1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 BasicBlock *Dest1 = BI->getSuccessor(0); 138 BasicBlock *Dest2 = BI->getSuccessor(1); 139 140 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 141 // Are we branching on constant? 142 // YES. Change to unconditional branch... 143 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 144 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 145 146 // Let the basic block know that we are letting go of it. Based on this, 147 // it will adjust it's PHI nodes. 148 OldDest->removePredecessor(BB); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Destination); 152 BI->eraseFromParent(); 153 if (DTU) 154 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 155 return true; 156 } 157 158 if (Dest2 == Dest1) { // Conditional branch to same location? 159 // This branch matches something like this: 160 // br bool %cond, label %Dest, label %Dest 161 // and changes it into: br label %Dest 162 163 // Let the basic block know that we are letting go of one copy of it. 164 assert(BI->getParent() && "Terminator not inserted in block!"); 165 Dest1->removePredecessor(BI->getParent()); 166 167 // Replace the conditional branch with an unconditional one. 168 Builder.CreateBr(Dest1); 169 Value *Cond = BI->getCondition(); 170 BI->eraseFromParent(); 171 if (DeleteDeadConditions) 172 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 173 return true; 174 } 175 return false; 176 } 177 178 if (auto *SI = dyn_cast<SwitchInst>(T)) { 179 // If we are switching on a constant, we can convert the switch to an 180 // unconditional branch. 181 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 182 BasicBlock *DefaultDest = SI->getDefaultDest(); 183 BasicBlock *TheOnlyDest = DefaultDest; 184 185 // If the default is unreachable, ignore it when searching for TheOnlyDest. 186 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 187 SI->getNumCases() > 0) { 188 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 189 } 190 191 bool Changed = false; 192 193 // Figure out which case it goes to. 194 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 195 // Found case matching a constant operand? 196 if (i->getCaseValue() == CI) { 197 TheOnlyDest = i->getCaseSuccessor(); 198 break; 199 } 200 201 // Check to see if this branch is going to the same place as the default 202 // dest. If so, eliminate it as an explicit compare. 203 if (i->getCaseSuccessor() == DefaultDest) { 204 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 205 unsigned NCases = SI->getNumCases(); 206 // Fold the case metadata into the default if there will be any branches 207 // left, unless the metadata doesn't match the switch. 208 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 209 // Collect branch weights into a vector. 210 SmallVector<uint32_t, 8> Weights; 211 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 212 ++MD_i) { 213 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 214 Weights.push_back(CI->getValue().getZExtValue()); 215 } 216 // Merge weight of this case to the default weight. 217 unsigned idx = i->getCaseIndex(); 218 Weights[0] += Weights[idx+1]; 219 // Remove weight for this case. 220 std::swap(Weights[idx+1], Weights.back()); 221 Weights.pop_back(); 222 SI->setMetadata(LLVMContext::MD_prof, 223 MDBuilder(BB->getContext()). 224 createBranchWeights(Weights)); 225 } 226 // Remove this entry. 227 BasicBlock *ParentBB = SI->getParent(); 228 DefaultDest->removePredecessor(ParentBB); 229 i = SI->removeCase(i); 230 e = SI->case_end(); 231 Changed = true; 232 if (DTU) 233 DTU->applyUpdatesPermissive( 234 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 235 continue; 236 } 237 238 // Otherwise, check to see if the switch only branches to one destination. 239 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 240 // destinations. 241 if (i->getCaseSuccessor() != TheOnlyDest) 242 TheOnlyDest = nullptr; 243 244 // Increment this iterator as we haven't removed the case. 245 ++i; 246 } 247 248 if (CI && !TheOnlyDest) { 249 // Branching on a constant, but not any of the cases, go to the default 250 // successor. 251 TheOnlyDest = SI->getDefaultDest(); 252 } 253 254 // If we found a single destination that we can fold the switch into, do so 255 // now. 256 if (TheOnlyDest) { 257 // Insert the new branch. 258 Builder.CreateBr(TheOnlyDest); 259 BasicBlock *BB = SI->getParent(); 260 std::vector <DominatorTree::UpdateType> Updates; 261 if (DTU) 262 Updates.reserve(SI->getNumSuccessors() - 1); 263 264 // Remove entries from PHI nodes which we no longer branch to... 265 for (BasicBlock *Succ : successors(SI)) { 266 // Found case matching a constant operand? 267 if (Succ == TheOnlyDest) { 268 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 269 } else { 270 Succ->removePredecessor(BB); 271 if (DTU) 272 Updates.push_back({DominatorTree::Delete, BB, Succ}); 273 } 274 } 275 276 // Delete the old switch. 277 Value *Cond = SI->getCondition(); 278 SI->eraseFromParent(); 279 if (DeleteDeadConditions) 280 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 281 if (DTU) 282 DTU->applyUpdatesPermissive(Updates); 283 return true; 284 } 285 286 if (SI->getNumCases() == 1) { 287 // Otherwise, we can fold this switch into a conditional branch 288 // instruction if it has only one non-default destination. 289 auto FirstCase = *SI->case_begin(); 290 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 291 FirstCase.getCaseValue(), "cond"); 292 293 // Insert the new branch. 294 BranchInst *NewBr = Builder.CreateCondBr(Cond, 295 FirstCase.getCaseSuccessor(), 296 SI->getDefaultDest()); 297 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 298 if (MD && MD->getNumOperands() == 3) { 299 ConstantInt *SICase = 300 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 301 ConstantInt *SIDef = 302 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 303 assert(SICase && SIDef); 304 // The TrueWeight should be the weight for the single case of SI. 305 NewBr->setMetadata(LLVMContext::MD_prof, 306 MDBuilder(BB->getContext()). 307 createBranchWeights(SICase->getValue().getZExtValue(), 308 SIDef->getValue().getZExtValue())); 309 } 310 311 // Update make.implicit metadata to the newly-created conditional branch. 312 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 313 if (MakeImplicitMD) 314 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 315 316 // Delete the old switch. 317 SI->eraseFromParent(); 318 return true; 319 } 320 return Changed; 321 } 322 323 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 324 // indirectbr blockaddress(@F, @BB) -> br label @BB 325 if (auto *BA = 326 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 327 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 328 std::vector <DominatorTree::UpdateType> Updates; 329 if (DTU) 330 Updates.reserve(IBI->getNumDestinations() - 1); 331 332 // Insert the new branch. 333 Builder.CreateBr(TheOnlyDest); 334 335 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 336 if (IBI->getDestination(i) == TheOnlyDest) { 337 TheOnlyDest = nullptr; 338 } else { 339 BasicBlock *ParentBB = IBI->getParent(); 340 BasicBlock *DestBB = IBI->getDestination(i); 341 DestBB->removePredecessor(ParentBB); 342 if (DTU) 343 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 344 } 345 } 346 Value *Address = IBI->getAddress(); 347 IBI->eraseFromParent(); 348 if (DeleteDeadConditions) 349 // Delete pointer cast instructions. 350 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 351 352 // Also zap the blockaddress constant if there are no users remaining, 353 // otherwise the destination is still marked as having its address taken. 354 if (BA->use_empty()) 355 BA->destroyConstant(); 356 357 // If we didn't find our destination in the IBI successor list, then we 358 // have undefined behavior. Replace the unconditional branch with an 359 // 'unreachable' instruction. 360 if (TheOnlyDest) { 361 BB->getTerminator()->eraseFromParent(); 362 new UnreachableInst(BB->getContext(), BB); 363 } 364 365 if (DTU) 366 DTU->applyUpdatesPermissive(Updates); 367 return true; 368 } 369 } 370 371 return false; 372 } 373 374 //===----------------------------------------------------------------------===// 375 // Local dead code elimination. 376 // 377 378 /// isInstructionTriviallyDead - Return true if the result produced by the 379 /// instruction is not used, and the instruction has no side effects. 380 /// 381 bool llvm::isInstructionTriviallyDead(Instruction *I, 382 const TargetLibraryInfo *TLI) { 383 if (!I->use_empty()) 384 return false; 385 return wouldInstructionBeTriviallyDead(I, TLI); 386 } 387 388 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (I->isTerminator()) 391 return false; 392 393 // We don't want the landingpad-like instructions removed by anything this 394 // general. 395 if (I->isEHPad()) 396 return false; 397 398 // We don't want debug info removed by anything this general, unless 399 // debug info is empty. 400 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 401 if (DDI->getAddress()) 402 return false; 403 return true; 404 } 405 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 406 if (DVI->getValue()) 407 return false; 408 return true; 409 } 410 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 411 if (DLI->getLabel()) 412 return false; 413 return true; 414 } 415 416 if (!I->mayHaveSideEffects()) 417 return true; 418 419 // Special case intrinsics that "may have side effects" but can be deleted 420 // when dead. 421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 422 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 423 if (II->getIntrinsicID() == Intrinsic::stacksave || 424 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 425 return true; 426 427 if (II->isLifetimeStartOrEnd()) { 428 auto *Arg = II->getArgOperand(1); 429 // Lifetime intrinsics are dead when their right-hand is undef. 430 if (isa<UndefValue>(Arg)) 431 return true; 432 // If the right-hand is an alloc, global, or argument and the only uses 433 // are lifetime intrinsics then the intrinsics are dead. 434 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 435 return llvm::all_of(Arg->uses(), [](Use &Use) { 436 if (IntrinsicInst *IntrinsicUse = 437 dyn_cast<IntrinsicInst>(Use.getUser())) 438 return IntrinsicUse->isLifetimeStartOrEnd(); 439 return false; 440 }); 441 return false; 442 } 443 444 // Assumptions are dead if their condition is trivially true. Guards on 445 // true are operationally no-ops. In the future we can consider more 446 // sophisticated tradeoffs for guards considering potential for check 447 // widening, but for now we keep things simple. 448 if ((II->getIntrinsicID() == Intrinsic::assume && 449 isAssumeWithEmptyBundle(*II)) || 450 II->getIntrinsicID() == Intrinsic::experimental_guard) { 451 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 452 return !Cond->isZero(); 453 454 return false; 455 } 456 } 457 458 if (isAllocLikeFn(I, TLI)) 459 return true; 460 461 if (CallInst *CI = isFreeCall(I, TLI)) 462 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 463 return C->isNullValue() || isa<UndefValue>(C); 464 465 if (auto *Call = dyn_cast<CallBase>(I)) 466 if (isMathLibCallNoop(Call, TLI)) 467 return true; 468 469 return false; 470 } 471 472 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 473 /// trivially dead instruction, delete it. If that makes any of its operands 474 /// trivially dead, delete them too, recursively. Return true if any 475 /// instructions were deleted. 476 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 477 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 478 std::function<void(Value *)> AboutToDeleteCallback) { 479 Instruction *I = dyn_cast<Instruction>(V); 480 if (!I || !isInstructionTriviallyDead(I, TLI)) 481 return false; 482 483 SmallVector<WeakTrackingVH, 16> DeadInsts; 484 DeadInsts.push_back(I); 485 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 486 AboutToDeleteCallback); 487 488 return true; 489 } 490 491 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 492 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 493 MemorySSAUpdater *MSSAU, 494 std::function<void(Value *)> AboutToDeleteCallback) { 495 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 496 for (; S != E; ++S) { 497 auto *I = cast<Instruction>(DeadInsts[S]); 498 if (!isInstructionTriviallyDead(I)) { 499 DeadInsts[S] = nullptr; 500 ++Alive; 501 } 502 } 503 if (Alive == E) 504 return false; 505 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 506 AboutToDeleteCallback); 507 return true; 508 } 509 510 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 511 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 512 MemorySSAUpdater *MSSAU, 513 std::function<void(Value *)> AboutToDeleteCallback) { 514 // Process the dead instruction list until empty. 515 while (!DeadInsts.empty()) { 516 Value *V = DeadInsts.pop_back_val(); 517 Instruction *I = cast_or_null<Instruction>(V); 518 if (!I) 519 continue; 520 assert(isInstructionTriviallyDead(I, TLI) && 521 "Live instruction found in dead worklist!"); 522 assert(I->use_empty() && "Instructions with uses are not dead."); 523 524 // Don't lose the debug info while deleting the instructions. 525 salvageDebugInfo(*I); 526 527 if (AboutToDeleteCallback) 528 AboutToDeleteCallback(I); 529 530 // Null out all of the instruction's operands to see if any operand becomes 531 // dead as we go. 532 for (Use &OpU : I->operands()) { 533 Value *OpV = OpU.get(); 534 OpU.set(nullptr); 535 536 if (!OpV->use_empty()) 537 continue; 538 539 // If the operand is an instruction that became dead as we nulled out the 540 // operand, and if it is 'trivially' dead, delete it in a future loop 541 // iteration. 542 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 543 if (isInstructionTriviallyDead(OpI, TLI)) 544 DeadInsts.push_back(OpI); 545 } 546 if (MSSAU) 547 MSSAU->removeMemoryAccess(I); 548 549 I->eraseFromParent(); 550 } 551 } 552 553 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 554 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 555 findDbgUsers(DbgUsers, I); 556 for (auto *DII : DbgUsers) { 557 Value *Undef = UndefValue::get(I->getType()); 558 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 559 ValueAsMetadata::get(Undef))); 560 } 561 return !DbgUsers.empty(); 562 } 563 564 /// areAllUsesEqual - Check whether the uses of a value are all the same. 565 /// This is similar to Instruction::hasOneUse() except this will also return 566 /// true when there are no uses or multiple uses that all refer to the same 567 /// value. 568 static bool areAllUsesEqual(Instruction *I) { 569 Value::user_iterator UI = I->user_begin(); 570 Value::user_iterator UE = I->user_end(); 571 if (UI == UE) 572 return true; 573 574 User *TheUse = *UI; 575 for (++UI; UI != UE; ++UI) { 576 if (*UI != TheUse) 577 return false; 578 } 579 return true; 580 } 581 582 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 583 /// dead PHI node, due to being a def-use chain of single-use nodes that 584 /// either forms a cycle or is terminated by a trivially dead instruction, 585 /// delete it. If that makes any of its operands trivially dead, delete them 586 /// too, recursively. Return true if a change was made. 587 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 588 const TargetLibraryInfo *TLI, 589 llvm::MemorySSAUpdater *MSSAU) { 590 SmallPtrSet<Instruction*, 4> Visited; 591 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 592 I = cast<Instruction>(*I->user_begin())) { 593 if (I->use_empty()) 594 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 595 596 // If we find an instruction more than once, we're on a cycle that 597 // won't prove fruitful. 598 if (!Visited.insert(I).second) { 599 // Break the cycle and delete the instruction and its operands. 600 I->replaceAllUsesWith(UndefValue::get(I->getType())); 601 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 602 return true; 603 } 604 } 605 return false; 606 } 607 608 static bool 609 simplifyAndDCEInstruction(Instruction *I, 610 SmallSetVector<Instruction *, 16> &WorkList, 611 const DataLayout &DL, 612 const TargetLibraryInfo *TLI) { 613 if (isInstructionTriviallyDead(I, TLI)) { 614 salvageDebugInfo(*I); 615 616 // Null out all of the instruction's operands to see if any operand becomes 617 // dead as we go. 618 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 619 Value *OpV = I->getOperand(i); 620 I->setOperand(i, nullptr); 621 622 if (!OpV->use_empty() || I == OpV) 623 continue; 624 625 // If the operand is an instruction that became dead as we nulled out the 626 // operand, and if it is 'trivially' dead, delete it in a future loop 627 // iteration. 628 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 629 if (isInstructionTriviallyDead(OpI, TLI)) 630 WorkList.insert(OpI); 631 } 632 633 I->eraseFromParent(); 634 635 return true; 636 } 637 638 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 639 // Add the users to the worklist. CAREFUL: an instruction can use itself, 640 // in the case of a phi node. 641 for (User *U : I->users()) { 642 if (U != I) { 643 WorkList.insert(cast<Instruction>(U)); 644 } 645 } 646 647 // Replace the instruction with its simplified value. 648 bool Changed = false; 649 if (!I->use_empty()) { 650 I->replaceAllUsesWith(SimpleV); 651 Changed = true; 652 } 653 if (isInstructionTriviallyDead(I, TLI)) { 654 I->eraseFromParent(); 655 Changed = true; 656 } 657 return Changed; 658 } 659 return false; 660 } 661 662 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 663 /// simplify any instructions in it and recursively delete dead instructions. 664 /// 665 /// This returns true if it changed the code, note that it can delete 666 /// instructions in other blocks as well in this block. 667 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 668 const TargetLibraryInfo *TLI) { 669 bool MadeChange = false; 670 const DataLayout &DL = BB->getModule()->getDataLayout(); 671 672 #ifndef NDEBUG 673 // In debug builds, ensure that the terminator of the block is never replaced 674 // or deleted by these simplifications. The idea of simplification is that it 675 // cannot introduce new instructions, and there is no way to replace the 676 // terminator of a block without introducing a new instruction. 677 AssertingVH<Instruction> TerminatorVH(&BB->back()); 678 #endif 679 680 SmallSetVector<Instruction *, 16> WorkList; 681 // Iterate over the original function, only adding insts to the worklist 682 // if they actually need to be revisited. This avoids having to pre-init 683 // the worklist with the entire function's worth of instructions. 684 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 685 BI != E;) { 686 assert(!BI->isTerminator()); 687 Instruction *I = &*BI; 688 ++BI; 689 690 // We're visiting this instruction now, so make sure it's not in the 691 // worklist from an earlier visit. 692 if (!WorkList.count(I)) 693 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 694 } 695 696 while (!WorkList.empty()) { 697 Instruction *I = WorkList.pop_back_val(); 698 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 699 } 700 return MadeChange; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // Control Flow Graph Restructuring. 705 // 706 707 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 708 DomTreeUpdater *DTU) { 709 710 // If BB has single-entry PHI nodes, fold them. 711 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 712 Value *NewVal = PN->getIncomingValue(0); 713 // Replace self referencing PHI with undef, it must be dead. 714 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 715 PN->replaceAllUsesWith(NewVal); 716 PN->eraseFromParent(); 717 } 718 719 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 720 assert(PredBB && "Block doesn't have a single predecessor!"); 721 722 bool ReplaceEntryBB = false; 723 if (PredBB == &DestBB->getParent()->getEntryBlock()) 724 ReplaceEntryBB = true; 725 726 // DTU updates: Collect all the edges that enter 727 // PredBB. These dominator edges will be redirected to DestBB. 728 SmallVector<DominatorTree::UpdateType, 32> Updates; 729 730 if (DTU) { 731 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 732 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 733 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 734 // This predecessor of PredBB may already have DestBB as a successor. 735 if (!llvm::is_contained(successors(*I), DestBB)) 736 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 737 } 738 } 739 740 // Zap anything that took the address of DestBB. Not doing this will give the 741 // address an invalid value. 742 if (DestBB->hasAddressTaken()) { 743 BlockAddress *BA = BlockAddress::get(DestBB); 744 Constant *Replacement = 745 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 746 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 747 BA->getType())); 748 BA->destroyConstant(); 749 } 750 751 // Anything that branched to PredBB now branches to DestBB. 752 PredBB->replaceAllUsesWith(DestBB); 753 754 // Splice all the instructions from PredBB to DestBB. 755 PredBB->getTerminator()->eraseFromParent(); 756 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 757 new UnreachableInst(PredBB->getContext(), PredBB); 758 759 // If the PredBB is the entry block of the function, move DestBB up to 760 // become the entry block after we erase PredBB. 761 if (ReplaceEntryBB) 762 DestBB->moveAfter(PredBB); 763 764 if (DTU) { 765 assert(PredBB->getInstList().size() == 1 && 766 isa<UnreachableInst>(PredBB->getTerminator()) && 767 "The successor list of PredBB isn't empty before " 768 "applying corresponding DTU updates."); 769 DTU->applyUpdatesPermissive(Updates); 770 DTU->deleteBB(PredBB); 771 // Recalculation of DomTree is needed when updating a forward DomTree and 772 // the Entry BB is replaced. 773 if (ReplaceEntryBB && DTU->hasDomTree()) { 774 // The entry block was removed and there is no external interface for 775 // the dominator tree to be notified of this change. In this corner-case 776 // we recalculate the entire tree. 777 DTU->recalculate(*(DestBB->getParent())); 778 } 779 } 780 781 else { 782 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 783 } 784 } 785 786 /// Return true if we can choose one of these values to use in place of the 787 /// other. Note that we will always choose the non-undef value to keep. 788 static bool CanMergeValues(Value *First, Value *Second) { 789 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 790 } 791 792 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 793 /// branch to Succ, into Succ. 794 /// 795 /// Assumption: Succ is the single successor for BB. 796 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 797 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 798 799 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 800 << Succ->getName() << "\n"); 801 // Shortcut, if there is only a single predecessor it must be BB and merging 802 // is always safe 803 if (Succ->getSinglePredecessor()) return true; 804 805 // Make a list of the predecessors of BB 806 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 807 808 // Look at all the phi nodes in Succ, to see if they present a conflict when 809 // merging these blocks 810 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 811 PHINode *PN = cast<PHINode>(I); 812 813 // If the incoming value from BB is again a PHINode in 814 // BB which has the same incoming value for *PI as PN does, we can 815 // merge the phi nodes and then the blocks can still be merged 816 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 817 if (BBPN && BBPN->getParent() == BB) { 818 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 819 BasicBlock *IBB = PN->getIncomingBlock(PI); 820 if (BBPreds.count(IBB) && 821 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 822 PN->getIncomingValue(PI))) { 823 LLVM_DEBUG(dbgs() 824 << "Can't fold, phi node " << PN->getName() << " in " 825 << Succ->getName() << " is conflicting with " 826 << BBPN->getName() << " with regard to common predecessor " 827 << IBB->getName() << "\n"); 828 return false; 829 } 830 } 831 } else { 832 Value* Val = PN->getIncomingValueForBlock(BB); 833 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 834 // See if the incoming value for the common predecessor is equal to the 835 // one for BB, in which case this phi node will not prevent the merging 836 // of the block. 837 BasicBlock *IBB = PN->getIncomingBlock(PI); 838 if (BBPreds.count(IBB) && 839 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 840 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 841 << " in " << Succ->getName() 842 << " is conflicting with regard to common " 843 << "predecessor " << IBB->getName() << "\n"); 844 return false; 845 } 846 } 847 } 848 } 849 850 return true; 851 } 852 853 using PredBlockVector = SmallVector<BasicBlock *, 16>; 854 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 855 856 /// Determines the value to use as the phi node input for a block. 857 /// 858 /// Select between \p OldVal any value that we know flows from \p BB 859 /// to a particular phi on the basis of which one (if either) is not 860 /// undef. Update IncomingValues based on the selected value. 861 /// 862 /// \param OldVal The value we are considering selecting. 863 /// \param BB The block that the value flows in from. 864 /// \param IncomingValues A map from block-to-value for other phi inputs 865 /// that we have examined. 866 /// 867 /// \returns the selected value. 868 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 869 IncomingValueMap &IncomingValues) { 870 if (!isa<UndefValue>(OldVal)) { 871 assert((!IncomingValues.count(BB) || 872 IncomingValues.find(BB)->second == OldVal) && 873 "Expected OldVal to match incoming value from BB!"); 874 875 IncomingValues.insert(std::make_pair(BB, OldVal)); 876 return OldVal; 877 } 878 879 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 880 if (It != IncomingValues.end()) return It->second; 881 882 return OldVal; 883 } 884 885 /// Create a map from block to value for the operands of a 886 /// given phi. 887 /// 888 /// Create a map from block to value for each non-undef value flowing 889 /// into \p PN. 890 /// 891 /// \param PN The phi we are collecting the map for. 892 /// \param IncomingValues [out] The map from block to value for this phi. 893 static void gatherIncomingValuesToPhi(PHINode *PN, 894 IncomingValueMap &IncomingValues) { 895 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 896 BasicBlock *BB = PN->getIncomingBlock(i); 897 Value *V = PN->getIncomingValue(i); 898 899 if (!isa<UndefValue>(V)) 900 IncomingValues.insert(std::make_pair(BB, V)); 901 } 902 } 903 904 /// Replace the incoming undef values to a phi with the values 905 /// from a block-to-value map. 906 /// 907 /// \param PN The phi we are replacing the undefs in. 908 /// \param IncomingValues A map from block to value. 909 static void replaceUndefValuesInPhi(PHINode *PN, 910 const IncomingValueMap &IncomingValues) { 911 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 912 Value *V = PN->getIncomingValue(i); 913 914 if (!isa<UndefValue>(V)) continue; 915 916 BasicBlock *BB = PN->getIncomingBlock(i); 917 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 918 if (It == IncomingValues.end()) continue; 919 920 PN->setIncomingValue(i, It->second); 921 } 922 } 923 924 /// Replace a value flowing from a block to a phi with 925 /// potentially multiple instances of that value flowing from the 926 /// block's predecessors to the phi. 927 /// 928 /// \param BB The block with the value flowing into the phi. 929 /// \param BBPreds The predecessors of BB. 930 /// \param PN The phi that we are updating. 931 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 932 const PredBlockVector &BBPreds, 933 PHINode *PN) { 934 Value *OldVal = PN->removeIncomingValue(BB, false); 935 assert(OldVal && "No entry in PHI for Pred BB!"); 936 937 IncomingValueMap IncomingValues; 938 939 // We are merging two blocks - BB, and the block containing PN - and 940 // as a result we need to redirect edges from the predecessors of BB 941 // to go to the block containing PN, and update PN 942 // accordingly. Since we allow merging blocks in the case where the 943 // predecessor and successor blocks both share some predecessors, 944 // and where some of those common predecessors might have undef 945 // values flowing into PN, we want to rewrite those values to be 946 // consistent with the non-undef values. 947 948 gatherIncomingValuesToPhi(PN, IncomingValues); 949 950 // If this incoming value is one of the PHI nodes in BB, the new entries 951 // in the PHI node are the entries from the old PHI. 952 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 953 PHINode *OldValPN = cast<PHINode>(OldVal); 954 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 955 // Note that, since we are merging phi nodes and BB and Succ might 956 // have common predecessors, we could end up with a phi node with 957 // identical incoming branches. This will be cleaned up later (and 958 // will trigger asserts if we try to clean it up now, without also 959 // simplifying the corresponding conditional branch). 960 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 961 Value *PredVal = OldValPN->getIncomingValue(i); 962 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 963 IncomingValues); 964 965 // And add a new incoming value for this predecessor for the 966 // newly retargeted branch. 967 PN->addIncoming(Selected, PredBB); 968 } 969 } else { 970 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 971 // Update existing incoming values in PN for this 972 // predecessor of BB. 973 BasicBlock *PredBB = BBPreds[i]; 974 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 975 IncomingValues); 976 977 // And add a new incoming value for this predecessor for the 978 // newly retargeted branch. 979 PN->addIncoming(Selected, PredBB); 980 } 981 } 982 983 replaceUndefValuesInPhi(PN, IncomingValues); 984 } 985 986 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 987 DomTreeUpdater *DTU) { 988 assert(BB != &BB->getParent()->getEntryBlock() && 989 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 990 991 // We can't eliminate infinite loops. 992 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 993 if (BB == Succ) return false; 994 995 // Check to see if merging these blocks would cause conflicts for any of the 996 // phi nodes in BB or Succ. If not, we can safely merge. 997 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 998 999 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1000 // has uses which will not disappear when the PHI nodes are merged. It is 1001 // possible to handle such cases, but difficult: it requires checking whether 1002 // BB dominates Succ, which is non-trivial to calculate in the case where 1003 // Succ has multiple predecessors. Also, it requires checking whether 1004 // constructing the necessary self-referential PHI node doesn't introduce any 1005 // conflicts; this isn't too difficult, but the previous code for doing this 1006 // was incorrect. 1007 // 1008 // Note that if this check finds a live use, BB dominates Succ, so BB is 1009 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1010 // folding the branch isn't profitable in that case anyway. 1011 if (!Succ->getSinglePredecessor()) { 1012 BasicBlock::iterator BBI = BB->begin(); 1013 while (isa<PHINode>(*BBI)) { 1014 for (Use &U : BBI->uses()) { 1015 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1016 if (PN->getIncomingBlock(U) != BB) 1017 return false; 1018 } else { 1019 return false; 1020 } 1021 } 1022 ++BBI; 1023 } 1024 } 1025 1026 // We cannot fold the block if it's a branch to an already present callbr 1027 // successor because that creates duplicate successors. 1028 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1029 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 1030 if (Succ == CBI->getDefaultDest()) 1031 return false; 1032 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1033 if (Succ == CBI->getIndirectDest(i)) 1034 return false; 1035 } 1036 } 1037 1038 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1039 1040 SmallVector<DominatorTree::UpdateType, 32> Updates; 1041 if (DTU) { 1042 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1043 // All predecessors of BB will be moved to Succ. 1044 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1045 Updates.push_back({DominatorTree::Delete, *I, BB}); 1046 // This predecessor of BB may already have Succ as a successor. 1047 if (!llvm::is_contained(successors(*I), Succ)) 1048 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1049 } 1050 } 1051 1052 if (isa<PHINode>(Succ->begin())) { 1053 // If there is more than one pred of succ, and there are PHI nodes in 1054 // the successor, then we need to add incoming edges for the PHI nodes 1055 // 1056 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1057 1058 // Loop over all of the PHI nodes in the successor of BB. 1059 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1060 PHINode *PN = cast<PHINode>(I); 1061 1062 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1063 } 1064 } 1065 1066 if (Succ->getSinglePredecessor()) { 1067 // BB is the only predecessor of Succ, so Succ will end up with exactly 1068 // the same predecessors BB had. 1069 1070 // Copy over any phi, debug or lifetime instruction. 1071 BB->getTerminator()->eraseFromParent(); 1072 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1073 BB->getInstList()); 1074 } else { 1075 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1076 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1077 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1078 PN->eraseFromParent(); 1079 } 1080 } 1081 1082 // If the unconditional branch we replaced contains llvm.loop metadata, we 1083 // add the metadata to the branch instructions in the predecessors. 1084 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1085 Instruction *TI = BB->getTerminator(); 1086 if (TI) 1087 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1088 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1089 BasicBlock *Pred = *PI; 1090 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1091 } 1092 1093 // Everything that jumped to BB now goes to Succ. 1094 BB->replaceAllUsesWith(Succ); 1095 if (!Succ->hasName()) Succ->takeName(BB); 1096 1097 // Clear the successor list of BB to match updates applying to DTU later. 1098 if (BB->getTerminator()) 1099 BB->getInstList().pop_back(); 1100 new UnreachableInst(BB->getContext(), BB); 1101 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1102 "applying corresponding DTU updates."); 1103 1104 if (DTU) { 1105 DTU->applyUpdatesPermissive(Updates); 1106 DTU->deleteBB(BB); 1107 } else { 1108 BB->eraseFromParent(); // Delete the old basic block. 1109 } 1110 return true; 1111 } 1112 1113 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1114 // This implementation doesn't currently consider undef operands 1115 // specially. Theoretically, two phis which are identical except for 1116 // one having an undef where the other doesn't could be collapsed. 1117 1118 bool Changed = false; 1119 1120 // Examine each PHI. 1121 // Note that increment of I must *NOT* be in the iteration_expression, since 1122 // we don't want to immediately advance when we restart from the beginning. 1123 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1124 ++I; 1125 // Is there an identical PHI node in this basic block? 1126 // Note that we only look in the upper square's triangle, 1127 // we already checked that the lower triangle PHI's aren't identical. 1128 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1129 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1130 continue; 1131 // A duplicate. Replace this PHI with the base PHI. 1132 ++NumPHICSEs; 1133 DuplicatePN->replaceAllUsesWith(PN); 1134 DuplicatePN->eraseFromParent(); 1135 Changed = true; 1136 1137 // The RAUW can change PHIs that we already visited. 1138 I = BB->begin(); 1139 break; // Start over from the beginning. 1140 } 1141 } 1142 return Changed; 1143 } 1144 1145 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1146 // This implementation doesn't currently consider undef operands 1147 // specially. Theoretically, two phis which are identical except for 1148 // one having an undef where the other doesn't could be collapsed. 1149 1150 struct PHIDenseMapInfo { 1151 static PHINode *getEmptyKey() { 1152 return DenseMapInfo<PHINode *>::getEmptyKey(); 1153 } 1154 1155 static PHINode *getTombstoneKey() { 1156 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1157 } 1158 1159 static bool isSentinel(PHINode *PN) { 1160 return PN == getEmptyKey() || PN == getTombstoneKey(); 1161 } 1162 1163 // WARNING: this logic must be kept in sync with 1164 // Instruction::isIdenticalToWhenDefined()! 1165 static unsigned getHashValueImpl(PHINode *PN) { 1166 // Compute a hash value on the operands. Instcombine will likely have 1167 // sorted them, which helps expose duplicates, but we have to check all 1168 // the operands to be safe in case instcombine hasn't run. 1169 return static_cast<unsigned>(hash_combine( 1170 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1171 hash_combine_range(PN->block_begin(), PN->block_end()))); 1172 } 1173 1174 static unsigned getHashValue(PHINode *PN) { 1175 #ifndef NDEBUG 1176 // If -phicse-debug-hash was specified, return a constant -- this 1177 // will force all hashing to collide, so we'll exhaustively search 1178 // the table for a match, and the assertion in isEqual will fire if 1179 // there's a bug causing equal keys to hash differently. 1180 if (PHICSEDebugHash) 1181 return 0; 1182 #endif 1183 return getHashValueImpl(PN); 1184 } 1185 1186 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1187 if (isSentinel(LHS) || isSentinel(RHS)) 1188 return LHS == RHS; 1189 return LHS->isIdenticalTo(RHS); 1190 } 1191 1192 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1193 // These comparisons are nontrivial, so assert that equality implies 1194 // hash equality (DenseMap demands this as an invariant). 1195 bool Result = isEqualImpl(LHS, RHS); 1196 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1197 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1198 return Result; 1199 } 1200 }; 1201 1202 // Set of unique PHINodes. 1203 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1204 PHISet.reserve(4 * PHICSENumPHISmallSize); 1205 1206 // Examine each PHI. 1207 bool Changed = false; 1208 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1209 auto Inserted = PHISet.insert(PN); 1210 if (!Inserted.second) { 1211 // A duplicate. Replace this PHI with its duplicate. 1212 ++NumPHICSEs; 1213 PN->replaceAllUsesWith(*Inserted.first); 1214 PN->eraseFromParent(); 1215 Changed = true; 1216 1217 // The RAUW can change PHIs that we already visited. Start over from the 1218 // beginning. 1219 PHISet.clear(); 1220 I = BB->begin(); 1221 } 1222 } 1223 1224 return Changed; 1225 } 1226 1227 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1228 if ( 1229 #ifndef NDEBUG 1230 !PHICSEDebugHash && 1231 #endif 1232 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1233 return EliminateDuplicatePHINodesNaiveImpl(BB); 1234 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1235 } 1236 1237 /// If the specified pointer points to an object that we control, try to modify 1238 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1239 /// the value after the operation, which may be lower than PrefAlign. 1240 /// 1241 /// Increating value alignment isn't often possible though. If alignment is 1242 /// important, a more reliable approach is to simply align all global variables 1243 /// and allocation instructions to their preferred alignment from the beginning. 1244 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1245 const DataLayout &DL) { 1246 V = V->stripPointerCasts(); 1247 1248 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1249 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1250 // than the current alignment, as the known bits calculation should have 1251 // already taken it into account. However, this is not always the case, 1252 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1253 // doesn't. 1254 Align CurrentAlign = AI->getAlign(); 1255 if (PrefAlign <= CurrentAlign) 1256 return CurrentAlign; 1257 1258 // If the preferred alignment is greater than the natural stack alignment 1259 // then don't round up. This avoids dynamic stack realignment. 1260 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1261 return CurrentAlign; 1262 AI->setAlignment(PrefAlign); 1263 return PrefAlign; 1264 } 1265 1266 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1267 // TODO: as above, this shouldn't be necessary. 1268 Align CurrentAlign = GO->getPointerAlignment(DL); 1269 if (PrefAlign <= CurrentAlign) 1270 return CurrentAlign; 1271 1272 // If there is a large requested alignment and we can, bump up the alignment 1273 // of the global. If the memory we set aside for the global may not be the 1274 // memory used by the final program then it is impossible for us to reliably 1275 // enforce the preferred alignment. 1276 if (!GO->canIncreaseAlignment()) 1277 return CurrentAlign; 1278 1279 GO->setAlignment(PrefAlign); 1280 return PrefAlign; 1281 } 1282 1283 return Align(1); 1284 } 1285 1286 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1287 const DataLayout &DL, 1288 const Instruction *CxtI, 1289 AssumptionCache *AC, 1290 const DominatorTree *DT) { 1291 assert(V->getType()->isPointerTy() && 1292 "getOrEnforceKnownAlignment expects a pointer!"); 1293 1294 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1295 unsigned TrailZ = Known.countMinTrailingZeros(); 1296 1297 // Avoid trouble with ridiculously large TrailZ values, such as 1298 // those computed from a null pointer. 1299 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1300 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1301 1302 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1303 1304 if (PrefAlign && *PrefAlign > Alignment) 1305 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1306 1307 // We don't need to make any adjustment. 1308 return Alignment; 1309 } 1310 1311 ///===---------------------------------------------------------------------===// 1312 /// Dbg Intrinsic utilities 1313 /// 1314 1315 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1316 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1317 DIExpression *DIExpr, 1318 PHINode *APN) { 1319 // Since we can't guarantee that the original dbg.declare instrinsic 1320 // is removed by LowerDbgDeclare(), we need to make sure that we are 1321 // not inserting the same dbg.value intrinsic over and over. 1322 SmallVector<DbgValueInst *, 1> DbgValues; 1323 findDbgValues(DbgValues, APN); 1324 for (auto *DVI : DbgValues) { 1325 assert(DVI->getValue() == APN); 1326 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1327 return true; 1328 } 1329 return false; 1330 } 1331 1332 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1333 /// (or fragment of the variable) described by \p DII. 1334 /// 1335 /// This is primarily intended as a helper for the different 1336 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1337 /// converted describes an alloca'd variable, so we need to use the 1338 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1339 /// identified as covering an n-bit fragment, if the store size of i1 is at 1340 /// least n bits. 1341 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1342 const DataLayout &DL = DII->getModule()->getDataLayout(); 1343 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1344 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1345 return ValueSize >= *FragmentSize; 1346 // We can't always calculate the size of the DI variable (e.g. if it is a 1347 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1348 // intead. 1349 if (DII->isAddressOfVariable()) 1350 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1351 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1352 return ValueSize >= *FragmentSize; 1353 // Could not determine size of variable. Conservatively return false. 1354 return false; 1355 } 1356 1357 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1358 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1359 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1360 /// case this DebugLoc leaks into any adjacent instructions. 1361 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1362 // Original dbg.declare must have a location. 1363 DebugLoc DeclareLoc = DII->getDebugLoc(); 1364 MDNode *Scope = DeclareLoc.getScope(); 1365 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1366 // Produce an unknown location with the correct scope / inlinedAt fields. 1367 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1368 } 1369 1370 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1371 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1372 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1373 StoreInst *SI, DIBuilder &Builder) { 1374 assert(DII->isAddressOfVariable()); 1375 auto *DIVar = DII->getVariable(); 1376 assert(DIVar && "Missing variable"); 1377 auto *DIExpr = DII->getExpression(); 1378 Value *DV = SI->getValueOperand(); 1379 1380 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1381 1382 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1383 // FIXME: If storing to a part of the variable described by the dbg.declare, 1384 // then we want to insert a dbg.value for the corresponding fragment. 1385 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1386 << *DII << '\n'); 1387 // For now, when there is a store to parts of the variable (but we do not 1388 // know which part) we insert an dbg.value instrinsic to indicate that we 1389 // know nothing about the variable's content. 1390 DV = UndefValue::get(DV->getType()); 1391 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1392 return; 1393 } 1394 1395 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1396 } 1397 1398 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1399 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1400 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1401 LoadInst *LI, DIBuilder &Builder) { 1402 auto *DIVar = DII->getVariable(); 1403 auto *DIExpr = DII->getExpression(); 1404 assert(DIVar && "Missing variable"); 1405 1406 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1407 // FIXME: If only referring to a part of the variable described by the 1408 // dbg.declare, then we want to insert a dbg.value for the corresponding 1409 // fragment. 1410 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1411 << *DII << '\n'); 1412 return; 1413 } 1414 1415 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1416 1417 // We are now tracking the loaded value instead of the address. In the 1418 // future if multi-location support is added to the IR, it might be 1419 // preferable to keep tracking both the loaded value and the original 1420 // address in case the alloca can not be elided. 1421 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1422 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1423 DbgValue->insertAfter(LI); 1424 } 1425 1426 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1427 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1428 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1429 PHINode *APN, DIBuilder &Builder) { 1430 auto *DIVar = DII->getVariable(); 1431 auto *DIExpr = DII->getExpression(); 1432 assert(DIVar && "Missing variable"); 1433 1434 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1435 return; 1436 1437 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1438 // FIXME: If only referring to a part of the variable described by the 1439 // dbg.declare, then we want to insert a dbg.value for the corresponding 1440 // fragment. 1441 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1442 << *DII << '\n'); 1443 return; 1444 } 1445 1446 BasicBlock *BB = APN->getParent(); 1447 auto InsertionPt = BB->getFirstInsertionPt(); 1448 1449 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1450 1451 // The block may be a catchswitch block, which does not have a valid 1452 // insertion point. 1453 // FIXME: Insert dbg.value markers in the successors when appropriate. 1454 if (InsertionPt != BB->end()) 1455 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1456 } 1457 1458 /// Determine whether this alloca is either a VLA or an array. 1459 static bool isArray(AllocaInst *AI) { 1460 return AI->isArrayAllocation() || 1461 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1462 } 1463 1464 /// Determine whether this alloca is a structure. 1465 static bool isStructure(AllocaInst *AI) { 1466 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1467 } 1468 1469 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1470 /// of llvm.dbg.value intrinsics. 1471 bool llvm::LowerDbgDeclare(Function &F) { 1472 bool Changed = false; 1473 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1474 SmallVector<DbgDeclareInst *, 4> Dbgs; 1475 for (auto &FI : F) 1476 for (Instruction &BI : FI) 1477 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1478 Dbgs.push_back(DDI); 1479 1480 if (Dbgs.empty()) 1481 return Changed; 1482 1483 for (auto &I : Dbgs) { 1484 DbgDeclareInst *DDI = I; 1485 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1486 // If this is an alloca for a scalar variable, insert a dbg.value 1487 // at each load and store to the alloca and erase the dbg.declare. 1488 // The dbg.values allow tracking a variable even if it is not 1489 // stored on the stack, while the dbg.declare can only describe 1490 // the stack slot (and at a lexical-scope granularity). Later 1491 // passes will attempt to elide the stack slot. 1492 if (!AI || isArray(AI) || isStructure(AI)) 1493 continue; 1494 1495 // A volatile load/store means that the alloca can't be elided anyway. 1496 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1497 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1498 return LI->isVolatile(); 1499 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1500 return SI->isVolatile(); 1501 return false; 1502 })) 1503 continue; 1504 1505 SmallVector<const Value *, 8> WorkList; 1506 WorkList.push_back(AI); 1507 while (!WorkList.empty()) { 1508 const Value *V = WorkList.pop_back_val(); 1509 for (auto &AIUse : V->uses()) { 1510 User *U = AIUse.getUser(); 1511 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1512 if (AIUse.getOperandNo() == 1) 1513 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1514 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1515 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1516 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1517 // This is a call by-value or some other instruction that takes a 1518 // pointer to the variable. Insert a *value* intrinsic that describes 1519 // the variable by dereferencing the alloca. 1520 if (!CI->isLifetimeStartOrEnd()) { 1521 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1522 auto *DerefExpr = 1523 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1524 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1525 NewLoc, CI); 1526 } 1527 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1528 if (BI->getType()->isPointerTy()) 1529 WorkList.push_back(BI); 1530 } 1531 } 1532 } 1533 DDI->eraseFromParent(); 1534 Changed = true; 1535 } 1536 1537 if (Changed) 1538 for (BasicBlock &BB : F) 1539 RemoveRedundantDbgInstrs(&BB); 1540 1541 return Changed; 1542 } 1543 1544 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1545 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1546 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1547 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1548 if (InsertedPHIs.size() == 0) 1549 return; 1550 1551 // Map existing PHI nodes to their dbg.values. 1552 ValueToValueMapTy DbgValueMap; 1553 for (auto &I : *BB) { 1554 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1555 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1556 DbgValueMap.insert({Loc, DbgII}); 1557 } 1558 } 1559 if (DbgValueMap.size() == 0) 1560 return; 1561 1562 // Then iterate through the new PHIs and look to see if they use one of the 1563 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1564 // propagate the info through the new PHI. 1565 LLVMContext &C = BB->getContext(); 1566 for (auto PHI : InsertedPHIs) { 1567 BasicBlock *Parent = PHI->getParent(); 1568 // Avoid inserting an intrinsic into an EH block. 1569 if (Parent->getFirstNonPHI()->isEHPad()) 1570 continue; 1571 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1572 for (auto VI : PHI->operand_values()) { 1573 auto V = DbgValueMap.find(VI); 1574 if (V != DbgValueMap.end()) { 1575 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1576 Instruction *NewDbgII = DbgII->clone(); 1577 NewDbgII->setOperand(0, PhiMAV); 1578 auto InsertionPt = Parent->getFirstInsertionPt(); 1579 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1580 NewDbgII->insertBefore(&*InsertionPt); 1581 } 1582 } 1583 } 1584 } 1585 1586 /// Finds all intrinsics declaring local variables as living in the memory that 1587 /// 'V' points to. This may include a mix of dbg.declare and 1588 /// dbg.addr intrinsics. 1589 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1590 // This function is hot. Check whether the value has any metadata to avoid a 1591 // DenseMap lookup. 1592 if (!V->isUsedByMetadata()) 1593 return {}; 1594 auto *L = LocalAsMetadata::getIfExists(V); 1595 if (!L) 1596 return {}; 1597 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1598 if (!MDV) 1599 return {}; 1600 1601 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1602 for (User *U : MDV->users()) { 1603 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1604 if (DII->isAddressOfVariable()) 1605 Declares.push_back(DII); 1606 } 1607 1608 return Declares; 1609 } 1610 1611 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1612 TinyPtrVector<DbgDeclareInst *> DDIs; 1613 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1614 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1615 DDIs.push_back(DDI); 1616 return DDIs; 1617 } 1618 1619 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1620 // This function is hot. Check whether the value has any metadata to avoid a 1621 // DenseMap lookup. 1622 if (!V->isUsedByMetadata()) 1623 return; 1624 if (auto *L = LocalAsMetadata::getIfExists(V)) 1625 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1626 for (User *U : MDV->users()) 1627 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1628 DbgValues.push_back(DVI); 1629 } 1630 1631 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1632 Value *V) { 1633 // This function is hot. Check whether the value has any metadata to avoid a 1634 // DenseMap lookup. 1635 if (!V->isUsedByMetadata()) 1636 return; 1637 if (auto *L = LocalAsMetadata::getIfExists(V)) 1638 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1639 for (User *U : MDV->users()) 1640 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1641 DbgUsers.push_back(DII); 1642 } 1643 1644 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1645 DIBuilder &Builder, uint8_t DIExprFlags, 1646 int Offset) { 1647 auto DbgAddrs = FindDbgAddrUses(Address); 1648 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1649 DebugLoc Loc = DII->getDebugLoc(); 1650 auto *DIVar = DII->getVariable(); 1651 auto *DIExpr = DII->getExpression(); 1652 assert(DIVar && "Missing variable"); 1653 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1654 // Insert llvm.dbg.declare immediately before DII, and remove old 1655 // llvm.dbg.declare. 1656 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1657 DII->eraseFromParent(); 1658 } 1659 return !DbgAddrs.empty(); 1660 } 1661 1662 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1663 DIBuilder &Builder, int Offset) { 1664 DebugLoc Loc = DVI->getDebugLoc(); 1665 auto *DIVar = DVI->getVariable(); 1666 auto *DIExpr = DVI->getExpression(); 1667 assert(DIVar && "Missing variable"); 1668 1669 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1670 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1671 // it and give up. 1672 if (!DIExpr || DIExpr->getNumElements() < 1 || 1673 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1674 return; 1675 1676 // Insert the offset before the first deref. 1677 // We could just change the offset argument of dbg.value, but it's unsigned... 1678 if (Offset) 1679 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1680 1681 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1682 DVI->eraseFromParent(); 1683 } 1684 1685 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1686 DIBuilder &Builder, int Offset) { 1687 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1688 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1689 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1690 Use &U = *UI++; 1691 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1692 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1693 } 1694 } 1695 1696 /// Wrap \p V in a ValueAsMetadata instance. 1697 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1698 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1699 } 1700 1701 /// Where possible to salvage debug information for \p I do so 1702 /// and return True. If not possible mark undef and return False. 1703 void llvm::salvageDebugInfo(Instruction &I) { 1704 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1705 findDbgUsers(DbgUsers, &I); 1706 salvageDebugInfoForDbgValues(I, DbgUsers); 1707 } 1708 1709 void llvm::salvageDebugInfoForDbgValues( 1710 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1711 auto &Ctx = I.getContext(); 1712 bool Salvaged = false; 1713 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1714 1715 for (auto *DII : DbgUsers) { 1716 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1717 // are implicitly pointing out the value as a DWARF memory location 1718 // description. 1719 bool StackValue = isa<DbgValueInst>(DII); 1720 1721 DIExpression *DIExpr = 1722 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1723 1724 // salvageDebugInfoImpl should fail on examining the first element of 1725 // DbgUsers, or none of them. 1726 if (!DIExpr) 1727 break; 1728 1729 DII->setOperand(0, wrapMD(I.getOperand(0))); 1730 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1731 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1732 Salvaged = true; 1733 } 1734 1735 if (Salvaged) 1736 return; 1737 1738 for (auto *DII : DbgUsers) { 1739 Value *Undef = UndefValue::get(I.getType()); 1740 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1741 ValueAsMetadata::get(Undef))); 1742 } 1743 } 1744 1745 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1746 DIExpression *SrcDIExpr, 1747 bool WithStackValue) { 1748 auto &M = *I.getModule(); 1749 auto &DL = M.getDataLayout(); 1750 1751 // Apply a vector of opcodes to the source DIExpression. 1752 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1753 DIExpression *DIExpr = SrcDIExpr; 1754 if (!Ops.empty()) { 1755 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1756 } 1757 return DIExpr; 1758 }; 1759 1760 // Apply the given offset to the source DIExpression. 1761 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1762 SmallVector<uint64_t, 8> Ops; 1763 DIExpression::appendOffset(Ops, Offset); 1764 return doSalvage(Ops); 1765 }; 1766 1767 // initializer-list helper for applying operators to the source DIExpression. 1768 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1769 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1770 return doSalvage(Ops); 1771 }; 1772 1773 if (auto *CI = dyn_cast<CastInst>(&I)) { 1774 // No-op casts are irrelevant for debug info. 1775 if (CI->isNoopCast(DL)) 1776 return SrcDIExpr; 1777 1778 Type *Type = CI->getType(); 1779 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1780 if (Type->isVectorTy() || 1781 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1782 return nullptr; 1783 1784 Value *FromValue = CI->getOperand(0); 1785 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1786 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1787 1788 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1789 isa<SExtInst>(&I))); 1790 } 1791 1792 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1793 unsigned BitWidth = 1794 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1795 // Rewrite a constant GEP into a DIExpression. 1796 APInt Offset(BitWidth, 0); 1797 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1798 return applyOffset(Offset.getSExtValue()); 1799 } else { 1800 return nullptr; 1801 } 1802 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1803 // Rewrite binary operations with constant integer operands. 1804 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1805 if (!ConstInt || ConstInt->getBitWidth() > 64) 1806 return nullptr; 1807 1808 uint64_t Val = ConstInt->getSExtValue(); 1809 switch (BI->getOpcode()) { 1810 case Instruction::Add: 1811 return applyOffset(Val); 1812 case Instruction::Sub: 1813 return applyOffset(-int64_t(Val)); 1814 case Instruction::Mul: 1815 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1816 case Instruction::SDiv: 1817 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1818 case Instruction::SRem: 1819 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1820 case Instruction::Or: 1821 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1822 case Instruction::And: 1823 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1824 case Instruction::Xor: 1825 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1826 case Instruction::Shl: 1827 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1828 case Instruction::LShr: 1829 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1830 case Instruction::AShr: 1831 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1832 default: 1833 // TODO: Salvage constants from each kind of binop we know about. 1834 return nullptr; 1835 } 1836 // *Not* to do: we should not attempt to salvage load instructions, 1837 // because the validity and lifetime of a dbg.value containing 1838 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1839 } 1840 return nullptr; 1841 } 1842 1843 /// A replacement for a dbg.value expression. 1844 using DbgValReplacement = Optional<DIExpression *>; 1845 1846 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1847 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1848 /// changes are made. 1849 static bool rewriteDebugUsers( 1850 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1851 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1852 // Find debug users of From. 1853 SmallVector<DbgVariableIntrinsic *, 1> Users; 1854 findDbgUsers(Users, &From); 1855 if (Users.empty()) 1856 return false; 1857 1858 // Prevent use-before-def of To. 1859 bool Changed = false; 1860 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1861 if (isa<Instruction>(&To)) { 1862 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1863 1864 for (auto *DII : Users) { 1865 // It's common to see a debug user between From and DomPoint. Move it 1866 // after DomPoint to preserve the variable update without any reordering. 1867 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1868 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1869 DII->moveAfter(&DomPoint); 1870 Changed = true; 1871 1872 // Users which otherwise aren't dominated by the replacement value must 1873 // be salvaged or deleted. 1874 } else if (!DT.dominates(&DomPoint, DII)) { 1875 UndefOrSalvage.insert(DII); 1876 } 1877 } 1878 } 1879 1880 // Update debug users without use-before-def risk. 1881 for (auto *DII : Users) { 1882 if (UndefOrSalvage.count(DII)) 1883 continue; 1884 1885 LLVMContext &Ctx = DII->getContext(); 1886 DbgValReplacement DVR = RewriteExpr(*DII); 1887 if (!DVR) 1888 continue; 1889 1890 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1891 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1892 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1893 Changed = true; 1894 } 1895 1896 if (!UndefOrSalvage.empty()) { 1897 // Try to salvage the remaining debug users. 1898 salvageDebugInfo(From); 1899 Changed = true; 1900 } 1901 1902 return Changed; 1903 } 1904 1905 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1906 /// losslessly preserve the bits and semantics of the value. This predicate is 1907 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1908 /// 1909 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1910 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1911 /// and also does not allow lossless pointer <-> integer conversions. 1912 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1913 Type *ToTy) { 1914 // Trivially compatible types. 1915 if (FromTy == ToTy) 1916 return true; 1917 1918 // Handle compatible pointer <-> integer conversions. 1919 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1920 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1921 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1922 !DL.isNonIntegralPointerType(ToTy); 1923 return SameSize && LosslessConversion; 1924 } 1925 1926 // TODO: This is not exhaustive. 1927 return false; 1928 } 1929 1930 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1931 Instruction &DomPoint, DominatorTree &DT) { 1932 // Exit early if From has no debug users. 1933 if (!From.isUsedByMetadata()) 1934 return false; 1935 1936 assert(&From != &To && "Can't replace something with itself"); 1937 1938 Type *FromTy = From.getType(); 1939 Type *ToTy = To.getType(); 1940 1941 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1942 return DII.getExpression(); 1943 }; 1944 1945 // Handle no-op conversions. 1946 Module &M = *From.getModule(); 1947 const DataLayout &DL = M.getDataLayout(); 1948 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1949 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1950 1951 // Handle integer-to-integer widening and narrowing. 1952 // FIXME: Use DW_OP_convert when it's available everywhere. 1953 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1954 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1955 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1956 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1957 1958 // When the width of the result grows, assume that a debugger will only 1959 // access the low `FromBits` bits when inspecting the source variable. 1960 if (FromBits < ToBits) 1961 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1962 1963 // The width of the result has shrunk. Use sign/zero extension to describe 1964 // the source variable's high bits. 1965 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1966 DILocalVariable *Var = DII.getVariable(); 1967 1968 // Without knowing signedness, sign/zero extension isn't possible. 1969 auto Signedness = Var->getSignedness(); 1970 if (!Signedness) 1971 return None; 1972 1973 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1974 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1975 Signed); 1976 }; 1977 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1978 } 1979 1980 // TODO: Floating-point conversions, vectors. 1981 return false; 1982 } 1983 1984 std::pair<unsigned, unsigned> 1985 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1986 unsigned NumDeadInst = 0; 1987 unsigned NumDeadDbgInst = 0; 1988 // Delete the instructions backwards, as it has a reduced likelihood of 1989 // having to update as many def-use and use-def chains. 1990 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1991 while (EndInst != &BB->front()) { 1992 // Delete the next to last instruction. 1993 Instruction *Inst = &*--EndInst->getIterator(); 1994 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1995 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1996 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1997 EndInst = Inst; 1998 continue; 1999 } 2000 if (isa<DbgInfoIntrinsic>(Inst)) 2001 ++NumDeadDbgInst; 2002 else 2003 ++NumDeadInst; 2004 Inst->eraseFromParent(); 2005 } 2006 return {NumDeadInst, NumDeadDbgInst}; 2007 } 2008 2009 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2010 bool PreserveLCSSA, DomTreeUpdater *DTU, 2011 MemorySSAUpdater *MSSAU) { 2012 BasicBlock *BB = I->getParent(); 2013 std::vector <DominatorTree::UpdateType> Updates; 2014 2015 if (MSSAU) 2016 MSSAU->changeToUnreachable(I); 2017 2018 // Loop over all of the successors, removing BB's entry from any PHI 2019 // nodes. 2020 if (DTU) 2021 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 2022 for (BasicBlock *Successor : successors(BB)) { 2023 Successor->removePredecessor(BB, PreserveLCSSA); 2024 if (DTU) 2025 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2026 } 2027 // Insert a call to llvm.trap right before this. This turns the undefined 2028 // behavior into a hard fail instead of falling through into random code. 2029 if (UseLLVMTrap) { 2030 Function *TrapFn = 2031 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2032 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2033 CallTrap->setDebugLoc(I->getDebugLoc()); 2034 } 2035 auto *UI = new UnreachableInst(I->getContext(), I); 2036 UI->setDebugLoc(I->getDebugLoc()); 2037 2038 // All instructions after this are dead. 2039 unsigned NumInstrsRemoved = 0; 2040 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2041 while (BBI != BBE) { 2042 if (!BBI->use_empty()) 2043 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2044 BB->getInstList().erase(BBI++); 2045 ++NumInstrsRemoved; 2046 } 2047 if (DTU) 2048 DTU->applyUpdatesPermissive(Updates); 2049 return NumInstrsRemoved; 2050 } 2051 2052 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2053 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 2054 SmallVector<OperandBundleDef, 1> OpBundles; 2055 II->getOperandBundlesAsDefs(OpBundles); 2056 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2057 II->getCalledOperand(), Args, OpBundles); 2058 NewCall->setCallingConv(II->getCallingConv()); 2059 NewCall->setAttributes(II->getAttributes()); 2060 NewCall->setDebugLoc(II->getDebugLoc()); 2061 NewCall->copyMetadata(*II); 2062 2063 // If the invoke had profile metadata, try converting them for CallInst. 2064 uint64_t TotalWeight; 2065 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2066 // Set the total weight if it fits into i32, otherwise reset. 2067 MDBuilder MDB(NewCall->getContext()); 2068 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2069 ? nullptr 2070 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2071 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2072 } 2073 2074 return NewCall; 2075 } 2076 2077 /// changeToCall - Convert the specified invoke into a normal call. 2078 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2079 CallInst *NewCall = createCallMatchingInvoke(II); 2080 NewCall->takeName(II); 2081 NewCall->insertBefore(II); 2082 II->replaceAllUsesWith(NewCall); 2083 2084 // Follow the call by a branch to the normal destination. 2085 BasicBlock *NormalDestBB = II->getNormalDest(); 2086 BranchInst::Create(NormalDestBB, II); 2087 2088 // Update PHI nodes in the unwind destination 2089 BasicBlock *BB = II->getParent(); 2090 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2091 UnwindDestBB->removePredecessor(BB); 2092 II->eraseFromParent(); 2093 if (DTU) 2094 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 2095 } 2096 2097 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2098 BasicBlock *UnwindEdge) { 2099 BasicBlock *BB = CI->getParent(); 2100 2101 // Convert this function call into an invoke instruction. First, split the 2102 // basic block. 2103 BasicBlock *Split = 2104 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2105 2106 // Delete the unconditional branch inserted by splitBasicBlock 2107 BB->getInstList().pop_back(); 2108 2109 // Create the new invoke instruction. 2110 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2111 SmallVector<OperandBundleDef, 1> OpBundles; 2112 2113 CI->getOperandBundlesAsDefs(OpBundles); 2114 2115 // Note: we're round tripping operand bundles through memory here, and that 2116 // can potentially be avoided with a cleverer API design that we do not have 2117 // as of this time. 2118 2119 InvokeInst *II = 2120 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2121 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2122 II->setDebugLoc(CI->getDebugLoc()); 2123 II->setCallingConv(CI->getCallingConv()); 2124 II->setAttributes(CI->getAttributes()); 2125 2126 // Make sure that anything using the call now uses the invoke! This also 2127 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2128 CI->replaceAllUsesWith(II); 2129 2130 // Delete the original call 2131 Split->getInstList().pop_front(); 2132 return Split; 2133 } 2134 2135 static bool markAliveBlocks(Function &F, 2136 SmallPtrSetImpl<BasicBlock *> &Reachable, 2137 DomTreeUpdater *DTU = nullptr) { 2138 SmallVector<BasicBlock*, 128> Worklist; 2139 BasicBlock *BB = &F.front(); 2140 Worklist.push_back(BB); 2141 Reachable.insert(BB); 2142 bool Changed = false; 2143 do { 2144 BB = Worklist.pop_back_val(); 2145 2146 // Do a quick scan of the basic block, turning any obviously unreachable 2147 // instructions into LLVM unreachable insts. The instruction combining pass 2148 // canonicalizes unreachable insts into stores to null or undef. 2149 for (Instruction &I : *BB) { 2150 if (auto *CI = dyn_cast<CallInst>(&I)) { 2151 Value *Callee = CI->getCalledOperand(); 2152 // Handle intrinsic calls. 2153 if (Function *F = dyn_cast<Function>(Callee)) { 2154 auto IntrinsicID = F->getIntrinsicID(); 2155 // Assumptions that are known to be false are equivalent to 2156 // unreachable. Also, if the condition is undefined, then we make the 2157 // choice most beneficial to the optimizer, and choose that to also be 2158 // unreachable. 2159 if (IntrinsicID == Intrinsic::assume) { 2160 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2161 // Don't insert a call to llvm.trap right before the unreachable. 2162 changeToUnreachable(CI, false, false, DTU); 2163 Changed = true; 2164 break; 2165 } 2166 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2167 // A call to the guard intrinsic bails out of the current 2168 // compilation unit if the predicate passed to it is false. If the 2169 // predicate is a constant false, then we know the guard will bail 2170 // out of the current compile unconditionally, so all code following 2171 // it is dead. 2172 // 2173 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2174 // guards to treat `undef` as `false` since a guard on `undef` can 2175 // still be useful for widening. 2176 if (match(CI->getArgOperand(0), m_Zero())) 2177 if (!isa<UnreachableInst>(CI->getNextNode())) { 2178 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2179 false, DTU); 2180 Changed = true; 2181 break; 2182 } 2183 } 2184 } else if ((isa<ConstantPointerNull>(Callee) && 2185 !NullPointerIsDefined(CI->getFunction())) || 2186 isa<UndefValue>(Callee)) { 2187 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2188 Changed = true; 2189 break; 2190 } 2191 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2192 // If we found a call to a no-return function, insert an unreachable 2193 // instruction after it. Make sure there isn't *already* one there 2194 // though. 2195 if (!isa<UnreachableInst>(CI->getNextNode())) { 2196 // Don't insert a call to llvm.trap right before the unreachable. 2197 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2198 Changed = true; 2199 } 2200 break; 2201 } 2202 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2203 // Store to undef and store to null are undefined and used to signal 2204 // that they should be changed to unreachable by passes that can't 2205 // modify the CFG. 2206 2207 // Don't touch volatile stores. 2208 if (SI->isVolatile()) continue; 2209 2210 Value *Ptr = SI->getOperand(1); 2211 2212 if (isa<UndefValue>(Ptr) || 2213 (isa<ConstantPointerNull>(Ptr) && 2214 !NullPointerIsDefined(SI->getFunction(), 2215 SI->getPointerAddressSpace()))) { 2216 changeToUnreachable(SI, true, false, DTU); 2217 Changed = true; 2218 break; 2219 } 2220 } 2221 } 2222 2223 Instruction *Terminator = BB->getTerminator(); 2224 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2225 // Turn invokes that call 'nounwind' functions into ordinary calls. 2226 Value *Callee = II->getCalledOperand(); 2227 if ((isa<ConstantPointerNull>(Callee) && 2228 !NullPointerIsDefined(BB->getParent())) || 2229 isa<UndefValue>(Callee)) { 2230 changeToUnreachable(II, true, false, DTU); 2231 Changed = true; 2232 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2233 if (II->use_empty() && II->onlyReadsMemory()) { 2234 // jump to the normal destination branch. 2235 BasicBlock *NormalDestBB = II->getNormalDest(); 2236 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2237 BranchInst::Create(NormalDestBB, II); 2238 UnwindDestBB->removePredecessor(II->getParent()); 2239 II->eraseFromParent(); 2240 if (DTU) 2241 DTU->applyUpdatesPermissive( 2242 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2243 } else 2244 changeToCall(II, DTU); 2245 Changed = true; 2246 } 2247 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2248 // Remove catchpads which cannot be reached. 2249 struct CatchPadDenseMapInfo { 2250 static CatchPadInst *getEmptyKey() { 2251 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2252 } 2253 2254 static CatchPadInst *getTombstoneKey() { 2255 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2256 } 2257 2258 static unsigned getHashValue(CatchPadInst *CatchPad) { 2259 return static_cast<unsigned>(hash_combine_range( 2260 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2261 } 2262 2263 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2264 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2265 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2266 return LHS == RHS; 2267 return LHS->isIdenticalTo(RHS); 2268 } 2269 }; 2270 2271 // Set of unique CatchPads. 2272 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2273 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2274 HandlerSet; 2275 detail::DenseSetEmpty Empty; 2276 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2277 E = CatchSwitch->handler_end(); 2278 I != E; ++I) { 2279 BasicBlock *HandlerBB = *I; 2280 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2281 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2282 CatchSwitch->removeHandler(I); 2283 --I; 2284 --E; 2285 Changed = true; 2286 } 2287 } 2288 } 2289 2290 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2291 for (BasicBlock *Successor : successors(BB)) 2292 if (Reachable.insert(Successor).second) 2293 Worklist.push_back(Successor); 2294 } while (!Worklist.empty()); 2295 return Changed; 2296 } 2297 2298 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2299 Instruction *TI = BB->getTerminator(); 2300 2301 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2302 changeToCall(II, DTU); 2303 return; 2304 } 2305 2306 Instruction *NewTI; 2307 BasicBlock *UnwindDest; 2308 2309 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2310 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2311 UnwindDest = CRI->getUnwindDest(); 2312 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2313 auto *NewCatchSwitch = CatchSwitchInst::Create( 2314 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2315 CatchSwitch->getName(), CatchSwitch); 2316 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2317 NewCatchSwitch->addHandler(PadBB); 2318 2319 NewTI = NewCatchSwitch; 2320 UnwindDest = CatchSwitch->getUnwindDest(); 2321 } else { 2322 llvm_unreachable("Could not find unwind successor"); 2323 } 2324 2325 NewTI->takeName(TI); 2326 NewTI->setDebugLoc(TI->getDebugLoc()); 2327 UnwindDest->removePredecessor(BB); 2328 TI->replaceAllUsesWith(NewTI); 2329 TI->eraseFromParent(); 2330 if (DTU) 2331 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2332 } 2333 2334 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2335 /// if they are in a dead cycle. Return true if a change was made, false 2336 /// otherwise. 2337 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2338 MemorySSAUpdater *MSSAU) { 2339 SmallPtrSet<BasicBlock *, 16> Reachable; 2340 bool Changed = markAliveBlocks(F, Reachable, DTU); 2341 2342 // If there are unreachable blocks in the CFG... 2343 if (Reachable.size() == F.size()) 2344 return Changed; 2345 2346 assert(Reachable.size() < F.size()); 2347 NumRemoved += F.size() - Reachable.size(); 2348 2349 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2350 for (BasicBlock &BB : F) { 2351 // Skip reachable basic blocks 2352 if (Reachable.count(&BB)) 2353 continue; 2354 DeadBlockSet.insert(&BB); 2355 } 2356 2357 if (MSSAU) 2358 MSSAU->removeBlocks(DeadBlockSet); 2359 2360 // Loop over all of the basic blocks that are not reachable, dropping all of 2361 // their internal references. Update DTU if available. 2362 std::vector<DominatorTree::UpdateType> Updates; 2363 for (auto *BB : DeadBlockSet) { 2364 for (BasicBlock *Successor : successors(BB)) { 2365 if (!DeadBlockSet.count(Successor)) 2366 Successor->removePredecessor(BB); 2367 if (DTU) 2368 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2369 } 2370 BB->dropAllReferences(); 2371 if (DTU) { 2372 Instruction *TI = BB->getTerminator(); 2373 assert(TI && "Basic block should have a terminator"); 2374 // Terminators like invoke can have users. We have to replace their users, 2375 // before removing them. 2376 if (!TI->use_empty()) 2377 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2378 TI->eraseFromParent(); 2379 new UnreachableInst(BB->getContext(), BB); 2380 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2381 "applying corresponding DTU updates."); 2382 } 2383 } 2384 2385 if (DTU) { 2386 DTU->applyUpdatesPermissive(Updates); 2387 bool Deleted = false; 2388 for (auto *BB : DeadBlockSet) { 2389 if (DTU->isBBPendingDeletion(BB)) 2390 --NumRemoved; 2391 else 2392 Deleted = true; 2393 DTU->deleteBB(BB); 2394 } 2395 if (!Deleted) 2396 return false; 2397 } else { 2398 for (auto *BB : DeadBlockSet) 2399 BB->eraseFromParent(); 2400 } 2401 2402 return true; 2403 } 2404 2405 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2406 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2407 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2408 K->dropUnknownNonDebugMetadata(KnownIDs); 2409 K->getAllMetadataOtherThanDebugLoc(Metadata); 2410 for (const auto &MD : Metadata) { 2411 unsigned Kind = MD.first; 2412 MDNode *JMD = J->getMetadata(Kind); 2413 MDNode *KMD = MD.second; 2414 2415 switch (Kind) { 2416 default: 2417 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2418 break; 2419 case LLVMContext::MD_dbg: 2420 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2421 case LLVMContext::MD_tbaa: 2422 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2423 break; 2424 case LLVMContext::MD_alias_scope: 2425 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2426 break; 2427 case LLVMContext::MD_noalias: 2428 case LLVMContext::MD_mem_parallel_loop_access: 2429 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2430 break; 2431 case LLVMContext::MD_access_group: 2432 K->setMetadata(LLVMContext::MD_access_group, 2433 intersectAccessGroups(K, J)); 2434 break; 2435 case LLVMContext::MD_range: 2436 2437 // If K does move, use most generic range. Otherwise keep the range of 2438 // K. 2439 if (DoesKMove) 2440 // FIXME: If K does move, we should drop the range info and nonnull. 2441 // Currently this function is used with DoesKMove in passes 2442 // doing hoisting/sinking and the current behavior of using the 2443 // most generic range is correct in those cases. 2444 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2445 break; 2446 case LLVMContext::MD_fpmath: 2447 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2448 break; 2449 case LLVMContext::MD_invariant_load: 2450 // Only set the !invariant.load if it is present in both instructions. 2451 K->setMetadata(Kind, JMD); 2452 break; 2453 case LLVMContext::MD_nonnull: 2454 // If K does move, keep nonull if it is present in both instructions. 2455 if (DoesKMove) 2456 K->setMetadata(Kind, JMD); 2457 break; 2458 case LLVMContext::MD_invariant_group: 2459 // Preserve !invariant.group in K. 2460 break; 2461 case LLVMContext::MD_align: 2462 K->setMetadata(Kind, 2463 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2464 break; 2465 case LLVMContext::MD_dereferenceable: 2466 case LLVMContext::MD_dereferenceable_or_null: 2467 K->setMetadata(Kind, 2468 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2469 break; 2470 case LLVMContext::MD_preserve_access_index: 2471 // Preserve !preserve.access.index in K. 2472 break; 2473 } 2474 } 2475 // Set !invariant.group from J if J has it. If both instructions have it 2476 // then we will just pick it from J - even when they are different. 2477 // Also make sure that K is load or store - f.e. combining bitcast with load 2478 // could produce bitcast with invariant.group metadata, which is invalid. 2479 // FIXME: we should try to preserve both invariant.group md if they are 2480 // different, but right now instruction can only have one invariant.group. 2481 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2482 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2483 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2484 } 2485 2486 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2487 bool KDominatesJ) { 2488 unsigned KnownIDs[] = { 2489 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2490 LLVMContext::MD_noalias, LLVMContext::MD_range, 2491 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2492 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2493 LLVMContext::MD_dereferenceable, 2494 LLVMContext::MD_dereferenceable_or_null, 2495 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2496 combineMetadata(K, J, KnownIDs, KDominatesJ); 2497 } 2498 2499 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2500 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2501 Source.getAllMetadata(MD); 2502 MDBuilder MDB(Dest.getContext()); 2503 Type *NewType = Dest.getType(); 2504 const DataLayout &DL = Source.getModule()->getDataLayout(); 2505 for (const auto &MDPair : MD) { 2506 unsigned ID = MDPair.first; 2507 MDNode *N = MDPair.second; 2508 // Note, essentially every kind of metadata should be preserved here! This 2509 // routine is supposed to clone a load instruction changing *only its type*. 2510 // The only metadata it makes sense to drop is metadata which is invalidated 2511 // when the pointer type changes. This should essentially never be the case 2512 // in LLVM, but we explicitly switch over only known metadata to be 2513 // conservatively correct. If you are adding metadata to LLVM which pertains 2514 // to loads, you almost certainly want to add it here. 2515 switch (ID) { 2516 case LLVMContext::MD_dbg: 2517 case LLVMContext::MD_tbaa: 2518 case LLVMContext::MD_prof: 2519 case LLVMContext::MD_fpmath: 2520 case LLVMContext::MD_tbaa_struct: 2521 case LLVMContext::MD_invariant_load: 2522 case LLVMContext::MD_alias_scope: 2523 case LLVMContext::MD_noalias: 2524 case LLVMContext::MD_nontemporal: 2525 case LLVMContext::MD_mem_parallel_loop_access: 2526 case LLVMContext::MD_access_group: 2527 // All of these directly apply. 2528 Dest.setMetadata(ID, N); 2529 break; 2530 2531 case LLVMContext::MD_nonnull: 2532 copyNonnullMetadata(Source, N, Dest); 2533 break; 2534 2535 case LLVMContext::MD_align: 2536 case LLVMContext::MD_dereferenceable: 2537 case LLVMContext::MD_dereferenceable_or_null: 2538 // These only directly apply if the new type is also a pointer. 2539 if (NewType->isPointerTy()) 2540 Dest.setMetadata(ID, N); 2541 break; 2542 2543 case LLVMContext::MD_range: 2544 copyRangeMetadata(DL, Source, N, Dest); 2545 break; 2546 } 2547 } 2548 } 2549 2550 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2551 auto *ReplInst = dyn_cast<Instruction>(Repl); 2552 if (!ReplInst) 2553 return; 2554 2555 // Patch the replacement so that it is not more restrictive than the value 2556 // being replaced. 2557 // Note that if 'I' is a load being replaced by some operation, 2558 // for example, by an arithmetic operation, then andIRFlags() 2559 // would just erase all math flags from the original arithmetic 2560 // operation, which is clearly not wanted and not needed. 2561 if (!isa<LoadInst>(I)) 2562 ReplInst->andIRFlags(I); 2563 2564 // FIXME: If both the original and replacement value are part of the 2565 // same control-flow region (meaning that the execution of one 2566 // guarantees the execution of the other), then we can combine the 2567 // noalias scopes here and do better than the general conservative 2568 // answer used in combineMetadata(). 2569 2570 // In general, GVN unifies expressions over different control-flow 2571 // regions, and so we need a conservative combination of the noalias 2572 // scopes. 2573 static const unsigned KnownIDs[] = { 2574 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2575 LLVMContext::MD_noalias, LLVMContext::MD_range, 2576 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2577 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2578 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2579 combineMetadata(ReplInst, I, KnownIDs, false); 2580 } 2581 2582 template <typename RootType, typename DominatesFn> 2583 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2584 const RootType &Root, 2585 const DominatesFn &Dominates) { 2586 assert(From->getType() == To->getType()); 2587 2588 unsigned Count = 0; 2589 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2590 UI != UE;) { 2591 Use &U = *UI++; 2592 if (!Dominates(Root, U)) 2593 continue; 2594 U.set(To); 2595 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2596 << "' as " << *To << " in " << *U << "\n"); 2597 ++Count; 2598 } 2599 return Count; 2600 } 2601 2602 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2603 assert(From->getType() == To->getType()); 2604 auto *BB = From->getParent(); 2605 unsigned Count = 0; 2606 2607 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2608 UI != UE;) { 2609 Use &U = *UI++; 2610 auto *I = cast<Instruction>(U.getUser()); 2611 if (I->getParent() == BB) 2612 continue; 2613 U.set(To); 2614 ++Count; 2615 } 2616 return Count; 2617 } 2618 2619 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2620 DominatorTree &DT, 2621 const BasicBlockEdge &Root) { 2622 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2623 return DT.dominates(Root, U); 2624 }; 2625 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2626 } 2627 2628 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2629 DominatorTree &DT, 2630 const BasicBlock *BB) { 2631 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2632 auto *I = cast<Instruction>(U.getUser())->getParent(); 2633 return DT.properlyDominates(BB, I); 2634 }; 2635 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2636 } 2637 2638 bool llvm::callsGCLeafFunction(const CallBase *Call, 2639 const TargetLibraryInfo &TLI) { 2640 // Check if the function is specifically marked as a gc leaf function. 2641 if (Call->hasFnAttr("gc-leaf-function")) 2642 return true; 2643 if (const Function *F = Call->getCalledFunction()) { 2644 if (F->hasFnAttribute("gc-leaf-function")) 2645 return true; 2646 2647 if (auto IID = F->getIntrinsicID()) { 2648 // Most LLVM intrinsics do not take safepoints. 2649 return IID != Intrinsic::experimental_gc_statepoint && 2650 IID != Intrinsic::experimental_deoptimize && 2651 IID != Intrinsic::memcpy_element_unordered_atomic && 2652 IID != Intrinsic::memmove_element_unordered_atomic; 2653 } 2654 } 2655 2656 // Lib calls can be materialized by some passes, and won't be 2657 // marked as 'gc-leaf-function.' All available Libcalls are 2658 // GC-leaf. 2659 LibFunc LF; 2660 if (TLI.getLibFunc(*Call, LF)) { 2661 return TLI.has(LF); 2662 } 2663 2664 return false; 2665 } 2666 2667 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2668 LoadInst &NewLI) { 2669 auto *NewTy = NewLI.getType(); 2670 2671 // This only directly applies if the new type is also a pointer. 2672 if (NewTy->isPointerTy()) { 2673 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2674 return; 2675 } 2676 2677 // The only other translation we can do is to integral loads with !range 2678 // metadata. 2679 if (!NewTy->isIntegerTy()) 2680 return; 2681 2682 MDBuilder MDB(NewLI.getContext()); 2683 const Value *Ptr = OldLI.getPointerOperand(); 2684 auto *ITy = cast<IntegerType>(NewTy); 2685 auto *NullInt = ConstantExpr::getPtrToInt( 2686 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2687 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2688 NewLI.setMetadata(LLVMContext::MD_range, 2689 MDB.createRange(NonNullInt, NullInt)); 2690 } 2691 2692 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2693 MDNode *N, LoadInst &NewLI) { 2694 auto *NewTy = NewLI.getType(); 2695 2696 // Give up unless it is converted to a pointer where there is a single very 2697 // valuable mapping we can do reliably. 2698 // FIXME: It would be nice to propagate this in more ways, but the type 2699 // conversions make it hard. 2700 if (!NewTy->isPointerTy()) 2701 return; 2702 2703 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2704 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2705 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2706 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2707 } 2708 } 2709 2710 void llvm::dropDebugUsers(Instruction &I) { 2711 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2712 findDbgUsers(DbgUsers, &I); 2713 for (auto *DII : DbgUsers) 2714 DII->eraseFromParent(); 2715 } 2716 2717 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2718 BasicBlock *BB) { 2719 // Since we are moving the instructions out of its basic block, we do not 2720 // retain their original debug locations (DILocations) and debug intrinsic 2721 // instructions. 2722 // 2723 // Doing so would degrade the debugging experience and adversely affect the 2724 // accuracy of profiling information. 2725 // 2726 // Currently, when hoisting the instructions, we take the following actions: 2727 // - Remove their debug intrinsic instructions. 2728 // - Set their debug locations to the values from the insertion point. 2729 // 2730 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2731 // need to be deleted, is because there will not be any instructions with a 2732 // DILocation in either branch left after performing the transformation. We 2733 // can only insert a dbg.value after the two branches are joined again. 2734 // 2735 // See PR38762, PR39243 for more details. 2736 // 2737 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2738 // encode predicated DIExpressions that yield different results on different 2739 // code paths. 2740 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2741 Instruction *I = &*II; 2742 I->dropUnknownNonDebugMetadata(); 2743 if (I->isUsedByMetadata()) 2744 dropDebugUsers(*I); 2745 if (isa<DbgInfoIntrinsic>(I)) { 2746 // Remove DbgInfo Intrinsics. 2747 II = I->eraseFromParent(); 2748 continue; 2749 } 2750 I->setDebugLoc(InsertPt->getDebugLoc()); 2751 ++II; 2752 } 2753 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2754 BB->begin(), 2755 BB->getTerminator()->getIterator()); 2756 } 2757 2758 namespace { 2759 2760 /// A potential constituent of a bitreverse or bswap expression. See 2761 /// collectBitParts for a fuller explanation. 2762 struct BitPart { 2763 BitPart(Value *P, unsigned BW) : Provider(P) { 2764 Provenance.resize(BW); 2765 } 2766 2767 /// The Value that this is a bitreverse/bswap of. 2768 Value *Provider; 2769 2770 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2771 /// in Provider becomes bit B in the result of this expression. 2772 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2773 2774 enum { Unset = -1 }; 2775 }; 2776 2777 } // end anonymous namespace 2778 2779 /// Analyze the specified subexpression and see if it is capable of providing 2780 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2781 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2782 /// the output of the expression came from a corresponding bit in some other 2783 /// value. This function is recursive, and the end result is a mapping of 2784 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2785 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2786 /// 2787 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2788 /// that the expression deposits the low byte of %X into the high byte of the 2789 /// result and that all other bits are zero. This expression is accepted and a 2790 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2791 /// [0-7]. 2792 /// 2793 /// For vector types, all analysis is performed at the per-element level. No 2794 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2795 /// constant masks must be splatted across all elements. 2796 /// 2797 /// To avoid revisiting values, the BitPart results are memoized into the 2798 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2799 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2800 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2801 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2802 /// type instead to provide the same functionality. 2803 /// 2804 /// Because we pass around references into \c BPS, we must use a container that 2805 /// does not invalidate internal references (std::map instead of DenseMap). 2806 static const Optional<BitPart> & 2807 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2808 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2809 auto I = BPS.find(V); 2810 if (I != BPS.end()) 2811 return I->second; 2812 2813 auto &Result = BPS[V] = None; 2814 auto BitWidth = V->getType()->getScalarSizeInBits(); 2815 2816 // Prevent stack overflow by limiting the recursion depth 2817 if (Depth == BitPartRecursionMaxDepth) { 2818 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2819 return Result; 2820 } 2821 2822 if (auto *I = dyn_cast<Instruction>(V)) { 2823 Value *X, *Y; 2824 const APInt *C; 2825 2826 // If this is an or instruction, it may be an inner node of the bswap. 2827 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2828 const auto &A = 2829 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2830 const auto &B = 2831 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2832 if (!A || !B) 2833 return Result; 2834 2835 // Try and merge the two together. 2836 if (!A->Provider || A->Provider != B->Provider) 2837 return Result; 2838 2839 Result = BitPart(A->Provider, BitWidth); 2840 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2841 if (A->Provenance[BitIdx] != BitPart::Unset && 2842 B->Provenance[BitIdx] != BitPart::Unset && 2843 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2844 return Result = None; 2845 2846 if (A->Provenance[BitIdx] == BitPart::Unset) 2847 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2848 else 2849 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2850 } 2851 2852 return Result; 2853 } 2854 2855 // If this is a logical shift by a constant, recurse then shift the result. 2856 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2857 const APInt &BitShift = *C; 2858 2859 // Ensure the shift amount is defined. 2860 if (BitShift.uge(BitWidth)) 2861 return Result; 2862 2863 const auto &Res = 2864 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2865 if (!Res) 2866 return Result; 2867 Result = Res; 2868 2869 // Perform the "shift" on BitProvenance. 2870 auto &P = Result->Provenance; 2871 if (I->getOpcode() == Instruction::Shl) { 2872 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2873 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2874 } else { 2875 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2876 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2877 } 2878 2879 return Result; 2880 } 2881 2882 // If this is a logical 'and' with a mask that clears bits, recurse then 2883 // unset the appropriate bits. 2884 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2885 const APInt &AndMask = *C; 2886 2887 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2888 // early exit. 2889 unsigned NumMaskedBits = AndMask.countPopulation(); 2890 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2891 return Result; 2892 2893 const auto &Res = 2894 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2895 if (!Res) 2896 return Result; 2897 Result = Res; 2898 2899 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2900 // If the AndMask is zero for this bit, clear the bit. 2901 if (AndMask[BitIdx] == 0) 2902 Result->Provenance[BitIdx] = BitPart::Unset; 2903 return Result; 2904 } 2905 2906 // If this is a zext instruction zero extend the result. 2907 if (match(V, m_ZExt(m_Value(X)))) { 2908 const auto &Res = 2909 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2910 if (!Res) 2911 return Result; 2912 2913 Result = BitPart(Res->Provider, BitWidth); 2914 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2915 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2916 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2917 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2918 Result->Provenance[BitIdx] = BitPart::Unset; 2919 return Result; 2920 } 2921 2922 // BITREVERSE - most likely due to us previous matching a partial 2923 // bitreverse. 2924 if (match(V, m_BitReverse(m_Value(X)))) { 2925 const auto &Res = 2926 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2927 if (!Res) 2928 return Result; 2929 2930 Result = BitPart(Res->Provider, BitWidth); 2931 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2932 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2933 return Result; 2934 } 2935 2936 // BSWAP - most likely due to us previous matching a partial bswap. 2937 if (match(V, m_BSwap(m_Value(X)))) { 2938 const auto &Res = 2939 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2940 if (!Res) 2941 return Result; 2942 2943 unsigned ByteWidth = BitWidth / 8; 2944 Result = BitPart(Res->Provider, BitWidth); 2945 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2946 unsigned ByteBitOfs = ByteIdx * 8; 2947 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2948 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2949 Res->Provenance[ByteBitOfs + BitIdx]; 2950 } 2951 return Result; 2952 } 2953 2954 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2955 // amount (modulo). 2956 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2957 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2958 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 2959 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 2960 // We can treat fshr as a fshl by flipping the modulo amount. 2961 unsigned ModAmt = C->urem(BitWidth); 2962 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 2963 ModAmt = BitWidth - ModAmt; 2964 2965 const auto &LHS = 2966 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2967 const auto &RHS = 2968 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2969 2970 // Check we have both sources and they are from the same provider. 2971 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 2972 return Result; 2973 2974 unsigned StartBitRHS = BitWidth - ModAmt; 2975 Result = BitPart(LHS->Provider, BitWidth); 2976 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 2977 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 2978 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 2979 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 2980 return Result; 2981 } 2982 } 2983 2984 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2985 // the input value to the bswap/bitreverse. 2986 Result = BitPart(V, BitWidth); 2987 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2988 Result->Provenance[BitIdx] = BitIdx; 2989 return Result; 2990 } 2991 2992 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2993 unsigned BitWidth) { 2994 if (From % 8 != To % 8) 2995 return false; 2996 // Convert from bit indices to byte indices and check for a byte reversal. 2997 From >>= 3; 2998 To >>= 3; 2999 BitWidth >>= 3; 3000 return From == BitWidth - To - 1; 3001 } 3002 3003 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3004 unsigned BitWidth) { 3005 return From == BitWidth - To - 1; 3006 } 3007 3008 bool llvm::recognizeBSwapOrBitReverseIdiom( 3009 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3010 SmallVectorImpl<Instruction *> &InsertedInsts) { 3011 if (Operator::getOpcode(I) != Instruction::Or) 3012 return false; 3013 if (!MatchBSwaps && !MatchBitReversals) 3014 return false; 3015 Type *ITy = I->getType(); 3016 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3017 return false; // Can't do integer/elements > 128 bits. 3018 3019 Type *DemandedTy = ITy; 3020 if (I->hasOneUse()) 3021 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3022 DemandedTy = Trunc->getType(); 3023 3024 // Try to find all the pieces corresponding to the bswap. 3025 std::map<Value *, Optional<BitPart>> BPS; 3026 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3027 if (!Res) 3028 return false; 3029 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3030 assert(all_of(BitProvenance, 3031 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3032 "Illegal bit provenance index"); 3033 3034 // If the upper bits are zero, then attempt to perform as a truncated op. 3035 if (BitProvenance.back() == BitPart::Unset) { 3036 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3037 BitProvenance = BitProvenance.drop_back(); 3038 if (BitProvenance.empty()) 3039 return false; // TODO - handle null value? 3040 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3041 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3042 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3043 } 3044 3045 // Check BitProvenance hasn't found a source larger than the result type. 3046 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3047 if (DemandedBW > ITy->getScalarSizeInBits()) 3048 return false; 3049 3050 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3051 // only byteswap values with an even number of bytes. 3052 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3053 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3054 bool OKForBitReverse = MatchBitReversals; 3055 for (unsigned BitIdx = 0; 3056 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3057 if (BitProvenance[BitIdx] == BitPart::Unset) { 3058 DemandedMask.clearBit(BitIdx); 3059 continue; 3060 } 3061 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3062 DemandedBW); 3063 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3064 BitIdx, DemandedBW); 3065 } 3066 3067 Intrinsic::ID Intrin; 3068 if (OKForBSwap) 3069 Intrin = Intrinsic::bswap; 3070 else if (OKForBitReverse) 3071 Intrin = Intrinsic::bitreverse; 3072 else 3073 return false; 3074 3075 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3076 Value *Provider = Res->Provider; 3077 3078 // We may need to truncate the provider. 3079 if (DemandedTy != Provider->getType()) { 3080 auto *Trunc = 3081 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3082 InsertedInsts.push_back(Trunc); 3083 Provider = Trunc; 3084 } 3085 3086 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3087 InsertedInsts.push_back(Result); 3088 3089 if (!DemandedMask.isAllOnesValue()) { 3090 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3091 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3092 InsertedInsts.push_back(Result); 3093 } 3094 3095 // We may need to zeroextend back to the result type. 3096 if (ITy != Result->getType()) { 3097 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3098 InsertedInsts.push_back(ExtInst); 3099 } 3100 3101 return true; 3102 } 3103 3104 // CodeGen has special handling for some string functions that may replace 3105 // them with target-specific intrinsics. Since that'd skip our interceptors 3106 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3107 // we mark affected calls as NoBuiltin, which will disable optimization 3108 // in CodeGen. 3109 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3110 CallInst *CI, const TargetLibraryInfo *TLI) { 3111 Function *F = CI->getCalledFunction(); 3112 LibFunc Func; 3113 if (F && !F->hasLocalLinkage() && F->hasName() && 3114 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3115 !F->doesNotAccessMemory()) 3116 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3117 } 3118 3119 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3120 // We can't have a PHI with a metadata type. 3121 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3122 return false; 3123 3124 // Early exit. 3125 if (!isa<Constant>(I->getOperand(OpIdx))) 3126 return true; 3127 3128 switch (I->getOpcode()) { 3129 default: 3130 return true; 3131 case Instruction::Call: 3132 case Instruction::Invoke: { 3133 const auto &CB = cast<CallBase>(*I); 3134 3135 // Can't handle inline asm. Skip it. 3136 if (CB.isInlineAsm()) 3137 return false; 3138 3139 // Constant bundle operands may need to retain their constant-ness for 3140 // correctness. 3141 if (CB.isBundleOperand(OpIdx)) 3142 return false; 3143 3144 if (OpIdx < CB.getNumArgOperands()) { 3145 // Some variadic intrinsics require constants in the variadic arguments, 3146 // which currently aren't markable as immarg. 3147 if (isa<IntrinsicInst>(CB) && 3148 OpIdx >= CB.getFunctionType()->getNumParams()) { 3149 // This is known to be OK for stackmap. 3150 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3151 } 3152 3153 // gcroot is a special case, since it requires a constant argument which 3154 // isn't also required to be a simple ConstantInt. 3155 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3156 return false; 3157 3158 // Some intrinsic operands are required to be immediates. 3159 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3160 } 3161 3162 // It is never allowed to replace the call argument to an intrinsic, but it 3163 // may be possible for a call. 3164 return !isa<IntrinsicInst>(CB); 3165 } 3166 case Instruction::ShuffleVector: 3167 // Shufflevector masks are constant. 3168 return OpIdx != 2; 3169 case Instruction::Switch: 3170 case Instruction::ExtractValue: 3171 // All operands apart from the first are constant. 3172 return OpIdx == 0; 3173 case Instruction::InsertValue: 3174 // All operands apart from the first and the second are constant. 3175 return OpIdx < 2; 3176 case Instruction::Alloca: 3177 // Static allocas (constant size in the entry block) are handled by 3178 // prologue/epilogue insertion so they're free anyway. We definitely don't 3179 // want to make them non-constant. 3180 return !cast<AllocaInst>(I)->isStaticAlloca(); 3181 case Instruction::GetElementPtr: 3182 if (OpIdx == 0) 3183 return true; 3184 gep_type_iterator It = gep_type_begin(I); 3185 for (auto E = std::next(It, OpIdx); It != E; ++It) 3186 if (It.isStruct()) 3187 return false; 3188 return true; 3189 } 3190 } 3191 3192 Value *llvm::invertCondition(Value *Condition) { 3193 // First: Check if it's a constant 3194 if (Constant *C = dyn_cast<Constant>(Condition)) 3195 return ConstantExpr::getNot(C); 3196 3197 // Second: If the condition is already inverted, return the original value 3198 Value *NotCondition; 3199 if (match(Condition, m_Not(m_Value(NotCondition)))) 3200 return NotCondition; 3201 3202 BasicBlock *Parent = nullptr; 3203 Instruction *Inst = dyn_cast<Instruction>(Condition); 3204 if (Inst) 3205 Parent = Inst->getParent(); 3206 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3207 Parent = &Arg->getParent()->getEntryBlock(); 3208 assert(Parent && "Unsupported condition to invert"); 3209 3210 // Third: Check all the users for an invert 3211 for (User *U : Condition->users()) 3212 if (Instruction *I = dyn_cast<Instruction>(U)) 3213 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3214 return I; 3215 3216 // Last option: Create a new instruction 3217 auto *Inverted = 3218 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3219 if (Inst && !isa<PHINode>(Inst)) 3220 Inverted->insertAfter(Inst); 3221 else 3222 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3223 return Inverted; 3224 } 3225