region (meaning that the execution of one 2636 // guarantees the execution of the other), then we can combine the 2637 // noalias scopes here and do better than the general conservative 2638 // answer used in combineMetadata(). 2639 2640 // In general, GVN unifies expressions over different control-flow 2641 // regions, and so we need a conservative combination of the noalias 2642 // scopes. 2643 static const unsigned KnownIDs[] = { 2644 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2645 LLVMContext::MD_noalias, LLVMContext::MD_range, 2646 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2647 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2648 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2649 combineMetadata(ReplInst, I, KnownIDs, false); 2650 } 2651 2652 template <typename RootType, typename DominatesFn> 2653 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2654 const RootType &Root, 2655 const DominatesFn &Dominates) { 2656 assert(From->getType() == To->getType()); 2657 2658 unsigned Count = 0; 2659 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2660 UI != UE;) { 2661 Use &U = *UI++; 2662 if (!Dominates(Root, U)) 2663 continue; 2664 U.set(To); 2665 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2666 << "' as " << *To << " in " << *U << "\n"); 2667 ++Count; 2668 } 2669 return Count; 2670 } 2671 2672 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2673 assert(From->getType() == To->getType()); 2674 auto *BB = From->getParent(); 2675 unsigned Count = 0; 2676 2677 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2678 UI != UE;) { 2679 Use &U = *UI++; 2680 auto *I = cast<Instruction>(U.getUser()); 2681 if (I->getParent() == BB) 2682 continue; 2683 U.set(To); 2684 ++Count; 2685 } 2686 return Count; 2687 } 2688 2689 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2690 DominatorTree &DT, 2691 const BasicBlockEdge &Root) { 2692 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2693 return DT.dominates(Root, U); 2694 }; 2695 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2696 } 2697 2698 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2699 DominatorTree &DT, 2700 const BasicBlock *BB) { 2701 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2702 return DT.dominates(BB, U); 2703 }; 2704 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2705 } 2706 2707 bool llvm::callsGCLeafFunction(const CallBase *Call, 2708 const TargetLibraryInfo &TLI) { 2709 // Check if the function is specifically marked as a gc leaf function. 2710 if (Call->hasFnAttr("gc-leaf-function")) 2711 return true; 2712 if (const Function *F = Call->getCalledFunction()) { 2713 if (F->hasFnAttribute("gc-leaf-function")) 2714 return true; 2715 2716 if (auto IID = F->getIntrinsicID()) { 2717 // Most LLVM intrinsics do not take safepoints. 2718 return IID != Intrinsic::experimental_gc_statepoint && 2719 IID != Intrinsic::experimental_deoptimize && 2720 IID != Intrinsic::memcpy_element_unordered_atomic && 2721 IID != Intrinsic::memmove_element_unordered_atomic; 2722 } 2723 } 2724 2725 // Lib calls can be materialized by some passes, and won't be 2726 // marked as 'gc-leaf-function.' All available Libcalls are 2727 // GC-leaf. 2728 LibFunc LF; 2729 if (TLI.getLibFunc(*Call, LF)) { 2730 return TLI.has(LF); 2731 } 2732 2733 return false; 2734 } 2735 2736 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2737 LoadInst &NewLI) { 2738 auto *NewTy = NewLI.getType(); 2739 2740 // This only directly applies if the new type is also a pointer. 2741 if (NewTy->isPointerTy()) { 2742 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2743 return; 2744 } 2745 2746 // The only other translation we can do is to integral loads with !range 2747 // metadata. 2748 if (!NewTy->isIntegerTy()) 2749 return; 2750 2751 MDBuilder MDB(NewLI.getContext()); 2752 const Value *Ptr = OldLI.getPointerOperand(); 2753 auto *ITy = cast<IntegerType>(NewTy); 2754 auto *NullInt = ConstantExpr::getPtrToInt( 2755 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2756 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2757 NewLI.setMetadata(LLVMContext::MD_range, 2758 MDB.createRange(NonNullInt, NullInt)); 2759 } 2760 2761 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2762 MDNode *N, LoadInst &NewLI) { 2763 auto *NewTy = NewLI.getType(); 2764 2765 // Give up unless it is converted to a pointer where there is a single very 2766 // valuable mapping we can do reliably. 2767 // FIXME: It would be nice to propagate this in more ways, but the type 2768 // conversions make it hard. 2769 if (!NewTy->isPointerTy()) 2770 return; 2771 2772 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2773 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2774 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2775 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2776 } 2777 } 2778 2779 void llvm::dropDebugUsers(Instruction &I) { 2780 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2781 findDbgUsers(DbgUsers, &I); 2782 for (auto *DII : DbgUsers) 2783 DII->eraseFromParent(); 2784 } 2785 2786 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2787 BasicBlock *BB) { 2788 // Since we are moving the instructions out of its basic block, we do not 2789 // retain their original debug locations (DILocations) and debug intrinsic 2790 // instructions. 2791 // 2792 // Doing so would degrade the debugging experience and adversely affect the 2793 // accuracy of profiling information. 2794 // 2795 // Currently, when hoisting the instructions, we take the following actions: 2796 // - Remove their debug intrinsic instructions. 2797 // - Set their debug locations to the values from the insertion point. 2798 // 2799 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2800 // need to be deleted, is because there will not be any instructions with a 2801 // DILocation in either branch left after performing the transformation. We 2802 // can only insert a dbg.value after the two branches are joined again. 2803 // 2804 // See PR38762, PR39243 for more details. 2805 // 2806 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2807 // encode predicated DIExpressions that yield different results on different 2808 // code paths. 2809 2810 // A hoisted conditional probe should be treated as dangling so that it will 2811 // not be over-counted when the samples collected on the non-conditional path 2812 // are counted towards the conditional path. We leave it for the counts 2813 // inference algorithm to figure out a proper count for a danglng probe. 2814 moveAndDanglePseudoProbes(BB, InsertPt); 2815 2816 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2817 Instruction *I = &*II; 2818 I->dropUnknownNonDebugMetadata(); 2819 if (I->isUsedByMetadata()) 2820 dropDebugUsers(*I); 2821 if (isa<DbgInfoIntrinsic>(I)) { 2822 // Remove DbgInfo Intrinsics. 2823 II = I->eraseFromParent(); 2824 continue; 2825 } 2826 I->setDebugLoc(InsertPt->getDebugLoc()); 2827 ++II; 2828 } 2829 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2830 BB->begin(), 2831 BB->getTerminator()->getIterator()); 2832 } 2833 2834 namespace { 2835 2836 /// A potential constituent of a bitreverse or bswap expression. See 2837 /// collectBitParts for a fuller explanation. 2838 struct BitPart { 2839 BitPart(Value *P, unsigned BW) : Provider(P) { 2840 Provenance.resize(BW); 2841 } 2842 2843 /// The Value that this is a bitreverse/bswap of. 2844 Value *Provider; 2845 2846 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2847 /// in Provider becomes bit B in the result of this expression. 2848 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2849 2850 enum { Unset = -1 }; 2851 }; 2852 2853 } // end anonymous namespace 2854 2855 /// Analyze the specified subexpression and see if it is capable of providing 2856 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2857 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2858 /// the output of the expression came from a corresponding bit in some other 2859 /// value. This function is recursive, and the end result is a mapping of 2860 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2861 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2862 /// 2863 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2864 /// that the expression deposits the low byte of %X into the high byte of the 2865 /// result and that all other bits are zero. This expression is accepted and a 2866 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2867 /// [0-7]. 2868 /// 2869 /// For vector types, all analysis is performed at the per-element level. No 2870 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2871 /// constant masks must be splatted across all elements. 2872 /// 2873 /// To avoid revisiting values, the BitPart results are memoized into the 2874 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2875 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2876 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2877 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2878 /// type instead to provide the same functionality. 2879 /// 2880 /// Because we pass around references into \c BPS, we must use a container that 2881 /// does not invalidate internal references (std::map instead of DenseMap). 2882 static const Optional<BitPart> & 2883 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2884 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2885 auto I = BPS.find(V); 2886 if (I != BPS.end()) 2887 return I->second; 2888 2889 auto &Result = BPS[V] = None; 2890 auto BitWidth = V->getType()->getScalarSizeInBits(); 2891 2892 // Can't do integer/elements > 128 bits. 2893 if (BitWidth > 128) 2894 return Result; 2895 2896 // Prevent stack overflow by limiting the recursion depth 2897 if (Depth == BitPartRecursionMaxDepth) { 2898 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2899 return Result; 2900 } 2901 2902 if (auto *I = dyn_cast<Instruction>(V)) { 2903 Value *X, *Y; 2904 const APInt *C; 2905 2906 // If this is an or instruction, it may be an inner node of the bswap. 2907 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2908 const auto &A = 2909 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2910 const auto &B = 2911 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2912 if (!A || !B) 2913 return Result; 2914 2915 // Try and merge the two together. 2916 if (!A->Provider || A->Provider != B->Provider) 2917 return Result; 2918 2919 Result = BitPart(A->Provider, BitWidth); 2920 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2921 if (A->Provenance[BitIdx] != BitPart::Unset && 2922 B->Provenance[BitIdx] != BitPart::Unset && 2923 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2924 return Result = None; 2925 2926 if (A->Provenance[BitIdx] == BitPart::Unset) 2927 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2928 else 2929 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2930 } 2931 2932 return Result; 2933 } 2934 2935 // If this is a logical shift by a constant, recurse then shift the result. 2936 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2937 const APInt &BitShift = *C; 2938 2939 // Ensure the shift amount is defined. 2940 if (BitShift.uge(BitWidth)) 2941 return Result; 2942 2943 const auto &Res = 2944 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2945 if (!Res) 2946 return Result; 2947 Result = Res; 2948 2949 // Perform the "shift" on BitProvenance. 2950 auto &P = Result->Provenance; 2951 if (I->getOpcode() == Instruction::Shl) { 2952 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2953 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2954 } else { 2955 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2956 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2957 } 2958 2959 return Result; 2960 } 2961 2962 // If this is a logical 'and' with a mask that clears bits, recurse then 2963 // unset the appropriate bits. 2964 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2965 const APInt &AndMask = *C; 2966 2967 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2968 // early exit. 2969 unsigned NumMaskedBits = AndMask.countPopulation(); 2970 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2971 return Result; 2972 2973 const auto &Res = 2974 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2975 if (!Res) 2976 return Result; 2977 Result = Res; 2978 2979 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2980 // If the AndMask is zero for this bit, clear the bit. 2981 if (AndMask[BitIdx] == 0) 2982 Result->Provenance[BitIdx] = BitPart::Unset; 2983 return Result; 2984 } 2985 2986 // If this is a zext instruction zero extend the result. 2987 if (match(V, m_ZExt(m_Value(X)))) { 2988 const auto &Res = 2989 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2990 if (!Res) 2991 return Result; 2992 2993 Result = BitPart(Res->Provider, BitWidth); 2994 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2995 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2996 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2997 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2998 Result->Provenance[BitIdx] = BitPart::Unset; 2999 return Result; 3000 } 3001 3002 // If this is a truncate instruction, extract the lower bits. 3003 if (match(V, m_Trunc(m_Value(X)))) { 3004 const auto &Res = 3005 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3006 if (!Res) 3007 return Result; 3008 3009 Result = BitPart(Res->Provider, BitWidth); 3010 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3011 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3012 return Result; 3013 } 3014 3015 // BITREVERSE - most likely due to us previous matching a partial 3016 // bitreverse. 3017 if (match(V, m_BitReverse(m_Value(X)))) { 3018 const auto &Res = 3019 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3020 if (!Res) 3021 return Result; 3022 3023 Result = BitPart(Res->Provider, BitWidth); 3024 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3025 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3026 return Result; 3027 } 3028 3029 // BSWAP - most likely due to us previous matching a partial bswap. 3030 if (match(V, m_BSwap(m_Value(X)))) { 3031 const auto &Res = 3032 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3033 if (!Res) 3034 return Result; 3035 3036 unsigned ByteWidth = BitWidth / 8; 3037 Result = BitPart(Res->Provider, BitWidth); 3038 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3039 unsigned ByteBitOfs = ByteIdx * 8; 3040 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3041 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3042 Res->Provenance[ByteBitOfs + BitIdx]; 3043 } 3044 return Result; 3045 } 3046 3047 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3048 // amount (modulo). 3049 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3050 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3051 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3052 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3053 // We can treat fshr as a fshl by flipping the modulo amount. 3054 unsigned ModAmt = C->urem(BitWidth); 3055 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3056 ModAmt = BitWidth - ModAmt; 3057 3058 const auto &LHS = 3059 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3060 const auto &RHS = 3061 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3062 3063 // Check we have both sources and they are from the same provider. 3064 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3065 return Result; 3066 3067 unsigned StartBitRHS = BitWidth - ModAmt; 3068 Result = BitPart(LHS->Provider, BitWidth); 3069 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3070 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3071 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3072 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3073 return Result; 3074 } 3075 } 3076 3077 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3078 // the input value to the bswap/bitreverse. 3079 Result = BitPart(V, BitWidth); 3080 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3081 Result->Provenance[BitIdx] = BitIdx; 3082 return Result; 3083 } 3084 3085 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3086 unsigned BitWidth) { 3087 if (From % 8 != To % 8) 3088 return false; 3089 // Convert from bit indices to byte indices and check for a byte reversal. 3090 From >>= 3; 3091 To >>= 3; 3092 BitWidth >>= 3; 3093 return From == BitWidth - To - 1; 3094 } 3095 3096 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3097 unsigned BitWidth) { 3098 return From == BitWidth - To - 1; 3099 } 3100 3101 bool llvm::recognizeBSwapOrBitReverseIdiom( 3102 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3103 SmallVectorImpl<Instruction *> &InsertedInsts) { 3104 if (!match(I, m_Or(m_Value(), m_Value())) && 3105 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3106 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3107 return false; 3108 if (!MatchBSwaps && !MatchBitReversals) 3109 return false; 3110 Type *ITy = I->getType(); 3111 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3112 return false; // Can't do integer/elements > 128 bits. 3113 3114 Type *DemandedTy = ITy; 3115 if (I->hasOneUse()) 3116 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3117 DemandedTy = Trunc->getType(); 3118 3119 // Try to find all the pieces corresponding to the bswap. 3120 std::map<Value *, Optional<BitPart>> BPS; 3121 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3122 if (!Res) 3123 return false; 3124 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3125 assert(all_of(BitProvenance, 3126 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3127 "Illegal bit provenance index"); 3128 3129 // If the upper bits are zero, then attempt to perform as a truncated op. 3130 if (BitProvenance.back() == BitPart::Unset) { 3131 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3132 BitProvenance = BitProvenance.drop_back(); 3133 if (BitProvenance.empty()) 3134 return false; // TODO - handle null value? 3135 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3136 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3137 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3138 } 3139 3140 // Check BitProvenance hasn't found a source larger than the result type. 3141 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3142 if (DemandedBW > ITy->getScalarSizeInBits()) 3143 return false; 3144 3145 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3146 // only byteswap values with an even number of bytes. 3147 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3148 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3149 bool OKForBitReverse = MatchBitReversals; 3150 for (unsigned BitIdx = 0; 3151 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3152 if (BitProvenance[BitIdx] == BitPart::Unset) { 3153 DemandedMask.clearBit(BitIdx); 3154 continue; 3155 } 3156 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3157 DemandedBW); 3158 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3159 BitIdx, DemandedBW); 3160 } 3161 3162 Intrinsic::ID Intrin; 3163 if (OKForBSwap) 3164 Intrin = Intrinsic::bswap; 3165 else if (OKForBitReverse) 3166 Intrin = Intrinsic::bitreverse; 3167 else 3168 return false; 3169 3170 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3171 Value *Provider = Res->Provider; 3172 3173 // We may need to truncate the provider. 3174 if (DemandedTy != Provider->getType()) { 3175 auto *Trunc = 3176 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3177 InsertedInsts.push_back(Trunc); 3178 Provider = Trunc; 3179 } 3180 3181 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3182 InsertedInsts.push_back(Result); 3183 3184 if (!DemandedMask.isAllOnesValue()) { 3185 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3186 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3187 InsertedInsts.push_back(Result); 3188 } 3189 3190 // We may need to zeroextend back to the result type. 3191 if (ITy != Result->getType()) { 3192 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3193 InsertedInsts.push_back(ExtInst); 3194 } 3195 3196 return true; 3197 } 3198 3199 // CodeGen has special handling for some string functions that may replace 3200 // them with target-specific intrinsics. Since that'd skip our interceptors 3201 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3202 // we mark affected calls as NoBuiltin, which will disable optimization 3203 // in CodeGen. 3204 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3205 CallInst *CI, const TargetLibraryInfo *TLI) { 3206 Function *F = CI->getCalledFunction(); 3207 LibFunc Func; 3208 if (F && !F->hasLocalLinkage() && F->hasName() && 3209 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3210 !F->doesNotAccessMemory()) 3211 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3212 } 3213 3214 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3215 // We can't have a PHI with a metadata type. 3216 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3217 return false; 3218 3219 // Early exit. 3220 if (!isa<Constant>(I->getOperand(OpIdx))) 3221 return true; 3222 3223 switch (I->getOpcode()) { 3224 default: 3225 return true; 3226 case Instruction::Call: 3227 case Instruction::Invoke: { 3228 const auto &CB = cast<CallBase>(*I); 3229 3230 // Can't handle inline asm. Skip it. 3231 if (CB.isInlineAsm()) 3232 return false; 3233 3234 // Constant bundle operands may need to retain their constant-ness for 3235 // correctness. 3236 if (CB.isBundleOperand(OpIdx)) 3237 return false; 3238 3239 if (OpIdx < CB.getNumArgOperands()) { 3240 // Some variadic intrinsics require constants in the variadic arguments, 3241 // which currently aren't markable as immarg. 3242 if (isa<IntrinsicInst>(CB) && 3243 OpIdx >= CB.getFunctionType()->getNumParams()) { 3244 // This is known to be OK for stackmap. 3245 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3246 } 3247 3248 // gcroot is a special case, since it requires a constant argument which 3249 // isn't also required to be a simple ConstantInt. 3250 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3251 return false; 3252 3253 // Some intrinsic operands are required to be immediates. 3254 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3255 } 3256 3257 // It is never allowed to replace the call argument to an intrinsic, but it 3258 // may be possible for a call. 3259 return !isa<IntrinsicInst>(CB); 3260 } 3261 case Instruction::ShuffleVector: 3262 // Shufflevector masks are constant. 3263 return OpIdx != 2; 3264 case Instruction::Switch: 3265 case Instruction::ExtractValue: 3266 // All operands apart from the first are constant. 3267 return OpIdx == 0; 3268 case Instruction::InsertValue: 3269 // All operands apart from the first and the second are constant. 3270 return OpIdx < 2; 3271 case Instruction::Alloca: 3272 // Static allocas (constant size in the entry block) are handled by 3273 // prologue/epilogue insertion so they're free anyway. We definitely don't 3274 // want to make them non-constant. 3275 return !cast<AllocaInst>(I)->isStaticAlloca(); 3276 case Instruction::GetElementPtr: 3277 if (OpIdx == 0) 3278 return true; 3279 gep_type_iterator It = gep_type_begin(I); 3280 for (auto E = std::next(It, OpIdx); It != E; ++It) 3281 if (It.isStruct()) 3282 return false; 3283 return true; 3284 } 3285 } 3286 3287 Value *llvm::invertCondition(Value *Condition) { 3288 // First: Check if it's a constant 3289 if (Constant *C = dyn_cast<Constant>(Condition)) 3290 return ConstantExpr::getNot(C); 3291 3292 // Second: If the condition is already inverted, return the original value 3293 Value *NotCondition; 3294 if (match(Condition, m_Not(m_Value(NotCondition)))) 3295 return NotCondition; 3296 3297 BasicBlock *Parent = nullptr; 3298 Instruction *Inst = dyn_cast<Instruction>(Condition); 3299 if (Inst) 3300 Parent = Inst->getParent(); 3301 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3302 Parent = &Arg->getParent()->getEntryBlock(); 3303 assert(Parent && "Unsupported condition to invert"); 3304 3305 // Third: Check all the users for an invert 3306 for (User *U : Condition->users()) 3307 if (Instruction *I = dyn_cast<Instruction>(U)) 3308 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3309 return I; 3310 3311 // Last option: Create a new instruction 3312 auto *Inverted = 3313 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3314 if (Inst && !isa<PHINode>(Inst)) 3315 Inverted->insertAfter(Inst); 3316 else 3317 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3318 return Inverted; 3319 } 3320 3321 bool llvm::inferAttributesFromOthers(Function &F) { 3322 // Note: We explicitly check for attributes rather than using cover functions 3323 // because some of the cover functions include the logic being implemented. 3324 3325 bool Changed = false; 3326 // readnone + not convergent implies nosync 3327 if (!F.hasFnAttribute(Attribute::NoSync) && 3328 F.doesNotAccessMemory() && !F.isConvergent()) { 3329 F.setNoSync(); 3330 Changed = true; 3331 } 3332 3333 // readonly implies nofree 3334 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3335 F.setDoesNotFreeMemory(); 3336 Changed = true; 3337 } 3338 3339 // willreturn implies mustprogress 3340 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3341 F.setMustProgress(); 3342 Changed = true; 3343 } 3344 3345 // TODO: There are a bunch of cases of restrictive memory effects we 3346 // can infer by inspecting arguments of argmemonly-ish functions. 3347 3348 return Changed; 3349 } 3350