1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/TinyPtrVector.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/CallSite.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DIBuilder.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/DomTreeUpdater.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/KnownBits.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace llvm::PatternMatch;
88 
89 #define DEBUG_TYPE "local"
90 
91 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
92 
93 //===----------------------------------------------------------------------===//
94 //  Local constant propagation.
95 //
96 
97 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
98 /// constant value, convert it into an unconditional branch to the constant
99 /// destination.  This is a nontrivial operation because the successors of this
100 /// basic block must have their PHI nodes updated.
101 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
102 /// conditions and indirectbr addresses this might make dead if
103 /// DeleteDeadConditions is true.
104 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
105                                   const TargetLibraryInfo *TLI,
106                                   DomTreeUpdater *DTU) {
107   TerminatorInst *T = BB->getTerminator();
108   IRBuilder<> Builder(T);
109 
110   // Branch - See if we are conditional jumping on constant
111   if (auto *BI = dyn_cast<BranchInst>(T)) {
112     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
113     BasicBlock *Dest1 = BI->getSuccessor(0);
114     BasicBlock *Dest2 = BI->getSuccessor(1);
115 
116     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
117       // Are we branching on constant?
118       // YES.  Change to unconditional branch...
119       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
120       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
121 
122       // Let the basic block know that we are letting go of it.  Based on this,
123       // it will adjust it's PHI nodes.
124       OldDest->removePredecessor(BB);
125 
126       // Replace the conditional branch with an unconditional one.
127       Builder.CreateBr(Destination);
128       BI->eraseFromParent();
129       if (DTU)
130         DTU->deleteEdgeRelaxed(BB, OldDest);
131       return true;
132     }
133 
134     if (Dest2 == Dest1) {       // Conditional branch to same location?
135       // This branch matches something like this:
136       //     br bool %cond, label %Dest, label %Dest
137       // and changes it into:  br label %Dest
138 
139       // Let the basic block know that we are letting go of one copy of it.
140       assert(BI->getParent() && "Terminator not inserted in block!");
141       Dest1->removePredecessor(BI->getParent());
142 
143       // Replace the conditional branch with an unconditional one.
144       Builder.CreateBr(Dest1);
145       Value *Cond = BI->getCondition();
146       BI->eraseFromParent();
147       if (DeleteDeadConditions)
148         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
149       return true;
150     }
151     return false;
152   }
153 
154   if (auto *SI = dyn_cast<SwitchInst>(T)) {
155     // If we are switching on a constant, we can convert the switch to an
156     // unconditional branch.
157     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
158     BasicBlock *DefaultDest = SI->getDefaultDest();
159     BasicBlock *TheOnlyDest = DefaultDest;
160 
161     // If the default is unreachable, ignore it when searching for TheOnlyDest.
162     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
163         SI->getNumCases() > 0) {
164       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
165     }
166 
167     // Figure out which case it goes to.
168     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
169       // Found case matching a constant operand?
170       if (i->getCaseValue() == CI) {
171         TheOnlyDest = i->getCaseSuccessor();
172         break;
173       }
174 
175       // Check to see if this branch is going to the same place as the default
176       // dest.  If so, eliminate it as an explicit compare.
177       if (i->getCaseSuccessor() == DefaultDest) {
178         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
179         unsigned NCases = SI->getNumCases();
180         // Fold the case metadata into the default if there will be any branches
181         // left, unless the metadata doesn't match the switch.
182         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
183           // Collect branch weights into a vector.
184           SmallVector<uint32_t, 8> Weights;
185           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
186                ++MD_i) {
187             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
188             Weights.push_back(CI->getValue().getZExtValue());
189           }
190           // Merge weight of this case to the default weight.
191           unsigned idx = i->getCaseIndex();
192           Weights[0] += Weights[idx+1];
193           // Remove weight for this case.
194           std::swap(Weights[idx+1], Weights.back());
195           Weights.pop_back();
196           SI->setMetadata(LLVMContext::MD_prof,
197                           MDBuilder(BB->getContext()).
198                           createBranchWeights(Weights));
199         }
200         // Remove this entry.
201         BasicBlock *ParentBB = SI->getParent();
202         DefaultDest->removePredecessor(ParentBB);
203         i = SI->removeCase(i);
204         e = SI->case_end();
205         if (DTU)
206           DTU->deleteEdgeRelaxed(ParentBB, DefaultDest);
207         continue;
208       }
209 
210       // Otherwise, check to see if the switch only branches to one destination.
211       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
212       // destinations.
213       if (i->getCaseSuccessor() != TheOnlyDest)
214         TheOnlyDest = nullptr;
215 
216       // Increment this iterator as we haven't removed the case.
217       ++i;
218     }
219 
220     if (CI && !TheOnlyDest) {
221       // Branching on a constant, but not any of the cases, go to the default
222       // successor.
223       TheOnlyDest = SI->getDefaultDest();
224     }
225 
226     // If we found a single destination that we can fold the switch into, do so
227     // now.
228     if (TheOnlyDest) {
229       // Insert the new branch.
230       Builder.CreateBr(TheOnlyDest);
231       BasicBlock *BB = SI->getParent();
232       std::vector <DominatorTree::UpdateType> Updates;
233       if (DTU)
234         Updates.reserve(SI->getNumSuccessors() - 1);
235 
236       // Remove entries from PHI nodes which we no longer branch to...
237       for (BasicBlock *Succ : SI->successors()) {
238         // Found case matching a constant operand?
239         if (Succ == TheOnlyDest) {
240           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
241         } else {
242           Succ->removePredecessor(BB);
243           if (DTU)
244             Updates.push_back({DominatorTree::Delete, BB, Succ});
245         }
246       }
247 
248       // Delete the old switch.
249       Value *Cond = SI->getCondition();
250       SI->eraseFromParent();
251       if (DeleteDeadConditions)
252         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
253       if (DTU)
254         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
255       return true;
256     }
257 
258     if (SI->getNumCases() == 1) {
259       // Otherwise, we can fold this switch into a conditional branch
260       // instruction if it has only one non-default destination.
261       auto FirstCase = *SI->case_begin();
262       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
263           FirstCase.getCaseValue(), "cond");
264 
265       // Insert the new branch.
266       BranchInst *NewBr = Builder.CreateCondBr(Cond,
267                                                FirstCase.getCaseSuccessor(),
268                                                SI->getDefaultDest());
269       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
270       if (MD && MD->getNumOperands() == 3) {
271         ConstantInt *SICase =
272             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
273         ConstantInt *SIDef =
274             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
275         assert(SICase && SIDef);
276         // The TrueWeight should be the weight for the single case of SI.
277         NewBr->setMetadata(LLVMContext::MD_prof,
278                         MDBuilder(BB->getContext()).
279                         createBranchWeights(SICase->getValue().getZExtValue(),
280                                             SIDef->getValue().getZExtValue()));
281       }
282 
283       // Update make.implicit metadata to the newly-created conditional branch.
284       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
285       if (MakeImplicitMD)
286         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
287 
288       // Delete the old switch.
289       SI->eraseFromParent();
290       return true;
291     }
292     return false;
293   }
294 
295   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
296     // indirectbr blockaddress(@F, @BB) -> br label @BB
297     if (auto *BA =
298           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
299       BasicBlock *TheOnlyDest = BA->getBasicBlock();
300       std::vector <DominatorTree::UpdateType> Updates;
301       if (DTU)
302         Updates.reserve(IBI->getNumDestinations() - 1);
303 
304       // Insert the new branch.
305       Builder.CreateBr(TheOnlyDest);
306 
307       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
308         if (IBI->getDestination(i) == TheOnlyDest) {
309           TheOnlyDest = nullptr;
310         } else {
311           BasicBlock *ParentBB = IBI->getParent();
312           BasicBlock *DestBB = IBI->getDestination(i);
313           DestBB->removePredecessor(ParentBB);
314           if (DTU)
315             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
316         }
317       }
318       Value *Address = IBI->getAddress();
319       IBI->eraseFromParent();
320       if (DeleteDeadConditions)
321         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
322 
323       // If we didn't find our destination in the IBI successor list, then we
324       // have undefined behavior.  Replace the unconditional branch with an
325       // 'unreachable' instruction.
326       if (TheOnlyDest) {
327         BB->getTerminator()->eraseFromParent();
328         new UnreachableInst(BB->getContext(), BB);
329       }
330 
331       if (DTU)
332         DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
333       return true;
334     }
335   }
336 
337   return false;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Local dead code elimination.
342 //
343 
344 /// isInstructionTriviallyDead - Return true if the result produced by the
345 /// instruction is not used, and the instruction has no side effects.
346 ///
347 bool llvm::isInstructionTriviallyDead(Instruction *I,
348                                       const TargetLibraryInfo *TLI) {
349   if (!I->use_empty())
350     return false;
351   return wouldInstructionBeTriviallyDead(I, TLI);
352 }
353 
354 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
355                                            const TargetLibraryInfo *TLI) {
356   if (isa<TerminatorInst>(I))
357     return false;
358 
359   // We don't want the landingpad-like instructions removed by anything this
360   // general.
361   if (I->isEHPad())
362     return false;
363 
364   // We don't want debug info removed by anything this general, unless
365   // debug info is empty.
366   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
367     if (DDI->getAddress())
368       return false;
369     return true;
370   }
371   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
372     if (DVI->getValue())
373       return false;
374     return true;
375   }
376   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
377     if (DLI->getLabel())
378       return false;
379     return true;
380   }
381 
382   if (!I->mayHaveSideEffects())
383     return true;
384 
385   // Special case intrinsics that "may have side effects" but can be deleted
386   // when dead.
387   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
388     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
389     if (II->getIntrinsicID() == Intrinsic::stacksave ||
390         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
391       return true;
392 
393     // Lifetime intrinsics are dead when their right-hand is undef.
394     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
395         II->getIntrinsicID() == Intrinsic::lifetime_end)
396       return isa<UndefValue>(II->getArgOperand(1));
397 
398     // Assumptions are dead if their condition is trivially true.  Guards on
399     // true are operationally no-ops.  In the future we can consider more
400     // sophisticated tradeoffs for guards considering potential for check
401     // widening, but for now we keep things simple.
402     if (II->getIntrinsicID() == Intrinsic::assume ||
403         II->getIntrinsicID() == Intrinsic::experimental_guard) {
404       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
405         return !Cond->isZero();
406 
407       return false;
408     }
409   }
410 
411   if (isAllocLikeFn(I, TLI))
412     return true;
413 
414   if (CallInst *CI = isFreeCall(I, TLI))
415     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
416       return C->isNullValue() || isa<UndefValue>(C);
417 
418   if (CallSite CS = CallSite(I))
419     if (isMathLibCallNoop(CS, TLI))
420       return true;
421 
422   return false;
423 }
424 
425 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
426 /// trivially dead instruction, delete it.  If that makes any of its operands
427 /// trivially dead, delete them too, recursively.  Return true if any
428 /// instructions were deleted.
429 bool
430 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
431                                                  const TargetLibraryInfo *TLI) {
432   Instruction *I = dyn_cast<Instruction>(V);
433   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
434     return false;
435 
436   SmallVector<Instruction*, 16> DeadInsts;
437   DeadInsts.push_back(I);
438   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
439 
440   return true;
441 }
442 
443 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
444     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI) {
445   // Process the dead instruction list until empty.
446   while (!DeadInsts.empty()) {
447     Instruction &I = *DeadInsts.pop_back_val();
448     assert(I.use_empty() && "Instructions with uses are not dead.");
449     assert(isInstructionTriviallyDead(&I, TLI) &&
450            "Live instruction found in dead worklist!");
451 
452     // Don't lose the debug info while deleting the instructions.
453     salvageDebugInfo(I);
454 
455     // Null out all of the instruction's operands to see if any operand becomes
456     // dead as we go.
457     for (Use &OpU : I.operands()) {
458       Value *OpV = OpU.get();
459       OpU.set(nullptr);
460 
461       if (!OpV->use_empty())
462         continue;
463 
464       // If the operand is an instruction that became dead as we nulled out the
465       // operand, and if it is 'trivially' dead, delete it in a future loop
466       // iteration.
467       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
468         if (isInstructionTriviallyDead(OpI, TLI))
469           DeadInsts.push_back(OpI);
470     }
471 
472     I.eraseFromParent();
473   }
474 }
475 
476 /// areAllUsesEqual - Check whether the uses of a value are all the same.
477 /// This is similar to Instruction::hasOneUse() except this will also return
478 /// true when there are no uses or multiple uses that all refer to the same
479 /// value.
480 static bool areAllUsesEqual(Instruction *I) {
481   Value::user_iterator UI = I->user_begin();
482   Value::user_iterator UE = I->user_end();
483   if (UI == UE)
484     return true;
485 
486   User *TheUse = *UI;
487   for (++UI; UI != UE; ++UI) {
488     if (*UI != TheUse)
489       return false;
490   }
491   return true;
492 }
493 
494 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
495 /// dead PHI node, due to being a def-use chain of single-use nodes that
496 /// either forms a cycle or is terminated by a trivially dead instruction,
497 /// delete it.  If that makes any of its operands trivially dead, delete them
498 /// too, recursively.  Return true if a change was made.
499 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
500                                         const TargetLibraryInfo *TLI) {
501   SmallPtrSet<Instruction*, 4> Visited;
502   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
503        I = cast<Instruction>(*I->user_begin())) {
504     if (I->use_empty())
505       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
506 
507     // If we find an instruction more than once, we're on a cycle that
508     // won't prove fruitful.
509     if (!Visited.insert(I).second) {
510       // Break the cycle and delete the instruction and its operands.
511       I->replaceAllUsesWith(UndefValue::get(I->getType()));
512       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
513       return true;
514     }
515   }
516   return false;
517 }
518 
519 static bool
520 simplifyAndDCEInstruction(Instruction *I,
521                           SmallSetVector<Instruction *, 16> &WorkList,
522                           const DataLayout &DL,
523                           const TargetLibraryInfo *TLI) {
524   if (isInstructionTriviallyDead(I, TLI)) {
525     salvageDebugInfo(*I);
526 
527     // Null out all of the instruction's operands to see if any operand becomes
528     // dead as we go.
529     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
530       Value *OpV = I->getOperand(i);
531       I->setOperand(i, nullptr);
532 
533       if (!OpV->use_empty() || I == OpV)
534         continue;
535 
536       // If the operand is an instruction that became dead as we nulled out the
537       // operand, and if it is 'trivially' dead, delete it in a future loop
538       // iteration.
539       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
540         if (isInstructionTriviallyDead(OpI, TLI))
541           WorkList.insert(OpI);
542     }
543 
544     I->eraseFromParent();
545 
546     return true;
547   }
548 
549   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
550     // Add the users to the worklist. CAREFUL: an instruction can use itself,
551     // in the case of a phi node.
552     for (User *U : I->users()) {
553       if (U != I) {
554         WorkList.insert(cast<Instruction>(U));
555       }
556     }
557 
558     // Replace the instruction with its simplified value.
559     bool Changed = false;
560     if (!I->use_empty()) {
561       I->replaceAllUsesWith(SimpleV);
562       Changed = true;
563     }
564     if (isInstructionTriviallyDead(I, TLI)) {
565       I->eraseFromParent();
566       Changed = true;
567     }
568     return Changed;
569   }
570   return false;
571 }
572 
573 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
574 /// simplify any instructions in it and recursively delete dead instructions.
575 ///
576 /// This returns true if it changed the code, note that it can delete
577 /// instructions in other blocks as well in this block.
578 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
579                                        const TargetLibraryInfo *TLI) {
580   bool MadeChange = false;
581   const DataLayout &DL = BB->getModule()->getDataLayout();
582 
583 #ifndef NDEBUG
584   // In debug builds, ensure that the terminator of the block is never replaced
585   // or deleted by these simplifications. The idea of simplification is that it
586   // cannot introduce new instructions, and there is no way to replace the
587   // terminator of a block without introducing a new instruction.
588   AssertingVH<Instruction> TerminatorVH(&BB->back());
589 #endif
590 
591   SmallSetVector<Instruction *, 16> WorkList;
592   // Iterate over the original function, only adding insts to the worklist
593   // if they actually need to be revisited. This avoids having to pre-init
594   // the worklist with the entire function's worth of instructions.
595   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
596        BI != E;) {
597     assert(!BI->isTerminator());
598     Instruction *I = &*BI;
599     ++BI;
600 
601     // We're visiting this instruction now, so make sure it's not in the
602     // worklist from an earlier visit.
603     if (!WorkList.count(I))
604       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
605   }
606 
607   while (!WorkList.empty()) {
608     Instruction *I = WorkList.pop_back_val();
609     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
610   }
611   return MadeChange;
612 }
613 
614 //===----------------------------------------------------------------------===//
615 //  Control Flow Graph Restructuring.
616 //
617 
618 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
619 /// method is called when we're about to delete Pred as a predecessor of BB.  If
620 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
621 ///
622 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
623 /// nodes that collapse into identity values.  For example, if we have:
624 ///   x = phi(1, 0, 0, 0)
625 ///   y = and x, z
626 ///
627 /// .. and delete the predecessor corresponding to the '1', this will attempt to
628 /// recursively fold the and to 0.
629 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
630                                         DomTreeUpdater *DTU) {
631   // This only adjusts blocks with PHI nodes.
632   if (!isa<PHINode>(BB->begin()))
633     return;
634 
635   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
636   // them down.  This will leave us with single entry phi nodes and other phis
637   // that can be removed.
638   BB->removePredecessor(Pred, true);
639 
640   WeakTrackingVH PhiIt = &BB->front();
641   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
642     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
643     Value *OldPhiIt = PhiIt;
644 
645     if (!recursivelySimplifyInstruction(PN))
646       continue;
647 
648     // If recursive simplification ended up deleting the next PHI node we would
649     // iterate to, then our iterator is invalid, restart scanning from the top
650     // of the block.
651     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
652   }
653   if (DTU)
654     DTU->deleteEdgeRelaxed(Pred, BB);
655 }
656 
657 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
658 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
659 /// between them, moving the instructions in the predecessor into DestBB and
660 /// deleting the predecessor block.
661 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
662                                        DomTreeUpdater *DTU) {
663 
664   // If BB has single-entry PHI nodes, fold them.
665   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
666     Value *NewVal = PN->getIncomingValue(0);
667     // Replace self referencing PHI with undef, it must be dead.
668     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
669     PN->replaceAllUsesWith(NewVal);
670     PN->eraseFromParent();
671   }
672 
673   BasicBlock *PredBB = DestBB->getSinglePredecessor();
674   assert(PredBB && "Block doesn't have a single predecessor!");
675 
676   bool ReplaceEntryBB = false;
677   if (PredBB == &DestBB->getParent()->getEntryBlock())
678     ReplaceEntryBB = true;
679 
680   // DTU updates: Collect all the edges that enter
681   // PredBB. These dominator edges will be redirected to DestBB.
682   std::vector <DominatorTree::UpdateType> Updates;
683 
684   if (DTU) {
685     Updates.reserve(1 + (2 * pred_size(PredBB)));
686     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
687     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
688       Updates.push_back({DominatorTree::Delete, *I, PredBB});
689       // This predecessor of PredBB may already have DestBB as a successor.
690       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
691         Updates.push_back({DominatorTree::Insert, *I, DestBB});
692     }
693   }
694 
695   // Zap anything that took the address of DestBB.  Not doing this will give the
696   // address an invalid value.
697   if (DestBB->hasAddressTaken()) {
698     BlockAddress *BA = BlockAddress::get(DestBB);
699     Constant *Replacement =
700       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
701     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
702                                                      BA->getType()));
703     BA->destroyConstant();
704   }
705 
706   // Anything that branched to PredBB now branches to DestBB.
707   PredBB->replaceAllUsesWith(DestBB);
708 
709   // Splice all the instructions from PredBB to DestBB.
710   PredBB->getTerminator()->eraseFromParent();
711   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
712   new UnreachableInst(PredBB->getContext(), PredBB);
713 
714   // If the PredBB is the entry block of the function, move DestBB up to
715   // become the entry block after we erase PredBB.
716   if (ReplaceEntryBB)
717     DestBB->moveAfter(PredBB);
718 
719   if (DTU) {
720     assert(PredBB->getInstList().size() == 1 &&
721            isa<UnreachableInst>(PredBB->getTerminator()) &&
722            "The successor list of PredBB isn't empty before "
723            "applying corresponding DTU updates.");
724     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
725     DTU->deleteBB(PredBB);
726     // Recalculation of DomTree is needed when updating a forward DomTree and
727     // the Entry BB is replaced.
728     if (ReplaceEntryBB && DTU->hasDomTree()) {
729       // The entry block was removed and there is no external interface for
730       // the dominator tree to be notified of this change. In this corner-case
731       // we recalculate the entire tree.
732       DTU->recalculate(*(DestBB->getParent()));
733     }
734   }
735 
736   else {
737     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
738   }
739 }
740 
741 /// CanMergeValues - Return true if we can choose one of these values to use
742 /// in place of the other. Note that we will always choose the non-undef
743 /// value to keep.
744 static bool CanMergeValues(Value *First, Value *Second) {
745   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
746 }
747 
748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
750 ///
751 /// Assumption: Succ is the single successor for BB.
752 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
753   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
754 
755   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
756                     << Succ->getName() << "\n");
757   // Shortcut, if there is only a single predecessor it must be BB and merging
758   // is always safe
759   if (Succ->getSinglePredecessor()) return true;
760 
761   // Make a list of the predecessors of BB
762   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
763 
764   // Look at all the phi nodes in Succ, to see if they present a conflict when
765   // merging these blocks
766   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
767     PHINode *PN = cast<PHINode>(I);
768 
769     // If the incoming value from BB is again a PHINode in
770     // BB which has the same incoming value for *PI as PN does, we can
771     // merge the phi nodes and then the blocks can still be merged
772     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
773     if (BBPN && BBPN->getParent() == BB) {
774       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
775         BasicBlock *IBB = PN->getIncomingBlock(PI);
776         if (BBPreds.count(IBB) &&
777             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
778                             PN->getIncomingValue(PI))) {
779           LLVM_DEBUG(dbgs()
780                      << "Can't fold, phi node " << PN->getName() << " in "
781                      << Succ->getName() << " is conflicting with "
782                      << BBPN->getName() << " with regard to common predecessor "
783                      << IBB->getName() << "\n");
784           return false;
785         }
786       }
787     } else {
788       Value* Val = PN->getIncomingValueForBlock(BB);
789       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
790         // See if the incoming value for the common predecessor is equal to the
791         // one for BB, in which case this phi node will not prevent the merging
792         // of the block.
793         BasicBlock *IBB = PN->getIncomingBlock(PI);
794         if (BBPreds.count(IBB) &&
795             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
796           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
797                             << " in " << Succ->getName()
798                             << " is conflicting with regard to common "
799                             << "predecessor " << IBB->getName() << "\n");
800           return false;
801         }
802       }
803     }
804   }
805 
806   return true;
807 }
808 
809 using PredBlockVector = SmallVector<BasicBlock *, 16>;
810 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
811 
812 /// Determines the value to use as the phi node input for a block.
813 ///
814 /// Select between \p OldVal any value that we know flows from \p BB
815 /// to a particular phi on the basis of which one (if either) is not
816 /// undef. Update IncomingValues based on the selected value.
817 ///
818 /// \param OldVal The value we are considering selecting.
819 /// \param BB The block that the value flows in from.
820 /// \param IncomingValues A map from block-to-value for other phi inputs
821 /// that we have examined.
822 ///
823 /// \returns the selected value.
824 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
825                                           IncomingValueMap &IncomingValues) {
826   if (!isa<UndefValue>(OldVal)) {
827     assert((!IncomingValues.count(BB) ||
828             IncomingValues.find(BB)->second == OldVal) &&
829            "Expected OldVal to match incoming value from BB!");
830 
831     IncomingValues.insert(std::make_pair(BB, OldVal));
832     return OldVal;
833   }
834 
835   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
836   if (It != IncomingValues.end()) return It->second;
837 
838   return OldVal;
839 }
840 
841 /// Create a map from block to value for the operands of a
842 /// given phi.
843 ///
844 /// Create a map from block to value for each non-undef value flowing
845 /// into \p PN.
846 ///
847 /// \param PN The phi we are collecting the map for.
848 /// \param IncomingValues [out] The map from block to value for this phi.
849 static void gatherIncomingValuesToPhi(PHINode *PN,
850                                       IncomingValueMap &IncomingValues) {
851   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *BB = PN->getIncomingBlock(i);
853     Value *V = PN->getIncomingValue(i);
854 
855     if (!isa<UndefValue>(V))
856       IncomingValues.insert(std::make_pair(BB, V));
857   }
858 }
859 
860 /// Replace the incoming undef values to a phi with the values
861 /// from a block-to-value map.
862 ///
863 /// \param PN The phi we are replacing the undefs in.
864 /// \param IncomingValues A map from block to value.
865 static void replaceUndefValuesInPhi(PHINode *PN,
866                                     const IncomingValueMap &IncomingValues) {
867   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
868     Value *V = PN->getIncomingValue(i);
869 
870     if (!isa<UndefValue>(V)) continue;
871 
872     BasicBlock *BB = PN->getIncomingBlock(i);
873     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
874     if (It == IncomingValues.end()) continue;
875 
876     PN->setIncomingValue(i, It->second);
877   }
878 }
879 
880 /// Replace a value flowing from a block to a phi with
881 /// potentially multiple instances of that value flowing from the
882 /// block's predecessors to the phi.
883 ///
884 /// \param BB The block with the value flowing into the phi.
885 /// \param BBPreds The predecessors of BB.
886 /// \param PN The phi that we are updating.
887 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
888                                                 const PredBlockVector &BBPreds,
889                                                 PHINode *PN) {
890   Value *OldVal = PN->removeIncomingValue(BB, false);
891   assert(OldVal && "No entry in PHI for Pred BB!");
892 
893   IncomingValueMap IncomingValues;
894 
895   // We are merging two blocks - BB, and the block containing PN - and
896   // as a result we need to redirect edges from the predecessors of BB
897   // to go to the block containing PN, and update PN
898   // accordingly. Since we allow merging blocks in the case where the
899   // predecessor and successor blocks both share some predecessors,
900   // and where some of those common predecessors might have undef
901   // values flowing into PN, we want to rewrite those values to be
902   // consistent with the non-undef values.
903 
904   gatherIncomingValuesToPhi(PN, IncomingValues);
905 
906   // If this incoming value is one of the PHI nodes in BB, the new entries
907   // in the PHI node are the entries from the old PHI.
908   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
909     PHINode *OldValPN = cast<PHINode>(OldVal);
910     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
911       // Note that, since we are merging phi nodes and BB and Succ might
912       // have common predecessors, we could end up with a phi node with
913       // identical incoming branches. This will be cleaned up later (and
914       // will trigger asserts if we try to clean it up now, without also
915       // simplifying the corresponding conditional branch).
916       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
917       Value *PredVal = OldValPN->getIncomingValue(i);
918       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
919                                                     IncomingValues);
920 
921       // And add a new incoming value for this predecessor for the
922       // newly retargeted branch.
923       PN->addIncoming(Selected, PredBB);
924     }
925   } else {
926     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
927       // Update existing incoming values in PN for this
928       // predecessor of BB.
929       BasicBlock *PredBB = BBPreds[i];
930       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
931                                                     IncomingValues);
932 
933       // And add a new incoming value for this predecessor for the
934       // newly retargeted branch.
935       PN->addIncoming(Selected, PredBB);
936     }
937   }
938 
939   replaceUndefValuesInPhi(PN, IncomingValues);
940 }
941 
942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
943 /// unconditional branch, and contains no instructions other than PHI nodes,
944 /// potential side-effect free intrinsics and the branch.  If possible,
945 /// eliminate BB by rewriting all the predecessors to branch to the successor
946 /// block and return true.  If we can't transform, return false.
947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
948                                                    DomTreeUpdater *DTU) {
949   assert(BB != &BB->getParent()->getEntryBlock() &&
950          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
951 
952   // We can't eliminate infinite loops.
953   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
954   if (BB == Succ) return false;
955 
956   // Check to see if merging these blocks would cause conflicts for any of the
957   // phi nodes in BB or Succ. If not, we can safely merge.
958   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
959 
960   // Check for cases where Succ has multiple predecessors and a PHI node in BB
961   // has uses which will not disappear when the PHI nodes are merged.  It is
962   // possible to handle such cases, but difficult: it requires checking whether
963   // BB dominates Succ, which is non-trivial to calculate in the case where
964   // Succ has multiple predecessors.  Also, it requires checking whether
965   // constructing the necessary self-referential PHI node doesn't introduce any
966   // conflicts; this isn't too difficult, but the previous code for doing this
967   // was incorrect.
968   //
969   // Note that if this check finds a live use, BB dominates Succ, so BB is
970   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
971   // folding the branch isn't profitable in that case anyway.
972   if (!Succ->getSinglePredecessor()) {
973     BasicBlock::iterator BBI = BB->begin();
974     while (isa<PHINode>(*BBI)) {
975       for (Use &U : BBI->uses()) {
976         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
977           if (PN->getIncomingBlock(U) != BB)
978             return false;
979         } else {
980           return false;
981         }
982       }
983       ++BBI;
984     }
985   }
986 
987   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
988 
989   std::vector<DominatorTree::UpdateType> Updates;
990   if (DTU) {
991     Updates.reserve(1 + (2 * pred_size(BB)));
992     Updates.push_back({DominatorTree::Delete, BB, Succ});
993     // All predecessors of BB will be moved to Succ.
994     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
995       Updates.push_back({DominatorTree::Delete, *I, BB});
996       // This predecessor of BB may already have Succ as a successor.
997       if (llvm::find(successors(*I), Succ) == succ_end(*I))
998         Updates.push_back({DominatorTree::Insert, *I, Succ});
999     }
1000   }
1001 
1002   if (isa<PHINode>(Succ->begin())) {
1003     // If there is more than one pred of succ, and there are PHI nodes in
1004     // the successor, then we need to add incoming edges for the PHI nodes
1005     //
1006     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1007 
1008     // Loop over all of the PHI nodes in the successor of BB.
1009     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1010       PHINode *PN = cast<PHINode>(I);
1011 
1012       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1013     }
1014   }
1015 
1016   if (Succ->getSinglePredecessor()) {
1017     // BB is the only predecessor of Succ, so Succ will end up with exactly
1018     // the same predecessors BB had.
1019 
1020     // Copy over any phi, debug or lifetime instruction.
1021     BB->getTerminator()->eraseFromParent();
1022     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1023                                BB->getInstList());
1024   } else {
1025     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1026       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1027       assert(PN->use_empty() && "There shouldn't be any uses here!");
1028       PN->eraseFromParent();
1029     }
1030   }
1031 
1032   // If the unconditional branch we replaced contains llvm.loop metadata, we
1033   // add the metadata to the branch instructions in the predecessors.
1034   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1035   Instruction *TI = BB->getTerminator();
1036   if (TI)
1037     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1038       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1039         BasicBlock *Pred = *PI;
1040         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1041       }
1042 
1043   // Everything that jumped to BB now goes to Succ.
1044   BB->replaceAllUsesWith(Succ);
1045   if (!Succ->hasName()) Succ->takeName(BB);
1046 
1047   // Clear the successor list of BB to match updates applying to DTU later.
1048   if (BB->getTerminator())
1049     BB->getInstList().pop_back();
1050   new UnreachableInst(BB->getContext(), BB);
1051   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1052                            "applying corresponding DTU updates.");
1053 
1054   if (DTU) {
1055     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1056     DTU->deleteBB(BB);
1057   } else {
1058     BB->eraseFromParent(); // Delete the old basic block.
1059   }
1060   return true;
1061 }
1062 
1063 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1064 /// nodes in this block. This doesn't try to be clever about PHI nodes
1065 /// which differ only in the order of the incoming values, but instcombine
1066 /// orders them so it usually won't matter.
1067 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1068   // This implementation doesn't currently consider undef operands
1069   // specially. Theoretically, two phis which are identical except for
1070   // one having an undef where the other doesn't could be collapsed.
1071 
1072   struct PHIDenseMapInfo {
1073     static PHINode *getEmptyKey() {
1074       return DenseMapInfo<PHINode *>::getEmptyKey();
1075     }
1076 
1077     static PHINode *getTombstoneKey() {
1078       return DenseMapInfo<PHINode *>::getTombstoneKey();
1079     }
1080 
1081     static unsigned getHashValue(PHINode *PN) {
1082       // Compute a hash value on the operands. Instcombine will likely have
1083       // sorted them, which helps expose duplicates, but we have to check all
1084       // the operands to be safe in case instcombine hasn't run.
1085       return static_cast<unsigned>(hash_combine(
1086           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1087           hash_combine_range(PN->block_begin(), PN->block_end())));
1088     }
1089 
1090     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1091       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1092           RHS == getEmptyKey() || RHS == getTombstoneKey())
1093         return LHS == RHS;
1094       return LHS->isIdenticalTo(RHS);
1095     }
1096   };
1097 
1098   // Set of unique PHINodes.
1099   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1100 
1101   // Examine each PHI.
1102   bool Changed = false;
1103   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1104     auto Inserted = PHISet.insert(PN);
1105     if (!Inserted.second) {
1106       // A duplicate. Replace this PHI with its duplicate.
1107       PN->replaceAllUsesWith(*Inserted.first);
1108       PN->eraseFromParent();
1109       Changed = true;
1110 
1111       // The RAUW can change PHIs that we already visited. Start over from the
1112       // beginning.
1113       PHISet.clear();
1114       I = BB->begin();
1115     }
1116   }
1117 
1118   return Changed;
1119 }
1120 
1121 /// enforceKnownAlignment - If the specified pointer points to an object that
1122 /// we control, modify the object's alignment to PrefAlign. This isn't
1123 /// often possible though. If alignment is important, a more reliable approach
1124 /// is to simply align all global variables and allocation instructions to
1125 /// their preferred alignment from the beginning.
1126 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
1127                                       unsigned PrefAlign,
1128                                       const DataLayout &DL) {
1129   assert(PrefAlign > Align);
1130 
1131   V = V->stripPointerCasts();
1132 
1133   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1134     // TODO: ideally, computeKnownBits ought to have used
1135     // AllocaInst::getAlignment() in its computation already, making
1136     // the below max redundant. But, as it turns out,
1137     // stripPointerCasts recurses through infinite layers of bitcasts,
1138     // while computeKnownBits is not allowed to traverse more than 6
1139     // levels.
1140     Align = std::max(AI->getAlignment(), Align);
1141     if (PrefAlign <= Align)
1142       return Align;
1143 
1144     // If the preferred alignment is greater than the natural stack alignment
1145     // then don't round up. This avoids dynamic stack realignment.
1146     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1147       return Align;
1148     AI->setAlignment(PrefAlign);
1149     return PrefAlign;
1150   }
1151 
1152   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1153     // TODO: as above, this shouldn't be necessary.
1154     Align = std::max(GO->getAlignment(), Align);
1155     if (PrefAlign <= Align)
1156       return Align;
1157 
1158     // If there is a large requested alignment and we can, bump up the alignment
1159     // of the global.  If the memory we set aside for the global may not be the
1160     // memory used by the final program then it is impossible for us to reliably
1161     // enforce the preferred alignment.
1162     if (!GO->canIncreaseAlignment())
1163       return Align;
1164 
1165     GO->setAlignment(PrefAlign);
1166     return PrefAlign;
1167   }
1168 
1169   return Align;
1170 }
1171 
1172 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1173                                           const DataLayout &DL,
1174                                           const Instruction *CxtI,
1175                                           AssumptionCache *AC,
1176                                           const DominatorTree *DT) {
1177   assert(V->getType()->isPointerTy() &&
1178          "getOrEnforceKnownAlignment expects a pointer!");
1179 
1180   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1181   unsigned TrailZ = Known.countMinTrailingZeros();
1182 
1183   // Avoid trouble with ridiculously large TrailZ values, such as
1184   // those computed from a null pointer.
1185   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1186 
1187   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1188 
1189   // LLVM doesn't support alignments larger than this currently.
1190   Align = std::min(Align, +Value::MaximumAlignment);
1191 
1192   if (PrefAlign > Align)
1193     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1194 
1195   // We don't need to make any adjustment.
1196   return Align;
1197 }
1198 
1199 ///===---------------------------------------------------------------------===//
1200 ///  Dbg Intrinsic utilities
1201 ///
1202 
1203 /// See if there is a dbg.value intrinsic for DIVar before I.
1204 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1205                               Instruction *I) {
1206   // Since we can't guarantee that the original dbg.declare instrinsic
1207   // is removed by LowerDbgDeclare(), we need to make sure that we are
1208   // not inserting the same dbg.value intrinsic over and over.
1209   BasicBlock::InstListType::iterator PrevI(I);
1210   if (PrevI != I->getParent()->getInstList().begin()) {
1211     --PrevI;
1212     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1213       if (DVI->getValue() == I->getOperand(0) &&
1214           DVI->getVariable() == DIVar &&
1215           DVI->getExpression() == DIExpr)
1216         return true;
1217   }
1218   return false;
1219 }
1220 
1221 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1222 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1223                              DIExpression *DIExpr,
1224                              PHINode *APN) {
1225   // Since we can't guarantee that the original dbg.declare instrinsic
1226   // is removed by LowerDbgDeclare(), we need to make sure that we are
1227   // not inserting the same dbg.value intrinsic over and over.
1228   SmallVector<DbgValueInst *, 1> DbgValues;
1229   findDbgValues(DbgValues, APN);
1230   for (auto *DVI : DbgValues) {
1231     assert(DVI->getValue() == APN);
1232     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1233       return true;
1234   }
1235   return false;
1236 }
1237 
1238 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1239 /// (or fragment of the variable) described by \p DII.
1240 ///
1241 /// This is primarily intended as a helper for the different
1242 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1243 /// converted describes an alloca'd variable, so we need to use the
1244 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1245 /// identified as covering an n-bit fragment, if the store size of i1 is at
1246 /// least n bits.
1247 static bool valueCoversEntireFragment(Type *ValTy, DbgInfoIntrinsic *DII) {
1248   const DataLayout &DL = DII->getModule()->getDataLayout();
1249   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1250   if (auto FragmentSize = DII->getFragmentSizeInBits())
1251     return ValueSize >= *FragmentSize;
1252   // We can't always calculate the size of the DI variable (e.g. if it is a
1253   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1254   // intead.
1255   if (DII->isAddressOfVariable())
1256     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1257       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1258         return ValueSize >= *FragmentSize;
1259   // Could not determine size of variable. Conservatively return false.
1260   return false;
1261 }
1262 
1263 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1264 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1265 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1266                                            StoreInst *SI, DIBuilder &Builder) {
1267   assert(DII->isAddressOfVariable());
1268   auto *DIVar = DII->getVariable();
1269   assert(DIVar && "Missing variable");
1270   auto *DIExpr = DII->getExpression();
1271   Value *DV = SI->getOperand(0);
1272 
1273   if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) {
1274     // FIXME: If storing to a part of the variable described by the dbg.declare,
1275     // then we want to insert a dbg.value for the corresponding fragment.
1276     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1277                       << *DII << '\n');
1278     // For now, when there is a store to parts of the variable (but we do not
1279     // know which part) we insert an dbg.value instrinsic to indicate that we
1280     // know nothing about the variable's content.
1281     DV = UndefValue::get(DV->getType());
1282     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1283       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1284                                       SI);
1285     return;
1286   }
1287 
1288   // If an argument is zero extended then use argument directly. The ZExt
1289   // may be zapped by an optimization pass in future.
1290   Argument *ExtendedArg = nullptr;
1291   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1292     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1293   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1294     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1295   if (ExtendedArg) {
1296     // If this DII was already describing only a fragment of a variable, ensure
1297     // that fragment is appropriately narrowed here.
1298     // But if a fragment wasn't used, describe the value as the original
1299     // argument (rather than the zext or sext) so that it remains described even
1300     // if the sext/zext is optimized away. This widens the variable description,
1301     // leaving it up to the consumer to know how the smaller value may be
1302     // represented in a larger register.
1303     if (auto Fragment = DIExpr->getFragmentInfo()) {
1304       unsigned FragmentOffset = Fragment->OffsetInBits;
1305       SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
1306                                    DIExpr->elements_end() - 3);
1307       Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1308       Ops.push_back(FragmentOffset);
1309       const DataLayout &DL = DII->getModule()->getDataLayout();
1310       Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1311       DIExpr = Builder.createExpression(Ops);
1312     }
1313     DV = ExtendedArg;
1314   }
1315   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1316     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
1317                                     SI);
1318 }
1319 
1320 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1321 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1322 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1323                                            LoadInst *LI, DIBuilder &Builder) {
1324   auto *DIVar = DII->getVariable();
1325   auto *DIExpr = DII->getExpression();
1326   assert(DIVar && "Missing variable");
1327 
1328   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1329     return;
1330 
1331   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1332     // FIXME: If only referring to a part of the variable described by the
1333     // dbg.declare, then we want to insert a dbg.value for the corresponding
1334     // fragment.
1335     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1336                       << *DII << '\n');
1337     return;
1338   }
1339 
1340   // We are now tracking the loaded value instead of the address. In the
1341   // future if multi-location support is added to the IR, it might be
1342   // preferable to keep tracking both the loaded value and the original
1343   // address in case the alloca can not be elided.
1344   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1345       LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
1346   DbgValue->insertAfter(LI);
1347 }
1348 
1349 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1350 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1351 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
1352                                            PHINode *APN, DIBuilder &Builder) {
1353   auto *DIVar = DII->getVariable();
1354   auto *DIExpr = DII->getExpression();
1355   assert(DIVar && "Missing variable");
1356 
1357   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1358     return;
1359 
1360   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1361     // FIXME: If only referring to a part of the variable described by the
1362     // dbg.declare, then we want to insert a dbg.value for the corresponding
1363     // fragment.
1364     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1365                       << *DII << '\n');
1366     return;
1367   }
1368 
1369   BasicBlock *BB = APN->getParent();
1370   auto InsertionPt = BB->getFirstInsertionPt();
1371 
1372   // The block may be a catchswitch block, which does not have a valid
1373   // insertion point.
1374   // FIXME: Insert dbg.value markers in the successors when appropriate.
1375   if (InsertionPt != BB->end())
1376     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
1377                                     &*InsertionPt);
1378 }
1379 
1380 /// Determine whether this alloca is either a VLA or an array.
1381 static bool isArray(AllocaInst *AI) {
1382   return AI->isArrayAllocation() ||
1383     AI->getType()->getElementType()->isArrayTy();
1384 }
1385 
1386 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1387 /// of llvm.dbg.value intrinsics.
1388 bool llvm::LowerDbgDeclare(Function &F) {
1389   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1390   SmallVector<DbgDeclareInst *, 4> Dbgs;
1391   for (auto &FI : F)
1392     for (Instruction &BI : FI)
1393       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1394         Dbgs.push_back(DDI);
1395 
1396   if (Dbgs.empty())
1397     return false;
1398 
1399   for (auto &I : Dbgs) {
1400     DbgDeclareInst *DDI = I;
1401     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1402     // If this is an alloca for a scalar variable, insert a dbg.value
1403     // at each load and store to the alloca and erase the dbg.declare.
1404     // The dbg.values allow tracking a variable even if it is not
1405     // stored on the stack, while the dbg.declare can only describe
1406     // the stack slot (and at a lexical-scope granularity). Later
1407     // passes will attempt to elide the stack slot.
1408     if (!AI || isArray(AI))
1409       continue;
1410 
1411     // A volatile load/store means that the alloca can't be elided anyway.
1412     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1413           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1414             return LI->isVolatile();
1415           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1416             return SI->isVolatile();
1417           return false;
1418         }))
1419       continue;
1420 
1421     for (auto &AIUse : AI->uses()) {
1422       User *U = AIUse.getUser();
1423       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1424         if (AIUse.getOperandNo() == 1)
1425           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1426       } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1427         ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1428       } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1429         // This is a call by-value or some other instruction that takes a
1430         // pointer to the variable. Insert a *value* intrinsic that describes
1431         // the variable by dereferencing the alloca.
1432         auto *DerefExpr =
1433             DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1434         DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1435                                     DDI->getDebugLoc(), CI);
1436       }
1437     }
1438     DDI->eraseFromParent();
1439   }
1440   return true;
1441 }
1442 
1443 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1444 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1445                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1446   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1447   if (InsertedPHIs.size() == 0)
1448     return;
1449 
1450   // Map existing PHI nodes to their dbg.values.
1451   ValueToValueMapTy DbgValueMap;
1452   for (auto &I : *BB) {
1453     if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) {
1454       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1455         DbgValueMap.insert({Loc, DbgII});
1456     }
1457   }
1458   if (DbgValueMap.size() == 0)
1459     return;
1460 
1461   // Then iterate through the new PHIs and look to see if they use one of the
1462   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1463   // propagate the info through the new PHI.
1464   LLVMContext &C = BB->getContext();
1465   for (auto PHI : InsertedPHIs) {
1466     BasicBlock *Parent = PHI->getParent();
1467     // Avoid inserting an intrinsic into an EH block.
1468     if (Parent->getFirstNonPHI()->isEHPad())
1469       continue;
1470     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1471     for (auto VI : PHI->operand_values()) {
1472       auto V = DbgValueMap.find(VI);
1473       if (V != DbgValueMap.end()) {
1474         auto *DbgII = cast<DbgInfoIntrinsic>(V->second);
1475         Instruction *NewDbgII = DbgII->clone();
1476         NewDbgII->setOperand(0, PhiMAV);
1477         auto InsertionPt = Parent->getFirstInsertionPt();
1478         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1479         NewDbgII->insertBefore(&*InsertionPt);
1480       }
1481     }
1482   }
1483 }
1484 
1485 /// Finds all intrinsics declaring local variables as living in the memory that
1486 /// 'V' points to. This may include a mix of dbg.declare and
1487 /// dbg.addr intrinsics.
1488 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1489   // This function is hot. Check whether the value has any metadata to avoid a
1490   // DenseMap lookup.
1491   if (!V->isUsedByMetadata())
1492     return {};
1493   auto *L = LocalAsMetadata::getIfExists(V);
1494   if (!L)
1495     return {};
1496   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1497   if (!MDV)
1498     return {};
1499 
1500   TinyPtrVector<DbgInfoIntrinsic *> Declares;
1501   for (User *U : MDV->users()) {
1502     if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
1503       if (DII->isAddressOfVariable())
1504         Declares.push_back(DII);
1505   }
1506 
1507   return Declares;
1508 }
1509 
1510 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1511   // This function is hot. Check whether the value has any metadata to avoid a
1512   // DenseMap lookup.
1513   if (!V->isUsedByMetadata())
1514     return;
1515   if (auto *L = LocalAsMetadata::getIfExists(V))
1516     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1517       for (User *U : MDV->users())
1518         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1519           DbgValues.push_back(DVI);
1520 }
1521 
1522 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers,
1523                         Value *V) {
1524   // This function is hot. Check whether the value has any metadata to avoid a
1525   // DenseMap lookup.
1526   if (!V->isUsedByMetadata())
1527     return;
1528   if (auto *L = LocalAsMetadata::getIfExists(V))
1529     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1530       for (User *U : MDV->users())
1531         if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U))
1532           DbgUsers.push_back(DII);
1533 }
1534 
1535 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1536                              Instruction *InsertBefore, DIBuilder &Builder,
1537                              bool DerefBefore, int Offset, bool DerefAfter) {
1538   auto DbgAddrs = FindDbgAddrUses(Address);
1539   for (DbgInfoIntrinsic *DII : DbgAddrs) {
1540     DebugLoc Loc = DII->getDebugLoc();
1541     auto *DIVar = DII->getVariable();
1542     auto *DIExpr = DII->getExpression();
1543     assert(DIVar && "Missing variable");
1544     DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter);
1545     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1546     // llvm.dbg.declare.
1547     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1548     if (DII == InsertBefore)
1549       InsertBefore = InsertBefore->getNextNode();
1550     DII->eraseFromParent();
1551   }
1552   return !DbgAddrs.empty();
1553 }
1554 
1555 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1556                                       DIBuilder &Builder, bool DerefBefore,
1557                                       int Offset, bool DerefAfter) {
1558   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1559                            DerefBefore, Offset, DerefAfter);
1560 }
1561 
1562 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1563                                         DIBuilder &Builder, int Offset) {
1564   DebugLoc Loc = DVI->getDebugLoc();
1565   auto *DIVar = DVI->getVariable();
1566   auto *DIExpr = DVI->getExpression();
1567   assert(DIVar && "Missing variable");
1568 
1569   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1570   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1571   // it and give up.
1572   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1573       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1574     return;
1575 
1576   // Insert the offset immediately after the first deref.
1577   // We could just change the offset argument of dbg.value, but it's unsigned...
1578   if (Offset) {
1579     SmallVector<uint64_t, 4> Ops;
1580     Ops.push_back(dwarf::DW_OP_deref);
1581     DIExpression::appendOffset(Ops, Offset);
1582     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1583     DIExpr = Builder.createExpression(Ops);
1584   }
1585 
1586   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1587   DVI->eraseFromParent();
1588 }
1589 
1590 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1591                                     DIBuilder &Builder, int Offset) {
1592   if (auto *L = LocalAsMetadata::getIfExists(AI))
1593     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1594       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1595         Use &U = *UI++;
1596         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1597           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1598       }
1599 }
1600 
1601 /// Wrap \p V in a ValueAsMetadata instance.
1602 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1603   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1604 }
1605 
1606 bool llvm::salvageDebugInfo(Instruction &I) {
1607   SmallVector<DbgInfoIntrinsic *, 1> DbgUsers;
1608   findDbgUsers(DbgUsers, &I);
1609   if (DbgUsers.empty())
1610     return false;
1611 
1612   auto &M = *I.getModule();
1613   auto &DL = M.getDataLayout();
1614   auto &Ctx = I.getContext();
1615   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1616 
1617   auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) {
1618     auto *DIExpr = DII->getExpression();
1619     if (!Ops.empty()) {
1620       // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1621       // are implicitly pointing out the value as a DWARF memory location
1622       // description.
1623       bool WithStackValue = isa<DbgValueInst>(DII);
1624       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1625     }
1626     DII->setOperand(0, wrapMD(I.getOperand(0)));
1627     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1628     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1629   };
1630 
1631   auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) {
1632     SmallVector<uint64_t, 8> Ops;
1633     DIExpression::appendOffset(Ops, Offset);
1634     doSalvage(DII, Ops);
1635   };
1636 
1637   auto applyOps = [&](DbgInfoIntrinsic *DII,
1638                       std::initializer_list<uint64_t> Opcodes) {
1639     SmallVector<uint64_t, 8> Ops(Opcodes);
1640     doSalvage(DII, Ops);
1641   };
1642 
1643   if (auto *CI = dyn_cast<CastInst>(&I)) {
1644     if (!CI->isNoopCast(DL))
1645       return false;
1646 
1647     // No-op casts are irrelevant for debug info.
1648     MetadataAsValue *CastSrc = wrapMD(I.getOperand(0));
1649     for (auto *DII : DbgUsers) {
1650       DII->setOperand(0, CastSrc);
1651       LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1652     }
1653     return true;
1654   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1655     unsigned BitWidth =
1656         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1657     // Rewrite a constant GEP into a DIExpression.  Since we are performing
1658     // arithmetic to compute the variable's *value* in the DIExpression, we
1659     // need to mark the expression with a DW_OP_stack_value.
1660     APInt Offset(BitWidth, 0);
1661     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset))
1662       for (auto *DII : DbgUsers)
1663         applyOffset(DII, Offset.getSExtValue());
1664     return true;
1665   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1666     // Rewrite binary operations with constant integer operands.
1667     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1668     if (!ConstInt || ConstInt->getBitWidth() > 64)
1669       return false;
1670 
1671     uint64_t Val = ConstInt->getSExtValue();
1672     for (auto *DII : DbgUsers) {
1673       switch (BI->getOpcode()) {
1674       case Instruction::Add:
1675         applyOffset(DII, Val);
1676         break;
1677       case Instruction::Sub:
1678         applyOffset(DII, -int64_t(Val));
1679         break;
1680       case Instruction::Mul:
1681         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1682         break;
1683       case Instruction::SDiv:
1684         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1685         break;
1686       case Instruction::SRem:
1687         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1688         break;
1689       case Instruction::Or:
1690         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1691         break;
1692       case Instruction::And:
1693         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1694         break;
1695       case Instruction::Xor:
1696         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1697         break;
1698       case Instruction::Shl:
1699         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1700         break;
1701       case Instruction::LShr:
1702         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1703         break;
1704       case Instruction::AShr:
1705         applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1706         break;
1707       default:
1708         // TODO: Salvage constants from each kind of binop we know about.
1709         return false;
1710       }
1711     }
1712     return true;
1713   } else if (isa<LoadInst>(&I)) {
1714     MetadataAsValue *AddrMD = wrapMD(I.getOperand(0));
1715     for (auto *DII : DbgUsers) {
1716       // Rewrite the load into DW_OP_deref.
1717       auto *DIExpr = DII->getExpression();
1718       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1719       DII->setOperand(0, AddrMD);
1720       DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1721       LLVM_DEBUG(dbgs() << "SALVAGE:  " << *DII << '\n');
1722     }
1723     return true;
1724   }
1725   return false;
1726 }
1727 
1728 /// A replacement for a dbg.value expression.
1729 using DbgValReplacement = Optional<DIExpression *>;
1730 
1731 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1732 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1733 /// changes are made.
1734 static bool rewriteDebugUsers(
1735     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1736     function_ref<DbgValReplacement(DbgInfoIntrinsic &DII)> RewriteExpr) {
1737   // Find debug users of From.
1738   SmallVector<DbgInfoIntrinsic *, 1> Users;
1739   findDbgUsers(Users, &From);
1740   if (Users.empty())
1741     return false;
1742 
1743   // Prevent use-before-def of To.
1744   bool Changed = false;
1745   SmallPtrSet<DbgInfoIntrinsic *, 1> DeleteOrSalvage;
1746   if (isa<Instruction>(&To)) {
1747     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1748 
1749     for (auto *DII : Users) {
1750       // It's common to see a debug user between From and DomPoint. Move it
1751       // after DomPoint to preserve the variable update without any reordering.
1752       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1753         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1754         DII->moveAfter(&DomPoint);
1755         Changed = true;
1756 
1757       // Users which otherwise aren't dominated by the replacement value must
1758       // be salvaged or deleted.
1759       } else if (!DT.dominates(&DomPoint, DII)) {
1760         DeleteOrSalvage.insert(DII);
1761       }
1762     }
1763   }
1764 
1765   // Update debug users without use-before-def risk.
1766   for (auto *DII : Users) {
1767     if (DeleteOrSalvage.count(DII))
1768       continue;
1769 
1770     LLVMContext &Ctx = DII->getContext();
1771     DbgValReplacement DVR = RewriteExpr(*DII);
1772     if (!DVR)
1773       continue;
1774 
1775     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1776     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1777     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1778     Changed = true;
1779   }
1780 
1781   if (!DeleteOrSalvage.empty()) {
1782     // Try to salvage the remaining debug users.
1783     Changed |= salvageDebugInfo(From);
1784 
1785     // Delete the debug users which weren't salvaged.
1786     for (auto *DII : DeleteOrSalvage) {
1787       if (DII->getVariableLocation() == &From) {
1788         LLVM_DEBUG(dbgs() << "Erased UseBeforeDef:  " << *DII << '\n');
1789         DII->eraseFromParent();
1790         Changed = true;
1791       }
1792     }
1793   }
1794 
1795   return Changed;
1796 }
1797 
1798 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1799 /// losslessly preserve the bits and semantics of the value. This predicate is
1800 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1801 ///
1802 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1803 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1804 /// and also does not allow lossless pointer <-> integer conversions.
1805 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1806                                          Type *ToTy) {
1807   // Trivially compatible types.
1808   if (FromTy == ToTy)
1809     return true;
1810 
1811   // Handle compatible pointer <-> integer conversions.
1812   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1813     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1814     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1815                               !DL.isNonIntegralPointerType(ToTy);
1816     return SameSize && LosslessConversion;
1817   }
1818 
1819   // TODO: This is not exhaustive.
1820   return false;
1821 }
1822 
1823 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1824                                  Instruction &DomPoint, DominatorTree &DT) {
1825   // Exit early if From has no debug users.
1826   if (!From.isUsedByMetadata())
1827     return false;
1828 
1829   assert(&From != &To && "Can't replace something with itself");
1830 
1831   Type *FromTy = From.getType();
1832   Type *ToTy = To.getType();
1833 
1834   auto Identity = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement {
1835     return DII.getExpression();
1836   };
1837 
1838   // Handle no-op conversions.
1839   Module &M = *From.getModule();
1840   const DataLayout &DL = M.getDataLayout();
1841   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1842     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1843 
1844   // Handle integer-to-integer widening and narrowing.
1845   // FIXME: Use DW_OP_convert when it's available everywhere.
1846   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1847     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1848     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1849     assert(FromBits != ToBits && "Unexpected no-op conversion");
1850 
1851     // When the width of the result grows, assume that a debugger will only
1852     // access the low `FromBits` bits when inspecting the source variable.
1853     if (FromBits < ToBits)
1854       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1855 
1856     // The width of the result has shrunk. Use sign/zero extension to describe
1857     // the source variable's high bits.
1858     auto SignOrZeroExt = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement {
1859       DILocalVariable *Var = DII.getVariable();
1860 
1861       // Without knowing signedness, sign/zero extension isn't possible.
1862       auto Signedness = Var->getSignedness();
1863       if (!Signedness)
1864         return None;
1865 
1866       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1867 
1868       if (!Signed) {
1869         // In the unsigned case, assume that a debugger will initialize the
1870         // high bits to 0 and do a no-op conversion.
1871         return Identity(DII);
1872       } else {
1873         // In the signed case, the high bits are given by sign extension, i.e:
1874         //   (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1)
1875         // Calculate the high bits and OR them together with the low bits.
1876         SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu,
1877                                       (ToBits - 1), dwarf::DW_OP_shr,
1878                                       dwarf::DW_OP_lit0, dwarf::DW_OP_not,
1879                                       dwarf::DW_OP_mul, dwarf::DW_OP_or});
1880         return DIExpression::appendToStack(DII.getExpression(), Ops);
1881       }
1882     };
1883     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1884   }
1885 
1886   // TODO: Floating-point conversions, vectors.
1887   return false;
1888 }
1889 
1890 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1891   unsigned NumDeadInst = 0;
1892   // Delete the instructions backwards, as it has a reduced likelihood of
1893   // having to update as many def-use and use-def chains.
1894   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1895   while (EndInst != &BB->front()) {
1896     // Delete the next to last instruction.
1897     Instruction *Inst = &*--EndInst->getIterator();
1898     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1899       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1900     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1901       EndInst = Inst;
1902       continue;
1903     }
1904     if (!isa<DbgInfoIntrinsic>(Inst))
1905       ++NumDeadInst;
1906     Inst->eraseFromParent();
1907   }
1908   return NumDeadInst;
1909 }
1910 
1911 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1912                                    bool PreserveLCSSA, DomTreeUpdater *DTU) {
1913   BasicBlock *BB = I->getParent();
1914   std::vector <DominatorTree::UpdateType> Updates;
1915 
1916   // Loop over all of the successors, removing BB's entry from any PHI
1917   // nodes.
1918   if (DTU)
1919     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1920   for (BasicBlock *Successor : successors(BB)) {
1921     Successor->removePredecessor(BB, PreserveLCSSA);
1922     if (DTU)
1923       Updates.push_back({DominatorTree::Delete, BB, Successor});
1924   }
1925   // Insert a call to llvm.trap right before this.  This turns the undefined
1926   // behavior into a hard fail instead of falling through into random code.
1927   if (UseLLVMTrap) {
1928     Function *TrapFn =
1929       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1930     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1931     CallTrap->setDebugLoc(I->getDebugLoc());
1932   }
1933   new UnreachableInst(I->getContext(), I);
1934 
1935   // All instructions after this are dead.
1936   unsigned NumInstrsRemoved = 0;
1937   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1938   while (BBI != BBE) {
1939     if (!BBI->use_empty())
1940       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1941     BB->getInstList().erase(BBI++);
1942     ++NumInstrsRemoved;
1943   }
1944   if (DTU)
1945     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
1946   return NumInstrsRemoved;
1947 }
1948 
1949 /// changeToCall - Convert the specified invoke into a normal call.
1950 static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) {
1951   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1952   SmallVector<OperandBundleDef, 1> OpBundles;
1953   II->getOperandBundlesAsDefs(OpBundles);
1954   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1955                                        "", II);
1956   NewCall->takeName(II);
1957   NewCall->setCallingConv(II->getCallingConv());
1958   NewCall->setAttributes(II->getAttributes());
1959   NewCall->setDebugLoc(II->getDebugLoc());
1960   II->replaceAllUsesWith(NewCall);
1961 
1962   // Follow the call by a branch to the normal destination.
1963   BasicBlock *NormalDestBB = II->getNormalDest();
1964   BranchInst::Create(NormalDestBB, II);
1965 
1966   // Update PHI nodes in the unwind destination
1967   BasicBlock *BB = II->getParent();
1968   BasicBlock *UnwindDestBB = II->getUnwindDest();
1969   UnwindDestBB->removePredecessor(BB);
1970   II->eraseFromParent();
1971   if (DTU)
1972     DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
1973 }
1974 
1975 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1976                                                    BasicBlock *UnwindEdge) {
1977   BasicBlock *BB = CI->getParent();
1978 
1979   // Convert this function call into an invoke instruction.  First, split the
1980   // basic block.
1981   BasicBlock *Split =
1982       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1983 
1984   // Delete the unconditional branch inserted by splitBasicBlock
1985   BB->getInstList().pop_back();
1986 
1987   // Create the new invoke instruction.
1988   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1989   SmallVector<OperandBundleDef, 1> OpBundles;
1990 
1991   CI->getOperandBundlesAsDefs(OpBundles);
1992 
1993   // Note: we're round tripping operand bundles through memory here, and that
1994   // can potentially be avoided with a cleverer API design that we do not have
1995   // as of this time.
1996 
1997   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1998                                       InvokeArgs, OpBundles, CI->getName(), BB);
1999   II->setDebugLoc(CI->getDebugLoc());
2000   II->setCallingConv(CI->getCallingConv());
2001   II->setAttributes(CI->getAttributes());
2002 
2003   // Make sure that anything using the call now uses the invoke!  This also
2004   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2005   CI->replaceAllUsesWith(II);
2006 
2007   // Delete the original call
2008   Split->getInstList().pop_front();
2009   return Split;
2010 }
2011 
2012 static bool markAliveBlocks(Function &F,
2013                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2014                             DomTreeUpdater *DTU = nullptr) {
2015   SmallVector<BasicBlock*, 128> Worklist;
2016   BasicBlock *BB = &F.front();
2017   Worklist.push_back(BB);
2018   Reachable.insert(BB);
2019   bool Changed = false;
2020   do {
2021     BB = Worklist.pop_back_val();
2022 
2023     // Do a quick scan of the basic block, turning any obviously unreachable
2024     // instructions into LLVM unreachable insts.  The instruction combining pass
2025     // canonicalizes unreachable insts into stores to null or undef.
2026     for (Instruction &I : *BB) {
2027       if (auto *CI = dyn_cast<CallInst>(&I)) {
2028         Value *Callee = CI->getCalledValue();
2029         // Handle intrinsic calls.
2030         if (Function *F = dyn_cast<Function>(Callee)) {
2031           auto IntrinsicID = F->getIntrinsicID();
2032           // Assumptions that are known to be false are equivalent to
2033           // unreachable. Also, if the condition is undefined, then we make the
2034           // choice most beneficial to the optimizer, and choose that to also be
2035           // unreachable.
2036           if (IntrinsicID == Intrinsic::assume) {
2037             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2038               // Don't insert a call to llvm.trap right before the unreachable.
2039               changeToUnreachable(CI, false, false, DTU);
2040               Changed = true;
2041               break;
2042             }
2043           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2044             // A call to the guard intrinsic bails out of the current
2045             // compilation unit if the predicate passed to it is false. If the
2046             // predicate is a constant false, then we know the guard will bail
2047             // out of the current compile unconditionally, so all code following
2048             // it is dead.
2049             //
2050             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2051             // guards to treat `undef` as `false` since a guard on `undef` can
2052             // still be useful for widening.
2053             if (match(CI->getArgOperand(0), m_Zero()))
2054               if (!isa<UnreachableInst>(CI->getNextNode())) {
2055                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2056                                     false, DTU);
2057                 Changed = true;
2058                 break;
2059               }
2060           }
2061         } else if ((isa<ConstantPointerNull>(Callee) &&
2062                     !NullPointerIsDefined(CI->getFunction())) ||
2063                    isa<UndefValue>(Callee)) {
2064           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2065           Changed = true;
2066           break;
2067         }
2068         if (CI->doesNotReturn()) {
2069           // If we found a call to a no-return function, insert an unreachable
2070           // instruction after it.  Make sure there isn't *already* one there
2071           // though.
2072           if (!isa<UnreachableInst>(CI->getNextNode())) {
2073             // Don't insert a call to llvm.trap right before the unreachable.
2074             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2075             Changed = true;
2076           }
2077           break;
2078         }
2079       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2080         // Store to undef and store to null are undefined and used to signal
2081         // that they should be changed to unreachable by passes that can't
2082         // modify the CFG.
2083 
2084         // Don't touch volatile stores.
2085         if (SI->isVolatile()) continue;
2086 
2087         Value *Ptr = SI->getOperand(1);
2088 
2089         if (isa<UndefValue>(Ptr) ||
2090             (isa<ConstantPointerNull>(Ptr) &&
2091              !NullPointerIsDefined(SI->getFunction(),
2092                                    SI->getPointerAddressSpace()))) {
2093           changeToUnreachable(SI, true, false, DTU);
2094           Changed = true;
2095           break;
2096         }
2097       }
2098     }
2099 
2100     TerminatorInst *Terminator = BB->getTerminator();
2101     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2102       // Turn invokes that call 'nounwind' functions into ordinary calls.
2103       Value *Callee = II->getCalledValue();
2104       if ((isa<ConstantPointerNull>(Callee) &&
2105            !NullPointerIsDefined(BB->getParent())) ||
2106           isa<UndefValue>(Callee)) {
2107         changeToUnreachable(II, true, false, DTU);
2108         Changed = true;
2109       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2110         if (II->use_empty() && II->onlyReadsMemory()) {
2111           // jump to the normal destination branch.
2112           BasicBlock *NormalDestBB = II->getNormalDest();
2113           BasicBlock *UnwindDestBB = II->getUnwindDest();
2114           BranchInst::Create(NormalDestBB, II);
2115           UnwindDestBB->removePredecessor(II->getParent());
2116           II->eraseFromParent();
2117           if (DTU)
2118             DTU->deleteEdgeRelaxed(BB, UnwindDestBB);
2119         } else
2120           changeToCall(II, DTU);
2121         Changed = true;
2122       }
2123     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2124       // Remove catchpads which cannot be reached.
2125       struct CatchPadDenseMapInfo {
2126         static CatchPadInst *getEmptyKey() {
2127           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2128         }
2129 
2130         static CatchPadInst *getTombstoneKey() {
2131           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2132         }
2133 
2134         static unsigned getHashValue(CatchPadInst *CatchPad) {
2135           return static_cast<unsigned>(hash_combine_range(
2136               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2137         }
2138 
2139         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2140           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2141               RHS == getEmptyKey() || RHS == getTombstoneKey())
2142             return LHS == RHS;
2143           return LHS->isIdenticalTo(RHS);
2144         }
2145       };
2146 
2147       // Set of unique CatchPads.
2148       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2149                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2150           HandlerSet;
2151       detail::DenseSetEmpty Empty;
2152       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2153                                              E = CatchSwitch->handler_end();
2154            I != E; ++I) {
2155         BasicBlock *HandlerBB = *I;
2156         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2157         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2158           CatchSwitch->removeHandler(I);
2159           --I;
2160           --E;
2161           Changed = true;
2162         }
2163       }
2164     }
2165 
2166     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2167     for (BasicBlock *Successor : successors(BB))
2168       if (Reachable.insert(Successor).second)
2169         Worklist.push_back(Successor);
2170   } while (!Worklist.empty());
2171   return Changed;
2172 }
2173 
2174 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2175   TerminatorInst *TI = BB->getTerminator();
2176 
2177   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2178     changeToCall(II, DTU);
2179     return;
2180   }
2181 
2182   TerminatorInst *NewTI;
2183   BasicBlock *UnwindDest;
2184 
2185   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2186     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2187     UnwindDest = CRI->getUnwindDest();
2188   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2189     auto *NewCatchSwitch = CatchSwitchInst::Create(
2190         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2191         CatchSwitch->getName(), CatchSwitch);
2192     for (BasicBlock *PadBB : CatchSwitch->handlers())
2193       NewCatchSwitch->addHandler(PadBB);
2194 
2195     NewTI = NewCatchSwitch;
2196     UnwindDest = CatchSwitch->getUnwindDest();
2197   } else {
2198     llvm_unreachable("Could not find unwind successor");
2199   }
2200 
2201   NewTI->takeName(TI);
2202   NewTI->setDebugLoc(TI->getDebugLoc());
2203   UnwindDest->removePredecessor(BB);
2204   TI->replaceAllUsesWith(NewTI);
2205   TI->eraseFromParent();
2206   if (DTU)
2207     DTU->deleteEdgeRelaxed(BB, UnwindDest);
2208 }
2209 
2210 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2211 /// if they are in a dead cycle.  Return true if a change was made, false
2212 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2213 /// after modifying the CFG.
2214 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI,
2215                                    DomTreeUpdater *DTU) {
2216   SmallPtrSet<BasicBlock*, 16> Reachable;
2217   bool Changed = markAliveBlocks(F, Reachable, DTU);
2218 
2219   // If there are unreachable blocks in the CFG...
2220   if (Reachable.size() == F.size())
2221     return Changed;
2222 
2223   assert(Reachable.size() < F.size());
2224   NumRemoved += F.size()-Reachable.size();
2225 
2226   // Loop over all of the basic blocks that are not reachable, dropping all of
2227   // their internal references. Update DTU and LVI if available.
2228   std::vector <DominatorTree::UpdateType> Updates;
2229   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) {
2230     auto *BB = &*I;
2231     if (Reachable.count(BB))
2232       continue;
2233     for (BasicBlock *Successor : successors(BB)) {
2234       if (Reachable.count(Successor))
2235         Successor->removePredecessor(BB);
2236       if (DTU)
2237         Updates.push_back({DominatorTree::Delete, BB, Successor});
2238     }
2239     if (LVI)
2240       LVI->eraseBlock(BB);
2241     BB->dropAllReferences();
2242   }
2243   SmallVector<BasicBlock *, 8> ToDeleteBBs;
2244   for (Function::iterator I = ++F.begin(); I != F.end();) {
2245     auto *BB = &*I;
2246     if (Reachable.count(BB)) {
2247       ++I;
2248       continue;
2249     }
2250     if (DTU) {
2251       ToDeleteBBs.push_back(BB);
2252 
2253       // Remove the TerminatorInst of BB to clear the successor list of BB.
2254       if (BB->getTerminator())
2255         BB->getInstList().pop_back();
2256       new UnreachableInst(BB->getContext(), BB);
2257       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2258                                "applying corresponding DTU updates.");
2259       ++I;
2260     } else {
2261       I = F.getBasicBlockList().erase(I);
2262     }
2263   }
2264 
2265   if (DTU) {
2266     DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
2267     bool Deleted = false;
2268     for (auto *BB : ToDeleteBBs) {
2269       if (DTU->isBBPendingDeletion(BB))
2270         --NumRemoved;
2271       else
2272         Deleted = true;
2273       DTU->deleteBB(BB);
2274     }
2275     if (!Deleted)
2276       return false;
2277   }
2278   return true;
2279 }
2280 
2281 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2282                            ArrayRef<unsigned> KnownIDs) {
2283   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2284   K->dropUnknownNonDebugMetadata(KnownIDs);
2285   K->getAllMetadataOtherThanDebugLoc(Metadata);
2286   for (const auto &MD : Metadata) {
2287     unsigned Kind = MD.first;
2288     MDNode *JMD = J->getMetadata(Kind);
2289     MDNode *KMD = MD.second;
2290 
2291     switch (Kind) {
2292       default:
2293         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2294         break;
2295       case LLVMContext::MD_dbg:
2296         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2297       case LLVMContext::MD_tbaa:
2298         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2299         break;
2300       case LLVMContext::MD_alias_scope:
2301         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2302         break;
2303       case LLVMContext::MD_noalias:
2304       case LLVMContext::MD_mem_parallel_loop_access:
2305         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2306         break;
2307       case LLVMContext::MD_range:
2308         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2309         break;
2310       case LLVMContext::MD_fpmath:
2311         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2312         break;
2313       case LLVMContext::MD_invariant_load:
2314         // Only set the !invariant.load if it is present in both instructions.
2315         K->setMetadata(Kind, JMD);
2316         break;
2317       case LLVMContext::MD_nonnull:
2318         // Only set the !nonnull if it is present in both instructions.
2319         K->setMetadata(Kind, JMD);
2320         break;
2321       case LLVMContext::MD_invariant_group:
2322         // Preserve !invariant.group in K.
2323         break;
2324       case LLVMContext::MD_align:
2325         K->setMetadata(Kind,
2326           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2327         break;
2328       case LLVMContext::MD_dereferenceable:
2329       case LLVMContext::MD_dereferenceable_or_null:
2330         K->setMetadata(Kind,
2331           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2332         break;
2333     }
2334   }
2335   // Set !invariant.group from J if J has it. If both instructions have it
2336   // then we will just pick it from J - even when they are different.
2337   // Also make sure that K is load or store - f.e. combining bitcast with load
2338   // could produce bitcast with invariant.group metadata, which is invalid.
2339   // FIXME: we should try to preserve both invariant.group md if they are
2340   // different, but right now instruction can only have one invariant.group.
2341   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2342     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2343       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2344 }
2345 
2346 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
2347   unsigned KnownIDs[] = {
2348       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2349       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2350       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2351       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2352       LLVMContext::MD_dereferenceable,
2353       LLVMContext::MD_dereferenceable_or_null};
2354   combineMetadata(K, J, KnownIDs);
2355 }
2356 
2357 template <typename RootType, typename DominatesFn>
2358 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2359                                          const RootType &Root,
2360                                          const DominatesFn &Dominates) {
2361   assert(From->getType() == To->getType());
2362 
2363   unsigned Count = 0;
2364   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2365        UI != UE;) {
2366     Use &U = *UI++;
2367     if (!Dominates(Root, U))
2368       continue;
2369     U.set(To);
2370     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2371                       << "' as " << *To << " in " << *U << "\n");
2372     ++Count;
2373   }
2374   return Count;
2375 }
2376 
2377 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2378    assert(From->getType() == To->getType());
2379    auto *BB = From->getParent();
2380    unsigned Count = 0;
2381 
2382   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2383        UI != UE;) {
2384     Use &U = *UI++;
2385     auto *I = cast<Instruction>(U.getUser());
2386     if (I->getParent() == BB)
2387       continue;
2388     U.set(To);
2389     ++Count;
2390   }
2391   return Count;
2392 }
2393 
2394 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2395                                         DominatorTree &DT,
2396                                         const BasicBlockEdge &Root) {
2397   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2398     return DT.dominates(Root, U);
2399   };
2400   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2401 }
2402 
2403 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2404                                         DominatorTree &DT,
2405                                         const BasicBlock *BB) {
2406   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2407     auto *I = cast<Instruction>(U.getUser())->getParent();
2408     return DT.properlyDominates(BB, I);
2409   };
2410   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2411 }
2412 
2413 bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
2414                                const TargetLibraryInfo &TLI) {
2415   // Check if the function is specifically marked as a gc leaf function.
2416   if (CS.hasFnAttr("gc-leaf-function"))
2417     return true;
2418   if (const Function *F = CS.getCalledFunction()) {
2419     if (F->hasFnAttribute("gc-leaf-function"))
2420       return true;
2421 
2422     if (auto IID = F->getIntrinsicID())
2423       // Most LLVM intrinsics do not take safepoints.
2424       return IID != Intrinsic::experimental_gc_statepoint &&
2425              IID != Intrinsic::experimental_deoptimize;
2426   }
2427 
2428   // Lib calls can be materialized by some passes, and won't be
2429   // marked as 'gc-leaf-function.' All available Libcalls are
2430   // GC-leaf.
2431   LibFunc LF;
2432   if (TLI.getLibFunc(CS, LF)) {
2433     return TLI.has(LF);
2434   }
2435 
2436   return false;
2437 }
2438 
2439 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2440                                LoadInst &NewLI) {
2441   auto *NewTy = NewLI.getType();
2442 
2443   // This only directly applies if the new type is also a pointer.
2444   if (NewTy->isPointerTy()) {
2445     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2446     return;
2447   }
2448 
2449   // The only other translation we can do is to integral loads with !range
2450   // metadata.
2451   if (!NewTy->isIntegerTy())
2452     return;
2453 
2454   MDBuilder MDB(NewLI.getContext());
2455   const Value *Ptr = OldLI.getPointerOperand();
2456   auto *ITy = cast<IntegerType>(NewTy);
2457   auto *NullInt = ConstantExpr::getPtrToInt(
2458       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2459   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2460   NewLI.setMetadata(LLVMContext::MD_range,
2461                     MDB.createRange(NonNullInt, NullInt));
2462 }
2463 
2464 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2465                              MDNode *N, LoadInst &NewLI) {
2466   auto *NewTy = NewLI.getType();
2467 
2468   // Give up unless it is converted to a pointer where there is a single very
2469   // valuable mapping we can do reliably.
2470   // FIXME: It would be nice to propagate this in more ways, but the type
2471   // conversions make it hard.
2472   if (!NewTy->isPointerTy())
2473     return;
2474 
2475   unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy);
2476   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2477     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2478     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2479   }
2480 }
2481 
2482 namespace {
2483 
2484 /// A potential constituent of a bitreverse or bswap expression. See
2485 /// collectBitParts for a fuller explanation.
2486 struct BitPart {
2487   BitPart(Value *P, unsigned BW) : Provider(P) {
2488     Provenance.resize(BW);
2489   }
2490 
2491   /// The Value that this is a bitreverse/bswap of.
2492   Value *Provider;
2493 
2494   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2495   /// in Provider becomes bit B in the result of this expression.
2496   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2497 
2498   enum { Unset = -1 };
2499 };
2500 
2501 } // end anonymous namespace
2502 
2503 /// Analyze the specified subexpression and see if it is capable of providing
2504 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2505 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2506 /// the output of the expression came from a corresponding bit in some other
2507 /// value. This function is recursive, and the end result is a mapping of
2508 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2509 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2510 ///
2511 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2512 /// that the expression deposits the low byte of %X into the high byte of the
2513 /// result and that all other bits are zero. This expression is accepted and a
2514 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2515 /// [0-7].
2516 ///
2517 /// To avoid revisiting values, the BitPart results are memoized into the
2518 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2519 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2520 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2521 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2522 /// type instead to provide the same functionality.
2523 ///
2524 /// Because we pass around references into \c BPS, we must use a container that
2525 /// does not invalidate internal references (std::map instead of DenseMap).
2526 static const Optional<BitPart> &
2527 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2528                 std::map<Value *, Optional<BitPart>> &BPS) {
2529   auto I = BPS.find(V);
2530   if (I != BPS.end())
2531     return I->second;
2532 
2533   auto &Result = BPS[V] = None;
2534   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2535 
2536   if (Instruction *I = dyn_cast<Instruction>(V)) {
2537     // If this is an or instruction, it may be an inner node of the bswap.
2538     if (I->getOpcode() == Instruction::Or) {
2539       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2540                                 MatchBitReversals, BPS);
2541       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2542                                 MatchBitReversals, BPS);
2543       if (!A || !B)
2544         return Result;
2545 
2546       // Try and merge the two together.
2547       if (!A->Provider || A->Provider != B->Provider)
2548         return Result;
2549 
2550       Result = BitPart(A->Provider, BitWidth);
2551       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2552         if (A->Provenance[i] != BitPart::Unset &&
2553             B->Provenance[i] != BitPart::Unset &&
2554             A->Provenance[i] != B->Provenance[i])
2555           return Result = None;
2556 
2557         if (A->Provenance[i] == BitPart::Unset)
2558           Result->Provenance[i] = B->Provenance[i];
2559         else
2560           Result->Provenance[i] = A->Provenance[i];
2561       }
2562 
2563       return Result;
2564     }
2565 
2566     // If this is a logical shift by a constant, recurse then shift the result.
2567     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2568       unsigned BitShift =
2569           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2570       // Ensure the shift amount is defined.
2571       if (BitShift > BitWidth)
2572         return Result;
2573 
2574       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2575                                   MatchBitReversals, BPS);
2576       if (!Res)
2577         return Result;
2578       Result = Res;
2579 
2580       // Perform the "shift" on BitProvenance.
2581       auto &P = Result->Provenance;
2582       if (I->getOpcode() == Instruction::Shl) {
2583         P.erase(std::prev(P.end(), BitShift), P.end());
2584         P.insert(P.begin(), BitShift, BitPart::Unset);
2585       } else {
2586         P.erase(P.begin(), std::next(P.begin(), BitShift));
2587         P.insert(P.end(), BitShift, BitPart::Unset);
2588       }
2589 
2590       return Result;
2591     }
2592 
2593     // If this is a logical 'and' with a mask that clears bits, recurse then
2594     // unset the appropriate bits.
2595     if (I->getOpcode() == Instruction::And &&
2596         isa<ConstantInt>(I->getOperand(1))) {
2597       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2598       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2599 
2600       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2601       // early exit.
2602       unsigned NumMaskedBits = AndMask.countPopulation();
2603       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2604         return Result;
2605 
2606       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2607                                   MatchBitReversals, BPS);
2608       if (!Res)
2609         return Result;
2610       Result = Res;
2611 
2612       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2613         // If the AndMask is zero for this bit, clear the bit.
2614         if ((AndMask & Bit) == 0)
2615           Result->Provenance[i] = BitPart::Unset;
2616       return Result;
2617     }
2618 
2619     // If this is a zext instruction zero extend the result.
2620     if (I->getOpcode() == Instruction::ZExt) {
2621       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2622                                   MatchBitReversals, BPS);
2623       if (!Res)
2624         return Result;
2625 
2626       Result = BitPart(Res->Provider, BitWidth);
2627       auto NarrowBitWidth =
2628           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2629       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2630         Result->Provenance[i] = Res->Provenance[i];
2631       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2632         Result->Provenance[i] = BitPart::Unset;
2633       return Result;
2634     }
2635   }
2636 
2637   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2638   // the input value to the bswap/bitreverse.
2639   Result = BitPart(V, BitWidth);
2640   for (unsigned i = 0; i < BitWidth; ++i)
2641     Result->Provenance[i] = i;
2642   return Result;
2643 }
2644 
2645 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2646                                           unsigned BitWidth) {
2647   if (From % 8 != To % 8)
2648     return false;
2649   // Convert from bit indices to byte indices and check for a byte reversal.
2650   From >>= 3;
2651   To >>= 3;
2652   BitWidth >>= 3;
2653   return From == BitWidth - To - 1;
2654 }
2655 
2656 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2657                                                unsigned BitWidth) {
2658   return From == BitWidth - To - 1;
2659 }
2660 
2661 bool llvm::recognizeBSwapOrBitReverseIdiom(
2662     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2663     SmallVectorImpl<Instruction *> &InsertedInsts) {
2664   if (Operator::getOpcode(I) != Instruction::Or)
2665     return false;
2666   if (!MatchBSwaps && !MatchBitReversals)
2667     return false;
2668   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2669   if (!ITy || ITy->getBitWidth() > 128)
2670     return false;   // Can't do vectors or integers > 128 bits.
2671   unsigned BW = ITy->getBitWidth();
2672 
2673   unsigned DemandedBW = BW;
2674   IntegerType *DemandedTy = ITy;
2675   if (I->hasOneUse()) {
2676     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2677       DemandedTy = cast<IntegerType>(Trunc->getType());
2678       DemandedBW = DemandedTy->getBitWidth();
2679     }
2680   }
2681 
2682   // Try to find all the pieces corresponding to the bswap.
2683   std::map<Value *, Optional<BitPart>> BPS;
2684   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2685   if (!Res)
2686     return false;
2687   auto &BitProvenance = Res->Provenance;
2688 
2689   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2690   // only byteswap values with an even number of bytes.
2691   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2692   for (unsigned i = 0; i < DemandedBW; ++i) {
2693     OKForBSwap &=
2694         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2695     OKForBitReverse &=
2696         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2697   }
2698 
2699   Intrinsic::ID Intrin;
2700   if (OKForBSwap && MatchBSwaps)
2701     Intrin = Intrinsic::bswap;
2702   else if (OKForBitReverse && MatchBitReversals)
2703     Intrin = Intrinsic::bitreverse;
2704   else
2705     return false;
2706 
2707   if (ITy != DemandedTy) {
2708     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2709     Value *Provider = Res->Provider;
2710     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2711     // We may need to truncate the provider.
2712     if (DemandedTy != ProviderTy) {
2713       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2714                                      "trunc", I);
2715       InsertedInsts.push_back(Trunc);
2716       Provider = Trunc;
2717     }
2718     auto *CI = CallInst::Create(F, Provider, "rev", I);
2719     InsertedInsts.push_back(CI);
2720     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2721     InsertedInsts.push_back(ExtInst);
2722     return true;
2723   }
2724 
2725   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2726   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2727   return true;
2728 }
2729 
2730 // CodeGen has special handling for some string functions that may replace
2731 // them with target-specific intrinsics.  Since that'd skip our interceptors
2732 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2733 // we mark affected calls as NoBuiltin, which will disable optimization
2734 // in CodeGen.
2735 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2736     CallInst *CI, const TargetLibraryInfo *TLI) {
2737   Function *F = CI->getCalledFunction();
2738   LibFunc Func;
2739   if (F && !F->hasLocalLinkage() && F->hasName() &&
2740       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2741       !F->doesNotAccessMemory())
2742     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2743 }
2744 
2745 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2746   // We can't have a PHI with a metadata type.
2747   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2748     return false;
2749 
2750   // Early exit.
2751   if (!isa<Constant>(I->getOperand(OpIdx)))
2752     return true;
2753 
2754   switch (I->getOpcode()) {
2755   default:
2756     return true;
2757   case Instruction::Call:
2758   case Instruction::Invoke:
2759     // Can't handle inline asm. Skip it.
2760     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2761       return false;
2762     // Many arithmetic intrinsics have no issue taking a
2763     // variable, however it's hard to distingish these from
2764     // specials such as @llvm.frameaddress that require a constant.
2765     if (isa<IntrinsicInst>(I))
2766       return false;
2767 
2768     // Constant bundle operands may need to retain their constant-ness for
2769     // correctness.
2770     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2771       return false;
2772     return true;
2773   case Instruction::ShuffleVector:
2774     // Shufflevector masks are constant.
2775     return OpIdx != 2;
2776   case Instruction::Switch:
2777   case Instruction::ExtractValue:
2778     // All operands apart from the first are constant.
2779     return OpIdx == 0;
2780   case Instruction::InsertValue:
2781     // All operands apart from the first and the second are constant.
2782     return OpIdx < 2;
2783   case Instruction::Alloca:
2784     // Static allocas (constant size in the entry block) are handled by
2785     // prologue/epilogue insertion so they're free anyway. We definitely don't
2786     // want to make them non-constant.
2787     return !cast<AllocaInst>(I)->isStaticAlloca();
2788   case Instruction::GetElementPtr:
2789     if (OpIdx == 0)
2790       return true;
2791     gep_type_iterator It = gep_type_begin(I);
2792     for (auto E = std::next(It, OpIdx); It != E; ++It)
2793       if (It.isStruct())
2794         return false;
2795     return true;
2796   }
2797 }
2798