1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <climits>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <utility>
86 
87 using namespace llvm;
88 using namespace llvm::PatternMatch;
89 
90 #define DEBUG_TYPE "local"
91 
92 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
93 
94 // Max recursion depth for collectBitParts used when detecting bswap and
95 // bitreverse idioms
96 static const unsigned BitPartRecursionMaxDepth = 64;
97 
98 //===----------------------------------------------------------------------===//
99 //  Local constant propagation.
100 //
101 
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination.  This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
110                                   const TargetLibraryInfo *TLI,
111                                   DomTreeUpdater *DTU) {
112   Instruction *T = BB->getTerminator();
113   IRBuilder<> Builder(T);
114 
115   // Branch - See if we are conditional jumping on constant
116   if (auto *BI = dyn_cast<BranchInst>(T)) {
117     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
118     BasicBlock *Dest1 = BI->getSuccessor(0);
119     BasicBlock *Dest2 = BI->getSuccessor(1);
120 
121     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
122       // Are we branching on constant?
123       // YES.  Change to unconditional branch...
124       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
125       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
126 
127       // Let the basic block know that we are letting go of it.  Based on this,
128       // it will adjust it's PHI nodes.
129       OldDest->removePredecessor(BB);
130 
131       // Replace the conditional branch with an unconditional one.
132       Builder.CreateBr(Destination);
133       BI->eraseFromParent();
134       if (DTU)
135         DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, OldDest}});
136       return true;
137     }
138 
139     if (Dest2 == Dest1) {       // Conditional branch to same location?
140       // This branch matches something like this:
141       //     br bool %cond, label %Dest, label %Dest
142       // and changes it into:  br label %Dest
143 
144       // Let the basic block know that we are letting go of one copy of it.
145       assert(BI->getParent() && "Terminator not inserted in block!");
146       Dest1->removePredecessor(BI->getParent());
147 
148       // Replace the conditional branch with an unconditional one.
149       Builder.CreateBr(Dest1);
150       Value *Cond = BI->getCondition();
151       BI->eraseFromParent();
152       if (DeleteDeadConditions)
153         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
154       return true;
155     }
156     return false;
157   }
158 
159   if (auto *SI = dyn_cast<SwitchInst>(T)) {
160     // If we are switching on a constant, we can convert the switch to an
161     // unconditional branch.
162     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
163     BasicBlock *DefaultDest = SI->getDefaultDest();
164     BasicBlock *TheOnlyDest = DefaultDest;
165 
166     // If the default is unreachable, ignore it when searching for TheOnlyDest.
167     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
168         SI->getNumCases() > 0) {
169       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
170     }
171 
172     // Figure out which case it goes to.
173     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
174       // Found case matching a constant operand?
175       if (i->getCaseValue() == CI) {
176         TheOnlyDest = i->getCaseSuccessor();
177         break;
178       }
179 
180       // Check to see if this branch is going to the same place as the default
181       // dest.  If so, eliminate it as an explicit compare.
182       if (i->getCaseSuccessor() == DefaultDest) {
183         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
184         unsigned NCases = SI->getNumCases();
185         // Fold the case metadata into the default if there will be any branches
186         // left, unless the metadata doesn't match the switch.
187         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
188           // Collect branch weights into a vector.
189           SmallVector<uint32_t, 8> Weights;
190           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
191                ++MD_i) {
192             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
193             Weights.push_back(CI->getValue().getZExtValue());
194           }
195           // Merge weight of this case to the default weight.
196           unsigned idx = i->getCaseIndex();
197           Weights[0] += Weights[idx+1];
198           // Remove weight for this case.
199           std::swap(Weights[idx+1], Weights.back());
200           Weights.pop_back();
201           SI->setMetadata(LLVMContext::MD_prof,
202                           MDBuilder(BB->getContext()).
203                           createBranchWeights(Weights));
204         }
205         // Remove this entry.
206         BasicBlock *ParentBB = SI->getParent();
207         DefaultDest->removePredecessor(ParentBB);
208         i = SI->removeCase(i);
209         e = SI->case_end();
210         if (DTU)
211           DTU->applyUpdatesPermissive(
212               {{DominatorTree::Delete, ParentBB, DefaultDest}});
213         continue;
214       }
215 
216       // Otherwise, check to see if the switch only branches to one destination.
217       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
218       // destinations.
219       if (i->getCaseSuccessor() != TheOnlyDest)
220         TheOnlyDest = nullptr;
221 
222       // Increment this iterator as we haven't removed the case.
223       ++i;
224     }
225 
226     if (CI && !TheOnlyDest) {
227       // Branching on a constant, but not any of the cases, go to the default
228       // successor.
229       TheOnlyDest = SI->getDefaultDest();
230     }
231 
232     // If we found a single destination that we can fold the switch into, do so
233     // now.
234     if (TheOnlyDest) {
235       // Insert the new branch.
236       Builder.CreateBr(TheOnlyDest);
237       BasicBlock *BB = SI->getParent();
238       std::vector <DominatorTree::UpdateType> Updates;
239       if (DTU)
240         Updates.reserve(SI->getNumSuccessors() - 1);
241 
242       // Remove entries from PHI nodes which we no longer branch to...
243       for (BasicBlock *Succ : successors(SI)) {
244         // Found case matching a constant operand?
245         if (Succ == TheOnlyDest) {
246           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
247         } else {
248           Succ->removePredecessor(BB);
249           if (DTU)
250             Updates.push_back({DominatorTree::Delete, BB, Succ});
251         }
252       }
253 
254       // Delete the old switch.
255       Value *Cond = SI->getCondition();
256       SI->eraseFromParent();
257       if (DeleteDeadConditions)
258         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
259       if (DTU)
260         DTU->applyUpdatesPermissive(Updates);
261       return true;
262     }
263 
264     if (SI->getNumCases() == 1) {
265       // Otherwise, we can fold this switch into a conditional branch
266       // instruction if it has only one non-default destination.
267       auto FirstCase = *SI->case_begin();
268       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
269           FirstCase.getCaseValue(), "cond");
270 
271       // Insert the new branch.
272       BranchInst *NewBr = Builder.CreateCondBr(Cond,
273                                                FirstCase.getCaseSuccessor(),
274                                                SI->getDefaultDest());
275       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
276       if (MD && MD->getNumOperands() == 3) {
277         ConstantInt *SICase =
278             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
279         ConstantInt *SIDef =
280             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
281         assert(SICase && SIDef);
282         // The TrueWeight should be the weight for the single case of SI.
283         NewBr->setMetadata(LLVMContext::MD_prof,
284                         MDBuilder(BB->getContext()).
285                         createBranchWeights(SICase->getValue().getZExtValue(),
286                                             SIDef->getValue().getZExtValue()));
287       }
288 
289       // Update make.implicit metadata to the newly-created conditional branch.
290       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
291       if (MakeImplicitMD)
292         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
293 
294       // Delete the old switch.
295       SI->eraseFromParent();
296       return true;
297     }
298     return false;
299   }
300 
301   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
302     // indirectbr blockaddress(@F, @BB) -> br label @BB
303     if (auto *BA =
304           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
305       BasicBlock *TheOnlyDest = BA->getBasicBlock();
306       std::vector <DominatorTree::UpdateType> Updates;
307       if (DTU)
308         Updates.reserve(IBI->getNumDestinations() - 1);
309 
310       // Insert the new branch.
311       Builder.CreateBr(TheOnlyDest);
312 
313       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
314         if (IBI->getDestination(i) == TheOnlyDest) {
315           TheOnlyDest = nullptr;
316         } else {
317           BasicBlock *ParentBB = IBI->getParent();
318           BasicBlock *DestBB = IBI->getDestination(i);
319           DestBB->removePredecessor(ParentBB);
320           if (DTU)
321             Updates.push_back({DominatorTree::Delete, ParentBB, DestBB});
322         }
323       }
324       Value *Address = IBI->getAddress();
325       IBI->eraseFromParent();
326       if (DeleteDeadConditions)
327         // Delete pointer cast instructions.
328         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
329 
330       // Also zap the blockaddress constant if there are no users remaining,
331       // otherwise the destination is still marked as having its address taken.
332       if (BA->use_empty())
333         BA->destroyConstant();
334 
335       // If we didn't find our destination in the IBI successor list, then we
336       // have undefined behavior.  Replace the unconditional branch with an
337       // 'unreachable' instruction.
338       if (TheOnlyDest) {
339         BB->getTerminator()->eraseFromParent();
340         new UnreachableInst(BB->getContext(), BB);
341       }
342 
343       if (DTU)
344         DTU->applyUpdatesPermissive(Updates);
345       return true;
346     }
347   }
348 
349   return false;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 //  Local dead code elimination.
354 //
355 
356 /// isInstructionTriviallyDead - Return true if the result produced by the
357 /// instruction is not used, and the instruction has no side effects.
358 ///
359 bool llvm::isInstructionTriviallyDead(Instruction *I,
360                                       const TargetLibraryInfo *TLI) {
361   if (!I->use_empty())
362     return false;
363   return wouldInstructionBeTriviallyDead(I, TLI);
364 }
365 
366 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
367                                            const TargetLibraryInfo *TLI) {
368   if (I->isTerminator())
369     return false;
370 
371   // We don't want the landingpad-like instructions removed by anything this
372   // general.
373   if (I->isEHPad())
374     return false;
375 
376   // We don't want debug info removed by anything this general, unless
377   // debug info is empty.
378   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
379     if (DDI->getAddress())
380       return false;
381     return true;
382   }
383   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
384     if (DVI->getValue())
385       return false;
386     return true;
387   }
388   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
389     if (DLI->getLabel())
390       return false;
391     return true;
392   }
393 
394   if (!I->mayHaveSideEffects())
395     return true;
396 
397   // Special case intrinsics that "may have side effects" but can be deleted
398   // when dead.
399   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
400     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
401     if (II->getIntrinsicID() == Intrinsic::stacksave ||
402         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
403       return true;
404 
405     // Lifetime intrinsics are dead when their right-hand is undef.
406     if (II->isLifetimeStartOrEnd())
407       return isa<UndefValue>(II->getArgOperand(1));
408 
409     // Assumptions are dead if their condition is trivially true.  Guards on
410     // true are operationally no-ops.  In the future we can consider more
411     // sophisticated tradeoffs for guards considering potential for check
412     // widening, but for now we keep things simple.
413     if (II->getIntrinsicID() == Intrinsic::assume ||
414         II->getIntrinsicID() == Intrinsic::experimental_guard) {
415       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
416         return !Cond->isZero();
417 
418       return false;
419     }
420   }
421 
422   if (isAllocLikeFn(I, TLI))
423     return true;
424 
425   if (CallInst *CI = isFreeCall(I, TLI))
426     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
427       return C->isNullValue() || isa<UndefValue>(C);
428 
429   if (auto *Call = dyn_cast<CallBase>(I))
430     if (isMathLibCallNoop(Call, TLI))
431       return true;
432 
433   return false;
434 }
435 
436 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
437 /// trivially dead instruction, delete it.  If that makes any of its operands
438 /// trivially dead, delete them too, recursively.  Return true if any
439 /// instructions were deleted.
440 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
441     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) {
442   Instruction *I = dyn_cast<Instruction>(V);
443   if (!I || !isInstructionTriviallyDead(I, TLI))
444     return false;
445 
446   SmallVector<Instruction*, 16> DeadInsts;
447   DeadInsts.push_back(I);
448   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU);
449 
450   return true;
451 }
452 
453 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
454     SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI,
455     MemorySSAUpdater *MSSAU) {
456   // Process the dead instruction list until empty.
457   while (!DeadInsts.empty()) {
458     Instruction &I = *DeadInsts.pop_back_val();
459     assert(I.use_empty() && "Instructions with uses are not dead.");
460     assert(isInstructionTriviallyDead(&I, TLI) &&
461            "Live instruction found in dead worklist!");
462 
463     // Don't lose the debug info while deleting the instructions.
464     salvageDebugInfo(I);
465 
466     // Null out all of the instruction's operands to see if any operand becomes
467     // dead as we go.
468     for (Use &OpU : I.operands()) {
469       Value *OpV = OpU.get();
470       OpU.set(nullptr);
471 
472       if (!OpV->use_empty())
473         continue;
474 
475       // If the operand is an instruction that became dead as we nulled out the
476       // operand, and if it is 'trivially' dead, delete it in a future loop
477       // iteration.
478       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
479         if (isInstructionTriviallyDead(OpI, TLI))
480           DeadInsts.push_back(OpI);
481     }
482     if (MSSAU)
483       MSSAU->removeMemoryAccess(&I);
484 
485     I.eraseFromParent();
486   }
487 }
488 
489 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
490   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
491   findDbgUsers(DbgUsers, I);
492   for (auto *DII : DbgUsers) {
493     Value *Undef = UndefValue::get(I->getType());
494     DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
495                                             ValueAsMetadata::get(Undef)));
496   }
497   return !DbgUsers.empty();
498 }
499 
500 /// areAllUsesEqual - Check whether the uses of a value are all the same.
501 /// This is similar to Instruction::hasOneUse() except this will also return
502 /// true when there are no uses or multiple uses that all refer to the same
503 /// value.
504 static bool areAllUsesEqual(Instruction *I) {
505   Value::user_iterator UI = I->user_begin();
506   Value::user_iterator UE = I->user_end();
507   if (UI == UE)
508     return true;
509 
510   User *TheUse = *UI;
511   for (++UI; UI != UE; ++UI) {
512     if (*UI != TheUse)
513       return false;
514   }
515   return true;
516 }
517 
518 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
519 /// dead PHI node, due to being a def-use chain of single-use nodes that
520 /// either forms a cycle or is terminated by a trivially dead instruction,
521 /// delete it.  If that makes any of its operands trivially dead, delete them
522 /// too, recursively.  Return true if a change was made.
523 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
524                                         const TargetLibraryInfo *TLI,
525                                         llvm::MemorySSAUpdater *MSSAU) {
526   SmallPtrSet<Instruction*, 4> Visited;
527   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
528        I = cast<Instruction>(*I->user_begin())) {
529     if (I->use_empty())
530       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
531 
532     // If we find an instruction more than once, we're on a cycle that
533     // won't prove fruitful.
534     if (!Visited.insert(I).second) {
535       // Break the cycle and delete the instruction and its operands.
536       I->replaceAllUsesWith(UndefValue::get(I->getType()));
537       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
538       return true;
539     }
540   }
541   return false;
542 }
543 
544 static bool
545 simplifyAndDCEInstruction(Instruction *I,
546                           SmallSetVector<Instruction *, 16> &WorkList,
547                           const DataLayout &DL,
548                           const TargetLibraryInfo *TLI) {
549   if (isInstructionTriviallyDead(I, TLI)) {
550     salvageDebugInfo(*I);
551 
552     // Null out all of the instruction's operands to see if any operand becomes
553     // dead as we go.
554     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
555       Value *OpV = I->getOperand(i);
556       I->setOperand(i, nullptr);
557 
558       if (!OpV->use_empty() || I == OpV)
559         continue;
560 
561       // If the operand is an instruction that became dead as we nulled out the
562       // operand, and if it is 'trivially' dead, delete it in a future loop
563       // iteration.
564       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
565         if (isInstructionTriviallyDead(OpI, TLI))
566           WorkList.insert(OpI);
567     }
568 
569     I->eraseFromParent();
570 
571     return true;
572   }
573 
574   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
575     // Add the users to the worklist. CAREFUL: an instruction can use itself,
576     // in the case of a phi node.
577     for (User *U : I->users()) {
578       if (U != I) {
579         WorkList.insert(cast<Instruction>(U));
580       }
581     }
582 
583     // Replace the instruction with its simplified value.
584     bool Changed = false;
585     if (!I->use_empty()) {
586       I->replaceAllUsesWith(SimpleV);
587       Changed = true;
588     }
589     if (isInstructionTriviallyDead(I, TLI)) {
590       I->eraseFromParent();
591       Changed = true;
592     }
593     return Changed;
594   }
595   return false;
596 }
597 
598 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
599 /// simplify any instructions in it and recursively delete dead instructions.
600 ///
601 /// This returns true if it changed the code, note that it can delete
602 /// instructions in other blocks as well in this block.
603 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
604                                        const TargetLibraryInfo *TLI) {
605   bool MadeChange = false;
606   const DataLayout &DL = BB->getModule()->getDataLayout();
607 
608 #ifndef NDEBUG
609   // In debug builds, ensure that the terminator of the block is never replaced
610   // or deleted by these simplifications. The idea of simplification is that it
611   // cannot introduce new instructions, and there is no way to replace the
612   // terminator of a block without introducing a new instruction.
613   AssertingVH<Instruction> TerminatorVH(&BB->back());
614 #endif
615 
616   SmallSetVector<Instruction *, 16> WorkList;
617   // Iterate over the original function, only adding insts to the worklist
618   // if they actually need to be revisited. This avoids having to pre-init
619   // the worklist with the entire function's worth of instructions.
620   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
621        BI != E;) {
622     assert(!BI->isTerminator());
623     Instruction *I = &*BI;
624     ++BI;
625 
626     // We're visiting this instruction now, so make sure it's not in the
627     // worklist from an earlier visit.
628     if (!WorkList.count(I))
629       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
630   }
631 
632   while (!WorkList.empty()) {
633     Instruction *I = WorkList.pop_back_val();
634     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
635   }
636   return MadeChange;
637 }
638 
639 //===----------------------------------------------------------------------===//
640 //  Control Flow Graph Restructuring.
641 //
642 
643 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
644                                         DomTreeUpdater *DTU) {
645   // This only adjusts blocks with PHI nodes.
646   if (!isa<PHINode>(BB->begin()))
647     return;
648 
649   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
650   // them down.  This will leave us with single entry phi nodes and other phis
651   // that can be removed.
652   BB->removePredecessor(Pred, true);
653 
654   WeakTrackingVH PhiIt = &BB->front();
655   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
656     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
657     Value *OldPhiIt = PhiIt;
658 
659     if (!recursivelySimplifyInstruction(PN))
660       continue;
661 
662     // If recursive simplification ended up deleting the next PHI node we would
663     // iterate to, then our iterator is invalid, restart scanning from the top
664     // of the block.
665     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
666   }
667   if (DTU)
668     DTU->applyUpdatesPermissive({{DominatorTree::Delete, Pred, BB}});
669 }
670 
671 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
672                                        DomTreeUpdater *DTU) {
673 
674   // If BB has single-entry PHI nodes, fold them.
675   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
676     Value *NewVal = PN->getIncomingValue(0);
677     // Replace self referencing PHI with undef, it must be dead.
678     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
679     PN->replaceAllUsesWith(NewVal);
680     PN->eraseFromParent();
681   }
682 
683   BasicBlock *PredBB = DestBB->getSinglePredecessor();
684   assert(PredBB && "Block doesn't have a single predecessor!");
685 
686   bool ReplaceEntryBB = false;
687   if (PredBB == &DestBB->getParent()->getEntryBlock())
688     ReplaceEntryBB = true;
689 
690   // DTU updates: Collect all the edges that enter
691   // PredBB. These dominator edges will be redirected to DestBB.
692   SmallVector<DominatorTree::UpdateType, 32> Updates;
693 
694   if (DTU) {
695     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
696     for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) {
697       Updates.push_back({DominatorTree::Delete, *I, PredBB});
698       // This predecessor of PredBB may already have DestBB as a successor.
699       if (llvm::find(successors(*I), DestBB) == succ_end(*I))
700         Updates.push_back({DominatorTree::Insert, *I, DestBB});
701     }
702   }
703 
704   // Zap anything that took the address of DestBB.  Not doing this will give the
705   // address an invalid value.
706   if (DestBB->hasAddressTaken()) {
707     BlockAddress *BA = BlockAddress::get(DestBB);
708     Constant *Replacement =
709       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
710     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
711                                                      BA->getType()));
712     BA->destroyConstant();
713   }
714 
715   // Anything that branched to PredBB now branches to DestBB.
716   PredBB->replaceAllUsesWith(DestBB);
717 
718   // Splice all the instructions from PredBB to DestBB.
719   PredBB->getTerminator()->eraseFromParent();
720   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
721   new UnreachableInst(PredBB->getContext(), PredBB);
722 
723   // If the PredBB is the entry block of the function, move DestBB up to
724   // become the entry block after we erase PredBB.
725   if (ReplaceEntryBB)
726     DestBB->moveAfter(PredBB);
727 
728   if (DTU) {
729     assert(PredBB->getInstList().size() == 1 &&
730            isa<UnreachableInst>(PredBB->getTerminator()) &&
731            "The successor list of PredBB isn't empty before "
732            "applying corresponding DTU updates.");
733     DTU->applyUpdatesPermissive(Updates);
734     DTU->deleteBB(PredBB);
735     // Recalculation of DomTree is needed when updating a forward DomTree and
736     // the Entry BB is replaced.
737     if (ReplaceEntryBB && DTU->hasDomTree()) {
738       // The entry block was removed and there is no external interface for
739       // the dominator tree to be notified of this change. In this corner-case
740       // we recalculate the entire tree.
741       DTU->recalculate(*(DestBB->getParent()));
742     }
743   }
744 
745   else {
746     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
747   }
748 }
749 
750 /// Return true if we can choose one of these values to use in place of the
751 /// other. Note that we will always choose the non-undef value to keep.
752 static bool CanMergeValues(Value *First, Value *Second) {
753   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
754 }
755 
756 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
757 /// branch to Succ, into Succ.
758 ///
759 /// Assumption: Succ is the single successor for BB.
760 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
761   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
762 
763   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
764                     << Succ->getName() << "\n");
765   // Shortcut, if there is only a single predecessor it must be BB and merging
766   // is always safe
767   if (Succ->getSinglePredecessor()) return true;
768 
769   // Make a list of the predecessors of BB
770   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
771 
772   // Look at all the phi nodes in Succ, to see if they present a conflict when
773   // merging these blocks
774   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
775     PHINode *PN = cast<PHINode>(I);
776 
777     // If the incoming value from BB is again a PHINode in
778     // BB which has the same incoming value for *PI as PN does, we can
779     // merge the phi nodes and then the blocks can still be merged
780     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
781     if (BBPN && BBPN->getParent() == BB) {
782       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
783         BasicBlock *IBB = PN->getIncomingBlock(PI);
784         if (BBPreds.count(IBB) &&
785             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
786                             PN->getIncomingValue(PI))) {
787           LLVM_DEBUG(dbgs()
788                      << "Can't fold, phi node " << PN->getName() << " in "
789                      << Succ->getName() << " is conflicting with "
790                      << BBPN->getName() << " with regard to common predecessor "
791                      << IBB->getName() << "\n");
792           return false;
793         }
794       }
795     } else {
796       Value* Val = PN->getIncomingValueForBlock(BB);
797       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
798         // See if the incoming value for the common predecessor is equal to the
799         // one for BB, in which case this phi node will not prevent the merging
800         // of the block.
801         BasicBlock *IBB = PN->getIncomingBlock(PI);
802         if (BBPreds.count(IBB) &&
803             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
804           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
805                             << " in " << Succ->getName()
806                             << " is conflicting with regard to common "
807                             << "predecessor " << IBB->getName() << "\n");
808           return false;
809         }
810       }
811     }
812   }
813 
814   return true;
815 }
816 
817 using PredBlockVector = SmallVector<BasicBlock *, 16>;
818 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
819 
820 /// Determines the value to use as the phi node input for a block.
821 ///
822 /// Select between \p OldVal any value that we know flows from \p BB
823 /// to a particular phi on the basis of which one (if either) is not
824 /// undef. Update IncomingValues based on the selected value.
825 ///
826 /// \param OldVal The value we are considering selecting.
827 /// \param BB The block that the value flows in from.
828 /// \param IncomingValues A map from block-to-value for other phi inputs
829 /// that we have examined.
830 ///
831 /// \returns the selected value.
832 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
833                                           IncomingValueMap &IncomingValues) {
834   if (!isa<UndefValue>(OldVal)) {
835     assert((!IncomingValues.count(BB) ||
836             IncomingValues.find(BB)->second == OldVal) &&
837            "Expected OldVal to match incoming value from BB!");
838 
839     IncomingValues.insert(std::make_pair(BB, OldVal));
840     return OldVal;
841   }
842 
843   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
844   if (It != IncomingValues.end()) return It->second;
845 
846   return OldVal;
847 }
848 
849 /// Create a map from block to value for the operands of a
850 /// given phi.
851 ///
852 /// Create a map from block to value for each non-undef value flowing
853 /// into \p PN.
854 ///
855 /// \param PN The phi we are collecting the map for.
856 /// \param IncomingValues [out] The map from block to value for this phi.
857 static void gatherIncomingValuesToPhi(PHINode *PN,
858                                       IncomingValueMap &IncomingValues) {
859   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
860     BasicBlock *BB = PN->getIncomingBlock(i);
861     Value *V = PN->getIncomingValue(i);
862 
863     if (!isa<UndefValue>(V))
864       IncomingValues.insert(std::make_pair(BB, V));
865   }
866 }
867 
868 /// Replace the incoming undef values to a phi with the values
869 /// from a block-to-value map.
870 ///
871 /// \param PN The phi we are replacing the undefs in.
872 /// \param IncomingValues A map from block to value.
873 static void replaceUndefValuesInPhi(PHINode *PN,
874                                     const IncomingValueMap &IncomingValues) {
875   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
876     Value *V = PN->getIncomingValue(i);
877 
878     if (!isa<UndefValue>(V)) continue;
879 
880     BasicBlock *BB = PN->getIncomingBlock(i);
881     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
882     if (It == IncomingValues.end()) continue;
883 
884     PN->setIncomingValue(i, It->second);
885   }
886 }
887 
888 /// Replace a value flowing from a block to a phi with
889 /// potentially multiple instances of that value flowing from the
890 /// block's predecessors to the phi.
891 ///
892 /// \param BB The block with the value flowing into the phi.
893 /// \param BBPreds The predecessors of BB.
894 /// \param PN The phi that we are updating.
895 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
896                                                 const PredBlockVector &BBPreds,
897                                                 PHINode *PN) {
898   Value *OldVal = PN->removeIncomingValue(BB, false);
899   assert(OldVal && "No entry in PHI for Pred BB!");
900 
901   IncomingValueMap IncomingValues;
902 
903   // We are merging two blocks - BB, and the block containing PN - and
904   // as a result we need to redirect edges from the predecessors of BB
905   // to go to the block containing PN, and update PN
906   // accordingly. Since we allow merging blocks in the case where the
907   // predecessor and successor blocks both share some predecessors,
908   // and where some of those common predecessors might have undef
909   // values flowing into PN, we want to rewrite those values to be
910   // consistent with the non-undef values.
911 
912   gatherIncomingValuesToPhi(PN, IncomingValues);
913 
914   // If this incoming value is one of the PHI nodes in BB, the new entries
915   // in the PHI node are the entries from the old PHI.
916   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
917     PHINode *OldValPN = cast<PHINode>(OldVal);
918     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
919       // Note that, since we are merging phi nodes and BB and Succ might
920       // have common predecessors, we could end up with a phi node with
921       // identical incoming branches. This will be cleaned up later (and
922       // will trigger asserts if we try to clean it up now, without also
923       // simplifying the corresponding conditional branch).
924       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
925       Value *PredVal = OldValPN->getIncomingValue(i);
926       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
927                                                     IncomingValues);
928 
929       // And add a new incoming value for this predecessor for the
930       // newly retargeted branch.
931       PN->addIncoming(Selected, PredBB);
932     }
933   } else {
934     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
935       // Update existing incoming values in PN for this
936       // predecessor of BB.
937       BasicBlock *PredBB = BBPreds[i];
938       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
939                                                     IncomingValues);
940 
941       // And add a new incoming value for this predecessor for the
942       // newly retargeted branch.
943       PN->addIncoming(Selected, PredBB);
944     }
945   }
946 
947   replaceUndefValuesInPhi(PN, IncomingValues);
948 }
949 
950 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
951                                                    DomTreeUpdater *DTU) {
952   assert(BB != &BB->getParent()->getEntryBlock() &&
953          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
954 
955   // We can't eliminate infinite loops.
956   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
957   if (BB == Succ) return false;
958 
959   // Check to see if merging these blocks would cause conflicts for any of the
960   // phi nodes in BB or Succ. If not, we can safely merge.
961   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
962 
963   // Check for cases where Succ has multiple predecessors and a PHI node in BB
964   // has uses which will not disappear when the PHI nodes are merged.  It is
965   // possible to handle such cases, but difficult: it requires checking whether
966   // BB dominates Succ, which is non-trivial to calculate in the case where
967   // Succ has multiple predecessors.  Also, it requires checking whether
968   // constructing the necessary self-referential PHI node doesn't introduce any
969   // conflicts; this isn't too difficult, but the previous code for doing this
970   // was incorrect.
971   //
972   // Note that if this check finds a live use, BB dominates Succ, so BB is
973   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
974   // folding the branch isn't profitable in that case anyway.
975   if (!Succ->getSinglePredecessor()) {
976     BasicBlock::iterator BBI = BB->begin();
977     while (isa<PHINode>(*BBI)) {
978       for (Use &U : BBI->uses()) {
979         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
980           if (PN->getIncomingBlock(U) != BB)
981             return false;
982         } else {
983           return false;
984         }
985       }
986       ++BBI;
987     }
988   }
989 
990   // We cannot fold the block if it's a branch to an already present callbr
991   // successor because that creates duplicate successors.
992   for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
993     if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) {
994       if (Succ == CBI->getDefaultDest())
995         return false;
996       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
997         if (Succ == CBI->getIndirectDest(i))
998           return false;
999     }
1000   }
1001 
1002   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1003 
1004   SmallVector<DominatorTree::UpdateType, 32> Updates;
1005   if (DTU) {
1006     Updates.push_back({DominatorTree::Delete, BB, Succ});
1007     // All predecessors of BB will be moved to Succ.
1008     for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1009       Updates.push_back({DominatorTree::Delete, *I, BB});
1010       // This predecessor of BB may already have Succ as a successor.
1011       if (llvm::find(successors(*I), Succ) == succ_end(*I))
1012         Updates.push_back({DominatorTree::Insert, *I, Succ});
1013     }
1014   }
1015 
1016   if (isa<PHINode>(Succ->begin())) {
1017     // If there is more than one pred of succ, and there are PHI nodes in
1018     // the successor, then we need to add incoming edges for the PHI nodes
1019     //
1020     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1021 
1022     // Loop over all of the PHI nodes in the successor of BB.
1023     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1024       PHINode *PN = cast<PHINode>(I);
1025 
1026       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1027     }
1028   }
1029 
1030   if (Succ->getSinglePredecessor()) {
1031     // BB is the only predecessor of Succ, so Succ will end up with exactly
1032     // the same predecessors BB had.
1033 
1034     // Copy over any phi, debug or lifetime instruction.
1035     BB->getTerminator()->eraseFromParent();
1036     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1037                                BB->getInstList());
1038   } else {
1039     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1040       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1041       assert(PN->use_empty() && "There shouldn't be any uses here!");
1042       PN->eraseFromParent();
1043     }
1044   }
1045 
1046   // If the unconditional branch we replaced contains llvm.loop metadata, we
1047   // add the metadata to the branch instructions in the predecessors.
1048   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1049   Instruction *TI = BB->getTerminator();
1050   if (TI)
1051     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1052       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1053         BasicBlock *Pred = *PI;
1054         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1055       }
1056 
1057   // Everything that jumped to BB now goes to Succ.
1058   BB->replaceAllUsesWith(Succ);
1059   if (!Succ->hasName()) Succ->takeName(BB);
1060 
1061   // Clear the successor list of BB to match updates applying to DTU later.
1062   if (BB->getTerminator())
1063     BB->getInstList().pop_back();
1064   new UnreachableInst(BB->getContext(), BB);
1065   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1066                            "applying corresponding DTU updates.");
1067 
1068   if (DTU) {
1069     DTU->applyUpdatesPermissive(Updates);
1070     DTU->deleteBB(BB);
1071   } else {
1072     BB->eraseFromParent(); // Delete the old basic block.
1073   }
1074   return true;
1075 }
1076 
1077 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1078   // This implementation doesn't currently consider undef operands
1079   // specially. Theoretically, two phis which are identical except for
1080   // one having an undef where the other doesn't could be collapsed.
1081 
1082   struct PHIDenseMapInfo {
1083     static PHINode *getEmptyKey() {
1084       return DenseMapInfo<PHINode *>::getEmptyKey();
1085     }
1086 
1087     static PHINode *getTombstoneKey() {
1088       return DenseMapInfo<PHINode *>::getTombstoneKey();
1089     }
1090 
1091     static unsigned getHashValue(PHINode *PN) {
1092       // Compute a hash value on the operands. Instcombine will likely have
1093       // sorted them, which helps expose duplicates, but we have to check all
1094       // the operands to be safe in case instcombine hasn't run.
1095       return static_cast<unsigned>(hash_combine(
1096           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1097           hash_combine_range(PN->block_begin(), PN->block_end())));
1098     }
1099 
1100     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1101       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1102           RHS == getEmptyKey() || RHS == getTombstoneKey())
1103         return LHS == RHS;
1104       return LHS->isIdenticalTo(RHS);
1105     }
1106   };
1107 
1108   // Set of unique PHINodes.
1109   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1110 
1111   // Examine each PHI.
1112   bool Changed = false;
1113   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1114     auto Inserted = PHISet.insert(PN);
1115     if (!Inserted.second) {
1116       // A duplicate. Replace this PHI with its duplicate.
1117       PN->replaceAllUsesWith(*Inserted.first);
1118       PN->eraseFromParent();
1119       Changed = true;
1120 
1121       // The RAUW can change PHIs that we already visited. Start over from the
1122       // beginning.
1123       PHISet.clear();
1124       I = BB->begin();
1125     }
1126   }
1127 
1128   return Changed;
1129 }
1130 
1131 /// enforceKnownAlignment - If the specified pointer points to an object that
1132 /// we control, modify the object's alignment to PrefAlign. This isn't
1133 /// often possible though. If alignment is important, a more reliable approach
1134 /// is to simply align all global variables and allocation instructions to
1135 /// their preferred alignment from the beginning.
1136 static unsigned enforceKnownAlignment(Value *V, unsigned Alignment,
1137                                       unsigned PrefAlign,
1138                                       const DataLayout &DL) {
1139   assert(PrefAlign > Alignment);
1140 
1141   V = V->stripPointerCasts();
1142 
1143   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1144     // TODO: ideally, computeKnownBits ought to have used
1145     // AllocaInst::getAlignment() in its computation already, making
1146     // the below max redundant. But, as it turns out,
1147     // stripPointerCasts recurses through infinite layers of bitcasts,
1148     // while computeKnownBits is not allowed to traverse more than 6
1149     // levels.
1150     Alignment = std::max(AI->getAlignment(), Alignment);
1151     if (PrefAlign <= Alignment)
1152       return Alignment;
1153 
1154     // If the preferred alignment is greater than the natural stack alignment
1155     // then don't round up. This avoids dynamic stack realignment.
1156     if (DL.exceedsNaturalStackAlignment(Align(PrefAlign)))
1157       return Alignment;
1158     AI->setAlignment(MaybeAlign(PrefAlign));
1159     return PrefAlign;
1160   }
1161 
1162   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1163     // TODO: as above, this shouldn't be necessary.
1164     Alignment = std::max(GO->getAlignment(), Alignment);
1165     if (PrefAlign <= Alignment)
1166       return Alignment;
1167 
1168     // If there is a large requested alignment and we can, bump up the alignment
1169     // of the global.  If the memory we set aside for the global may not be the
1170     // memory used by the final program then it is impossible for us to reliably
1171     // enforce the preferred alignment.
1172     if (!GO->canIncreaseAlignment())
1173       return Alignment;
1174 
1175     GO->setAlignment(MaybeAlign(PrefAlign));
1176     return PrefAlign;
1177   }
1178 
1179   return Alignment;
1180 }
1181 
1182 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1183                                           const DataLayout &DL,
1184                                           const Instruction *CxtI,
1185                                           AssumptionCache *AC,
1186                                           const DominatorTree *DT) {
1187   assert(V->getType()->isPointerTy() &&
1188          "getOrEnforceKnownAlignment expects a pointer!");
1189 
1190   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1191   unsigned TrailZ = Known.countMinTrailingZeros();
1192 
1193   // Avoid trouble with ridiculously large TrailZ values, such as
1194   // those computed from a null pointer.
1195   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1196 
1197   unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
1198 
1199   // LLVM doesn't support alignments larger than this currently.
1200   Align = std::min(Align, +Value::MaximumAlignment);
1201 
1202   if (PrefAlign > Align)
1203     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1204 
1205   // We don't need to make any adjustment.
1206   return Align;
1207 }
1208 
1209 ///===---------------------------------------------------------------------===//
1210 ///  Dbg Intrinsic utilities
1211 ///
1212 
1213 /// See if there is a dbg.value intrinsic for DIVar before I.
1214 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1215                               Instruction *I) {
1216   // Since we can't guarantee that the original dbg.declare instrinsic
1217   // is removed by LowerDbgDeclare(), we need to make sure that we are
1218   // not inserting the same dbg.value intrinsic over and over.
1219   BasicBlock::InstListType::iterator PrevI(I);
1220   if (PrevI != I->getParent()->getInstList().begin()) {
1221     --PrevI;
1222     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1223       if (DVI->getValue() == I->getOperand(0) &&
1224           DVI->getVariable() == DIVar &&
1225           DVI->getExpression() == DIExpr)
1226         return true;
1227   }
1228   return false;
1229 }
1230 
1231 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1232 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1233                              DIExpression *DIExpr,
1234                              PHINode *APN) {
1235   // Since we can't guarantee that the original dbg.declare instrinsic
1236   // is removed by LowerDbgDeclare(), we need to make sure that we are
1237   // not inserting the same dbg.value intrinsic over and over.
1238   SmallVector<DbgValueInst *, 1> DbgValues;
1239   findDbgValues(DbgValues, APN);
1240   for (auto *DVI : DbgValues) {
1241     assert(DVI->getValue() == APN);
1242     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1243       return true;
1244   }
1245   return false;
1246 }
1247 
1248 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1249 /// (or fragment of the variable) described by \p DII.
1250 ///
1251 /// This is primarily intended as a helper for the different
1252 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1253 /// converted describes an alloca'd variable, so we need to use the
1254 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1255 /// identified as covering an n-bit fragment, if the store size of i1 is at
1256 /// least n bits.
1257 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1258   const DataLayout &DL = DII->getModule()->getDataLayout();
1259   uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1260   if (auto FragmentSize = DII->getFragmentSizeInBits())
1261     return ValueSize >= *FragmentSize;
1262   // We can't always calculate the size of the DI variable (e.g. if it is a
1263   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1264   // intead.
1265   if (DII->isAddressOfVariable())
1266     if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation()))
1267       if (auto FragmentSize = AI->getAllocationSizeInBits(DL))
1268         return ValueSize >= *FragmentSize;
1269   // Could not determine size of variable. Conservatively return false.
1270   return false;
1271 }
1272 
1273 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1274 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1275 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1276 /// case this DebugLoc leaks into any adjacent instructions.
1277 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1278   // Original dbg.declare must have a location.
1279   DebugLoc DeclareLoc = DII->getDebugLoc();
1280   MDNode *Scope = DeclareLoc.getScope();
1281   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1282   // Produce an unknown location with the correct scope / inlinedAt fields.
1283   return DebugLoc::get(0, 0, Scope, InlinedAt);
1284 }
1285 
1286 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1287 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1288 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1289                                            StoreInst *SI, DIBuilder &Builder) {
1290   assert(DII->isAddressOfVariable());
1291   auto *DIVar = DII->getVariable();
1292   assert(DIVar && "Missing variable");
1293   auto *DIExpr = DII->getExpression();
1294   Value *DV = SI->getValueOperand();
1295 
1296   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1297 
1298   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1299     // FIXME: If storing to a part of the variable described by the dbg.declare,
1300     // then we want to insert a dbg.value for the corresponding fragment.
1301     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1302                       << *DII << '\n');
1303     // For now, when there is a store to parts of the variable (but we do not
1304     // know which part) we insert an dbg.value instrinsic to indicate that we
1305     // know nothing about the variable's content.
1306     DV = UndefValue::get(DV->getType());
1307     if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1308       Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1309     return;
1310   }
1311 
1312   if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1313     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1314 }
1315 
1316 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1317 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1318 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1319                                            LoadInst *LI, DIBuilder &Builder) {
1320   auto *DIVar = DII->getVariable();
1321   auto *DIExpr = DII->getExpression();
1322   assert(DIVar && "Missing variable");
1323 
1324   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1325     return;
1326 
1327   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1328     // FIXME: If only referring to a part of the variable described by the
1329     // dbg.declare, then we want to insert a dbg.value for the corresponding
1330     // fragment.
1331     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1332                       << *DII << '\n');
1333     return;
1334   }
1335 
1336   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1337 
1338   // We are now tracking the loaded value instead of the address. In the
1339   // future if multi-location support is added to the IR, it might be
1340   // preferable to keep tracking both the loaded value and the original
1341   // address in case the alloca can not be elided.
1342   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1343       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1344   DbgValue->insertAfter(LI);
1345 }
1346 
1347 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1348 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1349 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1350                                            PHINode *APN, DIBuilder &Builder) {
1351   auto *DIVar = DII->getVariable();
1352   auto *DIExpr = DII->getExpression();
1353   assert(DIVar && "Missing variable");
1354 
1355   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1356     return;
1357 
1358   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1359     // FIXME: If only referring to a part of the variable described by the
1360     // dbg.declare, then we want to insert a dbg.value for the corresponding
1361     // fragment.
1362     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1363                       << *DII << '\n');
1364     return;
1365   }
1366 
1367   BasicBlock *BB = APN->getParent();
1368   auto InsertionPt = BB->getFirstInsertionPt();
1369 
1370   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1371 
1372   // The block may be a catchswitch block, which does not have a valid
1373   // insertion point.
1374   // FIXME: Insert dbg.value markers in the successors when appropriate.
1375   if (InsertionPt != BB->end())
1376     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1377 }
1378 
1379 /// Determine whether this alloca is either a VLA or an array.
1380 static bool isArray(AllocaInst *AI) {
1381   return AI->isArrayAllocation() ||
1382          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1383 }
1384 
1385 /// Determine whether this alloca is a structure.
1386 static bool isStructure(AllocaInst *AI) {
1387   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1388 }
1389 
1390 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1391 /// of llvm.dbg.value intrinsics.
1392 bool llvm::LowerDbgDeclare(Function &F) {
1393   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1394   SmallVector<DbgDeclareInst *, 4> Dbgs;
1395   for (auto &FI : F)
1396     for (Instruction &BI : FI)
1397       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1398         Dbgs.push_back(DDI);
1399 
1400   if (Dbgs.empty())
1401     return false;
1402 
1403   for (auto &I : Dbgs) {
1404     DbgDeclareInst *DDI = I;
1405     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1406     // If this is an alloca for a scalar variable, insert a dbg.value
1407     // at each load and store to the alloca and erase the dbg.declare.
1408     // The dbg.values allow tracking a variable even if it is not
1409     // stored on the stack, while the dbg.declare can only describe
1410     // the stack slot (and at a lexical-scope granularity). Later
1411     // passes will attempt to elide the stack slot.
1412     if (!AI || isArray(AI) || isStructure(AI))
1413       continue;
1414 
1415     // A volatile load/store means that the alloca can't be elided anyway.
1416     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1417           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1418             return LI->isVolatile();
1419           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1420             return SI->isVolatile();
1421           return false;
1422         }))
1423       continue;
1424 
1425     SmallVector<const Value *, 8> WorkList;
1426     WorkList.push_back(AI);
1427     while (!WorkList.empty()) {
1428       const Value *V = WorkList.pop_back_val();
1429       for (auto &AIUse : V->uses()) {
1430         User *U = AIUse.getUser();
1431         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1432           if (AIUse.getOperandNo() == 1)
1433             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1434         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1435           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1436         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1437           // This is a call by-value or some other instruction that takes a
1438           // pointer to the variable. Insert a *value* intrinsic that describes
1439           // the variable by dereferencing the alloca.
1440           if (!CI->isLifetimeStartOrEnd()) {
1441             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1442             auto *DerefExpr =
1443                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1444             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1445                                         NewLoc, CI);
1446           }
1447         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1448           if (BI->getType()->isPointerTy())
1449             WorkList.push_back(BI);
1450         }
1451       }
1452     }
1453     DDI->eraseFromParent();
1454   }
1455   return true;
1456 }
1457 
1458 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1459 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1460                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1461   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1462   if (InsertedPHIs.size() == 0)
1463     return;
1464 
1465   // Map existing PHI nodes to their dbg.values.
1466   ValueToValueMapTy DbgValueMap;
1467   for (auto &I : *BB) {
1468     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1469       if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation()))
1470         DbgValueMap.insert({Loc, DbgII});
1471     }
1472   }
1473   if (DbgValueMap.size() == 0)
1474     return;
1475 
1476   // Then iterate through the new PHIs and look to see if they use one of the
1477   // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1478   // propagate the info through the new PHI.
1479   LLVMContext &C = BB->getContext();
1480   for (auto PHI : InsertedPHIs) {
1481     BasicBlock *Parent = PHI->getParent();
1482     // Avoid inserting an intrinsic into an EH block.
1483     if (Parent->getFirstNonPHI()->isEHPad())
1484       continue;
1485     auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI));
1486     for (auto VI : PHI->operand_values()) {
1487       auto V = DbgValueMap.find(VI);
1488       if (V != DbgValueMap.end()) {
1489         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1490         Instruction *NewDbgII = DbgII->clone();
1491         NewDbgII->setOperand(0, PhiMAV);
1492         auto InsertionPt = Parent->getFirstInsertionPt();
1493         assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1494         NewDbgII->insertBefore(&*InsertionPt);
1495       }
1496     }
1497   }
1498 }
1499 
1500 /// Finds all intrinsics declaring local variables as living in the memory that
1501 /// 'V' points to. This may include a mix of dbg.declare and
1502 /// dbg.addr intrinsics.
1503 TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
1504   // This function is hot. Check whether the value has any metadata to avoid a
1505   // DenseMap lookup.
1506   if (!V->isUsedByMetadata())
1507     return {};
1508   auto *L = LocalAsMetadata::getIfExists(V);
1509   if (!L)
1510     return {};
1511   auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
1512   if (!MDV)
1513     return {};
1514 
1515   TinyPtrVector<DbgVariableIntrinsic *> Declares;
1516   for (User *U : MDV->users()) {
1517     if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
1518       if (DII->isAddressOfVariable())
1519         Declares.push_back(DII);
1520   }
1521 
1522   return Declares;
1523 }
1524 
1525 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1526   // This function is hot. Check whether the value has any metadata to avoid a
1527   // DenseMap lookup.
1528   if (!V->isUsedByMetadata())
1529     return;
1530   if (auto *L = LocalAsMetadata::getIfExists(V))
1531     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1532       for (User *U : MDV->users())
1533         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1534           DbgValues.push_back(DVI);
1535 }
1536 
1537 void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
1538                         Value *V) {
1539   // This function is hot. Check whether the value has any metadata to avoid a
1540   // DenseMap lookup.
1541   if (!V->isUsedByMetadata())
1542     return;
1543   if (auto *L = LocalAsMetadata::getIfExists(V))
1544     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1545       for (User *U : MDV->users())
1546         if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
1547           DbgUsers.push_back(DII);
1548 }
1549 
1550 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1551                              Instruction *InsertBefore, DIBuilder &Builder,
1552                              uint8_t DIExprFlags, int Offset) {
1553   auto DbgAddrs = FindDbgAddrUses(Address);
1554   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1555     DebugLoc Loc = DII->getDebugLoc();
1556     auto *DIVar = DII->getVariable();
1557     auto *DIExpr = DII->getExpression();
1558     assert(DIVar && "Missing variable");
1559     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1560     // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1561     // llvm.dbg.declare.
1562     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1563     if (DII == InsertBefore)
1564       InsertBefore = InsertBefore->getNextNode();
1565     DII->eraseFromParent();
1566   }
1567   return !DbgAddrs.empty();
1568 }
1569 
1570 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1571                                       DIBuilder &Builder, uint8_t DIExprFlags,
1572                                       int Offset) {
1573   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1574                            DIExprFlags, Offset);
1575 }
1576 
1577 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1578                                         DIBuilder &Builder, int Offset) {
1579   DebugLoc Loc = DVI->getDebugLoc();
1580   auto *DIVar = DVI->getVariable();
1581   auto *DIExpr = DVI->getExpression();
1582   assert(DIVar && "Missing variable");
1583 
1584   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1585   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1586   // it and give up.
1587   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1588       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1589     return;
1590 
1591   // Insert the offset before the first deref.
1592   // We could just change the offset argument of dbg.value, but it's unsigned...
1593   if (Offset)
1594     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1595 
1596   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1597   DVI->eraseFromParent();
1598 }
1599 
1600 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1601                                     DIBuilder &Builder, int Offset) {
1602   if (auto *L = LocalAsMetadata::getIfExists(AI))
1603     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1604       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1605         Use &U = *UI++;
1606         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1607           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1608       }
1609 }
1610 
1611 /// Wrap \p V in a ValueAsMetadata instance.
1612 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) {
1613   return MetadataAsValue::get(C, ValueAsMetadata::get(V));
1614 }
1615 
1616 bool llvm::salvageDebugInfo(Instruction &I) {
1617   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1618   findDbgUsers(DbgUsers, &I);
1619   if (DbgUsers.empty())
1620     return false;
1621 
1622   return salvageDebugInfoForDbgValues(I, DbgUsers);
1623 }
1624 
1625 void llvm::salvageDebugInfoOrMarkUndef(Instruction &I) {
1626   if (!salvageDebugInfo(I))
1627     replaceDbgUsesWithUndef(&I);
1628 }
1629 
1630 bool llvm::salvageDebugInfoForDbgValues(
1631     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1632   auto &Ctx = I.getContext();
1633   auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); };
1634 
1635   for (auto *DII : DbgUsers) {
1636     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1637     // are implicitly pointing out the value as a DWARF memory location
1638     // description.
1639     bool StackValue = isa<DbgValueInst>(DII);
1640 
1641     DIExpression *DIExpr =
1642         salvageDebugInfoImpl(I, DII->getExpression(), StackValue);
1643 
1644     // salvageDebugInfoImpl should fail on examining the first element of
1645     // DbgUsers, or none of them.
1646     if (!DIExpr)
1647       return false;
1648 
1649     DII->setOperand(0, wrapMD(I.getOperand(0)));
1650     DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr));
1651     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1652   }
1653 
1654   return true;
1655 }
1656 
1657 DIExpression *llvm::salvageDebugInfoImpl(Instruction &I,
1658                                          DIExpression *SrcDIExpr,
1659                                          bool WithStackValue) {
1660   auto &M = *I.getModule();
1661   auto &DL = M.getDataLayout();
1662 
1663   // Apply a vector of opcodes to the source DIExpression.
1664   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1665     DIExpression *DIExpr = SrcDIExpr;
1666     if (!Ops.empty()) {
1667       DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue);
1668     }
1669     return DIExpr;
1670   };
1671 
1672   // Apply the given offset to the source DIExpression.
1673   auto applyOffset = [&](uint64_t Offset) -> DIExpression * {
1674     SmallVector<uint64_t, 8> Ops;
1675     DIExpression::appendOffset(Ops, Offset);
1676     return doSalvage(Ops);
1677   };
1678 
1679   // initializer-list helper for applying operators to the source DIExpression.
1680   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) -> DIExpression * {
1681     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1682     return doSalvage(Ops);
1683   };
1684 
1685   if (auto *CI = dyn_cast<CastInst>(&I)) {
1686     // No-op casts and zexts are irrelevant for debug info.
1687     if (CI->isNoopCast(DL) || isa<ZExtInst>(&I))
1688       return SrcDIExpr;
1689 
1690     Type *Type = CI->getType();
1691     // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1692     if (Type->isVectorTy() || (!isa<TruncInst>(&I) && !isa<SExtInst>(&I)))
1693       return nullptr;
1694 
1695     Value *FromValue = CI->getOperand(0);
1696     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1697     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1698 
1699     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1700                                             isa<SExtInst>(&I)));
1701   }
1702 
1703   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1704     unsigned BitWidth =
1705         M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace());
1706     // Rewrite a constant GEP into a DIExpression.
1707     APInt Offset(BitWidth, 0);
1708     if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1709       return applyOffset(Offset.getSExtValue());
1710     } else {
1711       return nullptr;
1712     }
1713   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1714     // Rewrite binary operations with constant integer operands.
1715     auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1));
1716     if (!ConstInt || ConstInt->getBitWidth() > 64)
1717       return nullptr;
1718 
1719     uint64_t Val = ConstInt->getSExtValue();
1720     switch (BI->getOpcode()) {
1721     case Instruction::Add:
1722       return applyOffset(Val);
1723     case Instruction::Sub:
1724       return applyOffset(-int64_t(Val));
1725     case Instruction::Mul:
1726       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul});
1727     case Instruction::SDiv:
1728       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div});
1729     case Instruction::SRem:
1730       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod});
1731     case Instruction::Or:
1732       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or});
1733     case Instruction::And:
1734       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and});
1735     case Instruction::Xor:
1736       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor});
1737     case Instruction::Shl:
1738       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl});
1739     case Instruction::LShr:
1740       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr});
1741     case Instruction::AShr:
1742       return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra});
1743     default:
1744       // TODO: Salvage constants from each kind of binop we know about.
1745       return nullptr;
1746     }
1747     // *Not* to do: we should not attempt to salvage load instructions,
1748     // because the validity and lifetime of a dbg.value containing
1749     // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1750   }
1751   return nullptr;
1752 }
1753 
1754 /// A replacement for a dbg.value expression.
1755 using DbgValReplacement = Optional<DIExpression *>;
1756 
1757 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1758 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1759 /// changes are made.
1760 static bool rewriteDebugUsers(
1761     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1762     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1763   // Find debug users of From.
1764   SmallVector<DbgVariableIntrinsic *, 1> Users;
1765   findDbgUsers(Users, &From);
1766   if (Users.empty())
1767     return false;
1768 
1769   // Prevent use-before-def of To.
1770   bool Changed = false;
1771   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1772   if (isa<Instruction>(&To)) {
1773     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1774 
1775     for (auto *DII : Users) {
1776       // It's common to see a debug user between From and DomPoint. Move it
1777       // after DomPoint to preserve the variable update without any reordering.
1778       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1779         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1780         DII->moveAfter(&DomPoint);
1781         Changed = true;
1782 
1783       // Users which otherwise aren't dominated by the replacement value must
1784       // be salvaged or deleted.
1785       } else if (!DT.dominates(&DomPoint, DII)) {
1786         UndefOrSalvage.insert(DII);
1787       }
1788     }
1789   }
1790 
1791   // Update debug users without use-before-def risk.
1792   for (auto *DII : Users) {
1793     if (UndefOrSalvage.count(DII))
1794       continue;
1795 
1796     LLVMContext &Ctx = DII->getContext();
1797     DbgValReplacement DVR = RewriteExpr(*DII);
1798     if (!DVR)
1799       continue;
1800 
1801     DII->setOperand(0, wrapValueInMetadata(Ctx, &To));
1802     DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR));
1803     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1804     Changed = true;
1805   }
1806 
1807   if (!UndefOrSalvage.empty()) {
1808     // Try to salvage the remaining debug users.
1809     salvageDebugInfoOrMarkUndef(From);
1810     Changed = true;
1811   }
1812 
1813   return Changed;
1814 }
1815 
1816 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1817 /// losslessly preserve the bits and semantics of the value. This predicate is
1818 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1819 ///
1820 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1821 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1822 /// and also does not allow lossless pointer <-> integer conversions.
1823 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
1824                                          Type *ToTy) {
1825   // Trivially compatible types.
1826   if (FromTy == ToTy)
1827     return true;
1828 
1829   // Handle compatible pointer <-> integer conversions.
1830   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
1831     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
1832     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
1833                               !DL.isNonIntegralPointerType(ToTy);
1834     return SameSize && LosslessConversion;
1835   }
1836 
1837   // TODO: This is not exhaustive.
1838   return false;
1839 }
1840 
1841 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
1842                                  Instruction &DomPoint, DominatorTree &DT) {
1843   // Exit early if From has no debug users.
1844   if (!From.isUsedByMetadata())
1845     return false;
1846 
1847   assert(&From != &To && "Can't replace something with itself");
1848 
1849   Type *FromTy = From.getType();
1850   Type *ToTy = To.getType();
1851 
1852   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1853     return DII.getExpression();
1854   };
1855 
1856   // Handle no-op conversions.
1857   Module &M = *From.getModule();
1858   const DataLayout &DL = M.getDataLayout();
1859   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
1860     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1861 
1862   // Handle integer-to-integer widening and narrowing.
1863   // FIXME: Use DW_OP_convert when it's available everywhere.
1864   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
1865     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
1866     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
1867     assert(FromBits != ToBits && "Unexpected no-op conversion");
1868 
1869     // When the width of the result grows, assume that a debugger will only
1870     // access the low `FromBits` bits when inspecting the source variable.
1871     if (FromBits < ToBits)
1872       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
1873 
1874     // The width of the result has shrunk. Use sign/zero extension to describe
1875     // the source variable's high bits.
1876     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
1877       DILocalVariable *Var = DII.getVariable();
1878 
1879       // Without knowing signedness, sign/zero extension isn't possible.
1880       auto Signedness = Var->getSignedness();
1881       if (!Signedness)
1882         return None;
1883 
1884       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
1885       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
1886                                      Signed);
1887     };
1888     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
1889   }
1890 
1891   // TODO: Floating-point conversions, vectors.
1892   return false;
1893 }
1894 
1895 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1896   unsigned NumDeadInst = 0;
1897   // Delete the instructions backwards, as it has a reduced likelihood of
1898   // having to update as many def-use and use-def chains.
1899   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1900   while (EndInst != &BB->front()) {
1901     // Delete the next to last instruction.
1902     Instruction *Inst = &*--EndInst->getIterator();
1903     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1904       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1905     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1906       EndInst = Inst;
1907       continue;
1908     }
1909     if (!isa<DbgInfoIntrinsic>(Inst))
1910       ++NumDeadInst;
1911     Inst->eraseFromParent();
1912   }
1913   return NumDeadInst;
1914 }
1915 
1916 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1917                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
1918                                    MemorySSAUpdater *MSSAU) {
1919   BasicBlock *BB = I->getParent();
1920   std::vector <DominatorTree::UpdateType> Updates;
1921 
1922   if (MSSAU)
1923     MSSAU->changeToUnreachable(I);
1924 
1925   // Loop over all of the successors, removing BB's entry from any PHI
1926   // nodes.
1927   if (DTU)
1928     Updates.reserve(BB->getTerminator()->getNumSuccessors());
1929   for (BasicBlock *Successor : successors(BB)) {
1930     Successor->removePredecessor(BB, PreserveLCSSA);
1931     if (DTU)
1932       Updates.push_back({DominatorTree::Delete, BB, Successor});
1933   }
1934   // Insert a call to llvm.trap right before this.  This turns the undefined
1935   // behavior into a hard fail instead of falling through into random code.
1936   if (UseLLVMTrap) {
1937     Function *TrapFn =
1938       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1939     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1940     CallTrap->setDebugLoc(I->getDebugLoc());
1941   }
1942   auto *UI = new UnreachableInst(I->getContext(), I);
1943   UI->setDebugLoc(I->getDebugLoc());
1944 
1945   // All instructions after this are dead.
1946   unsigned NumInstrsRemoved = 0;
1947   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1948   while (BBI != BBE) {
1949     if (!BBI->use_empty())
1950       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1951     BB->getInstList().erase(BBI++);
1952     ++NumInstrsRemoved;
1953   }
1954   if (DTU)
1955     DTU->applyUpdatesPermissive(Updates);
1956   return NumInstrsRemoved;
1957 }
1958 
1959 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
1960   SmallVector<Value *, 8> Args(II->arg_begin(), II->arg_end());
1961   SmallVector<OperandBundleDef, 1> OpBundles;
1962   II->getOperandBundlesAsDefs(OpBundles);
1963   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
1964                                        II->getCalledValue(), Args, OpBundles);
1965   NewCall->setCallingConv(II->getCallingConv());
1966   NewCall->setAttributes(II->getAttributes());
1967   NewCall->setDebugLoc(II->getDebugLoc());
1968   NewCall->copyMetadata(*II);
1969   return NewCall;
1970 }
1971 
1972 /// changeToCall - Convert the specified invoke into a normal call.
1973 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
1974   CallInst *NewCall = createCallMatchingInvoke(II);
1975   NewCall->takeName(II);
1976   NewCall->insertBefore(II);
1977   II->replaceAllUsesWith(NewCall);
1978 
1979   // Follow the call by a branch to the normal destination.
1980   BasicBlock *NormalDestBB = II->getNormalDest();
1981   BranchInst::Create(NormalDestBB, II);
1982 
1983   // Update PHI nodes in the unwind destination
1984   BasicBlock *BB = II->getParent();
1985   BasicBlock *UnwindDestBB = II->getUnwindDest();
1986   UnwindDestBB->removePredecessor(BB);
1987   II->eraseFromParent();
1988   if (DTU)
1989     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDestBB}});
1990 }
1991 
1992 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1993                                                    BasicBlock *UnwindEdge) {
1994   BasicBlock *BB = CI->getParent();
1995 
1996   // Convert this function call into an invoke instruction.  First, split the
1997   // basic block.
1998   BasicBlock *Split =
1999       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
2000 
2001   // Delete the unconditional branch inserted by splitBasicBlock
2002   BB->getInstList().pop_back();
2003 
2004   // Create the new invoke instruction.
2005   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
2006   SmallVector<OperandBundleDef, 1> OpBundles;
2007 
2008   CI->getOperandBundlesAsDefs(OpBundles);
2009 
2010   // Note: we're round tripping operand bundles through memory here, and that
2011   // can potentially be avoided with a cleverer API design that we do not have
2012   // as of this time.
2013 
2014   InvokeInst *II =
2015       InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split,
2016                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2017   II->setDebugLoc(CI->getDebugLoc());
2018   II->setCallingConv(CI->getCallingConv());
2019   II->setAttributes(CI->getAttributes());
2020 
2021   // Make sure that anything using the call now uses the invoke!  This also
2022   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2023   CI->replaceAllUsesWith(II);
2024 
2025   // Delete the original call
2026   Split->getInstList().pop_front();
2027   return Split;
2028 }
2029 
2030 static bool markAliveBlocks(Function &F,
2031                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2032                             DomTreeUpdater *DTU = nullptr) {
2033   SmallVector<BasicBlock*, 128> Worklist;
2034   BasicBlock *BB = &F.front();
2035   Worklist.push_back(BB);
2036   Reachable.insert(BB);
2037   bool Changed = false;
2038   do {
2039     BB = Worklist.pop_back_val();
2040 
2041     // Do a quick scan of the basic block, turning any obviously unreachable
2042     // instructions into LLVM unreachable insts.  The instruction combining pass
2043     // canonicalizes unreachable insts into stores to null or undef.
2044     for (Instruction &I : *BB) {
2045       if (auto *CI = dyn_cast<CallInst>(&I)) {
2046         Value *Callee = CI->getCalledValue();
2047         // Handle intrinsic calls.
2048         if (Function *F = dyn_cast<Function>(Callee)) {
2049           auto IntrinsicID = F->getIntrinsicID();
2050           // Assumptions that are known to be false are equivalent to
2051           // unreachable. Also, if the condition is undefined, then we make the
2052           // choice most beneficial to the optimizer, and choose that to also be
2053           // unreachable.
2054           if (IntrinsicID == Intrinsic::assume) {
2055             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2056               // Don't insert a call to llvm.trap right before the unreachable.
2057               changeToUnreachable(CI, false, false, DTU);
2058               Changed = true;
2059               break;
2060             }
2061           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2062             // A call to the guard intrinsic bails out of the current
2063             // compilation unit if the predicate passed to it is false. If the
2064             // predicate is a constant false, then we know the guard will bail
2065             // out of the current compile unconditionally, so all code following
2066             // it is dead.
2067             //
2068             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2069             // guards to treat `undef` as `false` since a guard on `undef` can
2070             // still be useful for widening.
2071             if (match(CI->getArgOperand(0), m_Zero()))
2072               if (!isa<UnreachableInst>(CI->getNextNode())) {
2073                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2074                                     false, DTU);
2075                 Changed = true;
2076                 break;
2077               }
2078           }
2079         } else if ((isa<ConstantPointerNull>(Callee) &&
2080                     !NullPointerIsDefined(CI->getFunction())) ||
2081                    isa<UndefValue>(Callee)) {
2082           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2083           Changed = true;
2084           break;
2085         }
2086         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2087           // If we found a call to a no-return function, insert an unreachable
2088           // instruction after it.  Make sure there isn't *already* one there
2089           // though.
2090           if (!isa<UnreachableInst>(CI->getNextNode())) {
2091             // Don't insert a call to llvm.trap right before the unreachable.
2092             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2093             Changed = true;
2094           }
2095           break;
2096         }
2097       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2098         // Store to undef and store to null are undefined and used to signal
2099         // that they should be changed to unreachable by passes that can't
2100         // modify the CFG.
2101 
2102         // Don't touch volatile stores.
2103         if (SI->isVolatile()) continue;
2104 
2105         Value *Ptr = SI->getOperand(1);
2106 
2107         if (isa<UndefValue>(Ptr) ||
2108             (isa<ConstantPointerNull>(Ptr) &&
2109              !NullPointerIsDefined(SI->getFunction(),
2110                                    SI->getPointerAddressSpace()))) {
2111           changeToUnreachable(SI, true, false, DTU);
2112           Changed = true;
2113           break;
2114         }
2115       }
2116     }
2117 
2118     Instruction *Terminator = BB->getTerminator();
2119     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2120       // Turn invokes that call 'nounwind' functions into ordinary calls.
2121       Value *Callee = II->getCalledValue();
2122       if ((isa<ConstantPointerNull>(Callee) &&
2123            !NullPointerIsDefined(BB->getParent())) ||
2124           isa<UndefValue>(Callee)) {
2125         changeToUnreachable(II, true, false, DTU);
2126         Changed = true;
2127       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2128         if (II->use_empty() && II->onlyReadsMemory()) {
2129           // jump to the normal destination branch.
2130           BasicBlock *NormalDestBB = II->getNormalDest();
2131           BasicBlock *UnwindDestBB = II->getUnwindDest();
2132           BranchInst::Create(NormalDestBB, II);
2133           UnwindDestBB->removePredecessor(II->getParent());
2134           II->eraseFromParent();
2135           if (DTU)
2136             DTU->applyUpdatesPermissive(
2137                 {{DominatorTree::Delete, BB, UnwindDestBB}});
2138         } else
2139           changeToCall(II, DTU);
2140         Changed = true;
2141       }
2142     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2143       // Remove catchpads which cannot be reached.
2144       struct CatchPadDenseMapInfo {
2145         static CatchPadInst *getEmptyKey() {
2146           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2147         }
2148 
2149         static CatchPadInst *getTombstoneKey() {
2150           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2151         }
2152 
2153         static unsigned getHashValue(CatchPadInst *CatchPad) {
2154           return static_cast<unsigned>(hash_combine_range(
2155               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2156         }
2157 
2158         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2159           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2160               RHS == getEmptyKey() || RHS == getTombstoneKey())
2161             return LHS == RHS;
2162           return LHS->isIdenticalTo(RHS);
2163         }
2164       };
2165 
2166       // Set of unique CatchPads.
2167       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2168                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2169           HandlerSet;
2170       detail::DenseSetEmpty Empty;
2171       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2172                                              E = CatchSwitch->handler_end();
2173            I != E; ++I) {
2174         BasicBlock *HandlerBB = *I;
2175         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2176         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2177           CatchSwitch->removeHandler(I);
2178           --I;
2179           --E;
2180           Changed = true;
2181         }
2182       }
2183     }
2184 
2185     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2186     for (BasicBlock *Successor : successors(BB))
2187       if (Reachable.insert(Successor).second)
2188         Worklist.push_back(Successor);
2189   } while (!Worklist.empty());
2190   return Changed;
2191 }
2192 
2193 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2194   Instruction *TI = BB->getTerminator();
2195 
2196   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2197     changeToCall(II, DTU);
2198     return;
2199   }
2200 
2201   Instruction *NewTI;
2202   BasicBlock *UnwindDest;
2203 
2204   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2205     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2206     UnwindDest = CRI->getUnwindDest();
2207   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2208     auto *NewCatchSwitch = CatchSwitchInst::Create(
2209         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2210         CatchSwitch->getName(), CatchSwitch);
2211     for (BasicBlock *PadBB : CatchSwitch->handlers())
2212       NewCatchSwitch->addHandler(PadBB);
2213 
2214     NewTI = NewCatchSwitch;
2215     UnwindDest = CatchSwitch->getUnwindDest();
2216   } else {
2217     llvm_unreachable("Could not find unwind successor");
2218   }
2219 
2220   NewTI->takeName(TI);
2221   NewTI->setDebugLoc(TI->getDebugLoc());
2222   UnwindDest->removePredecessor(BB);
2223   TI->replaceAllUsesWith(NewTI);
2224   TI->eraseFromParent();
2225   if (DTU)
2226     DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, UnwindDest}});
2227 }
2228 
2229 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2230 /// if they are in a dead cycle.  Return true if a change was made, false
2231 /// otherwise.
2232 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2233                                    MemorySSAUpdater *MSSAU) {
2234   SmallPtrSet<BasicBlock *, 16> Reachable;
2235   bool Changed = markAliveBlocks(F, Reachable, DTU);
2236 
2237   // If there are unreachable blocks in the CFG...
2238   if (Reachable.size() == F.size())
2239     return Changed;
2240 
2241   assert(Reachable.size() < F.size());
2242   NumRemoved += F.size() - Reachable.size();
2243 
2244   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
2245   for (BasicBlock &BB : F) {
2246     // Skip reachable basic blocks
2247     if (Reachable.find(&BB) != Reachable.end())
2248       continue;
2249     DeadBlockSet.insert(&BB);
2250   }
2251 
2252   if (MSSAU)
2253     MSSAU->removeBlocks(DeadBlockSet);
2254 
2255   // Loop over all of the basic blocks that are not reachable, dropping all of
2256   // their internal references. Update DTU if available.
2257   std::vector<DominatorTree::UpdateType> Updates;
2258   for (auto *BB : DeadBlockSet) {
2259     for (BasicBlock *Successor : successors(BB)) {
2260       if (!DeadBlockSet.count(Successor))
2261         Successor->removePredecessor(BB);
2262       if (DTU)
2263         Updates.push_back({DominatorTree::Delete, BB, Successor});
2264     }
2265     BB->dropAllReferences();
2266     if (DTU) {
2267       Instruction *TI = BB->getTerminator();
2268       assert(TI && "Basic block should have a terminator");
2269       // Terminators like invoke can have users. We have to replace their users,
2270       // before removing them.
2271       if (!TI->use_empty())
2272         TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
2273       TI->eraseFromParent();
2274       new UnreachableInst(BB->getContext(), BB);
2275       assert(succ_empty(BB) && "The successor list of BB isn't empty before "
2276                                "applying corresponding DTU updates.");
2277     }
2278   }
2279 
2280   if (DTU) {
2281     DTU->applyUpdatesPermissive(Updates);
2282     bool Deleted = false;
2283     for (auto *BB : DeadBlockSet) {
2284       if (DTU->isBBPendingDeletion(BB))
2285         --NumRemoved;
2286       else
2287         Deleted = true;
2288       DTU->deleteBB(BB);
2289     }
2290     if (!Deleted)
2291       return false;
2292   } else {
2293     for (auto *BB : DeadBlockSet)
2294       BB->eraseFromParent();
2295   }
2296 
2297   return true;
2298 }
2299 
2300 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2301                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2302   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2303   K->dropUnknownNonDebugMetadata(KnownIDs);
2304   K->getAllMetadataOtherThanDebugLoc(Metadata);
2305   for (const auto &MD : Metadata) {
2306     unsigned Kind = MD.first;
2307     MDNode *JMD = J->getMetadata(Kind);
2308     MDNode *KMD = MD.second;
2309 
2310     switch (Kind) {
2311       default:
2312         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2313         break;
2314       case LLVMContext::MD_dbg:
2315         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2316       case LLVMContext::MD_tbaa:
2317         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2318         break;
2319       case LLVMContext::MD_alias_scope:
2320         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2321         break;
2322       case LLVMContext::MD_noalias:
2323       case LLVMContext::MD_mem_parallel_loop_access:
2324         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2325         break;
2326       case LLVMContext::MD_access_group:
2327         K->setMetadata(LLVMContext::MD_access_group,
2328                        intersectAccessGroups(K, J));
2329         break;
2330       case LLVMContext::MD_range:
2331 
2332         // If K does move, use most generic range. Otherwise keep the range of
2333         // K.
2334         if (DoesKMove)
2335           // FIXME: If K does move, we should drop the range info and nonnull.
2336           //        Currently this function is used with DoesKMove in passes
2337           //        doing hoisting/sinking and the current behavior of using the
2338           //        most generic range is correct in those cases.
2339           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2340         break;
2341       case LLVMContext::MD_fpmath:
2342         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2343         break;
2344       case LLVMContext::MD_invariant_load:
2345         // Only set the !invariant.load if it is present in both instructions.
2346         K->setMetadata(Kind, JMD);
2347         break;
2348       case LLVMContext::MD_nonnull:
2349         // If K does move, keep nonull if it is present in both instructions.
2350         if (DoesKMove)
2351           K->setMetadata(Kind, JMD);
2352         break;
2353       case LLVMContext::MD_invariant_group:
2354         // Preserve !invariant.group in K.
2355         break;
2356       case LLVMContext::MD_align:
2357         K->setMetadata(Kind,
2358           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2359         break;
2360       case LLVMContext::MD_dereferenceable:
2361       case LLVMContext::MD_dereferenceable_or_null:
2362         K->setMetadata(Kind,
2363           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2364         break;
2365       case LLVMContext::MD_preserve_access_index:
2366         // Preserve !preserve.access.index in K.
2367         break;
2368     }
2369   }
2370   // Set !invariant.group from J if J has it. If both instructions have it
2371   // then we will just pick it from J - even when they are different.
2372   // Also make sure that K is load or store - f.e. combining bitcast with load
2373   // could produce bitcast with invariant.group metadata, which is invalid.
2374   // FIXME: we should try to preserve both invariant.group md if they are
2375   // different, but right now instruction can only have one invariant.group.
2376   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2377     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2378       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2379 }
2380 
2381 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2382                                  bool KDominatesJ) {
2383   unsigned KnownIDs[] = {
2384       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2385       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2386       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2387       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2388       LLVMContext::MD_dereferenceable,
2389       LLVMContext::MD_dereferenceable_or_null,
2390       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2391   combineMetadata(K, J, KnownIDs, KDominatesJ);
2392 }
2393 
2394 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2395   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2396   Source.getAllMetadata(MD);
2397   MDBuilder MDB(Dest.getContext());
2398   Type *NewType = Dest.getType();
2399   const DataLayout &DL = Source.getModule()->getDataLayout();
2400   for (const auto &MDPair : MD) {
2401     unsigned ID = MDPair.first;
2402     MDNode *N = MDPair.second;
2403     // Note, essentially every kind of metadata should be preserved here! This
2404     // routine is supposed to clone a load instruction changing *only its type*.
2405     // The only metadata it makes sense to drop is metadata which is invalidated
2406     // when the pointer type changes. This should essentially never be the case
2407     // in LLVM, but we explicitly switch over only known metadata to be
2408     // conservatively correct. If you are adding metadata to LLVM which pertains
2409     // to loads, you almost certainly want to add it here.
2410     switch (ID) {
2411     case LLVMContext::MD_dbg:
2412     case LLVMContext::MD_tbaa:
2413     case LLVMContext::MD_prof:
2414     case LLVMContext::MD_fpmath:
2415     case LLVMContext::MD_tbaa_struct:
2416     case LLVMContext::MD_invariant_load:
2417     case LLVMContext::MD_alias_scope:
2418     case LLVMContext::MD_noalias:
2419     case LLVMContext::MD_nontemporal:
2420     case LLVMContext::MD_mem_parallel_loop_access:
2421     case LLVMContext::MD_access_group:
2422       // All of these directly apply.
2423       Dest.setMetadata(ID, N);
2424       break;
2425 
2426     case LLVMContext::MD_nonnull:
2427       copyNonnullMetadata(Source, N, Dest);
2428       break;
2429 
2430     case LLVMContext::MD_align:
2431     case LLVMContext::MD_dereferenceable:
2432     case LLVMContext::MD_dereferenceable_or_null:
2433       // These only directly apply if the new type is also a pointer.
2434       if (NewType->isPointerTy())
2435         Dest.setMetadata(ID, N);
2436       break;
2437 
2438     case LLVMContext::MD_range:
2439       copyRangeMetadata(DL, Source, N, Dest);
2440       break;
2441     }
2442   }
2443 }
2444 
2445 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2446   auto *ReplInst = dyn_cast<Instruction>(Repl);
2447   if (!ReplInst)
2448     return;
2449 
2450   // Patch the replacement so that it is not more restrictive than the value
2451   // being replaced.
2452   // Note that if 'I' is a load being replaced by some operation,
2453   // for example, by an arithmetic operation, then andIRFlags()
2454   // would just erase all math flags from the original arithmetic
2455   // operation, which is clearly not wanted and not needed.
2456   if (!isa<LoadInst>(I))
2457     ReplInst->andIRFlags(I);
2458 
2459   // FIXME: If both the original and replacement value are part of the
2460   // same control-flow region (meaning that the execution of one
2461   // guarantees the execution of the other), then we can combine the
2462   // noalias scopes here and do better than the general conservative
2463   // answer used in combineMetadata().
2464 
2465   // In general, GVN unifies expressions over different control-flow
2466   // regions, and so we need a conservative combination of the noalias
2467   // scopes.
2468   static const unsigned KnownIDs[] = {
2469       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2470       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2471       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2472       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2473       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2474   combineMetadata(ReplInst, I, KnownIDs, false);
2475 }
2476 
2477 template <typename RootType, typename DominatesFn>
2478 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2479                                          const RootType &Root,
2480                                          const DominatesFn &Dominates) {
2481   assert(From->getType() == To->getType());
2482 
2483   unsigned Count = 0;
2484   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2485        UI != UE;) {
2486     Use &U = *UI++;
2487     if (!Dominates(Root, U))
2488       continue;
2489     U.set(To);
2490     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2491                       << "' as " << *To << " in " << *U << "\n");
2492     ++Count;
2493   }
2494   return Count;
2495 }
2496 
2497 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2498    assert(From->getType() == To->getType());
2499    auto *BB = From->getParent();
2500    unsigned Count = 0;
2501 
2502   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2503        UI != UE;) {
2504     Use &U = *UI++;
2505     auto *I = cast<Instruction>(U.getUser());
2506     if (I->getParent() == BB)
2507       continue;
2508     U.set(To);
2509     ++Count;
2510   }
2511   return Count;
2512 }
2513 
2514 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2515                                         DominatorTree &DT,
2516                                         const BasicBlockEdge &Root) {
2517   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2518     return DT.dominates(Root, U);
2519   };
2520   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2521 }
2522 
2523 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2524                                         DominatorTree &DT,
2525                                         const BasicBlock *BB) {
2526   auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
2527     auto *I = cast<Instruction>(U.getUser())->getParent();
2528     return DT.properlyDominates(BB, I);
2529   };
2530   return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
2531 }
2532 
2533 bool llvm::callsGCLeafFunction(const CallBase *Call,
2534                                const TargetLibraryInfo &TLI) {
2535   // Check if the function is specifically marked as a gc leaf function.
2536   if (Call->hasFnAttr("gc-leaf-function"))
2537     return true;
2538   if (const Function *F = Call->getCalledFunction()) {
2539     if (F->hasFnAttribute("gc-leaf-function"))
2540       return true;
2541 
2542     if (auto IID = F->getIntrinsicID())
2543       // Most LLVM intrinsics do not take safepoints.
2544       return IID != Intrinsic::experimental_gc_statepoint &&
2545              IID != Intrinsic::experimental_deoptimize;
2546   }
2547 
2548   // Lib calls can be materialized by some passes, and won't be
2549   // marked as 'gc-leaf-function.' All available Libcalls are
2550   // GC-leaf.
2551   LibFunc LF;
2552   if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) {
2553     return TLI.has(LF);
2554   }
2555 
2556   return false;
2557 }
2558 
2559 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2560                                LoadInst &NewLI) {
2561   auto *NewTy = NewLI.getType();
2562 
2563   // This only directly applies if the new type is also a pointer.
2564   if (NewTy->isPointerTy()) {
2565     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2566     return;
2567   }
2568 
2569   // The only other translation we can do is to integral loads with !range
2570   // metadata.
2571   if (!NewTy->isIntegerTy())
2572     return;
2573 
2574   MDBuilder MDB(NewLI.getContext());
2575   const Value *Ptr = OldLI.getPointerOperand();
2576   auto *ITy = cast<IntegerType>(NewTy);
2577   auto *NullInt = ConstantExpr::getPtrToInt(
2578       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2579   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2580   NewLI.setMetadata(LLVMContext::MD_range,
2581                     MDB.createRange(NonNullInt, NullInt));
2582 }
2583 
2584 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2585                              MDNode *N, LoadInst &NewLI) {
2586   auto *NewTy = NewLI.getType();
2587 
2588   // Give up unless it is converted to a pointer where there is a single very
2589   // valuable mapping we can do reliably.
2590   // FIXME: It would be nice to propagate this in more ways, but the type
2591   // conversions make it hard.
2592   if (!NewTy->isPointerTy())
2593     return;
2594 
2595   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2596   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2597     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2598     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2599   }
2600 }
2601 
2602 void llvm::dropDebugUsers(Instruction &I) {
2603   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2604   findDbgUsers(DbgUsers, &I);
2605   for (auto *DII : DbgUsers)
2606     DII->eraseFromParent();
2607 }
2608 
2609 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2610                                     BasicBlock *BB) {
2611   // Since we are moving the instructions out of its basic block, we do not
2612   // retain their original debug locations (DILocations) and debug intrinsic
2613   // instructions.
2614   //
2615   // Doing so would degrade the debugging experience and adversely affect the
2616   // accuracy of profiling information.
2617   //
2618   // Currently, when hoisting the instructions, we take the following actions:
2619   // - Remove their debug intrinsic instructions.
2620   // - Set their debug locations to the values from the insertion point.
2621   //
2622   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2623   // need to be deleted, is because there will not be any instructions with a
2624   // DILocation in either branch left after performing the transformation. We
2625   // can only insert a dbg.value after the two branches are joined again.
2626   //
2627   // See PR38762, PR39243 for more details.
2628   //
2629   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2630   // encode predicated DIExpressions that yield different results on different
2631   // code paths.
2632   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2633     Instruction *I = &*II;
2634     I->dropUnknownNonDebugMetadata();
2635     if (I->isUsedByMetadata())
2636       dropDebugUsers(*I);
2637     if (isa<DbgInfoIntrinsic>(I)) {
2638       // Remove DbgInfo Intrinsics.
2639       II = I->eraseFromParent();
2640       continue;
2641     }
2642     I->setDebugLoc(InsertPt->getDebugLoc());
2643     ++II;
2644   }
2645   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2646                                  BB->begin(),
2647                                  BB->getTerminator()->getIterator());
2648 }
2649 
2650 namespace {
2651 
2652 /// A potential constituent of a bitreverse or bswap expression. See
2653 /// collectBitParts for a fuller explanation.
2654 struct BitPart {
2655   BitPart(Value *P, unsigned BW) : Provider(P) {
2656     Provenance.resize(BW);
2657   }
2658 
2659   /// The Value that this is a bitreverse/bswap of.
2660   Value *Provider;
2661 
2662   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2663   /// in Provider becomes bit B in the result of this expression.
2664   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2665 
2666   enum { Unset = -1 };
2667 };
2668 
2669 } // end anonymous namespace
2670 
2671 /// Analyze the specified subexpression and see if it is capable of providing
2672 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2673 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2674 /// the output of the expression came from a corresponding bit in some other
2675 /// value. This function is recursive, and the end result is a mapping of
2676 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2677 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2678 ///
2679 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2680 /// that the expression deposits the low byte of %X into the high byte of the
2681 /// result and that all other bits are zero. This expression is accepted and a
2682 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2683 /// [0-7].
2684 ///
2685 /// To avoid revisiting values, the BitPart results are memoized into the
2686 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2687 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2688 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2689 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2690 /// type instead to provide the same functionality.
2691 ///
2692 /// Because we pass around references into \c BPS, we must use a container that
2693 /// does not invalidate internal references (std::map instead of DenseMap).
2694 static const Optional<BitPart> &
2695 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2696                 std::map<Value *, Optional<BitPart>> &BPS, int Depth) {
2697   auto I = BPS.find(V);
2698   if (I != BPS.end())
2699     return I->second;
2700 
2701   auto &Result = BPS[V] = None;
2702   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2703 
2704   // Prevent stack overflow by limiting the recursion depth
2705   if (Depth == BitPartRecursionMaxDepth) {
2706     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2707     return Result;
2708   }
2709 
2710   if (Instruction *I = dyn_cast<Instruction>(V)) {
2711     // If this is an or instruction, it may be an inner node of the bswap.
2712     if (I->getOpcode() == Instruction::Or) {
2713       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
2714                                 MatchBitReversals, BPS, Depth + 1);
2715       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
2716                                 MatchBitReversals, BPS, Depth + 1);
2717       if (!A || !B)
2718         return Result;
2719 
2720       // Try and merge the two together.
2721       if (!A->Provider || A->Provider != B->Provider)
2722         return Result;
2723 
2724       Result = BitPart(A->Provider, BitWidth);
2725       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
2726         if (A->Provenance[i] != BitPart::Unset &&
2727             B->Provenance[i] != BitPart::Unset &&
2728             A->Provenance[i] != B->Provenance[i])
2729           return Result = None;
2730 
2731         if (A->Provenance[i] == BitPart::Unset)
2732           Result->Provenance[i] = B->Provenance[i];
2733         else
2734           Result->Provenance[i] = A->Provenance[i];
2735       }
2736 
2737       return Result;
2738     }
2739 
2740     // If this is a logical shift by a constant, recurse then shift the result.
2741     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
2742       unsigned BitShift =
2743           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
2744       // Ensure the shift amount is defined.
2745       if (BitShift > BitWidth)
2746         return Result;
2747 
2748       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2749                                   MatchBitReversals, BPS, Depth + 1);
2750       if (!Res)
2751         return Result;
2752       Result = Res;
2753 
2754       // Perform the "shift" on BitProvenance.
2755       auto &P = Result->Provenance;
2756       if (I->getOpcode() == Instruction::Shl) {
2757         P.erase(std::prev(P.end(), BitShift), P.end());
2758         P.insert(P.begin(), BitShift, BitPart::Unset);
2759       } else {
2760         P.erase(P.begin(), std::next(P.begin(), BitShift));
2761         P.insert(P.end(), BitShift, BitPart::Unset);
2762       }
2763 
2764       return Result;
2765     }
2766 
2767     // If this is a logical 'and' with a mask that clears bits, recurse then
2768     // unset the appropriate bits.
2769     if (I->getOpcode() == Instruction::And &&
2770         isa<ConstantInt>(I->getOperand(1))) {
2771       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
2772       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
2773 
2774       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2775       // early exit.
2776       unsigned NumMaskedBits = AndMask.countPopulation();
2777       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
2778         return Result;
2779 
2780       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2781                                   MatchBitReversals, BPS, Depth + 1);
2782       if (!Res)
2783         return Result;
2784       Result = Res;
2785 
2786       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
2787         // If the AndMask is zero for this bit, clear the bit.
2788         if ((AndMask & Bit) == 0)
2789           Result->Provenance[i] = BitPart::Unset;
2790       return Result;
2791     }
2792 
2793     // If this is a zext instruction zero extend the result.
2794     if (I->getOpcode() == Instruction::ZExt) {
2795       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
2796                                   MatchBitReversals, BPS, Depth + 1);
2797       if (!Res)
2798         return Result;
2799 
2800       Result = BitPart(Res->Provider, BitWidth);
2801       auto NarrowBitWidth =
2802           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
2803       for (unsigned i = 0; i < NarrowBitWidth; ++i)
2804         Result->Provenance[i] = Res->Provenance[i];
2805       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
2806         Result->Provenance[i] = BitPart::Unset;
2807       return Result;
2808     }
2809   }
2810 
2811   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
2812   // the input value to the bswap/bitreverse.
2813   Result = BitPart(V, BitWidth);
2814   for (unsigned i = 0; i < BitWidth; ++i)
2815     Result->Provenance[i] = i;
2816   return Result;
2817 }
2818 
2819 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2820                                           unsigned BitWidth) {
2821   if (From % 8 != To % 8)
2822     return false;
2823   // Convert from bit indices to byte indices and check for a byte reversal.
2824   From >>= 3;
2825   To >>= 3;
2826   BitWidth >>= 3;
2827   return From == BitWidth - To - 1;
2828 }
2829 
2830 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2831                                                unsigned BitWidth) {
2832   return From == BitWidth - To - 1;
2833 }
2834 
2835 bool llvm::recognizeBSwapOrBitReverseIdiom(
2836     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2837     SmallVectorImpl<Instruction *> &InsertedInsts) {
2838   if (Operator::getOpcode(I) != Instruction::Or)
2839     return false;
2840   if (!MatchBSwaps && !MatchBitReversals)
2841     return false;
2842   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2843   if (!ITy || ITy->getBitWidth() > 128)
2844     return false;   // Can't do vectors or integers > 128 bits.
2845   unsigned BW = ITy->getBitWidth();
2846 
2847   unsigned DemandedBW = BW;
2848   IntegerType *DemandedTy = ITy;
2849   if (I->hasOneUse()) {
2850     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2851       DemandedTy = cast<IntegerType>(Trunc->getType());
2852       DemandedBW = DemandedTy->getBitWidth();
2853     }
2854   }
2855 
2856   // Try to find all the pieces corresponding to the bswap.
2857   std::map<Value *, Optional<BitPart>> BPS;
2858   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0);
2859   if (!Res)
2860     return false;
2861   auto &BitProvenance = Res->Provenance;
2862 
2863   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2864   // only byteswap values with an even number of bytes.
2865   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2866   for (unsigned i = 0; i < DemandedBW; ++i) {
2867     OKForBSwap &=
2868         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2869     OKForBitReverse &=
2870         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2871   }
2872 
2873   Intrinsic::ID Intrin;
2874   if (OKForBSwap && MatchBSwaps)
2875     Intrin = Intrinsic::bswap;
2876   else if (OKForBitReverse && MatchBitReversals)
2877     Intrin = Intrinsic::bitreverse;
2878   else
2879     return false;
2880 
2881   if (ITy != DemandedTy) {
2882     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2883     Value *Provider = Res->Provider;
2884     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2885     // We may need to truncate the provider.
2886     if (DemandedTy != ProviderTy) {
2887       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2888                                      "trunc", I);
2889       InsertedInsts.push_back(Trunc);
2890       Provider = Trunc;
2891     }
2892     auto *CI = CallInst::Create(F, Provider, "rev", I);
2893     InsertedInsts.push_back(CI);
2894     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2895     InsertedInsts.push_back(ExtInst);
2896     return true;
2897   }
2898 
2899   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2900   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2901   return true;
2902 }
2903 
2904 // CodeGen has special handling for some string functions that may replace
2905 // them with target-specific intrinsics.  Since that'd skip our interceptors
2906 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2907 // we mark affected calls as NoBuiltin, which will disable optimization
2908 // in CodeGen.
2909 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2910     CallInst *CI, const TargetLibraryInfo *TLI) {
2911   Function *F = CI->getCalledFunction();
2912   LibFunc Func;
2913   if (F && !F->hasLocalLinkage() && F->hasName() &&
2914       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2915       !F->doesNotAccessMemory())
2916     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2917 }
2918 
2919 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
2920   // We can't have a PHI with a metadata type.
2921   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
2922     return false;
2923 
2924   // Early exit.
2925   if (!isa<Constant>(I->getOperand(OpIdx)))
2926     return true;
2927 
2928   switch (I->getOpcode()) {
2929   default:
2930     return true;
2931   case Instruction::Call:
2932   case Instruction::Invoke:
2933     // Can't handle inline asm. Skip it.
2934     if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
2935       return false;
2936     // Many arithmetic intrinsics have no issue taking a
2937     // variable, however it's hard to distingish these from
2938     // specials such as @llvm.frameaddress that require a constant.
2939     if (isa<IntrinsicInst>(I))
2940       return false;
2941 
2942     // Constant bundle operands may need to retain their constant-ness for
2943     // correctness.
2944     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
2945       return false;
2946     return true;
2947   case Instruction::ShuffleVector:
2948     // Shufflevector masks are constant.
2949     return OpIdx != 2;
2950   case Instruction::Switch:
2951   case Instruction::ExtractValue:
2952     // All operands apart from the first are constant.
2953     return OpIdx == 0;
2954   case Instruction::InsertValue:
2955     // All operands apart from the first and the second are constant.
2956     return OpIdx < 2;
2957   case Instruction::Alloca:
2958     // Static allocas (constant size in the entry block) are handled by
2959     // prologue/epilogue insertion so they're free anyway. We definitely don't
2960     // want to make them non-constant.
2961     return !cast<AllocaInst>(I)->isStaticAlloca();
2962   case Instruction::GetElementPtr:
2963     if (OpIdx == 0)
2964       return true;
2965     gep_type_iterator It = gep_type_begin(I);
2966     for (auto E = std::next(It, OpIdx); It != E; ++It)
2967       if (It.isStruct())
2968         return false;
2969     return true;
2970   }
2971 }
2972 
2973 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
2974 AllocaInst *llvm::findAllocaForValue(Value *V,
2975                                      AllocaForValueMapTy &AllocaForValue) {
2976   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2977     return AI;
2978   // See if we've already calculated (or started to calculate) alloca for a
2979   // given value.
2980   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2981   if (I != AllocaForValue.end())
2982     return I->second;
2983   // Store 0 while we're calculating alloca for value V to avoid
2984   // infinite recursion if the value references itself.
2985   AllocaForValue[V] = nullptr;
2986   AllocaInst *Res = nullptr;
2987   if (CastInst *CI = dyn_cast<CastInst>(V))
2988     Res = findAllocaForValue(CI->getOperand(0), AllocaForValue);
2989   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2990     for (Value *IncValue : PN->incoming_values()) {
2991       // Allow self-referencing phi-nodes.
2992       if (IncValue == PN)
2993         continue;
2994       AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue);
2995       // AI for incoming values should exist and should all be equal.
2996       if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2997         return nullptr;
2998       Res = IncValueAI;
2999     }
3000   } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) {
3001     Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue);
3002   } else {
3003     LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
3004                       << *V << "\n");
3005   }
3006   if (Res)
3007     AllocaForValue[V] = Res;
3008   return Res;
3009 }
3010