1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 // Max recursion depth for collectBitParts used when detecting bswap and
95 // bitreverse idioms
96 static const unsigned BitPartRecursionMaxDepth = 64;
97 
98 //===----------------------------------------------------------------------===//
99 //  Local constant propagation.
100 //
101 
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination.  This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110                                   const TargetLibraryInfo *TLI,
111                                   DomTreeUpdater *DTU) {
112   Instruction *T = BB->getTerminator();
113   IRBuilder<> Builder(T);
114 
115   // Branch - See if we are conditional jumping on constant
116   if (auto *BI = dyn_cast<BranchInst>(T)) {
117     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
118     BasicBlock *Dest1 = BI->getSuccessor(0);
119     BasicBlock *Dest2 = BI->getSuccessor(1);
120 
121     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122       // Are we branching on constant?
123       // YES.  Change to unconditional branch...
124       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
126 
127       // Let the basic block know that we are letting go of it.  Based on this,
128       // it will adjust it's PHI nodes.
129       OldDest->removePredecessor(BB);
130 
131       // Replace the conditional branch with an unconditional one.
132       Builder.CreateBr(Destination);
133       BI->eraseFromParent();
134       if (DTU)
135         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136       return true;
137     }
138 
139     if (Dest2 == Dest1) {       // Conditional branch to same location?
140       // This branch matches something like this:
141       //     br bool %cond, label %Dest, label %Dest
142       // and changes it into:  br label %Dest
143 
144       // Let the basic block know that we are letting go of one copy of it.
145       assert(BI->getParent() && "Terminator not inserted in block!");
146       Dest1->removePredecessor(BI->getParent());
147 
148       // Replace the conditional branch with an unconditional one.
149       Builder.CreateBr(Dest1);
150       Value *Cond = BI->getCondition();
151       BI->eraseFromParent();
152       if (DeleteDeadConditions)
153         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154       return true;
155     }
156     return false;
157   }
158 
159   if (auto *SI = dyn_cast<SwitchInst>(T)) {
160     // If we are switching on a constant, we can convert the switch to an
161     // unconditional branch.
162     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163     BasicBlock *DefaultDest = SI->getDefaultDest();
164     BasicBlock *TheOnlyDest = DefaultDest;
165 
166     // If the default is unreachable, ignore it when searching for TheOnlyDest.
167     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168         SI->getNumCases() > 0) {
169       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170     }
171 
172     // Figure out which case it goes to.
173     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174       // Found case matching a constant operand?
175       if (i->getCaseValue() == CI) {
176         TheOnlyDest = i->getCaseSuccessor();
177         break;
178       }
179 
180       // Check to see if this branch is going to the same place as the default
181       // dest.  If so, eliminate it as an explicit compare.
182       if (i->getCaseSuccessor() == DefaultDest) {
183         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184         unsigned NCases = SI->getNumCases();
185         // Fold the case metadata into the default if there will be any branches
186         // left, unless the metadata doesn't match the switch.
187         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188           // Collect branch weights into a vector.
189           SmallVector<uint32_t, 8> Weights;
190           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191                ++MD_i) {
192             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193             Weights.push_back(CI->getValue().getZExtValue());
194           }
195           // Merge weight of this case to the default weight.
196           unsigned idx = i->getCaseIndex();
197           Weights[0] += Weights[idx+1];
198           // Remove weight for this case.
199           std::swap(Weights[idx+1], Weights.back());
200           Weights.pop_back();
201           SI->setMetadata(LLVMContext::MD_prof,
202                           MDBuilder(BB->getContext()).
203                           createBranchWeights(Weights));
204         }
205         // Remove this entry.
206         BasicBlock *ParentBB = SI->getParent();
207         DefaultDest->removePredecessor(ParentBB);
208         i = SI->removeCase(i);
209         e = SI->case_end();
210         if (DTU)
211           DTU->applyUpdatesPermissive(
212               {{DominatorTree::Delete, ParentBB, DefaultDest}});
213         continue;
214       }
215 
216       // Otherwise, check to see if the switch only branches to one destination.
217       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218       // destinations.
219       if (i->getCaseSuccessor() != TheOnlyDest)
220         TheOnlyDest = nullptr;
221 
222       // Increment this iterator as we haven't removed the case.
223       ++i;
224     }
225 
226     if (CI && !TheOnlyDest) {
227       // Branching on a constant, but not any of the cases, go to the default
228       // successor.
229       TheOnlyDest = SI->getDefaultDest();
230     }
231 
232     // If we found a single destination that we can fold the switch into, do so
233     // now.
234     if (TheOnlyDest) {
235       // Insert the new branch.
236       Builder.CreateBr(TheOnlyDest);
237       BasicBlock *BB = SI->getParent();
238       std::vector <DominatorTree::UpdateType> Updates;
239       if (DTU)
240         Updates.reserve(SI->getNumSuccessors() - 1);
241 
242       // Remove entries from PHI nodes which we no longer branch to...
243       for (BasicBlock *Succ : successors(SI)) {
244         // Found case matching a constant operand?
245         if (Succ == TheOnlyDest) {
246           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247         } else {
248           Succ->removePredecessor(BB);
249           if (DTU)
250             Updates.push_back({DominatorTree::Delete, BB, Succ});
251         }
252       }
253 
254       // Delete the old switch.
255       Value *Cond = SI->getCondition();
256       SI->eraseFromParent();
257       if (DeleteDeadConditions)
258         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259       if (DTU)
260         DTU->applyUpdatesPermissive(Updates);
261       return true;
262     }
263 
264     if (SI->getNumCases() == 1) {
265       // Otherwise, we can fold this switch into a conditional branch
266       // instruction if it has only one non-default destination.
267       auto FirstCase = *SI->case_begin();
268       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269           FirstCase.getCaseValue(), "cond");
270 
271       // Insert the new branch.
272       BranchInst *NewBr = Builder.CreateCondBr(Cond,
273                                                FirstCase.getCaseSuccessor(),
274                                                SI->getDefaultDest());
275       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276       if (MD && MD->getNumOperands() == 3) {
277         ConstantInt *SICase =
278             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279         ConstantInt *SIDef =
280             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281         assert(SICase && SIDef);
282         // The TrueWeight should be the weight for the single case of SI.
283         NewBr->setMetadata(LLVMContext::MD_prof,
284                         MDBuilder(BB->getContext()).
285                         createBranchWeights(SICase->getValue().getZExtValue(),
286                                             SIDef->getValue().getZExtValue()));
287       }
288 
289       // Update make.implicit metadata to the newly-created conditional branch.
290       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291       if (MakeImplicitMD)
292         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293 
294       // Delete the old switch.
295       SI->eraseFromParent();
296       return true;
297     }
298     return false;
299   }
300 
301   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302     // indirectbr blockaddress(@F, @BB) -> br label @BB
303     if (auto *BA =
304           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305       BasicBlock *TheOnlyDest = BA->getBasicBlock();
306       std::vector <DominatorTree::UpdateType> Updates;
307       if (DTU)
308         Updates.reserve(IBI->getNumDestinations() - 1);
309 
310       // Insert the new branch.
311       Builder.CreateBr(TheOnlyDest);
312 
313       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314         if (IBI->getDestination(i) == TheOnlyDest) {
315           TheOnlyDest = nullptr;
316         } else {
317           BasicBlock *ParentBB = IBI->getParent();
318           BasicBlock *DestBB = IBI->getDestination(i);
319           DestBB->removePredecessor(ParentBB);
320           if (DTU)
321             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322         }
323       }
324       Value *Address = IBI->getAddress();
325       IBI->eraseFromParent();
326       if (DeleteDeadConditions)
327         // Delete pointer cast instructions.
328         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
329 
330       // Also zap the blockaddress constant if there are no users remaining,
331       // otherwise the destination is still marked as having its address taken.
332       if (BA->use_empty())
333         BA->destroyConstant();
334 
335       // If we didn't find our destination in the IBI successor list, then we
336       // have undefined behavior.  Replace the unconditional branch with an
337       // 'unreachable' instruction.
338       if (TheOnlyDest) {
339         BB->getTerminator()->eraseFromParent();
340         new UnreachableInst(BB->getContext(), BB);
341       }
342 
343       if (DTU)
344         DTU->applyUpdatesPermissive(Updates);
345       return true;
346     }
347   }
348 
349   return false;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 //  Local dead code elimination.
354 //
355 
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
358 ///
359 bool llvm::isInstructionTriviallyDead(Instruction *I,
360                                       const TargetLibraryInfo *TLI) {
361   if (!I->use_empty())
362     return false;
363   return wouldInstructionBeTriviallyDead(I, TLI);
364 }
365 
366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
367                                            const TargetLibraryInfo *TLI) {
368   if (I->isTerminator())
369     return false;
370 
371   // We don't want the landingpad-like instructions removed by anything this
372   // general.
373   if (I->isEHPad())
374     return false;
375 
376   // We don't want debug info removed by anything this general, unless
377   // debug info is empty.
378   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
379     if (DDI->getAddress())
380       return false;
381     return true;
382   }
383   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
384     if (DVI->getValue())
385       return false;
386     return true;
387   }
388   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
389     if (DLI->getLabel())
390       return false;
391     return true;
392   }
393 
394   if (!I->mayHaveSideEffects())
395     return true;
396 
397   // Special case intrinsics that "may have side effects" but can be deleted
398   // when dead.
399   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
400     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401     if (II->getIntrinsicID() == Intrinsic::stacksave ||
402         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
403       return true;
404 
405     // Lifetime intrinsics are dead when their right-hand is undef.
406     if (II->isLifetimeStartOrEnd())
407       return isa<UndefValue>(II->getArgOperand(1));
408 
409     // Assumptions are dead if their condition is trivially true.  Guards on
410     // true are operationally no-ops.  In the future we can consider more
411     // sophisticated tradeoffs for guards considering potential for check
412     // widening, but for now we keep things simple.
413     if (II->getIntrinsicID() == Intrinsic::assume ||
414         II->getIntrinsicID() == Intrinsic::experimental_guard) {
415       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
416         return !Cond->isZero();
417 
418       return false;
419     }
420   }
421 
422   if (isAllocLikeFn(I, TLI))
423     return true;
424 
425   if (CallInst *CI = isFreeCall(I, TLI))
426     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
427       return C->isNullValue() || isa<UndefValue>(C);
428 
429   if (auto *Call = dyn_cast<CallBase>(I))
430     if (isMathLibCallNoop(Call, TLI))
431       return true;
432 
433   return false;
434 }
435 
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it.  If that makes any of its operands
438 /// trivially dead, delete them too, recursively.  Return true if any
439 /// instructions were deleted.
440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
442   Instruction *I = dyn_cast<Instruction>(V);
443   if (!I || !isInstructionTriviallyDead(I, TLI))
444     return false;
445 
446   SmallVector<WeakTrackingVH, 16> DeadInsts;
447   DeadInsts.push_back(I);
448   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
449 
450   return true;
451 }
452 
453 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
454     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
455     MemorySSAUpdater *MSSAU) {
456   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
457   for (; S != E; ++S) {
458     auto *I = cast<Instruction>(DeadInsts[S]);
459     if (!isInstructionTriviallyDead(I)) {
460       DeadInsts[S] = nullptr;
461       ++Alive;
462     }
463   }
464   if (Alive == E)
465     return false;
466   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
467   return true;
468 }
469 
470 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
471     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
472     MemorySSAUpdater *MSSAU) {
473   // Process the dead instruction list until empty.
474   while (!DeadInsts.empty()) {
475     Value *V = DeadInsts.pop_back_val();
476     Instruction *I = cast_or_null<Instruction>(V);
477     if (!I)
478       continue;
479     assert(isInstructionTriviallyDead(I, TLI) &&
480            "Live instruction found in dead worklist!");
481     assert(I->use_empty() && "Instructions with uses are not dead.");
482 
483     // Don't lose the debug info while deleting the instructions.
484     salvageDebugInfo(*I);
485 
486     // Null out all of the instruction's operands to see if any operand becomes
487     // dead as we go.
488     for (Use &OpU : I->operands()) {
489       Value *OpV = OpU.get();
490       OpU.set(nullptr);
491 
492       if (!OpV->use_empty())
493         continue;
494 
495       // If the operand is an instruction that became dead as we nulled out the
496       // operand, and if it is 'trivially' dead, delete it in a future loop
497       // iteration.
498       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
499         if (isInstructionTriviallyDead(OpI, TLI))
500           DeadInsts.push_back(OpI);
501     }
502     if (MSSAU)
503       MSSAU->removeMemoryAccess(I);
504 
505     I->eraseFromParent();
506   }
507 }
508 
509 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
510   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
511   findDbgUsers(DbgUsers, I);
512   for (auto *DII : DbgUsers) {
513     Value *Undef = UndefValue::get(I->getType());
514     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
515                                             ValueAsMetadata::get(Undef)));
516   }
517   return !DbgUsers.empty();
518 }
519 
520 /// areAllUsesEqual - Check whether the uses of a value are all the same.
521 /// This is similar to Instruction::hasOneUse() except this will also return
522 /// true when there are no uses or multiple uses that all refer to the same
523 /// value.
524 static bool areAllUsesEqual(Instruction *I) {
525   Value::user_iterator UI = I->user_begin();
526   Value::user_iterator UE = I->user_end();
527   if (UI == UE)
528     return true;
529 
530   User *TheUse = *UI;
531   for (++UI; UI != UE; ++UI) {
532     if (*UI != TheUse)
533       return false;
534   }
535   return true;
536 }
537 
538 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
539 /// dead PHI node, due to being a def-use chain of single-use nodes that
540 /// either forms a cycle or is terminated by a trivially dead instruction,
541 /// delete it.  If that makes any of its operands trivially dead, delete them
542 /// too, recursively.  Return true if a change was made.
543 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
544                                         const TargetLibraryInfo *TLI,
545                                         llvm::MemorySSAUpdater *MSSAU) {
546   SmallPtrSet<Instruction*, 4> Visited;
547   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
548        I = cast<Instruction>(*I->user_begin())) {
549     if (I->use_empty())
550       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
551 
552     // If we find an instruction more than once, we're on a cycle that
553     // won't prove fruitful.
554     if (!Visited.insert(I).second) {
555       // Break the cycle and delete the instruction and its operands.
556       I->replaceAllUsesWith(UndefValue::get(I->getType()));
557       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
558       return true;
559     }
560   }
561   return false;
562 }
563 
564 static bool
565 simplifyAndDCEInstruction(Instruction *I,
566                           SmallSetVector<Instruction *, 16> &WorkList,
567                           const DataLayout &DL,
568                           const TargetLibraryInfo *TLI) {
569   if (isInstructionTriviallyDead(I, TLI)) {
570     salvageDebugInfo(*I);
571 
572     // Null out all of the instruction's operands to see if any operand becomes
573     // dead as we go.
574     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
575       Value *OpV = I->getOperand(i);
576       I->setOperand(i, nullptr);
577 
578       if (!OpV->use_empty() || I == OpV)
579         continue;
580 
581       // If the operand is an instruction that became dead as we nulled out the
582       // operand, and if it is 'trivially' dead, delete it in a future loop
583       // iteration.
584       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
585         if (isInstructionTriviallyDead(OpI, TLI))
586           WorkList.insert(OpI);
587     }
588 
589     I->eraseFromParent();
590 
591     return true;
592   }
593 
594   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
595     // Add the users to the worklist. CAREFUL: an instruction can use itself,
596     // in the case of a phi node.
597     for (User *U : I->users()) {
598       if (U != I) {
599         WorkList.insert(cast<Instruction>(U));
600       }
601     }
602 
603     // Replace the instruction with its simplified value.
604     bool Changed = false;
605     if (!I->use_empty()) {
606       I->replaceAllUsesWith(SimpleV);
607       Changed = true;
608     }
609     if (isInstructionTriviallyDead(I, TLI)) {
610       I->eraseFromParent();
611       Changed = true;
612     }
613     return Changed;
614   }
615   return false;
616 }
617 
618 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
619 /// simplify any instructions in it and recursively delete dead instructions.
620 ///
621 /// This returns true if it changed the code, note that it can delete
622 /// instructions in other blocks as well in this block.
623 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
624                                        const TargetLibraryInfo *TLI) {
625   bool MadeChange = false;
626   const DataLayout &DL = BB->getModule()->getDataLayout();
627 
628 #ifndef NDEBUG
629   // In debug builds, ensure that the terminator of the block is never replaced
630   // or deleted by these simplifications. The idea of simplification is that it
631   // cannot introduce new instructions, and there is no way to replace the
632   // terminator of a block without introducing a new instruction.
633   AssertingVH<Instruction> TerminatorVH(&BB->back());
634 #endif
635 
636   SmallSetVector<Instruction *, 16> WorkList;
637   // Iterate over the original function, only adding insts to the worklist
638   // if they actually need to be revisited. This avoids having to pre-init
639   // the worklist with the entire function's worth of instructions.
640   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
641        BI != E;) {
642     assert(!BI->isTerminator());
643     Instruction *I = &*BI;
644     ++BI;
645 
646     // We're visiting this instruction now, so make sure it's not in the
647     // worklist from an earlier visit.
648     if (!WorkList.count(I))
649       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
650   }
651 
652   while (!WorkList.empty()) {
653     Instruction *I = WorkList.pop_back_val();
654     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
655   }
656   return MadeChange;
657 }
658 
659 //===----------------------------------------------------------------------===//
660 //  Control Flow Graph Restructuring.
661 //
662 
663 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
664                                         DomTreeUpdater *DTU) {
665   // This only adjusts blocks with PHI nodes.
666   if (!isa<PHINode>(BB->begin()))
667     return;
668 
669   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
670   // them down.  This will leave us with single entry phi nodes and other phis
671   // that can be removed.
672   BB->removePredecessor(Pred, true);
673 
674   WeakTrackingVH PhiIt = &BB->front();
675   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
676     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
677     Value *OldPhiIt = PhiIt;
678 
679     if (!recursivelySimplifyInstruction(PN))
680       continue;
681 
682     // If recursive simplification ended up deleting the next PHI node we would
683     // iterate to, then our iterator is invalid, restart scanning from the top
684     // of the block.
685     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
686   }
687   if (DTU)
688     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
689 }
690 
691 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
692                                        DomTreeUpdater *DTU) {
693 
694   // If BB has single-entry PHI nodes, fold them.
695   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
696     Value *NewVal = PN->getIncomingValue(0);
697     // Replace self referencing PHI with undef, it must be dead.
698     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
699     PN->replaceAllUsesWith(NewVal);
700     PN->eraseFromParent();
701   }
702 
703   BasicBlock *PredBB = DestBB->getSinglePredecessor();
704   assert(PredBB && "Block doesn't have a single predecessor!");
705 
706   bool ReplaceEntryBB = false;
707   if (PredBB == &DestBB->getParent()->getEntryBlock())
708     ReplaceEntryBB = true;
709 
710   // DTU updates: Collect all the edges that enter
711   // PredBB. These dominator edges will be redirected to DestBB.
712   SmallVector<DominatorTree::UpdateType, 32> Updates;
713 
714   if (DTU) {
715     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
716     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
717       Updates.push_back({DominatorTree::Delete, *I, PredBB});
718       // This predecessor of PredBB may already have DestBB as a successor.
719       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
720         Updates.push_back({DominatorTree::Insert, *I, DestBB});
721     }
722   }
723 
724   // Zap anything that took the address of DestBB.  Not doing this will give the
725   // address an invalid value.
726   if (DestBB->hasAddressTaken()) {
727     BlockAddress *BA = BlockAddress::get(DestBB);
728     Constant *Replacement =
729       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
730     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
731                                                      BA->getType()));
732     BA->destroyConstant();
733   }
734 
735   // Anything that branched to PredBB now branches to DestBB.
736   PredBB->replaceAllUsesWith(DestBB);
737 
738   // Splice all the instructions from PredBB to DestBB.
739   PredBB->getTerminator()->eraseFromParent();
740   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
741   new UnreachableInst(PredBB->getContext(), PredBB);
742 
743   // If the PredBB is the entry block of the function, move DestBB up to
744   // become the entry block after we erase PredBB.
745   if (ReplaceEntryBB)
746     DestBB->moveAfter(PredBB);
747 
748   if (DTU) {
749     assert(PredBB->getInstList().size() == 1 &&
750            isa<UnreachableInst>(PredBB->getTerminator()) &&
751            "The successor list of PredBB isn't empty before "
752            "applying corresponding DTU updates.");
753     DTU->applyUpdatesPermissive(Updates);
754     DTU->deleteBB(PredBB);
755     // Recalculation of DomTree is needed when updating a forward DomTree and
756     // the Entry BB is replaced.
757     if (ReplaceEntryBB && DTU->hasDomTree()) {
758       // The entry block was removed and there is no external interface for
759       // the dominator tree to be notified of this change. In this corner-case
760       // we recalculate the entire tree.
761       DTU->recalculate(*(DestBB->getParent()));
762     }
763   }
764 
765   else {
766     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
767   }
768 }
769 
770 /// Return true if we can choose one of these values to use in place of the
771 /// other. Note that we will always choose the non-undef value to keep.
772 static bool CanMergeValues(Value *First, Value *Second) {
773   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
774 }
775 
776 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
777 /// branch to Succ, into Succ.
778 ///
779 /// Assumption: Succ is the single successor for BB.
780 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
781   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
782 
783   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
784                     << Succ->getName() << "\n");
785   // Shortcut, if there is only a single predecessor it must be BB and merging
786   // is always safe
787   if (Succ->getSinglePredecessor()) return true;
788 
789   // Make a list of the predecessors of BB
790   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
791 
792   // Look at all the phi nodes in Succ, to see if they present a conflict when
793   // merging these blocks
794   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
795     PHINode *PN = cast<PHINode>(I);
796 
797     // If the incoming value from BB is again a PHINode in
798     // BB which has the same incoming value for *PI as PN does, we can
799     // merge the phi nodes and then the blocks can still be merged
800     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
801     if (BBPN && BBPN->getParent() == BB) {
802       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
803         BasicBlock *IBB = PN->getIncomingBlock(PI);
804         if (BBPreds.count(IBB) &&
805             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
806                             PN->getIncomingValue(PI))) {
807           LLVM_DEBUG(dbgs()
808                      << "Can't fold, phi node " << PN->getName() << " in "
809                      << Succ->getName() << " is conflicting with "
810                      << BBPN->getName() << " with regard to common predecessor "
811                      << IBB->getName() << "\n");
812           return false;
813         }
814       }
815     } else {
816       Value* Val = PN->getIncomingValueForBlock(BB);
817       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
818         // See if the incoming value for the common predecessor is equal to the
819         // one for BB, in which case this phi node will not prevent the merging
820         // of the block.
821         BasicBlock *IBB = PN->getIncomingBlock(PI);
822         if (BBPreds.count(IBB) &&
823             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
824           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
825                             << " in " << Succ->getName()
826                             << " is conflicting with regard to common "
827                             << "predecessor " << IBB->getName() << "\n");
828           return false;
829         }
830       }
831     }
832   }
833 
834   return true;
835 }
836 
837 using PredBlockVector = SmallVector<BasicBlock *, 16>;
838 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
839 
840 /// Determines the value to use as the phi node input for a block.
841 ///
842 /// Select between \p OldVal any value that we know flows from \p BB
843 /// to a particular phi on the basis of which one (if either) is not
844 /// undef. Update IncomingValues based on the selected value.
845 ///
846 /// \param OldVal The value we are considering selecting.
847 /// \param BB The block that the value flows in from.
848 /// \param IncomingValues A map from block-to-value for other phi inputs
849 /// that we have examined.
850 ///
851 /// \returns the selected value.
852 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
853                                           IncomingValueMap &IncomingValues) {
854   if (!isa<UndefValue>(OldVal)) {
855     assert((!IncomingValues.count(BB) ||
856             IncomingValues.find(BB)->second == OldVal) &&
857            "Expected OldVal to match incoming value from BB!");
858 
859     IncomingValues.insert(std::make_pair(BB, OldVal));
860     return OldVal;
861   }
862 
863   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
864   if (It != IncomingValues.end()) return It->second;
865 
866   return OldVal;
867 }
868 
869 /// Create a map from block to value for the operands of a
870 /// given phi.
871 ///
872 /// Create a map from block to value for each non-undef value flowing
873 /// into \p PN.
874 ///
875 /// \param PN The phi we are collecting the map for.
876 /// \param IncomingValues [out] The map from block to value for this phi.
877 static void gatherIncomingValuesToPhi(PHINode *PN,
878                                       IncomingValueMap &IncomingValues) {
879   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
880     BasicBlock *BB = PN->getIncomingBlock(i);
881     Value *V = PN->getIncomingValue(i);
882 
883     if (!isa<UndefValue>(V))
884       IncomingValues.insert(std::make_pair(BB, V));
885   }
886 }
887 
888 /// Replace the incoming undef values to a phi with the values
889 /// from a block-to-value map.
890 ///
891 /// \param PN The phi we are replacing the undefs in.
892 /// \param IncomingValues A map from block to value.
893 static void replaceUndefValuesInPhi(PHINode *PN,
894                                     const IncomingValueMap &IncomingValues) {
895   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
896     Value *V = PN->getIncomingValue(i);
897 
898     if (!isa<UndefValue>(V)) continue;
899 
900     BasicBlock *BB = PN->getIncomingBlock(i);
901     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
902     if (It == IncomingValues.end()) continue;
903 
904     PN->setIncomingValue(i, It->second);
905   }
906 }
907 
908 /// Replace a value flowing from a block to a phi with
909 /// potentially multiple instances of that value flowing from the
910 /// block's predecessors to the phi.
911 ///
912 /// \param BB The block with the value flowing into the phi.
913 /// \param BBPreds The predecessors of BB.
914 /// \param PN The phi that we are updating.
915 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
916                                                 const PredBlockVector &BBPreds,
917                                                 PHINode *PN) {
918   Value *OldVal = PN->removeIncomingValue(BB, false);
919   assert(OldVal && "No entry in PHI for Pred BB!");
920 
921   IncomingValueMap IncomingValues;
922 
923   // We are merging two blocks - BB, and the block containing PN - and
924   // as a result we need to redirect edges from the predecessors of BB
925   // to go to the block containing PN, and update PN
926   // accordingly. Since we allow merging blocks in the case where the
927   // predecessor and successor blocks both share some predecessors,
928   // and where some of those common predecessors might have undef
929   // values flowing into PN, we want to rewrite those values to be
930   // consistent with the non-undef values.
931 
932   gatherIncomingValuesToPhi(PN, IncomingValues);
933 
934   // If this incoming value is one of the PHI nodes in BB, the new entries
935   // in the PHI node are the entries from the old PHI.
936   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
937     PHINode *OldValPN = cast<PHINode>(OldVal);
938     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
939       // Note that, since we are merging phi nodes and BB and Succ might
940       // have common predecessors, we could end up with a phi node with
941       // identical incoming branches. This will be cleaned up later (and
942       // will trigger asserts if we try to clean it up now, without also
943       // simplifying the corresponding conditional branch).
944       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
945       Value *PredVal = OldValPN->getIncomingValue(i);
946       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
947                                                     IncomingValues);
948 
949       // And add a new incoming value for this predecessor for the
950       // newly retargeted branch.
951       PN->addIncoming(Selected, PredBB);
952     }
953   } else {
954     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
955       // Update existing incoming values in PN for this
956       // predecessor of BB.
957       BasicBlock *PredBB = BBPreds[i];
958       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
959                                                     IncomingValues);
960 
961       // And add a new incoming value for this predecessor for the
962       // newly retargeted branch.
963       PN->addIncoming(Selected, PredBB);
964     }
965   }
966 
967   replaceUndefValuesInPhi(PN, IncomingValues);
968 }
969 
970 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
971                                                    DomTreeUpdater *DTU) {
972   assert(BB != &BB->getParent()->getEntryBlock() &&
973          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
974 
975   // We can't eliminate infinite loops.
976   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
977   if (BB == Succ) return false;
978 
979   // Check to see if merging these blocks would cause conflicts for any of the
980   // phi nodes in BB or Succ. If not, we can safely merge.
981   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
982 
983   // Check for cases where Succ has multiple predecessors and a PHI node in BB
984   // has uses which will not disappear when the PHI nodes are merged.  It is
985   // possible to handle such cases, but difficult: it requires checking whether
986   // BB dominates Succ, which is non-trivial to calculate in the case where
987   // Succ has multiple predecessors.  Also, it requires checking whether
988   // constructing the necessary self-referential PHI node doesn't introduce any
989   // conflicts; this isn't too difficult, but the previous code for doing this
990   // was incorrect.
991   //
992   // Note that if this check finds a live use, BB dominates Succ, so BB is
993   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
994   // folding the branch isn't profitable in that case anyway.
995   if (!Succ->getSinglePredecessor()) {
996     BasicBlock::iterator BBI = BB->begin();
997     while (isa<PHINode>(*BBI)) {
998       for (Use &U : BBI->uses()) {
999         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1000           if (PN->getIncomingBlock(U) != BB)
1001             return false;
1002         } else {
1003           return false;
1004         }
1005       }
1006       ++BBI;
1007     }
1008   }
1009 
1010   // We cannot fold the block if it's a branch to an already present callbr
1011   // successor because that creates duplicate successors.
1012   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1013     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
1014       if (Succ == CBI->getDefaultDest())
1015         return false;
1016       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1017         if (Succ == CBI->getIndirectDest(i))
1018           return false;
1019     }
1020   }
1021 
1022   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1023 
1024   SmallVector<DominatorTree::UpdateType, 32> Updates;
1025   if (DTU) {
1026     Updates.push_back({DominatorTree::Delete, BB, Succ});
1027     // All predecessors of BB will be moved to Succ.
1028     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1029       Updates.push_back({DominatorTree::Delete, *I, BB});
1030       // This predecessor of BB may already have Succ as a successor.
1031       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1032         Updates.push_back({DominatorTree::Insert, *I, Succ});
1033     }
1034   }
1035 
1036   if (isa<PHINode>(Succ->begin())) {
1037     // If there is more than one pred of succ, and there are PHI nodes in
1038     // the successor, then we need to add incoming edges for the PHI nodes
1039     //
1040     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1041 
1042     // Loop over all of the PHI nodes in the successor of BB.
1043     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1044       PHINode *PN = cast<PHINode>(I);
1045 
1046       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1047     }
1048   }
1049 
1050   if (Succ->getSinglePredecessor()) {
1051     // BB is the only predecessor of Succ, so Succ will end up with exactly
1052     // the same predecessors BB had.
1053 
1054     // Copy over any phi, debug or lifetime instruction.
1055     BB->getTerminator()->eraseFromParent();
1056     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1057                                BB->getInstList());
1058   } else {
1059     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1060       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1061       assert(PN->use_empty() && "There shouldn't be any uses here!");
1062       PN->eraseFromParent();
1063     }
1064   }
1065 
1066   // If the unconditional branch we replaced contains llvm.loop metadata, we
1067   // add the metadata to the branch instructions in the predecessors.
1068   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1069   Instruction *TI = BB->getTerminator();
1070   if (TI)
1071     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1072       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1073         BasicBlock *Pred = *PI;
1074         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1075       }
1076 
1077   // Everything that jumped to BB now goes to Succ.
1078   BB->replaceAllUsesWith(Succ);
1079   if (!Succ->hasName()) Succ->takeName(BB);
1080 
1081   // Clear the successor list of BB to match updates applying to DTU later.
1082   if (BB->getTerminator())
1083     BB->getInstList().pop_back();
1084   new UnreachableInst(BB->getContext(), BB);
1085   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1086                            "applying corresponding DTU updates.");
1087 
1088   if (DTU) {
1089     DTU->applyUpdatesPermissive(Updates);
1090     DTU->deleteBB(BB);
1091   } else {
1092     BB->eraseFromParent(); // Delete the old basic block.
1093   }
1094   return true;
1095 }
1096 
1097 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1098   // This implementation doesn't currently consider undef operands
1099   // specially. Theoretically, two phis which are identical except for
1100   // one having an undef where the other doesn't could be collapsed.
1101 
1102   struct PHIDenseMapInfo {
1103     static PHINode *getEmptyKey() {
1104       return DenseMapInfo<PHINode *>::getEmptyKey();
1105     }
1106 
1107     static PHINode *getTombstoneKey() {
1108       return DenseMapInfo<PHINode *>::getTombstoneKey();
1109     }
1110 
1111     static unsigned getHashValue(PHINode *PN) {
1112       // Compute a hash value on the operands. Instcombine will likely have
1113       // sorted them, which helps expose duplicates, but we have to check all
1114       // the operands to be safe in case instcombine hasn't run.
1115       return static_cast<unsigned>(hash_combine(
1116           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1117           hash_combine_range(PN->block_begin(), PN->block_end())));
1118     }
1119 
1120     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1121       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1122           RHS == getEmptyKey() || RHS == getTombstoneKey())
1123         return LHS == RHS;
1124       return LHS->isIdenticalTo(RHS);
1125     }
1126   };
1127 
1128   // Set of unique PHINodes.
1129   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1130 
1131   // Examine each PHI.
1132   bool Changed = false;
1133   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1134     auto Inserted = PHISet.insert(PN);
1135     if (!Inserted.second) {
1136       // A duplicate. Replace this PHI with its duplicate.
1137       PN->replaceAllUsesWith(*Inserted.first);
1138       PN->eraseFromParent();
1139       Changed = true;
1140 
1141       // The RAUW can change PHIs that we already visited. Start over from the
1142       // beginning.
1143       PHISet.clear();
1144       I = BB->begin();
1145     }
1146   }
1147 
1148   return Changed;
1149 }
1150 
1151 /// enforceKnownAlignment - If the specified pointer points to an object that
1152 /// we control, modify the object's alignment to PrefAlign. This isn't
1153 /// often possible though. If alignment is important, a more reliable approach
1154 /// is to simply align all global variables and allocation instructions to
1155 /// their preferred alignment from the beginning.
1156 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment,
1157                                       unsigned PrefAlign,
1158                                       const DataLayout &DL) {
1159   assert(PrefAlign > Alignment);
1160 
1161   V = V->stripPointerCasts();
1162 
1163   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1164     // TODO: ideally, computeKnownBits ought to have used
1165     // AllocaInst::getAlignment() in its computation already, making
1166     // the below max redundant. But, as it turns out,
1167     // stripPointerCasts recurses through infinite layers of bitcasts,
1168     // while computeKnownBits is not allowed to traverse more than 6
1169     // levels.
1170     Alignment = std::max(AI->getAlignment(), Alignment);
1171     if (PrefAlign <= Alignment)
1172       return Alignment;
1173 
1174     // If the preferred alignment is greater than the natural stack alignment
1175     // then don't round up. This avoids dynamic stack realignment.
1176     if (DL.exceedsNaturalStackAlignment(Align(PrefAlign)))
1177       return Alignment;
1178     AI->setAlignment(MaybeAlign(PrefAlign));
1179     return PrefAlign;
1180   }
1181 
1182   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1183     // TODO: as above, this shouldn't be necessary.
1184     Alignment = std::max(GO->getAlignment(), Alignment);
1185     if (PrefAlign <= Alignment)
1186       return Alignment;
1187 
1188     // If there is a large requested alignment and we can, bump up the alignment
1189     // of the global.  If the memory we set aside for the global may not be the
1190     // memory used by the final program then it is impossible for us to reliably
1191     // enforce the preferred alignment.
1192     if (!GO->canIncreaseAlignment())
1193       return Alignment;
1194 
1195     GO->setAlignment(MaybeAlign(PrefAlign));
1196     return PrefAlign;
1197   }
1198 
1199   return Alignment;
1200 }
1201 
1202 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1203                                           const DataLayout &DL,
1204                                           const Instruction *CxtI,
1205                                           AssumptionCache *AC,
1206                                           const DominatorTree *DT) {
1207   assert(V->getType()->isPointerTy() &&
1208          "getOrEnforceKnownAlignment expects a pointer!");
1209 
1210   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1211   unsigned TrailZ = Known.countMinTrailingZeros();
1212 
1213   // Avoid trouble with ridiculously large TrailZ values, such as
1214   // those computed from a null pointer.
1215   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1216 
1217   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1218 
1219   // LLVM doesn't support alignments larger than this currently.
1220   Align = std::min(Align, +Value::MaximumAlignment);
1221 
1222   if (PrefAlign > Align)
1223     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1224 
1225   // We don't need to make any adjustment.
1226   return Align;
1227 }
1228 
1229 ///===---------------------------------------------------------------------===//
1230 ///  Dbg Intrinsic utilities
1231 ///
1232 
1233 /// See if there is a dbg.value intrinsic for DIVar before I.
1234 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1235                               Instruction *I) {
1236   // Since we can't guarantee that the original dbg.declare instrinsic
1237   // is removed by LowerDbgDeclare(), we need to make sure that we are
1238   // not inserting the same dbg.value intrinsic over and over.
1239   BasicBlock::InstListType::iterator PrevI(I);
1240   if (PrevI != I->getParent()->getInstList().begin()) {
1241     --PrevI;
1242     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1243       if (DVI->getValue() == I->getOperand(0) &&
1244           DVI->getVariable() == DIVar &&
1245           DVI->getExpression() == DIExpr)
1246         return true;
1247   }
1248   return false;
1249 }
1250 
1251 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1252 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1253                              DIExpression *DIExpr,
1254                              PHINode *APN) {
1255   // Since we can't guarantee that the original dbg.declare instrinsic
1256   // is removed by LowerDbgDeclare(), we need to make sure that we are
1257   // not inserting the same dbg.value intrinsic over and over.
1258   SmallVector<DbgValueInst *, 1> DbgValues;
1259   findDbgValues(DbgValues, APN);
1260   for (auto *DVI : DbgValues) {
1261     assert(DVI->getValue() == APN);
1262     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1263       return true;
1264   }
1265   return false;
1266 }
1267 
1268 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1269 /// (or fragment of the variable) described by \p DII.
1270 ///
1271 /// This is primarily intended as a helper for the different
1272 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1273 /// converted describes an alloca'd variable, so we need to use the
1274 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1275 /// identified as covering an n-bit fragment, if the store size of i1 is at
1276 /// least n bits.
1277 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1278   const DataLayout &DL = DII->getModule()->getDataLayout();
1279   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1280   if (auto FragmentSize = DII->getFragmentSizeInBits())
1281     return ValueSize >= *FragmentSize;
1282   // We can't always calculate the size of the DI variable (e.g. if it is a
1283   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1284   // intead.
1285   if (DII->isAddressOfVariable())
1286     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1287       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1288         return ValueSize >= *FragmentSize;
1289   // Could not determine size of variable. Conservatively return false.
1290   return false;
1291 }
1292 
1293 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1294 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1295 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1296 /// case this DebugLoc leaks into any adjacent instructions.
1297 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1298   // Original dbg.declare must have a location.
1299   DebugLoc DeclareLoc = DII->getDebugLoc();
1300   MDNode *Scope = DeclareLoc.getScope();
1301   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1302   // Produce an unknown location with the correct scope / inlinedAt fields.
1303   return DebugLoc::get(0, 0, Scope, InlinedAt);
1304 }
1305 
1306 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1307 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1308 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1309                                            StoreInst *SI, DIBuilder &Builder) {
1310   assert(DII->isAddressOfVariable());
1311   auto *DIVar = DII->getVariable();
1312   assert(DIVar && "Missing variable");
1313   auto *DIExpr = DII->getExpression();
1314   Value *DV = SI->getValueOperand();
1315 
1316   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1317 
1318   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1319     // FIXME: If storing to a part of the variable described by the dbg.declare,
1320     // then we want to insert a dbg.value for the corresponding fragment.
1321     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1322                       << *DII << '\n');
1323     // For now, when there is a store to parts of the variable (but we do not
1324     // know which part) we insert an dbg.value instrinsic to indicate that we
1325     // know nothing about the variable's content.
1326     DV = UndefValue::get(DV->getType());
1327     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1328       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1329     return;
1330   }
1331 
1332   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1333     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1334 }
1335 
1336 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1337 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1338 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1339                                            LoadInst *LI, DIBuilder &Builder) {
1340   auto *DIVar = DII->getVariable();
1341   auto *DIExpr = DII->getExpression();
1342   assert(DIVar && "Missing variable");
1343 
1344   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1345     return;
1346 
1347   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1348     // FIXME: If only referring to a part of the variable described by the
1349     // dbg.declare, then we want to insert a dbg.value for the corresponding
1350     // fragment.
1351     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1352                       << *DII << '\n');
1353     return;
1354   }
1355 
1356   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1357 
1358   // We are now tracking the loaded value instead of the address. In the
1359   // future if multi-location support is added to the IR, it might be
1360   // preferable to keep tracking both the loaded value and the original
1361   // address in case the alloca can not be elided.
1362   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1363       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1364   DbgValue->insertAfter(LI);
1365 }
1366 
1367 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1368 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1369 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1370                                            PHINode *APN, DIBuilder &Builder) {
1371   auto *DIVar = DII->getVariable();
1372   auto *DIExpr = DII->getExpression();
1373   assert(DIVar && "Missing variable");
1374 
1375   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1376     return;
1377 
1378   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1379     // FIXME: If only referring to a part of the variable described by the
1380     // dbg.declare, then we want to insert a dbg.value for the corresponding
1381     // fragment.
1382     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1383                       << *DII << '\n');
1384     return;
1385   }
1386 
1387   BasicBlock *BB = APN->getParent();
1388   auto InsertionPt = BB->getFirstInsertionPt();
1389 
1390   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1391 
1392   // The block may be a catchswitch block, which does not have a valid
1393   // insertion point.
1394   // FIXME: Insert dbg.value markers in the successors when appropriate.
1395   if (InsertionPt != BB->end())
1396     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1397 }
1398 
1399 /// Determine whether this alloca is either a VLA or an array.
1400 static bool isArray(AllocaInst *AI) {
1401   return AI->isArrayAllocation() ||
1402          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1403 }
1404 
1405 /// Determine whether this alloca is a structure.
1406 static bool isStructure(AllocaInst *AI) {
1407   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1408 }
1409 
1410 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1411 /// of llvm.dbg.value intrinsics.
1412 bool llvm::LowerDbgDeclare(Function &F) {
1413   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1414   SmallVector<DbgDeclareInst *, 4> Dbgs;
1415   for (auto &FI : F)
1416     for (Instruction &BI : FI)
1417       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1418         Dbgs.push_back(DDI);
1419 
1420   if (Dbgs.empty())
1421     return false;
1422 
1423   for (auto &I : Dbgs) {
1424     DbgDeclareInst *DDI = I;
1425     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1426     // If this is an alloca for a scalar variable, insert a dbg.value
1427     // at each load and store to the alloca and erase the dbg.declare.
1428     // The dbg.values allow tracking a variable even if it is not
1429     // stored on the stack, while the dbg.declare can only describe
1430     // the stack slot (and at a lexical-scope granularity). Later
1431     // passes will attempt to elide the stack slot.
1432     if (!AI || isArray(AI) || isStructure(AI))
1433       continue;
1434 
1435     // A volatile load/store means that the alloca can't be elided anyway.
1436     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1437           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1438             return LI->isVolatile();
1439           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1440             return SI->isVolatile();
1441           return false;
1442         }))
1443       continue;
1444 
1445     SmallVector<const Value *, 8> WorkList;
1446     WorkList.push_back(AI);
1447     while (!WorkList.empty()) {
1448       const Value *V = WorkList.pop_back_val();
1449       for (auto &AIUse : V->uses()) {
1450         User *U = AIUse.getUser();
1451         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1452           if (AIUse.getOperandNo() == 1)
1453             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1454         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1455           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1456         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1457           // This is a call by-value or some other instruction that takes a
1458           // pointer to the variable. Insert a *value* intrinsic that describes
1459           // the variable by dereferencing the alloca.
1460           if (!CI->isLifetimeStartOrEnd()) {
1461             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1462             auto *DerefExpr =
1463                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1464             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1465                                         NewLoc, CI);
1466           }
1467         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1468           if (BI->getType()->isPointerTy())
1469             WorkList.push_back(BI);
1470         }
1471       }
1472     }
1473     DDI->eraseFromParent();
1474   }
1475   return true;
1476 }
1477 
1478 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1479 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1480                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1481   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1482   if (InsertedPHIs.size() == 0)
1483     return;
1484 
1485   // Map existing PHI nodes to their dbg.values.
1486   ValueToValueMapTy DbgValueMap;
1487   for (auto &I : *BB) {
1488     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1489       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1490         DbgValueMap.insert({Loc, DbgII});
1491     }
1492   }
1493   if (DbgValueMap.size() == 0)
1494     return;
1495 
1496   // Then iterate through the new PHIs and look to see if they use one of the
1497   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1498   // propagate the info through the new PHI.
1499   LLVMContext &C = BB->getContext();
1500   for (auto PHI : InsertedPHIs) {
1501     BasicBlock *Parent = PHI->getParent();
1502     // Avoid inserting an intrinsic into an EH block.
1503     if (Parent->getFirstNonPHI()->isEHPad())
1504       continue;
1505     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1506     for (auto VI : PHI->operand_values()) {
1507       auto V = DbgValueMap.find(VI);
1508       if (V != DbgValueMap.end()) {
1509         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1510         Instruction *NewDbgII = DbgII->clone();
1511         NewDbgII->setOperand(0, PhiMAV);
1512         auto InsertionPt = Parent->getFirstInsertionPt();
1513         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1514         NewDbgII->insertBefore(&*InsertionPt);
1515       }
1516     }
1517   }
1518 }
1519 
1520 /// Finds all intrinsics declaring local variables as living in the memory that
1521 /// 'V' points to. This may include a mix of dbg.declare and
1522 /// dbg.addr intrinsics.
1523 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1524   // This function is hot. Check whether the value has any metadata to avoid a
1525   // DenseMap lookup.
1526   if (!V->isUsedByMetadata())
1527     return {};
1528   auto *L = LocalAsMetadata::getIfExists(V);
1529   if (!L)
1530     return {};
1531   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1532   if (!MDV)
1533     return {};
1534 
1535   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1536   for (User *U : MDV->users()) {
1537     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1538       if (DII->isAddressOfVariable())
1539         Declares.push_back(DII);
1540   }
1541 
1542   return Declares;
1543 }
1544 
1545 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1546   // This function is hot. Check whether the value has any metadata to avoid a
1547   // DenseMap lookup.
1548   if (!V->isUsedByMetadata())
1549     return;
1550   if (auto *L = LocalAsMetadata::getIfExists(V))
1551     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1552       for (User *U : MDV->users())
1553         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1554           DbgValues.push_back(DVI);
1555 }
1556 
1557 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1558                         Value *V) {
1559   // This function is hot. Check whether the value has any metadata to avoid a
1560   // DenseMap lookup.
1561   if (!V->isUsedByMetadata())
1562     return;
1563   if (auto *L = LocalAsMetadata::getIfExists(V))
1564     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1565       for (User *U : MDV->users())
1566         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1567           DbgUsers.push_back(DII);
1568 }
1569 
1570 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1571                              Instruction *InsertBefore, DIBuilder &Builder,
1572                              uint8_t DIExprFlags, int Offset) {
1573   auto DbgAddrs = FindDbgAddrUses(Address);
1574   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1575     DebugLoc Loc = DII->getDebugLoc();
1576     auto *DIVar = DII->getVariable();
1577     auto *DIExpr = DII->getExpression();
1578     assert(DIVar && "Missing variable");
1579     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1580     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1581     // llvm.dbg.declare.
1582     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1583     if (DII == InsertBefore)
1584       InsertBefore = InsertBefore->getNextNode();
1585     DII->eraseFromParent();
1586   }
1587   return !DbgAddrs.empty();
1588 }
1589 
1590 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1591                                       DIBuilder &Builder, uint8_t DIExprFlags,
1592                                       int Offset) {
1593   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1594                            DIExprFlags, Offset);
1595 }
1596 
1597 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1598                                         DIBuilder &Builder, int Offset) {
1599   DebugLoc Loc = DVI->getDebugLoc();
1600   auto *DIVar = DVI->getVariable();
1601   auto *DIExpr = DVI->getExpression();
1602   assert(DIVar && "Missing variable");
1603 
1604   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1605   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1606   // it and give up.
1607   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1608       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1609     return;
1610 
1611   // Insert the offset before the first deref.
1612   // We could just change the offset argument of dbg.value, but it's unsigned...
1613   if (Offset)
1614     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1615 
1616   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1617   DVI->eraseFromParent();
1618 }
1619 
1620 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1621                                     DIBuilder &Builder, int Offset) {
1622   if (auto *L = LocalAsMetadata::getIfExists(AI))
1623     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1624       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1625         Use &U = *UI++;
1626         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1627           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1628       }
1629 }
1630 
1631 /// Wrap \p V in a ValueAsMetadata instance.
1632 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1633   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1634 }
1635 
1636 bool llvm::salvageDebugInfo(Instruction &I) {
1637   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1638   findDbgUsers(DbgUsers, &I);
1639   if (DbgUsers.empty())
1640     return false;
1641 
1642   return salvageDebugInfoForDbgValues(I, DbgUsers);
1643 }
1644 
1645 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) {
1646   if (!salvageDebugInfo(I))
1647     replaceDbgUsesWithUndef(&I);
1648 }
1649 
1650 bool llvm::salvageDebugInfoForDbgValues(
1651     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1652   auto &Ctx = I.getContext();
1653   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1654 
1655   for (auto *DII : DbgUsers) {
1656     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1657     // are implicitly pointing out the value as a DWARF memory location
1658     // description.
1659     bool StackValue = isa<DbgValueInst>(DII);
1660 
1661     DIExpression *DIExpr =
1662         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1663 
1664     // salvageDebugInfoImpl should fail on examining the first element of
1665     // DbgUsers, or none of them.
1666     if (!DIExpr)
1667       return false;
1668 
1669     DII->setOperand(0, wrapMD(I.getOperand(0)));
1670     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1671     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1672   }
1673 
1674   return true;
1675 }
1676 
1677 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1678                                          DIExpression *SrcDIExpr,
1679                                          bool WithStackValue) {
1680   auto &M = *I.getModule();
1681   auto &DL = M.getDataLayout();
1682 
1683   // Apply a vector of opcodes to the source DIExpression.
1684   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1685     DIExpression *DIExpr = SrcDIExpr;
1686     if (!Ops.empty()) {
1687       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1688     }
1689     return DIExpr;
1690   };
1691 
1692   // Apply the given offset to the source DIExpression.
1693   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1694     SmallVector<uint64_t, 8> Ops;
1695     DIExpression::appendOffset(Ops, Offset);
1696     return doSalvage(Ops);
1697   };
1698 
1699   // initializer-list helper for applying operators to the source DIExpression.
1700   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1701     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1702     return doSalvage(Ops);
1703   };
1704 
1705   if (auto *CI = dyn_cast<CastInst>(&I)) {
1706     // No-op casts and zexts are irrelevant for debug info.
1707     if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1708       return SrcDIExpr;
1709 
1710     Type *Type = CI->getType();
1711     // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1712     if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I)))
1713       return nullptr;
1714 
1715     Value *FromValue = CI->getOperand(0);
1716     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1717     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1718 
1719     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1720                                             isa<SExtInst>(&I)));
1721   }
1722 
1723   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1724     unsigned BitWidth =
1725         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1726     // Rewrite a constant GEP into a DIExpression.
1727     APInt Offset(BitWidth, 0);
1728     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1729       return applyOffset(Offset.getSExtValue());
1730     } else {
1731       return nullptr;
1732     }
1733   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1734     // Rewrite binary operations with constant integer operands.
1735     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1736     if (!ConstInt || ConstInt->getBitWidth() > 64)
1737       return nullptr;
1738 
1739     uint64_t Val = ConstInt->getSExtValue();
1740     switch (BI->getOpcode()) {
1741     case Instruction::Add:
1742       return applyOffset(Val);
1743     case Instruction::Sub:
1744       return applyOffset(-int64_t(Val));
1745     case Instruction::Mul:
1746       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1747     case Instruction::SDiv:
1748       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1749     case Instruction::SRem:
1750       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1751     case Instruction::Or:
1752       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1753     case Instruction::And:
1754       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1755     case Instruction::Xor:
1756       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1757     case Instruction::Shl:
1758       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1759     case Instruction::LShr:
1760       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1761     case Instruction::AShr:
1762       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1763     default:
1764       // TODO: Salvage constants from each kind of binop we know about.
1765       return nullptr;
1766     }
1767     // *Not* to do: we should not attempt to salvage load instructions,
1768     // because the validity and lifetime of a dbg.value containing
1769     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1770   }
1771   return nullptr;
1772 }
1773 
1774 /// A replacement for a dbg.value expression.
1775 using DbgValReplacement = Optional<DIExpression *>;
1776 
1777 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1778 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1779 /// changes are made.
1780 static bool rewriteDebugUsers(
1781     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1782     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1783   // Find debug users of From.
1784   SmallVector<DbgVariableIntrinsic *, 1> Users;
1785   findDbgUsers(Users, &From);
1786   if (Users.empty())
1787     return false;
1788 
1789   // Prevent use-before-def of To.
1790   bool Changed = false;
1791   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1792   if (isa<Instruction>(&To)) {
1793     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1794 
1795     for (auto *DII : Users) {
1796       // It's common to see a debug user between From and DomPoint. Move it
1797       // after DomPoint to preserve the variable update without any reordering.
1798       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1799         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1800         DII->moveAfter(&DomPoint);
1801         Changed = true;
1802 
1803       // Users which otherwise aren't dominated by the replacement value must
1804       // be salvaged or deleted.
1805       } else if (!DT.dominates(&DomPoint, DII)) {
1806         UndefOrSalvage.insert(DII);
1807       }
1808     }
1809   }
1810 
1811   // Update debug users without use-before-def risk.
1812   for (auto *DII : Users) {
1813     if (UndefOrSalvage.count(DII))
1814       continue;
1815 
1816     LLVMContext &Ctx = DII->getContext();
1817     DbgValReplacement DVR = RewriteExpr(*DII);
1818     if (!DVR)
1819       continue;
1820 
1821     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1822     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1823     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1824     Changed = true;
1825   }
1826 
1827   if (!UndefOrSalvage.empty()) {
1828     // Try to salvage the remaining debug users.
1829     salvageDebugInfoOrMarkUndef(From);
1830     Changed = true;
1831   }
1832 
1833   return Changed;
1834 }
1835 
1836 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1837 /// losslessly preserve the bits and semantics of the value. This predicate is
1838 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1839 ///
1840 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1841 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1842 /// and also does not allow lossless pointer <-> integer conversions.
1843 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1844                                          Type *ToTy) {
1845   // Trivially compatible types.
1846   if (FromTy == ToTy)
1847     return true;
1848 
1849   // Handle compatible pointer <-> integer conversions.
1850   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1851     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1852     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1853                               !DL.isNonIntegralPointerType(ToTy);
1854     return SameSize && LosslessConversion;
1855   }
1856 
1857   // TODO: This is not exhaustive.
1858   return false;
1859 }
1860 
1861 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1862                                  Instruction &DomPoint, DominatorTree &DT) {
1863   // Exit early if From has no debug users.
1864   if (!From.isUsedByMetadata())
1865     return false;
1866 
1867   assert(&From != &To && "Can't replace something with itself");
1868 
1869   Type *FromTy = From.getType();
1870   Type *ToTy = To.getType();
1871 
1872   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1873     return DII.getExpression();
1874   };
1875 
1876   // Handle no-op conversions.
1877   Module &M = *From.getModule();
1878   const DataLayout &DL = M.getDataLayout();
1879   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1880     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1881 
1882   // Handle integer-to-integer widening and narrowing.
1883   // FIXME: Use DW_OP_convert when it's available everywhere.
1884   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1885     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1886     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1887     assert(FromBits != ToBits && "Unexpected no-op conversion");
1888 
1889     // When the width of the result grows, assume that a debugger will only
1890     // access the low `FromBits` bits when inspecting the source variable.
1891     if (FromBits < ToBits)
1892       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1893 
1894     // The width of the result has shrunk. Use sign/zero extension to describe
1895     // the source variable's high bits.
1896     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1897       DILocalVariable *Var = DII.getVariable();
1898 
1899       // Without knowing signedness, sign/zero extension isn't possible.
1900       auto Signedness = Var->getSignedness();
1901       if (!Signedness)
1902         return None;
1903 
1904       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1905       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1906                                      Signed);
1907     };
1908     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1909   }
1910 
1911   // TODO: Floating-point conversions, vectors.
1912   return false;
1913 }
1914 
1915 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1916   unsigned NumDeadInst = 0;
1917   // Delete the instructions backwards, as it has a reduced likelihood of
1918   // having to update as many def-use and use-def chains.
1919   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1920   while (EndInst != &BB->front()) {
1921     // Delete the next to last instruction.
1922     Instruction *Inst = &*--EndInst->getIterator();
1923     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1924       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1925     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1926       EndInst = Inst;
1927       continue;
1928     }
1929     if (!isa<DbgInfoIntrinsic>(Inst))
1930       ++NumDeadInst;
1931     Inst->eraseFromParent();
1932   }
1933   return NumDeadInst;
1934 }
1935 
1936 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1937                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1938                                    MemorySSAUpdater *MSSAU) {
1939   BasicBlock *BB = I->getParent();
1940   std::vector <DominatorTree::UpdateType> Updates;
1941 
1942   if (MSSAU)
1943     MSSAU->changeToUnreachable(I);
1944 
1945   // Loop over all of the successors, removing BB's entry from any PHI
1946   // nodes.
1947   if (DTU)
1948     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1949   for (BasicBlock *Successor : successors(BB)) {
1950     Successor->removePredecessor(BB, PreserveLCSSA);
1951     if (DTU)
1952       Updates.push_back({DominatorTree::Delete, BB, Successor});
1953   }
1954   // Insert a call to llvm.trap right before this.  This turns the undefined
1955   // behavior into a hard fail instead of falling through into random code.
1956   if (UseLLVMTrap) {
1957     Function *TrapFn =
1958       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1959     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1960     CallTrap->setDebugLoc(I->getDebugLoc());
1961   }
1962   auto *UI = new UnreachableInst(I->getContext(), I);
1963   UI->setDebugLoc(I->getDebugLoc());
1964 
1965   // All instructions after this are dead.
1966   unsigned NumInstrsRemoved = 0;
1967   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1968   while (BBI != BBE) {
1969     if (!BBI->use_empty())
1970       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1971     BB->getInstList().erase(BBI++);
1972     ++NumInstrsRemoved;
1973   }
1974   if (DTU)
1975     DTU->applyUpdatesPermissive(Updates);
1976   return NumInstrsRemoved;
1977 }
1978 
1979 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1980   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1981   SmallVector<OperandBundleDef, 1> OpBundles;
1982   II->getOperandBundlesAsDefs(OpBundles);
1983   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1984                                        II->getCalledValue(), Args, OpBundles);
1985   NewCall->setCallingConv(II->getCallingConv());
1986   NewCall->setAttributes(II->getAttributes());
1987   NewCall->setDebugLoc(II->getDebugLoc());
1988   NewCall->copyMetadata(*II);
1989   return NewCall;
1990 }
1991 
1992 /// changeToCall - Convert the specified invoke into a normal call.
1993 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
1994   CallInst *NewCall = createCallMatchingInvoke(II);
1995   NewCall->takeName(II);
1996   NewCall->insertBefore(II);
1997   II->replaceAllUsesWith(NewCall);
1998 
1999   // Follow the call by a branch to the normal destination.
2000   BasicBlock *NormalDestBB = II->getNormalDest();
2001   BranchInst::Create(NormalDestBB, II);
2002 
2003   // Update PHI nodes in the unwind destination
2004   BasicBlock *BB = II->getParent();
2005   BasicBlock *UnwindDestBB = II->getUnwindDest();
2006   UnwindDestBB->removePredecessor(BB);
2007   II->eraseFromParent();
2008   if (DTU)
2009     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
2010 }
2011 
2012 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2013                                                    BasicBlock *UnwindEdge) {
2014   BasicBlock *BB = CI->getParent();
2015 
2016   // Convert this function call into an invoke instruction.  First, split the
2017   // basic block.
2018   BasicBlock *Split =
2019       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2020 
2021   // Delete the unconditional branch inserted by splitBasicBlock
2022   BB->getInstList().pop_back();
2023 
2024   // Create the new invoke instruction.
2025   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2026   SmallVector<OperandBundleDef, 1> OpBundles;
2027 
2028   CI->getOperandBundlesAsDefs(OpBundles);
2029 
2030   // Note: we're round tripping operand bundles through memory here, and that
2031   // can potentially be avoided with a cleverer API design that we do not have
2032   // as of this time.
2033 
2034   InvokeInst *II =
2035       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2036                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2037   II->setDebugLoc(CI->getDebugLoc());
2038   II->setCallingConv(CI->getCallingConv());
2039   II->setAttributes(CI->getAttributes());
2040 
2041   // Make sure that anything using the call now uses the invoke!  This also
2042   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2043   CI->replaceAllUsesWith(II);
2044 
2045   // Delete the original call
2046   Split->getInstList().pop_front();
2047   return Split;
2048 }
2049 
2050 static bool markAliveBlocks(Function &F,
2051                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2052                             DomTreeUpdater *DTU = nullptr) {
2053   SmallVector<BasicBlock*, 128> Worklist;
2054   BasicBlock *BB = &F.front();
2055   Worklist.push_back(BB);
2056   Reachable.insert(BB);
2057   bool Changed = false;
2058   do {
2059     BB = Worklist.pop_back_val();
2060 
2061     // Do a quick scan of the basic block, turning any obviously unreachable
2062     // instructions into LLVM unreachable insts.  The instruction combining pass
2063     // canonicalizes unreachable insts into stores to null or undef.
2064     for (Instruction &I : *BB) {
2065       if (auto *CI = dyn_cast<CallInst>(&I)) {
2066         Value *Callee = CI->getCalledValue();
2067         // Handle intrinsic calls.
2068         if (Function *F = dyn_cast<Function>(Callee)) {
2069           auto IntrinsicID = F->getIntrinsicID();
2070           // Assumptions that are known to be false are equivalent to
2071           // unreachable. Also, if the condition is undefined, then we make the
2072           // choice most beneficial to the optimizer, and choose that to also be
2073           // unreachable.
2074           if (IntrinsicID == Intrinsic::assume) {
2075             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2076               // Don't insert a call to llvm.trap right before the unreachable.
2077               changeToUnreachable(CI, false, false, DTU);
2078               Changed = true;
2079               break;
2080             }
2081           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2082             // A call to the guard intrinsic bails out of the current
2083             // compilation unit if the predicate passed to it is false. If the
2084             // predicate is a constant false, then we know the guard will bail
2085             // out of the current compile unconditionally, so all code following
2086             // it is dead.
2087             //
2088             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2089             // guards to treat `undef` as `false` since a guard on `undef` can
2090             // still be useful for widening.
2091             if (match(CI->getArgOperand(0), m_Zero()))
2092               if (!isa<UnreachableInst>(CI->getNextNode())) {
2093                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2094                                     false, DTU);
2095                 Changed = true;
2096                 break;
2097               }
2098           }
2099         } else if ((isa<ConstantPointerNull>(Callee) &&
2100                     !NullPointerIsDefined(CI->getFunction())) ||
2101                    isa<UndefValue>(Callee)) {
2102           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2103           Changed = true;
2104           break;
2105         }
2106         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2107           // If we found a call to a no-return function, insert an unreachable
2108           // instruction after it.  Make sure there isn't *already* one there
2109           // though.
2110           if (!isa<UnreachableInst>(CI->getNextNode())) {
2111             // Don't insert a call to llvm.trap right before the unreachable.
2112             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2113             Changed = true;
2114           }
2115           break;
2116         }
2117       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2118         // Store to undef and store to null are undefined and used to signal
2119         // that they should be changed to unreachable by passes that can't
2120         // modify the CFG.
2121 
2122         // Don't touch volatile stores.
2123         if (SI->isVolatile()) continue;
2124 
2125         Value *Ptr = SI->getOperand(1);
2126 
2127         if (isa<UndefValue>(Ptr) ||
2128             (isa<ConstantPointerNull>(Ptr) &&
2129              !NullPointerIsDefined(SI->getFunction(),
2130                                    SI->getPointerAddressSpace()))) {
2131           changeToUnreachable(SI, true, false, DTU);
2132           Changed = true;
2133           break;
2134         }
2135       }
2136     }
2137 
2138     Instruction *Terminator = BB->getTerminator();
2139     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2140       // Turn invokes that call 'nounwind' functions into ordinary calls.
2141       Value *Callee = II->getCalledValue();
2142       if ((isa<ConstantPointerNull>(Callee) &&
2143            !NullPointerIsDefined(BB->getParent())) ||
2144           isa<UndefValue>(Callee)) {
2145         changeToUnreachable(II, true, false, DTU);
2146         Changed = true;
2147       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2148         if (II->use_empty() && II->onlyReadsMemory()) {
2149           // jump to the normal destination branch.
2150           BasicBlock *NormalDestBB = II->getNormalDest();
2151           BasicBlock *UnwindDestBB = II->getUnwindDest();
2152           BranchInst::Create(NormalDestBB, II);
2153           UnwindDestBB->removePredecessor(II->getParent());
2154           II->eraseFromParent();
2155           if (DTU)
2156             DTU->applyUpdatesPermissive(
2157                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2158         } else
2159           changeToCall(II, DTU);
2160         Changed = true;
2161       }
2162     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2163       // Remove catchpads which cannot be reached.
2164       struct CatchPadDenseMapInfo {
2165         static CatchPadInst *getEmptyKey() {
2166           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2167         }
2168 
2169         static CatchPadInst *getTombstoneKey() {
2170           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2171         }
2172 
2173         static unsigned getHashValue(CatchPadInst *CatchPad) {
2174           return static_cast<unsigned>(hash_combine_range(
2175               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2176         }
2177 
2178         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2179           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2180               RHS == getEmptyKey() || RHS == getTombstoneKey())
2181             return LHS == RHS;
2182           return LHS->isIdenticalTo(RHS);
2183         }
2184       };
2185 
2186       // Set of unique CatchPads.
2187       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2188                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2189           HandlerSet;
2190       detail::DenseSetEmpty Empty;
2191       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2192                                              E = CatchSwitch->handler_end();
2193            I != E; ++I) {
2194         BasicBlock *HandlerBB = *I;
2195         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2196         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2197           CatchSwitch->removeHandler(I);
2198           --I;
2199           --E;
2200           Changed = true;
2201         }
2202       }
2203     }
2204 
2205     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2206     for (BasicBlock *Successor : successors(BB))
2207       if (Reachable.insert(Successor).second)
2208         Worklist.push_back(Successor);
2209   } while (!Worklist.empty());
2210   return Changed;
2211 }
2212 
2213 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2214   Instruction *TI = BB->getTerminator();
2215 
2216   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2217     changeToCall(II, DTU);
2218     return;
2219   }
2220 
2221   Instruction *NewTI;
2222   BasicBlock *UnwindDest;
2223 
2224   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2225     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2226     UnwindDest = CRI->getUnwindDest();
2227   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2228     auto *NewCatchSwitch = CatchSwitchInst::Create(
2229         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2230         CatchSwitch->getName(), CatchSwitch);
2231     for (BasicBlock *PadBB : CatchSwitch->handlers())
2232       NewCatchSwitch->addHandler(PadBB);
2233 
2234     NewTI = NewCatchSwitch;
2235     UnwindDest = CatchSwitch->getUnwindDest();
2236   } else {
2237     llvm_unreachable("Could not find unwind successor");
2238   }
2239 
2240   NewTI->takeName(TI);
2241   NewTI->setDebugLoc(TI->getDebugLoc());
2242   UnwindDest->removePredecessor(BB);
2243   TI->replaceAllUsesWith(NewTI);
2244   TI->eraseFromParent();
2245   if (DTU)
2246     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2247 }
2248 
2249 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2250 /// if they are in a dead cycle.  Return true if a change was made, false
2251 /// otherwise.
2252 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2253                                    MemorySSAUpdater *MSSAU) {
2254   SmallPtrSet<BasicBlock *, 16> Reachable;
2255   bool Changed = markAliveBlocks(F, Reachable, DTU);
2256 
2257   // If there are unreachable blocks in the CFG...
2258   if (Reachable.size() == F.size())
2259     return Changed;
2260 
2261   assert(Reachable.size() < F.size());
2262   NumRemoved += F.size() - Reachable.size();
2263 
2264   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2265   for (BasicBlock &BB : F) {
2266     // Skip reachable basic blocks
2267     if (Reachable.find(&BB) != Reachable.end())
2268       continue;
2269     DeadBlockSet.insert(&BB);
2270   }
2271 
2272   if (MSSAU)
2273     MSSAU->removeBlocks(DeadBlockSet);
2274 
2275   // Loop over all of the basic blocks that are not reachable, dropping all of
2276   // their internal references. Update DTU if available.
2277   std::vector<DominatorTree::UpdateType> Updates;
2278   for (auto *BB : DeadBlockSet) {
2279     for (BasicBlock *Successor : successors(BB)) {
2280       if (!DeadBlockSet.count(Successor))
2281         Successor->removePredecessor(BB);
2282       if (DTU)
2283         Updates.push_back({DominatorTree::Delete, BB, Successor});
2284     }
2285     BB->dropAllReferences();
2286     if (DTU) {
2287       Instruction *TI = BB->getTerminator();
2288       assert(TI && "Basic block should have a terminator");
2289       // Terminators like invoke can have users. We have to replace their users,
2290       // before removing them.
2291       if (!TI->use_empty())
2292         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2293       TI->eraseFromParent();
2294       new UnreachableInst(BB->getContext(), BB);
2295       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2296                                "applying corresponding DTU updates.");
2297     }
2298   }
2299 
2300   if (DTU) {
2301     DTU->applyUpdatesPermissive(Updates);
2302     bool Deleted = false;
2303     for (auto *BB : DeadBlockSet) {
2304       if (DTU->isBBPendingDeletion(BB))
2305         --NumRemoved;
2306       else
2307         Deleted = true;
2308       DTU->deleteBB(BB);
2309     }
2310     if (!Deleted)
2311       return false;
2312   } else {
2313     for (auto *BB : DeadBlockSet)
2314       BB->eraseFromParent();
2315   }
2316 
2317   return true;
2318 }
2319 
2320 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2321                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2322   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2323   K->dropUnknownNonDebugMetadata(KnownIDs);
2324   K->getAllMetadataOtherThanDebugLoc(Metadata);
2325   for (const auto &MD : Metadata) {
2326     unsigned Kind = MD.first;
2327     MDNode *JMD = J->getMetadata(Kind);
2328     MDNode *KMD = MD.second;
2329 
2330     switch (Kind) {
2331       default:
2332         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2333         break;
2334       case LLVMContext::MD_dbg:
2335         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2336       case LLVMContext::MD_tbaa:
2337         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2338         break;
2339       case LLVMContext::MD_alias_scope:
2340         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2341         break;
2342       case LLVMContext::MD_noalias:
2343       case LLVMContext::MD_mem_parallel_loop_access:
2344         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2345         break;
2346       case LLVMContext::MD_access_group:
2347         K->setMetadata(LLVMContext::MD_access_group,
2348                        intersectAccessGroups(K, J));
2349         break;
2350       case LLVMContext::MD_range:
2351 
2352         // If K does move, use most generic range. Otherwise keep the range of
2353         // K.
2354         if (DoesKMove)
2355           // FIXME: If K does move, we should drop the range info and nonnull.
2356           //        Currently this function is used with DoesKMove in passes
2357           //        doing hoisting/sinking and the current behavior of using the
2358           //        most generic range is correct in those cases.
2359           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2360         break;
2361       case LLVMContext::MD_fpmath:
2362         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2363         break;
2364       case LLVMContext::MD_invariant_load:
2365         // Only set the !invariant.load if it is present in both instructions.
2366         K->setMetadata(Kind, JMD);
2367         break;
2368       case LLVMContext::MD_nonnull:
2369         // If K does move, keep nonull if it is present in both instructions.
2370         if (DoesKMove)
2371           K->setMetadata(Kind, JMD);
2372         break;
2373       case LLVMContext::MD_invariant_group:
2374         // Preserve !invariant.group in K.
2375         break;
2376       case LLVMContext::MD_align:
2377         K->setMetadata(Kind,
2378           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2379         break;
2380       case LLVMContext::MD_dereferenceable:
2381       case LLVMContext::MD_dereferenceable_or_null:
2382         K->setMetadata(Kind,
2383           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2384         break;
2385       case LLVMContext::MD_preserve_access_index:
2386         // Preserve !preserve.access.index in K.
2387         break;
2388     }
2389   }
2390   // Set !invariant.group from J if J has it. If both instructions have it
2391   // then we will just pick it from J - even when they are different.
2392   // Also make sure that K is load or store - f.e. combining bitcast with load
2393   // could produce bitcast with invariant.group metadata, which is invalid.
2394   // FIXME: we should try to preserve both invariant.group md if they are
2395   // different, but right now instruction can only have one invariant.group.
2396   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2397     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2398       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2399 }
2400 
2401 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2402                                  bool KDominatesJ) {
2403   unsigned KnownIDs[] = {
2404       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2405       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2406       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2407       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2408       LLVMContext::MD_dereferenceable,
2409       LLVMContext::MD_dereferenceable_or_null,
2410       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2411   combineMetadata(K, J, KnownIDs, KDominatesJ);
2412 }
2413 
2414 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2415   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2416   Source.getAllMetadata(MD);
2417   MDBuilder MDB(Dest.getContext());
2418   Type *NewType = Dest.getType();
2419   const DataLayout &DL = Source.getModule()->getDataLayout();
2420   for (const auto &MDPair : MD) {
2421     unsigned ID = MDPair.first;
2422     MDNode *N = MDPair.second;
2423     // Note, essentially every kind of metadata should be preserved here! This
2424     // routine is supposed to clone a load instruction changing *only its type*.
2425     // The only metadata it makes sense to drop is metadata which is invalidated
2426     // when the pointer type changes. This should essentially never be the case
2427     // in LLVM, but we explicitly switch over only known metadata to be
2428     // conservatively correct. If you are adding metadata to LLVM which pertains
2429     // to loads, you almost certainly want to add it here.
2430     switch (ID) {
2431     case LLVMContext::MD_dbg:
2432     case LLVMContext::MD_tbaa:
2433     case LLVMContext::MD_prof:
2434     case LLVMContext::MD_fpmath:
2435     case LLVMContext::MD_tbaa_struct:
2436     case LLVMContext::MD_invariant_load:
2437     case LLVMContext::MD_alias_scope:
2438     case LLVMContext::MD_noalias:
2439     case LLVMContext::MD_nontemporal:
2440     case LLVMContext::MD_mem_parallel_loop_access:
2441     case LLVMContext::MD_access_group:
2442       // All of these directly apply.
2443       Dest.setMetadata(ID, N);
2444       break;
2445 
2446     case LLVMContext::MD_nonnull:
2447       copyNonnullMetadata(Source, N, Dest);
2448       break;
2449 
2450     case LLVMContext::MD_align:
2451     case LLVMContext::MD_dereferenceable:
2452     case LLVMContext::MD_dereferenceable_or_null:
2453       // These only directly apply if the new type is also a pointer.
2454       if (NewType->isPointerTy())
2455         Dest.setMetadata(ID, N);
2456       break;
2457 
2458     case LLVMContext::MD_range:
2459       copyRangeMetadata(DL, Source, N, Dest);
2460       break;
2461     }
2462   }
2463 }
2464 
2465 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2466   auto *ReplInst = dyn_cast<Instruction>(Repl);
2467   if (!ReplInst)
2468     return;
2469 
2470   // Patch the replacement so that it is not more restrictive than the value
2471   // being replaced.
2472   // Note that if 'I' is a load being replaced by some operation,
2473   // for example, by an arithmetic operation, then andIRFlags()
2474   // would just erase all math flags from the original arithmetic
2475   // operation, which is clearly not wanted and not needed.
2476   if (!isa<LoadInst>(I))
2477     ReplInst->andIRFlags(I);
2478 
2479   // FIXME: If both the original and replacement value are part of the
2480   // same control-flow region (meaning that the execution of one
2481   // guarantees the execution of the other), then we can combine the
2482   // noalias scopes here and do better than the general conservative
2483   // answer used in combineMetadata().
2484 
2485   // In general, GVN unifies expressions over different control-flow
2486   // regions, and so we need a conservative combination of the noalias
2487   // scopes.
2488   static const unsigned KnownIDs[] = {
2489       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2490       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2491       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2492       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2493       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2494   combineMetadata(ReplInst, I, KnownIDs, false);
2495 }
2496 
2497 template <typename RootType, typename DominatesFn>
2498 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2499                                          const RootType &Root,
2500                                          const DominatesFn &Dominates) {
2501   assert(From->getType() == To->getType());
2502 
2503   unsigned Count = 0;
2504   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2505        UI != UE;) {
2506     Use &U = *UI++;
2507     if (!Dominates(Root, U))
2508       continue;
2509     U.set(To);
2510     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2511                       << "' as " << *To << " in " << *U << "\n");
2512     ++Count;
2513   }
2514   return Count;
2515 }
2516 
2517 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2518    assert(From->getType() == To->getType());
2519    auto *BB = From->getParent();
2520    unsigned Count = 0;
2521 
2522   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2523        UI != UE;) {
2524     Use &U = *UI++;
2525     auto *I = cast<Instruction>(U.getUser());
2526     if (I->getParent() == BB)
2527       continue;
2528     U.set(To);
2529     ++Count;
2530   }
2531   return Count;
2532 }
2533 
2534 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2535                                         DominatorTree &DT,
2536                                         const BasicBlockEdge &Root) {
2537   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2538     return DT.dominates(Root, U);
2539   };
2540   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2541 }
2542 
2543 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2544                                         DominatorTree &DT,
2545                                         const BasicBlock *BB) {
2546   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2547     auto *I = cast<Instruction>(U.getUser())->getParent();
2548     return DT.properlyDominates(BB, I);
2549   };
2550   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2551 }
2552 
2553 bool llvm::callsGCLeafFunction(const CallBase *Call,
2554                                const TargetLibraryInfo &TLI) {
2555   // Check if the function is specifically marked as a gc leaf function.
2556   if (Call->hasFnAttr("gc-leaf-function"))
2557     return true;
2558   if (const Function *F = Call->getCalledFunction()) {
2559     if (F->hasFnAttribute("gc-leaf-function"))
2560       return true;
2561 
2562     if (auto IID = F->getIntrinsicID())
2563       // Most LLVM intrinsics do not take safepoints.
2564       return IID != Intrinsic::experimental_gc_statepoint &&
2565              IID != Intrinsic::experimental_deoptimize;
2566   }
2567 
2568   // Lib calls can be materialized by some passes, and won't be
2569   // marked as 'gc-leaf-function.' All available Libcalls are
2570   // GC-leaf.
2571   LibFunc LF;
2572   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2573     return TLI.has(LF);
2574   }
2575 
2576   return false;
2577 }
2578 
2579 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2580                                LoadInst &NewLI) {
2581   auto *NewTy = NewLI.getType();
2582 
2583   // This only directly applies if the new type is also a pointer.
2584   if (NewTy->isPointerTy()) {
2585     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2586     return;
2587   }
2588 
2589   // The only other translation we can do is to integral loads with !range
2590   // metadata.
2591   if (!NewTy->isIntegerTy())
2592     return;
2593 
2594   MDBuilder MDB(NewLI.getContext());
2595   const Value *Ptr = OldLI.getPointerOperand();
2596   auto *ITy = cast<IntegerType>(NewTy);
2597   auto *NullInt = ConstantExpr::getPtrToInt(
2598       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2599   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2600   NewLI.setMetadata(LLVMContext::MD_range,
2601                     MDB.createRange(NonNullInt, NullInt));
2602 }
2603 
2604 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2605                              MDNode *N, LoadInst &NewLI) {
2606   auto *NewTy = NewLI.getType();
2607 
2608   // Give up unless it is converted to a pointer where there is a single very
2609   // valuable mapping we can do reliably.
2610   // FIXME: It would be nice to propagate this in more ways, but the type
2611   // conversions make it hard.
2612   if (!NewTy->isPointerTy())
2613     return;
2614 
2615   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2616   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2617     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2618     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2619   }
2620 }
2621 
2622 void llvm::dropDebugUsers(Instruction &I) {
2623   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2624   findDbgUsers(DbgUsers, &I);
2625   for (auto *DII : DbgUsers)
2626     DII->eraseFromParent();
2627 }
2628 
2629 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2630                                     BasicBlock *BB) {
2631   // Since we are moving the instructions out of its basic block, we do not
2632   // retain their original debug locations (DILocations) and debug intrinsic
2633   // instructions.
2634   //
2635   // Doing so would degrade the debugging experience and adversely affect the
2636   // accuracy of profiling information.
2637   //
2638   // Currently, when hoisting the instructions, we take the following actions:
2639   // - Remove their debug intrinsic instructions.
2640   // - Set their debug locations to the values from the insertion point.
2641   //
2642   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2643   // need to be deleted, is because there will not be any instructions with a
2644   // DILocation in either branch left after performing the transformation. We
2645   // can only insert a dbg.value after the two branches are joined again.
2646   //
2647   // See PR38762, PR39243 for more details.
2648   //
2649   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2650   // encode predicated DIExpressions that yield different results on different
2651   // code paths.
2652   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2653     Instruction *I = &*II;
2654     I->dropUnknownNonDebugMetadata();
2655     if (I->isUsedByMetadata())
2656       dropDebugUsers(*I);
2657     if (isa<DbgInfoIntrinsic>(I)) {
2658       // Remove DbgInfo Intrinsics.
2659       II = I->eraseFromParent();
2660       continue;
2661     }
2662     I->setDebugLoc(InsertPt->getDebugLoc());
2663     ++II;
2664   }
2665   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2666                                  BB->begin(),
2667                                  BB->getTerminator()->getIterator());
2668 }
2669 
2670 namespace {
2671 
2672 /// A potential constituent of a bitreverse or bswap expression. See
2673 /// collectBitParts for a fuller explanation.
2674 struct BitPart {
2675   BitPart(Value *P, unsigned BW) : Provider(P) {
2676     Provenance.resize(BW);
2677   }
2678 
2679   /// The Value that this is a bitreverse/bswap of.
2680   Value *Provider;
2681 
2682   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2683   /// in Provider becomes bit B in the result of this expression.
2684   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2685 
2686   enum { Unset = -1 };
2687 };
2688 
2689 } // end anonymous namespace
2690 
2691 /// Analyze the specified subexpression and see if it is capable of providing
2692 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2693 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2694 /// the output of the expression came from a corresponding bit in some other
2695 /// value. This function is recursive, and the end result is a mapping of
2696 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2697 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2698 ///
2699 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2700 /// that the expression deposits the low byte of %X into the high byte of the
2701 /// result and that all other bits are zero. This expression is accepted and a
2702 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2703 /// [0-7].
2704 ///
2705 /// To avoid revisiting values, the BitPart results are memoized into the
2706 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2707 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2708 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2709 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2710 /// type instead to provide the same functionality.
2711 ///
2712 /// Because we pass around references into \c BPS, we must use a container that
2713 /// does not invalidate internal references (std::map instead of DenseMap).
2714 static const Optional<BitPart> &
2715 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2716                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2717   auto I = BPS.find(V);
2718   if (I != BPS.end())
2719     return I->second;
2720 
2721   auto &Result = BPS[V] = None;
2722   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2723 
2724   // Prevent stack overflow by limiting the recursion depth
2725   if (Depth == BitPartRecursionMaxDepth) {
2726     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2727     return Result;
2728   }
2729 
2730   if (Instruction *I = dyn_cast<Instruction>(V)) {
2731     // If this is an or instruction, it may be an inner node of the bswap.
2732     if (I->getOpcode() == Instruction::Or) {
2733       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2734                                 MatchBitReversals, BPS, Depth + 1);
2735       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2736                                 MatchBitReversals, BPS, Depth + 1);
2737       if (!A || !B)
2738         return Result;
2739 
2740       // Try and merge the two together.
2741       if (!A->Provider || A->Provider != B->Provider)
2742         return Result;
2743 
2744       Result = BitPart(A->Provider, BitWidth);
2745       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2746         if (A->Provenance[i] != BitPart::Unset &&
2747             B->Provenance[i] != BitPart::Unset &&
2748             A->Provenance[i] != B->Provenance[i])
2749           return Result = None;
2750 
2751         if (A->Provenance[i] == BitPart::Unset)
2752           Result->Provenance[i] = B->Provenance[i];
2753         else
2754           Result->Provenance[i] = A->Provenance[i];
2755       }
2756 
2757       return Result;
2758     }
2759 
2760     // If this is a logical shift by a constant, recurse then shift the result.
2761     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2762       unsigned BitShift =
2763           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2764       // Ensure the shift amount is defined.
2765       if (BitShift > BitWidth)
2766         return Result;
2767 
2768       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2769                                   MatchBitReversals, BPS, Depth + 1);
2770       if (!Res)
2771         return Result;
2772       Result = Res;
2773 
2774       // Perform the "shift" on BitProvenance.
2775       auto &P = Result->Provenance;
2776       if (I->getOpcode() == Instruction::Shl) {
2777         P.erase(std::prev(P.end(), BitShift), P.end());
2778         P.insert(P.begin(), BitShift, BitPart::Unset);
2779       } else {
2780         P.erase(P.begin(), std::next(P.begin(), BitShift));
2781         P.insert(P.end(), BitShift, BitPart::Unset);
2782       }
2783 
2784       return Result;
2785     }
2786 
2787     // If this is a logical 'and' with a mask that clears bits, recurse then
2788     // unset the appropriate bits.
2789     if (I->getOpcode() == Instruction::And &&
2790         isa<ConstantInt>(I->getOperand(1))) {
2791       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2792       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2793 
2794       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2795       // early exit.
2796       unsigned NumMaskedBits = AndMask.countPopulation();
2797       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2798         return Result;
2799 
2800       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2801                                   MatchBitReversals, BPS, Depth + 1);
2802       if (!Res)
2803         return Result;
2804       Result = Res;
2805 
2806       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2807         // If the AndMask is zero for this bit, clear the bit.
2808         if ((AndMask & Bit) == 0)
2809           Result->Provenance[i] = BitPart::Unset;
2810       return Result;
2811     }
2812 
2813     // If this is a zext instruction zero extend the result.
2814     if (I->getOpcode() == Instruction::ZExt) {
2815       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2816                                   MatchBitReversals, BPS, Depth + 1);
2817       if (!Res)
2818         return Result;
2819 
2820       Result = BitPart(Res->Provider, BitWidth);
2821       auto NarrowBitWidth =
2822           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2823       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2824         Result->Provenance[i] = Res->Provenance[i];
2825       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2826         Result->Provenance[i] = BitPart::Unset;
2827       return Result;
2828     }
2829   }
2830 
2831   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2832   // the input value to the bswap/bitreverse.
2833   Result = BitPart(V, BitWidth);
2834   for (unsigned i = 0; i < BitWidth; ++i)
2835     Result->Provenance[i] = i;
2836   return Result;
2837 }
2838 
2839 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2840                                           unsigned BitWidth) {
2841   if (From % 8 != To % 8)
2842     return false;
2843   // Convert from bit indices to byte indices and check for a byte reversal.
2844   From >>= 3;
2845   To >>= 3;
2846   BitWidth >>= 3;
2847   return From == BitWidth - To - 1;
2848 }
2849 
2850 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2851                                                unsigned BitWidth) {
2852   return From == BitWidth - To - 1;
2853 }
2854 
2855 bool llvm::recognizeBSwapOrBitReverseIdiom(
2856     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2857     SmallVectorImpl<Instruction *> &InsertedInsts) {
2858   if (Operator::getOpcode(I) != Instruction::Or)
2859     return false;
2860   if (!MatchBSwaps && !MatchBitReversals)
2861     return false;
2862   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2863   if (!ITy || ITy->getBitWidth() > 128)
2864     return false;   // Can't do vectors or integers > 128 bits.
2865   unsigned BW = ITy->getBitWidth();
2866 
2867   unsigned DemandedBW = BW;
2868   IntegerType *DemandedTy = ITy;
2869   if (I->hasOneUse()) {
2870     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2871       DemandedTy = cast<IntegerType>(Trunc->getType());
2872       DemandedBW = DemandedTy->getBitWidth();
2873     }
2874   }
2875 
2876   // Try to find all the pieces corresponding to the bswap.
2877   std::map<Value *, Optional<BitPart>> BPS;
2878   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2879   if (!Res)
2880     return false;
2881   auto &BitProvenance = Res->Provenance;
2882 
2883   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2884   // only byteswap values with an even number of bytes.
2885   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2886   for (unsigned i = 0; i < DemandedBW; ++i) {
2887     OKForBSwap &=
2888         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2889     OKForBitReverse &=
2890         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2891   }
2892 
2893   Intrinsic::ID Intrin;
2894   if (OKForBSwap && MatchBSwaps)
2895     Intrin = Intrinsic::bswap;
2896   else if (OKForBitReverse && MatchBitReversals)
2897     Intrin = Intrinsic::bitreverse;
2898   else
2899     return false;
2900 
2901   if (ITy != DemandedTy) {
2902     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2903     Value *Provider = Res->Provider;
2904     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2905     // We may need to truncate the provider.
2906     if (DemandedTy != ProviderTy) {
2907       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2908                                      "trunc", I);
2909       InsertedInsts.push_back(Trunc);
2910       Provider = Trunc;
2911     }
2912     auto *CI = CallInst::Create(F, Provider, "rev", I);
2913     InsertedInsts.push_back(CI);
2914     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2915     InsertedInsts.push_back(ExtInst);
2916     return true;
2917   }
2918 
2919   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2920   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2921   return true;
2922 }
2923 
2924 // CodeGen has special handling for some string functions that may replace
2925 // them with target-specific intrinsics.  Since that'd skip our interceptors
2926 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2927 // we mark affected calls as NoBuiltin, which will disable optimization
2928 // in CodeGen.
2929 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2930     CallInst *CI, const TargetLibraryInfo *TLI) {
2931   Function *F = CI->getCalledFunction();
2932   LibFunc Func;
2933   if (F && !F->hasLocalLinkage() && F->hasName() &&
2934       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2935       !F->doesNotAccessMemory())
2936     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2937 }
2938 
2939 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2940   // We can't have a PHI with a metadata type.
2941   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2942     return false;
2943 
2944   // Early exit.
2945   if (!isa<Constant>(I->getOperand(OpIdx)))
2946     return true;
2947 
2948   switch (I->getOpcode()) {
2949   default:
2950     return true;
2951   case Instruction::Call:
2952   case Instruction::Invoke:
2953     // Can't handle inline asm. Skip it.
2954     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2955       return false;
2956     // Many arithmetic intrinsics have no issue taking a
2957     // variable, however it's hard to distingish these from
2958     // specials such as @llvm.frameaddress that require a constant.
2959     if (isa<IntrinsicInst>(I))
2960       return false;
2961 
2962     // Constant bundle operands may need to retain their constant-ness for
2963     // correctness.
2964     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2965       return false;
2966     return true;
2967   case Instruction::ShuffleVector:
2968     // Shufflevector masks are constant.
2969     return OpIdx != 2;
2970   case Instruction::Switch:
2971   case Instruction::ExtractValue:
2972     // All operands apart from the first are constant.
2973     return OpIdx == 0;
2974   case Instruction::InsertValue:
2975     // All operands apart from the first and the second are constant.
2976     return OpIdx < 2;
2977   case Instruction::Alloca:
2978     // Static allocas (constant size in the entry block) are handled by
2979     // prologue/epilogue insertion so they're free anyway. We definitely don't
2980     // want to make them non-constant.
2981     return !cast<AllocaInst>(I)->isStaticAlloca();
2982   case Instruction::GetElementPtr:
2983     if (OpIdx == 0)
2984       return true;
2985     gep_type_iterator It = gep_type_begin(I);
2986     for (auto E = std::next(It, OpIdx); It != E; ++It)
2987       if (It.isStruct())
2988         return false;
2989     return true;
2990   }
2991 }
2992 
2993 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
2994 AllocaInst *llvm::findAllocaForValue(Value *V,
2995                                      AllocaForValueMapTy &AllocaForValue) {
2996   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2997     return AI;
2998   // See if we've already calculated (or started to calculate) alloca for a
2999   // given value.
3000   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
3001   if (I != AllocaForValue.end())
3002     return I->second;
3003   // Store 0 while we're calculating alloca for value V to avoid
3004   // infinite recursion if the value references itself.
3005   AllocaForValue[V] = nullptr;
3006   AllocaInst *Res = nullptr;
3007   if (CastInst *CI = dyn_cast<CastInst>(V))
3008     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
3009   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
3010     for (Value *IncValue : PN->incoming_values()) {
3011       // Allow self-referencing phi-nodes.
3012       if (IncValue == PN)
3013         continue;
3014       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
3015       // AI for incoming values should exist and should all be equal.
3016       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
3017         return nullptr;
3018       Res = IncValueAI;
3019     }
3020   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3021     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3022   } else {
3023     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3024                       << *V << "\n");
3025   }
3026   if (Res)
3027     AllocaForValue[V] = Res;
3028   return Res;
3029 }
3030