1 //===-- Local.cpp - Functions to perform local transformations ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/Dominators.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/ProfileInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/DIBuilder.h" 26 #include "llvm/DebugInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/GetElementPtrTypeIterator.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/ValueHandle.h" 44 #include "llvm/Support/raw_ostream.h" 45 using namespace llvm; 46 47 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 48 49 //===----------------------------------------------------------------------===// 50 // Local constant propagation. 51 // 52 53 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 54 /// constant value, convert it into an unconditional branch to the constant 55 /// destination. This is a nontrivial operation because the successors of this 56 /// basic block must have their PHI nodes updated. 57 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 58 /// conditions and indirectbr addresses this might make dead if 59 /// DeleteDeadConditions is true. 60 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 61 const TargetLibraryInfo *TLI) { 62 TerminatorInst *T = BB->getTerminator(); 63 IRBuilder<> Builder(T); 64 65 // Branch - See if we are conditional jumping on constant 66 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 67 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 68 BasicBlock *Dest1 = BI->getSuccessor(0); 69 BasicBlock *Dest2 = BI->getSuccessor(1); 70 71 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 72 // Are we branching on constant? 73 // YES. Change to unconditional branch... 74 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 75 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 76 77 //cerr << "Function: " << T->getParent()->getParent() 78 // << "\nRemoving branch from " << T->getParent() 79 // << "\n\nTo: " << OldDest << endl; 80 81 // Let the basic block know that we are letting go of it. Based on this, 82 // it will adjust it's PHI nodes. 83 OldDest->removePredecessor(BB); 84 85 // Replace the conditional branch with an unconditional one. 86 Builder.CreateBr(Destination); 87 BI->eraseFromParent(); 88 return true; 89 } 90 91 if (Dest2 == Dest1) { // Conditional branch to same location? 92 // This branch matches something like this: 93 // br bool %cond, label %Dest, label %Dest 94 // and changes it into: br label %Dest 95 96 // Let the basic block know that we are letting go of one copy of it. 97 assert(BI->getParent() && "Terminator not inserted in block!"); 98 Dest1->removePredecessor(BI->getParent()); 99 100 // Replace the conditional branch with an unconditional one. 101 Builder.CreateBr(Dest1); 102 Value *Cond = BI->getCondition(); 103 BI->eraseFromParent(); 104 if (DeleteDeadConditions) 105 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 106 return true; 107 } 108 return false; 109 } 110 111 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 112 // If we are switching on a constant, we can convert the switch into a 113 // single branch instruction! 114 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); 115 BasicBlock *TheOnlyDest = SI->getDefaultDest(); 116 BasicBlock *DefaultDest = TheOnlyDest; 117 118 // Figure out which case it goes to. 119 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 120 i != e; ++i) { 121 // Found case matching a constant operand? 122 if (i.getCaseValue() == CI) { 123 TheOnlyDest = i.getCaseSuccessor(); 124 break; 125 } 126 127 // Check to see if this branch is going to the same place as the default 128 // dest. If so, eliminate it as an explicit compare. 129 if (i.getCaseSuccessor() == DefaultDest) { 130 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 131 // MD should have 2 + NumCases operands. 132 if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) { 133 // Collect branch weights into a vector. 134 SmallVector<uint32_t, 8> Weights; 135 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 136 ++MD_i) { 137 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 138 assert(CI); 139 Weights.push_back(CI->getValue().getZExtValue()); 140 } 141 // Merge weight of this case to the default weight. 142 unsigned idx = i.getCaseIndex(); 143 Weights[0] += Weights[idx+1]; 144 // Remove weight for this case. 145 std::swap(Weights[idx+1], Weights.back()); 146 Weights.pop_back(); 147 SI->setMetadata(LLVMContext::MD_prof, 148 MDBuilder(BB->getContext()). 149 createBranchWeights(Weights)); 150 } 151 // Remove this entry. 152 DefaultDest->removePredecessor(SI->getParent()); 153 SI->removeCase(i); 154 --i; --e; 155 continue; 156 } 157 158 // Otherwise, check to see if the switch only branches to one destination. 159 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 160 // destinations. 161 if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0; 162 } 163 164 if (CI && !TheOnlyDest) { 165 // Branching on a constant, but not any of the cases, go to the default 166 // successor. 167 TheOnlyDest = SI->getDefaultDest(); 168 } 169 170 // If we found a single destination that we can fold the switch into, do so 171 // now. 172 if (TheOnlyDest) { 173 // Insert the new branch. 174 Builder.CreateBr(TheOnlyDest); 175 BasicBlock *BB = SI->getParent(); 176 177 // Remove entries from PHI nodes which we no longer branch to... 178 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 179 // Found case matching a constant operand? 180 BasicBlock *Succ = SI->getSuccessor(i); 181 if (Succ == TheOnlyDest) 182 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest 183 else 184 Succ->removePredecessor(BB); 185 } 186 187 // Delete the old switch. 188 Value *Cond = SI->getCondition(); 189 SI->eraseFromParent(); 190 if (DeleteDeadConditions) 191 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 192 return true; 193 } 194 195 if (SI->getNumCases() == 1) { 196 // Otherwise, we can fold this switch into a conditional branch 197 // instruction if it has only one non-default destination. 198 SwitchInst::CaseIt FirstCase = SI->case_begin(); 199 IntegersSubset& Case = FirstCase.getCaseValueEx(); 200 if (Case.isSingleNumber()) { 201 // FIXME: Currently work with ConstantInt based numbers. 202 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 203 Case.getSingleNumber(0).toConstantInt(), 204 "cond"); 205 206 // Insert the new branch. 207 BranchInst *NewBr = Builder.CreateCondBr(Cond, 208 FirstCase.getCaseSuccessor(), 209 SI->getDefaultDest()); 210 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 211 if (MD && MD->getNumOperands() == 3) { 212 ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2)); 213 ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1)); 214 assert(SICase && SIDef); 215 // The TrueWeight should be the weight for the single case of SI. 216 NewBr->setMetadata(LLVMContext::MD_prof, 217 MDBuilder(BB->getContext()). 218 createBranchWeights(SICase->getValue().getZExtValue(), 219 SIDef->getValue().getZExtValue())); 220 } 221 222 // Delete the old switch. 223 SI->eraseFromParent(); 224 return true; 225 } 226 } 227 return false; 228 } 229 230 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { 231 // indirectbr blockaddress(@F, @BB) -> br label @BB 232 if (BlockAddress *BA = 233 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 234 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 235 // Insert the new branch. 236 Builder.CreateBr(TheOnlyDest); 237 238 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 239 if (IBI->getDestination(i) == TheOnlyDest) 240 TheOnlyDest = 0; 241 else 242 IBI->getDestination(i)->removePredecessor(IBI->getParent()); 243 } 244 Value *Address = IBI->getAddress(); 245 IBI->eraseFromParent(); 246 if (DeleteDeadConditions) 247 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 248 249 // If we didn't find our destination in the IBI successor list, then we 250 // have undefined behavior. Replace the unconditional branch with an 251 // 'unreachable' instruction. 252 if (TheOnlyDest) { 253 BB->getTerminator()->eraseFromParent(); 254 new UnreachableInst(BB->getContext(), BB); 255 } 256 257 return true; 258 } 259 } 260 261 return false; 262 } 263 264 265 //===----------------------------------------------------------------------===// 266 // Local dead code elimination. 267 // 268 269 /// isInstructionTriviallyDead - Return true if the result produced by the 270 /// instruction is not used, and the instruction has no side effects. 271 /// 272 bool llvm::isInstructionTriviallyDead(Instruction *I, 273 const TargetLibraryInfo *TLI) { 274 if (!I->use_empty() || isa<TerminatorInst>(I)) return false; 275 276 // We don't want the landingpad instruction removed by anything this general. 277 if (isa<LandingPadInst>(I)) 278 return false; 279 280 // We don't want debug info removed by anything this general, unless 281 // debug info is empty. 282 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 283 if (DDI->getAddress()) 284 return false; 285 return true; 286 } 287 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 288 if (DVI->getValue()) 289 return false; 290 return true; 291 } 292 293 if (!I->mayHaveSideEffects()) return true; 294 295 // Special case intrinsics that "may have side effects" but can be deleted 296 // when dead. 297 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 298 // Safe to delete llvm.stacksave if dead. 299 if (II->getIntrinsicID() == Intrinsic::stacksave) 300 return true; 301 302 // Lifetime intrinsics are dead when their right-hand is undef. 303 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 304 II->getIntrinsicID() == Intrinsic::lifetime_end) 305 return isa<UndefValue>(II->getArgOperand(1)); 306 } 307 308 if (isAllocLikeFn(I, TLI)) return true; 309 310 if (CallInst *CI = isFreeCall(I, TLI)) 311 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 312 return C->isNullValue() || isa<UndefValue>(C); 313 314 return false; 315 } 316 317 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 318 /// trivially dead instruction, delete it. If that makes any of its operands 319 /// trivially dead, delete them too, recursively. Return true if any 320 /// instructions were deleted. 321 bool 322 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 323 const TargetLibraryInfo *TLI) { 324 Instruction *I = dyn_cast<Instruction>(V); 325 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 326 return false; 327 328 SmallVector<Instruction*, 16> DeadInsts; 329 DeadInsts.push_back(I); 330 331 do { 332 I = DeadInsts.pop_back_val(); 333 334 // Null out all of the instruction's operands to see if any operand becomes 335 // dead as we go. 336 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 337 Value *OpV = I->getOperand(i); 338 I->setOperand(i, 0); 339 340 if (!OpV->use_empty()) continue; 341 342 // If the operand is an instruction that became dead as we nulled out the 343 // operand, and if it is 'trivially' dead, delete it in a future loop 344 // iteration. 345 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 346 if (isInstructionTriviallyDead(OpI, TLI)) 347 DeadInsts.push_back(OpI); 348 } 349 350 I->eraseFromParent(); 351 } while (!DeadInsts.empty()); 352 353 return true; 354 } 355 356 /// areAllUsesEqual - Check whether the uses of a value are all the same. 357 /// This is similar to Instruction::hasOneUse() except this will also return 358 /// true when there are no uses or multiple uses that all refer to the same 359 /// value. 360 static bool areAllUsesEqual(Instruction *I) { 361 Value::use_iterator UI = I->use_begin(); 362 Value::use_iterator UE = I->use_end(); 363 if (UI == UE) 364 return true; 365 366 User *TheUse = *UI; 367 for (++UI; UI != UE; ++UI) { 368 if (*UI != TheUse) 369 return false; 370 } 371 return true; 372 } 373 374 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 375 /// dead PHI node, due to being a def-use chain of single-use nodes that 376 /// either forms a cycle or is terminated by a trivially dead instruction, 377 /// delete it. If that makes any of its operands trivially dead, delete them 378 /// too, recursively. Return true if a change was made. 379 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 380 const TargetLibraryInfo *TLI) { 381 SmallPtrSet<Instruction*, 4> Visited; 382 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 383 I = cast<Instruction>(*I->use_begin())) { 384 if (I->use_empty()) 385 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 386 387 // If we find an instruction more than once, we're on a cycle that 388 // won't prove fruitful. 389 if (!Visited.insert(I)) { 390 // Break the cycle and delete the instruction and its operands. 391 I->replaceAllUsesWith(UndefValue::get(I->getType())); 392 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 393 return true; 394 } 395 } 396 return false; 397 } 398 399 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 400 /// simplify any instructions in it and recursively delete dead instructions. 401 /// 402 /// This returns true if it changed the code, note that it can delete 403 /// instructions in other blocks as well in this block. 404 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD, 405 const TargetLibraryInfo *TLI) { 406 bool MadeChange = false; 407 408 #ifndef NDEBUG 409 // In debug builds, ensure that the terminator of the block is never replaced 410 // or deleted by these simplifications. The idea of simplification is that it 411 // cannot introduce new instructions, and there is no way to replace the 412 // terminator of a block without introducing a new instruction. 413 AssertingVH<Instruction> TerminatorVH(--BB->end()); 414 #endif 415 416 for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) { 417 assert(!BI->isTerminator()); 418 Instruction *Inst = BI++; 419 420 WeakVH BIHandle(BI); 421 if (recursivelySimplifyInstruction(Inst, TD)) { 422 MadeChange = true; 423 if (BIHandle != BI) 424 BI = BB->begin(); 425 continue; 426 } 427 428 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 429 if (BIHandle != BI) 430 BI = BB->begin(); 431 } 432 return MadeChange; 433 } 434 435 //===----------------------------------------------------------------------===// 436 // Control Flow Graph Restructuring. 437 // 438 439 440 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 441 /// method is called when we're about to delete Pred as a predecessor of BB. If 442 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 443 /// 444 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 445 /// nodes that collapse into identity values. For example, if we have: 446 /// x = phi(1, 0, 0, 0) 447 /// y = and x, z 448 /// 449 /// .. and delete the predecessor corresponding to the '1', this will attempt to 450 /// recursively fold the and to 0. 451 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 452 DataLayout *TD) { 453 // This only adjusts blocks with PHI nodes. 454 if (!isa<PHINode>(BB->begin())) 455 return; 456 457 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 458 // them down. This will leave us with single entry phi nodes and other phis 459 // that can be removed. 460 BB->removePredecessor(Pred, true); 461 462 WeakVH PhiIt = &BB->front(); 463 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 464 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 465 Value *OldPhiIt = PhiIt; 466 467 if (!recursivelySimplifyInstruction(PN, TD)) 468 continue; 469 470 // If recursive simplification ended up deleting the next PHI node we would 471 // iterate to, then our iterator is invalid, restart scanning from the top 472 // of the block. 473 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 474 } 475 } 476 477 478 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 479 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 480 /// between them, moving the instructions in the predecessor into DestBB and 481 /// deleting the predecessor block. 482 /// 483 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { 484 // If BB has single-entry PHI nodes, fold them. 485 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 486 Value *NewVal = PN->getIncomingValue(0); 487 // Replace self referencing PHI with undef, it must be dead. 488 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 489 PN->replaceAllUsesWith(NewVal); 490 PN->eraseFromParent(); 491 } 492 493 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 494 assert(PredBB && "Block doesn't have a single predecessor!"); 495 496 // Zap anything that took the address of DestBB. Not doing this will give the 497 // address an invalid value. 498 if (DestBB->hasAddressTaken()) { 499 BlockAddress *BA = BlockAddress::get(DestBB); 500 Constant *Replacement = 501 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); 502 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 503 BA->getType())); 504 BA->destroyConstant(); 505 } 506 507 // Anything that branched to PredBB now branches to DestBB. 508 PredBB->replaceAllUsesWith(DestBB); 509 510 // Splice all the instructions from PredBB to DestBB. 511 PredBB->getTerminator()->eraseFromParent(); 512 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 513 514 if (P) { 515 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); 516 if (DT) { 517 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); 518 DT->changeImmediateDominator(DestBB, PredBBIDom); 519 DT->eraseNode(PredBB); 520 } 521 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); 522 if (PI) { 523 PI->replaceAllUses(PredBB, DestBB); 524 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); 525 } 526 } 527 // Nuke BB. 528 PredBB->eraseFromParent(); 529 } 530 531 /// CanMergeValues - Return true if we can choose one of these values to use 532 /// in place of the other. Note that we will always choose the non-undef 533 /// value to keep. 534 static bool CanMergeValues(Value *First, Value *Second) { 535 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 536 } 537 538 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 539 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 540 /// 541 /// Assumption: Succ is the single successor for BB. 542 /// 543 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 544 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 545 546 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 547 << Succ->getName() << "\n"); 548 // Shortcut, if there is only a single predecessor it must be BB and merging 549 // is always safe 550 if (Succ->getSinglePredecessor()) return true; 551 552 // Make a list of the predecessors of BB 553 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 554 555 // Look at all the phi nodes in Succ, to see if they present a conflict when 556 // merging these blocks 557 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 558 PHINode *PN = cast<PHINode>(I); 559 560 // If the incoming value from BB is again a PHINode in 561 // BB which has the same incoming value for *PI as PN does, we can 562 // merge the phi nodes and then the blocks can still be merged 563 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 564 if (BBPN && BBPN->getParent() == BB) { 565 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 566 BasicBlock *IBB = PN->getIncomingBlock(PI); 567 if (BBPreds.count(IBB) && 568 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 569 PN->getIncomingValue(PI))) { 570 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 571 << Succ->getName() << " is conflicting with " 572 << BBPN->getName() << " with regard to common predecessor " 573 << IBB->getName() << "\n"); 574 return false; 575 } 576 } 577 } else { 578 Value* Val = PN->getIncomingValueForBlock(BB); 579 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 580 // See if the incoming value for the common predecessor is equal to the 581 // one for BB, in which case this phi node will not prevent the merging 582 // of the block. 583 BasicBlock *IBB = PN->getIncomingBlock(PI); 584 if (BBPreds.count(IBB) && 585 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 586 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " 587 << Succ->getName() << " is conflicting with regard to common " 588 << "predecessor " << IBB->getName() << "\n"); 589 return false; 590 } 591 } 592 } 593 } 594 595 return true; 596 } 597 598 typedef SmallVector<BasicBlock *, 16> PredBlockVector; 599 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap; 600 601 /// \brief Determines the value to use as the phi node input for a block. 602 /// 603 /// Select between \p OldVal any value that we know flows from \p BB 604 /// to a particular phi on the basis of which one (if either) is not 605 /// undef. Update IncomingValues based on the selected value. 606 /// 607 /// \param OldVal The value we are considering selecting. 608 /// \param BB The block that the value flows in from. 609 /// \param IncomingValues A map from block-to-value for other phi inputs 610 /// that we have examined. 611 /// 612 /// \returns the selected value. 613 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 614 IncomingValueMap &IncomingValues) { 615 if (!isa<UndefValue>(OldVal)) { 616 assert((!IncomingValues.count(BB) || 617 IncomingValues.find(BB)->second == OldVal) && 618 "Expected OldVal to match incoming value from BB!"); 619 620 IncomingValues.insert(std::make_pair(BB, OldVal)); 621 return OldVal; 622 } 623 624 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 625 if (It != IncomingValues.end()) return It->second; 626 627 return OldVal; 628 } 629 630 /// \brief Create a map from block to value for the operands of a 631 /// given phi. 632 /// 633 /// Create a map from block to value for each non-undef value flowing 634 /// into \p PN. 635 /// 636 /// \param PN The phi we are collecting the map for. 637 /// \param IncomingValues [out] The map from block to value for this phi. 638 static void gatherIncomingValuesToPhi(PHINode *PN, 639 IncomingValueMap &IncomingValues) { 640 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 641 BasicBlock *BB = PN->getIncomingBlock(i); 642 Value *V = PN->getIncomingValue(i); 643 644 if (!isa<UndefValue>(V)) 645 IncomingValues.insert(std::make_pair(BB, V)); 646 } 647 } 648 649 /// \brief Replace the incoming undef values to a phi with the values 650 /// from a block-to-value map. 651 /// 652 /// \param PN The phi we are replacing the undefs in. 653 /// \param IncomingValues A map from block to value. 654 static void replaceUndefValuesInPhi(PHINode *PN, 655 const IncomingValueMap &IncomingValues) { 656 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 657 Value *V = PN->getIncomingValue(i); 658 659 if (!isa<UndefValue>(V)) continue; 660 661 BasicBlock *BB = PN->getIncomingBlock(i); 662 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 663 if (It == IncomingValues.end()) continue; 664 665 PN->setIncomingValue(i, It->second); 666 } 667 } 668 669 /// \brief Replace a value flowing from a block to a phi with 670 /// potentially multiple instances of that value flowing from the 671 /// block's predecessors to the phi. 672 /// 673 /// \param BB The block with the value flowing into the phi. 674 /// \param BBPreds The predecessors of BB. 675 /// \param PN The phi that we are updating. 676 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 677 const PredBlockVector &BBPreds, 678 PHINode *PN) { 679 Value *OldVal = PN->removeIncomingValue(BB, false); 680 assert(OldVal && "No entry in PHI for Pred BB!"); 681 682 IncomingValueMap IncomingValues; 683 684 // We are merging two blocks - BB, and the block containing PN - and 685 // as a result we need to redirect edges from the predecessors of BB 686 // to go to the block containing PN, and update PN 687 // accordingly. Since we allow merging blocks in the case where the 688 // predecessor and successor blocks both share some predecessors, 689 // and where some of those common predecessors might have undef 690 // values flowing into PN, we want to rewrite those values to be 691 // consistent with the non-undef values. 692 693 gatherIncomingValuesToPhi(PN, IncomingValues); 694 695 // If this incoming value is one of the PHI nodes in BB, the new entries 696 // in the PHI node are the entries from the old PHI. 697 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 698 PHINode *OldValPN = cast<PHINode>(OldVal); 699 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 700 // Note that, since we are merging phi nodes and BB and Succ might 701 // have common predecessors, we could end up with a phi node with 702 // identical incoming branches. This will be cleaned up later (and 703 // will trigger asserts if we try to clean it up now, without also 704 // simplifying the corresponding conditional branch). 705 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 706 Value *PredVal = OldValPN->getIncomingValue(i); 707 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 708 IncomingValues); 709 710 // And add a new incoming value for this predecessor for the 711 // newly retargeted branch. 712 PN->addIncoming(Selected, PredBB); 713 } 714 } else { 715 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 716 // Update existing incoming values in PN for this 717 // predecessor of BB. 718 BasicBlock *PredBB = BBPreds[i]; 719 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 720 IncomingValues); 721 722 // And add a new incoming value for this predecessor for the 723 // newly retargeted branch. 724 PN->addIncoming(Selected, PredBB); 725 } 726 } 727 728 replaceUndefValuesInPhi(PN, IncomingValues); 729 } 730 731 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 732 /// unconditional branch, and contains no instructions other than PHI nodes, 733 /// potential side-effect free intrinsics and the branch. If possible, 734 /// eliminate BB by rewriting all the predecessors to branch to the successor 735 /// block and return true. If we can't transform, return false. 736 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { 737 assert(BB != &BB->getParent()->getEntryBlock() && 738 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 739 740 // We can't eliminate infinite loops. 741 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 742 if (BB == Succ) return false; 743 744 // Check to see if merging these blocks would cause conflicts for any of the 745 // phi nodes in BB or Succ. If not, we can safely merge. 746 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 747 748 // Check for cases where Succ has multiple predecessors and a PHI node in BB 749 // has uses which will not disappear when the PHI nodes are merged. It is 750 // possible to handle such cases, but difficult: it requires checking whether 751 // BB dominates Succ, which is non-trivial to calculate in the case where 752 // Succ has multiple predecessors. Also, it requires checking whether 753 // constructing the necessary self-referential PHI node doesn't introduce any 754 // conflicts; this isn't too difficult, but the previous code for doing this 755 // was incorrect. 756 // 757 // Note that if this check finds a live use, BB dominates Succ, so BB is 758 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 759 // folding the branch isn't profitable in that case anyway. 760 if (!Succ->getSinglePredecessor()) { 761 BasicBlock::iterator BBI = BB->begin(); 762 while (isa<PHINode>(*BBI)) { 763 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 764 UI != E; ++UI) { 765 if (PHINode* PN = dyn_cast<PHINode>(*UI)) { 766 if (PN->getIncomingBlock(UI) != BB) 767 return false; 768 } else { 769 return false; 770 } 771 } 772 ++BBI; 773 } 774 } 775 776 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 777 778 if (isa<PHINode>(Succ->begin())) { 779 // If there is more than one pred of succ, and there are PHI nodes in 780 // the successor, then we need to add incoming edges for the PHI nodes 781 // 782 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 783 784 // Loop over all of the PHI nodes in the successor of BB. 785 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 786 PHINode *PN = cast<PHINode>(I); 787 788 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 789 } 790 } 791 792 if (Succ->getSinglePredecessor()) { 793 // BB is the only predecessor of Succ, so Succ will end up with exactly 794 // the same predecessors BB had. 795 796 // Copy over any phi, debug or lifetime instruction. 797 BB->getTerminator()->eraseFromParent(); 798 Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); 799 } else { 800 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 801 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 802 assert(PN->use_empty() && "There shouldn't be any uses here!"); 803 PN->eraseFromParent(); 804 } 805 } 806 807 // Everything that jumped to BB now goes to Succ. 808 BB->replaceAllUsesWith(Succ); 809 if (!Succ->hasName()) Succ->takeName(BB); 810 BB->eraseFromParent(); // Delete the old basic block. 811 return true; 812 } 813 814 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 815 /// nodes in this block. This doesn't try to be clever about PHI nodes 816 /// which differ only in the order of the incoming values, but instcombine 817 /// orders them so it usually won't matter. 818 /// 819 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 820 bool Changed = false; 821 822 // This implementation doesn't currently consider undef operands 823 // specially. Theoretically, two phis which are identical except for 824 // one having an undef where the other doesn't could be collapsed. 825 826 // Map from PHI hash values to PHI nodes. If multiple PHIs have 827 // the same hash value, the element is the first PHI in the 828 // linked list in CollisionMap. 829 DenseMap<uintptr_t, PHINode *> HashMap; 830 831 // Maintain linked lists of PHI nodes with common hash values. 832 DenseMap<PHINode *, PHINode *> CollisionMap; 833 834 // Examine each PHI. 835 for (BasicBlock::iterator I = BB->begin(); 836 PHINode *PN = dyn_cast<PHINode>(I++); ) { 837 // Compute a hash value on the operands. Instcombine will likely have sorted 838 // them, which helps expose duplicates, but we have to check all the 839 // operands to be safe in case instcombine hasn't run. 840 uintptr_t Hash = 0; 841 // This hash algorithm is quite weak as hash functions go, but it seems 842 // to do a good enough job for this particular purpose, and is very quick. 843 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { 844 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); 845 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 846 } 847 for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); 848 I != E; ++I) { 849 Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); 850 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); 851 } 852 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. 853 Hash >>= 1; 854 // If we've never seen this hash value before, it's a unique PHI. 855 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = 856 HashMap.insert(std::make_pair(Hash, PN)); 857 if (Pair.second) continue; 858 // Otherwise it's either a duplicate or a hash collision. 859 for (PHINode *OtherPN = Pair.first->second; ; ) { 860 if (OtherPN->isIdenticalTo(PN)) { 861 // A duplicate. Replace this PHI with its duplicate. 862 PN->replaceAllUsesWith(OtherPN); 863 PN->eraseFromParent(); 864 Changed = true; 865 break; 866 } 867 // A non-duplicate hash collision. 868 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); 869 if (I == CollisionMap.end()) { 870 // Set this PHI to be the head of the linked list of colliding PHIs. 871 PHINode *Old = Pair.first->second; 872 Pair.first->second = PN; 873 CollisionMap[PN] = Old; 874 break; 875 } 876 // Proceed to the next PHI in the list. 877 OtherPN = I->second; 878 } 879 } 880 881 return Changed; 882 } 883 884 /// enforceKnownAlignment - If the specified pointer points to an object that 885 /// we control, modify the object's alignment to PrefAlign. This isn't 886 /// often possible though. If alignment is important, a more reliable approach 887 /// is to simply align all global variables and allocation instructions to 888 /// their preferred alignment from the beginning. 889 /// 890 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 891 unsigned PrefAlign, const DataLayout *TD) { 892 V = V->stripPointerCasts(); 893 894 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 895 // If the preferred alignment is greater than the natural stack alignment 896 // then don't round up. This avoids dynamic stack realignment. 897 if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) 898 return Align; 899 // If there is a requested alignment and if this is an alloca, round up. 900 if (AI->getAlignment() >= PrefAlign) 901 return AI->getAlignment(); 902 AI->setAlignment(PrefAlign); 903 return PrefAlign; 904 } 905 906 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 907 // If there is a large requested alignment and we can, bump up the alignment 908 // of the global. 909 if (GV->isDeclaration()) return Align; 910 // If the memory we set aside for the global may not be the memory used by 911 // the final program then it is impossible for us to reliably enforce the 912 // preferred alignment. 913 if (GV->isWeakForLinker()) return Align; 914 915 if (GV->getAlignment() >= PrefAlign) 916 return GV->getAlignment(); 917 // We can only increase the alignment of the global if it has no alignment 918 // specified or if it is not assigned a section. If it is assigned a 919 // section, the global could be densely packed with other objects in the 920 // section, increasing the alignment could cause padding issues. 921 if (!GV->hasSection() || GV->getAlignment() == 0) 922 GV->setAlignment(PrefAlign); 923 return GV->getAlignment(); 924 } 925 926 return Align; 927 } 928 929 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that 930 /// we can determine, return it, otherwise return 0. If PrefAlign is specified, 931 /// and it is more than the alignment of the ultimate object, see if we can 932 /// increase the alignment of the ultimate object, making this check succeed. 933 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 934 const DataLayout *DL) { 935 assert(V->getType()->isPointerTy() && 936 "getOrEnforceKnownAlignment expects a pointer!"); 937 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64; 938 939 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 940 ComputeMaskedBits(V, KnownZero, KnownOne, DL); 941 unsigned TrailZ = KnownZero.countTrailingOnes(); 942 943 // Avoid trouble with ridiculously large TrailZ values, such as 944 // those computed from a null pointer. 945 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 946 947 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); 948 949 // LLVM doesn't support alignments larger than this currently. 950 Align = std::min(Align, +Value::MaximumAlignment); 951 952 if (PrefAlign > Align) 953 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 954 955 // We don't need to make any adjustment. 956 return Align; 957 } 958 959 ///===---------------------------------------------------------------------===// 960 /// Dbg Intrinsic utilities 961 /// 962 963 /// See if there is a dbg.value intrinsic for DIVar before I. 964 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) { 965 // Since we can't guarantee that the original dbg.declare instrinsic 966 // is removed by LowerDbgDeclare(), we need to make sure that we are 967 // not inserting the same dbg.value intrinsic over and over. 968 llvm::BasicBlock::InstListType::iterator PrevI(I); 969 if (PrevI != I->getParent()->getInstList().begin()) { 970 --PrevI; 971 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 972 if (DVI->getValue() == I->getOperand(0) && 973 DVI->getOffset() == 0 && 974 DVI->getVariable() == DIVar) 975 return true; 976 } 977 return false; 978 } 979 980 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 981 /// that has an associated llvm.dbg.decl intrinsic. 982 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 983 StoreInst *SI, DIBuilder &Builder) { 984 DIVariable DIVar(DDI->getVariable()); 985 assert((!DIVar || DIVar.isVariable()) && 986 "Variable in DbgDeclareInst should be either null or a DIVariable."); 987 if (!DIVar) 988 return false; 989 990 if (LdStHasDebugValue(DIVar, SI)) 991 return true; 992 993 Instruction *DbgVal = NULL; 994 // If an argument is zero extended then use argument directly. The ZExt 995 // may be zapped by an optimization pass in future. 996 Argument *ExtendedArg = NULL; 997 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 998 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 999 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1000 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1001 if (ExtendedArg) 1002 DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); 1003 else 1004 DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); 1005 1006 // Propagate any debug metadata from the store onto the dbg.value. 1007 DebugLoc SIDL = SI->getDebugLoc(); 1008 if (!SIDL.isUnknown()) 1009 DbgVal->setDebugLoc(SIDL); 1010 // Otherwise propagate debug metadata from dbg.declare. 1011 else 1012 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1013 return true; 1014 } 1015 1016 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1017 /// that has an associated llvm.dbg.decl intrinsic. 1018 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, 1019 LoadInst *LI, DIBuilder &Builder) { 1020 DIVariable DIVar(DDI->getVariable()); 1021 assert((!DIVar || DIVar.isVariable()) && 1022 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1023 if (!DIVar) 1024 return false; 1025 1026 if (LdStHasDebugValue(DIVar, LI)) 1027 return true; 1028 1029 Instruction *DbgVal = 1030 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, 1031 DIVar, LI); 1032 1033 // Propagate any debug metadata from the store onto the dbg.value. 1034 DebugLoc LIDL = LI->getDebugLoc(); 1035 if (!LIDL.isUnknown()) 1036 DbgVal->setDebugLoc(LIDL); 1037 // Otherwise propagate debug metadata from dbg.declare. 1038 else 1039 DbgVal->setDebugLoc(DDI->getDebugLoc()); 1040 return true; 1041 } 1042 1043 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1044 /// of llvm.dbg.value intrinsics. 1045 bool llvm::LowerDbgDeclare(Function &F) { 1046 DIBuilder DIB(*F.getParent()); 1047 SmallVector<DbgDeclareInst *, 4> Dbgs; 1048 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 1049 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { 1050 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) 1051 Dbgs.push_back(DDI); 1052 } 1053 if (Dbgs.empty()) 1054 return false; 1055 1056 for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(), 1057 E = Dbgs.end(); I != E; ++I) { 1058 DbgDeclareInst *DDI = *I; 1059 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { 1060 // We only remove the dbg.declare intrinsic if all uses are 1061 // converted to dbg.value intrinsics. 1062 bool RemoveDDI = true; 1063 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 1064 UI != E; ++UI) 1065 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) 1066 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1067 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) 1068 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1069 else 1070 RemoveDDI = false; 1071 if (RemoveDDI) 1072 DDI->eraseFromParent(); 1073 } 1074 } 1075 return true; 1076 } 1077 1078 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the 1079 /// alloca 'V', if any. 1080 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { 1081 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) 1082 for (Value::use_iterator UI = DebugNode->use_begin(), 1083 E = DebugNode->use_end(); UI != E; ++UI) 1084 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) 1085 return DDI; 1086 1087 return 0; 1088 } 1089 1090 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1091 DIBuilder &Builder) { 1092 DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI); 1093 if (!DDI) 1094 return false; 1095 DIVariable DIVar(DDI->getVariable()); 1096 assert((!DIVar || DIVar.isVariable()) && 1097 "Variable in DbgDeclareInst should be either null or a DIVariable."); 1098 if (!DIVar) 1099 return false; 1100 1101 // Create a copy of the original DIDescriptor for user variable, appending 1102 // "deref" operation to a list of address elements, as new llvm.dbg.declare 1103 // will take a value storing address of the memory for variable, not 1104 // alloca itself. 1105 Type *Int64Ty = Type::getInt64Ty(AI->getContext()); 1106 SmallVector<Value*, 4> NewDIVarAddress; 1107 if (DIVar.hasComplexAddress()) { 1108 for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) { 1109 NewDIVarAddress.push_back( 1110 ConstantInt::get(Int64Ty, DIVar.getAddrElement(i))); 1111 } 1112 } 1113 NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref)); 1114 DIVariable NewDIVar = Builder.createComplexVariable( 1115 DIVar.getTag(), DIVar.getContext(), DIVar.getName(), 1116 DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(), 1117 NewDIVarAddress, DIVar.getArgNumber()); 1118 1119 // Insert llvm.dbg.declare in the same basic block as the original alloca, 1120 // and remove old llvm.dbg.declare. 1121 BasicBlock *BB = AI->getParent(); 1122 Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB); 1123 DDI->eraseFromParent(); 1124 return true; 1125 } 1126 1127 /// changeToUnreachable - Insert an unreachable instruction before the specified 1128 /// instruction, making it and the rest of the code in the block dead. 1129 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) { 1130 BasicBlock *BB = I->getParent(); 1131 // Loop over all of the successors, removing BB's entry from any PHI 1132 // nodes. 1133 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1134 (*SI)->removePredecessor(BB); 1135 1136 // Insert a call to llvm.trap right before this. This turns the undefined 1137 // behavior into a hard fail instead of falling through into random code. 1138 if (UseLLVMTrap) { 1139 Function *TrapFn = 1140 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1141 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1142 CallTrap->setDebugLoc(I->getDebugLoc()); 1143 } 1144 new UnreachableInst(I->getContext(), I); 1145 1146 // All instructions after this are dead. 1147 BasicBlock::iterator BBI = I, BBE = BB->end(); 1148 while (BBI != BBE) { 1149 if (!BBI->use_empty()) 1150 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1151 BB->getInstList().erase(BBI++); 1152 } 1153 } 1154 1155 /// changeToCall - Convert the specified invoke into a normal call. 1156 static void changeToCall(InvokeInst *II) { 1157 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 1158 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 1159 NewCall->takeName(II); 1160 NewCall->setCallingConv(II->getCallingConv()); 1161 NewCall->setAttributes(II->getAttributes()); 1162 NewCall->setDebugLoc(II->getDebugLoc()); 1163 II->replaceAllUsesWith(NewCall); 1164 1165 // Follow the call by a branch to the normal destination. 1166 BranchInst::Create(II->getNormalDest(), II); 1167 1168 // Update PHI nodes in the unwind destination 1169 II->getUnwindDest()->removePredecessor(II->getParent()); 1170 II->eraseFromParent(); 1171 } 1172 1173 static bool markAliveBlocks(BasicBlock *BB, 1174 SmallPtrSet<BasicBlock*, 128> &Reachable) { 1175 1176 SmallVector<BasicBlock*, 128> Worklist; 1177 Worklist.push_back(BB); 1178 Reachable.insert(BB); 1179 bool Changed = false; 1180 do { 1181 BB = Worklist.pop_back_val(); 1182 1183 // Do a quick scan of the basic block, turning any obviously unreachable 1184 // instructions into LLVM unreachable insts. The instruction combining pass 1185 // canonicalizes unreachable insts into stores to null or undef. 1186 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 1187 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 1188 if (CI->doesNotReturn()) { 1189 // If we found a call to a no-return function, insert an unreachable 1190 // instruction after it. Make sure there isn't *already* one there 1191 // though. 1192 ++BBI; 1193 if (!isa<UnreachableInst>(BBI)) { 1194 // Don't insert a call to llvm.trap right before the unreachable. 1195 changeToUnreachable(BBI, false); 1196 Changed = true; 1197 } 1198 break; 1199 } 1200 } 1201 1202 // Store to undef and store to null are undefined and used to signal that 1203 // they should be changed to unreachable by passes that can't modify the 1204 // CFG. 1205 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 1206 // Don't touch volatile stores. 1207 if (SI->isVolatile()) continue; 1208 1209 Value *Ptr = SI->getOperand(1); 1210 1211 if (isa<UndefValue>(Ptr) || 1212 (isa<ConstantPointerNull>(Ptr) && 1213 SI->getPointerAddressSpace() == 0)) { 1214 changeToUnreachable(SI, true); 1215 Changed = true; 1216 break; 1217 } 1218 } 1219 } 1220 1221 // Turn invokes that call 'nounwind' functions into ordinary calls. 1222 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 1223 Value *Callee = II->getCalledValue(); 1224 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 1225 changeToUnreachable(II, true); 1226 Changed = true; 1227 } else if (II->doesNotThrow()) { 1228 if (II->use_empty() && II->onlyReadsMemory()) { 1229 // jump to the normal destination branch. 1230 BranchInst::Create(II->getNormalDest(), II); 1231 II->getUnwindDest()->removePredecessor(II->getParent()); 1232 II->eraseFromParent(); 1233 } else 1234 changeToCall(II); 1235 Changed = true; 1236 } 1237 } 1238 1239 Changed |= ConstantFoldTerminator(BB, true); 1240 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1241 if (Reachable.insert(*SI)) 1242 Worklist.push_back(*SI); 1243 } while (!Worklist.empty()); 1244 return Changed; 1245 } 1246 1247 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even 1248 /// if they are in a dead cycle. Return true if a change was made, false 1249 /// otherwise. 1250 bool llvm::removeUnreachableBlocks(Function &F) { 1251 SmallPtrSet<BasicBlock*, 128> Reachable; 1252 bool Changed = markAliveBlocks(F.begin(), Reachable); 1253 1254 // If there are unreachable blocks in the CFG... 1255 if (Reachable.size() == F.size()) 1256 return Changed; 1257 1258 assert(Reachable.size() < F.size()); 1259 NumRemoved += F.size()-Reachable.size(); 1260 1261 // Loop over all of the basic blocks that are not reachable, dropping all of 1262 // their internal references... 1263 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 1264 if (Reachable.count(BB)) 1265 continue; 1266 1267 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 1268 if (Reachable.count(*SI)) 1269 (*SI)->removePredecessor(BB); 1270 BB->dropAllReferences(); 1271 } 1272 1273 for (Function::iterator I = ++F.begin(); I != F.end();) 1274 if (!Reachable.count(I)) 1275 I = F.getBasicBlockList().erase(I); 1276 else 1277 ++I; 1278 1279 return true; 1280 } 1281