1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/MemorySSAUpdater.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/BinaryFormat/Dwarf.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/ConstantRange.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DIBuilder.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalObject.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/PseudoProbe.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <climits> 83 #include <cstdint> 84 #include <iterator> 85 #include <map> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 #define DEBUG_TYPE "local" 92 93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 95 96 static cl::opt<bool> PHICSEDebugHash( 97 "phicse-debug-hash", 98 #ifdef EXPENSIVE_CHECKS 99 cl::init(true), 100 #else 101 cl::init(false), 102 #endif 103 cl::Hidden, 104 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 105 "function is well-behaved w.r.t. its isEqual predicate")); 106 107 static cl::opt<unsigned> PHICSENumPHISmallSize( 108 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 109 cl::desc( 110 "When the basic block contains not more than this number of PHI nodes, " 111 "perform a (faster!) exhaustive search instead of set-driven one.")); 112 113 // Max recursion depth for collectBitParts used when detecting bswap and 114 // bitreverse idioms. 115 static const unsigned BitPartRecursionMaxDepth = 48; 116 117 //===----------------------------------------------------------------------===// 118 // Local constant propagation. 119 // 120 121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 122 /// constant value, convert it into an unconditional branch to the constant 123 /// destination. This is a nontrivial operation because the successors of this 124 /// basic block must have their PHI nodes updated. 125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 126 /// conditions and indirectbr addresses this might make dead if 127 /// DeleteDeadConditions is true. 128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 129 const TargetLibraryInfo *TLI, 130 DomTreeUpdater *DTU) { 131 Instruction *T = BB->getTerminator(); 132 IRBuilder<> Builder(T); 133 134 // Branch - See if we are conditional jumping on constant 135 if (auto *BI = dyn_cast<BranchInst>(T)) { 136 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 137 138 BasicBlock *Dest1 = BI->getSuccessor(0); 139 BasicBlock *Dest2 = BI->getSuccessor(1); 140 141 if (Dest2 == Dest1) { // Conditional branch to same location? 142 // This branch matches something like this: 143 // br bool %cond, label %Dest, label %Dest 144 // and changes it into: br label %Dest 145 146 // Let the basic block know that we are letting go of one copy of it. 147 assert(BI->getParent() && "Terminator not inserted in block!"); 148 Dest1->removePredecessor(BI->getParent()); 149 150 // Replace the conditional branch with an unconditional one. 151 BranchInst *NewBI = Builder.CreateBr(Dest1); 152 153 // Transfer the metadata to the new branch instruction. 154 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 155 LLVMContext::MD_annotation}); 156 157 Value *Cond = BI->getCondition(); 158 BI->eraseFromParent(); 159 if (DeleteDeadConditions) 160 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 161 return true; 162 } 163 164 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 165 // Are we branching on constant? 166 // YES. Change to unconditional branch... 167 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 168 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 169 170 // Let the basic block know that we are letting go of it. Based on this, 171 // it will adjust it's PHI nodes. 172 OldDest->removePredecessor(BB); 173 174 // Replace the conditional branch with an unconditional one. 175 BranchInst *NewBI = Builder.CreateBr(Destination); 176 177 // Transfer the metadata to the new branch instruction. 178 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 179 LLVMContext::MD_annotation}); 180 181 BI->eraseFromParent(); 182 if (DTU) 183 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 184 return true; 185 } 186 187 return false; 188 } 189 190 if (auto *SI = dyn_cast<SwitchInst>(T)) { 191 // If we are switching on a constant, we can convert the switch to an 192 // unconditional branch. 193 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 194 BasicBlock *DefaultDest = SI->getDefaultDest(); 195 BasicBlock *TheOnlyDest = DefaultDest; 196 197 // If the default is unreachable, ignore it when searching for TheOnlyDest. 198 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 199 SI->getNumCases() > 0) { 200 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 201 } 202 203 bool Changed = false; 204 205 // Figure out which case it goes to. 206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 207 // Found case matching a constant operand? 208 if (i->getCaseValue() == CI) { 209 TheOnlyDest = i->getCaseSuccessor(); 210 break; 211 } 212 213 // Check to see if this branch is going to the same place as the default 214 // dest. If so, eliminate it as an explicit compare. 215 if (i->getCaseSuccessor() == DefaultDest) { 216 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 217 unsigned NCases = SI->getNumCases(); 218 // Fold the case metadata into the default if there will be any branches 219 // left, unless the metadata doesn't match the switch. 220 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 221 // Collect branch weights into a vector. 222 SmallVector<uint32_t, 8> Weights; 223 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 224 ++MD_i) { 225 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 226 Weights.push_back(CI->getValue().getZExtValue()); 227 } 228 // Merge weight of this case to the default weight. 229 unsigned idx = i->getCaseIndex(); 230 Weights[0] += Weights[idx+1]; 231 // Remove weight for this case. 232 std::swap(Weights[idx+1], Weights.back()); 233 Weights.pop_back(); 234 SI->setMetadata(LLVMContext::MD_prof, 235 MDBuilder(BB->getContext()). 236 createBranchWeights(Weights)); 237 } 238 // Remove this entry. 239 BasicBlock *ParentBB = SI->getParent(); 240 DefaultDest->removePredecessor(ParentBB); 241 i = SI->removeCase(i); 242 e = SI->case_end(); 243 Changed = true; 244 continue; 245 } 246 247 // Otherwise, check to see if the switch only branches to one destination. 248 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 249 // destinations. 250 if (i->getCaseSuccessor() != TheOnlyDest) 251 TheOnlyDest = nullptr; 252 253 // Increment this iterator as we haven't removed the case. 254 ++i; 255 } 256 257 if (CI && !TheOnlyDest) { 258 // Branching on a constant, but not any of the cases, go to the default 259 // successor. 260 TheOnlyDest = SI->getDefaultDest(); 261 } 262 263 // If we found a single destination that we can fold the switch into, do so 264 // now. 265 if (TheOnlyDest) { 266 // Insert the new branch. 267 Builder.CreateBr(TheOnlyDest); 268 BasicBlock *BB = SI->getParent(); 269 270 SmallSet<BasicBlock *, 8> RemovedSuccessors; 271 272 // Remove entries from PHI nodes which we no longer branch to... 273 BasicBlock *SuccToKeep = TheOnlyDest; 274 for (BasicBlock *Succ : successors(SI)) { 275 if (DTU && Succ != TheOnlyDest) 276 RemovedSuccessors.insert(Succ); 277 // Found case matching a constant operand? 278 if (Succ == SuccToKeep) { 279 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 280 } else { 281 Succ->removePredecessor(BB); 282 } 283 } 284 285 // Delete the old switch. 286 Value *Cond = SI->getCondition(); 287 SI->eraseFromParent(); 288 if (DeleteDeadConditions) 289 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 290 if (DTU) { 291 std::vector<DominatorTree::UpdateType> Updates; 292 Updates.reserve(RemovedSuccessors.size()); 293 for (auto *RemovedSuccessor : RemovedSuccessors) 294 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 295 DTU->applyUpdates(Updates); 296 } 297 return true; 298 } 299 300 if (SI->getNumCases() == 1) { 301 // Otherwise, we can fold this switch into a conditional branch 302 // instruction if it has only one non-default destination. 303 auto FirstCase = *SI->case_begin(); 304 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 305 FirstCase.getCaseValue(), "cond"); 306 307 // Insert the new branch. 308 BranchInst *NewBr = Builder.CreateCondBr(Cond, 309 FirstCase.getCaseSuccessor(), 310 SI->getDefaultDest()); 311 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 312 if (MD && MD->getNumOperands() == 3) { 313 ConstantInt *SICase = 314 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 315 ConstantInt *SIDef = 316 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 317 assert(SICase && SIDef); 318 // The TrueWeight should be the weight for the single case of SI. 319 NewBr->setMetadata(LLVMContext::MD_prof, 320 MDBuilder(BB->getContext()). 321 createBranchWeights(SICase->getValue().getZExtValue(), 322 SIDef->getValue().getZExtValue())); 323 } 324 325 // Update make.implicit metadata to the newly-created conditional branch. 326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 327 if (MakeImplicitMD) 328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 329 330 // Delete the old switch. 331 SI->eraseFromParent(); 332 return true; 333 } 334 return Changed; 335 } 336 337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 338 // indirectbr blockaddress(@F, @BB) -> br label @BB 339 if (auto *BA = 340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 341 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 342 SmallSet<BasicBlock *, 8> RemovedSuccessors; 343 344 // Insert the new branch. 345 Builder.CreateBr(TheOnlyDest); 346 347 BasicBlock *SuccToKeep = TheOnlyDest; 348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 349 BasicBlock *DestBB = IBI->getDestination(i); 350 if (DTU && DestBB != TheOnlyDest) 351 RemovedSuccessors.insert(DestBB); 352 if (IBI->getDestination(i) == SuccToKeep) { 353 SuccToKeep = nullptr; 354 } else { 355 DestBB->removePredecessor(BB); 356 } 357 } 358 Value *Address = IBI->getAddress(); 359 IBI->eraseFromParent(); 360 if (DeleteDeadConditions) 361 // Delete pointer cast instructions. 362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 363 364 // Also zap the blockaddress constant if there are no users remaining, 365 // otherwise the destination is still marked as having its address taken. 366 if (BA->use_empty()) 367 BA->destroyConstant(); 368 369 // If we didn't find our destination in the IBI successor list, then we 370 // have undefined behavior. Replace the unconditional branch with an 371 // 'unreachable' instruction. 372 if (SuccToKeep) { 373 BB->getTerminator()->eraseFromParent(); 374 new UnreachableInst(BB->getContext(), BB); 375 } 376 377 if (DTU) { 378 std::vector<DominatorTree::UpdateType> Updates; 379 Updates.reserve(RemovedSuccessors.size()); 380 for (auto *RemovedSuccessor : RemovedSuccessors) 381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 382 DTU->applyUpdates(Updates); 383 } 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Local dead code elimination. 393 // 394 395 /// isInstructionTriviallyDead - Return true if the result produced by the 396 /// instruction is not used, and the instruction has no side effects. 397 /// 398 bool llvm::isInstructionTriviallyDead(Instruction *I, 399 const TargetLibraryInfo *TLI) { 400 if (!I->use_empty()) 401 return false; 402 return wouldInstructionBeTriviallyDead(I, TLI); 403 } 404 405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 406 const TargetLibraryInfo *TLI) { 407 if (I->isTerminator()) 408 return false; 409 410 // We don't want the landingpad-like instructions removed by anything this 411 // general. 412 if (I->isEHPad()) 413 return false; 414 415 // We don't want debug info removed by anything this general, unless 416 // debug info is empty. 417 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 418 if (DDI->getAddress()) 419 return false; 420 return true; 421 } 422 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 423 if (DVI->hasArgList() || DVI->getValue(0)) 424 return false; 425 return true; 426 } 427 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 428 if (DLI->getLabel()) 429 return false; 430 return true; 431 } 432 433 if (!I->willReturn()) 434 return false; 435 436 if (!I->mayHaveSideEffects()) 437 return true; 438 439 // Special case intrinsics that "may have side effects" but can be deleted 440 // when dead. 441 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 442 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 443 if (II->getIntrinsicID() == Intrinsic::stacksave || 444 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 445 return true; 446 447 if (II->isLifetimeStartOrEnd()) { 448 auto *Arg = II->getArgOperand(1); 449 // Lifetime intrinsics are dead when their right-hand is undef. 450 if (isa<UndefValue>(Arg)) 451 return true; 452 // If the right-hand is an alloc, global, or argument and the only uses 453 // are lifetime intrinsics then the intrinsics are dead. 454 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 455 return llvm::all_of(Arg->uses(), [](Use &Use) { 456 if (IntrinsicInst *IntrinsicUse = 457 dyn_cast<IntrinsicInst>(Use.getUser())) 458 return IntrinsicUse->isLifetimeStartOrEnd(); 459 return false; 460 }); 461 return false; 462 } 463 464 // Assumptions are dead if their condition is trivially true. Guards on 465 // true are operationally no-ops. In the future we can consider more 466 // sophisticated tradeoffs for guards considering potential for check 467 // widening, but for now we keep things simple. 468 if ((II->getIntrinsicID() == Intrinsic::assume && 469 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || 470 II->getIntrinsicID() == Intrinsic::experimental_guard) { 471 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 472 return !Cond->isZero(); 473 474 return false; 475 } 476 477 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 478 Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); 479 return ExBehavior.getValue() != fp::ebStrict; 480 } 481 } 482 483 if (isAllocLikeFn(I, TLI)) 484 return true; 485 486 if (CallInst *CI = isFreeCall(I, TLI)) 487 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 488 return C->isNullValue() || isa<UndefValue>(C); 489 490 if (auto *Call = dyn_cast<CallBase>(I)) 491 if (isMathLibCallNoop(Call, TLI)) 492 return true; 493 494 return false; 495 } 496 497 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 498 /// trivially dead instruction, delete it. If that makes any of its operands 499 /// trivially dead, delete them too, recursively. Return true if any 500 /// instructions were deleted. 501 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 502 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 503 std::function<void(Value *)> AboutToDeleteCallback) { 504 Instruction *I = dyn_cast<Instruction>(V); 505 if (!I || !isInstructionTriviallyDead(I, TLI)) 506 return false; 507 508 SmallVector<WeakTrackingVH, 16> DeadInsts; 509 DeadInsts.push_back(I); 510 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 511 AboutToDeleteCallback); 512 513 return true; 514 } 515 516 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 517 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 518 MemorySSAUpdater *MSSAU, 519 std::function<void(Value *)> AboutToDeleteCallback) { 520 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 521 for (; S != E; ++S) { 522 auto *I = cast<Instruction>(DeadInsts[S]); 523 if (!isInstructionTriviallyDead(I)) { 524 DeadInsts[S] = nullptr; 525 ++Alive; 526 } 527 } 528 if (Alive == E) 529 return false; 530 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 531 AboutToDeleteCallback); 532 return true; 533 } 534 535 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 536 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 537 MemorySSAUpdater *MSSAU, 538 std::function<void(Value *)> AboutToDeleteCallback) { 539 // Process the dead instruction list until empty. 540 while (!DeadInsts.empty()) { 541 Value *V = DeadInsts.pop_back_val(); 542 Instruction *I = cast_or_null<Instruction>(V); 543 if (!I) 544 continue; 545 assert(isInstructionTriviallyDead(I, TLI) && 546 "Live instruction found in dead worklist!"); 547 assert(I->use_empty() && "Instructions with uses are not dead."); 548 549 // Don't lose the debug info while deleting the instructions. 550 salvageDebugInfo(*I); 551 552 if (AboutToDeleteCallback) 553 AboutToDeleteCallback(I); 554 555 // Null out all of the instruction's operands to see if any operand becomes 556 // dead as we go. 557 for (Use &OpU : I->operands()) { 558 Value *OpV = OpU.get(); 559 OpU.set(nullptr); 560 561 if (!OpV->use_empty()) 562 continue; 563 564 // If the operand is an instruction that became dead as we nulled out the 565 // operand, and if it is 'trivially' dead, delete it in a future loop 566 // iteration. 567 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 568 if (isInstructionTriviallyDead(OpI, TLI)) 569 DeadInsts.push_back(OpI); 570 } 571 if (MSSAU) 572 MSSAU->removeMemoryAccess(I); 573 574 I->eraseFromParent(); 575 } 576 } 577 578 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 579 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 580 findDbgUsers(DbgUsers, I); 581 for (auto *DII : DbgUsers) { 582 Value *Undef = UndefValue::get(I->getType()); 583 DII->replaceVariableLocationOp(I, Undef); 584 } 585 return !DbgUsers.empty(); 586 } 587 588 /// areAllUsesEqual - Check whether the uses of a value are all the same. 589 /// This is similar to Instruction::hasOneUse() except this will also return 590 /// true when there are no uses or multiple uses that all refer to the same 591 /// value. 592 static bool areAllUsesEqual(Instruction *I) { 593 Value::user_iterator UI = I->user_begin(); 594 Value::user_iterator UE = I->user_end(); 595 if (UI == UE) 596 return true; 597 598 User *TheUse = *UI; 599 for (++UI; UI != UE; ++UI) { 600 if (*UI != TheUse) 601 return false; 602 } 603 return true; 604 } 605 606 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 607 /// dead PHI node, due to being a def-use chain of single-use nodes that 608 /// either forms a cycle or is terminated by a trivially dead instruction, 609 /// delete it. If that makes any of its operands trivially dead, delete them 610 /// too, recursively. Return true if a change was made. 611 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 612 const TargetLibraryInfo *TLI, 613 llvm::MemorySSAUpdater *MSSAU) { 614 SmallPtrSet<Instruction*, 4> Visited; 615 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 616 I = cast<Instruction>(*I->user_begin())) { 617 if (I->use_empty()) 618 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 619 620 // If we find an instruction more than once, we're on a cycle that 621 // won't prove fruitful. 622 if (!Visited.insert(I).second) { 623 // Break the cycle and delete the instruction and its operands. 624 I->replaceAllUsesWith(UndefValue::get(I->getType())); 625 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 626 return true; 627 } 628 } 629 return false; 630 } 631 632 static bool 633 simplifyAndDCEInstruction(Instruction *I, 634 SmallSetVector<Instruction *, 16> &WorkList, 635 const DataLayout &DL, 636 const TargetLibraryInfo *TLI) { 637 if (isInstructionTriviallyDead(I, TLI)) { 638 salvageDebugInfo(*I); 639 640 // Null out all of the instruction's operands to see if any operand becomes 641 // dead as we go. 642 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 643 Value *OpV = I->getOperand(i); 644 I->setOperand(i, nullptr); 645 646 if (!OpV->use_empty() || I == OpV) 647 continue; 648 649 // If the operand is an instruction that became dead as we nulled out the 650 // operand, and if it is 'trivially' dead, delete it in a future loop 651 // iteration. 652 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 653 if (isInstructionTriviallyDead(OpI, TLI)) 654 WorkList.insert(OpI); 655 } 656 657 I->eraseFromParent(); 658 659 return true; 660 } 661 662 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 663 // Add the users to the worklist. CAREFUL: an instruction can use itself, 664 // in the case of a phi node. 665 for (User *U : I->users()) { 666 if (U != I) { 667 WorkList.insert(cast<Instruction>(U)); 668 } 669 } 670 671 // Replace the instruction with its simplified value. 672 bool Changed = false; 673 if (!I->use_empty()) { 674 I->replaceAllUsesWith(SimpleV); 675 Changed = true; 676 } 677 if (isInstructionTriviallyDead(I, TLI)) { 678 I->eraseFromParent(); 679 Changed = true; 680 } 681 return Changed; 682 } 683 return false; 684 } 685 686 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 687 /// simplify any instructions in it and recursively delete dead instructions. 688 /// 689 /// This returns true if it changed the code, note that it can delete 690 /// instructions in other blocks as well in this block. 691 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 692 const TargetLibraryInfo *TLI) { 693 bool MadeChange = false; 694 const DataLayout &DL = BB->getModule()->getDataLayout(); 695 696 #ifndef NDEBUG 697 // In debug builds, ensure that the terminator of the block is never replaced 698 // or deleted by these simplifications. The idea of simplification is that it 699 // cannot introduce new instructions, and there is no way to replace the 700 // terminator of a block without introducing a new instruction. 701 AssertingVH<Instruction> TerminatorVH(&BB->back()); 702 #endif 703 704 SmallSetVector<Instruction *, 16> WorkList; 705 // Iterate over the original function, only adding insts to the worklist 706 // if they actually need to be revisited. This avoids having to pre-init 707 // the worklist with the entire function's worth of instructions. 708 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 709 BI != E;) { 710 assert(!BI->isTerminator()); 711 Instruction *I = &*BI; 712 ++BI; 713 714 // We're visiting this instruction now, so make sure it's not in the 715 // worklist from an earlier visit. 716 if (!WorkList.count(I)) 717 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 718 } 719 720 while (!WorkList.empty()) { 721 Instruction *I = WorkList.pop_back_val(); 722 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 723 } 724 return MadeChange; 725 } 726 727 //===----------------------------------------------------------------------===// 728 // Control Flow Graph Restructuring. 729 // 730 731 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 732 DomTreeUpdater *DTU) { 733 734 // If BB has single-entry PHI nodes, fold them. 735 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 736 Value *NewVal = PN->getIncomingValue(0); 737 // Replace self referencing PHI with undef, it must be dead. 738 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 739 PN->replaceAllUsesWith(NewVal); 740 PN->eraseFromParent(); 741 } 742 743 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 744 assert(PredBB && "Block doesn't have a single predecessor!"); 745 746 bool ReplaceEntryBB = PredBB->isEntryBlock(); 747 748 // DTU updates: Collect all the edges that enter 749 // PredBB. These dominator edges will be redirected to DestBB. 750 SmallVector<DominatorTree::UpdateType, 32> Updates; 751 752 if (DTU) { 753 SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), 754 pred_end(PredBB)); 755 Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); 756 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 757 // This predecessor of PredBB may already have DestBB as a successor. 758 if (PredOfPredBB != PredBB) 759 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 760 for (BasicBlock *PredOfPredBB : PredsOfPredBB) 761 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 762 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 763 } 764 765 // Zap anything that took the address of DestBB. Not doing this will give the 766 // address an invalid value. 767 if (DestBB->hasAddressTaken()) { 768 BlockAddress *BA = BlockAddress::get(DestBB); 769 Constant *Replacement = 770 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 771 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 772 BA->getType())); 773 BA->destroyConstant(); 774 } 775 776 // Anything that branched to PredBB now branches to DestBB. 777 PredBB->replaceAllUsesWith(DestBB); 778 779 // Splice all the instructions from PredBB to DestBB. 780 PredBB->getTerminator()->eraseFromParent(); 781 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 782 new UnreachableInst(PredBB->getContext(), PredBB); 783 784 // If the PredBB is the entry block of the function, move DestBB up to 785 // become the entry block after we erase PredBB. 786 if (ReplaceEntryBB) 787 DestBB->moveAfter(PredBB); 788 789 if (DTU) { 790 assert(PredBB->getInstList().size() == 1 && 791 isa<UnreachableInst>(PredBB->getTerminator()) && 792 "The successor list of PredBB isn't empty before " 793 "applying corresponding DTU updates."); 794 DTU->applyUpdatesPermissive(Updates); 795 DTU->deleteBB(PredBB); 796 // Recalculation of DomTree is needed when updating a forward DomTree and 797 // the Entry BB is replaced. 798 if (ReplaceEntryBB && DTU->hasDomTree()) { 799 // The entry block was removed and there is no external interface for 800 // the dominator tree to be notified of this change. In this corner-case 801 // we recalculate the entire tree. 802 DTU->recalculate(*(DestBB->getParent())); 803 } 804 } 805 806 else { 807 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 808 } 809 } 810 811 /// Return true if we can choose one of these values to use in place of the 812 /// other. Note that we will always choose the non-undef value to keep. 813 static bool CanMergeValues(Value *First, Value *Second) { 814 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 815 } 816 817 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 818 /// branch to Succ, into Succ. 819 /// 820 /// Assumption: Succ is the single successor for BB. 821 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 822 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 823 824 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 825 << Succ->getName() << "\n"); 826 // Shortcut, if there is only a single predecessor it must be BB and merging 827 // is always safe 828 if (Succ->getSinglePredecessor()) return true; 829 830 // Make a list of the predecessors of BB 831 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 832 833 // Look at all the phi nodes in Succ, to see if they present a conflict when 834 // merging these blocks 835 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 836 PHINode *PN = cast<PHINode>(I); 837 838 // If the incoming value from BB is again a PHINode in 839 // BB which has the same incoming value for *PI as PN does, we can 840 // merge the phi nodes and then the blocks can still be merged 841 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 842 if (BBPN && BBPN->getParent() == BB) { 843 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 844 BasicBlock *IBB = PN->getIncomingBlock(PI); 845 if (BBPreds.count(IBB) && 846 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 847 PN->getIncomingValue(PI))) { 848 LLVM_DEBUG(dbgs() 849 << "Can't fold, phi node " << PN->getName() << " in " 850 << Succ->getName() << " is conflicting with " 851 << BBPN->getName() << " with regard to common predecessor " 852 << IBB->getName() << "\n"); 853 return false; 854 } 855 } 856 } else { 857 Value* Val = PN->getIncomingValueForBlock(BB); 858 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 859 // See if the incoming value for the common predecessor is equal to the 860 // one for BB, in which case this phi node will not prevent the merging 861 // of the block. 862 BasicBlock *IBB = PN->getIncomingBlock(PI); 863 if (BBPreds.count(IBB) && 864 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 865 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 866 << " in " << Succ->getName() 867 << " is conflicting with regard to common " 868 << "predecessor " << IBB->getName() << "\n"); 869 return false; 870 } 871 } 872 } 873 } 874 875 return true; 876 } 877 878 using PredBlockVector = SmallVector<BasicBlock *, 16>; 879 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 880 881 /// Determines the value to use as the phi node input for a block. 882 /// 883 /// Select between \p OldVal any value that we know flows from \p BB 884 /// to a particular phi on the basis of which one (if either) is not 885 /// undef. Update IncomingValues based on the selected value. 886 /// 887 /// \param OldVal The value we are considering selecting. 888 /// \param BB The block that the value flows in from. 889 /// \param IncomingValues A map from block-to-value for other phi inputs 890 /// that we have examined. 891 /// 892 /// \returns the selected value. 893 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 894 IncomingValueMap &IncomingValues) { 895 if (!isa<UndefValue>(OldVal)) { 896 assert((!IncomingValues.count(BB) || 897 IncomingValues.find(BB)->second == OldVal) && 898 "Expected OldVal to match incoming value from BB!"); 899 900 IncomingValues.insert(std::make_pair(BB, OldVal)); 901 return OldVal; 902 } 903 904 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 905 if (It != IncomingValues.end()) return It->second; 906 907 return OldVal; 908 } 909 910 /// Create a map from block to value for the operands of a 911 /// given phi. 912 /// 913 /// Create a map from block to value for each non-undef value flowing 914 /// into \p PN. 915 /// 916 /// \param PN The phi we are collecting the map for. 917 /// \param IncomingValues [out] The map from block to value for this phi. 918 static void gatherIncomingValuesToPhi(PHINode *PN, 919 IncomingValueMap &IncomingValues) { 920 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 921 BasicBlock *BB = PN->getIncomingBlock(i); 922 Value *V = PN->getIncomingValue(i); 923 924 if (!isa<UndefValue>(V)) 925 IncomingValues.insert(std::make_pair(BB, V)); 926 } 927 } 928 929 /// Replace the incoming undef values to a phi with the values 930 /// from a block-to-value map. 931 /// 932 /// \param PN The phi we are replacing the undefs in. 933 /// \param IncomingValues A map from block to value. 934 static void replaceUndefValuesInPhi(PHINode *PN, 935 const IncomingValueMap &IncomingValues) { 936 SmallVector<unsigned> TrueUndefOps; 937 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 938 Value *V = PN->getIncomingValue(i); 939 940 if (!isa<UndefValue>(V)) continue; 941 942 BasicBlock *BB = PN->getIncomingBlock(i); 943 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 944 945 // Keep track of undef/poison incoming values. Those must match, so we fix 946 // them up below if needed. 947 // Note: this is conservatively correct, but we could try harder and group 948 // the undef values per incoming basic block. 949 if (It == IncomingValues.end()) { 950 TrueUndefOps.push_back(i); 951 continue; 952 } 953 954 // There is a defined value for this incoming block, so map this undef 955 // incoming value to the defined value. 956 PN->setIncomingValue(i, It->second); 957 } 958 959 // If there are both undef and poison values incoming, then convert those 960 // values to undef. It is invalid to have different values for the same 961 // incoming block. 962 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 963 return isa<PoisonValue>(PN->getIncomingValue(i)); 964 }); 965 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 966 for (unsigned i : TrueUndefOps) 967 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 968 } 969 } 970 971 /// Replace a value flowing from a block to a phi with 972 /// potentially multiple instances of that value flowing from the 973 /// block's predecessors to the phi. 974 /// 975 /// \param BB The block with the value flowing into the phi. 976 /// \param BBPreds The predecessors of BB. 977 /// \param PN The phi that we are updating. 978 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 979 const PredBlockVector &BBPreds, 980 PHINode *PN) { 981 Value *OldVal = PN->removeIncomingValue(BB, false); 982 assert(OldVal && "No entry in PHI for Pred BB!"); 983 984 IncomingValueMap IncomingValues; 985 986 // We are merging two blocks - BB, and the block containing PN - and 987 // as a result we need to redirect edges from the predecessors of BB 988 // to go to the block containing PN, and update PN 989 // accordingly. Since we allow merging blocks in the case where the 990 // predecessor and successor blocks both share some predecessors, 991 // and where some of those common predecessors might have undef 992 // values flowing into PN, we want to rewrite those values to be 993 // consistent with the non-undef values. 994 995 gatherIncomingValuesToPhi(PN, IncomingValues); 996 997 // If this incoming value is one of the PHI nodes in BB, the new entries 998 // in the PHI node are the entries from the old PHI. 999 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1000 PHINode *OldValPN = cast<PHINode>(OldVal); 1001 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1002 // Note that, since we are merging phi nodes and BB and Succ might 1003 // have common predecessors, we could end up with a phi node with 1004 // identical incoming branches. This will be cleaned up later (and 1005 // will trigger asserts if we try to clean it up now, without also 1006 // simplifying the corresponding conditional branch). 1007 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1008 Value *PredVal = OldValPN->getIncomingValue(i); 1009 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 1010 IncomingValues); 1011 1012 // And add a new incoming value for this predecessor for the 1013 // newly retargeted branch. 1014 PN->addIncoming(Selected, PredBB); 1015 } 1016 } else { 1017 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 1018 // Update existing incoming values in PN for this 1019 // predecessor of BB. 1020 BasicBlock *PredBB = BBPreds[i]; 1021 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 1022 IncomingValues); 1023 1024 // And add a new incoming value for this predecessor for the 1025 // newly retargeted branch. 1026 PN->addIncoming(Selected, PredBB); 1027 } 1028 } 1029 1030 replaceUndefValuesInPhi(PN, IncomingValues); 1031 } 1032 1033 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1034 DomTreeUpdater *DTU) { 1035 assert(BB != &BB->getParent()->getEntryBlock() && 1036 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1037 1038 // We can't eliminate infinite loops. 1039 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1040 if (BB == Succ) return false; 1041 1042 // Check to see if merging these blocks would cause conflicts for any of the 1043 // phi nodes in BB or Succ. If not, we can safely merge. 1044 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 1045 1046 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1047 // has uses which will not disappear when the PHI nodes are merged. It is 1048 // possible to handle such cases, but difficult: it requires checking whether 1049 // BB dominates Succ, which is non-trivial to calculate in the case where 1050 // Succ has multiple predecessors. Also, it requires checking whether 1051 // constructing the necessary self-referential PHI node doesn't introduce any 1052 // conflicts; this isn't too difficult, but the previous code for doing this 1053 // was incorrect. 1054 // 1055 // Note that if this check finds a live use, BB dominates Succ, so BB is 1056 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1057 // folding the branch isn't profitable in that case anyway. 1058 if (!Succ->getSinglePredecessor()) { 1059 BasicBlock::iterator BBI = BB->begin(); 1060 while (isa<PHINode>(*BBI)) { 1061 for (Use &U : BBI->uses()) { 1062 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1063 if (PN->getIncomingBlock(U) != BB) 1064 return false; 1065 } else { 1066 return false; 1067 } 1068 } 1069 ++BBI; 1070 } 1071 } 1072 1073 // We cannot fold the block if it's a branch to an already present callbr 1074 // successor because that creates duplicate successors. 1075 for (BasicBlock *PredBB : predecessors(BB)) { 1076 if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { 1077 if (Succ == CBI->getDefaultDest()) 1078 return false; 1079 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 1080 if (Succ == CBI->getIndirectDest(i)) 1081 return false; 1082 } 1083 } 1084 1085 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1086 1087 SmallVector<DominatorTree::UpdateType, 32> Updates; 1088 if (DTU) { 1089 // All predecessors of BB will be moved to Succ. 1090 SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); 1091 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); 1092 Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); 1093 for (auto *PredOfBB : PredsOfBB) 1094 // This predecessor of BB may already have Succ as a successor. 1095 if (!PredsOfSucc.contains(PredOfBB)) 1096 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1097 for (auto *PredOfBB : PredsOfBB) 1098 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1099 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1100 } 1101 1102 if (isa<PHINode>(Succ->begin())) { 1103 // If there is more than one pred of succ, and there are PHI nodes in 1104 // the successor, then we need to add incoming edges for the PHI nodes 1105 // 1106 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1107 1108 // Loop over all of the PHI nodes in the successor of BB. 1109 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1110 PHINode *PN = cast<PHINode>(I); 1111 1112 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1113 } 1114 } 1115 1116 if (Succ->getSinglePredecessor()) { 1117 // BB is the only predecessor of Succ, so Succ will end up with exactly 1118 // the same predecessors BB had. 1119 1120 // Copy over any phi, debug or lifetime instruction. 1121 BB->getTerminator()->eraseFromParent(); 1122 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1123 BB->getInstList()); 1124 } else { 1125 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1126 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1127 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1128 PN->eraseFromParent(); 1129 } 1130 } 1131 1132 // If the unconditional branch we replaced contains llvm.loop metadata, we 1133 // add the metadata to the branch instructions in the predecessors. 1134 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1135 Instruction *TI = BB->getTerminator(); 1136 if (TI) 1137 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1138 for (BasicBlock *Pred : predecessors(BB)) 1139 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1140 1141 // Everything that jumped to BB now goes to Succ. 1142 BB->replaceAllUsesWith(Succ); 1143 if (!Succ->hasName()) Succ->takeName(BB); 1144 1145 // Clear the successor list of BB to match updates applying to DTU later. 1146 if (BB->getTerminator()) 1147 BB->getInstList().pop_back(); 1148 new UnreachableInst(BB->getContext(), BB); 1149 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1150 "applying corresponding DTU updates."); 1151 1152 if (DTU) 1153 DTU->applyUpdates(Updates); 1154 1155 DeleteDeadBlock(BB, DTU); 1156 1157 return true; 1158 } 1159 1160 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { 1161 // This implementation doesn't currently consider undef operands 1162 // specially. Theoretically, two phis which are identical except for 1163 // one having an undef where the other doesn't could be collapsed. 1164 1165 bool Changed = false; 1166 1167 // Examine each PHI. 1168 // Note that increment of I must *NOT* be in the iteration_expression, since 1169 // we don't want to immediately advance when we restart from the beginning. 1170 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1171 ++I; 1172 // Is there an identical PHI node in this basic block? 1173 // Note that we only look in the upper square's triangle, 1174 // we already checked that the lower triangle PHI's aren't identical. 1175 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1176 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1177 continue; 1178 // A duplicate. Replace this PHI with the base PHI. 1179 ++NumPHICSEs; 1180 DuplicatePN->replaceAllUsesWith(PN); 1181 DuplicatePN->eraseFromParent(); 1182 Changed = true; 1183 1184 // The RAUW can change PHIs that we already visited. 1185 I = BB->begin(); 1186 break; // Start over from the beginning. 1187 } 1188 } 1189 return Changed; 1190 } 1191 1192 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { 1193 // This implementation doesn't currently consider undef operands 1194 // specially. Theoretically, two phis which are identical except for 1195 // one having an undef where the other doesn't could be collapsed. 1196 1197 struct PHIDenseMapInfo { 1198 static PHINode *getEmptyKey() { 1199 return DenseMapInfo<PHINode *>::getEmptyKey(); 1200 } 1201 1202 static PHINode *getTombstoneKey() { 1203 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1204 } 1205 1206 static bool isSentinel(PHINode *PN) { 1207 return PN == getEmptyKey() || PN == getTombstoneKey(); 1208 } 1209 1210 // WARNING: this logic must be kept in sync with 1211 // Instruction::isIdenticalToWhenDefined()! 1212 static unsigned getHashValueImpl(PHINode *PN) { 1213 // Compute a hash value on the operands. Instcombine will likely have 1214 // sorted them, which helps expose duplicates, but we have to check all 1215 // the operands to be safe in case instcombine hasn't run. 1216 return static_cast<unsigned>(hash_combine( 1217 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1218 hash_combine_range(PN->block_begin(), PN->block_end()))); 1219 } 1220 1221 static unsigned getHashValue(PHINode *PN) { 1222 #ifndef NDEBUG 1223 // If -phicse-debug-hash was specified, return a constant -- this 1224 // will force all hashing to collide, so we'll exhaustively search 1225 // the table for a match, and the assertion in isEqual will fire if 1226 // there's a bug causing equal keys to hash differently. 1227 if (PHICSEDebugHash) 1228 return 0; 1229 #endif 1230 return getHashValueImpl(PN); 1231 } 1232 1233 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1234 if (isSentinel(LHS) || isSentinel(RHS)) 1235 return LHS == RHS; 1236 return LHS->isIdenticalTo(RHS); 1237 } 1238 1239 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1240 // These comparisons are nontrivial, so assert that equality implies 1241 // hash equality (DenseMap demands this as an invariant). 1242 bool Result = isEqualImpl(LHS, RHS); 1243 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1244 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1245 return Result; 1246 } 1247 }; 1248 1249 // Set of unique PHINodes. 1250 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1251 PHISet.reserve(4 * PHICSENumPHISmallSize); 1252 1253 // Examine each PHI. 1254 bool Changed = false; 1255 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1256 auto Inserted = PHISet.insert(PN); 1257 if (!Inserted.second) { 1258 // A duplicate. Replace this PHI with its duplicate. 1259 ++NumPHICSEs; 1260 PN->replaceAllUsesWith(*Inserted.first); 1261 PN->eraseFromParent(); 1262 Changed = true; 1263 1264 // The RAUW can change PHIs that we already visited. Start over from the 1265 // beginning. 1266 PHISet.clear(); 1267 I = BB->begin(); 1268 } 1269 } 1270 1271 return Changed; 1272 } 1273 1274 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1275 if ( 1276 #ifndef NDEBUG 1277 !PHICSEDebugHash && 1278 #endif 1279 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1280 return EliminateDuplicatePHINodesNaiveImpl(BB); 1281 return EliminateDuplicatePHINodesSetBasedImpl(BB); 1282 } 1283 1284 /// If the specified pointer points to an object that we control, try to modify 1285 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 1286 /// the value after the operation, which may be lower than PrefAlign. 1287 /// 1288 /// Increating value alignment isn't often possible though. If alignment is 1289 /// important, a more reliable approach is to simply align all global variables 1290 /// and allocation instructions to their preferred alignment from the beginning. 1291 static Align tryEnforceAlignment(Value *V, Align PrefAlign, 1292 const DataLayout &DL) { 1293 V = V->stripPointerCasts(); 1294 1295 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1296 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1297 // than the current alignment, as the known bits calculation should have 1298 // already taken it into account. However, this is not always the case, 1299 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1300 // doesn't. 1301 Align CurrentAlign = AI->getAlign(); 1302 if (PrefAlign <= CurrentAlign) 1303 return CurrentAlign; 1304 1305 // If the preferred alignment is greater than the natural stack alignment 1306 // then don't round up. This avoids dynamic stack realignment. 1307 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1308 return CurrentAlign; 1309 AI->setAlignment(PrefAlign); 1310 return PrefAlign; 1311 } 1312 1313 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1314 // TODO: as above, this shouldn't be necessary. 1315 Align CurrentAlign = GO->getPointerAlignment(DL); 1316 if (PrefAlign <= CurrentAlign) 1317 return CurrentAlign; 1318 1319 // If there is a large requested alignment and we can, bump up the alignment 1320 // of the global. If the memory we set aside for the global may not be the 1321 // memory used by the final program then it is impossible for us to reliably 1322 // enforce the preferred alignment. 1323 if (!GO->canIncreaseAlignment()) 1324 return CurrentAlign; 1325 1326 GO->setAlignment(PrefAlign); 1327 return PrefAlign; 1328 } 1329 1330 return Align(1); 1331 } 1332 1333 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1334 const DataLayout &DL, 1335 const Instruction *CxtI, 1336 AssumptionCache *AC, 1337 const DominatorTree *DT) { 1338 assert(V->getType()->isPointerTy() && 1339 "getOrEnforceKnownAlignment expects a pointer!"); 1340 1341 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1342 unsigned TrailZ = Known.countMinTrailingZeros(); 1343 1344 // Avoid trouble with ridiculously large TrailZ values, such as 1345 // those computed from a null pointer. 1346 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1347 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1348 1349 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1350 1351 if (PrefAlign && *PrefAlign > Alignment) 1352 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1353 1354 // We don't need to make any adjustment. 1355 return Alignment; 1356 } 1357 1358 ///===---------------------------------------------------------------------===// 1359 /// Dbg Intrinsic utilities 1360 /// 1361 1362 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1363 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1364 DIExpression *DIExpr, 1365 PHINode *APN) { 1366 // Since we can't guarantee that the original dbg.declare instrinsic 1367 // is removed by LowerDbgDeclare(), we need to make sure that we are 1368 // not inserting the same dbg.value intrinsic over and over. 1369 SmallVector<DbgValueInst *, 1> DbgValues; 1370 findDbgValues(DbgValues, APN); 1371 for (auto *DVI : DbgValues) { 1372 assert(is_contained(DVI->getValues(), APN)); 1373 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1374 return true; 1375 } 1376 return false; 1377 } 1378 1379 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1380 /// (or fragment of the variable) described by \p DII. 1381 /// 1382 /// This is primarily intended as a helper for the different 1383 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1384 /// converted describes an alloca'd variable, so we need to use the 1385 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1386 /// identified as covering an n-bit fragment, if the store size of i1 is at 1387 /// least n bits. 1388 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1389 const DataLayout &DL = DII->getModule()->getDataLayout(); 1390 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1391 if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { 1392 assert(!ValueSize.isScalable() && 1393 "Fragments don't work on scalable types."); 1394 return ValueSize.getFixedSize() >= *FragmentSize; 1395 } 1396 // We can't always calculate the size of the DI variable (e.g. if it is a 1397 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1398 // intead. 1399 if (DII->isAddressOfVariable()) { 1400 // DII should have exactly 1 location when it is an address. 1401 assert(DII->getNumVariableLocationOps() == 1 && 1402 "address of variable must have exactly 1 location operand."); 1403 if (auto *AI = 1404 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1405 if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1406 assert(ValueSize.isScalable() == FragmentSize->isScalable() && 1407 "Both sizes should agree on the scalable flag."); 1408 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1409 } 1410 } 1411 } 1412 // Could not determine size of variable. Conservatively return false. 1413 return false; 1414 } 1415 1416 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted 1417 /// to a dbg.value. Because no machine insts can come from debug intrinsics, 1418 /// only the scope and inlinedAt is significant. Zero line numbers are used in 1419 /// case this DebugLoc leaks into any adjacent instructions. 1420 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { 1421 // Original dbg.declare must have a location. 1422 const DebugLoc &DeclareLoc = DII->getDebugLoc(); 1423 MDNode *Scope = DeclareLoc.getScope(); 1424 DILocation *InlinedAt = DeclareLoc.getInlinedAt(); 1425 // Produce an unknown location with the correct scope / inlinedAt fields. 1426 return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); 1427 } 1428 1429 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1430 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1431 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1432 StoreInst *SI, DIBuilder &Builder) { 1433 assert(DII->isAddressOfVariable()); 1434 auto *DIVar = DII->getVariable(); 1435 assert(DIVar && "Missing variable"); 1436 auto *DIExpr = DII->getExpression(); 1437 Value *DV = SI->getValueOperand(); 1438 1439 DebugLoc NewLoc = getDebugValueLoc(DII, SI); 1440 1441 if (!valueCoversEntireFragment(DV->getType(), DII)) { 1442 // FIXME: If storing to a part of the variable described by the dbg.declare, 1443 // then we want to insert a dbg.value for the corresponding fragment. 1444 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1445 << *DII << '\n'); 1446 // For now, when there is a store to parts of the variable (but we do not 1447 // know which part) we insert an dbg.value instrinsic to indicate that we 1448 // know nothing about the variable's content. 1449 DV = UndefValue::get(DV->getType()); 1450 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1451 return; 1452 } 1453 1454 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); 1455 } 1456 1457 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1458 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1459 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1460 LoadInst *LI, DIBuilder &Builder) { 1461 auto *DIVar = DII->getVariable(); 1462 auto *DIExpr = DII->getExpression(); 1463 assert(DIVar && "Missing variable"); 1464 1465 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1466 // FIXME: If only referring to a part of the variable described by the 1467 // dbg.declare, then we want to insert a dbg.value for the corresponding 1468 // fragment. 1469 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1470 << *DII << '\n'); 1471 return; 1472 } 1473 1474 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1475 1476 // We are now tracking the loaded value instead of the address. In the 1477 // future if multi-location support is added to the IR, it might be 1478 // preferable to keep tracking both the loaded value and the original 1479 // address in case the alloca can not be elided. 1480 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1481 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); 1482 DbgValue->insertAfter(LI); 1483 } 1484 1485 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1486 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1487 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1488 PHINode *APN, DIBuilder &Builder) { 1489 auto *DIVar = DII->getVariable(); 1490 auto *DIExpr = DII->getExpression(); 1491 assert(DIVar && "Missing variable"); 1492 1493 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1494 return; 1495 1496 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1497 // FIXME: If only referring to a part of the variable described by the 1498 // dbg.declare, then we want to insert a dbg.value for the corresponding 1499 // fragment. 1500 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1501 << *DII << '\n'); 1502 return; 1503 } 1504 1505 BasicBlock *BB = APN->getParent(); 1506 auto InsertionPt = BB->getFirstInsertionPt(); 1507 1508 DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); 1509 1510 // The block may be a catchswitch block, which does not have a valid 1511 // insertion point. 1512 // FIXME: Insert dbg.value markers in the successors when appropriate. 1513 if (InsertionPt != BB->end()) 1514 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); 1515 } 1516 1517 /// Determine whether this alloca is either a VLA or an array. 1518 static bool isArray(AllocaInst *AI) { 1519 return AI->isArrayAllocation() || 1520 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1521 } 1522 1523 /// Determine whether this alloca is a structure. 1524 static bool isStructure(AllocaInst *AI) { 1525 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1526 } 1527 1528 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1529 /// of llvm.dbg.value intrinsics. 1530 bool llvm::LowerDbgDeclare(Function &F) { 1531 bool Changed = false; 1532 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1533 SmallVector<DbgDeclareInst *, 4> Dbgs; 1534 for (auto &FI : F) 1535 for (Instruction &BI : FI) 1536 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1537 Dbgs.push_back(DDI); 1538 1539 if (Dbgs.empty()) 1540 return Changed; 1541 1542 for (auto &I : Dbgs) { 1543 DbgDeclareInst *DDI = I; 1544 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1545 // If this is an alloca for a scalar variable, insert a dbg.value 1546 // at each load and store to the alloca and erase the dbg.declare. 1547 // The dbg.values allow tracking a variable even if it is not 1548 // stored on the stack, while the dbg.declare can only describe 1549 // the stack slot (and at a lexical-scope granularity). Later 1550 // passes will attempt to elide the stack slot. 1551 if (!AI || isArray(AI) || isStructure(AI)) 1552 continue; 1553 1554 // A volatile load/store means that the alloca can't be elided anyway. 1555 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1556 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1557 return LI->isVolatile(); 1558 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1559 return SI->isVolatile(); 1560 return false; 1561 })) 1562 continue; 1563 1564 SmallVector<const Value *, 8> WorkList; 1565 WorkList.push_back(AI); 1566 while (!WorkList.empty()) { 1567 const Value *V = WorkList.pop_back_val(); 1568 for (auto &AIUse : V->uses()) { 1569 User *U = AIUse.getUser(); 1570 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1571 if (AIUse.getOperandNo() == 1) 1572 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1573 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1574 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1575 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1576 // This is a call by-value or some other instruction that takes a 1577 // pointer to the variable. Insert a *value* intrinsic that describes 1578 // the variable by dereferencing the alloca. 1579 if (!CI->isLifetimeStartOrEnd()) { 1580 DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); 1581 auto *DerefExpr = 1582 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1583 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1584 NewLoc, CI); 1585 } 1586 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 1587 if (BI->getType()->isPointerTy()) 1588 WorkList.push_back(BI); 1589 } 1590 } 1591 } 1592 DDI->eraseFromParent(); 1593 Changed = true; 1594 } 1595 1596 if (Changed) 1597 for (BasicBlock &BB : F) 1598 RemoveRedundantDbgInstrs(&BB); 1599 1600 return Changed; 1601 } 1602 1603 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1604 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1605 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1606 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1607 if (InsertedPHIs.size() == 0) 1608 return; 1609 1610 // Map existing PHI nodes to their dbg.values. 1611 ValueToValueMapTy DbgValueMap; 1612 for (auto &I : *BB) { 1613 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1614 for (Value *V : DbgII->location_ops()) 1615 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 1616 DbgValueMap.insert({Loc, DbgII}); 1617 } 1618 } 1619 if (DbgValueMap.size() == 0) 1620 return; 1621 1622 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 1623 // so that if a dbg.value is being rewritten to use more than one of the 1624 // inserted PHIs in the same destination BB, we can update the same dbg.value 1625 // with all the new PHIs instead of creating one copy for each. 1626 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 1627 DbgVariableIntrinsic *> 1628 NewDbgValueMap; 1629 // Then iterate through the new PHIs and look to see if they use one of the 1630 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 1631 // propagate the info through the new PHI. If we use more than one new PHI in 1632 // a single destination BB with the same old dbg.value, merge the updates so 1633 // that we get a single new dbg.value with all the new PHIs. 1634 for (auto PHI : InsertedPHIs) { 1635 BasicBlock *Parent = PHI->getParent(); 1636 // Avoid inserting an intrinsic into an EH block. 1637 if (Parent->getFirstNonPHI()->isEHPad()) 1638 continue; 1639 for (auto VI : PHI->operand_values()) { 1640 auto V = DbgValueMap.find(VI); 1641 if (V != DbgValueMap.end()) { 1642 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 1643 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 1644 if (NewDI == NewDbgValueMap.end()) { 1645 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 1646 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 1647 } 1648 DbgVariableIntrinsic *NewDbgII = NewDI->second; 1649 // If PHI contains VI as an operand more than once, we may 1650 // replaced it in NewDbgII; confirm that it is present. 1651 if (is_contained(NewDbgII->location_ops(), VI)) 1652 NewDbgII->replaceVariableLocationOp(VI, PHI); 1653 } 1654 } 1655 } 1656 // Insert thew new dbg.values into their destination blocks. 1657 for (auto DI : NewDbgValueMap) { 1658 BasicBlock *Parent = DI.first.first; 1659 auto *NewDbgII = DI.second; 1660 auto InsertionPt = Parent->getFirstInsertionPt(); 1661 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1662 NewDbgII->insertBefore(&*InsertionPt); 1663 } 1664 } 1665 1666 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1667 DIBuilder &Builder, uint8_t DIExprFlags, 1668 int Offset) { 1669 auto DbgAddrs = FindDbgAddrUses(Address); 1670 for (DbgVariableIntrinsic *DII : DbgAddrs) { 1671 const DebugLoc &Loc = DII->getDebugLoc(); 1672 auto *DIVar = DII->getVariable(); 1673 auto *DIExpr = DII->getExpression(); 1674 assert(DIVar && "Missing variable"); 1675 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 1676 // Insert llvm.dbg.declare immediately before DII, and remove old 1677 // llvm.dbg.declare. 1678 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); 1679 DII->eraseFromParent(); 1680 } 1681 return !DbgAddrs.empty(); 1682 } 1683 1684 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1685 DIBuilder &Builder, int Offset) { 1686 const DebugLoc &Loc = DVI->getDebugLoc(); 1687 auto *DIVar = DVI->getVariable(); 1688 auto *DIExpr = DVI->getExpression(); 1689 assert(DIVar && "Missing variable"); 1690 1691 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1692 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1693 // it and give up. 1694 if (!DIExpr || DIExpr->getNumElements() < 1 || 1695 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1696 return; 1697 1698 // Insert the offset before the first deref. 1699 // We could just change the offset argument of dbg.value, but it's unsigned... 1700 if (Offset) 1701 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 1702 1703 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1704 DVI->eraseFromParent(); 1705 } 1706 1707 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1708 DIBuilder &Builder, int Offset) { 1709 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1710 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1711 for (Use &U : llvm::make_early_inc_range(MDV->uses())) 1712 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1713 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1714 } 1715 1716 /// Where possible to salvage debug information for \p I do so 1717 /// and return True. If not possible mark undef and return False. 1718 void llvm::salvageDebugInfo(Instruction &I) { 1719 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 1720 findDbgUsers(DbgUsers, &I); 1721 salvageDebugInfoForDbgValues(I, DbgUsers); 1722 } 1723 1724 void llvm::salvageDebugInfoForDbgValues( 1725 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { 1726 // This is an arbitrary chosen limit on the maximum number of values we can 1727 // salvage up to in a DIArgList, used for performance reasons. 1728 const unsigned MaxDebugArgs = 16; 1729 bool Salvaged = false; 1730 1731 for (auto *DII : DbgUsers) { 1732 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1733 // are implicitly pointing out the value as a DWARF memory location 1734 // description. 1735 bool StackValue = isa<DbgValueInst>(DII); 1736 auto DIILocation = DII->location_ops(); 1737 assert( 1738 is_contained(DIILocation, &I) && 1739 "DbgVariableIntrinsic must use salvaged instruction as its location"); 1740 SmallVector<Value *, 4> AdditionalValues; 1741 // `I` may appear more than once in DII's location ops, and each use of `I` 1742 // must be updated in the DIExpression and potentially have additional 1743 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 1744 // DIILocation. 1745 DIExpression *SalvagedExpr = DII->getExpression(); 1746 auto LocItr = find(DIILocation, &I); 1747 while (SalvagedExpr && LocItr != DIILocation.end()) { 1748 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 1749 SalvagedExpr = salvageDebugInfoImpl(I, SalvagedExpr, StackValue, LocNo, 1750 AdditionalValues); 1751 LocItr = std::find(++LocItr, DIILocation.end(), &I); 1752 } 1753 // salvageDebugInfoImpl should fail on examining the first element of 1754 // DbgUsers, or none of them. 1755 if (!SalvagedExpr) 1756 break; 1757 1758 DII->replaceVariableLocationOp(&I, I.getOperand(0)); 1759 if (AdditionalValues.empty()) { 1760 DII->setExpression(SalvagedExpr); 1761 } else if (isa<DbgValueInst>(DII) && 1762 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 1763 MaxDebugArgs) { 1764 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 1765 } else { 1766 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 1767 // currently only valid for stack value expressions. 1768 // Also do not salvage if the resulting DIArgList would contain an 1769 // unreasonably large number of values. 1770 Value *Undef = UndefValue::get(I.getOperand(0)->getType()); 1771 DII->replaceVariableLocationOp(I.getOperand(0), Undef); 1772 } 1773 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1774 Salvaged = true; 1775 } 1776 1777 if (Salvaged) 1778 return; 1779 1780 for (auto *DII : DbgUsers) { 1781 Value *Undef = UndefValue::get(I.getType()); 1782 DII->replaceVariableLocationOp(&I, Undef); 1783 } 1784 } 1785 1786 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 1787 uint64_t CurrentLocOps, 1788 SmallVectorImpl<uint64_t> &Opcodes, 1789 SmallVectorImpl<Value *> &AdditionalValues) { 1790 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 1791 // Rewrite a GEP into a DIExpression. 1792 MapVector<Value *, APInt> VariableOffsets; 1793 APInt ConstantOffset(BitWidth, 0); 1794 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 1795 return false; 1796 if (!VariableOffsets.empty() && !CurrentLocOps) { 1797 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 1798 CurrentLocOps = 1; 1799 } 1800 for (auto Offset : VariableOffsets) { 1801 AdditionalValues.push_back(Offset.first); 1802 assert(Offset.second.isStrictlyPositive() && 1803 "Expected strictly positive multiplier for offset."); 1804 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 1805 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 1806 dwarf::DW_OP_plus}); 1807 } 1808 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 1809 return true; 1810 } 1811 1812 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 1813 switch (Opcode) { 1814 case Instruction::Add: 1815 return dwarf::DW_OP_plus; 1816 case Instruction::Sub: 1817 return dwarf::DW_OP_minus; 1818 case Instruction::Mul: 1819 return dwarf::DW_OP_mul; 1820 case Instruction::SDiv: 1821 return dwarf::DW_OP_div; 1822 case Instruction::SRem: 1823 return dwarf::DW_OP_mod; 1824 case Instruction::Or: 1825 return dwarf::DW_OP_or; 1826 case Instruction::And: 1827 return dwarf::DW_OP_and; 1828 case Instruction::Xor: 1829 return dwarf::DW_OP_xor; 1830 case Instruction::Shl: 1831 return dwarf::DW_OP_shl; 1832 case Instruction::LShr: 1833 return dwarf::DW_OP_shr; 1834 case Instruction::AShr: 1835 return dwarf::DW_OP_shra; 1836 default: 1837 // TODO: Salvage from each kind of binop we know about. 1838 return 0; 1839 } 1840 } 1841 1842 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 1843 SmallVectorImpl<uint64_t> &Opcodes, 1844 SmallVectorImpl<Value *> &AdditionalValues) { 1845 // Handle binary operations with constant integer operands as a special case. 1846 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 1847 // Values wider than 64 bits cannot be represented within a DIExpression. 1848 if (ConstInt && ConstInt->getBitWidth() > 64) 1849 return false; 1850 1851 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 1852 // Push any Constant Int operand onto the expression stack. 1853 if (ConstInt) { 1854 uint64_t Val = ConstInt->getSExtValue(); 1855 // Add or Sub Instructions with a constant operand can potentially be 1856 // simplified. 1857 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 1858 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 1859 DIExpression::appendOffset(Opcodes, Offset); 1860 return true; 1861 } 1862 Opcodes.append({dwarf::DW_OP_constu, Val}); 1863 } else { 1864 if (!CurrentLocOps) { 1865 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 1866 CurrentLocOps = 1; 1867 } 1868 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 1869 AdditionalValues.push_back(BI->getOperand(1)); 1870 } 1871 1872 // Add salvaged binary operator to expression stack, if it has a valid 1873 // representation in a DIExpression. 1874 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 1875 if (!DwarfBinOp) 1876 return false; 1877 Opcodes.push_back(DwarfBinOp); 1878 1879 return true; 1880 } 1881 1882 DIExpression * 1883 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr, 1884 bool WithStackValue, unsigned LocNo, 1885 SmallVectorImpl<Value *> &AdditionalValues) { 1886 uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands(); 1887 auto &M = *I.getModule(); 1888 auto &DL = M.getDataLayout(); 1889 1890 // Apply a vector of opcodes to the source DIExpression. 1891 auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { 1892 DIExpression *DIExpr = SrcDIExpr; 1893 if (!Ops.empty()) { 1894 DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue); 1895 } 1896 return DIExpr; 1897 }; 1898 1899 // initializer-list helper for applying operators to the source DIExpression. 1900 auto applyOps = [&](ArrayRef<uint64_t> Opcodes) { 1901 SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end()); 1902 return doSalvage(Ops); 1903 }; 1904 1905 if (auto *CI = dyn_cast<CastInst>(&I)) { 1906 // No-op casts are irrelevant for debug info. 1907 if (CI->isNoopCast(DL)) 1908 return SrcDIExpr; 1909 1910 Type *Type = CI->getType(); 1911 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 1912 if (Type->isVectorTy() || 1913 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I))) 1914 return nullptr; 1915 1916 Value *FromValue = CI->getOperand(0); 1917 unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits(); 1918 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 1919 1920 return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 1921 isa<SExtInst>(&I))); 1922 } 1923 1924 SmallVector<uint64_t, 8> Ops; 1925 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1926 if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues)) 1927 return doSalvage(Ops); 1928 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1929 if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues)) 1930 return doSalvage(Ops); 1931 } 1932 // *Not* to do: we should not attempt to salvage load instructions, 1933 // because the validity and lifetime of a dbg.value containing 1934 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 1935 return nullptr; 1936 } 1937 1938 /// A replacement for a dbg.value expression. 1939 using DbgValReplacement = Optional<DIExpression *>; 1940 1941 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1942 /// possibly moving/undefing users to prevent use-before-def. Returns true if 1943 /// changes are made. 1944 static bool rewriteDebugUsers( 1945 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1946 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { 1947 // Find debug users of From. 1948 SmallVector<DbgVariableIntrinsic *, 1> Users; 1949 findDbgUsers(Users, &From); 1950 if (Users.empty()) 1951 return false; 1952 1953 // Prevent use-before-def of To. 1954 bool Changed = false; 1955 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 1956 if (isa<Instruction>(&To)) { 1957 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1958 1959 for (auto *DII : Users) { 1960 // It's common to see a debug user between From and DomPoint. Move it 1961 // after DomPoint to preserve the variable update without any reordering. 1962 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1963 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1964 DII->moveAfter(&DomPoint); 1965 Changed = true; 1966 1967 // Users which otherwise aren't dominated by the replacement value must 1968 // be salvaged or deleted. 1969 } else if (!DT.dominates(&DomPoint, DII)) { 1970 UndefOrSalvage.insert(DII); 1971 } 1972 } 1973 } 1974 1975 // Update debug users without use-before-def risk. 1976 for (auto *DII : Users) { 1977 if (UndefOrSalvage.count(DII)) 1978 continue; 1979 1980 DbgValReplacement DVR = RewriteExpr(*DII); 1981 if (!DVR) 1982 continue; 1983 1984 DII->replaceVariableLocationOp(&From, &To); 1985 DII->setExpression(*DVR); 1986 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1987 Changed = true; 1988 } 1989 1990 if (!UndefOrSalvage.empty()) { 1991 // Try to salvage the remaining debug users. 1992 salvageDebugInfo(From); 1993 Changed = true; 1994 } 1995 1996 return Changed; 1997 } 1998 1999 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2000 /// losslessly preserve the bits and semantics of the value. This predicate is 2001 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2002 /// 2003 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2004 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2005 /// and also does not allow lossless pointer <-> integer conversions. 2006 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2007 Type *ToTy) { 2008 // Trivially compatible types. 2009 if (FromTy == ToTy) 2010 return true; 2011 2012 // Handle compatible pointer <-> integer conversions. 2013 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2014 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2015 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2016 !DL.isNonIntegralPointerType(ToTy); 2017 return SameSize && LosslessConversion; 2018 } 2019 2020 // TODO: This is not exhaustive. 2021 return false; 2022 } 2023 2024 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2025 Instruction &DomPoint, DominatorTree &DT) { 2026 // Exit early if From has no debug users. 2027 if (!From.isUsedByMetadata()) 2028 return false; 2029 2030 assert(&From != &To && "Can't replace something with itself"); 2031 2032 Type *FromTy = From.getType(); 2033 Type *ToTy = To.getType(); 2034 2035 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2036 return DII.getExpression(); 2037 }; 2038 2039 // Handle no-op conversions. 2040 Module &M = *From.getModule(); 2041 const DataLayout &DL = M.getDataLayout(); 2042 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2043 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2044 2045 // Handle integer-to-integer widening and narrowing. 2046 // FIXME: Use DW_OP_convert when it's available everywhere. 2047 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2048 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2049 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2050 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2051 2052 // When the width of the result grows, assume that a debugger will only 2053 // access the low `FromBits` bits when inspecting the source variable. 2054 if (FromBits < ToBits) 2055 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 2056 2057 // The width of the result has shrunk. Use sign/zero extension to describe 2058 // the source variable's high bits. 2059 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2060 DILocalVariable *Var = DII.getVariable(); 2061 2062 // Without knowing signedness, sign/zero extension isn't possible. 2063 auto Signedness = Var->getSignedness(); 2064 if (!Signedness) 2065 return None; 2066 2067 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2068 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2069 Signed); 2070 }; 2071 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 2072 } 2073 2074 // TODO: Floating-point conversions, vectors. 2075 return false; 2076 } 2077 2078 std::pair<unsigned, unsigned> 2079 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2080 unsigned NumDeadInst = 0; 2081 unsigned NumDeadDbgInst = 0; 2082 // Delete the instructions backwards, as it has a reduced likelihood of 2083 // having to update as many def-use and use-def chains. 2084 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2085 while (EndInst != &BB->front()) { 2086 // Delete the next to last instruction. 2087 Instruction *Inst = &*--EndInst->getIterator(); 2088 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2089 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 2090 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2091 EndInst = Inst; 2092 continue; 2093 } 2094 if (isa<DbgInfoIntrinsic>(Inst)) 2095 ++NumDeadDbgInst; 2096 else 2097 ++NumDeadInst; 2098 Inst->eraseFromParent(); 2099 } 2100 return {NumDeadInst, NumDeadDbgInst}; 2101 } 2102 2103 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 2104 bool PreserveLCSSA, DomTreeUpdater *DTU, 2105 MemorySSAUpdater *MSSAU) { 2106 BasicBlock *BB = I->getParent(); 2107 2108 if (MSSAU) 2109 MSSAU->changeToUnreachable(I); 2110 2111 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2112 2113 // Loop over all of the successors, removing BB's entry from any PHI 2114 // nodes. 2115 for (BasicBlock *Successor : successors(BB)) { 2116 Successor->removePredecessor(BB, PreserveLCSSA); 2117 if (DTU) 2118 UniqueSuccessors.insert(Successor); 2119 } 2120 // Insert a call to llvm.trap right before this. This turns the undefined 2121 // behavior into a hard fail instead of falling through into random code. 2122 if (UseLLVMTrap) { 2123 Function *TrapFn = 2124 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 2125 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 2126 CallTrap->setDebugLoc(I->getDebugLoc()); 2127 } 2128 auto *UI = new UnreachableInst(I->getContext(), I); 2129 UI->setDebugLoc(I->getDebugLoc()); 2130 2131 // All instructions after this are dead. 2132 unsigned NumInstrsRemoved = 0; 2133 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2134 while (BBI != BBE) { 2135 if (!BBI->use_empty()) 2136 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2137 BB->getInstList().erase(BBI++); 2138 ++NumInstrsRemoved; 2139 } 2140 if (DTU) { 2141 SmallVector<DominatorTree::UpdateType, 8> Updates; 2142 Updates.reserve(UniqueSuccessors.size()); 2143 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2144 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2145 DTU->applyUpdates(Updates); 2146 } 2147 return NumInstrsRemoved; 2148 } 2149 2150 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2151 SmallVector<Value *, 8> Args(II->args()); 2152 SmallVector<OperandBundleDef, 1> OpBundles; 2153 II->getOperandBundlesAsDefs(OpBundles); 2154 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2155 II->getCalledOperand(), Args, OpBundles); 2156 NewCall->setCallingConv(II->getCallingConv()); 2157 NewCall->setAttributes(II->getAttributes()); 2158 NewCall->setDebugLoc(II->getDebugLoc()); 2159 NewCall->copyMetadata(*II); 2160 2161 // If the invoke had profile metadata, try converting them for CallInst. 2162 uint64_t TotalWeight; 2163 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2164 // Set the total weight if it fits into i32, otherwise reset. 2165 MDBuilder MDB(NewCall->getContext()); 2166 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2167 ? nullptr 2168 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2169 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2170 } 2171 2172 return NewCall; 2173 } 2174 2175 /// changeToCall - Convert the specified invoke into a normal call. 2176 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2177 CallInst *NewCall = createCallMatchingInvoke(II); 2178 NewCall->takeName(II); 2179 NewCall->insertBefore(II); 2180 II->replaceAllUsesWith(NewCall); 2181 2182 // Follow the call by a branch to the normal destination. 2183 BasicBlock *NormalDestBB = II->getNormalDest(); 2184 BranchInst::Create(NormalDestBB, II); 2185 2186 // Update PHI nodes in the unwind destination 2187 BasicBlock *BB = II->getParent(); 2188 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2189 UnwindDestBB->removePredecessor(BB); 2190 II->eraseFromParent(); 2191 if (DTU) 2192 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2193 } 2194 2195 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2196 BasicBlock *UnwindEdge, 2197 DomTreeUpdater *DTU) { 2198 BasicBlock *BB = CI->getParent(); 2199 2200 // Convert this function call into an invoke instruction. First, split the 2201 // basic block. 2202 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 2203 CI->getName() + ".noexc"); 2204 2205 // Delete the unconditional branch inserted by SplitBlock 2206 BB->getInstList().pop_back(); 2207 2208 // Create the new invoke instruction. 2209 SmallVector<Value *, 8> InvokeArgs(CI->args()); 2210 SmallVector<OperandBundleDef, 1> OpBundles; 2211 2212 CI->getOperandBundlesAsDefs(OpBundles); 2213 2214 // Note: we're round tripping operand bundles through memory here, and that 2215 // can potentially be avoided with a cleverer API design that we do not have 2216 // as of this time. 2217 2218 InvokeInst *II = 2219 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 2220 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 2221 II->setDebugLoc(CI->getDebugLoc()); 2222 II->setCallingConv(CI->getCallingConv()); 2223 II->setAttributes(CI->getAttributes()); 2224 2225 if (DTU) 2226 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 2227 2228 // Make sure that anything using the call now uses the invoke! This also 2229 // updates the CallGraph if present, because it uses a WeakTrackingVH. 2230 CI->replaceAllUsesWith(II); 2231 2232 // Delete the original call 2233 Split->getInstList().pop_front(); 2234 return Split; 2235 } 2236 2237 static bool markAliveBlocks(Function &F, 2238 SmallPtrSetImpl<BasicBlock *> &Reachable, 2239 DomTreeUpdater *DTU = nullptr) { 2240 SmallVector<BasicBlock*, 128> Worklist; 2241 BasicBlock *BB = &F.front(); 2242 Worklist.push_back(BB); 2243 Reachable.insert(BB); 2244 bool Changed = false; 2245 do { 2246 BB = Worklist.pop_back_val(); 2247 2248 // Do a quick scan of the basic block, turning any obviously unreachable 2249 // instructions into LLVM unreachable insts. The instruction combining pass 2250 // canonicalizes unreachable insts into stores to null or undef. 2251 for (Instruction &I : *BB) { 2252 if (auto *CI = dyn_cast<CallInst>(&I)) { 2253 Value *Callee = CI->getCalledOperand(); 2254 // Handle intrinsic calls. 2255 if (Function *F = dyn_cast<Function>(Callee)) { 2256 auto IntrinsicID = F->getIntrinsicID(); 2257 // Assumptions that are known to be false are equivalent to 2258 // unreachable. Also, if the condition is undefined, then we make the 2259 // choice most beneficial to the optimizer, and choose that to also be 2260 // unreachable. 2261 if (IntrinsicID == Intrinsic::assume) { 2262 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2263 // Don't insert a call to llvm.trap right before the unreachable. 2264 changeToUnreachable(CI, false, false, DTU); 2265 Changed = true; 2266 break; 2267 } 2268 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2269 // A call to the guard intrinsic bails out of the current 2270 // compilation unit if the predicate passed to it is false. If the 2271 // predicate is a constant false, then we know the guard will bail 2272 // out of the current compile unconditionally, so all code following 2273 // it is dead. 2274 // 2275 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2276 // guards to treat `undef` as `false` since a guard on `undef` can 2277 // still be useful for widening. 2278 if (match(CI->getArgOperand(0), m_Zero())) 2279 if (!isa<UnreachableInst>(CI->getNextNode())) { 2280 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2281 false, DTU); 2282 Changed = true; 2283 break; 2284 } 2285 } 2286 } else if ((isa<ConstantPointerNull>(Callee) && 2287 !NullPointerIsDefined(CI->getFunction())) || 2288 isa<UndefValue>(Callee)) { 2289 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); 2290 Changed = true; 2291 break; 2292 } 2293 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 2294 // If we found a call to a no-return function, insert an unreachable 2295 // instruction after it. Make sure there isn't *already* one there 2296 // though. 2297 if (!isa<UnreachableInst>(CI->getNextNode())) { 2298 // Don't insert a call to llvm.trap right before the unreachable. 2299 changeToUnreachable(CI->getNextNode(), false, false, DTU); 2300 Changed = true; 2301 } 2302 break; 2303 } 2304 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2305 // Store to undef and store to null are undefined and used to signal 2306 // that they should be changed to unreachable by passes that can't 2307 // modify the CFG. 2308 2309 // Don't touch volatile stores. 2310 if (SI->isVolatile()) continue; 2311 2312 Value *Ptr = SI->getOperand(1); 2313 2314 if (isa<UndefValue>(Ptr) || 2315 (isa<ConstantPointerNull>(Ptr) && 2316 !NullPointerIsDefined(SI->getFunction(), 2317 SI->getPointerAddressSpace()))) { 2318 changeToUnreachable(SI, true, false, DTU); 2319 Changed = true; 2320 break; 2321 } 2322 } 2323 } 2324 2325 Instruction *Terminator = BB->getTerminator(); 2326 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2327 // Turn invokes that call 'nounwind' functions into ordinary calls. 2328 Value *Callee = II->getCalledOperand(); 2329 if ((isa<ConstantPointerNull>(Callee) && 2330 !NullPointerIsDefined(BB->getParent())) || 2331 isa<UndefValue>(Callee)) { 2332 changeToUnreachable(II, true, false, DTU); 2333 Changed = true; 2334 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2335 if (II->use_empty() && II->onlyReadsMemory()) { 2336 // jump to the normal destination branch. 2337 BasicBlock *NormalDestBB = II->getNormalDest(); 2338 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2339 BranchInst::Create(NormalDestBB, II); 2340 UnwindDestBB->removePredecessor(II->getParent()); 2341 II->eraseFromParent(); 2342 if (DTU) 2343 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2344 } else 2345 changeToCall(II, DTU); 2346 Changed = true; 2347 } 2348 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2349 // Remove catchpads which cannot be reached. 2350 struct CatchPadDenseMapInfo { 2351 static CatchPadInst *getEmptyKey() { 2352 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2353 } 2354 2355 static CatchPadInst *getTombstoneKey() { 2356 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2357 } 2358 2359 static unsigned getHashValue(CatchPadInst *CatchPad) { 2360 return static_cast<unsigned>(hash_combine_range( 2361 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2362 } 2363 2364 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2365 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2366 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2367 return LHS == RHS; 2368 return LHS->isIdenticalTo(RHS); 2369 } 2370 }; 2371 2372 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 2373 // Set of unique CatchPads. 2374 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2375 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2376 HandlerSet; 2377 detail::DenseSetEmpty Empty; 2378 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2379 E = CatchSwitch->handler_end(); 2380 I != E; ++I) { 2381 BasicBlock *HandlerBB = *I; 2382 if (DTU) 2383 ++NumPerSuccessorCases[HandlerBB]; 2384 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2385 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2386 if (DTU) 2387 --NumPerSuccessorCases[HandlerBB]; 2388 CatchSwitch->removeHandler(I); 2389 --I; 2390 --E; 2391 Changed = true; 2392 } 2393 } 2394 if (DTU) { 2395 std::vector<DominatorTree::UpdateType> Updates; 2396 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 2397 if (I.second == 0) 2398 Updates.push_back({DominatorTree::Delete, BB, I.first}); 2399 DTU->applyUpdates(Updates); 2400 } 2401 } 2402 2403 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 2404 for (BasicBlock *Successor : successors(BB)) 2405 if (Reachable.insert(Successor).second) 2406 Worklist.push_back(Successor); 2407 } while (!Worklist.empty()); 2408 return Changed; 2409 } 2410 2411 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 2412 Instruction *TI = BB->getTerminator(); 2413 2414 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2415 changeToCall(II, DTU); 2416 return; 2417 } 2418 2419 Instruction *NewTI; 2420 BasicBlock *UnwindDest; 2421 2422 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2423 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2424 UnwindDest = CRI->getUnwindDest(); 2425 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2426 auto *NewCatchSwitch = CatchSwitchInst::Create( 2427 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2428 CatchSwitch->getName(), CatchSwitch); 2429 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2430 NewCatchSwitch->addHandler(PadBB); 2431 2432 NewTI = NewCatchSwitch; 2433 UnwindDest = CatchSwitch->getUnwindDest(); 2434 } else { 2435 llvm_unreachable("Could not find unwind successor"); 2436 } 2437 2438 NewTI->takeName(TI); 2439 NewTI->setDebugLoc(TI->getDebugLoc()); 2440 UnwindDest->removePredecessor(BB); 2441 TI->replaceAllUsesWith(NewTI); 2442 TI->eraseFromParent(); 2443 if (DTU) 2444 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 2445 } 2446 2447 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2448 /// if they are in a dead cycle. Return true if a change was made, false 2449 /// otherwise. 2450 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 2451 MemorySSAUpdater *MSSAU) { 2452 SmallPtrSet<BasicBlock *, 16> Reachable; 2453 bool Changed = markAliveBlocks(F, Reachable, DTU); 2454 2455 // If there are unreachable blocks in the CFG... 2456 if (Reachable.size() == F.size()) 2457 return Changed; 2458 2459 assert(Reachable.size() < F.size()); 2460 2461 // Are there any blocks left to actually delete? 2462 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 2463 for (BasicBlock &BB : F) { 2464 // Skip reachable basic blocks 2465 if (Reachable.count(&BB)) 2466 continue; 2467 // Skip already-deleted blocks 2468 if (DTU && DTU->isBBPendingDeletion(&BB)) 2469 continue; 2470 BlocksToRemove.insert(&BB); 2471 } 2472 2473 if (BlocksToRemove.empty()) 2474 return Changed; 2475 2476 Changed = true; 2477 NumRemoved += BlocksToRemove.size(); 2478 2479 if (MSSAU) 2480 MSSAU->removeBlocks(BlocksToRemove); 2481 2482 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 2483 2484 return Changed; 2485 } 2486 2487 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2488 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 2489 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2490 K->dropUnknownNonDebugMetadata(KnownIDs); 2491 K->getAllMetadataOtherThanDebugLoc(Metadata); 2492 for (const auto &MD : Metadata) { 2493 unsigned Kind = MD.first; 2494 MDNode *JMD = J->getMetadata(Kind); 2495 MDNode *KMD = MD.second; 2496 2497 switch (Kind) { 2498 default: 2499 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2500 break; 2501 case LLVMContext::MD_dbg: 2502 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2503 case LLVMContext::MD_tbaa: 2504 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2505 break; 2506 case LLVMContext::MD_alias_scope: 2507 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2508 break; 2509 case LLVMContext::MD_noalias: 2510 case LLVMContext::MD_mem_parallel_loop_access: 2511 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2512 break; 2513 case LLVMContext::MD_access_group: 2514 K->setMetadata(LLVMContext::MD_access_group, 2515 intersectAccessGroups(K, J)); 2516 break; 2517 case LLVMContext::MD_range: 2518 2519 // If K does move, use most generic range. Otherwise keep the range of 2520 // K. 2521 if (DoesKMove) 2522 // FIXME: If K does move, we should drop the range info and nonnull. 2523 // Currently this function is used with DoesKMove in passes 2524 // doing hoisting/sinking and the current behavior of using the 2525 // most generic range is correct in those cases. 2526 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2527 break; 2528 case LLVMContext::MD_fpmath: 2529 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2530 break; 2531 case LLVMContext::MD_invariant_load: 2532 // Only set the !invariant.load if it is present in both instructions. 2533 K->setMetadata(Kind, JMD); 2534 break; 2535 case LLVMContext::MD_nonnull: 2536 // If K does move, keep nonull if it is present in both instructions. 2537 if (DoesKMove) 2538 K->setMetadata(Kind, JMD); 2539 break; 2540 case LLVMContext::MD_invariant_group: 2541 // Preserve !invariant.group in K. 2542 break; 2543 case LLVMContext::MD_align: 2544 K->setMetadata(Kind, 2545 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2546 break; 2547 case LLVMContext::MD_dereferenceable: 2548 case LLVMContext::MD_dereferenceable_or_null: 2549 K->setMetadata(Kind, 2550 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2551 break; 2552 case LLVMContext::MD_preserve_access_index: 2553 // Preserve !preserve.access.index in K. 2554 break; 2555 } 2556 } 2557 // Set !invariant.group from J if J has it. If both instructions have it 2558 // then we will just pick it from J - even when they are different. 2559 // Also make sure that K is load or store - f.e. combining bitcast with load 2560 // could produce bitcast with invariant.group metadata, which is invalid. 2561 // FIXME: we should try to preserve both invariant.group md if they are 2562 // different, but right now instruction can only have one invariant.group. 2563 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2564 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2565 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2566 } 2567 2568 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 2569 bool KDominatesJ) { 2570 unsigned KnownIDs[] = { 2571 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2572 LLVMContext::MD_noalias, LLVMContext::MD_range, 2573 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2574 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2575 LLVMContext::MD_dereferenceable, 2576 LLVMContext::MD_dereferenceable_or_null, 2577 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2578 combineMetadata(K, J, KnownIDs, KDominatesJ); 2579 } 2580 2581 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 2582 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 2583 Source.getAllMetadata(MD); 2584 MDBuilder MDB(Dest.getContext()); 2585 Type *NewType = Dest.getType(); 2586 const DataLayout &DL = Source.getModule()->getDataLayout(); 2587 for (const auto &MDPair : MD) { 2588 unsigned ID = MDPair.first; 2589 MDNode *N = MDPair.second; 2590 // Note, essentially every kind of metadata should be preserved here! This 2591 // routine is supposed to clone a load instruction changing *only its type*. 2592 // The only metadata it makes sense to drop is metadata which is invalidated 2593 // when the pointer type changes. This should essentially never be the case 2594 // in LLVM, but we explicitly switch over only known metadata to be 2595 // conservatively correct. If you are adding metadata to LLVM which pertains 2596 // to loads, you almost certainly want to add it here. 2597 switch (ID) { 2598 case LLVMContext::MD_dbg: 2599 case LLVMContext::MD_tbaa: 2600 case LLVMContext::MD_prof: 2601 case LLVMContext::MD_fpmath: 2602 case LLVMContext::MD_tbaa_struct: 2603 case LLVMContext::MD_invariant_load: 2604 case LLVMContext::MD_alias_scope: 2605 case LLVMContext::MD_noalias: 2606 case LLVMContext::MD_nontemporal: 2607 case LLVMContext::MD_mem_parallel_loop_access: 2608 case LLVMContext::MD_access_group: 2609 // All of these directly apply. 2610 Dest.setMetadata(ID, N); 2611 break; 2612 2613 case LLVMContext::MD_nonnull: 2614 copyNonnullMetadata(Source, N, Dest); 2615 break; 2616 2617 case LLVMContext::MD_align: 2618 case LLVMContext::MD_dereferenceable: 2619 case LLVMContext::MD_dereferenceable_or_null: 2620 // These only directly apply if the new type is also a pointer. 2621 if (NewType->isPointerTy()) 2622 Dest.setMetadata(ID, N); 2623 break; 2624 2625 case LLVMContext::MD_range: 2626 copyRangeMetadata(DL, Source, N, Dest); 2627 break; 2628 } 2629 } 2630 } 2631 2632 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 2633 auto *ReplInst = dyn_cast<Instruction>(Repl); 2634 if (!ReplInst) 2635 return; 2636 2637 // Patch the replacement so that it is not more restrictive than the value 2638 // being replaced. 2639 // Note that if 'I' is a load being replaced by some operation, 2640 // for example, by an arithmetic operation, then andIRFlags() 2641 // would just erase all math flags from the original arithmetic 2642 // operation, which is clearly not wanted and not needed. 2643 if (!isa<LoadInst>(I)) 2644 ReplInst->andIRFlags(I); 2645 2646 // FIXME: If both the original and replacement value are part of the 2647 // same control-flow region (meaning that the execution of one 2648 // guarantees the execution of the other), then we can combine the 2649 // noalias scopes here and do better than the general conservative 2650 // answer used in combineMetadata(). 2651 2652 // In general, GVN unifies expressions over different control-flow 2653 // regions, and so we need a conservative combination of the noalias 2654 // scopes. 2655 static const unsigned KnownIDs[] = { 2656 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2657 LLVMContext::MD_noalias, LLVMContext::MD_range, 2658 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 2659 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, 2660 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index}; 2661 combineMetadata(ReplInst, I, KnownIDs, false); 2662 } 2663 2664 template <typename RootType, typename DominatesFn> 2665 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2666 const RootType &Root, 2667 const DominatesFn &Dominates) { 2668 assert(From->getType() == To->getType()); 2669 2670 unsigned Count = 0; 2671 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2672 UI != UE;) { 2673 Use &U = *UI++; 2674 if (!Dominates(Root, U)) 2675 continue; 2676 U.set(To); 2677 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2678 << "' as " << *To << " in " << *U << "\n"); 2679 ++Count; 2680 } 2681 return Count; 2682 } 2683 2684 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2685 assert(From->getType() == To->getType()); 2686 auto *BB = From->getParent(); 2687 unsigned Count = 0; 2688 2689 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2690 UI != UE;) { 2691 Use &U = *UI++; 2692 auto *I = cast<Instruction>(U.getUser()); 2693 if (I->getParent() == BB) 2694 continue; 2695 U.set(To); 2696 ++Count; 2697 } 2698 return Count; 2699 } 2700 2701 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2702 DominatorTree &DT, 2703 const BasicBlockEdge &Root) { 2704 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2705 return DT.dominates(Root, U); 2706 }; 2707 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2708 } 2709 2710 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2711 DominatorTree &DT, 2712 const BasicBlock *BB) { 2713 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 2714 return DT.dominates(BB, U); 2715 }; 2716 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 2717 } 2718 2719 bool llvm::callsGCLeafFunction(const CallBase *Call, 2720 const TargetLibraryInfo &TLI) { 2721 // Check if the function is specifically marked as a gc leaf function. 2722 if (Call->hasFnAttr("gc-leaf-function")) 2723 return true; 2724 if (const Function *F = Call->getCalledFunction()) { 2725 if (F->hasFnAttribute("gc-leaf-function")) 2726 return true; 2727 2728 if (auto IID = F->getIntrinsicID()) { 2729 // Most LLVM intrinsics do not take safepoints. 2730 return IID != Intrinsic::experimental_gc_statepoint && 2731 IID != Intrinsic::experimental_deoptimize && 2732 IID != Intrinsic::memcpy_element_unordered_atomic && 2733 IID != Intrinsic::memmove_element_unordered_atomic; 2734 } 2735 } 2736 2737 // Lib calls can be materialized by some passes, and won't be 2738 // marked as 'gc-leaf-function.' All available Libcalls are 2739 // GC-leaf. 2740 LibFunc LF; 2741 if (TLI.getLibFunc(*Call, LF)) { 2742 return TLI.has(LF); 2743 } 2744 2745 return false; 2746 } 2747 2748 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2749 LoadInst &NewLI) { 2750 auto *NewTy = NewLI.getType(); 2751 2752 // This only directly applies if the new type is also a pointer. 2753 if (NewTy->isPointerTy()) { 2754 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2755 return; 2756 } 2757 2758 // The only other translation we can do is to integral loads with !range 2759 // metadata. 2760 if (!NewTy->isIntegerTy()) 2761 return; 2762 2763 MDBuilder MDB(NewLI.getContext()); 2764 const Value *Ptr = OldLI.getPointerOperand(); 2765 auto *ITy = cast<IntegerType>(NewTy); 2766 auto *NullInt = ConstantExpr::getPtrToInt( 2767 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2768 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2769 NewLI.setMetadata(LLVMContext::MD_range, 2770 MDB.createRange(NonNullInt, NullInt)); 2771 } 2772 2773 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2774 MDNode *N, LoadInst &NewLI) { 2775 auto *NewTy = NewLI.getType(); 2776 2777 // Give up unless it is converted to a pointer where there is a single very 2778 // valuable mapping we can do reliably. 2779 // FIXME: It would be nice to propagate this in more ways, but the type 2780 // conversions make it hard. 2781 if (!NewTy->isPointerTy()) 2782 return; 2783 2784 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 2785 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2786 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2787 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2788 } 2789 } 2790 2791 void llvm::dropDebugUsers(Instruction &I) { 2792 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2793 findDbgUsers(DbgUsers, &I); 2794 for (auto *DII : DbgUsers) 2795 DII->eraseFromParent(); 2796 } 2797 2798 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 2799 BasicBlock *BB) { 2800 // Since we are moving the instructions out of its basic block, we do not 2801 // retain their original debug locations (DILocations) and debug intrinsic 2802 // instructions. 2803 // 2804 // Doing so would degrade the debugging experience and adversely affect the 2805 // accuracy of profiling information. 2806 // 2807 // Currently, when hoisting the instructions, we take the following actions: 2808 // - Remove their debug intrinsic instructions. 2809 // - Set their debug locations to the values from the insertion point. 2810 // 2811 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 2812 // need to be deleted, is because there will not be any instructions with a 2813 // DILocation in either branch left after performing the transformation. We 2814 // can only insert a dbg.value after the two branches are joined again. 2815 // 2816 // See PR38762, PR39243 for more details. 2817 // 2818 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 2819 // encode predicated DIExpressions that yield different results on different 2820 // code paths. 2821 2822 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 2823 Instruction *I = &*II; 2824 I->dropUnknownNonDebugMetadata(); 2825 if (I->isUsedByMetadata()) 2826 dropDebugUsers(*I); 2827 if (I->isDebugOrPseudoInst()) { 2828 // Remove DbgInfo and pseudo probe Intrinsics. 2829 II = I->eraseFromParent(); 2830 continue; 2831 } 2832 I->setDebugLoc(InsertPt->getDebugLoc()); 2833 ++II; 2834 } 2835 DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), 2836 BB->begin(), 2837 BB->getTerminator()->getIterator()); 2838 } 2839 2840 namespace { 2841 2842 /// A potential constituent of a bitreverse or bswap expression. See 2843 /// collectBitParts for a fuller explanation. 2844 struct BitPart { 2845 BitPart(Value *P, unsigned BW) : Provider(P) { 2846 Provenance.resize(BW); 2847 } 2848 2849 /// The Value that this is a bitreverse/bswap of. 2850 Value *Provider; 2851 2852 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2853 /// in Provider becomes bit B in the result of this expression. 2854 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2855 2856 enum { Unset = -1 }; 2857 }; 2858 2859 } // end anonymous namespace 2860 2861 /// Analyze the specified subexpression and see if it is capable of providing 2862 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2863 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 2864 /// the output of the expression came from a corresponding bit in some other 2865 /// value. This function is recursive, and the end result is a mapping of 2866 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2867 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2868 /// 2869 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2870 /// that the expression deposits the low byte of %X into the high byte of the 2871 /// result and that all other bits are zero. This expression is accepted and a 2872 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2873 /// [0-7]. 2874 /// 2875 /// For vector types, all analysis is performed at the per-element level. No 2876 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 2877 /// constant masks must be splatted across all elements. 2878 /// 2879 /// To avoid revisiting values, the BitPart results are memoized into the 2880 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2881 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2882 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2883 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2884 /// type instead to provide the same functionality. 2885 /// 2886 /// Because we pass around references into \c BPS, we must use a container that 2887 /// does not invalidate internal references (std::map instead of DenseMap). 2888 static const Optional<BitPart> & 2889 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2890 std::map<Value *, Optional<BitPart>> &BPS, int Depth, 2891 bool &FoundRoot) { 2892 auto I = BPS.find(V); 2893 if (I != BPS.end()) 2894 return I->second; 2895 2896 auto &Result = BPS[V] = None; 2897 auto BitWidth = V->getType()->getScalarSizeInBits(); 2898 2899 // Can't do integer/elements > 128 bits. 2900 if (BitWidth > 128) 2901 return Result; 2902 2903 // Prevent stack overflow by limiting the recursion depth 2904 if (Depth == BitPartRecursionMaxDepth) { 2905 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 2906 return Result; 2907 } 2908 2909 if (auto *I = dyn_cast<Instruction>(V)) { 2910 Value *X, *Y; 2911 const APInt *C; 2912 2913 // If this is an or instruction, it may be an inner node of the bswap. 2914 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 2915 // Check we have both sources and they are from the same provider. 2916 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2917 Depth + 1, FoundRoot); 2918 if (!A || !A->Provider) 2919 return Result; 2920 2921 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 2922 Depth + 1, FoundRoot); 2923 if (!B || A->Provider != B->Provider) 2924 return Result; 2925 2926 // Try and merge the two together. 2927 Result = BitPart(A->Provider, BitWidth); 2928 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 2929 if (A->Provenance[BitIdx] != BitPart::Unset && 2930 B->Provenance[BitIdx] != BitPart::Unset && 2931 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 2932 return Result = None; 2933 2934 if (A->Provenance[BitIdx] == BitPart::Unset) 2935 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 2936 else 2937 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 2938 } 2939 2940 return Result; 2941 } 2942 2943 // If this is a logical shift by a constant, recurse then shift the result. 2944 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 2945 const APInt &BitShift = *C; 2946 2947 // Ensure the shift amount is defined. 2948 if (BitShift.uge(BitWidth)) 2949 return Result; 2950 2951 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 2952 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 2953 return Result; 2954 2955 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2956 Depth + 1, FoundRoot); 2957 if (!Res) 2958 return Result; 2959 Result = Res; 2960 2961 // Perform the "shift" on BitProvenance. 2962 auto &P = Result->Provenance; 2963 if (I->getOpcode() == Instruction::Shl) { 2964 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 2965 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 2966 } else { 2967 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 2968 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 2969 } 2970 2971 return Result; 2972 } 2973 2974 // If this is a logical 'and' with a mask that clears bits, recurse then 2975 // unset the appropriate bits. 2976 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 2977 const APInt &AndMask = *C; 2978 2979 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2980 // early exit. 2981 unsigned NumMaskedBits = AndMask.countPopulation(); 2982 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 2983 return Result; 2984 2985 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 2986 Depth + 1, FoundRoot); 2987 if (!Res) 2988 return Result; 2989 Result = Res; 2990 2991 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 2992 // If the AndMask is zero for this bit, clear the bit. 2993 if (AndMask[BitIdx] == 0) 2994 Result->Provenance[BitIdx] = BitPart::Unset; 2995 return Result; 2996 } 2997 2998 // If this is a zext instruction zero extend the result. 2999 if (match(V, m_ZExt(m_Value(X)))) { 3000 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3001 Depth + 1, FoundRoot); 3002 if (!Res) 3003 return Result; 3004 3005 Result = BitPart(Res->Provider, BitWidth); 3006 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3007 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3008 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3009 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3010 Result->Provenance[BitIdx] = BitPart::Unset; 3011 return Result; 3012 } 3013 3014 // If this is a truncate instruction, extract the lower bits. 3015 if (match(V, m_Trunc(m_Value(X)))) { 3016 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3017 Depth + 1, FoundRoot); 3018 if (!Res) 3019 return Result; 3020 3021 Result = BitPart(Res->Provider, BitWidth); 3022 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3023 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3024 return Result; 3025 } 3026 3027 // BITREVERSE - most likely due to us previous matching a partial 3028 // bitreverse. 3029 if (match(V, m_BitReverse(m_Value(X)))) { 3030 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3031 Depth + 1, FoundRoot); 3032 if (!Res) 3033 return Result; 3034 3035 Result = BitPart(Res->Provider, BitWidth); 3036 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3037 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3038 return Result; 3039 } 3040 3041 // BSWAP - most likely due to us previous matching a partial bswap. 3042 if (match(V, m_BSwap(m_Value(X)))) { 3043 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3044 Depth + 1, FoundRoot); 3045 if (!Res) 3046 return Result; 3047 3048 unsigned ByteWidth = BitWidth / 8; 3049 Result = BitPart(Res->Provider, BitWidth); 3050 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 3051 unsigned ByteBitOfs = ByteIdx * 8; 3052 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 3053 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 3054 Res->Provenance[ByteBitOfs + BitIdx]; 3055 } 3056 return Result; 3057 } 3058 3059 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 3060 // amount (modulo). 3061 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3062 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3063 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 3064 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 3065 // We can treat fshr as a fshl by flipping the modulo amount. 3066 unsigned ModAmt = C->urem(BitWidth); 3067 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 3068 ModAmt = BitWidth - ModAmt; 3069 3070 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3071 if (!MatchBitReversals && (ModAmt % 8) != 0) 3072 return Result; 3073 3074 // Check we have both sources and they are from the same provider. 3075 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3076 Depth + 1, FoundRoot); 3077 if (!LHS || !LHS->Provider) 3078 return Result; 3079 3080 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3081 Depth + 1, FoundRoot); 3082 if (!RHS || LHS->Provider != RHS->Provider) 3083 return Result; 3084 3085 unsigned StartBitRHS = BitWidth - ModAmt; 3086 Result = BitPart(LHS->Provider, BitWidth); 3087 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 3088 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 3089 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 3090 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 3091 return Result; 3092 } 3093 } 3094 3095 // If we've already found a root input value then we're never going to merge 3096 // these back together. 3097 if (FoundRoot) 3098 return Result; 3099 3100 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 3101 // be the root input value to the bswap/bitreverse. 3102 FoundRoot = true; 3103 Result = BitPart(V, BitWidth); 3104 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3105 Result->Provenance[BitIdx] = BitIdx; 3106 return Result; 3107 } 3108 3109 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 3110 unsigned BitWidth) { 3111 if (From % 8 != To % 8) 3112 return false; 3113 // Convert from bit indices to byte indices and check for a byte reversal. 3114 From >>= 3; 3115 To >>= 3; 3116 BitWidth >>= 3; 3117 return From == BitWidth - To - 1; 3118 } 3119 3120 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 3121 unsigned BitWidth) { 3122 return From == BitWidth - To - 1; 3123 } 3124 3125 bool llvm::recognizeBSwapOrBitReverseIdiom( 3126 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 3127 SmallVectorImpl<Instruction *> &InsertedInsts) { 3128 if (!match(I, m_Or(m_Value(), m_Value())) && 3129 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 3130 !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) 3131 return false; 3132 if (!MatchBSwaps && !MatchBitReversals) 3133 return false; 3134 Type *ITy = I->getType(); 3135 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 3136 return false; // Can't do integer/elements > 128 bits. 3137 3138 Type *DemandedTy = ITy; 3139 if (I->hasOneUse()) 3140 if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) 3141 DemandedTy = Trunc->getType(); 3142 3143 // Try to find all the pieces corresponding to the bswap. 3144 bool FoundRoot = false; 3145 std::map<Value *, Optional<BitPart>> BPS; 3146 const auto &Res = 3147 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 3148 if (!Res) 3149 return false; 3150 ArrayRef<int8_t> BitProvenance = Res->Provenance; 3151 assert(all_of(BitProvenance, 3152 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 3153 "Illegal bit provenance index"); 3154 3155 // If the upper bits are zero, then attempt to perform as a truncated op. 3156 if (BitProvenance.back() == BitPart::Unset) { 3157 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 3158 BitProvenance = BitProvenance.drop_back(); 3159 if (BitProvenance.empty()) 3160 return false; // TODO - handle null value? 3161 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 3162 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 3163 DemandedTy = VectorType::get(DemandedTy, IVecTy); 3164 } 3165 3166 // Check BitProvenance hasn't found a source larger than the result type. 3167 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 3168 if (DemandedBW > ITy->getScalarSizeInBits()) 3169 return false; 3170 3171 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 3172 // only byteswap values with an even number of bytes. 3173 APInt DemandedMask = APInt::getAllOnesValue(DemandedBW); 3174 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 3175 bool OKForBitReverse = MatchBitReversals; 3176 for (unsigned BitIdx = 0; 3177 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 3178 if (BitProvenance[BitIdx] == BitPart::Unset) { 3179 DemandedMask.clearBit(BitIdx); 3180 continue; 3181 } 3182 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 3183 DemandedBW); 3184 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 3185 BitIdx, DemandedBW); 3186 } 3187 3188 Intrinsic::ID Intrin; 3189 if (OKForBSwap) 3190 Intrin = Intrinsic::bswap; 3191 else if (OKForBitReverse) 3192 Intrin = Intrinsic::bitreverse; 3193 else 3194 return false; 3195 3196 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 3197 Value *Provider = Res->Provider; 3198 3199 // We may need to truncate the provider. 3200 if (DemandedTy != Provider->getType()) { 3201 auto *Trunc = 3202 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); 3203 InsertedInsts.push_back(Trunc); 3204 Provider = Trunc; 3205 } 3206 3207 Instruction *Result = CallInst::Create(F, Provider, "rev", I); 3208 InsertedInsts.push_back(Result); 3209 3210 if (!DemandedMask.isAllOnesValue()) { 3211 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 3212 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); 3213 InsertedInsts.push_back(Result); 3214 } 3215 3216 // We may need to zeroextend back to the result type. 3217 if (ITy != Result->getType()) { 3218 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); 3219 InsertedInsts.push_back(ExtInst); 3220 } 3221 3222 return true; 3223 } 3224 3225 // CodeGen has special handling for some string functions that may replace 3226 // them with target-specific intrinsics. Since that'd skip our interceptors 3227 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 3228 // we mark affected calls as NoBuiltin, which will disable optimization 3229 // in CodeGen. 3230 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 3231 CallInst *CI, const TargetLibraryInfo *TLI) { 3232 Function *F = CI->getCalledFunction(); 3233 LibFunc Func; 3234 if (F && !F->hasLocalLinkage() && F->hasName() && 3235 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 3236 !F->doesNotAccessMemory()) 3237 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 3238 } 3239 3240 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 3241 // We can't have a PHI with a metadata type. 3242 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 3243 return false; 3244 3245 // Early exit. 3246 if (!isa<Constant>(I->getOperand(OpIdx))) 3247 return true; 3248 3249 switch (I->getOpcode()) { 3250 default: 3251 return true; 3252 case Instruction::Call: 3253 case Instruction::Invoke: { 3254 const auto &CB = cast<CallBase>(*I); 3255 3256 // Can't handle inline asm. Skip it. 3257 if (CB.isInlineAsm()) 3258 return false; 3259 3260 // Constant bundle operands may need to retain their constant-ness for 3261 // correctness. 3262 if (CB.isBundleOperand(OpIdx)) 3263 return false; 3264 3265 if (OpIdx < CB.getNumArgOperands()) { 3266 // Some variadic intrinsics require constants in the variadic arguments, 3267 // which currently aren't markable as immarg. 3268 if (isa<IntrinsicInst>(CB) && 3269 OpIdx >= CB.getFunctionType()->getNumParams()) { 3270 // This is known to be OK for stackmap. 3271 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 3272 } 3273 3274 // gcroot is a special case, since it requires a constant argument which 3275 // isn't also required to be a simple ConstantInt. 3276 if (CB.getIntrinsicID() == Intrinsic::gcroot) 3277 return false; 3278 3279 // Some intrinsic operands are required to be immediates. 3280 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 3281 } 3282 3283 // It is never allowed to replace the call argument to an intrinsic, but it 3284 // may be possible for a call. 3285 return !isa<IntrinsicInst>(CB); 3286 } 3287 case Instruction::ShuffleVector: 3288 // Shufflevector masks are constant. 3289 return OpIdx != 2; 3290 case Instruction::Switch: 3291 case Instruction::ExtractValue: 3292 // All operands apart from the first are constant. 3293 return OpIdx == 0; 3294 case Instruction::InsertValue: 3295 // All operands apart from the first and the second are constant. 3296 return OpIdx < 2; 3297 case Instruction::Alloca: 3298 // Static allocas (constant size in the entry block) are handled by 3299 // prologue/epilogue insertion so they're free anyway. We definitely don't 3300 // want to make them non-constant. 3301 return !cast<AllocaInst>(I)->isStaticAlloca(); 3302 case Instruction::GetElementPtr: 3303 if (OpIdx == 0) 3304 return true; 3305 gep_type_iterator It = gep_type_begin(I); 3306 for (auto E = std::next(It, OpIdx); It != E; ++It) 3307 if (It.isStruct()) 3308 return false; 3309 return true; 3310 } 3311 } 3312 3313 Value *llvm::invertCondition(Value *Condition) { 3314 // First: Check if it's a constant 3315 if (Constant *C = dyn_cast<Constant>(Condition)) 3316 return ConstantExpr::getNot(C); 3317 3318 // Second: If the condition is already inverted, return the original value 3319 Value *NotCondition; 3320 if (match(Condition, m_Not(m_Value(NotCondition)))) 3321 return NotCondition; 3322 3323 BasicBlock *Parent = nullptr; 3324 Instruction *Inst = dyn_cast<Instruction>(Condition); 3325 if (Inst) 3326 Parent = Inst->getParent(); 3327 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 3328 Parent = &Arg->getParent()->getEntryBlock(); 3329 assert(Parent && "Unsupported condition to invert"); 3330 3331 // Third: Check all the users for an invert 3332 for (User *U : Condition->users()) 3333 if (Instruction *I = dyn_cast<Instruction>(U)) 3334 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 3335 return I; 3336 3337 // Last option: Create a new instruction 3338 auto *Inverted = 3339 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 3340 if (Inst && !isa<PHINode>(Inst)) 3341 Inverted->insertAfter(Inst); 3342 else 3343 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 3344 return Inverted; 3345 } 3346 3347 bool llvm::inferAttributesFromOthers(Function &F) { 3348 // Note: We explicitly check for attributes rather than using cover functions 3349 // because some of the cover functions include the logic being implemented. 3350 3351 bool Changed = false; 3352 // readnone + not convergent implies nosync 3353 if (!F.hasFnAttribute(Attribute::NoSync) && 3354 F.doesNotAccessMemory() && !F.isConvergent()) { 3355 F.setNoSync(); 3356 Changed = true; 3357 } 3358 3359 // readonly implies nofree 3360 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 3361 F.setDoesNotFreeMemory(); 3362 Changed = true; 3363 } 3364 3365 // willreturn implies mustprogress 3366 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 3367 F.setMustProgress(); 3368 Changed = true; 3369 } 3370 3371 // TODO: There are a bunch of cases of restrictive memory effects we 3372 // can infer by inspecting arguments of argmemonly-ish functions. 3373 3374 return Changed; 3375 } 3376