1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/AssumeBundleQueries.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/EHPersonalities.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/LazyValueInfo.h"
34 #include "llvm/Analysis/MemoryBuiltins.h"
35 #include "llvm/Analysis/MemorySSAUpdater.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/BinaryFormat/Dwarf.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms
115 static const unsigned BitPartRecursionMaxDepth = 64;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       Builder.CreateBr(Dest1);
152       Value *Cond = BI->getCondition();
153       BI->eraseFromParent();
154       if (DeleteDeadConditions)
155         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
156       return true;
157     }
158 
159     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
160       // Are we branching on constant?
161       // YES.  Change to unconditional branch...
162       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
163       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
164 
165       // Let the basic block know that we are letting go of it.  Based on this,
166       // it will adjust it's PHI nodes.
167       OldDest->removePredecessor(BB);
168 
169       // Replace the conditional branch with an unconditional one.
170       Builder.CreateBr(Destination);
171       BI->eraseFromParent();
172       if (DTU)
173         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
174       return true;
175     }
176 
177     return false;
178   }
179 
180   if (auto *SI = dyn_cast<SwitchInst>(T)) {
181     // If we are switching on a constant, we can convert the switch to an
182     // unconditional branch.
183     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
184     BasicBlock *DefaultDest = SI->getDefaultDest();
185     BasicBlock *TheOnlyDest = DefaultDest;
186 
187     // If the default is unreachable, ignore it when searching for TheOnlyDest.
188     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
189         SI->getNumCases() > 0) {
190       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
191     }
192 
193     bool Changed = false;
194 
195     // Figure out which case it goes to.
196     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
197       // Found case matching a constant operand?
198       if (i->getCaseValue() == CI) {
199         TheOnlyDest = i->getCaseSuccessor();
200         break;
201       }
202 
203       // Check to see if this branch is going to the same place as the default
204       // dest.  If so, eliminate it as an explicit compare.
205       if (i->getCaseSuccessor() == DefaultDest) {
206         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
207         unsigned NCases = SI->getNumCases();
208         // Fold the case metadata into the default if there will be any branches
209         // left, unless the metadata doesn't match the switch.
210         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
211           // Collect branch weights into a vector.
212           SmallVector<uint32_t, 8> Weights;
213           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
214                ++MD_i) {
215             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
216             Weights.push_back(CI->getValue().getZExtValue());
217           }
218           // Merge weight of this case to the default weight.
219           unsigned idx = i->getCaseIndex();
220           Weights[0] += Weights[idx+1];
221           // Remove weight for this case.
222           std::swap(Weights[idx+1], Weights.back());
223           Weights.pop_back();
224           SI->setMetadata(LLVMContext::MD_prof,
225                           MDBuilder(BB->getContext()).
226                           createBranchWeights(Weights));
227         }
228         // Remove this entry.
229         BasicBlock *ParentBB = SI->getParent();
230         DefaultDest->removePredecessor(ParentBB);
231         i = SI->removeCase(i);
232         e = SI->case_end();
233         Changed = true;
234         continue;
235       }
236 
237       // Otherwise, check to see if the switch only branches to one destination.
238       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
239       // destinations.
240       if (i->getCaseSuccessor() != TheOnlyDest)
241         TheOnlyDest = nullptr;
242 
243       // Increment this iterator as we haven't removed the case.
244       ++i;
245     }
246 
247     if (CI && !TheOnlyDest) {
248       // Branching on a constant, but not any of the cases, go to the default
249       // successor.
250       TheOnlyDest = SI->getDefaultDest();
251     }
252 
253     // If we found a single destination that we can fold the switch into, do so
254     // now.
255     if (TheOnlyDest) {
256       // Insert the new branch.
257       Builder.CreateBr(TheOnlyDest);
258       BasicBlock *BB = SI->getParent();
259 
260       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
261 
262       // Remove entries from PHI nodes which we no longer branch to...
263       BasicBlock *SuccToKeep = TheOnlyDest;
264       for (BasicBlock *Succ : successors(SI)) {
265         if (DTU && Succ != TheOnlyDest)
266           RemovedSuccessors.insert(Succ);
267         // Found case matching a constant operand?
268         if (Succ == SuccToKeep) {
269           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
270         } else {
271           Succ->removePredecessor(BB);
272         }
273       }
274 
275       // Delete the old switch.
276       Value *Cond = SI->getCondition();
277       SI->eraseFromParent();
278       if (DeleteDeadConditions)
279         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
280       if (DTU) {
281         std::vector<DominatorTree::UpdateType> Updates;
282         Updates.reserve(RemovedSuccessors.size());
283         for (auto *RemovedSuccessor : RemovedSuccessors)
284           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
285         DTU->applyUpdates(Updates);
286       }
287       return true;
288     }
289 
290     if (SI->getNumCases() == 1) {
291       // Otherwise, we can fold this switch into a conditional branch
292       // instruction if it has only one non-default destination.
293       auto FirstCase = *SI->case_begin();
294       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
295           FirstCase.getCaseValue(), "cond");
296 
297       // Insert the new branch.
298       BranchInst *NewBr = Builder.CreateCondBr(Cond,
299                                                FirstCase.getCaseSuccessor(),
300                                                SI->getDefaultDest());
301       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
302       if (MD && MD->getNumOperands() == 3) {
303         ConstantInt *SICase =
304             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
305         ConstantInt *SIDef =
306             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
307         assert(SICase && SIDef);
308         // The TrueWeight should be the weight for the single case of SI.
309         NewBr->setMetadata(LLVMContext::MD_prof,
310                         MDBuilder(BB->getContext()).
311                         createBranchWeights(SICase->getValue().getZExtValue(),
312                                             SIDef->getValue().getZExtValue()));
313       }
314 
315       // Update make.implicit metadata to the newly-created conditional branch.
316       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
317       if (MakeImplicitMD)
318         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
319 
320       // Delete the old switch.
321       SI->eraseFromParent();
322       return true;
323     }
324     return Changed;
325   }
326 
327   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
328     // indirectbr blockaddress(@F, @BB) -> br label @BB
329     if (auto *BA =
330           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
331       BasicBlock *TheOnlyDest = BA->getBasicBlock();
332       SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
333 
334       // Insert the new branch.
335       Builder.CreateBr(TheOnlyDest);
336 
337       BasicBlock *SuccToKeep = TheOnlyDest;
338       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
339         BasicBlock *DestBB = IBI->getDestination(i);
340         if (DTU && DestBB != TheOnlyDest)
341           RemovedSuccessors.insert(DestBB);
342         if (IBI->getDestination(i) == SuccToKeep) {
343           SuccToKeep = nullptr;
344         } else {
345           DestBB->removePredecessor(BB);
346         }
347       }
348       Value *Address = IBI->getAddress();
349       IBI->eraseFromParent();
350       if (DeleteDeadConditions)
351         // Delete pointer cast instructions.
352         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
353 
354       // Also zap the blockaddress constant if there are no users remaining,
355       // otherwise the destination is still marked as having its address taken.
356       if (BA->use_empty())
357         BA->destroyConstant();
358 
359       // If we didn't find our destination in the IBI successor list, then we
360       // have undefined behavior.  Replace the unconditional branch with an
361       // 'unreachable' instruction.
362       if (SuccToKeep) {
363         BB->getTerminator()->eraseFromParent();
364         new UnreachableInst(BB->getContext(), BB);
365       }
366 
367       if (DTU) {
368         std::vector<DominatorTree::UpdateType> Updates;
369         Updates.reserve(RemovedSuccessors.size());
370         for (auto *RemovedSuccessor : RemovedSuccessors)
371           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
372         DTU->applyUpdates(Updates);
373       }
374       return true;
375     }
376   }
377 
378   return false;
379 }
380 
381 //===----------------------------------------------------------------------===//
382 //  Local dead code elimination.
383 //
384 
385 /// isInstructionTriviallyDead - Return true if the result produced by the
386 /// instruction is not used, and the instruction has no side effects.
387 ///
388 bool llvm::isInstructionTriviallyDead(Instruction *I,
389                                       const TargetLibraryInfo *TLI) {
390   if (!I->use_empty())
391     return false;
392   return wouldInstructionBeTriviallyDead(I, TLI);
393 }
394 
395 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
396                                            const TargetLibraryInfo *TLI) {
397   if (I->isTerminator())
398     return false;
399 
400   // We don't want the landingpad-like instructions removed by anything this
401   // general.
402   if (I->isEHPad())
403     return false;
404 
405   // We don't want debug info removed by anything this general, unless
406   // debug info is empty.
407   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
408     if (DDI->getAddress())
409       return false;
410     return true;
411   }
412   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
413     if (DVI->getValue())
414       return false;
415     return true;
416   }
417   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
418     if (DLI->getLabel())
419       return false;
420     return true;
421   }
422 
423   if (!I->willReturn())
424     return false;
425 
426   if (!I->mayHaveSideEffects())
427     return true;
428 
429   // Special case intrinsics that "may have side effects" but can be deleted
430   // when dead.
431   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
432     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
433     if (II->getIntrinsicID() == Intrinsic::stacksave ||
434         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
435       return true;
436 
437     if (II->isLifetimeStartOrEnd()) {
438       auto *Arg = II->getArgOperand(1);
439       // Lifetime intrinsics are dead when their right-hand is undef.
440       if (isa<UndefValue>(Arg))
441         return true;
442       // If the right-hand is an alloc, global, or argument and the only uses
443       // are lifetime intrinsics then the intrinsics are dead.
444       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
445         return llvm::all_of(Arg->uses(), [](Use &Use) {
446           if (IntrinsicInst *IntrinsicUse =
447                   dyn_cast<IntrinsicInst>(Use.getUser()))
448             return IntrinsicUse->isLifetimeStartOrEnd();
449           return false;
450         });
451       return false;
452     }
453 
454     // Assumptions are dead if their condition is trivially true.  Guards on
455     // true are operationally no-ops.  In the future we can consider more
456     // sophisticated tradeoffs for guards considering potential for check
457     // widening, but for now we keep things simple.
458     if ((II->getIntrinsicID() == Intrinsic::assume &&
459          isAssumeWithEmptyBundle(*II)) ||
460         II->getIntrinsicID() == Intrinsic::experimental_guard) {
461       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
462         return !Cond->isZero();
463 
464       return false;
465     }
466   }
467 
468   if (isAllocLikeFn(I, TLI))
469     return true;
470 
471   if (CallInst *CI = isFreeCall(I, TLI))
472     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
473       return C->isNullValue() || isa<UndefValue>(C);
474 
475   if (auto *Call = dyn_cast<CallBase>(I))
476     if (isMathLibCallNoop(Call, TLI))
477       return true;
478 
479   return false;
480 }
481 
482 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
483 /// trivially dead instruction, delete it.  If that makes any of its operands
484 /// trivially dead, delete them too, recursively.  Return true if any
485 /// instructions were deleted.
486 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
487     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
488     std::function<void(Value *)> AboutToDeleteCallback) {
489   Instruction *I = dyn_cast<Instruction>(V);
490   if (!I || !isInstructionTriviallyDead(I, TLI))
491     return false;
492 
493   SmallVector<WeakTrackingVH, 16> DeadInsts;
494   DeadInsts.push_back(I);
495   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
496                                              AboutToDeleteCallback);
497 
498   return true;
499 }
500 
501 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
502     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
503     MemorySSAUpdater *MSSAU,
504     std::function<void(Value *)> AboutToDeleteCallback) {
505   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
506   for (; S != E; ++S) {
507     auto *I = cast<Instruction>(DeadInsts[S]);
508     if (!isInstructionTriviallyDead(I)) {
509       DeadInsts[S] = nullptr;
510       ++Alive;
511     }
512   }
513   if (Alive == E)
514     return false;
515   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
516                                              AboutToDeleteCallback);
517   return true;
518 }
519 
520 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
521     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
522     MemorySSAUpdater *MSSAU,
523     std::function<void(Value *)> AboutToDeleteCallback) {
524   // Process the dead instruction list until empty.
525   while (!DeadInsts.empty()) {
526     Value *V = DeadInsts.pop_back_val();
527     Instruction *I = cast_or_null<Instruction>(V);
528     if (!I)
529       continue;
530     assert(isInstructionTriviallyDead(I, TLI) &&
531            "Live instruction found in dead worklist!");
532     assert(I->use_empty() && "Instructions with uses are not dead.");
533 
534     // Don't lose the debug info while deleting the instructions.
535     salvageDebugInfo(*I);
536 
537     if (AboutToDeleteCallback)
538       AboutToDeleteCallback(I);
539 
540     // Null out all of the instruction's operands to see if any operand becomes
541     // dead as we go.
542     for (Use &OpU : I->operands()) {
543       Value *OpV = OpU.get();
544       OpU.set(nullptr);
545 
546       if (!OpV->use_empty())
547         continue;
548 
549       // If the operand is an instruction that became dead as we nulled out the
550       // operand, and if it is 'trivially' dead, delete it in a future loop
551       // iteration.
552       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
553         if (isInstructionTriviallyDead(OpI, TLI))
554           DeadInsts.push_back(OpI);
555     }
556     if (MSSAU)
557       MSSAU->removeMemoryAccess(I);
558 
559     I->eraseFromParent();
560   }
561 }
562 
563 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
564   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
565   findDbgUsers(DbgUsers, I);
566   for (auto *DII : DbgUsers) {
567     Value *Undef = UndefValue::get(I->getType());
568     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
569                                             ValueAsMetadata::get(Undef)));
570   }
571   return !DbgUsers.empty();
572 }
573 
574 /// areAllUsesEqual - Check whether the uses of a value are all the same.
575 /// This is similar to Instruction::hasOneUse() except this will also return
576 /// true when there are no uses or multiple uses that all refer to the same
577 /// value.
578 static bool areAllUsesEqual(Instruction *I) {
579   Value::user_iterator UI = I->user_begin();
580   Value::user_iterator UE = I->user_end();
581   if (UI == UE)
582     return true;
583 
584   User *TheUse = *UI;
585   for (++UI; UI != UE; ++UI) {
586     if (*UI != TheUse)
587       return false;
588   }
589   return true;
590 }
591 
592 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
593 /// dead PHI node, due to being a def-use chain of single-use nodes that
594 /// either forms a cycle or is terminated by a trivially dead instruction,
595 /// delete it.  If that makes any of its operands trivially dead, delete them
596 /// too, recursively.  Return true if a change was made.
597 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
598                                         const TargetLibraryInfo *TLI,
599                                         llvm::MemorySSAUpdater *MSSAU) {
600   SmallPtrSet<Instruction*, 4> Visited;
601   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
602        I = cast<Instruction>(*I->user_begin())) {
603     if (I->use_empty())
604       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
605 
606     // If we find an instruction more than once, we're on a cycle that
607     // won't prove fruitful.
608     if (!Visited.insert(I).second) {
609       // Break the cycle and delete the instruction and its operands.
610       I->replaceAllUsesWith(UndefValue::get(I->getType()));
611       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
612       return true;
613     }
614   }
615   return false;
616 }
617 
618 static bool
619 simplifyAndDCEInstruction(Instruction *I,
620                           SmallSetVector<Instruction *, 16> &WorkList,
621                           const DataLayout &DL,
622                           const TargetLibraryInfo *TLI) {
623   if (isInstructionTriviallyDead(I, TLI)) {
624     salvageDebugInfo(*I);
625 
626     // Null out all of the instruction's operands to see if any operand becomes
627     // dead as we go.
628     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
629       Value *OpV = I->getOperand(i);
630       I->setOperand(i, nullptr);
631 
632       if (!OpV->use_empty() || I == OpV)
633         continue;
634 
635       // If the operand is an instruction that became dead as we nulled out the
636       // operand, and if it is 'trivially' dead, delete it in a future loop
637       // iteration.
638       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
639         if (isInstructionTriviallyDead(OpI, TLI))
640           WorkList.insert(OpI);
641     }
642 
643     I->eraseFromParent();
644 
645     return true;
646   }
647 
648   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
649     // Add the users to the worklist. CAREFUL: an instruction can use itself,
650     // in the case of a phi node.
651     for (User *U : I->users()) {
652       if (U != I) {
653         WorkList.insert(cast<Instruction>(U));
654       }
655     }
656 
657     // Replace the instruction with its simplified value.
658     bool Changed = false;
659     if (!I->use_empty()) {
660       I->replaceAllUsesWith(SimpleV);
661       Changed = true;
662     }
663     if (isInstructionTriviallyDead(I, TLI)) {
664       I->eraseFromParent();
665       Changed = true;
666     }
667     return Changed;
668   }
669   return false;
670 }
671 
672 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
673 /// simplify any instructions in it and recursively delete dead instructions.
674 ///
675 /// This returns true if it changed the code, note that it can delete
676 /// instructions in other blocks as well in this block.
677 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
678                                        const TargetLibraryInfo *TLI) {
679   bool MadeChange = false;
680   const DataLayout &DL = BB->getModule()->getDataLayout();
681 
682 #ifndef NDEBUG
683   // In debug builds, ensure that the terminator of the block is never replaced
684   // or deleted by these simplifications. The idea of simplification is that it
685   // cannot introduce new instructions, and there is no way to replace the
686   // terminator of a block without introducing a new instruction.
687   AssertingVH<Instruction> TerminatorVH(&BB->back());
688 #endif
689 
690   SmallSetVector<Instruction *, 16> WorkList;
691   // Iterate over the original function, only adding insts to the worklist
692   // if they actually need to be revisited. This avoids having to pre-init
693   // the worklist with the entire function's worth of instructions.
694   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
695        BI != E;) {
696     assert(!BI->isTerminator());
697     Instruction *I = &*BI;
698     ++BI;
699 
700     // We're visiting this instruction now, so make sure it's not in the
701     // worklist from an earlier visit.
702     if (!WorkList.count(I))
703       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
704   }
705 
706   while (!WorkList.empty()) {
707     Instruction *I = WorkList.pop_back_val();
708     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
709   }
710   return MadeChange;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 //  Control Flow Graph Restructuring.
715 //
716 
717 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
718                                        DomTreeUpdater *DTU) {
719 
720   // If BB has single-entry PHI nodes, fold them.
721   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
722     Value *NewVal = PN->getIncomingValue(0);
723     // Replace self referencing PHI with undef, it must be dead.
724     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
725     PN->replaceAllUsesWith(NewVal);
726     PN->eraseFromParent();
727   }
728 
729   BasicBlock *PredBB = DestBB->getSinglePredecessor();
730   assert(PredBB && "Block doesn't have a single predecessor!");
731 
732   bool ReplaceEntryBB = false;
733   if (PredBB == &DestBB->getParent()->getEntryBlock())
734     ReplaceEntryBB = true;
735 
736   // DTU updates: Collect all the edges that enter
737   // PredBB. These dominator edges will be redirected to DestBB.
738   SmallVector<DominatorTree::UpdateType, 32> Updates;
739 
740   if (DTU) {
741     for (BasicBlock *PredPredBB : predecessors(PredBB)) {
742       // This predecessor of PredBB may already have DestBB as a successor.
743       if (!llvm::is_contained(successors(PredPredBB), DestBB))
744         Updates.push_back({DominatorTree::Insert, PredPredBB, DestBB});
745       Updates.push_back({DominatorTree::Delete, PredPredBB, PredBB});
746     }
747     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
748   }
749 
750   // Zap anything that took the address of DestBB.  Not doing this will give the
751   // address an invalid value.
752   if (DestBB->hasAddressTaken()) {
753     BlockAddress *BA = BlockAddress::get(DestBB);
754     Constant *Replacement =
755       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
756     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
757                                                      BA->getType()));
758     BA->destroyConstant();
759   }
760 
761   // Anything that branched to PredBB now branches to DestBB.
762   PredBB->replaceAllUsesWith(DestBB);
763 
764   // Splice all the instructions from PredBB to DestBB.
765   PredBB->getTerminator()->eraseFromParent();
766   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
767   new UnreachableInst(PredBB->getContext(), PredBB);
768 
769   // If the PredBB is the entry block of the function, move DestBB up to
770   // become the entry block after we erase PredBB.
771   if (ReplaceEntryBB)
772     DestBB->moveAfter(PredBB);
773 
774   if (DTU) {
775     assert(PredBB->getInstList().size() == 1 &&
776            isa<UnreachableInst>(PredBB->getTerminator()) &&
777            "The successor list of PredBB isn't empty before "
778            "applying corresponding DTU updates.");
779     DTU->applyUpdatesPermissive(Updates);
780     DTU->deleteBB(PredBB);
781     // Recalculation of DomTree is needed when updating a forward DomTree and
782     // the Entry BB is replaced.
783     if (ReplaceEntryBB && DTU->hasDomTree()) {
784       // The entry block was removed and there is no external interface for
785       // the dominator tree to be notified of this change. In this corner-case
786       // we recalculate the entire tree.
787       DTU->recalculate(*(DestBB->getParent()));
788     }
789   }
790 
791   else {
792     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
793   }
794 }
795 
796 /// Return true if we can choose one of these values to use in place of the
797 /// other. Note that we will always choose the non-undef value to keep.
798 static bool CanMergeValues(Value *First, Value *Second) {
799   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
800 }
801 
802 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
803 /// branch to Succ, into Succ.
804 ///
805 /// Assumption: Succ is the single successor for BB.
806 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
807   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
808 
809   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
810                     << Succ->getName() << "\n");
811   // Shortcut, if there is only a single predecessor it must be BB and merging
812   // is always safe
813   if (Succ->getSinglePredecessor()) return true;
814 
815   // Make a list of the predecessors of BB
816   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
817 
818   // Look at all the phi nodes in Succ, to see if they present a conflict when
819   // merging these blocks
820   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
821     PHINode *PN = cast<PHINode>(I);
822 
823     // If the incoming value from BB is again a PHINode in
824     // BB which has the same incoming value for *PI as PN does, we can
825     // merge the phi nodes and then the blocks can still be merged
826     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
827     if (BBPN && BBPN->getParent() == BB) {
828       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
829         BasicBlock *IBB = PN->getIncomingBlock(PI);
830         if (BBPreds.count(IBB) &&
831             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
832                             PN->getIncomingValue(PI))) {
833           LLVM_DEBUG(dbgs()
834                      << "Can't fold, phi node " << PN->getName() << " in "
835                      << Succ->getName() << " is conflicting with "
836                      << BBPN->getName() << " with regard to common predecessor "
837                      << IBB->getName() << "\n");
838           return false;
839         }
840       }
841     } else {
842       Value* Val = PN->getIncomingValueForBlock(BB);
843       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
844         // See if the incoming value for the common predecessor is equal to the
845         // one for BB, in which case this phi node will not prevent the merging
846         // of the block.
847         BasicBlock *IBB = PN->getIncomingBlock(PI);
848         if (BBPreds.count(IBB) &&
849             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
850           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
851                             << " in " << Succ->getName()
852                             << " is conflicting with regard to common "
853                             << "predecessor " << IBB->getName() << "\n");
854           return false;
855         }
856       }
857     }
858   }
859 
860   return true;
861 }
862 
863 using PredBlockVector = SmallVector<BasicBlock *, 16>;
864 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
865 
866 /// Determines the value to use as the phi node input for a block.
867 ///
868 /// Select between \p OldVal any value that we know flows from \p BB
869 /// to a particular phi on the basis of which one (if either) is not
870 /// undef. Update IncomingValues based on the selected value.
871 ///
872 /// \param OldVal The value we are considering selecting.
873 /// \param BB The block that the value flows in from.
874 /// \param IncomingValues A map from block-to-value for other phi inputs
875 /// that we have examined.
876 ///
877 /// \returns the selected value.
878 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
879                                           IncomingValueMap &IncomingValues) {
880   if (!isa<UndefValue>(OldVal)) {
881     assert((!IncomingValues.count(BB) ||
882             IncomingValues.find(BB)->second == OldVal) &&
883            "Expected OldVal to match incoming value from BB!");
884 
885     IncomingValues.insert(std::make_pair(BB, OldVal));
886     return OldVal;
887   }
888 
889   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
890   if (It != IncomingValues.end()) return It->second;
891 
892   return OldVal;
893 }
894 
895 /// Create a map from block to value for the operands of a
896 /// given phi.
897 ///
898 /// Create a map from block to value for each non-undef value flowing
899 /// into \p PN.
900 ///
901 /// \param PN The phi we are collecting the map for.
902 /// \param IncomingValues [out] The map from block to value for this phi.
903 static void gatherIncomingValuesToPhi(PHINode *PN,
904                                       IncomingValueMap &IncomingValues) {
905   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
906     BasicBlock *BB = PN->getIncomingBlock(i);
907     Value *V = PN->getIncomingValue(i);
908 
909     if (!isa<UndefValue>(V))
910       IncomingValues.insert(std::make_pair(BB, V));
911   }
912 }
913 
914 /// Replace the incoming undef values to a phi with the values
915 /// from a block-to-value map.
916 ///
917 /// \param PN The phi we are replacing the undefs in.
918 /// \param IncomingValues A map from block to value.
919 static void replaceUndefValuesInPhi(PHINode *PN,
920                                     const IncomingValueMap &IncomingValues) {
921   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
922     Value *V = PN->getIncomingValue(i);
923 
924     if (!isa<UndefValue>(V)) continue;
925 
926     BasicBlock *BB = PN->getIncomingBlock(i);
927     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
928     if (It == IncomingValues.end()) continue;
929 
930     PN->setIncomingValue(i, It->second);
931   }
932 }
933 
934 /// Replace a value flowing from a block to a phi with
935 /// potentially multiple instances of that value flowing from the
936 /// block's predecessors to the phi.
937 ///
938 /// \param BB The block with the value flowing into the phi.
939 /// \param BBPreds The predecessors of BB.
940 /// \param PN The phi that we are updating.
941 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
942                                                 const PredBlockVector &BBPreds,
943                                                 PHINode *PN) {
944   Value *OldVal = PN->removeIncomingValue(BB, false);
945   assert(OldVal && "No entry in PHI for Pred BB!");
946 
947   IncomingValueMap IncomingValues;
948 
949   // We are merging two blocks - BB, and the block containing PN - and
950   // as a result we need to redirect edges from the predecessors of BB
951   // to go to the block containing PN, and update PN
952   // accordingly. Since we allow merging blocks in the case where the
953   // predecessor and successor blocks both share some predecessors,
954   // and where some of those common predecessors might have undef
955   // values flowing into PN, we want to rewrite those values to be
956   // consistent with the non-undef values.
957 
958   gatherIncomingValuesToPhi(PN, IncomingValues);
959 
960   // If this incoming value is one of the PHI nodes in BB, the new entries
961   // in the PHI node are the entries from the old PHI.
962   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
963     PHINode *OldValPN = cast<PHINode>(OldVal);
964     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
965       // Note that, since we are merging phi nodes and BB and Succ might
966       // have common predecessors, we could end up with a phi node with
967       // identical incoming branches. This will be cleaned up later (and
968       // will trigger asserts if we try to clean it up now, without also
969       // simplifying the corresponding conditional branch).
970       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
971       Value *PredVal = OldValPN->getIncomingValue(i);
972       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
973                                                     IncomingValues);
974 
975       // And add a new incoming value for this predecessor for the
976       // newly retargeted branch.
977       PN->addIncoming(Selected, PredBB);
978     }
979   } else {
980     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
981       // Update existing incoming values in PN for this
982       // predecessor of BB.
983       BasicBlock *PredBB = BBPreds[i];
984       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
985                                                     IncomingValues);
986 
987       // And add a new incoming value for this predecessor for the
988       // newly retargeted branch.
989       PN->addIncoming(Selected, PredBB);
990     }
991   }
992 
993   replaceUndefValuesInPhi(PN, IncomingValues);
994 }
995 
996 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
997                                                    DomTreeUpdater *DTU) {
998   assert(BB != &BB->getParent()->getEntryBlock() &&
999          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1000 
1001   // We can't eliminate infinite loops.
1002   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1003   if (BB == Succ) return false;
1004 
1005   // Check to see if merging these blocks would cause conflicts for any of the
1006   // phi nodes in BB or Succ. If not, we can safely merge.
1007   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1008 
1009   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1010   // has uses which will not disappear when the PHI nodes are merged.  It is
1011   // possible to handle such cases, but difficult: it requires checking whether
1012   // BB dominates Succ, which is non-trivial to calculate in the case where
1013   // Succ has multiple predecessors.  Also, it requires checking whether
1014   // constructing the necessary self-referential PHI node doesn't introduce any
1015   // conflicts; this isn't too difficult, but the previous code for doing this
1016   // was incorrect.
1017   //
1018   // Note that if this check finds a live use, BB dominates Succ, so BB is
1019   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1020   // folding the branch isn't profitable in that case anyway.
1021   if (!Succ->getSinglePredecessor()) {
1022     BasicBlock::iterator BBI = BB->begin();
1023     while (isa<PHINode>(*BBI)) {
1024       for (Use &U : BBI->uses()) {
1025         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1026           if (PN->getIncomingBlock(U) != BB)
1027             return false;
1028         } else {
1029           return false;
1030         }
1031       }
1032       ++BBI;
1033     }
1034   }
1035 
1036   // We cannot fold the block if it's a branch to an already present callbr
1037   // successor because that creates duplicate successors.
1038   for (BasicBlock *PredBB : predecessors(BB)) {
1039     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1040       if (Succ == CBI->getDefaultDest())
1041         return false;
1042       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1043         if (Succ == CBI->getIndirectDest(i))
1044           return false;
1045     }
1046   }
1047 
1048   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1049 
1050   SmallVector<DominatorTree::UpdateType, 32> Updates;
1051   if (DTU) {
1052     // All predecessors of BB will be moved to Succ.
1053     SmallSetVector<BasicBlock *, 8> Predecessors(pred_begin(BB), pred_end(BB));
1054     Updates.reserve(Updates.size() + 2 * Predecessors.size());
1055     for (auto *Predecessor : Predecessors) {
1056       // This predecessor of BB may already have Succ as a successor.
1057       if (!llvm::is_contained(successors(Predecessor), Succ))
1058         Updates.push_back({DominatorTree::Insert, Predecessor, Succ});
1059       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
1060     }
1061     Updates.push_back({DominatorTree::Delete, BB, Succ});
1062   }
1063 
1064   if (isa<PHINode>(Succ->begin())) {
1065     // If there is more than one pred of succ, and there are PHI nodes in
1066     // the successor, then we need to add incoming edges for the PHI nodes
1067     //
1068     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1069 
1070     // Loop over all of the PHI nodes in the successor of BB.
1071     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1072       PHINode *PN = cast<PHINode>(I);
1073 
1074       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1075     }
1076   }
1077 
1078   if (Succ->getSinglePredecessor()) {
1079     // BB is the only predecessor of Succ, so Succ will end up with exactly
1080     // the same predecessors BB had.
1081 
1082     // Copy over any phi, debug or lifetime instruction.
1083     BB->getTerminator()->eraseFromParent();
1084     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1085                                BB->getInstList());
1086   } else {
1087     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1088       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1089       assert(PN->use_empty() && "There shouldn't be any uses here!");
1090       PN->eraseFromParent();
1091     }
1092   }
1093 
1094   // If the unconditional branch we replaced contains llvm.loop metadata, we
1095   // add the metadata to the branch instructions in the predecessors.
1096   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1097   Instruction *TI = BB->getTerminator();
1098   if (TI)
1099     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1100       for (BasicBlock *Pred : predecessors(BB))
1101         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1102 
1103   // Everything that jumped to BB now goes to Succ.
1104   BB->replaceAllUsesWith(Succ);
1105   if (!Succ->hasName()) Succ->takeName(BB);
1106 
1107   // Clear the successor list of BB to match updates applying to DTU later.
1108   if (BB->getTerminator())
1109     BB->getInstList().pop_back();
1110   new UnreachableInst(BB->getContext(), BB);
1111   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1112                            "applying corresponding DTU updates.");
1113 
1114   if (DTU) {
1115     DTU->applyUpdates(Updates);
1116     DTU->deleteBB(BB);
1117   } else {
1118     BB->eraseFromParent(); // Delete the old basic block.
1119   }
1120   return true;
1121 }
1122 
1123 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1124   // This implementation doesn't currently consider undef operands
1125   // specially. Theoretically, two phis which are identical except for
1126   // one having an undef where the other doesn't could be collapsed.
1127 
1128   bool Changed = false;
1129 
1130   // Examine each PHI.
1131   // Note that increment of I must *NOT* be in the iteration_expression, since
1132   // we don't want to immediately advance when we restart from the beginning.
1133   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1134     ++I;
1135     // Is there an identical PHI node in this basic block?
1136     // Note that we only look in the upper square's triangle,
1137     // we already checked that the lower triangle PHI's aren't identical.
1138     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1139       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1140         continue;
1141       // A duplicate. Replace this PHI with the base PHI.
1142       ++NumPHICSEs;
1143       DuplicatePN->replaceAllUsesWith(PN);
1144       DuplicatePN->eraseFromParent();
1145       Changed = true;
1146 
1147       // The RAUW can change PHIs that we already visited.
1148       I = BB->begin();
1149       break; // Start over from the beginning.
1150     }
1151   }
1152   return Changed;
1153 }
1154 
1155 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1156   // This implementation doesn't currently consider undef operands
1157   // specially. Theoretically, two phis which are identical except for
1158   // one having an undef where the other doesn't could be collapsed.
1159 
1160   struct PHIDenseMapInfo {
1161     static PHINode *getEmptyKey() {
1162       return DenseMapInfo<PHINode *>::getEmptyKey();
1163     }
1164 
1165     static PHINode *getTombstoneKey() {
1166       return DenseMapInfo<PHINode *>::getTombstoneKey();
1167     }
1168 
1169     static bool isSentinel(PHINode *PN) {
1170       return PN == getEmptyKey() || PN == getTombstoneKey();
1171     }
1172 
1173     // WARNING: this logic must be kept in sync with
1174     //          Instruction::isIdenticalToWhenDefined()!
1175     static unsigned getHashValueImpl(PHINode *PN) {
1176       // Compute a hash value on the operands. Instcombine will likely have
1177       // sorted them, which helps expose duplicates, but we have to check all
1178       // the operands to be safe in case instcombine hasn't run.
1179       return static_cast<unsigned>(hash_combine(
1180           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1181           hash_combine_range(PN->block_begin(), PN->block_end())));
1182     }
1183 
1184     static unsigned getHashValue(PHINode *PN) {
1185 #ifndef NDEBUG
1186       // If -phicse-debug-hash was specified, return a constant -- this
1187       // will force all hashing to collide, so we'll exhaustively search
1188       // the table for a match, and the assertion in isEqual will fire if
1189       // there's a bug causing equal keys to hash differently.
1190       if (PHICSEDebugHash)
1191         return 0;
1192 #endif
1193       return getHashValueImpl(PN);
1194     }
1195 
1196     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1197       if (isSentinel(LHS) || isSentinel(RHS))
1198         return LHS == RHS;
1199       return LHS->isIdenticalTo(RHS);
1200     }
1201 
1202     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1203       // These comparisons are nontrivial, so assert that equality implies
1204       // hash equality (DenseMap demands this as an invariant).
1205       bool Result = isEqualImpl(LHS, RHS);
1206       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1207              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1208       return Result;
1209     }
1210   };
1211 
1212   // Set of unique PHINodes.
1213   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1214   PHISet.reserve(4 * PHICSENumPHISmallSize);
1215 
1216   // Examine each PHI.
1217   bool Changed = false;
1218   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1219     auto Inserted = PHISet.insert(PN);
1220     if (!Inserted.second) {
1221       // A duplicate. Replace this PHI with its duplicate.
1222       ++NumPHICSEs;
1223       PN->replaceAllUsesWith(*Inserted.first);
1224       PN->eraseFromParent();
1225       Changed = true;
1226 
1227       // The RAUW can change PHIs that we already visited. Start over from the
1228       // beginning.
1229       PHISet.clear();
1230       I = BB->begin();
1231     }
1232   }
1233 
1234   return Changed;
1235 }
1236 
1237 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1238   if (
1239 #ifndef NDEBUG
1240       !PHICSEDebugHash &&
1241 #endif
1242       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1243     return EliminateDuplicatePHINodesNaiveImpl(BB);
1244   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1245 }
1246 
1247 /// If the specified pointer points to an object that we control, try to modify
1248 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1249 /// the value after the operation, which may be lower than PrefAlign.
1250 ///
1251 /// Increating value alignment isn't often possible though. If alignment is
1252 /// important, a more reliable approach is to simply align all global variables
1253 /// and allocation instructions to their preferred alignment from the beginning.
1254 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1255                                  const DataLayout &DL) {
1256   V = V->stripPointerCasts();
1257 
1258   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1259     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1260     // than the current alignment, as the known bits calculation should have
1261     // already taken it into account. However, this is not always the case,
1262     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1263     // doesn't.
1264     Align CurrentAlign = AI->getAlign();
1265     if (PrefAlign <= CurrentAlign)
1266       return CurrentAlign;
1267 
1268     // If the preferred alignment is greater than the natural stack alignment
1269     // then don't round up. This avoids dynamic stack realignment.
1270     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1271       return CurrentAlign;
1272     AI->setAlignment(PrefAlign);
1273     return PrefAlign;
1274   }
1275 
1276   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1277     // TODO: as above, this shouldn't be necessary.
1278     Align CurrentAlign = GO->getPointerAlignment(DL);
1279     if (PrefAlign <= CurrentAlign)
1280       return CurrentAlign;
1281 
1282     // If there is a large requested alignment and we can, bump up the alignment
1283     // of the global.  If the memory we set aside for the global may not be the
1284     // memory used by the final program then it is impossible for us to reliably
1285     // enforce the preferred alignment.
1286     if (!GO->canIncreaseAlignment())
1287       return CurrentAlign;
1288 
1289     GO->setAlignment(PrefAlign);
1290     return PrefAlign;
1291   }
1292 
1293   return Align(1);
1294 }
1295 
1296 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1297                                        const DataLayout &DL,
1298                                        const Instruction *CxtI,
1299                                        AssumptionCache *AC,
1300                                        const DominatorTree *DT) {
1301   assert(V->getType()->isPointerTy() &&
1302          "getOrEnforceKnownAlignment expects a pointer!");
1303 
1304   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1305   unsigned TrailZ = Known.countMinTrailingZeros();
1306 
1307   // Avoid trouble with ridiculously large TrailZ values, such as
1308   // those computed from a null pointer.
1309   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1310   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1311 
1312   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1313 
1314   if (PrefAlign && *PrefAlign > Alignment)
1315     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1316 
1317   // We don't need to make any adjustment.
1318   return Alignment;
1319 }
1320 
1321 ///===---------------------------------------------------------------------===//
1322 ///  Dbg Intrinsic utilities
1323 ///
1324 
1325 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1326 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1327                              DIExpression *DIExpr,
1328                              PHINode *APN) {
1329   // Since we can't guarantee that the original dbg.declare instrinsic
1330   // is removed by LowerDbgDeclare(), we need to make sure that we are
1331   // not inserting the same dbg.value intrinsic over and over.
1332   SmallVector<DbgValueInst *, 1> DbgValues;
1333   findDbgValues(DbgValues, APN);
1334   for (auto *DVI : DbgValues) {
1335     assert(DVI->getValue() == APN);
1336     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1337       return true;
1338   }
1339   return false;
1340 }
1341 
1342 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1343 /// (or fragment of the variable) described by \p DII.
1344 ///
1345 /// This is primarily intended as a helper for the different
1346 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1347 /// converted describes an alloca'd variable, so we need to use the
1348 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1349 /// identified as covering an n-bit fragment, if the store size of i1 is at
1350 /// least n bits.
1351 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1352   const DataLayout &DL = DII->getModule()->getDataLayout();
1353   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1354   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1355     assert(!ValueSize.isScalable() &&
1356            "Fragments don't work on scalable types.");
1357     return ValueSize.getFixedSize() >= *FragmentSize;
1358   }
1359   // We can't always calculate the size of the DI variable (e.g. if it is a
1360   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1361   // intead.
1362   if (DII->isAddressOfVariable())
1363     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1364       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1365         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1366                "Both sizes should agree on the scalable flag.");
1367         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1368       }
1369   // Could not determine size of variable. Conservatively return false.
1370   return false;
1371 }
1372 
1373 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1374 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1375 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1376 /// case this DebugLoc leaks into any adjacent instructions.
1377 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1378   // Original dbg.declare must have a location.
1379   DebugLoc DeclareLoc = DII->getDebugLoc();
1380   MDNode *Scope = DeclareLoc.getScope();
1381   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1382   // Produce an unknown location with the correct scope / inlinedAt fields.
1383   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1384 }
1385 
1386 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1387 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1388 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1389                                            StoreInst *SI, DIBuilder &Builder) {
1390   assert(DII->isAddressOfVariable());
1391   auto *DIVar = DII->getVariable();
1392   assert(DIVar && "Missing variable");
1393   auto *DIExpr = DII->getExpression();
1394   Value *DV = SI->getValueOperand();
1395 
1396   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1397 
1398   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1399     // FIXME: If storing to a part of the variable described by the dbg.declare,
1400     // then we want to insert a dbg.value for the corresponding fragment.
1401     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1402                       << *DII << '\n');
1403     // For now, when there is a store to parts of the variable (but we do not
1404     // know which part) we insert an dbg.value instrinsic to indicate that we
1405     // know nothing about the variable's content.
1406     DV = UndefValue::get(DV->getType());
1407     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1408     return;
1409   }
1410 
1411   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1412 }
1413 
1414 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1415 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1416 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1417                                            LoadInst *LI, DIBuilder &Builder) {
1418   auto *DIVar = DII->getVariable();
1419   auto *DIExpr = DII->getExpression();
1420   assert(DIVar && "Missing variable");
1421 
1422   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1423     // FIXME: If only referring to a part of the variable described by the
1424     // dbg.declare, then we want to insert a dbg.value for the corresponding
1425     // fragment.
1426     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1427                       << *DII << '\n');
1428     return;
1429   }
1430 
1431   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1432 
1433   // We are now tracking the loaded value instead of the address. In the
1434   // future if multi-location support is added to the IR, it might be
1435   // preferable to keep tracking both the loaded value and the original
1436   // address in case the alloca can not be elided.
1437   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1438       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1439   DbgValue->insertAfter(LI);
1440 }
1441 
1442 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1443 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1444 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1445                                            PHINode *APN, DIBuilder &Builder) {
1446   auto *DIVar = DII->getVariable();
1447   auto *DIExpr = DII->getExpression();
1448   assert(DIVar && "Missing variable");
1449 
1450   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1451     return;
1452 
1453   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1454     // FIXME: If only referring to a part of the variable described by the
1455     // dbg.declare, then we want to insert a dbg.value for the corresponding
1456     // fragment.
1457     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1458                       << *DII << '\n');
1459     return;
1460   }
1461 
1462   BasicBlock *BB = APN->getParent();
1463   auto InsertionPt = BB->getFirstInsertionPt();
1464 
1465   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1466 
1467   // The block may be a catchswitch block, which does not have a valid
1468   // insertion point.
1469   // FIXME: Insert dbg.value markers in the successors when appropriate.
1470   if (InsertionPt != BB->end())
1471     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1472 }
1473 
1474 /// Determine whether this alloca is either a VLA or an array.
1475 static bool isArray(AllocaInst *AI) {
1476   return AI->isArrayAllocation() ||
1477          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1478 }
1479 
1480 /// Determine whether this alloca is a structure.
1481 static bool isStructure(AllocaInst *AI) {
1482   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1483 }
1484 
1485 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1486 /// of llvm.dbg.value intrinsics.
1487 bool llvm::LowerDbgDeclare(Function &F) {
1488   bool Changed = false;
1489   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1490   SmallVector<DbgDeclareInst *, 4> Dbgs;
1491   for (auto &FI : F)
1492     for (Instruction &BI : FI)
1493       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1494         Dbgs.push_back(DDI);
1495 
1496   if (Dbgs.empty())
1497     return Changed;
1498 
1499   for (auto &I : Dbgs) {
1500     DbgDeclareInst *DDI = I;
1501     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1502     // If this is an alloca for a scalar variable, insert a dbg.value
1503     // at each load and store to the alloca and erase the dbg.declare.
1504     // The dbg.values allow tracking a variable even if it is not
1505     // stored on the stack, while the dbg.declare can only describe
1506     // the stack slot (and at a lexical-scope granularity). Later
1507     // passes will attempt to elide the stack slot.
1508     if (!AI || isArray(AI) || isStructure(AI))
1509       continue;
1510 
1511     // A volatile load/store means that the alloca can't be elided anyway.
1512     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1513           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1514             return LI->isVolatile();
1515           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1516             return SI->isVolatile();
1517           return false;
1518         }))
1519       continue;
1520 
1521     SmallVector<const Value *, 8> WorkList;
1522     WorkList.push_back(AI);
1523     while (!WorkList.empty()) {
1524       const Value *V = WorkList.pop_back_val();
1525       for (auto &AIUse : V->uses()) {
1526         User *U = AIUse.getUser();
1527         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1528           if (AIUse.getOperandNo() == 1)
1529             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1530         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1531           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1532         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1533           // This is a call by-value or some other instruction that takes a
1534           // pointer to the variable. Insert a *value* intrinsic that describes
1535           // the variable by dereferencing the alloca.
1536           if (!CI->isLifetimeStartOrEnd()) {
1537             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1538             auto *DerefExpr =
1539                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1540             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1541                                         NewLoc, CI);
1542           }
1543         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1544           if (BI->getType()->isPointerTy())
1545             WorkList.push_back(BI);
1546         }
1547       }
1548     }
1549     DDI->eraseFromParent();
1550     Changed = true;
1551   }
1552 
1553   if (Changed)
1554   for (BasicBlock &BB : F)
1555     RemoveRedundantDbgInstrs(&BB);
1556 
1557   return Changed;
1558 }
1559 
1560 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1561 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1562                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1563   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1564   if (InsertedPHIs.size() == 0)
1565     return;
1566 
1567   // Map existing PHI nodes to their dbg.values.
1568   ValueToValueMapTy DbgValueMap;
1569   for (auto &I : *BB) {
1570     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1571       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1572         DbgValueMap.insert({Loc, DbgII});
1573     }
1574   }
1575   if (DbgValueMap.size() == 0)
1576     return;
1577 
1578   // Then iterate through the new PHIs and look to see if they use one of the
1579   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1580   // propagate the info through the new PHI.
1581   LLVMContext &C = BB->getContext();
1582   for (auto PHI : InsertedPHIs) {
1583     BasicBlock *Parent = PHI->getParent();
1584     // Avoid inserting an intrinsic into an EH block.
1585     if (Parent->getFirstNonPHI()->isEHPad())
1586       continue;
1587     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1588     for (auto VI : PHI->operand_values()) {
1589       auto V = DbgValueMap.find(VI);
1590       if (V != DbgValueMap.end()) {
1591         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1592         Instruction *NewDbgII = DbgII->clone();
1593         NewDbgII->setOperand(0, PhiMAV);
1594         auto InsertionPt = Parent->getFirstInsertionPt();
1595         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1596         NewDbgII->insertBefore(&*InsertionPt);
1597       }
1598     }
1599   }
1600 }
1601 
1602 /// Finds all intrinsics declaring local variables as living in the memory that
1603 /// 'V' points to. This may include a mix of dbg.declare and
1604 /// dbg.addr intrinsics.
1605 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1606   // This function is hot. Check whether the value has any metadata to avoid a
1607   // DenseMap lookup.
1608   if (!V->isUsedByMetadata())
1609     return {};
1610   auto *L = LocalAsMetadata::getIfExists(V);
1611   if (!L)
1612     return {};
1613   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1614   if (!MDV)
1615     return {};
1616 
1617   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1618   for (User *U : MDV->users()) {
1619     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1620       if (DII->isAddressOfVariable())
1621         Declares.push_back(DII);
1622   }
1623 
1624   return Declares;
1625 }
1626 
1627 TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
1628   TinyPtrVector<DbgDeclareInst *> DDIs;
1629   for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
1630     if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
1631       DDIs.push_back(DDI);
1632   return DDIs;
1633 }
1634 
1635 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1636   // This function is hot. Check whether the value has any metadata to avoid a
1637   // DenseMap lookup.
1638   if (!V->isUsedByMetadata())
1639     return;
1640   if (auto *L = LocalAsMetadata::getIfExists(V))
1641     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1642       for (User *U : MDV->users())
1643         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1644           DbgValues.push_back(DVI);
1645 }
1646 
1647 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1648                         Value *V) {
1649   // This function is hot. Check whether the value has any metadata to avoid a
1650   // DenseMap lookup.
1651   if (!V->isUsedByMetadata())
1652     return;
1653   if (auto *L = LocalAsMetadata::getIfExists(V))
1654     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1655       for (User *U : MDV->users())
1656         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1657           DbgUsers.push_back(DII);
1658 }
1659 
1660 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1661                              DIBuilder &Builder, uint8_t DIExprFlags,
1662                              int Offset) {
1663   auto DbgAddrs = FindDbgAddrUses(Address);
1664   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1665     DebugLoc Loc = DII->getDebugLoc();
1666     auto *DIVar = DII->getVariable();
1667     auto *DIExpr = DII->getExpression();
1668     assert(DIVar && "Missing variable");
1669     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1670     // Insert llvm.dbg.declare immediately before DII, and remove old
1671     // llvm.dbg.declare.
1672     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1673     DII->eraseFromParent();
1674   }
1675   return !DbgAddrs.empty();
1676 }
1677 
1678 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1679                                         DIBuilder &Builder, int Offset) {
1680   DebugLoc Loc = DVI->getDebugLoc();
1681   auto *DIVar = DVI->getVariable();
1682   auto *DIExpr = DVI->getExpression();
1683   assert(DIVar && "Missing variable");
1684 
1685   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1686   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1687   // it and give up.
1688   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1689       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1690     return;
1691 
1692   // Insert the offset before the first deref.
1693   // We could just change the offset argument of dbg.value, but it's unsigned...
1694   if (Offset)
1695     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1696 
1697   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1698   DVI->eraseFromParent();
1699 }
1700 
1701 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1702                                     DIBuilder &Builder, int Offset) {
1703   if (auto *L = LocalAsMetadata::getIfExists(AI))
1704     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1705       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1706         Use &U = *UI++;
1707         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1708           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1709       }
1710 }
1711 
1712 /// Wrap \p V in a ValueAsMetadata instance.
1713 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1714   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1715 }
1716 
1717 /// Where possible to salvage debug information for \p I do so
1718 /// and return True. If not possible mark undef and return False.
1719 void llvm::salvageDebugInfo(Instruction &I) {
1720   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1721   findDbgUsers(DbgUsers, &I);
1722   salvageDebugInfoForDbgValues(I, DbgUsers);
1723 }
1724 
1725 void llvm::salvageDebugInfoForDbgValues(
1726     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1727   auto &Ctx = I.getContext();
1728   bool Salvaged = false;
1729   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1730 
1731   for (auto *DII : DbgUsers) {
1732     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1733     // are implicitly pointing out the value as a DWARF memory location
1734     // description.
1735     bool StackValue = isa<DbgValueInst>(DII);
1736 
1737     DIExpression *DIExpr =
1738         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1739 
1740     // salvageDebugInfoImpl should fail on examining the first element of
1741     // DbgUsers, or none of them.
1742     if (!DIExpr)
1743       break;
1744 
1745     DII->setOperand(0, wrapMD(I.getOperand(0)));
1746     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1747     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1748     Salvaged = true;
1749   }
1750 
1751   if (Salvaged)
1752     return;
1753 
1754   for (auto *DII : DbgUsers) {
1755     Value *Undef = UndefValue::get(I.getType());
1756     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
1757                                             ValueAsMetadata::get(Undef)));
1758   }
1759 }
1760 
1761 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1762                                          DIExpression *SrcDIExpr,
1763                                          bool WithStackValue) {
1764   auto &M = *I.getModule();
1765   auto &DL = M.getDataLayout();
1766 
1767   // Apply a vector of opcodes to the source DIExpression.
1768   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1769     DIExpression *DIExpr = SrcDIExpr;
1770     if (!Ops.empty()) {
1771       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1772     }
1773     return DIExpr;
1774   };
1775 
1776   // Apply the given offset to the source DIExpression.
1777   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1778     SmallVector<uint64_t, 8> Ops;
1779     DIExpression::appendOffset(Ops, Offset);
1780     return doSalvage(Ops);
1781   };
1782 
1783   // initializer-list helper for applying operators to the source DIExpression.
1784   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1785     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1786     return doSalvage(Ops);
1787   };
1788 
1789   if (auto *CI = dyn_cast<CastInst>(&I)) {
1790     // No-op casts are irrelevant for debug info.
1791     if (CI->isNoopCast(DL))
1792       return SrcDIExpr;
1793 
1794     Type *Type = CI->getType();
1795     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1796     if (Type->isVectorTy() ||
1797         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1798       return nullptr;
1799 
1800     Value *FromValue = CI->getOperand(0);
1801     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1802     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1803 
1804     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1805                                             isa<SExtInst>(&I)));
1806   }
1807 
1808   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1809     unsigned BitWidth =
1810         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1811     // Rewrite a constant GEP into a DIExpression.
1812     APInt Offset(BitWidth, 0);
1813     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1814       return applyOffset(Offset.getSExtValue());
1815     } else {
1816       return nullptr;
1817     }
1818   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1819     // Rewrite binary operations with constant integer operands.
1820     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1821     if (!ConstInt || ConstInt->getBitWidth() > 64)
1822       return nullptr;
1823 
1824     uint64_t Val = ConstInt->getSExtValue();
1825     switch (BI->getOpcode()) {
1826     case Instruction::Add:
1827       return applyOffset(Val);
1828     case Instruction::Sub:
1829       return applyOffset(-int64_t(Val));
1830     case Instruction::Mul:
1831       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1832     case Instruction::SDiv:
1833       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1834     case Instruction::SRem:
1835       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1836     case Instruction::Or:
1837       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1838     case Instruction::And:
1839       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1840     case Instruction::Xor:
1841       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1842     case Instruction::Shl:
1843       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1844     case Instruction::LShr:
1845       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1846     case Instruction::AShr:
1847       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1848     default:
1849       // TODO: Salvage constants from each kind of binop we know about.
1850       return nullptr;
1851     }
1852     // *Not* to do: we should not attempt to salvage load instructions,
1853     // because the validity and lifetime of a dbg.value containing
1854     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1855   }
1856   return nullptr;
1857 }
1858 
1859 /// A replacement for a dbg.value expression.
1860 using DbgValReplacement = Optional<DIExpression *>;
1861 
1862 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1863 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1864 /// changes are made.
1865 static bool rewriteDebugUsers(
1866     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1867     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1868   // Find debug users of From.
1869   SmallVector<DbgVariableIntrinsic *, 1> Users;
1870   findDbgUsers(Users, &From);
1871   if (Users.empty())
1872     return false;
1873 
1874   // Prevent use-before-def of To.
1875   bool Changed = false;
1876   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1877   if (isa<Instruction>(&To)) {
1878     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1879 
1880     for (auto *DII : Users) {
1881       // It's common to see a debug user between From and DomPoint. Move it
1882       // after DomPoint to preserve the variable update without any reordering.
1883       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1884         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1885         DII->moveAfter(&DomPoint);
1886         Changed = true;
1887 
1888       // Users which otherwise aren't dominated by the replacement value must
1889       // be salvaged or deleted.
1890       } else if (!DT.dominates(&DomPoint, DII)) {
1891         UndefOrSalvage.insert(DII);
1892       }
1893     }
1894   }
1895 
1896   // Update debug users without use-before-def risk.
1897   for (auto *DII : Users) {
1898     if (UndefOrSalvage.count(DII))
1899       continue;
1900 
1901     LLVMContext &Ctx = DII->getContext();
1902     DbgValReplacement DVR = RewriteExpr(*DII);
1903     if (!DVR)
1904       continue;
1905 
1906     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1907     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1908     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1909     Changed = true;
1910   }
1911 
1912   if (!UndefOrSalvage.empty()) {
1913     // Try to salvage the remaining debug users.
1914     salvageDebugInfo(From);
1915     Changed = true;
1916   }
1917 
1918   return Changed;
1919 }
1920 
1921 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1922 /// losslessly preserve the bits and semantics of the value. This predicate is
1923 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1924 ///
1925 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1926 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1927 /// and also does not allow lossless pointer <-> integer conversions.
1928 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1929                                          Type *ToTy) {
1930   // Trivially compatible types.
1931   if (FromTy == ToTy)
1932     return true;
1933 
1934   // Handle compatible pointer <-> integer conversions.
1935   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1936     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1937     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1938                               !DL.isNonIntegralPointerType(ToTy);
1939     return SameSize && LosslessConversion;
1940   }
1941 
1942   // TODO: This is not exhaustive.
1943   return false;
1944 }
1945 
1946 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1947                                  Instruction &DomPoint, DominatorTree &DT) {
1948   // Exit early if From has no debug users.
1949   if (!From.isUsedByMetadata())
1950     return false;
1951 
1952   assert(&From != &To && "Can't replace something with itself");
1953 
1954   Type *FromTy = From.getType();
1955   Type *ToTy = To.getType();
1956 
1957   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1958     return DII.getExpression();
1959   };
1960 
1961   // Handle no-op conversions.
1962   Module &M = *From.getModule();
1963   const DataLayout &DL = M.getDataLayout();
1964   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1965     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1966 
1967   // Handle integer-to-integer widening and narrowing.
1968   // FIXME: Use DW_OP_convert when it's available everywhere.
1969   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1970     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1971     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1972     assert(FromBits != ToBits && "Unexpected no-op conversion");
1973 
1974     // When the width of the result grows, assume that a debugger will only
1975     // access the low `FromBits` bits when inspecting the source variable.
1976     if (FromBits < ToBits)
1977       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1978 
1979     // The width of the result has shrunk. Use sign/zero extension to describe
1980     // the source variable's high bits.
1981     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1982       DILocalVariable *Var = DII.getVariable();
1983 
1984       // Without knowing signedness, sign/zero extension isn't possible.
1985       auto Signedness = Var->getSignedness();
1986       if (!Signedness)
1987         return None;
1988 
1989       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1990       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1991                                      Signed);
1992     };
1993     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1994   }
1995 
1996   // TODO: Floating-point conversions, vectors.
1997   return false;
1998 }
1999 
2000 std::pair<unsigned, unsigned>
2001 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2002   unsigned NumDeadInst = 0;
2003   unsigned NumDeadDbgInst = 0;
2004   // Delete the instructions backwards, as it has a reduced likelihood of
2005   // having to update as many def-use and use-def chains.
2006   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2007   while (EndInst != &BB->front()) {
2008     // Delete the next to last instruction.
2009     Instruction *Inst = &*--EndInst->getIterator();
2010     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2011       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2012     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2013       EndInst = Inst;
2014       continue;
2015     }
2016     if (isa<DbgInfoIntrinsic>(Inst))
2017       ++NumDeadDbgInst;
2018     else
2019       ++NumDeadInst;
2020     Inst->eraseFromParent();
2021   }
2022   return {NumDeadInst, NumDeadDbgInst};
2023 }
2024 
2025 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2026                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2027                                    MemorySSAUpdater *MSSAU) {
2028   BasicBlock *BB = I->getParent();
2029 
2030   if (MSSAU)
2031     MSSAU->changeToUnreachable(I);
2032 
2033   SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2034 
2035   // Loop over all of the successors, removing BB's entry from any PHI
2036   // nodes.
2037   for (BasicBlock *Successor : successors(BB)) {
2038     Successor->removePredecessor(BB, PreserveLCSSA);
2039     if (DTU)
2040       UniqueSuccessors.insert(Successor);
2041   }
2042   // Insert a call to llvm.trap right before this.  This turns the undefined
2043   // behavior into a hard fail instead of falling through into random code.
2044   if (UseLLVMTrap) {
2045     Function *TrapFn =
2046       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2047     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2048     CallTrap->setDebugLoc(I->getDebugLoc());
2049   }
2050   auto *UI = new UnreachableInst(I->getContext(), I);
2051   UI->setDebugLoc(I->getDebugLoc());
2052 
2053   // All instructions after this are dead.
2054   unsigned NumInstrsRemoved = 0;
2055   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2056   while (BBI != BBE) {
2057     if (!BBI->use_empty())
2058       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2059     BB->getInstList().erase(BBI++);
2060     ++NumInstrsRemoved;
2061   }
2062   if (DTU) {
2063     SmallVector<DominatorTree::UpdateType, 8> Updates;
2064     Updates.reserve(UniqueSuccessors.size());
2065     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2066       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2067     DTU->applyUpdates(Updates);
2068   }
2069   return NumInstrsRemoved;
2070 }
2071 
2072 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2073   SmallVector<Value *, 8> Args(II->args());
2074   SmallVector<OperandBundleDef, 1> OpBundles;
2075   II->getOperandBundlesAsDefs(OpBundles);
2076   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2077                                        II->getCalledOperand(), Args, OpBundles);
2078   NewCall->setCallingConv(II->getCallingConv());
2079   NewCall->setAttributes(II->getAttributes());
2080   NewCall->setDebugLoc(II->getDebugLoc());
2081   NewCall->copyMetadata(*II);
2082 
2083   // If the invoke had profile metadata, try converting them for CallInst.
2084   uint64_t TotalWeight;
2085   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2086     // Set the total weight if it fits into i32, otherwise reset.
2087     MDBuilder MDB(NewCall->getContext());
2088     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2089                           ? nullptr
2090                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2091     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2092   }
2093 
2094   return NewCall;
2095 }
2096 
2097 /// changeToCall - Convert the specified invoke into a normal call.
2098 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2099   CallInst *NewCall = createCallMatchingInvoke(II);
2100   NewCall->takeName(II);
2101   NewCall->insertBefore(II);
2102   II->replaceAllUsesWith(NewCall);
2103 
2104   // Follow the call by a branch to the normal destination.
2105   BasicBlock *NormalDestBB = II->getNormalDest();
2106   BranchInst::Create(NormalDestBB, II);
2107 
2108   // Update PHI nodes in the unwind destination
2109   BasicBlock *BB = II->getParent();
2110   BasicBlock *UnwindDestBB = II->getUnwindDest();
2111   UnwindDestBB->removePredecessor(BB);
2112   II->eraseFromParent();
2113   if (DTU)
2114     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2115 }
2116 
2117 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2118                                                    BasicBlock *UnwindEdge,
2119                                                    DomTreeUpdater *DTU) {
2120   BasicBlock *BB = CI->getParent();
2121 
2122   // Convert this function call into an invoke instruction.  First, split the
2123   // basic block.
2124   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2125                                  CI->getName() + ".noexc");
2126 
2127   // Delete the unconditional branch inserted by SplitBlock
2128   BB->getInstList().pop_back();
2129 
2130   // Create the new invoke instruction.
2131   SmallVector<Value *, 8> InvokeArgs(CI->args());
2132   SmallVector<OperandBundleDef, 1> OpBundles;
2133 
2134   CI->getOperandBundlesAsDefs(OpBundles);
2135 
2136   // Note: we're round tripping operand bundles through memory here, and that
2137   // can potentially be avoided with a cleverer API design that we do not have
2138   // as of this time.
2139 
2140   InvokeInst *II =
2141       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2142                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2143   II->setDebugLoc(CI->getDebugLoc());
2144   II->setCallingConv(CI->getCallingConv());
2145   II->setAttributes(CI->getAttributes());
2146 
2147   if (DTU)
2148     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2149 
2150   // Make sure that anything using the call now uses the invoke!  This also
2151   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2152   CI->replaceAllUsesWith(II);
2153 
2154   // Delete the original call
2155   Split->getInstList().pop_front();
2156   return Split;
2157 }
2158 
2159 static bool markAliveBlocks(Function &F,
2160                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2161                             DomTreeUpdater *DTU = nullptr) {
2162   SmallVector<BasicBlock*, 128> Worklist;
2163   BasicBlock *BB = &F.front();
2164   Worklist.push_back(BB);
2165   Reachable.insert(BB);
2166   bool Changed = false;
2167   do {
2168     BB = Worklist.pop_back_val();
2169 
2170     // Do a quick scan of the basic block, turning any obviously unreachable
2171     // instructions into LLVM unreachable insts.  The instruction combining pass
2172     // canonicalizes unreachable insts into stores to null or undef.
2173     for (Instruction &I : *BB) {
2174       if (auto *CI = dyn_cast<CallInst>(&I)) {
2175         Value *Callee = CI->getCalledOperand();
2176         // Handle intrinsic calls.
2177         if (Function *F = dyn_cast<Function>(Callee)) {
2178           auto IntrinsicID = F->getIntrinsicID();
2179           // Assumptions that are known to be false are equivalent to
2180           // unreachable. Also, if the condition is undefined, then we make the
2181           // choice most beneficial to the optimizer, and choose that to also be
2182           // unreachable.
2183           if (IntrinsicID == Intrinsic::assume) {
2184             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2185               // Don't insert a call to llvm.trap right before the unreachable.
2186               changeToUnreachable(CI, false, false, DTU);
2187               Changed = true;
2188               break;
2189             }
2190           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2191             // A call to the guard intrinsic bails out of the current
2192             // compilation unit if the predicate passed to it is false. If the
2193             // predicate is a constant false, then we know the guard will bail
2194             // out of the current compile unconditionally, so all code following
2195             // it is dead.
2196             //
2197             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2198             // guards to treat `undef` as `false` since a guard on `undef` can
2199             // still be useful for widening.
2200             if (match(CI->getArgOperand(0), m_Zero()))
2201               if (!isa<UnreachableInst>(CI->getNextNode())) {
2202                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2203                                     false, DTU);
2204                 Changed = true;
2205                 break;
2206               }
2207           }
2208         } else if ((isa<ConstantPointerNull>(Callee) &&
2209                     !NullPointerIsDefined(CI->getFunction())) ||
2210                    isa<UndefValue>(Callee)) {
2211           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2212           Changed = true;
2213           break;
2214         }
2215         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2216           // If we found a call to a no-return function, insert an unreachable
2217           // instruction after it.  Make sure there isn't *already* one there
2218           // though.
2219           if (!isa<UnreachableInst>(CI->getNextNode())) {
2220             // Don't insert a call to llvm.trap right before the unreachable.
2221             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2222             Changed = true;
2223           }
2224           break;
2225         }
2226       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2227         // Store to undef and store to null are undefined and used to signal
2228         // that they should be changed to unreachable by passes that can't
2229         // modify the CFG.
2230 
2231         // Don't touch volatile stores.
2232         if (SI->isVolatile()) continue;
2233 
2234         Value *Ptr = SI->getOperand(1);
2235 
2236         if (isa<UndefValue>(Ptr) ||
2237             (isa<ConstantPointerNull>(Ptr) &&
2238              !NullPointerIsDefined(SI->getFunction(),
2239                                    SI->getPointerAddressSpace()))) {
2240           changeToUnreachable(SI, true, false, DTU);
2241           Changed = true;
2242           break;
2243         }
2244       }
2245     }
2246 
2247     Instruction *Terminator = BB->getTerminator();
2248     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2249       // Turn invokes that call 'nounwind' functions into ordinary calls.
2250       Value *Callee = II->getCalledOperand();
2251       if ((isa<ConstantPointerNull>(Callee) &&
2252            !NullPointerIsDefined(BB->getParent())) ||
2253           isa<UndefValue>(Callee)) {
2254         changeToUnreachable(II, true, false, DTU);
2255         Changed = true;
2256       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2257         if (II->use_empty() && II->onlyReadsMemory()) {
2258           // jump to the normal destination branch.
2259           BasicBlock *NormalDestBB = II->getNormalDest();
2260           BasicBlock *UnwindDestBB = II->getUnwindDest();
2261           BranchInst::Create(NormalDestBB, II);
2262           UnwindDestBB->removePredecessor(II->getParent());
2263           II->eraseFromParent();
2264           if (DTU)
2265             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2266         } else
2267           changeToCall(II, DTU);
2268         Changed = true;
2269       }
2270     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2271       // Remove catchpads which cannot be reached.
2272       struct CatchPadDenseMapInfo {
2273         static CatchPadInst *getEmptyKey() {
2274           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2275         }
2276 
2277         static CatchPadInst *getTombstoneKey() {
2278           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2279         }
2280 
2281         static unsigned getHashValue(CatchPadInst *CatchPad) {
2282           return static_cast<unsigned>(hash_combine_range(
2283               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2284         }
2285 
2286         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2287           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2288               RHS == getEmptyKey() || RHS == getTombstoneKey())
2289             return LHS == RHS;
2290           return LHS->isIdenticalTo(RHS);
2291         }
2292       };
2293 
2294       SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
2295       // Set of unique CatchPads.
2296       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2297                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2298           HandlerSet;
2299       detail::DenseSetEmpty Empty;
2300       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2301                                              E = CatchSwitch->handler_end();
2302            I != E; ++I) {
2303         BasicBlock *HandlerBB = *I;
2304         ++NumPerSuccessorCases[HandlerBB];
2305         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2306         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2307           --NumPerSuccessorCases[HandlerBB];
2308           CatchSwitch->removeHandler(I);
2309           --I;
2310           --E;
2311           Changed = true;
2312         }
2313       }
2314       std::vector<DominatorTree::UpdateType> Updates;
2315       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2316         if (I.second == 0)
2317           Updates.push_back({DominatorTree::Delete, BB, I.first});
2318       if (DTU)
2319         DTU->applyUpdates(Updates);
2320     }
2321 
2322     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2323     for (BasicBlock *Successor : successors(BB))
2324       if (Reachable.insert(Successor).second)
2325         Worklist.push_back(Successor);
2326   } while (!Worklist.empty());
2327   return Changed;
2328 }
2329 
2330 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2331   Instruction *TI = BB->getTerminator();
2332 
2333   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2334     changeToCall(II, DTU);
2335     return;
2336   }
2337 
2338   Instruction *NewTI;
2339   BasicBlock *UnwindDest;
2340 
2341   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2342     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2343     UnwindDest = CRI->getUnwindDest();
2344   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2345     auto *NewCatchSwitch = CatchSwitchInst::Create(
2346         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2347         CatchSwitch->getName(), CatchSwitch);
2348     for (BasicBlock *PadBB : CatchSwitch->handlers())
2349       NewCatchSwitch->addHandler(PadBB);
2350 
2351     NewTI = NewCatchSwitch;
2352     UnwindDest = CatchSwitch->getUnwindDest();
2353   } else {
2354     llvm_unreachable("Could not find unwind successor");
2355   }
2356 
2357   NewTI->takeName(TI);
2358   NewTI->setDebugLoc(TI->getDebugLoc());
2359   UnwindDest->removePredecessor(BB);
2360   TI->replaceAllUsesWith(NewTI);
2361   TI->eraseFromParent();
2362   if (DTU)
2363     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2364 }
2365 
2366 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2367 /// if they are in a dead cycle.  Return true if a change was made, false
2368 /// otherwise.
2369 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2370                                    MemorySSAUpdater *MSSAU) {
2371   SmallPtrSet<BasicBlock *, 16> Reachable;
2372   bool Changed = markAliveBlocks(F, Reachable, DTU);
2373 
2374   // If there are unreachable blocks in the CFG...
2375   if (Reachable.size() == F.size())
2376     return Changed;
2377 
2378   assert(Reachable.size() < F.size());
2379 
2380   // Are there any blocks left to actually delete?
2381   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2382   for (BasicBlock &BB : F) {
2383     // Skip reachable basic blocks
2384     if (Reachable.count(&BB))
2385       continue;
2386     // Skip already-deleted blocks
2387     if (DTU && DTU->isBBPendingDeletion(&BB))
2388       continue;
2389     BlocksToRemove.insert(&BB);
2390   }
2391 
2392   if (BlocksToRemove.empty())
2393     return Changed;
2394 
2395   Changed = true;
2396   NumRemoved += BlocksToRemove.size();
2397 
2398   if (MSSAU)
2399     MSSAU->removeBlocks(BlocksToRemove);
2400 
2401   // Loop over all of the basic blocks that are up for removal, dropping all of
2402   // their internal references. Update DTU if available.
2403   std::vector<DominatorTree::UpdateType> Updates;
2404   for (auto *BB : BlocksToRemove) {
2405     SmallSetVector<BasicBlock *, 8> UniqueSuccessors;
2406     for (BasicBlock *Successor : successors(BB)) {
2407       // Only remove references to BB in reachable successors of BB.
2408       if (Reachable.count(Successor))
2409         Successor->removePredecessor(BB);
2410       if (DTU)
2411         UniqueSuccessors.insert(Successor);
2412     }
2413     BB->dropAllReferences();
2414     if (DTU) {
2415       Instruction *TI = BB->getTerminator();
2416       assert(TI && "Basic block should have a terminator");
2417       // Terminators like invoke can have users. We have to replace their users,
2418       // before removing them.
2419       if (!TI->use_empty())
2420         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2421       TI->eraseFromParent();
2422       new UnreachableInst(BB->getContext(), BB);
2423       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2424                                "applying corresponding DTU updates.");
2425       Updates.reserve(Updates.size() + UniqueSuccessors.size());
2426       for (auto *UniqueSuccessor : UniqueSuccessors)
2427         Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2428     }
2429   }
2430 
2431   if (DTU) {
2432     DTU->applyUpdates(Updates);
2433     for (auto *BB : BlocksToRemove)
2434       DTU->deleteBB(BB);
2435   } else {
2436     for (auto *BB : BlocksToRemove)
2437       BB->eraseFromParent();
2438   }
2439 
2440   return Changed;
2441 }
2442 
2443 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2444                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2445   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2446   K->dropUnknownNonDebugMetadata(KnownIDs);
2447   K->getAllMetadataOtherThanDebugLoc(Metadata);
2448   for (const auto &MD : Metadata) {
2449     unsigned Kind = MD.first;
2450     MDNode *JMD = J->getMetadata(Kind);
2451     MDNode *KMD = MD.second;
2452 
2453     switch (Kind) {
2454       default:
2455         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2456         break;
2457       case LLVMContext::MD_dbg:
2458         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2459       case LLVMContext::MD_tbaa:
2460         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2461         break;
2462       case LLVMContext::MD_alias_scope:
2463         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2464         break;
2465       case LLVMContext::MD_noalias:
2466       case LLVMContext::MD_mem_parallel_loop_access:
2467         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2468         break;
2469       case LLVMContext::MD_access_group:
2470         K->setMetadata(LLVMContext::MD_access_group,
2471                        intersectAccessGroups(K, J));
2472         break;
2473       case LLVMContext::MD_range:
2474 
2475         // If K does move, use most generic range. Otherwise keep the range of
2476         // K.
2477         if (DoesKMove)
2478           // FIXME: If K does move, we should drop the range info and nonnull.
2479           //        Currently this function is used with DoesKMove in passes
2480           //        doing hoisting/sinking and the current behavior of using the
2481           //        most generic range is correct in those cases.
2482           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2483         break;
2484       case LLVMContext::MD_fpmath:
2485         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2486         break;
2487       case LLVMContext::MD_invariant_load:
2488         // Only set the !invariant.load if it is present in both instructions.
2489         K->setMetadata(Kind, JMD);
2490         break;
2491       case LLVMContext::MD_nonnull:
2492         // If K does move, keep nonull if it is present in both instructions.
2493         if (DoesKMove)
2494           K->setMetadata(Kind, JMD);
2495         break;
2496       case LLVMContext::MD_invariant_group:
2497         // Preserve !invariant.group in K.
2498         break;
2499       case LLVMContext::MD_align:
2500         K->setMetadata(Kind,
2501           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2502         break;
2503       case LLVMContext::MD_dereferenceable:
2504       case LLVMContext::MD_dereferenceable_or_null:
2505         K->setMetadata(Kind,
2506           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2507         break;
2508       case LLVMContext::MD_preserve_access_index:
2509         // Preserve !preserve.access.index in K.
2510         break;
2511     }
2512   }
2513   // Set !invariant.group from J if J has it. If both instructions have it
2514   // then we will just pick it from J - even when they are different.
2515   // Also make sure that K is load or store - f.e. combining bitcast with load
2516   // could produce bitcast with invariant.group metadata, which is invalid.
2517   // FIXME: we should try to preserve both invariant.group md if they are
2518   // different, but right now instruction can only have one invariant.group.
2519   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2520     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2521       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2522 }
2523 
2524 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2525                                  bool KDominatesJ) {
2526   unsigned KnownIDs[] = {
2527       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2528       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2529       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2530       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2531       LLVMContext::MD_dereferenceable,
2532       LLVMContext::MD_dereferenceable_or_null,
2533       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2534   combineMetadata(K, J, KnownIDs, KDominatesJ);
2535 }
2536 
2537 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2538   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2539   Source.getAllMetadata(MD);
2540   MDBuilder MDB(Dest.getContext());
2541   Type *NewType = Dest.getType();
2542   const DataLayout &DL = Source.getModule()->getDataLayout();
2543   for (const auto &MDPair : MD) {
2544     unsigned ID = MDPair.first;
2545     MDNode *N = MDPair.second;
2546     // Note, essentially every kind of metadata should be preserved here! This
2547     // routine is supposed to clone a load instruction changing *only its type*.
2548     // The only metadata it makes sense to drop is metadata which is invalidated
2549     // when the pointer type changes. This should essentially never be the case
2550     // in LLVM, but we explicitly switch over only known metadata to be
2551     // conservatively correct. If you are adding metadata to LLVM which pertains
2552     // to loads, you almost certainly want to add it here.
2553     switch (ID) {
2554     case LLVMContext::MD_dbg:
2555     case LLVMContext::MD_tbaa:
2556     case LLVMContext::MD_prof:
2557     case LLVMContext::MD_fpmath:
2558     case LLVMContext::MD_tbaa_struct:
2559     case LLVMContext::MD_invariant_load:
2560     case LLVMContext::MD_alias_scope:
2561     case LLVMContext::MD_noalias:
2562     case LLVMContext::MD_nontemporal:
2563     case LLVMContext::MD_mem_parallel_loop_access:
2564     case LLVMContext::MD_access_group:
2565       // All of these directly apply.
2566       Dest.setMetadata(ID, N);
2567       break;
2568 
2569     case LLVMContext::MD_nonnull:
2570       copyNonnullMetadata(Source, N, Dest);
2571       break;
2572 
2573     case LLVMContext::MD_align:
2574     case LLVMContext::MD_dereferenceable:
2575     case LLVMContext::MD_dereferenceable_or_null:
2576       // These only directly apply if the new type is also a pointer.
2577       if (NewType->isPointerTy())
2578         Dest.setMetadata(ID, N);
2579       break;
2580 
2581     case LLVMContext::MD_range:
2582       copyRangeMetadata(DL, Source, N, Dest);
2583       break;
2584     }
2585   }
2586 }
2587 
2588 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2589   auto *ReplInst = dyn_cast<Instruction>(Repl);
2590   if (!ReplInst)
2591     return;
2592 
2593   // Patch the replacement so that it is not more restrictive than the value
2594   // being replaced.
2595   // Note that if 'I' is a load being replaced by some operation,
2596   // for example, by an arithmetic operation, then andIRFlags()
2597   // would just erase all math flags from the original arithmetic
2598   // operation, which is clearly not wanted and not needed.
2599   if (!isa<LoadInst>(I))
2600     ReplInst->andIRFlags(I);
2601 
2602   // FIXME: If both the original and replacement value are part of the
2603   // same control-flow region (meaning that the execution of one
2604   // guarantees the execution of the other), then we can combine the
2605   // noalias scopes here and do better than the general conservative
2606   // answer used in combineMetadata().
2607 
2608   // In general, GVN unifies expressions over different control-flow
2609   // regions, and so we need a conservative combination of the noalias
2610   // scopes.
2611   static const unsigned KnownIDs[] = {
2612       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2613       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2614       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2615       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2616       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2617   combineMetadata(ReplInst, I, KnownIDs, false);
2618 }
2619 
2620 template <typename RootType, typename DominatesFn>
2621 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2622                                          const RootType &Root,
2623                                          const DominatesFn &Dominates) {
2624   assert(From->getType() == To->getType());
2625 
2626   unsigned Count = 0;
2627   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2628        UI != UE;) {
2629     Use &U = *UI++;
2630     if (!Dominates(Root, U))
2631       continue;
2632     U.set(To);
2633     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2634                       << "' as " << *To << " in " << *U << "\n");
2635     ++Count;
2636   }
2637   return Count;
2638 }
2639 
2640 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2641    assert(From->getType() == To->getType());
2642    auto *BB = From->getParent();
2643    unsigned Count = 0;
2644 
2645   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2646        UI != UE;) {
2647     Use &U = *UI++;
2648     auto *I = cast<Instruction>(U.getUser());
2649     if (I->getParent() == BB)
2650       continue;
2651     U.set(To);
2652     ++Count;
2653   }
2654   return Count;
2655 }
2656 
2657 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2658                                         DominatorTree &DT,
2659                                         const BasicBlockEdge &Root) {
2660   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2661     return DT.dominates(Root, U);
2662   };
2663   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2664 }
2665 
2666 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2667                                         DominatorTree &DT,
2668                                         const BasicBlock *BB) {
2669   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2670     auto *I = cast<Instruction>(U.getUser())->getParent();
2671     return DT.properlyDominates(BB, I);
2672   };
2673   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2674 }
2675 
2676 bool llvm::callsGCLeafFunction(const CallBase *Call,
2677                                const TargetLibraryInfo &TLI) {
2678   // Check if the function is specifically marked as a gc leaf function.
2679   if (Call->hasFnAttr("gc-leaf-function"))
2680     return true;
2681   if (const Function *F = Call->getCalledFunction()) {
2682     if (F->hasFnAttribute("gc-leaf-function"))
2683       return true;
2684 
2685     if (auto IID = F->getIntrinsicID()) {
2686       // Most LLVM intrinsics do not take safepoints.
2687       return IID != Intrinsic::experimental_gc_statepoint &&
2688              IID != Intrinsic::experimental_deoptimize &&
2689              IID != Intrinsic::memcpy_element_unordered_atomic &&
2690              IID != Intrinsic::memmove_element_unordered_atomic;
2691     }
2692   }
2693 
2694   // Lib calls can be materialized by some passes, and won't be
2695   // marked as 'gc-leaf-function.' All available Libcalls are
2696   // GC-leaf.
2697   LibFunc LF;
2698   if (TLI.getLibFunc(*Call, LF)) {
2699     return TLI.has(LF);
2700   }
2701 
2702   return false;
2703 }
2704 
2705 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2706                                LoadInst &NewLI) {
2707   auto *NewTy = NewLI.getType();
2708 
2709   // This only directly applies if the new type is also a pointer.
2710   if (NewTy->isPointerTy()) {
2711     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2712     return;
2713   }
2714 
2715   // The only other translation we can do is to integral loads with !range
2716   // metadata.
2717   if (!NewTy->isIntegerTy())
2718     return;
2719 
2720   MDBuilder MDB(NewLI.getContext());
2721   const Value *Ptr = OldLI.getPointerOperand();
2722   auto *ITy = cast<IntegerType>(NewTy);
2723   auto *NullInt = ConstantExpr::getPtrToInt(
2724       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2725   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2726   NewLI.setMetadata(LLVMContext::MD_range,
2727                     MDB.createRange(NonNullInt, NullInt));
2728 }
2729 
2730 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2731                              MDNode *N, LoadInst &NewLI) {
2732   auto *NewTy = NewLI.getType();
2733 
2734   // Give up unless it is converted to a pointer where there is a single very
2735   // valuable mapping we can do reliably.
2736   // FIXME: It would be nice to propagate this in more ways, but the type
2737   // conversions make it hard.
2738   if (!NewTy->isPointerTy())
2739     return;
2740 
2741   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2742   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2743     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2744     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2745   }
2746 }
2747 
2748 void llvm::dropDebugUsers(Instruction &I) {
2749   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2750   findDbgUsers(DbgUsers, &I);
2751   for (auto *DII : DbgUsers)
2752     DII->eraseFromParent();
2753 }
2754 
2755 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2756                                     BasicBlock *BB) {
2757   // Since we are moving the instructions out of its basic block, we do not
2758   // retain their original debug locations (DILocations) and debug intrinsic
2759   // instructions.
2760   //
2761   // Doing so would degrade the debugging experience and adversely affect the
2762   // accuracy of profiling information.
2763   //
2764   // Currently, when hoisting the instructions, we take the following actions:
2765   // - Remove their debug intrinsic instructions.
2766   // - Set their debug locations to the values from the insertion point.
2767   //
2768   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2769   // need to be deleted, is because there will not be any instructions with a
2770   // DILocation in either branch left after performing the transformation. We
2771   // can only insert a dbg.value after the two branches are joined again.
2772   //
2773   // See PR38762, PR39243 for more details.
2774   //
2775   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2776   // encode predicated DIExpressions that yield different results on different
2777   // code paths.
2778   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2779     Instruction *I = &*II;
2780     I->dropUnknownNonDebugMetadata();
2781     if (I->isUsedByMetadata())
2782       dropDebugUsers(*I);
2783     if (isa<DbgInfoIntrinsic>(I)) {
2784       // Remove DbgInfo Intrinsics.
2785       II = I->eraseFromParent();
2786       continue;
2787     }
2788     I->setDebugLoc(InsertPt->getDebugLoc());
2789     ++II;
2790   }
2791   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2792                                  BB->begin(),
2793                                  BB->getTerminator()->getIterator());
2794 }
2795 
2796 namespace {
2797 
2798 /// A potential constituent of a bitreverse or bswap expression. See
2799 /// collectBitParts for a fuller explanation.
2800 struct BitPart {
2801   BitPart(Value *P, unsigned BW) : Provider(P) {
2802     Provenance.resize(BW);
2803   }
2804 
2805   /// The Value that this is a bitreverse/bswap of.
2806   Value *Provider;
2807 
2808   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2809   /// in Provider becomes bit B in the result of this expression.
2810   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2811 
2812   enum { Unset = -1 };
2813 };
2814 
2815 } // end anonymous namespace
2816 
2817 /// Analyze the specified subexpression and see if it is capable of providing
2818 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2819 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2820 /// the output of the expression came from a corresponding bit in some other
2821 /// value. This function is recursive, and the end result is a mapping of
2822 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2823 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2824 ///
2825 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2826 /// that the expression deposits the low byte of %X into the high byte of the
2827 /// result and that all other bits are zero. This expression is accepted and a
2828 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2829 /// [0-7].
2830 ///
2831 /// For vector types, all analysis is performed at the per-element level. No
2832 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2833 /// constant masks must be splatted across all elements.
2834 ///
2835 /// To avoid revisiting values, the BitPart results are memoized into the
2836 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2837 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2838 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2839 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2840 /// type instead to provide the same functionality.
2841 ///
2842 /// Because we pass around references into \c BPS, we must use a container that
2843 /// does not invalidate internal references (std::map instead of DenseMap).
2844 static const Optional<BitPart> &
2845 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2846                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2847   auto I = BPS.find(V);
2848   if (I != BPS.end())
2849     return I->second;
2850 
2851   auto &Result = BPS[V] = None;
2852   auto BitWidth = V->getType()->getScalarSizeInBits();
2853 
2854   // Prevent stack overflow by limiting the recursion depth
2855   if (Depth == BitPartRecursionMaxDepth) {
2856     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2857     return Result;
2858   }
2859 
2860   if (auto *I = dyn_cast<Instruction>(V)) {
2861     Value *X, *Y;
2862     const APInt *C;
2863 
2864     // If this is an or instruction, it may be an inner node of the bswap.
2865     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2866       const auto &A =
2867           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2868       const auto &B =
2869           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2870       if (!A || !B)
2871         return Result;
2872 
2873       // Try and merge the two together.
2874       if (!A->Provider || A->Provider != B->Provider)
2875         return Result;
2876 
2877       Result = BitPart(A->Provider, BitWidth);
2878       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2879         if (A->Provenance[BitIdx] != BitPart::Unset &&
2880             B->Provenance[BitIdx] != BitPart::Unset &&
2881             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2882           return Result = None;
2883 
2884         if (A->Provenance[BitIdx] == BitPart::Unset)
2885           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2886         else
2887           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2888       }
2889 
2890       return Result;
2891     }
2892 
2893     // If this is a logical shift by a constant, recurse then shift the result.
2894     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2895       const APInt &BitShift = *C;
2896 
2897       // Ensure the shift amount is defined.
2898       if (BitShift.uge(BitWidth))
2899         return Result;
2900 
2901       const auto &Res =
2902           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2903       if (!Res)
2904         return Result;
2905       Result = Res;
2906 
2907       // Perform the "shift" on BitProvenance.
2908       auto &P = Result->Provenance;
2909       if (I->getOpcode() == Instruction::Shl) {
2910         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2911         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2912       } else {
2913         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2914         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2915       }
2916 
2917       return Result;
2918     }
2919 
2920     // If this is a logical 'and' with a mask that clears bits, recurse then
2921     // unset the appropriate bits.
2922     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2923       const APInt &AndMask = *C;
2924 
2925       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2926       // early exit.
2927       unsigned NumMaskedBits = AndMask.countPopulation();
2928       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2929         return Result;
2930 
2931       const auto &Res =
2932           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2933       if (!Res)
2934         return Result;
2935       Result = Res;
2936 
2937       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2938         // If the AndMask is zero for this bit, clear the bit.
2939         if (AndMask[BitIdx] == 0)
2940           Result->Provenance[BitIdx] = BitPart::Unset;
2941       return Result;
2942     }
2943 
2944     // If this is a zext instruction zero extend the result.
2945     if (match(V, m_ZExt(m_Value(X)))) {
2946       const auto &Res =
2947           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2948       if (!Res)
2949         return Result;
2950 
2951       Result = BitPart(Res->Provider, BitWidth);
2952       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
2953       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
2954         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
2955       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
2956         Result->Provenance[BitIdx] = BitPart::Unset;
2957       return Result;
2958     }
2959 
2960     // BITREVERSE - most likely due to us previous matching a partial
2961     // bitreverse.
2962     if (match(V, m_BitReverse(m_Value(X)))) {
2963       const auto &Res =
2964           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2965       if (!Res)
2966         return Result;
2967 
2968       Result = BitPart(Res->Provider, BitWidth);
2969       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2970         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
2971       return Result;
2972     }
2973 
2974     // BSWAP - most likely due to us previous matching a partial bswap.
2975     if (match(V, m_BSwap(m_Value(X)))) {
2976       const auto &Res =
2977           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
2978       if (!Res)
2979         return Result;
2980 
2981       unsigned ByteWidth = BitWidth / 8;
2982       Result = BitPart(Res->Provider, BitWidth);
2983       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
2984         unsigned ByteBitOfs = ByteIdx * 8;
2985         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
2986           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
2987               Res->Provenance[ByteBitOfs + BitIdx];
2988       }
2989       return Result;
2990     }
2991 
2992     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
2993     // amount (modulo).
2994     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2995     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2996     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
2997         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
2998       // We can treat fshr as a fshl by flipping the modulo amount.
2999       unsigned ModAmt = C->urem(BitWidth);
3000       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3001         ModAmt = BitWidth - ModAmt;
3002 
3003       const auto &LHS =
3004           collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3005       const auto &RHS =
3006           collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, Depth + 1);
3007 
3008       // Check we have both sources and they are from the same provider.
3009       if (!LHS || !RHS || !LHS->Provider || LHS->Provider != RHS->Provider)
3010         return Result;
3011 
3012       unsigned StartBitRHS = BitWidth - ModAmt;
3013       Result = BitPart(LHS->Provider, BitWidth);
3014       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3015         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3016       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3017         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3018       return Result;
3019     }
3020   }
3021 
3022   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
3023   // the input value to the bswap/bitreverse.
3024   Result = BitPart(V, BitWidth);
3025   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3026     Result->Provenance[BitIdx] = BitIdx;
3027   return Result;
3028 }
3029 
3030 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3031                                           unsigned BitWidth) {
3032   if (From % 8 != To % 8)
3033     return false;
3034   // Convert from bit indices to byte indices and check for a byte reversal.
3035   From >>= 3;
3036   To >>= 3;
3037   BitWidth >>= 3;
3038   return From == BitWidth - To - 1;
3039 }
3040 
3041 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3042                                                unsigned BitWidth) {
3043   return From == BitWidth - To - 1;
3044 }
3045 
3046 bool llvm::recognizeBSwapOrBitReverseIdiom(
3047     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3048     SmallVectorImpl<Instruction *> &InsertedInsts) {
3049   if (Operator::getOpcode(I) != Instruction::Or)
3050     return false;
3051   if (!MatchBSwaps && !MatchBitReversals)
3052     return false;
3053   Type *ITy = I->getType();
3054   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3055     return false;  // Can't do integer/elements > 128 bits.
3056 
3057   Type *DemandedTy = ITy;
3058   if (I->hasOneUse())
3059     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3060       DemandedTy = Trunc->getType();
3061 
3062   // Try to find all the pieces corresponding to the bswap.
3063   std::map<Value *, Optional<BitPart>> BPS;
3064   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
3065   if (!Res)
3066     return false;
3067   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3068   assert(all_of(BitProvenance,
3069                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3070          "Illegal bit provenance index");
3071 
3072   // If the upper bits are zero, then attempt to perform as a truncated op.
3073   if (BitProvenance.back() == BitPart::Unset) {
3074     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3075       BitProvenance = BitProvenance.drop_back();
3076     if (BitProvenance.empty())
3077       return false; // TODO - handle null value?
3078     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3079     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3080       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3081   }
3082 
3083   // Check BitProvenance hasn't found a source larger than the result type.
3084   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3085   if (DemandedBW > ITy->getScalarSizeInBits())
3086     return false;
3087 
3088   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3089   // only byteswap values with an even number of bytes.
3090   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3091   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3092   bool OKForBitReverse = MatchBitReversals;
3093   for (unsigned BitIdx = 0;
3094        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3095     if (BitProvenance[BitIdx] == BitPart::Unset) {
3096       DemandedMask.clearBit(BitIdx);
3097       continue;
3098     }
3099     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3100                                                 DemandedBW);
3101     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3102                                                           BitIdx, DemandedBW);
3103   }
3104 
3105   Intrinsic::ID Intrin;
3106   if (OKForBSwap)
3107     Intrin = Intrinsic::bswap;
3108   else if (OKForBitReverse)
3109     Intrin = Intrinsic::bitreverse;
3110   else
3111     return false;
3112 
3113   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3114   Value *Provider = Res->Provider;
3115 
3116   // We may need to truncate the provider.
3117   if (DemandedTy != Provider->getType()) {
3118     auto *Trunc =
3119         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3120     InsertedInsts.push_back(Trunc);
3121     Provider = Trunc;
3122   }
3123 
3124   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3125   InsertedInsts.push_back(Result);
3126 
3127   if (!DemandedMask.isAllOnesValue()) {
3128     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3129     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3130     InsertedInsts.push_back(Result);
3131   }
3132 
3133   // We may need to zeroextend back to the result type.
3134   if (ITy != Result->getType()) {
3135     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3136     InsertedInsts.push_back(ExtInst);
3137   }
3138 
3139   return true;
3140 }
3141 
3142 // CodeGen has special handling for some string functions that may replace
3143 // them with target-specific intrinsics.  Since that'd skip our interceptors
3144 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3145 // we mark affected calls as NoBuiltin, which will disable optimization
3146 // in CodeGen.
3147 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3148     CallInst *CI, const TargetLibraryInfo *TLI) {
3149   Function *F = CI->getCalledFunction();
3150   LibFunc Func;
3151   if (F && !F->hasLocalLinkage() && F->hasName() &&
3152       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3153       !F->doesNotAccessMemory())
3154     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3155 }
3156 
3157 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3158   // We can't have a PHI with a metadata type.
3159   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3160     return false;
3161 
3162   // Early exit.
3163   if (!isa<Constant>(I->getOperand(OpIdx)))
3164     return true;
3165 
3166   switch (I->getOpcode()) {
3167   default:
3168     return true;
3169   case Instruction::Call:
3170   case Instruction::Invoke: {
3171     const auto &CB = cast<CallBase>(*I);
3172 
3173     // Can't handle inline asm. Skip it.
3174     if (CB.isInlineAsm())
3175       return false;
3176 
3177     // Constant bundle operands may need to retain their constant-ness for
3178     // correctness.
3179     if (CB.isBundleOperand(OpIdx))
3180       return false;
3181 
3182     if (OpIdx < CB.getNumArgOperands()) {
3183       // Some variadic intrinsics require constants in the variadic arguments,
3184       // which currently aren't markable as immarg.
3185       if (isa<IntrinsicInst>(CB) &&
3186           OpIdx >= CB.getFunctionType()->getNumParams()) {
3187         // This is known to be OK for stackmap.
3188         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3189       }
3190 
3191       // gcroot is a special case, since it requires a constant argument which
3192       // isn't also required to be a simple ConstantInt.
3193       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3194         return false;
3195 
3196       // Some intrinsic operands are required to be immediates.
3197       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3198     }
3199 
3200     // It is never allowed to replace the call argument to an intrinsic, but it
3201     // may be possible for a call.
3202     return !isa<IntrinsicInst>(CB);
3203   }
3204   case Instruction::ShuffleVector:
3205     // Shufflevector masks are constant.
3206     return OpIdx != 2;
3207   case Instruction::Switch:
3208   case Instruction::ExtractValue:
3209     // All operands apart from the first are constant.
3210     return OpIdx == 0;
3211   case Instruction::InsertValue:
3212     // All operands apart from the first and the second are constant.
3213     return OpIdx < 2;
3214   case Instruction::Alloca:
3215     // Static allocas (constant size in the entry block) are handled by
3216     // prologue/epilogue insertion so they're free anyway. We definitely don't
3217     // want to make them non-constant.
3218     return !cast<AllocaInst>(I)->isStaticAlloca();
3219   case Instruction::GetElementPtr:
3220     if (OpIdx == 0)
3221       return true;
3222     gep_type_iterator It = gep_type_begin(I);
3223     for (auto E = std::next(It, OpIdx); It != E; ++It)
3224       if (It.isStruct())
3225         return false;
3226     return true;
3227   }
3228 }
3229 
3230 Value *llvm::invertCondition(Value *Condition) {
3231   // First: Check if it's a constant
3232   if (Constant *C = dyn_cast<Constant>(Condition))
3233     return ConstantExpr::getNot(C);
3234 
3235   // Second: If the condition is already inverted, return the original value
3236   Value *NotCondition;
3237   if (match(Condition, m_Not(m_Value(NotCondition))))
3238     return NotCondition;
3239 
3240   BasicBlock *Parent = nullptr;
3241   Instruction *Inst = dyn_cast<Instruction>(Condition);
3242   if (Inst)
3243     Parent = Inst->getParent();
3244   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3245     Parent = &Arg->getParent()->getEntryBlock();
3246   assert(Parent && "Unsupported condition to invert");
3247 
3248   // Third: Check all the users for an invert
3249   for (User *U : Condition->users())
3250     if (Instruction *I = dyn_cast<Instruction>(U))
3251       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3252         return I;
3253 
3254   // Last option: Create a new instruction
3255   auto *Inverted =
3256       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3257   if (Inst && !isa<PHINode>(Inst))
3258     Inverted->insertAfter(Inst);
3259   else
3260     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3261   return Inverted;
3262 }
3263