1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/AssumeBundleQueries.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/DomTreeUpdater.h" 31 #include "llvm/Analysis/EHPersonalities.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Analysis/LazyValueInfo.h" 34 #include "llvm/Analysis/MemoryBuiltins.h" 35 #include "llvm/Analysis/MemorySSAUpdater.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/BinaryFormat/Dwarf.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms 115 static const unsigned BitPartRecursionMaxDepth = 64; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 Builder.CreateBr(Dest1); 152 Value *Cond = BI->getCondition(); 153 BI->eraseFromParent(); 154 if (DeleteDeadConditions) 155 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 156 return true; 157 } 158 159 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 160 // Are we branching on constant? 161 // YES. Change to unconditional branch... 162 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 163 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 164 165 // Let the basic block know that we are letting go of it. Based on this, 166 // it will adjust it's PHI nodes. 167 OldDest->removePredecessor(BB); 168 169 // Replace the conditional branch with an unconditional one. 170 Builder.CreateBr(Destination); 171 BI->eraseFromParent(); 172 if (DTU) 173 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 174 return true; 175 } 176 177 return false; 178 } 179 180 if (auto *SI = dyn_cast<SwitchInst>(T)) { 181 // If we are switching on a constant, we can convert the switch to an 182 // unconditional branch. 183 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 184 BasicBlock *DefaultDest = SI->getDefaultDest(); 185 BasicBlock *TheOnlyDest = DefaultDest; 186 187 // If the default is unreachable, ignore it when searching for TheOnlyDest. 188 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 189 SI->getNumCases() > 0) { 190 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 191 } 192 193 bool Changed = false; 194 195 // Figure out which case it goes to. 196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 197 // Found case matching a constant operand? 198 if (i->getCaseValue() == CI) { 199 TheOnlyDest = i->getCaseSuccessor(); 200 break; 201 } 202 203 // Check to see if this branch is going to the same place as the default 204 // dest. If so, eliminate it as an explicit compare. 205 if (i->getCaseSuccessor() == DefaultDest) { 206 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 207 unsigned NCases = SI->getNumCases(); 208 // Fold the case metadata into the default if there will be any branches 209 // left, unless the metadata doesn't match the switch. 210 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 211 // Collect branch weights into a vector. 212 SmallVector<uint32_t, 8> Weights; 213 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 214 ++MD_i) { 215 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 216 Weights.push_back(CI->getValue().getZExtValue()); 217 } 218 // Merge weight of this case to the default weight. 219 unsigned idx = i->getCaseIndex(); 220 Weights[0] += Weights[idx+1]; 221 // Remove weight for this case. 222 std::swap(Weights[idx+1], Weights.back()); 223 Weights.pop_back(); 224 SI->setMetadata(LLVMContext::MD_prof, 225 MDBuilder(BB->getContext()). 226 createBranchWeights(Weights)); 227 } 228 // Remove this entry. 229 BasicBlock *ParentBB = SI->getParent(); 230 DefaultDest->removePredecessor(ParentBB); 231 i = SI->removeCase(i); 232 e = SI->case_end(); 233 Changed = true; 234 continue; 235 } 236 237 // Otherwise, check to see if the switch only branches to one destination. 238 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 239 // destinations. 240 if (i->getCaseSuccessor() != TheOnlyDest) 241 TheOnlyDest = nullptr; 242 243 // Increment this iterator as we haven't removed the case. 244 ++i; 245 } 246 247 if (CI && !TheOnlyDest) { 248 // Branching on a constant, but not any of the cases, go to the default 249 // successor. 250 TheOnlyDest = SI->getDefaultDest(); 251 } 252 253 // If we found a single destination that we can fold the switch into, do so 254 // now. 255 if (TheOnlyDest) { 256 // Insert the new branch. 257 Builder.CreateBr(TheOnlyDest); 258 BasicBlock *BB = SI->getParent(); 259 260 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 261 262 // Remove entries from PHI nodes which we no longer branch to... 263 BasicBlock *SuccToKeep = TheOnlyDest; 264 for (BasicBlock *Succ : successors(SI)) { 265 if (DTU && Succ != TheOnlyDest) 266 RemovedSuccessors.insert(Succ); 267 // Found case matching a constant operand? 268 if (Succ == SuccToKeep) { 269 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 270 } else { 271 Succ->removePredecessor(BB); 272 } 273 } 274 275 // Delete the old switch. 276 Value *Cond = SI->getCondition(); 277 SI->eraseFromParent(); 278 if (DeleteDeadConditions) 279 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 280 if (DTU) { 281 std::vector<DominatorTree::UpdateType> Updates; 282 Updates.reserve(RemovedSuccessors.size()); 283 for (auto *RemovedSuccessor : RemovedSuccessors) 284 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 285 DTU->applyUpdates(Updates); 286 } 287 return true; 288 } 289 290 if (SI->getNumCases() == 1) { 291 // Otherwise, we can fold this switch into a conditional branch 292 // instruction if it has only one non-default destination. 293 auto FirstCase = *SI->case_begin(); 294 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 295 FirstCase.getCaseValue(), "cond"); 296 297 // Insert the new branch. 298 BranchInst *NewBr = Builder.CreateCondBr(Cond, 299 FirstCase.getCaseSuccessor(), 300 SI->getDefaultDest()); 301 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 302 if (MD && MD->getNumOperands() == 3) { 303 ConstantInt *SICase = 304 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 305 ConstantInt *SIDef = 306 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 307 assert(SICase && SIDef); 308 // The TrueWeight should be the weight for the single case of SI. 309 NewBr->setMetadata(LLVMContext::MD_prof, 310 MDBuilder(BB->getContext()). 311 createBranchWeights(SICase->getValue().getZExtValue(), 312 SIDef->getValue().getZExtValue())); 313 } 314 315 // Update make.implicit metadata to the newly-created conditional branch. 316 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 317 if (MakeImplicitMD) 318 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 319 320 // Delete the old switch. 321 SI->eraseFromParent(); 322 return true; 323 } 324 return Changed; 325 } 326 327 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 328 // indirectbr blockaddress(@F, @BB) -> br label @BB 329 if (auto *BA = 330 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 331 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 332 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 333 334 // Insert the new branch. 335 Builder.CreateBr(TheOnlyDest); 336 337 BasicBlock *SuccToKeep = TheOnlyDest; 338 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 339 BasicBlock *DestBB = IBI->getDestination(i); 340 if (DTU && DestBB != TheOnlyDest) 341 RemovedSuccessors.insert(DestBB); 342 if (IBI->getDestination(i) == SuccToKeep) { 343 SuccToKeep = nullptr; 344 } else { 345 DestBB->removePredecessor(BB); 346 } 347 } 348 Value *Address = IBI->getAddress(); 349 IBI->eraseFromParent(); 350 if (DeleteDeadConditions) 351 // Delete pointer cast instructions. 352 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 353 354 // Also zap the blockaddress constant if there are no users remaining, 355 // otherwise the destination is still marked as having its address taken. 356 if (BA->use_empty()) 357 BA->destroyConstant(); 358 359 // If we didn't find our destination in the IBI successor list, then we 360 // have undefined behavior. Replace the unconditional branch with an 361 // 'unreachable' instruction. 362 if (SuccToKeep) { 363 BB->getTerminator()->eraseFromParent(); 364 new UnreachableInst(BB->getContext(), BB); 365 } 366 367 if (DTU) { 368 std::vector<DominatorTree::UpdateType> Updates; 369 Updates.reserve(RemovedSuccessors.size()); 370 for (auto *RemovedSuccessor : RemovedSuccessors) 371 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 372 DTU->applyUpdates(Updates); 373 } 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 //===----------------------------------------------------------------------===// 382 // Local dead code elimination. 383 // 384 385 /// isInstructionTriviallyDead - Return true if the result produced by the 386 /// instruction is not used, and the instruction has no side effects. 387 /// 388 bool llvm::isInstructionTriviallyDead(Instruction *I, 389 const TargetLibraryInfo *TLI) { 390 if (!I->use_empty()) 391 return false; 392 return wouldInstructionBeTriviallyDead(I, TLI); 393 } 394 395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 396 const TargetLibraryInfo *TLI) { 397 if (I->isTerminator()) 398 return false; 399 400 // We don't want the landingpad-like instructions removed by anything this 401 // general. 402 if (I->isEHPad()) 403 return false; 404 405 // We don't want debug info removed by anything this general, unless 406 // debug info is empty. 407 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 408 if (DDI->getAddress()) 409 return false; 410 return true; 411 } 412 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 413 if (DVI->getValue()) 414 return false; 415 return true; 416 } 417 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 418 if (DLI->getLabel()) 419 return false; 420 return true; 421 } 422 423 if (!I->willReturn()) 424 return false; 425 426 if (!I->mayHaveSideEffects()) 427 return true; 428 429 // Special case intrinsics that "may have side effects" but can be deleted 430 // when dead. 431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 432 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 433 if (II->getIntrinsicID() == Intrinsic::stacksave || 434 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 435 return true; 436 437 if (II->isLifetimeStartOrEnd()) { 438 auto *Arg = II->getArgOperand(1); 439 // Lifetime intrinsics are dead when their right-hand is undef. 440 if (isa<UndefValue>(Arg)) 441 return true; 442 // If the right-hand is an alloc, global, or argument and the only uses 443 // are lifetime intrinsics then the intrinsics are dead. 444 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 445 return llvm::all_of(Arg->uses(), [](Use &Use) { 446 if (IntrinsicInst *IntrinsicUse = 447 dyn_cast<IntrinsicInst>(Use.getUser())) 448 return IntrinsicUse->isLifetimeStartOrEnd(); 449 return false; 450 }); 451 return false; 452 } 453 454 // Assumptions are dead if their condition is trivially true. Guards on 455 // true are operationally no-ops. In the future we can consider more 456 // sophisticated tradeoffs for guards considering potential for check 457 // widening, but for now we keep things simple. 458 if ((II->getIntrinsicID() == Intrinsic::assume && 459 isAssumeWithEmptyBundle(*II)) || 460 II->getIntrinsicID() == Intrinsic::experimental_guard) { 461 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 462 return !Cond->isZero(); 463 464 return false; 465 } 466 } 467 468 if (isAllocLikeFn(I, TLI)) 469 return true; 470 471 if (CallInst *CI = isFreeCall(I, TLI)) 472 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 473 return C->isNullValue() || isa<UndefValue>(C); 474 475 if (auto *Call = dyn_cast<CallBase>(I)) 476 if (isMathLibCallNoop(Call, TLI)) 477 return true; 478 479 return false; 480 } 481 482 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 483 /// trivially dead instruction, delete it. If that makes any of its operands 484 /// trivially dead, delete them too, recursively. Return true if any 485 /// instructions were deleted. 486 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 487 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 488 std::function<void(Value *)> AboutToDeleteCallback) { 489 Instruction *I = dyn_cast<Instruction>(V); 490 if (!I || !isInstructionTriviallyDead(I, TLI)) 491 return false; 492 493 SmallVector<WeakTrackingVH, 16> DeadInsts; 494 DeadInsts.push_back(I); 495 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 496 AboutToDeleteCallback); 497 498 return true; 499 } 500 501 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 502 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 503 MemorySSAUpdater *MSSAU, 504 std::function<void(Value *)> AboutToDeleteCallback) { 505 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 506 for (; S != E; ++S) { 507 auto *I = cast<Instruction>(DeadInsts[S]); 508 if (!isInstructionTriviallyDead(I)) { 509 DeadInsts[S] = nullptr; 510 ++Alive; 511 } 512 } 513 if (Alive == E) 514 return false; 515 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 516 AboutToDeleteCallback); 517 return true; 518 } 519 520 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 521 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 522 MemorySSAUpdater *MSSAU, 523 std::function<void(Value *)> AboutToDeleteCallback) { 524 // Process the dead instruction list until empty. 525 while (!DeadInsts.empty()) { 526 Value *V = DeadInsts.pop_back_val(); 527 Instruction *I = cast_or_null<Instruction>(V); 528 if (!I) 529 continue; 530 assert(isInstructionTriviallyDead(I, TLI) && 531 "Live instruction found in dead worklist!"); 532 assert(I->use_empty() && "Instructions with uses are not dead."); 533 534 // Don't lose the debug info while deleting the instructions. 535 salvageDebugInfo(*I); 536 537 if (AboutToDeleteCallback) 538 AboutToDeleteCallback(I); 539 540 // Null out all of the instruction's operands to see if any operand becomes 541 // dead as we go. 542 for (Use &OpU : I->operands()) { 543 Value *OpV = OpU.get(); 544 OpU.set(nullptr); 545 546 if (!OpV->use_empty()) 547 continue; 548 549 // If the operand is an instruction that became dead as we nulled out the 550 // operand, and if it is 'trivially' dead, delete it in a future loop 551 // iteration. 552 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 553 if (isInstructionTriviallyDead(OpI, TLI)) 554 DeadInsts.push_back(OpI); 555 } 556 if (MSSAU) 557 MSSAU->removeMemoryAccess(I); 558 559 I->eraseFromParent(); 560 } 561 } 562 563 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 564 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 565 findDbgUsers(DbgUsers, I); 566 for (auto *DII : DbgUsers) { 567 Value *Undef = UndefValue::get(I->getType()); 568 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 569 ValueAsMetadata::get(Undef))); 570 } 571 return !DbgUsers.empty(); 572 } 573 574 /// areAllUsesEqual - Check whether the uses of a value are all the same. 575 /// This is similar to Instruction::hasOneUse() except this will also return 576 /// true when there are no uses or multiple uses that all refer to the same 577 /// value. 578 static bool areAllUsesEqual(Instruction *I) { 579 Value::user_iterator UI = I->user_begin(); 580 Value::user_iterator UE = I->user_end(); 581 if (UI == UE) 582 return true; 583 584 User *TheUse = *UI; 585 for (++UI; UI != UE; ++UI) { 586 if (*UI != TheUse) 587 return false; 588 } 589 return true; 590 } 591 592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 593 /// dead PHI node, due to being a def-use chain of single-use nodes that 594 /// either forms a cycle or is terminated by a trivially dead instruction, 595 /// delete it. If that makes any of its operands trivially dead, delete them 596 /// too, recursively. Return true if a change was made. 597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 598 const TargetLibraryInfo *TLI, 599 llvm::MemorySSAUpdater *MSSAU) { 600 SmallPtrSet<Instruction*, 4> Visited; 601 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 602 I = cast<Instruction>(*I->user_begin())) { 603 if (I->use_empty()) 604 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 605 606 // If we find an instruction more than once, we're on a cycle that 607 // won't prove fruitful. 608 if (!Visited.insert(I).second) { 609 // Break the cycle and delete the instruction and its operands. 610 I->replaceAllUsesWith(UndefValue::get(I->getType())); 611 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 612 return true; 613 } 614 } 615 return false; 616 } 617 618 static bool 619 simplifyAndDCEInstruction(Instruction *I, 620 SmallSetVector<Instruction *, 16> &WorkList, 621 const DataLayout &DL, 622 const TargetLibraryInfo *TLI) { 623 if (isInstructionTriviallyDead(I, TLI)) { 624 salvageDebugInfo(*I); 625 626 // Null out all of the instruction's operands to see if any operand becomes 627 // dead as we go. 628 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 629 Value *OpV = I->getOperand(i); 630 I->setOperand(i, nullptr); 631 632 if (!OpV->use_empty() || I == OpV) 633 continue; 634 635 // If the operand is an instruction that became dead as we nulled out the 636 // operand, and if it is 'trivially' dead, delete it in a future loop 637 // iteration. 638 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 639 if (isInstructionTriviallyDead(OpI, TLI)) 640 WorkList.insert(OpI); 641 } 642 643 I->eraseFromParent(); 644 645 return true; 646 } 647 648 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 649 // Add the users to the worklist. CAREFUL: an instruction can use itself, 650 // in the case of a phi node. 651 for (User *U : I->users()) { 652 if (U != I) { 653 WorkList.insert(cast<Instruction>(U)); 654 } 655 } 656 657 // Replace the instruction with its simplified value. 658 bool Changed = false; 659 if (!I->use_empty()) { 660 I->replaceAllUsesWith(SimpleV); 661 Changed = true; 662 } 663 if (isInstructionTriviallyDead(I, TLI)) { 664 I->eraseFromParent(); 665 Changed = true; 666 } 667 return Changed; 668 } 669 return false; 670 } 671 672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 673 /// simplify any instructions in it and recursively delete dead instructions. 674 /// 675 /// This returns true if it changed the code, note that it can delete 676 /// instructions in other blocks as well in this block. 677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 678 const TargetLibraryInfo *TLI) { 679 bool MadeChange = false; 680 const DataLayout &DL = BB->getModule()->getDataLayout(); 681 682 #ifndef NDEBUG 683 // In debug builds, ensure that the terminator of the block is never replaced 684 // or deleted by these simplifications. The idea of simplification is that it 685 // cannot introduce new instructions, and there is no way to replace the 686 // terminator of a block without introducing a new instruction. 687 AssertingVH<Instruction> TerminatorVH(&BB->back()); 688 #endif 689 690 SmallSetVector<Instruction *, 16> WorkList; 691 // Iterate over the original function, only adding insts to the worklist 692 // if they actually need to be revisited. This avoids having to pre-init 693 // the worklist with the entire function's worth of instructions. 694 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 695 BI != E;) { 696 assert(!BI->isTerminator()); 697 Instruction *I = &*BI; 698 ++BI; 699 700 // We're visiting this instruction now, so make sure it's not in the 701 // worklist from an earlier visit. 702 if (!WorkList.count(I)) 703 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 704 } 705 706 while (!WorkList.empty()) { 707 Instruction *I = WorkList.pop_back_val(); 708 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 709 } 710 return MadeChange; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Control Flow Graph Restructuring. 715 // 716 717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 718 DomTreeUpdater *DTU) { 719 720 // If BB has single-entry PHI nodes, fold them. 721 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 722 Value *NewVal = PN->getIncomingValue(0); 723 // Replace self referencing PHI with undef, it must be dead. 724 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 725 PN->replaceAllUsesWith(NewVal); 726 PN->eraseFromParent(); 727 } 728 729 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 730 assert(PredBB && "Block doesn't have a single predecessor!"); 731 732 bool ReplaceEntryBB = false; 733 if (PredBB == &DestBB->getParent()->getEntryBlock()) 734 ReplaceEntryBB = true; 735 736 // DTU updates: Collect all the edges that enter 737 // PredBB. These dominator edges will be redirected to DestBB. 738 SmallVector<DominatorTree::UpdateType, 32> Updates; 739 740 if (DTU) { 741 for (BasicBlock *PredPredBB : predecessors(PredBB)) { 742 // This predecessor of PredBB may already have DestBB as a successor. 743 if (!llvm::is_contained(successors(PredPredBB), DestBB)) 744 Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB}); 745 Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB}); 746 } 747 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 748 } 749 750 // Zap anything that took the address of DestBB. Not doing this will give the 751 // address an invalid value. 752 if (DestBB->hasAddressTaken()) { 753 BlockAddress *BA = BlockAddress::get(DestBB); 754 Constant *Replacement = 755 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 756 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 757 BA->getType())); 758 BA->destroyConstant(); 759 } 760 761 // Anything that branched to PredBB now branches to DestBB. 762 PredBB->replaceAllUsesWith(DestBB); 763 764 // Splice all the instructions from PredBB to DestBB. 765 PredBB->getTerminator()->eraseFromParent(); 766 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 767 new UnreachableInst(PredBB->getContext(), PredBB); 768 769 // If the PredBB is the entry block of the function, move DestBB up to 770 // become the entry block after we erase PredBB. 771 if (ReplaceEntryBB) 772 DestBB->moveAfter(PredBB); 773 774 if (DTU) { 775 assert(PredBB->getInstList().size() == 1 && 776 isa<UnreachableInst>(PredBB->getTerminator()) && 777 "The successor list of PredBB isn't empty before " 778 "applying corresponding DTU updates."); 779 DTU->applyUpdatesPermissive(Updates); 780 DTU->deleteBB(PredBB); 781 // Recalculation of DomTree is needed when updating a forward DomTree and 782 // the Entry BB is replaced. 783 if (ReplaceEntryBB && DTU->hasDomTree()) { 784 // The entry block was removed and there is no external interface for 785 // the dominator tree to be notified of this change. In this corner-case 786 // we recalculate the entire tree. 787 DTU->recalculate(*(DestBB->getParent())); 788 } 789 } 790 791 else { 792 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 793 } 794 } 795 796 /// Return true if we can choose one of these values to use in place of the 797 /// other. Note that we will always choose the non-undef value to keep. 798 static bool CanMergeValues(Value *First, Value *Second) { 799 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 800 } 801 802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 803 /// branch to Succ, into Succ. 804 /// 805 /// Assumption: Succ is the single successor for BB. 806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 807 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 808 809 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 810 << Succ->getName() << "\n"); 811 // Shortcut, if there is only a single predecessor it must be BB and merging 812 // is always safe 813 if (Succ->getSinglePredecessor()) return true; 814 815 // Make a list of the predecessors of BB 816 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 817 818 // Look at all the phi nodes in Succ, to see if they present a conflict when 819 // merging these blocks 820 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 821 PHINode *PN = cast<PHINode>(I); 822 823 // If the incoming value from BB is again a PHINode in 824 // BB which has the same incoming value for *PI as PN does, we can 825 // merge the phi nodes and then the blocks can still be merged 826 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 827 if (BBPN && BBPN->getParent() == BB) { 828 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 829 BasicBlock *IBB = PN->getIncomingBlock(PI); 830 if (BBPreds.count(IBB) && 831 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 832 PN->getIncomingValue(PI))) { 833 LLVM_DEBUG(dbgs() 834 << "Can't fold, phi node " << PN->getName() << " in " 835 << Succ->getName() << " is conflicting with " 836 << BBPN->getName() << " with regard to common predecessor " 837 << IBB->getName() << "\n"); 838 return false; 839 } 840 } 841 } else { 842 Value* Val = PN->getIncomingValueForBlock(BB); 843 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 844 // See if the incoming value for the common predecessor is equal to the 845 // one for BB, in which case this phi node will not prevent the merging 846 // of the block. 847 BasicBlock *IBB = PN->getIncomingBlock(PI); 848 if (BBPreds.count(IBB) && 849 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 850 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 851 << " in " << Succ->getName() 852 << " is conflicting with regard to common " 853 << "predecessor " << IBB->getName() << "\n"); 854 return false; 855 } 856 } 857 } 858 } 859 860 return true; 861 } 862 863 using PredBlockVector = SmallVector<BasicBlock *, 16>; 864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 865 866 /// Determines the value to use as the phi node input for a block. 867 /// 868 /// Select between \p OldVal any value that we know flows from \p BB 869 /// to a particular phi on the basis of which one (if either) is not 870 /// undef. Update IncomingValues based on the selected value. 871 /// 872 /// \param OldVal The value we are considering selecting. 873 /// \param BB The block that the value flows in from. 874 /// \param IncomingValues A map from block-to-value for other phi inputs 875 /// that we have examined. 876 /// 877 /// \returns the selected value. 878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 879 IncomingValueMap &IncomingValues) { 880 if (!isa<UndefValue>(OldVal)) { 881 assert((!IncomingValues.count(BB) || 882 IncomingValues.find(BB)->second == OldVal) && 883 "Expected OldVal to match incoming value from BB!"); 884 885 IncomingValues.insert(std::make_pair(BB, OldVal)); 886 return OldVal; 887 } 888 889 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 890 if (It != IncomingValues.end()) return It->second; 891 892 return OldVal; 893 } 894 895 /// Create a map from block to value for the operands of a 896 /// given phi. 897 /// 898 /// Create a map from block to value for each non-undef value flowing 899 /// into \p PN. 900 /// 901 /// \param PN The phi we are collecting the map for. 902 /// \param IncomingValues [out] The map from block to value for this phi. 903 static void gatherIncomingValuesToPhi(PHINode *PN, 904 IncomingValueMap &IncomingValues) { 905 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 906 BasicBlock *BB = PN->getIncomingBlock(i); 907 Value *V = PN->getIncomingValue(i); 908 909 if (!isa<UndefValue>(V)) 910 IncomingValues.insert(std::make_pair(BB, V)); 911 } 912 } 913 914 /// Replace the incoming undef values to a phi with the values 915 /// from a block-to-value map. 916 /// 917 /// \param PN The phi we are replacing the undefs in. 918 /// \param IncomingValues A map from block to value. 919 static void replaceUndefValuesInPhi(PHINode *PN, 920 const IncomingValueMap &IncomingValues) { 921 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 922 Value *V = PN->getIncomingValue(i); 923 924 if (!isa<UndefValue>(V)) continue; 925 926 BasicBlock *BB = PN->getIncomingBlock(i); 927 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 928 if (It == IncomingValues.end()) continue; 929 930 PN->setIncomingValue(i, It->second); 931 } 932 } 933 934 /// Replace a value flowing from a block to a phi with 935 /// potentially multiple instances of that value flowing from the 936 /// block's predecessors to the phi. 937 /// 938 /// \param BB The block with the value flowing into the phi. 939 /// \param BBPreds The predecessors of BB. 940 /// \param PN The phi that we are updating. 941 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 942 const PredBlockVector &BBPreds, 943 PHINode *PN) { 944 Value *OldVal = PN->removeIncomingValue(BB, false); 945 assert(OldVal && "No entry in PHI for Pred BB!"); 946 947 IncomingValueMap IncomingValues; 948 949 // We are merging two blocks - BB, and the block containing PN - and 950 // as a result we need to redirect edges from the predecessors of BB 951 // to go to the block containing PN, and update PN 952 // accordingly. Since we allow merging blocks in the case where the 953 // predecessor and successor blocks both share some predecessors, 954 // and where some of those common predecessors might have undef 955 // values flowing into PN, we want to rewrite those values to be 956 // consistent with the non-undef values. 957 958 gatherIncomingValuesToPhi(PN, IncomingValues); 959 960 // If this incoming value is one of the PHI nodes in BB, the new entries 961 // in the PHI node are the entries from the old PHI. 962 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 963 PHINode *OldValPN = cast<PHINode>(OldVal); 964 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 965 // Note that, since we are merging phi nodes and BB and Succ might 966 // have common predecessors, we could end up with a phi node with 967 // identical incoming branches. This will be cleaned up later (and 968 // will trigger asserts if we try to clean it up now, without also 969 // simplifying the corresponding conditional branch). 970 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 971 Value *PredVal = OldValPN->getIncomingValue(i); 972 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 973 IncomingValues); 974 975 // And add a new incoming value for this predecessor for the 976 // newly retargeted branch. 977 PN->addIncoming(Selected, PredBB); 978 } 979 } else { 980 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 981 // Update existing incoming values in PN for this 982 // predecessor of BB. 983 BasicBlock *PredBB = BBPreds[i]; 984 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 985 IncomingValues); 986 987 // And add a new incoming value for this predecessor for the 988 // newly retargeted branch. 989 PN->addIncoming(Selected, PredBB); 990 } 991 } 992 993 replaceUndefValuesInPhi(PN, IncomingValues); 994 } 995 996 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 997 DomTreeUpdater *DTU) { 998 assert(BB != &BB->getParent()->getEntryBlock() && 999 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1000 1001 // We can't eliminate infinite loops. 1002 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1003 if (BB == Succ) return false; 1004 1005 // Check to see if merging these blocks would cause conflicts for any of the 1006 // phi nodes in BB or Succ. If not, we can safely merge. 1007 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1008 1009 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1010 // has uses which will not disappear when the PHI nodes are merged. It is 1011 // possible to handle such cases, but difficult: it requires checking whether 1012 // BB dominates Succ, which is non-trivial to calculate in the case where 1013 // Succ has multiple predecessors. Also, it requires checking whether 1014 // constructing the necessary self-referential PHI node doesn't introduce any 1015 // conflicts; this isn't too difficult, but the previous code for doing this 1016 // was incorrect. 1017 // 1018 // Note that if this check finds a live use, BB dominates Succ, so BB is 1019 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1020 // folding the branch isn't profitable in that case anyway. 1021 if (!Succ->getSinglePredecessor()) { 1022 BasicBlock::iterator BBI = BB->begin(); 1023 while (isa<PHINode>(*BBI)) { 1024 for (Use &U : BBI->uses()) { 1025 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1026 if (PN->getIncomingBlock(U) != BB) 1027 return false; 1028 } else { 1029 return false; 1030 } 1031 } 1032 ++BBI; 1033 } 1034 } 1035 1036 // We cannot fold the block if it's a branch to an already present callbr 1037 // successor because that creates duplicate successors. 1038 for (BasicBlock *PredBB : predecessors(BB)) { 1039 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1040 if (Succ == CBI->getDefaultDest()) 1041 return false; 1042 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1043 if (Succ == CBI->getIndirectDest(i)) 1044 return false; 1045 } 1046 } 1047 1048 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1049 1050 SmallVector<DominatorTree::UpdateType, 32> Updates; 1051 if (DTU) { 1052 // All predecessors of BB will be moved to Succ. 1053 SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB)); 1054 Updates.reserve(Updates.size() + 2 * Predecessors.size()); 1055 for (auto *Predecessor : Predecessors) { 1056 // This predecessor of BB may already have Succ as a successor. 1057 if (!llvm::is_contained(successors(Predecessor), Succ)) 1058 Updates.push_back({DominatorTree::Insert, Predecessor, Succ}); 1059 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 1060 } 1061 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1062 } 1063 1064 if (isa<PHINode>(Succ->begin())) { 1065 // If there is more than one pred of succ, and there are PHI nodes in 1066 // the successor, then we need to add incoming edges for the PHI nodes 1067 // 1068 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1069 1070 // Loop over all of the PHI nodes in the successor of BB. 1071 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1072 PHINode *PN = cast<PHINode>(I); 1073 1074 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1075 } 1076 } 1077 1078 if (Succ->getSinglePredecessor()) { 1079 // BB is the only predecessor of Succ, so Succ will end up with exactly 1080 // the same predecessors BB had. 1081 1082 // Copy over any phi, debug or lifetime instruction. 1083 BB->getTerminator()->eraseFromParent(); 1084 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1085 BB->getInstList()); 1086 } else { 1087 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1088 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1089 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1090 PN->eraseFromParent(); 1091 } 1092 } 1093 1094 // If the unconditional branch we replaced contains llvm.loop metadata, we 1095 // add the metadata to the branch instructions in the predecessors. 1096 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1097 Instruction *TI = BB->getTerminator(); 1098 if (TI) 1099 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1100 for (BasicBlock *Pred : predecessors(BB)) 1101 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1102 1103 // Everything that jumped to BB now goes to Succ. 1104 BB->replaceAllUsesWith(Succ); 1105 if (!Succ->hasName()) Succ->takeName(BB); 1106 1107 // Clear the successor list of BB to match updates applying to DTU later. 1108 if (BB->getTerminator()) 1109 BB->getInstList().pop_back(); 1110 new UnreachableInst(BB->getContext(), BB); 1111 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1112 "applying corresponding DTU updates."); 1113 1114 if (DTU) { 1115 DTU->applyUpdates(Updates); 1116 DTU->deleteBB(BB); 1117 } else { 1118 BB->eraseFromParent(); // Delete the old basic block. 1119 } 1120 return true; 1121 } 1122 1123 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1124 // This implementation doesn't currently consider undef operands 1125 // specially. Theoretically, two phis which are identical except for 1126 // one having an undef where the other doesn't could be collapsed. 1127 1128 bool Changed = false; 1129 1130 // Examine each PHI. 1131 // Note that increment of I must *NOT* be in the iteration_expression, since 1132 // we don't want to immediately advance when we restart from the beginning. 1133 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1134 ++I; 1135 // Is there an identical PHI node in this basic block? 1136 // Note that we only look in the upper square's triangle, 1137 // we already checked that the lower triangle PHI's aren't identical. 1138 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1139 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1140 continue; 1141 // A duplicate. Replace this PHI with the base PHI. 1142 ++NumPHICSEs; 1143 DuplicatePN->replaceAllUsesWith(PN); 1144 DuplicatePN->eraseFromParent(); 1145 Changed = true; 1146 1147 // The RAUW can change PHIs that we already visited. 1148 I = BB->begin(); 1149 break; // Start over from the beginning. 1150 } 1151 } 1152 return Changed; 1153 } 1154 1155 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1156 // This implementation doesn't currently consider undef operands 1157 // specially. Theoretically, two phis which are identical except for 1158 // one having an undef where the other doesn't could be collapsed. 1159 1160 struct PHIDenseMapInfo { 1161 static PHINode *getEmptyKey() { 1162 return DenseMapInfo<PHINode *>::getEmptyKey(); 1163 } 1164 1165 static PHINode *getTombstoneKey() { 1166 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1167 } 1168 1169 static bool isSentinel(PHINode *PN) { 1170 return PN == getEmptyKey() || PN == getTombstoneKey(); 1171 } 1172 1173 // WARNING: this logic must be kept in sync with 1174 // Instruction::isIdenticalToWhenDefined()! 1175 static unsigned getHashValueImpl(PHINode *PN) { 1176 // Compute a hash value on the operands. Instcombine will likely have 1177 // sorted them, which helps expose duplicates, but we have to check all 1178 // the operands to be safe in case instcombine hasn't run. 1179 return static_cast<unsigned>(hash_combine( 1180 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1181 hash_combine_range(PN->block_begin(), PN->block_end()))); 1182 } 1183 1184 static unsigned getHashValue(PHINode *PN) { 1185 #ifndef NDEBUG 1186 // If -phicse-debug-hash was specified, return a constant -- this 1187 // will force all hashing to collide, so we'll exhaustively search 1188 // the table for a match, and the assertion in isEqual will fire if 1189 // there's a bug causing equal keys to hash differently. 1190 if (PHICSEDebugHash) 1191 return 0; 1192 #endif 1193 return getHashValueImpl(PN); 1194 } 1195 1196 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1197 if (isSentinel(LHS) || isSentinel(RHS)) 1198 return LHS == RHS; 1199 return LHS->isIdenticalTo(RHS); 1200 } 1201 1202 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1203 // These comparisons are nontrivial, so assert that equality implies 1204 // hash equality (DenseMap demands this as an invariant). 1205 bool Result = isEqualImpl(LHS, RHS); 1206 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1207 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1208 return Result; 1209 } 1210 }; 1211 1212 // Set of unique PHINodes. 1213 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1214 PHISet.reserve(4 * PHICSENumPHISmallSize); 1215 1216 // Examine each PHI. 1217 bool Changed = false; 1218 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1219 auto Inserted = PHISet.insert(PN); 1220 if (!Inserted.second) { 1221 // A duplicate. Replace this PHI with its duplicate. 1222 ++NumPHICSEs; 1223 PN->replaceAllUsesWith(*Inserted.first); 1224 PN->eraseFromParent(); 1225 Changed = true; 1226 1227 // The RAUW can change PHIs that we already visited. Start over from the 1228 // beginning. 1229 PHISet.clear(); 1230 I = BB->begin(); 1231 } 1232 } 1233 1234 return Changed; 1235 } 1236 1237 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1238 if ( 1239 #ifndef NDEBUG 1240 !PHICSEDebugHash && 1241 #endif 1242 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1243 return EliminateDuplicatePHINodesNaiveImpl(BB); 1244 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1245 } 1246 1247 /// If the specified pointer points to an object that we control, try to modify 1248 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1249 /// the value after the operation, which may be lower than PrefAlign. 1250 /// 1251 /// Increating value alignment isn't often possible though. If alignment is 1252 /// important, a more reliable approach is to simply align all global variables 1253 /// and allocation instructions to their preferred alignment from the beginning. 1254 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1255 const DataLayout &DL) { 1256 V = V->stripPointerCasts(); 1257 1258 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1259 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1260 // than the current alignment, as the known bits calculation should have 1261 // already taken it into account. However, this is not always the case, 1262 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1263 // doesn't. 1264 Align CurrentAlign = AI->getAlign(); 1265 if (PrefAlign <= CurrentAlign) 1266 return CurrentAlign; 1267 1268 // If the preferred alignment is greater than the natural stack alignment 1269 // then don't round up. This avoids dynamic stack realignment. 1270 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1271 return CurrentAlign; 1272 AI->setAlignment(PrefAlign); 1273 return PrefAlign; 1274 } 1275 1276 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1277 // TODO: as above, this shouldn't be necessary. 1278 Align CurrentAlign = GO->getPointerAlignment(DL); 1279 if (PrefAlign <= CurrentAlign) 1280 return CurrentAlign; 1281 1282 // If there is a large requested alignment and we can, bump up the alignment 1283 // of the global. If the memory we set aside for the global may not be the 1284 // memory used by the final program then it is impossible for us to reliably 1285 // enforce the preferred alignment. 1286 if (!GO->canIncreaseAlignment()) 1287 return CurrentAlign; 1288 1289 GO->setAlignment(PrefAlign); 1290 return PrefAlign; 1291 } 1292 1293 return Align(1); 1294 } 1295 1296 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1297 const DataLayout &DL, 1298 const Instruction *CxtI, 1299 AssumptionCache *AC, 1300 const DominatorTree *DT) { 1301 assert(V->getType()->isPointerTy() && 1302 "getOrEnforceKnownAlignment expects a pointer!"); 1303 1304 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1305 unsigned TrailZ = Known.countMinTrailingZeros(); 1306 1307 // Avoid trouble with ridiculously large TrailZ values, such as 1308 // those computed from a null pointer. 1309 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1310 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1311 1312 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1313 1314 if (PrefAlign && *PrefAlign > Alignment) 1315 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1316 1317 // We don't need to make any adjustment. 1318 return Alignment; 1319 } 1320 1321 ///===---------------------------------------------------------------------===// 1322 /// Dbg Intrinsic utilities 1323 /// 1324 1325 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1326 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1327 DIExpression *DIExpr, 1328 PHINode *APN) { 1329 // Since we can't guarantee that the original dbg.declare instrinsic 1330 // is removed by LowerDbgDeclare(), we need to make sure that we are 1331 // not inserting the same dbg.value intrinsic over and over. 1332 SmallVector<DbgValueInst *, 1> DbgValues; 1333 findDbgValues(DbgValues, APN); 1334 for (auto *DVI : DbgValues) { 1335 assert(DVI->getValue() == APN); 1336 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1337 return true; 1338 } 1339 return false; 1340 } 1341 1342 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1343 /// (or fragment of the variable) described by \p DII. 1344 /// 1345 /// This is primarily intended as a helper for the different 1346 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1347 /// converted describes an alloca'd variable, so we need to use the 1348 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1349 /// identified as covering an n-bit fragment, if the store size of i1 is at 1350 /// least n bits. 1351 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1352 const DataLayout &DL = DII->getModule()->getDataLayout(); 1353 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1354 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1355 assert(!ValueSize.isScalable() && 1356 "Fragments don't work on scalable types."); 1357 return ValueSize.getFixedSize() >= *FragmentSize; 1358 } 1359 // We can't always calculate the size of the DI variable (e.g. if it is a 1360 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1361 // intead. 1362 if (DII->isAddressOfVariable()) 1363 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1364 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1365 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1366 "Both sizes should agree on the scalable flag."); 1367 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1368 } 1369 // Could not determine size of variable. Conservatively return false. 1370 return false; 1371 } 1372 1373 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1374 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1375 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1376 /// case this DebugLoc leaks into any adjacent instructions. 1377 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1378 // Original dbg.declare must have a location. 1379 DebugLoc DeclareLoc = DII->getDebugLoc(); 1380 MDNode *Scope = DeclareLoc.getScope(); 1381 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1382 // Produce an unknown location with the correct scope / inlinedAt fields. 1383 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1384 } 1385 1386 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1387 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1388 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1389 StoreInst *SI, DIBuilder &Builder) { 1390 assert(DII->isAddressOfVariable()); 1391 auto *DIVar = DII->getVariable(); 1392 assert(DIVar && "Missing variable"); 1393 auto *DIExpr = DII->getExpression(); 1394 Value *DV = SI->getValueOperand(); 1395 1396 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1397 1398 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1399 // FIXME: If storing to a part of the variable described by the dbg.declare, 1400 // then we want to insert a dbg.value for the corresponding fragment. 1401 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1402 << *DII << '\n'); 1403 // For now, when there is a store to parts of the variable (but we do not 1404 // know which part) we insert an dbg.value instrinsic to indicate that we 1405 // know nothing about the variable's content. 1406 DV = UndefValue::get(DV->getType()); 1407 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1408 return; 1409 } 1410 1411 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1412 } 1413 1414 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1415 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1416 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1417 LoadInst *LI, DIBuilder &Builder) { 1418 auto *DIVar = DII->getVariable(); 1419 auto *DIExpr = DII->getExpression(); 1420 assert(DIVar && "Missing variable"); 1421 1422 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1423 // FIXME: If only referring to a part of the variable described by the 1424 // dbg.declare, then we want to insert a dbg.value for the corresponding 1425 // fragment. 1426 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1427 << *DII << '\n'); 1428 return; 1429 } 1430 1431 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1432 1433 // We are now tracking the loaded value instead of the address. In the 1434 // future if multi-location support is added to the IR, it might be 1435 // preferable to keep tracking both the loaded value and the original 1436 // address in case the alloca can not be elided. 1437 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1438 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1439 DbgValue->insertAfter(LI); 1440 } 1441 1442 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1443 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1444 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1445 PHINode *APN, DIBuilder &Builder) { 1446 auto *DIVar = DII->getVariable(); 1447 auto *DIExpr = DII->getExpression(); 1448 assert(DIVar && "Missing variable"); 1449 1450 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1451 return; 1452 1453 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1454 // FIXME: If only referring to a part of the variable described by the 1455 // dbg.declare, then we want to insert a dbg.value for the corresponding 1456 // fragment. 1457 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1458 << *DII << '\n'); 1459 return; 1460 } 1461 1462 BasicBlock *BB = APN->getParent(); 1463 auto InsertionPt = BB->getFirstInsertionPt(); 1464 1465 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1466 1467 // The block may be a catchswitch block, which does not have a valid 1468 // insertion point. 1469 // FIXME: Insert dbg.value markers in the successors when appropriate. 1470 if (InsertionPt != BB->end()) 1471 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1472 } 1473 1474 /// Determine whether this alloca is either a VLA or an array. 1475 static bool isArray(AllocaInst *AI) { 1476 return AI->isArrayAllocation() || 1477 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1478 } 1479 1480 /// Determine whether this alloca is a structure. 1481 static bool isStructure(AllocaInst *AI) { 1482 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1483 } 1484 1485 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1486 /// of llvm.dbg.value intrinsics. 1487 bool llvm::LowerDbgDeclare(Function &F) { 1488 bool Changed = false; 1489 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1490 SmallVector<DbgDeclareInst *, 4> Dbgs; 1491 for (auto &FI : F) 1492 for (Instruction &BI : FI) 1493 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1494 Dbgs.push_back(DDI); 1495 1496 if (Dbgs.empty()) 1497 return Changed; 1498 1499 for (auto &I : Dbgs) { 1500 DbgDeclareInst *DDI = I; 1501 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1502 // If this is an alloca for a scalar variable, insert a dbg.value 1503 // at each load and store to the alloca and erase the dbg.declare. 1504 // The dbg.values allow tracking a variable even if it is not 1505 // stored on the stack, while the dbg.declare can only describe 1506 // the stack slot (and at a lexical-scope granularity). Later 1507 // passes will attempt to elide the stack slot. 1508 if (!AI || isArray(AI) || isStructure(AI)) 1509 continue; 1510 1511 // A volatile load/store means that the alloca can't be elided anyway. 1512 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1513 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1514 return LI->isVolatile(); 1515 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1516 return SI->isVolatile(); 1517 return false; 1518 })) 1519 continue; 1520 1521 SmallVector<const Value *, 8> WorkList; 1522 WorkList.push_back(AI); 1523 while (!WorkList.empty()) { 1524 const Value *V = WorkList.pop_back_val(); 1525 for (auto &AIUse : V->uses()) { 1526 User *U = AIUse.getUser(); 1527 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1528 if (AIUse.getOperandNo() == 1) 1529 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1530 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1531 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1532 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1533 // This is a call by-value or some other instruction that takes a 1534 // pointer to the variable. Insert a *value* intrinsic that describes 1535 // the variable by dereferencing the alloca. 1536 if (!CI->isLifetimeStartOrEnd()) { 1537 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1538 auto *DerefExpr = 1539 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1540 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1541 NewLoc, CI); 1542 } 1543 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1544 if (BI->getType()->isPointerTy()) 1545 WorkList.push_back(BI); 1546 } 1547 } 1548 } 1549 DDI->eraseFromParent(); 1550 Changed = true; 1551 } 1552 1553 if (Changed) 1554 for (BasicBlock &BB : F) 1555 RemoveRedundantDbgInstrs(&BB); 1556 1557 return Changed; 1558 } 1559 1560 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1561 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1562 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1563 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1564 if (InsertedPHIs.size() == 0) 1565 return; 1566 1567 // Map existing PHI nodes to their dbg.values. 1568 ValueToValueMapTy DbgValueMap; 1569 for (auto &I : *BB) { 1570 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1571 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1572 DbgValueMap.insert({Loc, DbgII}); 1573 } 1574 } 1575 if (DbgValueMap.size() == 0) 1576 return; 1577 1578 // Then iterate through the new PHIs and look to see if they use one of the 1579 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1580 // propagate the info through the new PHI. 1581 LLVMContext &C = BB->getContext(); 1582 for (auto PHI : InsertedPHIs) { 1583 BasicBlock *Parent = PHI->getParent(); 1584 // Avoid inserting an intrinsic into an EH block. 1585 if (Parent->getFirstNonPHI()->isEHPad()) 1586 continue; 1587 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1588 for (auto VI : PHI->operand_values()) { 1589 auto V = DbgValueMap.find(VI); 1590 if (V != DbgValueMap.end()) { 1591 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1592 Instruction *NewDbgII = DbgII->clone(); 1593 NewDbgII->setOperand(0, PhiMAV); 1594 auto InsertionPt = Parent->getFirstInsertionPt(); 1595 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1596 NewDbgII->insertBefore(&*InsertionPt); 1597 } 1598 } 1599 } 1600 } 1601 1602 /// Finds all intrinsics declaring local variables as living in the memory that 1603 /// 'V' points to. This may include a mix of dbg.declare and 1604 /// dbg.addr intrinsics. 1605 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1606 // This function is hot. Check whether the value has any metadata to avoid a 1607 // DenseMap lookup. 1608 if (!V->isUsedByMetadata()) 1609 return {}; 1610 auto *L = LocalAsMetadata::getIfExists(V); 1611 if (!L) 1612 return {}; 1613 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1614 if (!MDV) 1615 return {}; 1616 1617 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1618 for (User *U : MDV->users()) { 1619 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1620 if (DII->isAddressOfVariable()) 1621 Declares.push_back(DII); 1622 } 1623 1624 return Declares; 1625 } 1626 1627 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) { 1628 TinyPtrVector<DbgDeclareInst *> DDIs; 1629 for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V)) 1630 if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI)) 1631 DDIs.push_back(DDI); 1632 return DDIs; 1633 } 1634 1635 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1636 // This function is hot. Check whether the value has any metadata to avoid a 1637 // DenseMap lookup. 1638 if (!V->isUsedByMetadata()) 1639 return; 1640 if (auto *L = LocalAsMetadata::getIfExists(V)) 1641 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1642 for (User *U : MDV->users()) 1643 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1644 DbgValues.push_back(DVI); 1645 } 1646 1647 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1648 Value *V) { 1649 // This function is hot. Check whether the value has any metadata to avoid a 1650 // DenseMap lookup. 1651 if (!V->isUsedByMetadata()) 1652 return; 1653 if (auto *L = LocalAsMetadata::getIfExists(V)) 1654 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1655 for (User *U : MDV->users()) 1656 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1657 DbgUsers.push_back(DII); 1658 } 1659 1660 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1661 DIBuilder &Builder, uint8_t DIExprFlags, 1662 int Offset) { 1663 auto DbgAddrs = FindDbgAddrUses(Address); 1664 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1665 DebugLoc Loc = DII->getDebugLoc(); 1666 auto *DIVar = DII->getVariable(); 1667 auto *DIExpr = DII->getExpression(); 1668 assert(DIVar && "Missing variable"); 1669 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1670 // Insert llvm.dbg.declare immediately before DII, and remove old 1671 // llvm.dbg.declare. 1672 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1673 DII->eraseFromParent(); 1674 } 1675 return !DbgAddrs.empty(); 1676 } 1677 1678 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1679 DIBuilder &Builder, int Offset) { 1680 DebugLoc Loc = DVI->getDebugLoc(); 1681 auto *DIVar = DVI->getVariable(); 1682 auto *DIExpr = DVI->getExpression(); 1683 assert(DIVar && "Missing variable"); 1684 1685 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1686 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1687 // it and give up. 1688 if (!DIExpr || DIExpr->getNumElements() < 1 || 1689 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1690 return; 1691 1692 // Insert the offset before the first deref. 1693 // We could just change the offset argument of dbg.value, but it's unsigned... 1694 if (Offset) 1695 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1696 1697 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1698 DVI->eraseFromParent(); 1699 } 1700 1701 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1702 DIBuilder &Builder, int Offset) { 1703 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1704 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1705 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1706 Use &U = *UI++; 1707 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1708 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1709 } 1710 } 1711 1712 /// Wrap \p V in a ValueAsMetadata instance. 1713 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1714 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1715 } 1716 1717 /// Where possible to salvage debug information for \p I do so 1718 /// and return True. If not possible mark undef and return False. 1719 void llvm::salvageDebugInfo(Instruction &I) { 1720 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1721 findDbgUsers(DbgUsers, &I); 1722 salvageDebugInfoForDbgValues(I, DbgUsers); 1723 } 1724 1725 void llvm::salvageDebugInfoForDbgValues( 1726 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1727 auto &Ctx = I.getContext(); 1728 bool Salvaged = false; 1729 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1730 1731 for (auto *DII : DbgUsers) { 1732 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1733 // are implicitly pointing out the value as a DWARF memory location 1734 // description. 1735 bool StackValue = isa<DbgValueInst>(DII); 1736 1737 DIExpression *DIExpr = 1738 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1739 1740 // salvageDebugInfoImpl should fail on examining the first element of 1741 // DbgUsers, or none of them. 1742 if (!DIExpr) 1743 break; 1744 1745 DII->setOperand(0, wrapMD(I.getOperand(0))); 1746 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1747 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1748 Salvaged = true; 1749 } 1750 1751 if (Salvaged) 1752 return; 1753 1754 for (auto *DII : DbgUsers) { 1755 Value *Undef = UndefValue::get(I.getType()); 1756 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 1757 ValueAsMetadata::get(Undef))); 1758 } 1759 } 1760 1761 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1762 DIExpression *SrcDIExpr, 1763 bool WithStackValue) { 1764 auto &M = *I.getModule(); 1765 auto &DL = M.getDataLayout(); 1766 1767 // Apply a vector of opcodes to the source DIExpression. 1768 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1769 DIExpression *DIExpr = SrcDIExpr; 1770 if (!Ops.empty()) { 1771 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1772 } 1773 return DIExpr; 1774 }; 1775 1776 // Apply the given offset to the source DIExpression. 1777 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1778 SmallVector<uint64_t, 8> Ops; 1779 DIExpression::appendOffset(Ops, Offset); 1780 return doSalvage(Ops); 1781 }; 1782 1783 // initializer-list helper for applying operators to the source DIExpression. 1784 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1785 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1786 return doSalvage(Ops); 1787 }; 1788 1789 if (auto *CI = dyn_cast<CastInst>(&I)) { 1790 // No-op casts are irrelevant for debug info. 1791 if (CI->isNoopCast(DL)) 1792 return SrcDIExpr; 1793 1794 Type *Type = CI->getType(); 1795 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1796 if (Type->isVectorTy() || 1797 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1798 return nullptr; 1799 1800 Value *FromValue = CI->getOperand(0); 1801 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1802 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1803 1804 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1805 isa<SExtInst>(&I))); 1806 } 1807 1808 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1809 unsigned BitWidth = 1810 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1811 // Rewrite a constant GEP into a DIExpression. 1812 APInt Offset(BitWidth, 0); 1813 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1814 return applyOffset(Offset.getSExtValue()); 1815 } else { 1816 return nullptr; 1817 } 1818 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1819 // Rewrite binary operations with constant integer operands. 1820 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1821 if (!ConstInt || ConstInt->getBitWidth() > 64) 1822 return nullptr; 1823 1824 uint64_t Val = ConstInt->getSExtValue(); 1825 switch (BI->getOpcode()) { 1826 case Instruction::Add: 1827 return applyOffset(Val); 1828 case Instruction::Sub: 1829 return applyOffset(-int64_t(Val)); 1830 case Instruction::Mul: 1831 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1832 case Instruction::SDiv: 1833 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1834 case Instruction::SRem: 1835 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1836 case Instruction::Or: 1837 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1838 case Instruction::And: 1839 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1840 case Instruction::Xor: 1841 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1842 case Instruction::Shl: 1843 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1844 case Instruction::LShr: 1845 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1846 case Instruction::AShr: 1847 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1848 default: 1849 // TODO: Salvage constants from each kind of binop we know about. 1850 return nullptr; 1851 } 1852 // *Not* to do: we should not attempt to salvage load instructions, 1853 // because the validity and lifetime of a dbg.value containing 1854 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1855 } 1856 return nullptr; 1857 } 1858 1859 /// A replacement for a dbg.value expression. 1860 using DbgValReplacement = Optional<DIExpression *>; 1861 1862 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1863 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1864 /// changes are made. 1865 static bool rewriteDebugUsers( 1866 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1867 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1868 // Find debug users of From. 1869 SmallVector<DbgVariableIntrinsic *, 1> Users; 1870 findDbgUsers(Users, &From); 1871 if (Users.empty()) 1872 return false; 1873 1874 // Prevent use-before-def of To. 1875 bool Changed = false; 1876 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1877 if (isa<Instruction>(&To)) { 1878 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1879 1880 for (auto *DII : Users) { 1881 // It's common to see a debug user between From and DomPoint. Move it 1882 // after DomPoint to preserve the variable update without any reordering. 1883 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1884 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1885 DII->moveAfter(&DomPoint); 1886 Changed = true; 1887 1888 // Users which otherwise aren't dominated by the replacement value must 1889 // be salvaged or deleted. 1890 } else if (!DT.dominates(&DomPoint, DII)) { 1891 UndefOrSalvage.insert(DII); 1892 } 1893 } 1894 } 1895 1896 // Update debug users without use-before-def risk. 1897 for (auto *DII : Users) { 1898 if (UndefOrSalvage.count(DII)) 1899 continue; 1900 1901 LLVMContext &Ctx = DII->getContext(); 1902 DbgValReplacement DVR = RewriteExpr(*DII); 1903 if (!DVR) 1904 continue; 1905 1906 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1907 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1908 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1909 Changed = true; 1910 } 1911 1912 if (!UndefOrSalvage.empty()) { 1913 // Try to salvage the remaining debug users. 1914 salvageDebugInfo(From); 1915 Changed = true; 1916 } 1917 1918 return Changed; 1919 } 1920 1921 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1922 /// losslessly preserve the bits and semantics of the value. This predicate is 1923 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1924 /// 1925 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1926 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1927 /// and also does not allow lossless pointer <-> integer conversions. 1928 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1929 Type *ToTy) { 1930 // Trivially compatible types. 1931 if (FromTy == ToTy) 1932 return true; 1933 1934 // Handle compatible pointer <-> integer conversions. 1935 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1936 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1937 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1938 !DL.isNonIntegralPointerType(ToTy); 1939 return SameSize && LosslessConversion; 1940 } 1941 1942 // TODO: This is not exhaustive. 1943 return false; 1944 } 1945 1946 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1947 Instruction &DomPoint, DominatorTree &DT) { 1948 // Exit early if From has no debug users. 1949 if (!From.isUsedByMetadata()) 1950 return false; 1951 1952 assert(&From != &To && "Can't replace something with itself"); 1953 1954 Type *FromTy = From.getType(); 1955 Type *ToTy = To.getType(); 1956 1957 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1958 return DII.getExpression(); 1959 }; 1960 1961 // Handle no-op conversions. 1962 Module &M = *From.getModule(); 1963 const DataLayout &DL = M.getDataLayout(); 1964 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1965 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1966 1967 // Handle integer-to-integer widening and narrowing. 1968 // FIXME: Use DW_OP_convert when it's available everywhere. 1969 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1970 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1971 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1972 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1973 1974 // When the width of the result grows, assume that a debugger will only 1975 // access the low `FromBits` bits when inspecting the source variable. 1976 if (FromBits < ToBits) 1977 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1978 1979 // The width of the result has shrunk. Use sign/zero extension to describe 1980 // the source variable's high bits. 1981 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1982 DILocalVariable *Var = DII.getVariable(); 1983 1984 // Without knowing signedness, sign/zero extension isn't possible. 1985 auto Signedness = Var->getSignedness(); 1986 if (!Signedness) 1987 return None; 1988 1989 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1990 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1991 Signed); 1992 }; 1993 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1994 } 1995 1996 // TODO: Floating-point conversions, vectors. 1997 return false; 1998 } 1999 2000 std::pair<unsigned, unsigned> 2001 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2002 unsigned NumDeadInst = 0; 2003 unsigned NumDeadDbgInst = 0; 2004 // Delete the instructions backwards, as it has a reduced likelihood of 2005 // having to update as many def-use and use-def chains. 2006 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2007 while (EndInst != &BB->front()) { 2008 // Delete the next to last instruction. 2009 Instruction *Inst = &*--EndInst->getIterator(); 2010 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2011 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2012 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2013 EndInst = Inst; 2014 continue; 2015 } 2016 if (isa<DbgInfoIntrinsic>(Inst)) 2017 ++NumDeadDbgInst; 2018 else 2019 ++NumDeadInst; 2020 Inst->eraseFromParent(); 2021 } 2022 return {NumDeadInst, NumDeadDbgInst}; 2023 } 2024 2025 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2026 bool PreserveLCSSA, DomTreeUpdater *DTU, 2027 MemorySSAUpdater *MSSAU) { 2028 BasicBlock *BB = I->getParent(); 2029 2030 if (MSSAU) 2031 MSSAU->changeToUnreachable(I); 2032 2033 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2034 2035 // Loop over all of the successors, removing BB's entry from any PHI 2036 // nodes. 2037 for (BasicBlock *Successor : successors(BB)) { 2038 Successor->removePredecessor(BB, PreserveLCSSA); 2039 if (DTU) 2040 UniqueSuccessors.insert(Successor); 2041 } 2042 // Insert a call to llvm.trap right before this. This turns the undefined 2043 // behavior into a hard fail instead of falling through into random code. 2044 if (UseLLVMTrap) { 2045 Function *TrapFn = 2046 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2047 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2048 CallTrap->setDebugLoc(I->getDebugLoc()); 2049 } 2050 auto *UI = new UnreachableInst(I->getContext(), I); 2051 UI->setDebugLoc(I->getDebugLoc()); 2052 2053 // All instructions after this are dead. 2054 unsigned NumInstrsRemoved = 0; 2055 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2056 while (BBI != BBE) { 2057 if (!BBI->use_empty()) 2058 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2059 BB->getInstList().erase(BBI++); 2060 ++NumInstrsRemoved; 2061 } 2062 if (DTU) { 2063 SmallVector<DominatorTree::UpdateType, 8> Updates; 2064 Updates.reserve(UniqueSuccessors.size()); 2065 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2066 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2067 DTU->applyUpdates(Updates); 2068 } 2069 return NumInstrsRemoved; 2070 } 2071 2072 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2073 SmallVector<Value *, 8> Args(II->args()); 2074 SmallVector<OperandBundleDef, 1> OpBundles; 2075 II->getOperandBundlesAsDefs(OpBundles); 2076 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2077 II->getCalledOperand(), Args, OpBundles); 2078 NewCall->setCallingConv(II->getCallingConv()); 2079 NewCall->setAttributes(II->getAttributes()); 2080 NewCall->setDebugLoc(II->getDebugLoc()); 2081 NewCall->copyMetadata(*II); 2082 2083 // If the invoke had profile metadata, try converting them for CallInst. 2084 uint64_t TotalWeight; 2085 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2086 // Set the total weight if it fits into i32, otherwise reset. 2087 MDBuilder MDB(NewCall->getContext()); 2088 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2089 ? nullptr 2090 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2091 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2092 } 2093 2094 return NewCall; 2095 } 2096 2097 /// changeToCall - Convert the specified invoke into a normal call. 2098 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2099 CallInst *NewCall = createCallMatchingInvoke(II); 2100 NewCall->takeName(II); 2101 NewCall->insertBefore(II); 2102 II->replaceAllUsesWith(NewCall); 2103 2104 // Follow the call by a branch to the normal destination. 2105 BasicBlock *NormalDestBB = II->getNormalDest(); 2106 BranchInst::Create(NormalDestBB, II); 2107 2108 // Update PHI nodes in the unwind destination 2109 BasicBlock *BB = II->getParent(); 2110 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2111 UnwindDestBB->removePredecessor(BB); 2112 II->eraseFromParent(); 2113 if (DTU) 2114 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2115 } 2116 2117 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2118 BasicBlock *UnwindEdge, 2119 DomTreeUpdater *DTU) { 2120 BasicBlock *BB = CI->getParent(); 2121 2122 // Convert this function call into an invoke instruction. First, split the 2123 // basic block. 2124 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2125 CI->getName() + ".noexc"); 2126 2127 // Delete the unconditional branch inserted by SplitBlock 2128 BB->getInstList().pop_back(); 2129 2130 // Create the new invoke instruction. 2131 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2132 SmallVector<OperandBundleDef, 1> OpBundles; 2133 2134 CI->getOperandBundlesAsDefs(OpBundles); 2135 2136 // Note: we're round tripping operand bundles through memory here, and that 2137 // can potentially be avoided with a cleverer API design that we do not have 2138 // as of this time. 2139 2140 InvokeInst *II = 2141 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2142 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2143 II->setDebugLoc(CI->getDebugLoc()); 2144 II->setCallingConv(CI->getCallingConv()); 2145 II->setAttributes(CI->getAttributes()); 2146 2147 if (DTU) 2148 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2149 2150 // Make sure that anything using the call now uses the invoke! This also 2151 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2152 CI->replaceAllUsesWith(II); 2153 2154 // Delete the original call 2155 Split->getInstList().pop_front(); 2156 return Split; 2157 } 2158 2159 static bool markAliveBlocks(Function &F, 2160 SmallPtrSetImpl<BasicBlock *> &Reachable, 2161 DomTreeUpdater *DTU = nullptr) { 2162 SmallVector<BasicBlock*, 128> Worklist; 2163 BasicBlock *BB = &F.front(); 2164 Worklist.push_back(BB); 2165 Reachable.insert(BB); 2166 bool Changed = false; 2167 do { 2168 BB = Worklist.pop_back_val(); 2169 2170 // Do a quick scan of the basic block, turning any obviously unreachable 2171 // instructions into LLVM unreachable insts. The instruction combining pass 2172 // canonicalizes unreachable insts into stores to null or undef. 2173 for (Instruction &I : *BB) { 2174 if (auto *CI = dyn_cast<CallInst>(&I)) { 2175 Value *Callee = CI->getCalledOperand(); 2176 // Handle intrinsic calls. 2177 if (Function *F = dyn_cast<Function>(Callee)) { 2178 auto IntrinsicID = F->getIntrinsicID(); 2179 // Assumptions that are known to be false are equivalent to 2180 // unreachable. Also, if the condition is undefined, then we make the 2181 // choice most beneficial to the optimizer, and choose that to also be 2182 // unreachable. 2183 if (IntrinsicID == Intrinsic::assume) { 2184 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2185 // Don't insert a call to llvm.trap right before the unreachable. 2186 changeToUnreachable(CI, false, false, DTU); 2187 Changed = true; 2188 break; 2189 } 2190 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2191 // A call to the guard intrinsic bails out of the current 2192 // compilation unit if the predicate passed to it is false. If the 2193 // predicate is a constant false, then we know the guard will bail 2194 // out of the current compile unconditionally, so all code following 2195 // it is dead. 2196 // 2197 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2198 // guards to treat `undef` as `false` since a guard on `undef` can 2199 // still be useful for widening. 2200 if (match(CI->getArgOperand(0), m_Zero())) 2201 if (!isa<UnreachableInst>(CI->getNextNode())) { 2202 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2203 false, DTU); 2204 Changed = true; 2205 break; 2206 } 2207 } 2208 } else if ((isa<ConstantPointerNull>(Callee) && 2209 !NullPointerIsDefined(CI->getFunction())) || 2210 isa<UndefValue>(Callee)) { 2211 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2212 Changed = true; 2213 break; 2214 } 2215 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2216 // If we found a call to a no-return function, insert an unreachable 2217 // instruction after it. Make sure there isn't *already* one there 2218 // though. 2219 if (!isa<UnreachableInst>(CI->getNextNode())) { 2220 // Don't insert a call to llvm.trap right before the unreachable. 2221 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2222 Changed = true; 2223 } 2224 break; 2225 } 2226 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2227 // Store to undef and store to null are undefined and used to signal 2228 // that they should be changed to unreachable by passes that can't 2229 // modify the CFG. 2230 2231 // Don't touch volatile stores. 2232 if (SI->isVolatile()) continue; 2233 2234 Value *Ptr = SI->getOperand(1); 2235 2236 if (isa<UndefValue>(Ptr) || 2237 (isa<ConstantPointerNull>(Ptr) && 2238 !NullPointerIsDefined(SI->getFunction(), 2239 SI->getPointerAddressSpace()))) { 2240 changeToUnreachable(SI, true, false, DTU); 2241 Changed = true; 2242 break; 2243 } 2244 } 2245 } 2246 2247 Instruction *Terminator = BB->getTerminator(); 2248 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2249 // Turn invokes that call 'nounwind' functions into ordinary calls. 2250 Value *Callee = II->getCalledOperand(); 2251 if ((isa<ConstantPointerNull>(Callee) && 2252 !NullPointerIsDefined(BB->getParent())) || 2253 isa<UndefValue>(Callee)) { 2254 changeToUnreachable(II, true, false, DTU); 2255 Changed = true; 2256 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2257 if (II->use_empty() && II->onlyReadsMemory()) { 2258 // jump to the normal destination branch. 2259 BasicBlock *NormalDestBB = II->getNormalDest(); 2260 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2261 BranchInst::Create(NormalDestBB, II); 2262 UnwindDestBB->removePredecessor(II->getParent()); 2263 II->eraseFromParent(); 2264 if (DTU) 2265 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2266 } else 2267 changeToCall(II, DTU); 2268 Changed = true; 2269 } 2270 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2271 // Remove catchpads which cannot be reached. 2272 struct CatchPadDenseMapInfo { 2273 static CatchPadInst *getEmptyKey() { 2274 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2275 } 2276 2277 static CatchPadInst *getTombstoneKey() { 2278 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2279 } 2280 2281 static unsigned getHashValue(CatchPadInst *CatchPad) { 2282 return static_cast<unsigned>(hash_combine_range( 2283 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2284 } 2285 2286 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2287 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2288 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2289 return LHS == RHS; 2290 return LHS->isIdenticalTo(RHS); 2291 } 2292 }; 2293 2294 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 2295 // Set of unique CatchPads. 2296 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2297 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2298 HandlerSet; 2299 detail::DenseSetEmpty Empty; 2300 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2301 E = CatchSwitch->handler_end(); 2302 I != E; ++I) { 2303 BasicBlock *HandlerBB = *I; 2304 ++NumPerSuccessorCases[HandlerBB]; 2305 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2306 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2307 --NumPerSuccessorCases[HandlerBB]; 2308 CatchSwitch->removeHandler(I); 2309 --I; 2310 --E; 2311 Changed = true; 2312 } 2313 } 2314 std::vector<DominatorTree::UpdateType> Updates; 2315 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2316 if (I.second == 0) 2317 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2318 if (DTU) 2319 DTU->applyUpdates(Updates); 2320 } 2321 2322 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2323 for (BasicBlock *Successor : successors(BB)) 2324 if (Reachable.insert(Successor).second) 2325 Worklist.push_back(Successor); 2326 } while (!Worklist.empty()); 2327 return Changed; 2328 } 2329 2330 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2331 Instruction *TI = BB->getTerminator(); 2332 2333 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2334 changeToCall(II, DTU); 2335 return; 2336 } 2337 2338 Instruction *NewTI; 2339 BasicBlock *UnwindDest; 2340 2341 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2342 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2343 UnwindDest = CRI->getUnwindDest(); 2344 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2345 auto *NewCatchSwitch = CatchSwitchInst::Create( 2346 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2347 CatchSwitch->getName(), CatchSwitch); 2348 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2349 NewCatchSwitch->addHandler(PadBB); 2350 2351 NewTI = NewCatchSwitch; 2352 UnwindDest = CatchSwitch->getUnwindDest(); 2353 } else { 2354 llvm_unreachable("Could not find unwind successor"); 2355 } 2356 2357 NewTI->takeName(TI); 2358 NewTI->setDebugLoc(TI->getDebugLoc()); 2359 UnwindDest->removePredecessor(BB); 2360 TI->replaceAllUsesWith(NewTI); 2361 TI->eraseFromParent(); 2362 if (DTU) 2363 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2364 } 2365 2366 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2367 /// if they are in a dead cycle. Return true if a change was made, false 2368 /// otherwise. 2369 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2370 MemorySSAUpdater *MSSAU) { 2371 SmallPtrSet<BasicBlock *, 16> Reachable; 2372 bool Changed = markAliveBlocks(F, Reachable, DTU); 2373 2374 // If there are unreachable blocks in the CFG... 2375 if (Reachable.size() == F.size()) 2376 return Changed; 2377 2378 assert(Reachable.size() < F.size()); 2379 2380 // Are there any blocks left to actually delete? 2381 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2382 for (BasicBlock &BB : F) { 2383 // Skip reachable basic blocks 2384 if (Reachable.count(&BB)) 2385 continue; 2386 // Skip already-deleted blocks 2387 if (DTU && DTU->isBBPendingDeletion(&BB)) 2388 continue; 2389 BlocksToRemove.insert(&BB); 2390 } 2391 2392 if (BlocksToRemove.empty()) 2393 return Changed; 2394 2395 Changed = true; 2396 NumRemoved += BlocksToRemove.size(); 2397 2398 if (MSSAU) 2399 MSSAU->removeBlocks(BlocksToRemove); 2400 2401 // Loop over all of the basic blocks that are up for removal, dropping all of 2402 // their internal references. Update DTU if available. 2403 std::vector<DominatorTree::UpdateType> Updates; 2404 for (auto *BB : BlocksToRemove) { 2405 SmallSetVector<BasicBlock *, 8> UniqueSuccessors; 2406 for (BasicBlock *Successor : successors(BB)) { 2407 // Only remove references to BB in reachable successors of BB. 2408 if (Reachable.count(Successor)) 2409 Successor->removePredecessor(BB); 2410 if (DTU) 2411 UniqueSuccessors.insert(Successor); 2412 } 2413 BB->dropAllReferences(); 2414 if (DTU) { 2415 Instruction *TI = BB->getTerminator(); 2416 assert(TI && "Basic block should have a terminator"); 2417 // Terminators like invoke can have users. We have to replace their users, 2418 // before removing them. 2419 if (!TI->use_empty()) 2420 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2421 TI->eraseFromParent(); 2422 new UnreachableInst(BB->getContext(), BB); 2423 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2424 "applying corresponding DTU updates."); 2425 Updates.reserve(Updates.size() + UniqueSuccessors.size()); 2426 for (auto *UniqueSuccessor : UniqueSuccessors) 2427 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2428 } 2429 } 2430 2431 if (DTU) { 2432 DTU->applyUpdates(Updates); 2433 for (auto *BB : BlocksToRemove) 2434 DTU->deleteBB(BB); 2435 } else { 2436 for (auto *BB : BlocksToRemove) 2437 BB->eraseFromParent(); 2438 } 2439 2440 return Changed; 2441 } 2442 2443 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2444 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2445 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2446 K->dropUnknownNonDebugMetadata(KnownIDs); 2447 K->getAllMetadataOtherThanDebugLoc(Metadata); 2448 for (const auto &MD : Metadata) { 2449 unsigned Kind = MD.first; 2450 MDNode *JMD = J->getMetadata(Kind); 2451 MDNode *KMD = MD.second; 2452 2453 switch (Kind) { 2454 default: 2455 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2456 break; 2457 case LLVMContext::MD_dbg: 2458 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2459 case LLVMContext::MD_tbaa: 2460 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2461 break; 2462 case LLVMContext::MD_alias_scope: 2463 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2464 break; 2465 case LLVMContext::MD_noalias: 2466 case LLVMContext::MD_mem_parallel_loop_access: 2467 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2468 break; 2469 case LLVMContext::MD_access_group: 2470 K->setMetadata(LLVMContext::MD_access_group, 2471 intersectAccessGroups(K, J)); 2472 break; 2473 case LLVMContext::MD_range: 2474 2475 // If K does move, use most generic range. Otherwise keep the range of 2476 // K. 2477 if (DoesKMove) 2478 // FIXME: If K does move, we should drop the range info and nonnull. 2479 // Currently this function is used with DoesKMove in passes 2480 // doing hoisting/sinking and the current behavior of using the 2481 // most generic range is correct in those cases. 2482 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2483 break; 2484 case LLVMContext::MD_fpmath: 2485 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2486 break; 2487 case LLVMContext::MD_invariant_load: 2488 // Only set the !invariant.load if it is present in both instructions. 2489 K->setMetadata(Kind, JMD); 2490 break; 2491 case LLVMContext::MD_nonnull: 2492 // If K does move, keep nonull if it is present in both instructions. 2493 if (DoesKMove) 2494 K->setMetadata(Kind, JMD); 2495 break; 2496 case LLVMContext::MD_invariant_group: 2497 // Preserve !invariant.group in K. 2498 break; 2499 case LLVMContext::MD_align: 2500 K->setMetadata(Kind, 2501 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2502 break; 2503 case LLVMContext::MD_dereferenceable: 2504 case LLVMContext::MD_dereferenceable_or_null: 2505 K->setMetadata(Kind, 2506 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2507 break; 2508 case LLVMContext::MD_preserve_access_index: 2509 // Preserve !preserve.access.index in K. 2510 break; 2511 } 2512 } 2513 // Set !invariant.group from J if J has it. If both instructions have it 2514 // then we will just pick it from J - even when they are different. 2515 // Also make sure that K is load or store - f.e. combining bitcast with load 2516 // could produce bitcast with invariant.group metadata, which is invalid. 2517 // FIXME: we should try to preserve both invariant.group md if they are 2518 // different, but right now instruction can only have one invariant.group. 2519 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2520 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2521 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2522 } 2523 2524 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2525 bool KDominatesJ) { 2526 unsigned KnownIDs[] = { 2527 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2528 LLVMContext::MD_noalias, LLVMContext::MD_range, 2529 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2530 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2531 LLVMContext::MD_dereferenceable, 2532 LLVMContext::MD_dereferenceable_or_null, 2533 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2534 combineMetadata(K, J, KnownIDs, KDominatesJ); 2535 } 2536 2537 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2538 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2539 Source.getAllMetadata(MD); 2540 MDBuilder MDB(Dest.getContext()); 2541 Type *NewType = Dest.getType(); 2542 const DataLayout &DL = Source.getModule()->getDataLayout(); 2543 for (const auto &MDPair : MD) { 2544 unsigned ID = MDPair.first; 2545 MDNode *N = MDPair.second; 2546 // Note, essentially every kind of metadata should be preserved here! This 2547 // routine is supposed to clone a load instruction changing *only its type*. 2548 // The only metadata it makes sense to drop is metadata which is invalidated 2549 // when the pointer type changes. This should essentially never be the case 2550 // in LLVM, but we explicitly switch over only known metadata to be 2551 // conservatively correct. If you are adding metadata to LLVM which pertains 2552 // to loads, you almost certainly want to add it here. 2553 switch (ID) { 2554 case LLVMContext::MD_dbg: 2555 case LLVMContext::MD_tbaa: 2556 case LLVMContext::MD_prof: 2557 case LLVMContext::MD_fpmath: 2558 case LLVMContext::MD_tbaa_struct: 2559 case LLVMContext::MD_invariant_load: 2560 case LLVMContext::MD_alias_scope: 2561 case LLVMContext::MD_noalias: 2562 case LLVMContext::MD_nontemporal: 2563 case LLVMContext::MD_mem_parallel_loop_access: 2564 case LLVMContext::MD_access_group: 2565 // All of these directly apply. 2566 Dest.setMetadata(ID, N); 2567 break; 2568 2569 case LLVMContext::MD_nonnull: 2570 copyNonnullMetadata(Source, N, Dest); 2571 break; 2572 2573 case LLVMContext::MD_align: 2574 case LLVMContext::MD_dereferenceable: 2575 case LLVMContext::MD_dereferenceable_or_null: 2576 // These only directly apply if the new type is also a pointer. 2577 if (NewType->isPointerTy()) 2578 Dest.setMetadata(ID, N); 2579 break; 2580 2581 case LLVMContext::MD_range: 2582 copyRangeMetadata(DL, Source, N, Dest); 2583 break; 2584 } 2585 } 2586 } 2587 2588 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2589 auto *ReplInst = dyn_cast<Instruction>(Repl); 2590 if (!ReplInst) 2591 return; 2592 2593 // Patch the replacement so that it is not more restrictive than the value 2594 // being replaced. 2595 // Note that if 'I' is a load being replaced by some operation, 2596 // for example, by an arithmetic operation, then andIRFlags() 2597 // would just erase all math flags from the original arithmetic 2598 // operation, which is clearly not wanted and not needed. 2599 if (!isa<LoadInst>(I)) 2600 ReplInst->andIRFlags(I); 2601 2602 // FIXME: If both the original and replacement value are part of the 2603 // same control-flow region (meaning that the execution of one 2604 // guarantees the execution of the other), then we can combine the 2605 // noalias scopes here and do better than the general conservative 2606 // answer used in combineMetadata(). 2607 2608 // In general, GVN unifies expressions over different control-flow 2609 // regions, and so we need a conservative combination of the noalias 2610 // scopes. 2611 static const unsigned KnownIDs[] = { 2612 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2613 LLVMContext::MD_noalias, LLVMContext::MD_range, 2614 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2615 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2616 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2617 combineMetadata(ReplInst, I, KnownIDs, false); 2618 } 2619 2620 template <typename RootType, typename DominatesFn> 2621 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2622 const RootType &Root, 2623 const DominatesFn &Dominates) { 2624 assert(From->getType() == To->getType()); 2625 2626 unsigned Count = 0; 2627 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2628 UI != UE;) { 2629 Use &U = *UI++; 2630 if (!Dominates(Root, U)) 2631 continue; 2632 U.set(To); 2633 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2634 << "' as " << *To << " in " << *U << "\n"); 2635 ++Count; 2636 } 2637 return Count; 2638 } 2639 2640 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2641 assert(From->getType() == To->getType()); 2642 auto *BB = From->getParent(); 2643 unsigned Count = 0; 2644 2645 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2646 UI != UE;) { 2647 Use &U = *UI++; 2648 auto *I = cast<Instruction>(U.getUser()); 2649 if (I->getParent() == BB) 2650 continue; 2651 U.set(To); 2652 ++Count; 2653 } 2654 return Count; 2655 } 2656 2657 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2658 DominatorTree &DT, 2659 const BasicBlockEdge &Root) { 2660 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2661 return DT.dominates(Root, U); 2662 }; 2663 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2664 } 2665 2666 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2667 DominatorTree &DT, 2668 const BasicBlock *BB) { 2669 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2670 auto *I = cast<Instruction>(U.getUser())->getParent(); 2671 return DT.properlyDominates(BB, I); 2672 }; 2673 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2674 } 2675 2676 bool llvm::callsGCLeafFunction(const CallBase *Call, 2677 const TargetLibraryInfo &TLI) { 2678 // Check if the function is specifically marked as a gc leaf function. 2679 if (Call->hasFnAttr("gc-leaf-function")) 2680 return true; 2681 if (const Function *F = Call->getCalledFunction()) { 2682 if (F->hasFnAttribute("gc-leaf-function")) 2683 return true; 2684 2685 if (auto IID = F->getIntrinsicID()) { 2686 // Most LLVM intrinsics do not take safepoints. 2687 return IID != Intrinsic::experimental_gc_statepoint && 2688 IID != Intrinsic::experimental_deoptimize && 2689 IID != Intrinsic::memcpy_element_unordered_atomic && 2690 IID != Intrinsic::memmove_element_unordered_atomic; 2691 } 2692 } 2693 2694 // Lib calls can be materialized by some passes, and won't be 2695 // marked as 'gc-leaf-function.' All available Libcalls are 2696 // GC-leaf. 2697 LibFunc LF; 2698 if (TLI.getLibFunc(*Call, LF)) { 2699 return TLI.has(LF); 2700 } 2701 2702 return false; 2703 } 2704 2705 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2706 LoadInst &NewLI) { 2707 auto *NewTy = NewLI.getType(); 2708 2709 // This only directly applies if the new type is also a pointer. 2710 if (NewTy->isPointerTy()) { 2711 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2712 return; 2713 } 2714 2715 // The only other translation we can do is to integral loads with !range 2716 // metadata. 2717 if (!NewTy->isIntegerTy()) 2718 return; 2719 2720 MDBuilder MDB(NewLI.getContext()); 2721 const Value *Ptr = OldLI.getPointerOperand(); 2722 auto *ITy = cast<IntegerType>(NewTy); 2723 auto *NullInt = ConstantExpr::getPtrToInt( 2724 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2725 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2726 NewLI.setMetadata(LLVMContext::MD_range, 2727 MDB.createRange(NonNullInt, NullInt)); 2728 } 2729 2730 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2731 MDNode *N, LoadInst &NewLI) { 2732 auto *NewTy = NewLI.getType(); 2733 2734 // Give up unless it is converted to a pointer where there is a single very 2735 // valuable mapping we can do reliably. 2736 // FIXME: It would be nice to propagate this in more ways, but the type 2737 // conversions make it hard. 2738 if (!NewTy->isPointerTy()) 2739 return; 2740 2741 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2742 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2743 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2744 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2745 } 2746 } 2747 2748 void llvm::dropDebugUsers(Instruction &I) { 2749 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2750 findDbgUsers(DbgUsers, &I); 2751 for (auto *DII : DbgUsers) 2752 DII->eraseFromParent(); 2753 } 2754 2755 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2756 BasicBlock *BB) { 2757 // Since we are moving the instructions out of its basic block, we do not 2758 // retain their original debug locations (DILocations) and debug intrinsic 2759 // instructions. 2760 // 2761 // Doing so would degrade the debugging experience and adversely affect the 2762 // accuracy of profiling information. 2763 // 2764 // Currently, when hoisting the instructions, we take the following actions: 2765 // - Remove their debug intrinsic instructions. 2766 // - Set their debug locations to the values from the insertion point. 2767 // 2768 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2769 // need to be deleted, is because there will not be any instructions with a 2770 // DILocation in either branch left after performing the transformation. We 2771 // can only insert a dbg.value after the two branches are joined again. 2772 // 2773 // See PR38762, PR39243 for more details. 2774 // 2775 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2776 // encode predicated DIExpressions that yield different results on different 2777 // code paths. 2778 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2779 Instruction *I = &*II; 2780 I->dropUnknownNonDebugMetadata(); 2781 if (I->isUsedByMetadata()) 2782 dropDebugUsers(*I); 2783 if (isa<DbgInfoIntrinsic>(I)) { 2784 // Remove DbgInfo Intrinsics. 2785 II = I->eraseFromParent(); 2786 continue; 2787 } 2788 I->setDebugLoc(InsertPt->getDebugLoc()); 2789 ++II; 2790 } 2791 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2792 BB->begin(), 2793 BB->getTerminator()->getIterator()); 2794 } 2795 2796 namespace { 2797 2798 /// A potential constituent of a bitreverse or bswap expression. See 2799 /// collectBitParts for a fuller explanation. 2800 struct BitPart { 2801 BitPart(Value *P, unsigned BW) : Provider(P) { 2802 Provenance.resize(BW); 2803 } 2804 2805 /// The Value that this is a bitreverse/bswap of. 2806 Value *Provider; 2807 2808 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2809 /// in Provider becomes bit B in the result of this expression. 2810 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2811 2812 enum { Unset = -1 }; 2813 }; 2814 2815 } // end anonymous namespace 2816 2817 /// Analyze the specified subexpression and see if it is capable of providing 2818 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2819 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2820 /// the output of the expression came from a corresponding bit in some other 2821 /// value. This function is recursive, and the end result is a mapping of 2822 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2823 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2824 /// 2825 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2826 /// that the expression deposits the low byte of %X into the high byte of the 2827 /// result and that all other bits are zero. This expression is accepted and a 2828 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2829 /// [0-7]. 2830 /// 2831 /// For vector types, all analysis is performed at the per-element level. No 2832 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2833 /// constant masks must be splatted across all elements. 2834 /// 2835 /// To avoid revisiting values, the BitPart results are memoized into the 2836 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2837 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2838 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2839 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2840 /// type instead to provide the same functionality. 2841 /// 2842 /// Because we pass around references into \c BPS, we must use a container that 2843 /// does not invalidate internal references (std::map instead of DenseMap). 2844 static const Optional<BitPart> & 2845 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2846 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2847 auto I = BPS.find(V); 2848 if (I != BPS.end()) 2849 return I->second; 2850 2851 auto &Result = BPS[V] = None; 2852 auto BitWidth = V->getType()->getScalarSizeInBits(); 2853 2854 // Prevent stack overflow by limiting the recursion depth 2855 if (Depth == BitPartRecursionMaxDepth) { 2856 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2857 return Result; 2858 } 2859 2860 if (auto *I = dyn_cast<Instruction>(V)) { 2861 Value *X, *Y; 2862 const APInt *C; 2863 2864 // If this is an or instruction, it may be an inner node of the bswap. 2865 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2866 const auto &A = 2867 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2868 const auto &B = 2869 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2870 if (!A || !B) 2871 return Result; 2872 2873 // Try and merge the two together. 2874 if (!A->Provider || A->Provider != B->Provider) 2875 return Result; 2876 2877 Result = BitPart(A->Provider, BitWidth); 2878 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2879 if (A->Provenance[BitIdx] != BitPart::Unset && 2880 B->Provenance[BitIdx] != BitPart::Unset && 2881 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2882 return Result = None; 2883 2884 if (A->Provenance[BitIdx] == BitPart::Unset) 2885 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2886 else 2887 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2888 } 2889 2890 return Result; 2891 } 2892 2893 // If this is a logical shift by a constant, recurse then shift the result. 2894 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2895 const APInt &BitShift = *C; 2896 2897 // Ensure the shift amount is defined. 2898 if (BitShift.uge(BitWidth)) 2899 return Result; 2900 2901 const auto &Res = 2902 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2903 if (!Res) 2904 return Result; 2905 Result = Res; 2906 2907 // Perform the "shift" on BitProvenance. 2908 auto &P = Result->Provenance; 2909 if (I->getOpcode() == Instruction::Shl) { 2910 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2911 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2912 } else { 2913 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2914 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2915 } 2916 2917 return Result; 2918 } 2919 2920 // If this is a logical 'and' with a mask that clears bits, recurse then 2921 // unset the appropriate bits. 2922 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2923 const APInt &AndMask = *C; 2924 2925 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2926 // early exit. 2927 unsigned NumMaskedBits = AndMask.countPopulation(); 2928 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2929 return Result; 2930 2931 const auto &Res = 2932 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2933 if (!Res) 2934 return Result; 2935 Result = Res; 2936 2937 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2938 // If the AndMask is zero for this bit, clear the bit. 2939 if (AndMask[BitIdx] == 0) 2940 Result->Provenance[BitIdx] = BitPart::Unset; 2941 return Result; 2942 } 2943 2944 // If this is a zext instruction zero extend the result. 2945 if (match(V, m_ZExt(m_Value(X)))) { 2946 const auto &Res = 2947 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2948 if (!Res) 2949 return Result; 2950 2951 Result = BitPart(Res->Provider, BitWidth); 2952 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 2953 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 2954 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 2955 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 2956 Result->Provenance[BitIdx] = BitPart::Unset; 2957 return Result; 2958 } 2959 2960 // BITREVERSE - most likely due to us previous matching a partial 2961 // bitreverse. 2962 if (match(V, m_BitReverse(m_Value(X)))) { 2963 const auto &Res = 2964 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2965 if (!Res) 2966 return Result; 2967 2968 Result = BitPart(Res->Provider, BitWidth); 2969 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2970 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 2971 return Result; 2972 } 2973 2974 // BSWAP - most likely due to us previous matching a partial bswap. 2975 if (match(V, m_BSwap(m_Value(X)))) { 2976 const auto &Res = 2977 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 2978 if (!Res) 2979 return Result; 2980 2981 unsigned ByteWidth = BitWidth / 8; 2982 Result = BitPart(Res->Provider, BitWidth); 2983 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 2984 unsigned ByteBitOfs = ByteIdx * 8; 2985 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 2986 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 2987 Res->Provenance[ByteBitOfs + BitIdx]; 2988 } 2989 return Result; 2990 } 2991 2992 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 2993 // amount (modulo). 2994 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2995 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2996 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 2997 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 2998 // We can treat fshr as a fshl by flipping the modulo amount. 2999 unsigned ModAmt = C->urem(BitWidth); 3000 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3001 ModAmt = BitWidth - ModAmt; 3002 3003 const auto &LHS = 3004 collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3005 const auto &RHS = 3006 collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1); 3007 3008 // Check we have both sources and they are from the same provider. 3009 if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider) 3010 return Result; 3011 3012 unsigned StartBitRHS = BitWidth - ModAmt; 3013 Result = BitPart(LHS->Provider, BitWidth); 3014 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3015 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3016 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3017 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3018 return Result; 3019 } 3020 } 3021 3022 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 3023 // the input value to the bswap/bitreverse. 3024 Result = BitPart(V, BitWidth); 3025 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3026 Result->Provenance[BitIdx] = BitIdx; 3027 return Result; 3028 } 3029 3030 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3031 unsigned BitWidth) { 3032 if (From % 8 != To % 8) 3033 return false; 3034 // Convert from bit indices to byte indices and check for a byte reversal. 3035 From >>= 3; 3036 To >>= 3; 3037 BitWidth >>= 3; 3038 return From == BitWidth - To - 1; 3039 } 3040 3041 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3042 unsigned BitWidth) { 3043 return From == BitWidth - To - 1; 3044 } 3045 3046 bool llvm::recognizeBSwapOrBitReverseIdiom( 3047 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3048 SmallVectorImpl<Instruction *> &InsertedInsts) { 3049 if (Operator::getOpcode(I) != Instruction::Or) 3050 return false; 3051 if (!MatchBSwaps && !MatchBitReversals) 3052 return false; 3053 Type *ITy = I->getType(); 3054 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3055 return false; // Can't do integer/elements > 128 bits. 3056 3057 Type *DemandedTy = ITy; 3058 if (I->hasOneUse()) 3059 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3060 DemandedTy = Trunc->getType(); 3061 3062 // Try to find all the pieces corresponding to the bswap. 3063 std::map<Value *, Optional<BitPart>> BPS; 3064 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 3065 if (!Res) 3066 return false; 3067 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3068 assert(all_of(BitProvenance, 3069 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3070 "Illegal bit provenance index"); 3071 3072 // If the upper bits are zero, then attempt to perform as a truncated op. 3073 if (BitProvenance.back() == BitPart::Unset) { 3074 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3075 BitProvenance = BitProvenance.drop_back(); 3076 if (BitProvenance.empty()) 3077 return false; // TODO - handle null value? 3078 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3079 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3080 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3081 } 3082 3083 // Check BitProvenance hasn't found a source larger than the result type. 3084 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3085 if (DemandedBW > ITy->getScalarSizeInBits()) 3086 return false; 3087 3088 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3089 // only byteswap values with an even number of bytes. 3090 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3091 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3092 bool OKForBitReverse = MatchBitReversals; 3093 for (unsigned BitIdx = 0; 3094 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3095 if (BitProvenance[BitIdx] == BitPart::Unset) { 3096 DemandedMask.clearBit(BitIdx); 3097 continue; 3098 } 3099 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3100 DemandedBW); 3101 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3102 BitIdx, DemandedBW); 3103 } 3104 3105 Intrinsic::ID Intrin; 3106 if (OKForBSwap) 3107 Intrin = Intrinsic::bswap; 3108 else if (OKForBitReverse) 3109 Intrin = Intrinsic::bitreverse; 3110 else 3111 return false; 3112 3113 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3114 Value *Provider = Res->Provider; 3115 3116 // We may need to truncate the provider. 3117 if (DemandedTy != Provider->getType()) { 3118 auto *Trunc = 3119 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3120 InsertedInsts.push_back(Trunc); 3121 Provider = Trunc; 3122 } 3123 3124 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3125 InsertedInsts.push_back(Result); 3126 3127 if (!DemandedMask.isAllOnesValue()) { 3128 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3129 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3130 InsertedInsts.push_back(Result); 3131 } 3132 3133 // We may need to zeroextend back to the result type. 3134 if (ITy != Result->getType()) { 3135 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3136 InsertedInsts.push_back(ExtInst); 3137 } 3138 3139 return true; 3140 } 3141 3142 // CodeGen has special handling for some string functions that may replace 3143 // them with target-specific intrinsics. Since that'd skip our interceptors 3144 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3145 // we mark affected calls as NoBuiltin, which will disable optimization 3146 // in CodeGen. 3147 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3148 CallInst *CI, const TargetLibraryInfo *TLI) { 3149 Function *F = CI->getCalledFunction(); 3150 LibFunc Func; 3151 if (F && !F->hasLocalLinkage() && F->hasName() && 3152 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3153 !F->doesNotAccessMemory()) 3154 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3155 } 3156 3157 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3158 // We can't have a PHI with a metadata type. 3159 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3160 return false; 3161 3162 // Early exit. 3163 if (!isa<Constant>(I->getOperand(OpIdx))) 3164 return true; 3165 3166 switch (I->getOpcode()) { 3167 default: 3168 return true; 3169 case Instruction::Call: 3170 case Instruction::Invoke: { 3171 const auto &CB = cast<CallBase>(*I); 3172 3173 // Can't handle inline asm. Skip it. 3174 if (CB.isInlineAsm()) 3175 return false; 3176 3177 // Constant bundle operands may need to retain their constant-ness for 3178 // correctness. 3179 if (CB.isBundleOperand(OpIdx)) 3180 return false; 3181 3182 if (OpIdx < CB.getNumArgOperands()) { 3183 // Some variadic intrinsics require constants in the variadic arguments, 3184 // which currently aren't markable as immarg. 3185 if (isa<IntrinsicInst>(CB) && 3186 OpIdx >= CB.getFunctionType()->getNumParams()) { 3187 // This is known to be OK for stackmap. 3188 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3189 } 3190 3191 // gcroot is a special case, since it requires a constant argument which 3192 // isn't also required to be a simple ConstantInt. 3193 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3194 return false; 3195 3196 // Some intrinsic operands are required to be immediates. 3197 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3198 } 3199 3200 // It is never allowed to replace the call argument to an intrinsic, but it 3201 // may be possible for a call. 3202 return !isa<IntrinsicInst>(CB); 3203 } 3204 case Instruction::ShuffleVector: 3205 // Shufflevector masks are constant. 3206 return OpIdx != 2; 3207 case Instruction::Switch: 3208 case Instruction::ExtractValue: 3209 // All operands apart from the first are constant. 3210 return OpIdx == 0; 3211 case Instruction::InsertValue: 3212 // All operands apart from the first and the second are constant. 3213 return OpIdx < 2; 3214 case Instruction::Alloca: 3215 // Static allocas (constant size in the entry block) are handled by 3216 // prologue/epilogue insertion so they're free anyway. We definitely don't 3217 // want to make them non-constant. 3218 return !cast<AllocaInst>(I)->isStaticAlloca(); 3219 case Instruction::GetElementPtr: 3220 if (OpIdx == 0) 3221 return true; 3222 gep_type_iterator It = gep_type_begin(I); 3223 for (auto E = std::next(It, OpIdx); It != E; ++It) 3224 if (It.isStruct()) 3225 return false; 3226 return true; 3227 } 3228 } 3229 3230 Value *llvm::invertCondition(Value *Condition) { 3231 // First: Check if it's a constant 3232 if (Constant *C = dyn_cast<Constant>(Condition)) 3233 return ConstantExpr::getNot(C); 3234 3235 // Second: If the condition is already inverted, return the original value 3236 Value *NotCondition; 3237 if (match(Condition, m_Not(m_Value(NotCondition)))) 3238 return NotCondition; 3239 3240 BasicBlock *Parent = nullptr; 3241 Instruction *Inst = dyn_cast<Instruction>(Condition); 3242 if (Inst) 3243 Parent = Inst->getParent(); 3244 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3245 Parent = &Arg->getParent()->getEntryBlock(); 3246 assert(Parent && "Unsupported condition to invert"); 3247 3248 // Third: Check all the users for an invert 3249 for (User *U : Condition->users()) 3250 if (Instruction *I = dyn_cast<Instruction>(U)) 3251 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3252 return I; 3253 3254 // Last option: Create a new instruction 3255 auto *Inverted = 3256 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3257 if (Inst && !isa<PHINode>(Inst)) 3258 Inverted->insertAfter(Inst); 3259 else 3260 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3261 return Inverted; 3262 } 3263