1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/ConstantRange.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DIBuilder.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalObject.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/ValueMapper.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <climits> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <utility> 86 87 using namespace llvm; 88 using namespace llvm::PatternMatch; 89 90 #define DEBUG_TYPE "local" 91 92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 93 94 // Max recursion depth for collectBitParts used when detecting bswap and 95 // bitreverse idioms 96 static const unsigned BitPartRecursionMaxDepth = 64; 97 98 //===----------------------------------------------------------------------===// 99 // Local constant propagation. 100 // 101 102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 103 /// constant value, convert it into an unconditional branch to the constant 104 /// destination. This is a nontrivial operation because the successors of this 105 /// basic block must have their PHI nodes updated. 106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 107 /// conditions and indirectbr addresses this might make dead if 108 /// DeleteDeadConditions is true. 109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 110 const TargetLibraryInfo *TLI, 111 DomTreeUpdater *DTU) { 112 Instruction *T = BB->getTerminator(); 113 IRBuilder<> Builder(T); 114 115 // Branch - See if we are conditional jumping on constant 116 if (auto *BI = dyn_cast<BranchInst>(T)) { 117 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 118 BasicBlock *Dest1 = BI->getSuccessor(0); 119 BasicBlock *Dest2 = BI->getSuccessor(1); 120 121 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 122 // Are we branching on constant? 123 // YES. Change to unconditional branch... 124 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 125 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 126 127 // Let the basic block know that we are letting go of it. Based on this, 128 // it will adjust it's PHI nodes. 129 OldDest->removePredecessor(BB); 130 131 // Replace the conditional branch with an unconditional one. 132 Builder.CreateBr(Destination); 133 BI->eraseFromParent(); 134 if (DTU) 135 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}}); 136 return true; 137 } 138 139 if (Dest2 == Dest1) { // Conditional branch to same location? 140 // This branch matches something like this: 141 // br bool %cond, label %Dest, label %Dest 142 // and changes it into: br label %Dest 143 144 // Let the basic block know that we are letting go of one copy of it. 145 assert(BI->getParent() && "Terminator not inserted in block!"); 146 Dest1->removePredecessor(BI->getParent()); 147 148 // Replace the conditional branch with an unconditional one. 149 Builder.CreateBr(Dest1); 150 Value *Cond = BI->getCondition(); 151 BI->eraseFromParent(); 152 if (DeleteDeadConditions) 153 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 154 return true; 155 } 156 return false; 157 } 158 159 if (auto *SI = dyn_cast<SwitchInst>(T)) { 160 // If we are switching on a constant, we can convert the switch to an 161 // unconditional branch. 162 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 163 BasicBlock *DefaultDest = SI->getDefaultDest(); 164 BasicBlock *TheOnlyDest = DefaultDest; 165 166 // If the default is unreachable, ignore it when searching for TheOnlyDest. 167 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 168 SI->getNumCases() > 0) { 169 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 170 } 171 172 // Figure out which case it goes to. 173 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 174 // Found case matching a constant operand? 175 if (i->getCaseValue() == CI) { 176 TheOnlyDest = i->getCaseSuccessor(); 177 break; 178 } 179 180 // Check to see if this branch is going to the same place as the default 181 // dest. If so, eliminate it as an explicit compare. 182 if (i->getCaseSuccessor() == DefaultDest) { 183 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 184 unsigned NCases = SI->getNumCases(); 185 // Fold the case metadata into the default if there will be any branches 186 // left, unless the metadata doesn't match the switch. 187 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 188 // Collect branch weights into a vector. 189 SmallVector<uint32_t, 8> Weights; 190 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 191 ++MD_i) { 192 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 193 Weights.push_back(CI->getValue().getZExtValue()); 194 } 195 // Merge weight of this case to the default weight. 196 unsigned idx = i->getCaseIndex(); 197 Weights[0] += Weights[idx+1]; 198 // Remove weight for this case. 199 std::swap(Weights[idx+1], Weights.back()); 200 Weights.pop_back(); 201 SI->setMetadata(LLVMContext::MD_prof, 202 MDBuilder(BB->getContext()). 203 createBranchWeights(Weights)); 204 } 205 // Remove this entry. 206 BasicBlock *ParentBB = SI->getParent(); 207 DefaultDest->removePredecessor(ParentBB); 208 i = SI->removeCase(i); 209 e = SI->case_end(); 210 if (DTU) 211 DTU->applyUpdatesPermissive( 212 {{DominatorTree::Delete, ParentBB, DefaultDest}}); 213 continue; 214 } 215 216 // Otherwise, check to see if the switch only branches to one destination. 217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 218 // destinations. 219 if (i->getCaseSuccessor() != TheOnlyDest) 220 TheOnlyDest = nullptr; 221 222 // Increment this iterator as we haven't removed the case. 223 ++i; 224 } 225 226 if (CI && !TheOnlyDest) { 227 // Branching on a constant, but not any of the cases, go to the default 228 // successor. 229 TheOnlyDest = SI->getDefaultDest(); 230 } 231 232 // If we found a single destination that we can fold the switch into, do so 233 // now. 234 if (TheOnlyDest) { 235 // Insert the new branch. 236 Builder.CreateBr(TheOnlyDest); 237 BasicBlock *BB = SI->getParent(); 238 std::vector <DominatorTree::UpdateType> Updates; 239 if (DTU) 240 Updates.reserve(SI->getNumSuccessors() - 1); 241 242 // Remove entries from PHI nodes which we no longer branch to... 243 for (BasicBlock *Succ : successors(SI)) { 244 // Found case matching a constant operand? 245 if (Succ == TheOnlyDest) { 246 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 247 } else { 248 Succ->removePredecessor(BB); 249 if (DTU) 250 Updates.push_back({DominatorTree::Delete, BB, Succ}); 251 } 252 } 253 254 // Delete the old switch. 255 Value *Cond = SI->getCondition(); 256 SI->eraseFromParent(); 257 if (DeleteDeadConditions) 258 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 259 if (DTU) 260 DTU->applyUpdatesPermissive(Updates); 261 return true; 262 } 263 264 if (SI->getNumCases() == 1) { 265 // Otherwise, we can fold this switch into a conditional branch 266 // instruction if it has only one non-default destination. 267 auto FirstCase = *SI->case_begin(); 268 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 269 FirstCase.getCaseValue(), "cond"); 270 271 // Insert the new branch. 272 BranchInst *NewBr = Builder.CreateCondBr(Cond, 273 FirstCase.getCaseSuccessor(), 274 SI->getDefaultDest()); 275 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 276 if (MD && MD->getNumOperands() == 3) { 277 ConstantInt *SICase = 278 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 279 ConstantInt *SIDef = 280 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 281 assert(SICase && SIDef); 282 // The TrueWeight should be the weight for the single case of SI. 283 NewBr->setMetadata(LLVMContext::MD_prof, 284 MDBuilder(BB->getContext()). 285 createBranchWeights(SICase->getValue().getZExtValue(), 286 SIDef->getValue().getZExtValue())); 287 } 288 289 // Update make.implicit metadata to the newly-created conditional branch. 290 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 291 if (MakeImplicitMD) 292 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 293 294 // Delete the old switch. 295 SI->eraseFromParent(); 296 return true; 297 } 298 return false; 299 } 300 301 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 302 // indirectbr blockaddress(@F, @BB) -> br label @BB 303 if (auto *BA = 304 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 305 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 306 std::vector <DominatorTree::UpdateType> Updates; 307 if (DTU) 308 Updates.reserve(IBI->getNumDestinations() - 1); 309 310 // Insert the new branch. 311 Builder.CreateBr(TheOnlyDest); 312 313 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 314 if (IBI->getDestination(i) == TheOnlyDest) { 315 TheOnlyDest = nullptr; 316 } else { 317 BasicBlock *ParentBB = IBI->getParent(); 318 BasicBlock *DestBB = IBI->getDestination(i); 319 DestBB->removePredecessor(ParentBB); 320 if (DTU) 321 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 322 } 323 } 324 Value *Address = IBI->getAddress(); 325 IBI->eraseFromParent(); 326 if (DeleteDeadConditions) 327 // Delete pointer cast instructions. 328 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 329 330 // Also zap the blockaddress constant if there are no users remaining, 331 // otherwise the destination is still marked as having its address taken. 332 if (BA->use_empty()) 333 BA->destroyConstant(); 334 335 // If we didn't find our destination in the IBI successor list, then we 336 // have undefined behavior. Replace the unconditional branch with an 337 // 'unreachable' instruction. 338 if (TheOnlyDest) { 339 BB->getTerminator()->eraseFromParent(); 340 new UnreachableInst(BB->getContext(), BB); 341 } 342 343 if (DTU) 344 DTU->applyUpdatesPermissive(Updates); 345 return true; 346 } 347 } 348 349 return false; 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Local dead code elimination. 354 // 355 356 /// isInstructionTriviallyDead - Return true if the result produced by the 357 /// instruction is not used, and the instruction has no side effects. 358 /// 359 bool llvm::isInstructionTriviallyDead(Instruction *I, 360 const TargetLibraryInfo *TLI) { 361 if (!I->use_empty()) 362 return false; 363 return wouldInstructionBeTriviallyDead(I, TLI); 364 } 365 366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 367 const TargetLibraryInfo *TLI) { 368 if (I->isTerminator()) 369 return false; 370 371 // We don't want the landingpad-like instructions removed by anything this 372 // general. 373 if (I->isEHPad()) 374 return false; 375 376 // We don't want debug info removed by anything this general, unless 377 // debug info is empty. 378 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 379 if (DDI->getAddress()) 380 return false; 381 return true; 382 } 383 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 384 if (DVI->getValue()) 385 return false; 386 return true; 387 } 388 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 389 if (DLI->getLabel()) 390 return false; 391 return true; 392 } 393 394 if (!I->mayHaveSideEffects()) 395 return true; 396 397 // Special case intrinsics that "may have side effects" but can be deleted 398 // when dead. 399 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 400 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 401 if (II->getIntrinsicID() == Intrinsic::stacksave || 402 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 403 return true; 404 405 // Lifetime intrinsics are dead when their right-hand is undef. 406 if (II->isLifetimeStartOrEnd()) 407 return isa<UndefValue>(II->getArgOperand(1)); 408 409 // Assumptions are dead if their condition is trivially true. Guards on 410 // true are operationally no-ops. In the future we can consider more 411 // sophisticated tradeoffs for guards considering potential for check 412 // widening, but for now we keep things simple. 413 if (II->getIntrinsicID() == Intrinsic::assume || 414 II->getIntrinsicID() == Intrinsic::experimental_guard) { 415 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 416 return !Cond->isZero(); 417 418 return false; 419 } 420 } 421 422 if (isAllocLikeFn(I, TLI)) 423 return true; 424 425 if (CallInst *CI = isFreeCall(I, TLI)) 426 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 427 return C->isNullValue() || isa<UndefValue>(C); 428 429 if (auto *Call = dyn_cast<CallBase>(I)) 430 if (isMathLibCallNoop(Call, TLI)) 431 return true; 432 433 return false; 434 } 435 436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 437 /// trivially dead instruction, delete it. If that makes any of its operands 438 /// trivially dead, delete them too, recursively. Return true if any 439 /// instructions were deleted. 440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 441 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { 442 Instruction *I = dyn_cast<Instruction>(V); 443 if (!I || !isInstructionTriviallyDead(I, TLI)) 444 return false; 445 446 SmallVector<Instruction*, 16> DeadInsts; 447 DeadInsts.push_back(I); 448 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); 449 450 return true; 451 } 452 453 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 454 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, 455 MemorySSAUpdater *MSSAU) { 456 // Process the dead instruction list until empty. 457 while (!DeadInsts.empty()) { 458 Instruction &I = *DeadInsts.pop_back_val(); 459 assert(I.use_empty() && "Instructions with uses are not dead."); 460 assert(isInstructionTriviallyDead(&I, TLI) && 461 "Live instruction found in dead worklist!"); 462 463 // Don't lose the debug info while deleting the instructions. 464 salvageDebugInfo(I); 465 466 // Null out all of the instruction's operands to see if any operand becomes 467 // dead as we go. 468 for (Use &OpU : I.operands()) { 469 Value *OpV = OpU.get(); 470 OpU.set(nullptr); 471 472 if (!OpV->use_empty()) 473 continue; 474 475 // If the operand is an instruction that became dead as we nulled out the 476 // operand, and if it is 'trivially' dead, delete it in a future loop 477 // iteration. 478 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 479 if (isInstructionTriviallyDead(OpI, TLI)) 480 DeadInsts.push_back(OpI); 481 } 482 if (MSSAU) 483 MSSAU->removeMemoryAccess(&I); 484 485 I.eraseFromParent(); 486 } 487 } 488 489 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 490 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 491 findDbgUsers(DbgUsers, I); 492 for (auto *DII : DbgUsers) { 493 Value *Undef = UndefValue::get(I->getType()); 494 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 495 ValueAsMetadata::get(Undef))); 496 } 497 return !DbgUsers.empty(); 498 } 499 500 /// areAllUsesEqual - Check whether the uses of a value are all the same. 501 /// This is similar to Instruction::hasOneUse() except this will also return 502 /// true when there are no uses or multiple uses that all refer to the same 503 /// value. 504 static bool areAllUsesEqual(Instruction *I) { 505 Value::user_iterator UI = I->user_begin(); 506 Value::user_iterator UE = I->user_end(); 507 if (UI == UE) 508 return true; 509 510 User *TheUse = *UI; 511 for (++UI; UI != UE; ++UI) { 512 if (*UI != TheUse) 513 return false; 514 } 515 return true; 516 } 517 518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 519 /// dead PHI node, due to being a def-use chain of single-use nodes that 520 /// either forms a cycle or is terminated by a trivially dead instruction, 521 /// delete it. If that makes any of its operands trivially dead, delete them 522 /// too, recursively. Return true if a change was made. 523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 524 const TargetLibraryInfo *TLI, 525 llvm::MemorySSAUpdater *MSSAU) { 526 SmallPtrSet<Instruction*, 4> Visited; 527 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 528 I = cast<Instruction>(*I->user_begin())) { 529 if (I->use_empty()) 530 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 531 532 // If we find an instruction more than once, we're on a cycle that 533 // won't prove fruitful. 534 if (!Visited.insert(I).second) { 535 // Break the cycle and delete the instruction and its operands. 536 I->replaceAllUsesWith(UndefValue::get(I->getType())); 537 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 538 return true; 539 } 540 } 541 return false; 542 } 543 544 static bool 545 simplifyAndDCEInstruction(Instruction *I, 546 SmallSetVector<Instruction *, 16> &WorkList, 547 const DataLayout &DL, 548 const TargetLibraryInfo *TLI) { 549 if (isInstructionTriviallyDead(I, TLI)) { 550 salvageDebugInfo(*I); 551 552 // Null out all of the instruction's operands to see if any operand becomes 553 // dead as we go. 554 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 555 Value *OpV = I->getOperand(i); 556 I->setOperand(i, nullptr); 557 558 if (!OpV->use_empty() || I == OpV) 559 continue; 560 561 // If the operand is an instruction that became dead as we nulled out the 562 // operand, and if it is 'trivially' dead, delete it in a future loop 563 // iteration. 564 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 565 if (isInstructionTriviallyDead(OpI, TLI)) 566 WorkList.insert(OpI); 567 } 568 569 I->eraseFromParent(); 570 571 return true; 572 } 573 574 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 575 // Add the users to the worklist. CAREFUL: an instruction can use itself, 576 // in the case of a phi node. 577 for (User *U : I->users()) { 578 if (U != I) { 579 WorkList.insert(cast<Instruction>(U)); 580 } 581 } 582 583 // Replace the instruction with its simplified value. 584 bool Changed = false; 585 if (!I->use_empty()) { 586 I->replaceAllUsesWith(SimpleV); 587 Changed = true; 588 } 589 if (isInstructionTriviallyDead(I, TLI)) { 590 I->eraseFromParent(); 591 Changed = true; 592 } 593 return Changed; 594 } 595 return false; 596 } 597 598 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 599 /// simplify any instructions in it and recursively delete dead instructions. 600 /// 601 /// This returns true if it changed the code, note that it can delete 602 /// instructions in other blocks as well in this block. 603 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 604 const TargetLibraryInfo *TLI) { 605 bool MadeChange = false; 606 const DataLayout &DL = BB->getModule()->getDataLayout(); 607 608 #ifndef NDEBUG 609 // In debug builds, ensure that the terminator of the block is never replaced 610 // or deleted by these simplifications. The idea of simplification is that it 611 // cannot introduce new instructions, and there is no way to replace the 612 // terminator of a block without introducing a new instruction. 613 AssertingVH<Instruction> TerminatorVH(&BB->back()); 614 #endif 615 616 SmallSetVector<Instruction *, 16> WorkList; 617 // Iterate over the original function, only adding insts to the worklist 618 // if they actually need to be revisited. This avoids having to pre-init 619 // the worklist with the entire function's worth of instructions. 620 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 621 BI != E;) { 622 assert(!BI->isTerminator()); 623 Instruction *I = &*BI; 624 ++BI; 625 626 // We're visiting this instruction now, so make sure it's not in the 627 // worklist from an earlier visit. 628 if (!WorkList.count(I)) 629 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 630 } 631 632 while (!WorkList.empty()) { 633 Instruction *I = WorkList.pop_back_val(); 634 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 635 } 636 return MadeChange; 637 } 638 639 //===----------------------------------------------------------------------===// 640 // Control Flow Graph Restructuring. 641 // 642 643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 644 DomTreeUpdater *DTU) { 645 // This only adjusts blocks with PHI nodes. 646 if (!isa<PHINode>(BB->begin())) 647 return; 648 649 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 650 // them down. This will leave us with single entry phi nodes and other phis 651 // that can be removed. 652 BB->removePredecessor(Pred, true); 653 654 WeakTrackingVH PhiIt = &BB->front(); 655 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 656 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 657 Value *OldPhiIt = PhiIt; 658 659 if (!recursivelySimplifyInstruction(PN)) 660 continue; 661 662 // If recursive simplification ended up deleting the next PHI node we would 663 // iterate to, then our iterator is invalid, restart scanning from the top 664 // of the block. 665 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 666 } 667 if (DTU) 668 DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}}); 669 } 670 671 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 672 DomTreeUpdater *DTU) { 673 674 // If BB has single-entry PHI nodes, fold them. 675 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 676 Value *NewVal = PN->getIncomingValue(0); 677 // Replace self referencing PHI with undef, it must be dead. 678 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 679 PN->replaceAllUsesWith(NewVal); 680 PN->eraseFromParent(); 681 } 682 683 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 684 assert(PredBB && "Block doesn't have a single predecessor!"); 685 686 bool ReplaceEntryBB = false; 687 if (PredBB == &DestBB->getParent()->getEntryBlock()) 688 ReplaceEntryBB = true; 689 690 // DTU updates: Collect all the edges that enter 691 // PredBB. These dominator edges will be redirected to DestBB. 692 SmallVector<DominatorTree::UpdateType, 32> Updates; 693 694 if (DTU) { 695 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 696 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 697 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 698 // This predecessor of PredBB may already have DestBB as a successor. 699 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 700 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 701 } 702 } 703 704 // Zap anything that took the address of DestBB. Not doing this will give the 705 // address an invalid value. 706 if (DestBB->hasAddressTaken()) { 707 BlockAddress *BA = BlockAddress::get(DestBB); 708 Constant *Replacement = 709 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 710 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 711 BA->getType())); 712 BA->destroyConstant(); 713 } 714 715 // Anything that branched to PredBB now branches to DestBB. 716 PredBB->replaceAllUsesWith(DestBB); 717 718 // Splice all the instructions from PredBB to DestBB. 719 PredBB->getTerminator()->eraseFromParent(); 720 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 721 new UnreachableInst(PredBB->getContext(), PredBB); 722 723 // If the PredBB is the entry block of the function, move DestBB up to 724 // become the entry block after we erase PredBB. 725 if (ReplaceEntryBB) 726 DestBB->moveAfter(PredBB); 727 728 if (DTU) { 729 assert(PredBB->getInstList().size() == 1 && 730 isa<UnreachableInst>(PredBB->getTerminator()) && 731 "The successor list of PredBB isn't empty before " 732 "applying corresponding DTU updates."); 733 DTU->applyUpdatesPermissive(Updates); 734 DTU->deleteBB(PredBB); 735 // Recalculation of DomTree is needed when updating a forward DomTree and 736 // the Entry BB is replaced. 737 if (ReplaceEntryBB && DTU->hasDomTree()) { 738 // The entry block was removed and there is no external interface for 739 // the dominator tree to be notified of this change. In this corner-case 740 // we recalculate the entire tree. 741 DTU->recalculate(*(DestBB->getParent())); 742 } 743 } 744 745 else { 746 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 747 } 748 } 749 750 /// Return true if we can choose one of these values to use in place of the 751 /// other. Note that we will always choose the non-undef value to keep. 752 static bool CanMergeValues(Value *First, Value *Second) { 753 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 754 } 755 756 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 757 /// branch to Succ, into Succ. 758 /// 759 /// Assumption: Succ is the single successor for BB. 760 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 761 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 762 763 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 764 << Succ->getName() << "\n"); 765 // Shortcut, if there is only a single predecessor it must be BB and merging 766 // is always safe 767 if (Succ->getSinglePredecessor()) return true; 768 769 // Make a list of the predecessors of BB 770 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 771 772 // Look at all the phi nodes in Succ, to see if they present a conflict when 773 // merging these blocks 774 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 775 PHINode *PN = cast<PHINode>(I); 776 777 // If the incoming value from BB is again a PHINode in 778 // BB which has the same incoming value for *PI as PN does, we can 779 // merge the phi nodes and then the blocks can still be merged 780 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 781 if (BBPN && BBPN->getParent() == BB) { 782 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 783 BasicBlock *IBB = PN->getIncomingBlock(PI); 784 if (BBPreds.count(IBB) && 785 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 786 PN->getIncomingValue(PI))) { 787 LLVM_DEBUG(dbgs() 788 << "Can't fold, phi node " << PN->getName() << " in " 789 << Succ->getName() << " is conflicting with " 790 << BBPN->getName() << " with regard to common predecessor " 791 << IBB->getName() << "\n"); 792 return false; 793 } 794 } 795 } else { 796 Value* Val = PN->getIncomingValueForBlock(BB); 797 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 798 // See if the incoming value for the common predecessor is equal to the 799 // one for BB, in which case this phi node will not prevent the merging 800 // of the block. 801 BasicBlock *IBB = PN->getIncomingBlock(PI); 802 if (BBPreds.count(IBB) && 803 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 804 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 805 << " in " << Succ->getName() 806 << " is conflicting with regard to common " 807 << "predecessor " << IBB->getName() << "\n"); 808 return false; 809 } 810 } 811 } 812 } 813 814 return true; 815 } 816 817 using PredBlockVector = SmallVector<BasicBlock *, 16>; 818 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 819 820 /// Determines the value to use as the phi node input for a block. 821 /// 822 /// Select between \p OldVal any value that we know flows from \p BB 823 /// to a particular phi on the basis of which one (if either) is not 824 /// undef. Update IncomingValues based on the selected value. 825 /// 826 /// \param OldVal The value we are considering selecting. 827 /// \param BB The block that the value flows in from. 828 /// \param IncomingValues A map from block-to-value for other phi inputs 829 /// that we have examined. 830 /// 831 /// \returns the selected value. 832 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 833 IncomingValueMap &IncomingValues) { 834 if (!isa<UndefValue>(OldVal)) { 835 assert((!IncomingValues.count(BB) || 836 IncomingValues.find(BB)->second == OldVal) && 837 "Expected OldVal to match incoming value from BB!"); 838 839 IncomingValues.insert(std::make_pair(BB, OldVal)); 840 return OldVal; 841 } 842 843 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 844 if (It != IncomingValues.end()) return It->second; 845 846 return OldVal; 847 } 848 849 /// Create a map from block to value for the operands of a 850 /// given phi. 851 /// 852 /// Create a map from block to value for each non-undef value flowing 853 /// into \p PN. 854 /// 855 /// \param PN The phi we are collecting the map for. 856 /// \param IncomingValues [out] The map from block to value for this phi. 857 static void gatherIncomingValuesToPhi(PHINode *PN, 858 IncomingValueMap &IncomingValues) { 859 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 860 BasicBlock *BB = PN->getIncomingBlock(i); 861 Value *V = PN->getIncomingValue(i); 862 863 if (!isa<UndefValue>(V)) 864 IncomingValues.insert(std::make_pair(BB, V)); 865 } 866 } 867 868 /// Replace the incoming undef values to a phi with the values 869 /// from a block-to-value map. 870 /// 871 /// \param PN The phi we are replacing the undefs in. 872 /// \param IncomingValues A map from block to value. 873 static void replaceUndefValuesInPhi(PHINode *PN, 874 const IncomingValueMap &IncomingValues) { 875 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 876 Value *V = PN->getIncomingValue(i); 877 878 if (!isa<UndefValue>(V)) continue; 879 880 BasicBlock *BB = PN->getIncomingBlock(i); 881 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 882 if (It == IncomingValues.end()) continue; 883 884 PN->setIncomingValue(i, It->second); 885 } 886 } 887 888 /// Replace a value flowing from a block to a phi with 889 /// potentially multiple instances of that value flowing from the 890 /// block's predecessors to the phi. 891 /// 892 /// \param BB The block with the value flowing into the phi. 893 /// \param BBPreds The predecessors of BB. 894 /// \param PN The phi that we are updating. 895 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 896 const PredBlockVector &BBPreds, 897 PHINode *PN) { 898 Value *OldVal = PN->removeIncomingValue(BB, false); 899 assert(OldVal && "No entry in PHI for Pred BB!"); 900 901 IncomingValueMap IncomingValues; 902 903 // We are merging two blocks - BB, and the block containing PN - and 904 // as a result we need to redirect edges from the predecessors of BB 905 // to go to the block containing PN, and update PN 906 // accordingly. Since we allow merging blocks in the case where the 907 // predecessor and successor blocks both share some predecessors, 908 // and where some of those common predecessors might have undef 909 // values flowing into PN, we want to rewrite those values to be 910 // consistent with the non-undef values. 911 912 gatherIncomingValuesToPhi(PN, IncomingValues); 913 914 // If this incoming value is one of the PHI nodes in BB, the new entries 915 // in the PHI node are the entries from the old PHI. 916 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 917 PHINode *OldValPN = cast<PHINode>(OldVal); 918 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 919 // Note that, since we are merging phi nodes and BB and Succ might 920 // have common predecessors, we could end up with a phi node with 921 // identical incoming branches. This will be cleaned up later (and 922 // will trigger asserts if we try to clean it up now, without also 923 // simplifying the corresponding conditional branch). 924 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 925 Value *PredVal = OldValPN->getIncomingValue(i); 926 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 927 IncomingValues); 928 929 // And add a new incoming value for this predecessor for the 930 // newly retargeted branch. 931 PN->addIncoming(Selected, PredBB); 932 } 933 } else { 934 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 935 // Update existing incoming values in PN for this 936 // predecessor of BB. 937 BasicBlock *PredBB = BBPreds[i]; 938 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 939 IncomingValues); 940 941 // And add a new incoming value for this predecessor for the 942 // newly retargeted branch. 943 PN->addIncoming(Selected, PredBB); 944 } 945 } 946 947 replaceUndefValuesInPhi(PN, IncomingValues); 948 } 949 950 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 951 DomTreeUpdater *DTU) { 952 assert(BB != &BB->getParent()->getEntryBlock() && 953 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 954 955 // We can't eliminate infinite loops. 956 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 957 if (BB == Succ) return false; 958 959 // Check to see if merging these blocks would cause conflicts for any of the 960 // phi nodes in BB or Succ. If not, we can safely merge. 961 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 962 963 // Check for cases where Succ has multiple predecessors and a PHI node in BB 964 // has uses which will not disappear when the PHI nodes are merged. It is 965 // possible to handle such cases, but difficult: it requires checking whether 966 // BB dominates Succ, which is non-trivial to calculate in the case where 967 // Succ has multiple predecessors. Also, it requires checking whether 968 // constructing the necessary self-referential PHI node doesn't introduce any 969 // conflicts; this isn't too difficult, but the previous code for doing this 970 // was incorrect. 971 // 972 // Note that if this check finds a live use, BB dominates Succ, so BB is 973 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 974 // folding the branch isn't profitable in that case anyway. 975 if (!Succ->getSinglePredecessor()) { 976 BasicBlock::iterator BBI = BB->begin(); 977 while (isa<PHINode>(*BBI)) { 978 for (Use &U : BBI->uses()) { 979 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 980 if (PN->getIncomingBlock(U) != BB) 981 return false; 982 } else { 983 return false; 984 } 985 } 986 ++BBI; 987 } 988 } 989 990 // We cannot fold the block if it's a branch to an already present callbr 991 // successor because that creates duplicate successors. 992 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 993 if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { 994 if (Succ == CBI->getDefaultDest()) 995 return false; 996 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 997 if (Succ == CBI->getIndirectDest(i)) 998 return false; 999 } 1000 } 1001 1002 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1003 1004 SmallVector<DominatorTree::UpdateType, 32> Updates; 1005 if (DTU) { 1006 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1007 // All predecessors of BB will be moved to Succ. 1008 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 1009 Updates.push_back({DominatorTree::Delete, *I, BB}); 1010 // This predecessor of BB may already have Succ as a successor. 1011 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 1012 Updates.push_back({DominatorTree::Insert, *I, Succ}); 1013 } 1014 } 1015 1016 if (isa<PHINode>(Succ->begin())) { 1017 // If there is more than one pred of succ, and there are PHI nodes in 1018 // the successor, then we need to add incoming edges for the PHI nodes 1019 // 1020 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1021 1022 // Loop over all of the PHI nodes in the successor of BB. 1023 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1024 PHINode *PN = cast<PHINode>(I); 1025 1026 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1027 } 1028 } 1029 1030 if (Succ->getSinglePredecessor()) { 1031 // BB is the only predecessor of Succ, so Succ will end up with exactly 1032 // the same predecessors BB had. 1033 1034 // Copy over any phi, debug or lifetime instruction. 1035 BB->getTerminator()->eraseFromParent(); 1036 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1037 BB->getInstList()); 1038 } else { 1039 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1040 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1041 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1042 PN->eraseFromParent(); 1043 } 1044 } 1045 1046 // If the unconditional branch we replaced contains llvm.loop metadata, we 1047 // add the metadata to the branch instructions in the predecessors. 1048 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1049 Instruction *TI = BB->getTerminator(); 1050 if (TI) 1051 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1052 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1053 BasicBlock *Pred = *PI; 1054 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1055 } 1056 1057 // Everything that jumped to BB now goes to Succ. 1058 BB->replaceAllUsesWith(Succ); 1059 if (!Succ->hasName()) Succ->takeName(BB); 1060 1061 // Clear the successor list of BB to match updates applying to DTU later. 1062 if (BB->getTerminator()) 1063 BB->getInstList().pop_back(); 1064 new UnreachableInst(BB->getContext(), BB); 1065 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1066 "applying corresponding DTU updates."); 1067 1068 if (DTU) { 1069 DTU->applyUpdatesPermissive(Updates); 1070 DTU->deleteBB(BB); 1071 } else { 1072 BB->eraseFromParent(); // Delete the old basic block. 1073 } 1074 return true; 1075 } 1076 1077 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1078 // This implementation doesn't currently consider undef operands 1079 // specially. Theoretically, two phis which are identical except for 1080 // one having an undef where the other doesn't could be collapsed. 1081 1082 struct PHIDenseMapInfo { 1083 static PHINode *getEmptyKey() { 1084 return DenseMapInfo<PHINode *>::getEmptyKey(); 1085 } 1086 1087 static PHINode *getTombstoneKey() { 1088 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1089 } 1090 1091 static unsigned getHashValue(PHINode *PN) { 1092 // Compute a hash value on the operands. Instcombine will likely have 1093 // sorted them, which helps expose duplicates, but we have to check all 1094 // the operands to be safe in case instcombine hasn't run. 1095 return static_cast<unsigned>(hash_combine( 1096 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1097 hash_combine_range(PN->block_begin(), PN->block_end()))); 1098 } 1099 1100 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1101 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1102 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1103 return LHS == RHS; 1104 return LHS->isIdenticalTo(RHS); 1105 } 1106 }; 1107 1108 // Set of unique PHINodes. 1109 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1110 1111 // Examine each PHI. 1112 bool Changed = false; 1113 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1114 auto Inserted = PHISet.insert(PN); 1115 if (!Inserted.second) { 1116 // A duplicate. Replace this PHI with its duplicate. 1117 PN->replaceAllUsesWith(*Inserted.first); 1118 PN->eraseFromParent(); 1119 Changed = true; 1120 1121 // The RAUW can change PHIs that we already visited. Start over from the 1122 // beginning. 1123 PHISet.clear(); 1124 I = BB->begin(); 1125 } 1126 } 1127 1128 return Changed; 1129 } 1130 1131 /// enforceKnownAlignment - If the specified pointer points to an object that 1132 /// we control, modify the object's alignment to PrefAlign. This isn't 1133 /// often possible though. If alignment is important, a more reliable approach 1134 /// is to simply align all global variables and allocation instructions to 1135 /// their preferred alignment from the beginning. 1136 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment, 1137 unsigned PrefAlign, 1138 const DataLayout &DL) { 1139 assert(PrefAlign > Alignment); 1140 1141 V = V->stripPointerCasts(); 1142 1143 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1144 // TODO: ideally, computeKnownBits ought to have used 1145 // AllocaInst::getAlignment() in its computation already, making 1146 // the below max redundant. But, as it turns out, 1147 // stripPointerCasts recurses through infinite layers of bitcasts, 1148 // while computeKnownBits is not allowed to traverse more than 6 1149 // levels. 1150 Alignment = std::max(AI->getAlignment(), Alignment); 1151 if (PrefAlign <= Alignment) 1152 return Alignment; 1153 1154 // If the preferred alignment is greater than the natural stack alignment 1155 // then don't round up. This avoids dynamic stack realignment. 1156 if (DL.exceedsNaturalStackAlignment(Align(PrefAlign))) 1157 return Alignment; 1158 AI->setAlignment(MaybeAlign(PrefAlign)); 1159 return PrefAlign; 1160 } 1161 1162 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1163 // TODO: as above, this shouldn't be necessary. 1164 Alignment = std::max(GO->getAlignment(), Alignment); 1165 if (PrefAlign <= Alignment) 1166 return Alignment; 1167 1168 // If there is a large requested alignment and we can, bump up the alignment 1169 // of the global. If the memory we set aside for the global may not be the 1170 // memory used by the final program then it is impossible for us to reliably 1171 // enforce the preferred alignment. 1172 if (!GO->canIncreaseAlignment()) 1173 return Alignment; 1174 1175 GO->setAlignment(MaybeAlign(PrefAlign)); 1176 return PrefAlign; 1177 } 1178 1179 return Alignment; 1180 } 1181 1182 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1183 const DataLayout &DL, 1184 const Instruction *CxtI, 1185 AssumptionCache *AC, 1186 const DominatorTree *DT) { 1187 assert(V->getType()->isPointerTy() && 1188 "getOrEnforceKnownAlignment expects a pointer!"); 1189 1190 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1191 unsigned TrailZ = Known.countMinTrailingZeros(); 1192 1193 // Avoid trouble with ridiculously large TrailZ values, such as 1194 // those computed from a null pointer. 1195 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1196 1197 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1198 1199 // LLVM doesn't support alignments larger than this currently. 1200 Align = std::min(Align, +Value::MaximumAlignment); 1201 1202 if (PrefAlign > Align) 1203 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1204 1205 // We don't need to make any adjustment. 1206 return Align; 1207 } 1208 1209 ///===---------------------------------------------------------------------===// 1210 /// Dbg Intrinsic utilities 1211 /// 1212 1213 /// See if there is a dbg.value intrinsic for DIVar before I. 1214 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1215 Instruction *I) { 1216 // Since we can't guarantee that the original dbg.declare instrinsic 1217 // is removed by LowerDbgDeclare(), we need to make sure that we are 1218 // not inserting the same dbg.value intrinsic over and over. 1219 BasicBlock::InstListType::iterator PrevI(I); 1220 if (PrevI != I->getParent()->getInstList().begin()) { 1221 --PrevI; 1222 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1223 if (DVI->getValue() == I->getOperand(0) && 1224 DVI->getVariable() == DIVar && 1225 DVI->getExpression() == DIExpr) 1226 return true; 1227 } 1228 return false; 1229 } 1230 1231 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1232 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1233 DIExpression *DIExpr, 1234 PHINode *APN) { 1235 // Since we can't guarantee that the original dbg.declare instrinsic 1236 // is removed by LowerDbgDeclare(), we need to make sure that we are 1237 // not inserting the same dbg.value intrinsic over and over. 1238 SmallVector<DbgValueInst *, 1> DbgValues; 1239 findDbgValues(DbgValues, APN); 1240 for (auto *DVI : DbgValues) { 1241 assert(DVI->getValue() == APN); 1242 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1243 return true; 1244 } 1245 return false; 1246 } 1247 1248 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1249 /// (or fragment of the variable) described by \p DII. 1250 /// 1251 /// This is primarily intended as a helper for the different 1252 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1253 /// converted describes an alloca'd variable, so we need to use the 1254 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1255 /// identified as covering an n-bit fragment, if the store size of i1 is at 1256 /// least n bits. 1257 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1258 const DataLayout &DL = DII->getModule()->getDataLayout(); 1259 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1260 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1261 return ValueSize >= *FragmentSize; 1262 // We can't always calculate the size of the DI variable (e.g. if it is a 1263 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1264 // intead. 1265 if (DII->isAddressOfVariable()) 1266 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1267 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1268 return ValueSize >= *FragmentSize; 1269 // Could not determine size of variable. Conservatively return false. 1270 return false; 1271 } 1272 1273 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1274 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1275 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1276 /// case this DebugLoc leaks into any adjacent instructions. 1277 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1278 // Original dbg.declare must have a location. 1279 DebugLoc DeclareLoc = DII->getDebugLoc(); 1280 MDNode *Scope = DeclareLoc.getScope(); 1281 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1282 // Produce an unknown location with the correct scope / inlinedAt fields. 1283 return DebugLoc::get(0, 0, Scope, InlinedAt); 1284 } 1285 1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1289 StoreInst *SI, DIBuilder &Builder) { 1290 assert(DII->isAddressOfVariable()); 1291 auto *DIVar = DII->getVariable(); 1292 assert(DIVar && "Missing variable"); 1293 auto *DIExpr = DII->getExpression(); 1294 Value *DV = SI->getValueOperand(); 1295 1296 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1297 1298 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1299 // FIXME: If storing to a part of the variable described by the dbg.declare, 1300 // then we want to insert a dbg.value for the corresponding fragment. 1301 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1302 << *DII << '\n'); 1303 // For now, when there is a store to parts of the variable (but we do not 1304 // know which part) we insert an dbg.value instrinsic to indicate that we 1305 // know nothing about the variable's content. 1306 DV = UndefValue::get(DV->getType()); 1307 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1308 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1309 return; 1310 } 1311 1312 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1313 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1314 } 1315 1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1319 LoadInst *LI, DIBuilder &Builder) { 1320 auto *DIVar = DII->getVariable(); 1321 auto *DIExpr = DII->getExpression(); 1322 assert(DIVar && "Missing variable"); 1323 1324 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1325 return; 1326 1327 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1328 // FIXME: If only referring to a part of the variable described by the 1329 // dbg.declare, then we want to insert a dbg.value for the corresponding 1330 // fragment. 1331 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1332 << *DII << '\n'); 1333 return; 1334 } 1335 1336 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1337 1338 // We are now tracking the loaded value instead of the address. In the 1339 // future if multi-location support is added to the IR, it might be 1340 // preferable to keep tracking both the loaded value and the original 1341 // address in case the alloca can not be elided. 1342 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1343 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1344 DbgValue->insertAfter(LI); 1345 } 1346 1347 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1348 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1349 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1350 PHINode *APN, DIBuilder &Builder) { 1351 auto *DIVar = DII->getVariable(); 1352 auto *DIExpr = DII->getExpression(); 1353 assert(DIVar && "Missing variable"); 1354 1355 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1356 return; 1357 1358 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1359 // FIXME: If only referring to a part of the variable described by the 1360 // dbg.declare, then we want to insert a dbg.value for the corresponding 1361 // fragment. 1362 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1363 << *DII << '\n'); 1364 return; 1365 } 1366 1367 BasicBlock *BB = APN->getParent(); 1368 auto InsertionPt = BB->getFirstInsertionPt(); 1369 1370 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1371 1372 // The block may be a catchswitch block, which does not have a valid 1373 // insertion point. 1374 // FIXME: Insert dbg.value markers in the successors when appropriate. 1375 if (InsertionPt != BB->end()) 1376 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1377 } 1378 1379 /// Determine whether this alloca is either a VLA or an array. 1380 static bool isArray(AllocaInst *AI) { 1381 return AI->isArrayAllocation() || 1382 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1383 } 1384 1385 /// Determine whether this alloca is a structure. 1386 static bool isStructure(AllocaInst *AI) { 1387 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1388 } 1389 1390 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1391 /// of llvm.dbg.value intrinsics. 1392 bool llvm::LowerDbgDeclare(Function &F) { 1393 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1394 SmallVector<DbgDeclareInst *, 4> Dbgs; 1395 for (auto &FI : F) 1396 for (Instruction &BI : FI) 1397 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1398 Dbgs.push_back(DDI); 1399 1400 if (Dbgs.empty()) 1401 return false; 1402 1403 for (auto &I : Dbgs) { 1404 DbgDeclareInst *DDI = I; 1405 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1406 // If this is an alloca for a scalar variable, insert a dbg.value 1407 // at each load and store to the alloca and erase the dbg.declare. 1408 // The dbg.values allow tracking a variable even if it is not 1409 // stored on the stack, while the dbg.declare can only describe 1410 // the stack slot (and at a lexical-scope granularity). Later 1411 // passes will attempt to elide the stack slot. 1412 if (!AI || isArray(AI) || isStructure(AI)) 1413 continue; 1414 1415 // A volatile load/store means that the alloca can't be elided anyway. 1416 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1417 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1418 return LI->isVolatile(); 1419 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1420 return SI->isVolatile(); 1421 return false; 1422 })) 1423 continue; 1424 1425 SmallVector<const Value *, 8> WorkList; 1426 WorkList.push_back(AI); 1427 while (!WorkList.empty()) { 1428 const Value *V = WorkList.pop_back_val(); 1429 for (auto &AIUse : V->uses()) { 1430 User *U = AIUse.getUser(); 1431 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1432 if (AIUse.getOperandNo() == 1) 1433 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1434 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1435 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1436 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1437 // This is a call by-value or some other instruction that takes a 1438 // pointer to the variable. Insert a *value* intrinsic that describes 1439 // the variable by dereferencing the alloca. 1440 if (!CI->isLifetimeStartOrEnd()) { 1441 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1442 auto *DerefExpr = 1443 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1444 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1445 NewLoc, CI); 1446 } 1447 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1448 if (BI->getType()->isPointerTy()) 1449 WorkList.push_back(BI); 1450 } 1451 } 1452 } 1453 DDI->eraseFromParent(); 1454 } 1455 return true; 1456 } 1457 1458 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1459 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1460 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1461 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1462 if (InsertedPHIs.size() == 0) 1463 return; 1464 1465 // Map existing PHI nodes to their dbg.values. 1466 ValueToValueMapTy DbgValueMap; 1467 for (auto &I : *BB) { 1468 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1469 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1470 DbgValueMap.insert({Loc, DbgII}); 1471 } 1472 } 1473 if (DbgValueMap.size() == 0) 1474 return; 1475 1476 // Then iterate through the new PHIs and look to see if they use one of the 1477 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1478 // propagate the info through the new PHI. 1479 LLVMContext &C = BB->getContext(); 1480 for (auto PHI : InsertedPHIs) { 1481 BasicBlock *Parent = PHI->getParent(); 1482 // Avoid inserting an intrinsic into an EH block. 1483 if (Parent->getFirstNonPHI()->isEHPad()) 1484 continue; 1485 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1486 for (auto VI : PHI->operand_values()) { 1487 auto V = DbgValueMap.find(VI); 1488 if (V != DbgValueMap.end()) { 1489 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1490 Instruction *NewDbgII = DbgII->clone(); 1491 NewDbgII->setOperand(0, PhiMAV); 1492 auto InsertionPt = Parent->getFirstInsertionPt(); 1493 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1494 NewDbgII->insertBefore(&*InsertionPt); 1495 } 1496 } 1497 } 1498 } 1499 1500 /// Finds all intrinsics declaring local variables as living in the memory that 1501 /// 'V' points to. This may include a mix of dbg.declare and 1502 /// dbg.addr intrinsics. 1503 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1504 // This function is hot. Check whether the value has any metadata to avoid a 1505 // DenseMap lookup. 1506 if (!V->isUsedByMetadata()) 1507 return {}; 1508 auto *L = LocalAsMetadata::getIfExists(V); 1509 if (!L) 1510 return {}; 1511 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1512 if (!MDV) 1513 return {}; 1514 1515 TinyPtrVector<DbgVariableIntrinsic *> Declares; 1516 for (User *U : MDV->users()) { 1517 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1518 if (DII->isAddressOfVariable()) 1519 Declares.push_back(DII); 1520 } 1521 1522 return Declares; 1523 } 1524 1525 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1526 // This function is hot. Check whether the value has any metadata to avoid a 1527 // DenseMap lookup. 1528 if (!V->isUsedByMetadata()) 1529 return; 1530 if (auto *L = LocalAsMetadata::getIfExists(V)) 1531 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1532 for (User *U : MDV->users()) 1533 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1534 DbgValues.push_back(DVI); 1535 } 1536 1537 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, 1538 Value *V) { 1539 // This function is hot. Check whether the value has any metadata to avoid a 1540 // DenseMap lookup. 1541 if (!V->isUsedByMetadata()) 1542 return; 1543 if (auto *L = LocalAsMetadata::getIfExists(V)) 1544 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1545 for (User *U : MDV->users()) 1546 if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) 1547 DbgUsers.push_back(DII); 1548 } 1549 1550 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1551 Instruction *InsertBefore, DIBuilder &Builder, 1552 uint8_t DIExprFlags, int Offset) { 1553 auto DbgAddrs = FindDbgAddrUses(Address); 1554 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1555 DebugLoc Loc = DII->getDebugLoc(); 1556 auto *DIVar = DII->getVariable(); 1557 auto *DIExpr = DII->getExpression(); 1558 assert(DIVar && "Missing variable"); 1559 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1560 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1561 // llvm.dbg.declare. 1562 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1563 if (DII == InsertBefore) 1564 InsertBefore = InsertBefore->getNextNode(); 1565 DII->eraseFromParent(); 1566 } 1567 return !DbgAddrs.empty(); 1568 } 1569 1570 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1571 DIBuilder &Builder, uint8_t DIExprFlags, 1572 int Offset) { 1573 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1574 DIExprFlags, Offset); 1575 } 1576 1577 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1578 DIBuilder &Builder, int Offset) { 1579 DebugLoc Loc = DVI->getDebugLoc(); 1580 auto *DIVar = DVI->getVariable(); 1581 auto *DIExpr = DVI->getExpression(); 1582 assert(DIVar && "Missing variable"); 1583 1584 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1585 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1586 // it and give up. 1587 if (!DIExpr || DIExpr->getNumElements() < 1 || 1588 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1589 return; 1590 1591 // Insert the offset before the first deref. 1592 // We could just change the offset argument of dbg.value, but it's unsigned... 1593 if (Offset) 1594 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1595 1596 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1597 DVI->eraseFromParent(); 1598 } 1599 1600 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1601 DIBuilder &Builder, int Offset) { 1602 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1603 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1604 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1605 Use &U = *UI++; 1606 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1607 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1608 } 1609 } 1610 1611 /// Wrap \p V in a ValueAsMetadata instance. 1612 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1613 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1614 } 1615 1616 bool llvm::salvageDebugInfo(Instruction &I) { 1617 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1618 findDbgUsers(DbgUsers, &I); 1619 if (DbgUsers.empty()) 1620 return false; 1621 1622 return salvageDebugInfoForDbgValues(I, DbgUsers); 1623 } 1624 1625 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) { 1626 if (!salvageDebugInfo(I)) 1627 replaceDbgUsesWithUndef(&I); 1628 } 1629 1630 bool llvm::salvageDebugInfoForDbgValues( 1631 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1632 auto &Ctx = I.getContext(); 1633 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1634 1635 for (auto *DII : DbgUsers) { 1636 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1637 // are implicitly pointing out the value as a DWARF memory location 1638 // description. 1639 bool StackValue = isa<DbgValueInst>(DII); 1640 1641 DIExpression *DIExpr = 1642 salvageDebugInfoImpl(I, DII->getExpression(), StackValue); 1643 1644 // salvageDebugInfoImpl should fail on examining the first element of 1645 // DbgUsers, or none of them. 1646 if (!DIExpr) 1647 return false; 1648 1649 DII->setOperand(0, wrapMD(I.getOperand(0))); 1650 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1651 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1652 } 1653 1654 return true; 1655 } 1656 1657 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, 1658 DIExpression *SrcDIExpr, 1659 bool WithStackValue) { 1660 auto &M = *I.getModule(); 1661 auto &DL = M.getDataLayout(); 1662 1663 // Apply a vector of opcodes to the source DIExpression. 1664 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1665 DIExpression *DIExpr = SrcDIExpr; 1666 if (!Ops.empty()) { 1667 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1668 } 1669 return DIExpr; 1670 }; 1671 1672 // Apply the given offset to the source DIExpression. 1673 auto applyOffset = [&](uint64_t Offset) -> DIExpression * { 1674 SmallVector<uint64_t, 8> Ops; 1675 DIExpression::appendOffset(Ops, Offset); 1676 return doSalvage(Ops); 1677 }; 1678 1679 // initializer-list helper for applying operators to the source DIExpression. 1680 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * { 1681 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1682 return doSalvage(Ops); 1683 }; 1684 1685 if (auto *CI = dyn_cast<CastInst>(&I)) { 1686 // No-op casts and zexts are irrelevant for debug info. 1687 if (CI->isNoopCast(DL) || isa<ZExtInst>(&I)) 1688 return SrcDIExpr; 1689 1690 Type *Type = CI->getType(); 1691 // Casts other than Trunc or SExt to scalar types cannot be salvaged. 1692 if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I))) 1693 return nullptr; 1694 1695 Value *FromValue = CI->getOperand(0); 1696 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1697 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1698 1699 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1700 isa<SExtInst>(&I))); 1701 } 1702 1703 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1704 unsigned BitWidth = 1705 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1706 // Rewrite a constant GEP into a DIExpression. 1707 APInt Offset(BitWidth, 0); 1708 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { 1709 return applyOffset(Offset.getSExtValue()); 1710 } else { 1711 return nullptr; 1712 } 1713 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1714 // Rewrite binary operations with constant integer operands. 1715 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1716 if (!ConstInt || ConstInt->getBitWidth() > 64) 1717 return nullptr; 1718 1719 uint64_t Val = ConstInt->getSExtValue(); 1720 switch (BI->getOpcode()) { 1721 case Instruction::Add: 1722 return applyOffset(Val); 1723 case Instruction::Sub: 1724 return applyOffset(-int64_t(Val)); 1725 case Instruction::Mul: 1726 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1727 case Instruction::SDiv: 1728 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1729 case Instruction::SRem: 1730 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1731 case Instruction::Or: 1732 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1733 case Instruction::And: 1734 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1735 case Instruction::Xor: 1736 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1737 case Instruction::Shl: 1738 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1739 case Instruction::LShr: 1740 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1741 case Instruction::AShr: 1742 return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1743 default: 1744 // TODO: Salvage constants from each kind of binop we know about. 1745 return nullptr; 1746 } 1747 // *Not* to do: we should not attempt to salvage load instructions, 1748 // because the validity and lifetime of a dbg.value containing 1749 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1750 } 1751 return nullptr; 1752 } 1753 1754 /// A replacement for a dbg.value expression. 1755 using DbgValReplacement = Optional<DIExpression *>; 1756 1757 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1758 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1759 /// changes are made. 1760 static bool rewriteDebugUsers( 1761 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1762 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1763 // Find debug users of From. 1764 SmallVector<DbgVariableIntrinsic *, 1> Users; 1765 findDbgUsers(Users, &From); 1766 if (Users.empty()) 1767 return false; 1768 1769 // Prevent use-before-def of To. 1770 bool Changed = false; 1771 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1772 if (isa<Instruction>(&To)) { 1773 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1774 1775 for (auto *DII : Users) { 1776 // It's common to see a debug user between From and DomPoint. Move it 1777 // after DomPoint to preserve the variable update without any reordering. 1778 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1779 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1780 DII->moveAfter(&DomPoint); 1781 Changed = true; 1782 1783 // Users which otherwise aren't dominated by the replacement value must 1784 // be salvaged or deleted. 1785 } else if (!DT.dominates(&DomPoint, DII)) { 1786 UndefOrSalvage.insert(DII); 1787 } 1788 } 1789 } 1790 1791 // Update debug users without use-before-def risk. 1792 for (auto *DII : Users) { 1793 if (UndefOrSalvage.count(DII)) 1794 continue; 1795 1796 LLVMContext &Ctx = DII->getContext(); 1797 DbgValReplacement DVR = RewriteExpr(*DII); 1798 if (!DVR) 1799 continue; 1800 1801 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1802 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1803 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1804 Changed = true; 1805 } 1806 1807 if (!UndefOrSalvage.empty()) { 1808 // Try to salvage the remaining debug users. 1809 salvageDebugInfoOrMarkUndef(From); 1810 Changed = true; 1811 } 1812 1813 return Changed; 1814 } 1815 1816 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1817 /// losslessly preserve the bits and semantics of the value. This predicate is 1818 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1819 /// 1820 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1821 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1822 /// and also does not allow lossless pointer <-> integer conversions. 1823 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1824 Type *ToTy) { 1825 // Trivially compatible types. 1826 if (FromTy == ToTy) 1827 return true; 1828 1829 // Handle compatible pointer <-> integer conversions. 1830 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1831 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1832 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1833 !DL.isNonIntegralPointerType(ToTy); 1834 return SameSize && LosslessConversion; 1835 } 1836 1837 // TODO: This is not exhaustive. 1838 return false; 1839 } 1840 1841 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1842 Instruction &DomPoint, DominatorTree &DT) { 1843 // Exit early if From has no debug users. 1844 if (!From.isUsedByMetadata()) 1845 return false; 1846 1847 assert(&From != &To && "Can't replace something with itself"); 1848 1849 Type *FromTy = From.getType(); 1850 Type *ToTy = To.getType(); 1851 1852 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1853 return DII.getExpression(); 1854 }; 1855 1856 // Handle no-op conversions. 1857 Module &M = *From.getModule(); 1858 const DataLayout &DL = M.getDataLayout(); 1859 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1860 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1861 1862 // Handle integer-to-integer widening and narrowing. 1863 // FIXME: Use DW_OP_convert when it's available everywhere. 1864 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1865 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1866 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1867 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1868 1869 // When the width of the result grows, assume that a debugger will only 1870 // access the low `FromBits` bits when inspecting the source variable. 1871 if (FromBits < ToBits) 1872 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1873 1874 // The width of the result has shrunk. Use sign/zero extension to describe 1875 // the source variable's high bits. 1876 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 1877 DILocalVariable *Var = DII.getVariable(); 1878 1879 // Without knowing signedness, sign/zero extension isn't possible. 1880 auto Signedness = Var->getSignedness(); 1881 if (!Signedness) 1882 return None; 1883 1884 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1885 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 1886 Signed); 1887 }; 1888 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1889 } 1890 1891 // TODO: Floating-point conversions, vectors. 1892 return false; 1893 } 1894 1895 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1896 unsigned NumDeadInst = 0; 1897 // Delete the instructions backwards, as it has a reduced likelihood of 1898 // having to update as many def-use and use-def chains. 1899 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1900 while (EndInst != &BB->front()) { 1901 // Delete the next to last instruction. 1902 Instruction *Inst = &*--EndInst->getIterator(); 1903 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1904 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1905 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1906 EndInst = Inst; 1907 continue; 1908 } 1909 if (!isa<DbgInfoIntrinsic>(Inst)) 1910 ++NumDeadInst; 1911 Inst->eraseFromParent(); 1912 } 1913 return NumDeadInst; 1914 } 1915 1916 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1917 bool PreserveLCSSA, DomTreeUpdater *DTU, 1918 MemorySSAUpdater *MSSAU) { 1919 BasicBlock *BB = I->getParent(); 1920 std::vector <DominatorTree::UpdateType> Updates; 1921 1922 if (MSSAU) 1923 MSSAU->changeToUnreachable(I); 1924 1925 // Loop over all of the successors, removing BB's entry from any PHI 1926 // nodes. 1927 if (DTU) 1928 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1929 for (BasicBlock *Successor : successors(BB)) { 1930 Successor->removePredecessor(BB, PreserveLCSSA); 1931 if (DTU) 1932 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1933 } 1934 // Insert a call to llvm.trap right before this. This turns the undefined 1935 // behavior into a hard fail instead of falling through into random code. 1936 if (UseLLVMTrap) { 1937 Function *TrapFn = 1938 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1939 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1940 CallTrap->setDebugLoc(I->getDebugLoc()); 1941 } 1942 auto *UI = new UnreachableInst(I->getContext(), I); 1943 UI->setDebugLoc(I->getDebugLoc()); 1944 1945 // All instructions after this are dead. 1946 unsigned NumInstrsRemoved = 0; 1947 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1948 while (BBI != BBE) { 1949 if (!BBI->use_empty()) 1950 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1951 BB->getInstList().erase(BBI++); 1952 ++NumInstrsRemoved; 1953 } 1954 if (DTU) 1955 DTU->applyUpdatesPermissive(Updates); 1956 return NumInstrsRemoved; 1957 } 1958 1959 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 1960 SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end()); 1961 SmallVector<OperandBundleDef, 1> OpBundles; 1962 II->getOperandBundlesAsDefs(OpBundles); 1963 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 1964 II->getCalledValue(), Args, OpBundles); 1965 NewCall->setCallingConv(II->getCallingConv()); 1966 NewCall->setAttributes(II->getAttributes()); 1967 NewCall->setDebugLoc(II->getDebugLoc()); 1968 NewCall->copyMetadata(*II); 1969 return NewCall; 1970 } 1971 1972 /// changeToCall - Convert the specified invoke into a normal call. 1973 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 1974 CallInst *NewCall = createCallMatchingInvoke(II); 1975 NewCall->takeName(II); 1976 NewCall->insertBefore(II); 1977 II->replaceAllUsesWith(NewCall); 1978 1979 // Follow the call by a branch to the normal destination. 1980 BasicBlock *NormalDestBB = II->getNormalDest(); 1981 BranchInst::Create(NormalDestBB, II); 1982 1983 // Update PHI nodes in the unwind destination 1984 BasicBlock *BB = II->getParent(); 1985 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1986 UnwindDestBB->removePredecessor(BB); 1987 II->eraseFromParent(); 1988 if (DTU) 1989 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}}); 1990 } 1991 1992 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1993 BasicBlock *UnwindEdge) { 1994 BasicBlock *BB = CI->getParent(); 1995 1996 // Convert this function call into an invoke instruction. First, split the 1997 // basic block. 1998 BasicBlock *Split = 1999 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 2000 2001 // Delete the unconditional branch inserted by splitBasicBlock 2002 BB->getInstList().pop_back(); 2003 2004 // Create the new invoke instruction. 2005 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 2006 SmallVector<OperandBundleDef, 1> OpBundles; 2007 2008 CI->getOperandBundlesAsDefs(OpBundles); 2009 2010 // Note: we're round tripping operand bundles through memory here, and that 2011 // can potentially be avoided with a cleverer API design that we do not have 2012 // as of this time. 2013 2014 InvokeInst *II = 2015 InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, 2016 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2017 II->setDebugLoc(CI->getDebugLoc()); 2018 II->setCallingConv(CI->getCallingConv()); 2019 II->setAttributes(CI->getAttributes()); 2020 2021 // Make sure that anything using the call now uses the invoke! This also 2022 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2023 CI->replaceAllUsesWith(II); 2024 2025 // Delete the original call 2026 Split->getInstList().pop_front(); 2027 return Split; 2028 } 2029 2030 static bool markAliveBlocks(Function &F, 2031 SmallPtrSetImpl<BasicBlock *> &Reachable, 2032 DomTreeUpdater *DTU = nullptr) { 2033 SmallVector<BasicBlock*, 128> Worklist; 2034 BasicBlock *BB = &F.front(); 2035 Worklist.push_back(BB); 2036 Reachable.insert(BB); 2037 bool Changed = false; 2038 do { 2039 BB = Worklist.pop_back_val(); 2040 2041 // Do a quick scan of the basic block, turning any obviously unreachable 2042 // instructions into LLVM unreachable insts. The instruction combining pass 2043 // canonicalizes unreachable insts into stores to null or undef. 2044 for (Instruction &I : *BB) { 2045 if (auto *CI = dyn_cast<CallInst>(&I)) { 2046 Value *Callee = CI->getCalledValue(); 2047 // Handle intrinsic calls. 2048 if (Function *F = dyn_cast<Function>(Callee)) { 2049 auto IntrinsicID = F->getIntrinsicID(); 2050 // Assumptions that are known to be false are equivalent to 2051 // unreachable. Also, if the condition is undefined, then we make the 2052 // choice most beneficial to the optimizer, and choose that to also be 2053 // unreachable. 2054 if (IntrinsicID == Intrinsic::assume) { 2055 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2056 // Don't insert a call to llvm.trap right before the unreachable. 2057 changeToUnreachable(CI, false, false, DTU); 2058 Changed = true; 2059 break; 2060 } 2061 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2062 // A call to the guard intrinsic bails out of the current 2063 // compilation unit if the predicate passed to it is false. If the 2064 // predicate is a constant false, then we know the guard will bail 2065 // out of the current compile unconditionally, so all code following 2066 // it is dead. 2067 // 2068 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2069 // guards to treat `undef` as `false` since a guard on `undef` can 2070 // still be useful for widening. 2071 if (match(CI->getArgOperand(0), m_Zero())) 2072 if (!isa<UnreachableInst>(CI->getNextNode())) { 2073 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2074 false, DTU); 2075 Changed = true; 2076 break; 2077 } 2078 } 2079 } else if ((isa<ConstantPointerNull>(Callee) && 2080 !NullPointerIsDefined(CI->getFunction())) || 2081 isa<UndefValue>(Callee)) { 2082 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2083 Changed = true; 2084 break; 2085 } 2086 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2087 // If we found a call to a no-return function, insert an unreachable 2088 // instruction after it. Make sure there isn't *already* one there 2089 // though. 2090 if (!isa<UnreachableInst>(CI->getNextNode())) { 2091 // Don't insert a call to llvm.trap right before the unreachable. 2092 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2093 Changed = true; 2094 } 2095 break; 2096 } 2097 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2098 // Store to undef and store to null are undefined and used to signal 2099 // that they should be changed to unreachable by passes that can't 2100 // modify the CFG. 2101 2102 // Don't touch volatile stores. 2103 if (SI->isVolatile()) continue; 2104 2105 Value *Ptr = SI->getOperand(1); 2106 2107 if (isa<UndefValue>(Ptr) || 2108 (isa<ConstantPointerNull>(Ptr) && 2109 !NullPointerIsDefined(SI->getFunction(), 2110 SI->getPointerAddressSpace()))) { 2111 changeToUnreachable(SI, true, false, DTU); 2112 Changed = true; 2113 break; 2114 } 2115 } 2116 } 2117 2118 Instruction *Terminator = BB->getTerminator(); 2119 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2120 // Turn invokes that call 'nounwind' functions into ordinary calls. 2121 Value *Callee = II->getCalledValue(); 2122 if ((isa<ConstantPointerNull>(Callee) && 2123 !NullPointerIsDefined(BB->getParent())) || 2124 isa<UndefValue>(Callee)) { 2125 changeToUnreachable(II, true, false, DTU); 2126 Changed = true; 2127 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2128 if (II->use_empty() && II->onlyReadsMemory()) { 2129 // jump to the normal destination branch. 2130 BasicBlock *NormalDestBB = II->getNormalDest(); 2131 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2132 BranchInst::Create(NormalDestBB, II); 2133 UnwindDestBB->removePredecessor(II->getParent()); 2134 II->eraseFromParent(); 2135 if (DTU) 2136 DTU->applyUpdatesPermissive( 2137 {{DominatorTree::Delete, BB, UnwindDestBB}}); 2138 } else 2139 changeToCall(II, DTU); 2140 Changed = true; 2141 } 2142 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2143 // Remove catchpads which cannot be reached. 2144 struct CatchPadDenseMapInfo { 2145 static CatchPadInst *getEmptyKey() { 2146 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2147 } 2148 2149 static CatchPadInst *getTombstoneKey() { 2150 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2151 } 2152 2153 static unsigned getHashValue(CatchPadInst *CatchPad) { 2154 return static_cast<unsigned>(hash_combine_range( 2155 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2156 } 2157 2158 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2159 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2160 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2161 return LHS == RHS; 2162 return LHS->isIdenticalTo(RHS); 2163 } 2164 }; 2165 2166 // Set of unique CatchPads. 2167 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2168 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2169 HandlerSet; 2170 detail::DenseSetEmpty Empty; 2171 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2172 E = CatchSwitch->handler_end(); 2173 I != E; ++I) { 2174 BasicBlock *HandlerBB = *I; 2175 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2176 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2177 CatchSwitch->removeHandler(I); 2178 --I; 2179 --E; 2180 Changed = true; 2181 } 2182 } 2183 } 2184 2185 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2186 for (BasicBlock *Successor : successors(BB)) 2187 if (Reachable.insert(Successor).second) 2188 Worklist.push_back(Successor); 2189 } while (!Worklist.empty()); 2190 return Changed; 2191 } 2192 2193 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2194 Instruction *TI = BB->getTerminator(); 2195 2196 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2197 changeToCall(II, DTU); 2198 return; 2199 } 2200 2201 Instruction *NewTI; 2202 BasicBlock *UnwindDest; 2203 2204 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2205 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2206 UnwindDest = CRI->getUnwindDest(); 2207 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2208 auto *NewCatchSwitch = CatchSwitchInst::Create( 2209 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2210 CatchSwitch->getName(), CatchSwitch); 2211 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2212 NewCatchSwitch->addHandler(PadBB); 2213 2214 NewTI = NewCatchSwitch; 2215 UnwindDest = CatchSwitch->getUnwindDest(); 2216 } else { 2217 llvm_unreachable("Could not find unwind successor"); 2218 } 2219 2220 NewTI->takeName(TI); 2221 NewTI->setDebugLoc(TI->getDebugLoc()); 2222 UnwindDest->removePredecessor(BB); 2223 TI->replaceAllUsesWith(NewTI); 2224 TI->eraseFromParent(); 2225 if (DTU) 2226 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}}); 2227 } 2228 2229 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2230 /// if they are in a dead cycle. Return true if a change was made, false 2231 /// otherwise. 2232 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2233 MemorySSAUpdater *MSSAU) { 2234 SmallPtrSet<BasicBlock *, 16> Reachable; 2235 bool Changed = markAliveBlocks(F, Reachable, DTU); 2236 2237 // If there are unreachable blocks in the CFG... 2238 if (Reachable.size() == F.size()) 2239 return Changed; 2240 2241 assert(Reachable.size() < F.size()); 2242 NumRemoved += F.size() - Reachable.size(); 2243 2244 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 2245 for (BasicBlock &BB : F) { 2246 // Skip reachable basic blocks 2247 if (Reachable.find(&BB) != Reachable.end()) 2248 continue; 2249 DeadBlockSet.insert(&BB); 2250 } 2251 2252 if (MSSAU) 2253 MSSAU->removeBlocks(DeadBlockSet); 2254 2255 // Loop over all of the basic blocks that are not reachable, dropping all of 2256 // their internal references. Update DTU if available. 2257 std::vector<DominatorTree::UpdateType> Updates; 2258 for (auto *BB : DeadBlockSet) { 2259 for (BasicBlock *Successor : successors(BB)) { 2260 if (!DeadBlockSet.count(Successor)) 2261 Successor->removePredecessor(BB); 2262 if (DTU) 2263 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2264 } 2265 BB->dropAllReferences(); 2266 if (DTU) { 2267 Instruction *TI = BB->getTerminator(); 2268 assert(TI && "Basic block should have a terminator"); 2269 // Terminators like invoke can have users. We have to replace their users, 2270 // before removing them. 2271 if (!TI->use_empty()) 2272 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 2273 TI->eraseFromParent(); 2274 new UnreachableInst(BB->getContext(), BB); 2275 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 2276 "applying corresponding DTU updates."); 2277 } 2278 } 2279 2280 if (DTU) { 2281 DTU->applyUpdatesPermissive(Updates); 2282 bool Deleted = false; 2283 for (auto *BB : DeadBlockSet) { 2284 if (DTU->isBBPendingDeletion(BB)) 2285 --NumRemoved; 2286 else 2287 Deleted = true; 2288 DTU->deleteBB(BB); 2289 } 2290 if (!Deleted) 2291 return false; 2292 } else { 2293 for (auto *BB : DeadBlockSet) 2294 BB->eraseFromParent(); 2295 } 2296 2297 return true; 2298 } 2299 2300 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2301 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2302 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2303 K->dropUnknownNonDebugMetadata(KnownIDs); 2304 K->getAllMetadataOtherThanDebugLoc(Metadata); 2305 for (const auto &MD : Metadata) { 2306 unsigned Kind = MD.first; 2307 MDNode *JMD = J->getMetadata(Kind); 2308 MDNode *KMD = MD.second; 2309 2310 switch (Kind) { 2311 default: 2312 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2313 break; 2314 case LLVMContext::MD_dbg: 2315 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2316 case LLVMContext::MD_tbaa: 2317 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2318 break; 2319 case LLVMContext::MD_alias_scope: 2320 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2321 break; 2322 case LLVMContext::MD_noalias: 2323 case LLVMContext::MD_mem_parallel_loop_access: 2324 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2325 break; 2326 case LLVMContext::MD_access_group: 2327 K->setMetadata(LLVMContext::MD_access_group, 2328 intersectAccessGroups(K, J)); 2329 break; 2330 case LLVMContext::MD_range: 2331 2332 // If K does move, use most generic range. Otherwise keep the range of 2333 // K. 2334 if (DoesKMove) 2335 // FIXME: If K does move, we should drop the range info and nonnull. 2336 // Currently this function is used with DoesKMove in passes 2337 // doing hoisting/sinking and the current behavior of using the 2338 // most generic range is correct in those cases. 2339 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2340 break; 2341 case LLVMContext::MD_fpmath: 2342 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2343 break; 2344 case LLVMContext::MD_invariant_load: 2345 // Only set the !invariant.load if it is present in both instructions. 2346 K->setMetadata(Kind, JMD); 2347 break; 2348 case LLVMContext::MD_nonnull: 2349 // If K does move, keep nonull if it is present in both instructions. 2350 if (DoesKMove) 2351 K->setMetadata(Kind, JMD); 2352 break; 2353 case LLVMContext::MD_invariant_group: 2354 // Preserve !invariant.group in K. 2355 break; 2356 case LLVMContext::MD_align: 2357 K->setMetadata(Kind, 2358 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2359 break; 2360 case LLVMContext::MD_dereferenceable: 2361 case LLVMContext::MD_dereferenceable_or_null: 2362 K->setMetadata(Kind, 2363 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2364 break; 2365 case LLVMContext::MD_preserve_access_index: 2366 // Preserve !preserve.access.index in K. 2367 break; 2368 } 2369 } 2370 // Set !invariant.group from J if J has it. If both instructions have it 2371 // then we will just pick it from J - even when they are different. 2372 // Also make sure that K is load or store - f.e. combining bitcast with load 2373 // could produce bitcast with invariant.group metadata, which is invalid. 2374 // FIXME: we should try to preserve both invariant.group md if they are 2375 // different, but right now instruction can only have one invariant.group. 2376 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2377 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2378 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2379 } 2380 2381 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2382 bool KDominatesJ) { 2383 unsigned KnownIDs[] = { 2384 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2385 LLVMContext::MD_noalias, LLVMContext::MD_range, 2386 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2387 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2388 LLVMContext::MD_dereferenceable, 2389 LLVMContext::MD_dereferenceable_or_null, 2390 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2391 combineMetadata(K, J, KnownIDs, KDominatesJ); 2392 } 2393 2394 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2395 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2396 Source.getAllMetadata(MD); 2397 MDBuilder MDB(Dest.getContext()); 2398 Type *NewType = Dest.getType(); 2399 const DataLayout &DL = Source.getModule()->getDataLayout(); 2400 for (const auto &MDPair : MD) { 2401 unsigned ID = MDPair.first; 2402 MDNode *N = MDPair.second; 2403 // Note, essentially every kind of metadata should be preserved here! This 2404 // routine is supposed to clone a load instruction changing *only its type*. 2405 // The only metadata it makes sense to drop is metadata which is invalidated 2406 // when the pointer type changes. This should essentially never be the case 2407 // in LLVM, but we explicitly switch over only known metadata to be 2408 // conservatively correct. If you are adding metadata to LLVM which pertains 2409 // to loads, you almost certainly want to add it here. 2410 switch (ID) { 2411 case LLVMContext::MD_dbg: 2412 case LLVMContext::MD_tbaa: 2413 case LLVMContext::MD_prof: 2414 case LLVMContext::MD_fpmath: 2415 case LLVMContext::MD_tbaa_struct: 2416 case LLVMContext::MD_invariant_load: 2417 case LLVMContext::MD_alias_scope: 2418 case LLVMContext::MD_noalias: 2419 case LLVMContext::MD_nontemporal: 2420 case LLVMContext::MD_mem_parallel_loop_access: 2421 case LLVMContext::MD_access_group: 2422 // All of these directly apply. 2423 Dest.setMetadata(ID, N); 2424 break; 2425 2426 case LLVMContext::MD_nonnull: 2427 copyNonnullMetadata(Source, N, Dest); 2428 break; 2429 2430 case LLVMContext::MD_align: 2431 case LLVMContext::MD_dereferenceable: 2432 case LLVMContext::MD_dereferenceable_or_null: 2433 // These only directly apply if the new type is also a pointer. 2434 if (NewType->isPointerTy()) 2435 Dest.setMetadata(ID, N); 2436 break; 2437 2438 case LLVMContext::MD_range: 2439 copyRangeMetadata(DL, Source, N, Dest); 2440 break; 2441 } 2442 } 2443 } 2444 2445 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2446 auto *ReplInst = dyn_cast<Instruction>(Repl); 2447 if (!ReplInst) 2448 return; 2449 2450 // Patch the replacement so that it is not more restrictive than the value 2451 // being replaced. 2452 // Note that if 'I' is a load being replaced by some operation, 2453 // for example, by an arithmetic operation, then andIRFlags() 2454 // would just erase all math flags from the original arithmetic 2455 // operation, which is clearly not wanted and not needed. 2456 if (!isa<LoadInst>(I)) 2457 ReplInst->andIRFlags(I); 2458 2459 // FIXME: If both the original and replacement value are part of the 2460 // same control-flow region (meaning that the execution of one 2461 // guarantees the execution of the other), then we can combine the 2462 // noalias scopes here and do better than the general conservative 2463 // answer used in combineMetadata(). 2464 2465 // In general, GVN unifies expressions over different control-flow 2466 // regions, and so we need a conservative combination of the noalias 2467 // scopes. 2468 static const unsigned KnownIDs[] = { 2469 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2470 LLVMContext::MD_noalias, LLVMContext::MD_range, 2471 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2472 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2473 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2474 combineMetadata(ReplInst, I, KnownIDs, false); 2475 } 2476 2477 template <typename RootType, typename DominatesFn> 2478 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2479 const RootType &Root, 2480 const DominatesFn &Dominates) { 2481 assert(From->getType() == To->getType()); 2482 2483 unsigned Count = 0; 2484 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2485 UI != UE;) { 2486 Use &U = *UI++; 2487 if (!Dominates(Root, U)) 2488 continue; 2489 U.set(To); 2490 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2491 << "' as " << *To << " in " << *U << "\n"); 2492 ++Count; 2493 } 2494 return Count; 2495 } 2496 2497 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2498 assert(From->getType() == To->getType()); 2499 auto *BB = From->getParent(); 2500 unsigned Count = 0; 2501 2502 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2503 UI != UE;) { 2504 Use &U = *UI++; 2505 auto *I = cast<Instruction>(U.getUser()); 2506 if (I->getParent() == BB) 2507 continue; 2508 U.set(To); 2509 ++Count; 2510 } 2511 return Count; 2512 } 2513 2514 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2515 DominatorTree &DT, 2516 const BasicBlockEdge &Root) { 2517 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2518 return DT.dominates(Root, U); 2519 }; 2520 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2521 } 2522 2523 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2524 DominatorTree &DT, 2525 const BasicBlock *BB) { 2526 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2527 auto *I = cast<Instruction>(U.getUser())->getParent(); 2528 return DT.properlyDominates(BB, I); 2529 }; 2530 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2531 } 2532 2533 bool llvm::callsGCLeafFunction(const CallBase *Call, 2534 const TargetLibraryInfo &TLI) { 2535 // Check if the function is specifically marked as a gc leaf function. 2536 if (Call->hasFnAttr("gc-leaf-function")) 2537 return true; 2538 if (const Function *F = Call->getCalledFunction()) { 2539 if (F->hasFnAttribute("gc-leaf-function")) 2540 return true; 2541 2542 if (auto IID = F->getIntrinsicID()) 2543 // Most LLVM intrinsics do not take safepoints. 2544 return IID != Intrinsic::experimental_gc_statepoint && 2545 IID != Intrinsic::experimental_deoptimize; 2546 } 2547 2548 // Lib calls can be materialized by some passes, and won't be 2549 // marked as 'gc-leaf-function.' All available Libcalls are 2550 // GC-leaf. 2551 LibFunc LF; 2552 if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { 2553 return TLI.has(LF); 2554 } 2555 2556 return false; 2557 } 2558 2559 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2560 LoadInst &NewLI) { 2561 auto *NewTy = NewLI.getType(); 2562 2563 // This only directly applies if the new type is also a pointer. 2564 if (NewTy->isPointerTy()) { 2565 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2566 return; 2567 } 2568 2569 // The only other translation we can do is to integral loads with !range 2570 // metadata. 2571 if (!NewTy->isIntegerTy()) 2572 return; 2573 2574 MDBuilder MDB(NewLI.getContext()); 2575 const Value *Ptr = OldLI.getPointerOperand(); 2576 auto *ITy = cast<IntegerType>(NewTy); 2577 auto *NullInt = ConstantExpr::getPtrToInt( 2578 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2579 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2580 NewLI.setMetadata(LLVMContext::MD_range, 2581 MDB.createRange(NonNullInt, NullInt)); 2582 } 2583 2584 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2585 MDNode *N, LoadInst &NewLI) { 2586 auto *NewTy = NewLI.getType(); 2587 2588 // Give up unless it is converted to a pointer where there is a single very 2589 // valuable mapping we can do reliably. 2590 // FIXME: It would be nice to propagate this in more ways, but the type 2591 // conversions make it hard. 2592 if (!NewTy->isPointerTy()) 2593 return; 2594 2595 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2596 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2597 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2598 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2599 } 2600 } 2601 2602 void llvm::dropDebugUsers(Instruction &I) { 2603 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2604 findDbgUsers(DbgUsers, &I); 2605 for (auto *DII : DbgUsers) 2606 DII->eraseFromParent(); 2607 } 2608 2609 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2610 BasicBlock *BB) { 2611 // Since we are moving the instructions out of its basic block, we do not 2612 // retain their original debug locations (DILocations) and debug intrinsic 2613 // instructions. 2614 // 2615 // Doing so would degrade the debugging experience and adversely affect the 2616 // accuracy of profiling information. 2617 // 2618 // Currently, when hoisting the instructions, we take the following actions: 2619 // - Remove their debug intrinsic instructions. 2620 // - Set their debug locations to the values from the insertion point. 2621 // 2622 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2623 // need to be deleted, is because there will not be any instructions with a 2624 // DILocation in either branch left after performing the transformation. We 2625 // can only insert a dbg.value after the two branches are joined again. 2626 // 2627 // See PR38762, PR39243 for more details. 2628 // 2629 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2630 // encode predicated DIExpressions that yield different results on different 2631 // code paths. 2632 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2633 Instruction *I = &*II; 2634 I->dropUnknownNonDebugMetadata(); 2635 if (I->isUsedByMetadata()) 2636 dropDebugUsers(*I); 2637 if (isa<DbgInfoIntrinsic>(I)) { 2638 // Remove DbgInfo Intrinsics. 2639 II = I->eraseFromParent(); 2640 continue; 2641 } 2642 I->setDebugLoc(InsertPt->getDebugLoc()); 2643 ++II; 2644 } 2645 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2646 BB->begin(), 2647 BB->getTerminator()->getIterator()); 2648 } 2649 2650 namespace { 2651 2652 /// A potential constituent of a bitreverse or bswap expression. See 2653 /// collectBitParts for a fuller explanation. 2654 struct BitPart { 2655 BitPart(Value *P, unsigned BW) : Provider(P) { 2656 Provenance.resize(BW); 2657 } 2658 2659 /// The Value that this is a bitreverse/bswap of. 2660 Value *Provider; 2661 2662 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2663 /// in Provider becomes bit B in the result of this expression. 2664 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2665 2666 enum { Unset = -1 }; 2667 }; 2668 2669 } // end anonymous namespace 2670 2671 /// Analyze the specified subexpression and see if it is capable of providing 2672 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2673 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2674 /// the output of the expression came from a corresponding bit in some other 2675 /// value. This function is recursive, and the end result is a mapping of 2676 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2677 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2678 /// 2679 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2680 /// that the expression deposits the low byte of %X into the high byte of the 2681 /// result and that all other bits are zero. This expression is accepted and a 2682 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2683 /// [0-7]. 2684 /// 2685 /// To avoid revisiting values, the BitPart results are memoized into the 2686 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2687 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2688 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2689 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2690 /// type instead to provide the same functionality. 2691 /// 2692 /// Because we pass around references into \c BPS, we must use a container that 2693 /// does not invalidate internal references (std::map instead of DenseMap). 2694 static const Optional<BitPart> & 2695 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2696 std::map<Value *, Optional<BitPart>> &BPS, int Depth) { 2697 auto I = BPS.find(V); 2698 if (I != BPS.end()) 2699 return I->second; 2700 2701 auto &Result = BPS[V] = None; 2702 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2703 2704 // Prevent stack overflow by limiting the recursion depth 2705 if (Depth == BitPartRecursionMaxDepth) { 2706 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2707 return Result; 2708 } 2709 2710 if (Instruction *I = dyn_cast<Instruction>(V)) { 2711 // If this is an or instruction, it may be an inner node of the bswap. 2712 if (I->getOpcode() == Instruction::Or) { 2713 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2714 MatchBitReversals, BPS, Depth + 1); 2715 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2716 MatchBitReversals, BPS, Depth + 1); 2717 if (!A || !B) 2718 return Result; 2719 2720 // Try and merge the two together. 2721 if (!A->Provider || A->Provider != B->Provider) 2722 return Result; 2723 2724 Result = BitPart(A->Provider, BitWidth); 2725 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2726 if (A->Provenance[i] != BitPart::Unset && 2727 B->Provenance[i] != BitPart::Unset && 2728 A->Provenance[i] != B->Provenance[i]) 2729 return Result = None; 2730 2731 if (A->Provenance[i] == BitPart::Unset) 2732 Result->Provenance[i] = B->Provenance[i]; 2733 else 2734 Result->Provenance[i] = A->Provenance[i]; 2735 } 2736 2737 return Result; 2738 } 2739 2740 // If this is a logical shift by a constant, recurse then shift the result. 2741 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2742 unsigned BitShift = 2743 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2744 // Ensure the shift amount is defined. 2745 if (BitShift > BitWidth) 2746 return Result; 2747 2748 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2749 MatchBitReversals, BPS, Depth + 1); 2750 if (!Res) 2751 return Result; 2752 Result = Res; 2753 2754 // Perform the "shift" on BitProvenance. 2755 auto &P = Result->Provenance; 2756 if (I->getOpcode() == Instruction::Shl) { 2757 P.erase(std::prev(P.end(), BitShift), P.end()); 2758 P.insert(P.begin(), BitShift, BitPart::Unset); 2759 } else { 2760 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2761 P.insert(P.end(), BitShift, BitPart::Unset); 2762 } 2763 2764 return Result; 2765 } 2766 2767 // If this is a logical 'and' with a mask that clears bits, recurse then 2768 // unset the appropriate bits. 2769 if (I->getOpcode() == Instruction::And && 2770 isa<ConstantInt>(I->getOperand(1))) { 2771 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2772 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2773 2774 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2775 // early exit. 2776 unsigned NumMaskedBits = AndMask.countPopulation(); 2777 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2778 return Result; 2779 2780 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2781 MatchBitReversals, BPS, Depth + 1); 2782 if (!Res) 2783 return Result; 2784 Result = Res; 2785 2786 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2787 // If the AndMask is zero for this bit, clear the bit. 2788 if ((AndMask & Bit) == 0) 2789 Result->Provenance[i] = BitPart::Unset; 2790 return Result; 2791 } 2792 2793 // If this is a zext instruction zero extend the result. 2794 if (I->getOpcode() == Instruction::ZExt) { 2795 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2796 MatchBitReversals, BPS, Depth + 1); 2797 if (!Res) 2798 return Result; 2799 2800 Result = BitPart(Res->Provider, BitWidth); 2801 auto NarrowBitWidth = 2802 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2803 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2804 Result->Provenance[i] = Res->Provenance[i]; 2805 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2806 Result->Provenance[i] = BitPart::Unset; 2807 return Result; 2808 } 2809 } 2810 2811 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2812 // the input value to the bswap/bitreverse. 2813 Result = BitPart(V, BitWidth); 2814 for (unsigned i = 0; i < BitWidth; ++i) 2815 Result->Provenance[i] = i; 2816 return Result; 2817 } 2818 2819 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2820 unsigned BitWidth) { 2821 if (From % 8 != To % 8) 2822 return false; 2823 // Convert from bit indices to byte indices and check for a byte reversal. 2824 From >>= 3; 2825 To >>= 3; 2826 BitWidth >>= 3; 2827 return From == BitWidth - To - 1; 2828 } 2829 2830 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2831 unsigned BitWidth) { 2832 return From == BitWidth - To - 1; 2833 } 2834 2835 bool llvm::recognizeBSwapOrBitReverseIdiom( 2836 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2837 SmallVectorImpl<Instruction *> &InsertedInsts) { 2838 if (Operator::getOpcode(I) != Instruction::Or) 2839 return false; 2840 if (!MatchBSwaps && !MatchBitReversals) 2841 return false; 2842 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2843 if (!ITy || ITy->getBitWidth() > 128) 2844 return false; // Can't do vectors or integers > 128 bits. 2845 unsigned BW = ITy->getBitWidth(); 2846 2847 unsigned DemandedBW = BW; 2848 IntegerType *DemandedTy = ITy; 2849 if (I->hasOneUse()) { 2850 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2851 DemandedTy = cast<IntegerType>(Trunc->getType()); 2852 DemandedBW = DemandedTy->getBitWidth(); 2853 } 2854 } 2855 2856 // Try to find all the pieces corresponding to the bswap. 2857 std::map<Value *, Optional<BitPart>> BPS; 2858 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0); 2859 if (!Res) 2860 return false; 2861 auto &BitProvenance = Res->Provenance; 2862 2863 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2864 // only byteswap values with an even number of bytes. 2865 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2866 for (unsigned i = 0; i < DemandedBW; ++i) { 2867 OKForBSwap &= 2868 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2869 OKForBitReverse &= 2870 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2871 } 2872 2873 Intrinsic::ID Intrin; 2874 if (OKForBSwap && MatchBSwaps) 2875 Intrin = Intrinsic::bswap; 2876 else if (OKForBitReverse && MatchBitReversals) 2877 Intrin = Intrinsic::bitreverse; 2878 else 2879 return false; 2880 2881 if (ITy != DemandedTy) { 2882 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2883 Value *Provider = Res->Provider; 2884 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2885 // We may need to truncate the provider. 2886 if (DemandedTy != ProviderTy) { 2887 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2888 "trunc", I); 2889 InsertedInsts.push_back(Trunc); 2890 Provider = Trunc; 2891 } 2892 auto *CI = CallInst::Create(F, Provider, "rev", I); 2893 InsertedInsts.push_back(CI); 2894 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2895 InsertedInsts.push_back(ExtInst); 2896 return true; 2897 } 2898 2899 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2900 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2901 return true; 2902 } 2903 2904 // CodeGen has special handling for some string functions that may replace 2905 // them with target-specific intrinsics. Since that'd skip our interceptors 2906 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2907 // we mark affected calls as NoBuiltin, which will disable optimization 2908 // in CodeGen. 2909 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2910 CallInst *CI, const TargetLibraryInfo *TLI) { 2911 Function *F = CI->getCalledFunction(); 2912 LibFunc Func; 2913 if (F && !F->hasLocalLinkage() && F->hasName() && 2914 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2915 !F->doesNotAccessMemory()) 2916 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2917 } 2918 2919 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2920 // We can't have a PHI with a metadata type. 2921 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2922 return false; 2923 2924 // Early exit. 2925 if (!isa<Constant>(I->getOperand(OpIdx))) 2926 return true; 2927 2928 switch (I->getOpcode()) { 2929 default: 2930 return true; 2931 case Instruction::Call: 2932 case Instruction::Invoke: 2933 // Can't handle inline asm. Skip it. 2934 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2935 return false; 2936 // Many arithmetic intrinsics have no issue taking a 2937 // variable, however it's hard to distingish these from 2938 // specials such as @llvm.frameaddress that require a constant. 2939 if (isa<IntrinsicInst>(I)) 2940 return false; 2941 2942 // Constant bundle operands may need to retain their constant-ness for 2943 // correctness. 2944 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2945 return false; 2946 return true; 2947 case Instruction::ShuffleVector: 2948 // Shufflevector masks are constant. 2949 return OpIdx != 2; 2950 case Instruction::Switch: 2951 case Instruction::ExtractValue: 2952 // All operands apart from the first are constant. 2953 return OpIdx == 0; 2954 case Instruction::InsertValue: 2955 // All operands apart from the first and the second are constant. 2956 return OpIdx < 2; 2957 case Instruction::Alloca: 2958 // Static allocas (constant size in the entry block) are handled by 2959 // prologue/epilogue insertion so they're free anyway. We definitely don't 2960 // want to make them non-constant. 2961 return !cast<AllocaInst>(I)->isStaticAlloca(); 2962 case Instruction::GetElementPtr: 2963 if (OpIdx == 0) 2964 return true; 2965 gep_type_iterator It = gep_type_begin(I); 2966 for (auto E = std::next(It, OpIdx); It != E; ++It) 2967 if (It.isStruct()) 2968 return false; 2969 return true; 2970 } 2971 } 2972 2973 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>; 2974 AllocaInst *llvm::findAllocaForValue(Value *V, 2975 AllocaForValueMapTy &AllocaForValue) { 2976 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2977 return AI; 2978 // See if we've already calculated (or started to calculate) alloca for a 2979 // given value. 2980 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 2981 if (I != AllocaForValue.end()) 2982 return I->second; 2983 // Store 0 while we're calculating alloca for value V to avoid 2984 // infinite recursion if the value references itself. 2985 AllocaForValue[V] = nullptr; 2986 AllocaInst *Res = nullptr; 2987 if (CastInst *CI = dyn_cast<CastInst>(V)) 2988 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 2989 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2990 for (Value *IncValue : PN->incoming_values()) { 2991 // Allow self-referencing phi-nodes. 2992 if (IncValue == PN) 2993 continue; 2994 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 2995 // AI for incoming values should exist and should all be equal. 2996 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 2997 return nullptr; 2998 Res = IncValueAI; 2999 } 3000 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 3001 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 3002 } else { 3003 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: " 3004 << *V << "\n"); 3005 } 3006 if (Res) 3007 AllocaForValue[V] = Res; 3008 return Res; 3009 } 3010