1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/ConstantRange.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DIBuilder.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalObject.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/PseudoProbe.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/ValueMapper.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <climits>
83 #include <cstdint>
84 #include <iterator>
85 #include <map>
86 #include <utility>
87 
88 using namespace llvm;
89 using namespace llvm::PatternMatch;
90 
91 #define DEBUG_TYPE "local"
92 
93 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
94 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
95 
96 static cl::opt<bool> PHICSEDebugHash(
97     "phicse-debug-hash",
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true),
100 #else
101     cl::init(false),
102 #endif
103     cl::Hidden,
104     cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
105              "function is well-behaved w.r.t. its isEqual predicate"));
106 
107 static cl::opt<unsigned> PHICSENumPHISmallSize(
108     "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
109     cl::desc(
110         "When the basic block contains not more than this number of PHI nodes, "
111         "perform a (faster!) exhaustive search instead of set-driven one."));
112 
113 // Max recursion depth for collectBitParts used when detecting bswap and
114 // bitreverse idioms.
115 static const unsigned BitPartRecursionMaxDepth = 48;
116 
117 //===----------------------------------------------------------------------===//
118 //  Local constant propagation.
119 //
120 
121 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
122 /// constant value, convert it into an unconditional branch to the constant
123 /// destination.  This is a nontrivial operation because the successors of this
124 /// basic block must have their PHI nodes updated.
125 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
126 /// conditions and indirectbr addresses this might make dead if
127 /// DeleteDeadConditions is true.
128 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
129                                   const TargetLibraryInfo *TLI,
130                                   DomTreeUpdater *DTU) {
131   Instruction *T = BB->getTerminator();
132   IRBuilder<> Builder(T);
133 
134   // Branch - See if we are conditional jumping on constant
135   if (auto *BI = dyn_cast<BranchInst>(T)) {
136     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
137 
138     BasicBlock *Dest1 = BI->getSuccessor(0);
139     BasicBlock *Dest2 = BI->getSuccessor(1);
140 
141     if (Dest2 == Dest1) {       // Conditional branch to same location?
142       // This branch matches something like this:
143       //     br bool %cond, label %Dest, label %Dest
144       // and changes it into:  br label %Dest
145 
146       // Let the basic block know that we are letting go of one copy of it.
147       assert(BI->getParent() && "Terminator not inserted in block!");
148       Dest1->removePredecessor(BI->getParent());
149 
150       // Replace the conditional branch with an unconditional one.
151       BranchInst *NewBI = Builder.CreateBr(Dest1);
152 
153       // Transfer the metadata to the new branch instruction.
154       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
155                                 LLVMContext::MD_annotation});
156 
157       Value *Cond = BI->getCondition();
158       BI->eraseFromParent();
159       if (DeleteDeadConditions)
160         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
161       return true;
162     }
163 
164     if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
165       // Are we branching on constant?
166       // YES.  Change to unconditional branch...
167       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
168       BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
169 
170       // Let the basic block know that we are letting go of it.  Based on this,
171       // it will adjust it's PHI nodes.
172       OldDest->removePredecessor(BB);
173 
174       // Replace the conditional branch with an unconditional one.
175       BranchInst *NewBI = Builder.CreateBr(Destination);
176 
177       // Transfer the metadata to the new branch instruction.
178       NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
179                                 LLVMContext::MD_annotation});
180 
181       BI->eraseFromParent();
182       if (DTU)
183         DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
184       return true;
185     }
186 
187     return false;
188   }
189 
190   if (auto *SI = dyn_cast<SwitchInst>(T)) {
191     // If we are switching on a constant, we can convert the switch to an
192     // unconditional branch.
193     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
194     BasicBlock *DefaultDest = SI->getDefaultDest();
195     BasicBlock *TheOnlyDest = DefaultDest;
196 
197     // If the default is unreachable, ignore it when searching for TheOnlyDest.
198     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
199         SI->getNumCases() > 0) {
200       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
201     }
202 
203     bool Changed = false;
204 
205     // Figure out which case it goes to.
206     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
207       // Found case matching a constant operand?
208       if (i->getCaseValue() == CI) {
209         TheOnlyDest = i->getCaseSuccessor();
210         break;
211       }
212 
213       // Check to see if this branch is going to the same place as the default
214       // dest.  If so, eliminate it as an explicit compare.
215       if (i->getCaseSuccessor() == DefaultDest) {
216         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
217         unsigned NCases = SI->getNumCases();
218         // Fold the case metadata into the default if there will be any branches
219         // left, unless the metadata doesn't match the switch.
220         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
221           // Collect branch weights into a vector.
222           SmallVector<uint32_t, 8> Weights;
223           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
224                ++MD_i) {
225             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
226             Weights.push_back(CI->getValue().getZExtValue());
227           }
228           // Merge weight of this case to the default weight.
229           unsigned idx = i->getCaseIndex();
230           Weights[0] += Weights[idx+1];
231           // Remove weight for this case.
232           std::swap(Weights[idx+1], Weights.back());
233           Weights.pop_back();
234           SI->setMetadata(LLVMContext::MD_prof,
235                           MDBuilder(BB->getContext()).
236                           createBranchWeights(Weights));
237         }
238         // Remove this entry.
239         BasicBlock *ParentBB = SI->getParent();
240         DefaultDest->removePredecessor(ParentBB);
241         i = SI->removeCase(i);
242         e = SI->case_end();
243         Changed = true;
244         continue;
245       }
246 
247       // Otherwise, check to see if the switch only branches to one destination.
248       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
249       // destinations.
250       if (i->getCaseSuccessor() != TheOnlyDest)
251         TheOnlyDest = nullptr;
252 
253       // Increment this iterator as we haven't removed the case.
254       ++i;
255     }
256 
257     if (CI && !TheOnlyDest) {
258       // Branching on a constant, but not any of the cases, go to the default
259       // successor.
260       TheOnlyDest = SI->getDefaultDest();
261     }
262 
263     // If we found a single destination that we can fold the switch into, do so
264     // now.
265     if (TheOnlyDest) {
266       // Insert the new branch.
267       Builder.CreateBr(TheOnlyDest);
268       BasicBlock *BB = SI->getParent();
269 
270       SmallSet<BasicBlock *, 8> RemovedSuccessors;
271 
272       // Remove entries from PHI nodes which we no longer branch to...
273       BasicBlock *SuccToKeep = TheOnlyDest;
274       for (BasicBlock *Succ : successors(SI)) {
275         if (DTU && Succ != TheOnlyDest)
276           RemovedSuccessors.insert(Succ);
277         // Found case matching a constant operand?
278         if (Succ == SuccToKeep) {
279           SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
280         } else {
281           Succ->removePredecessor(BB);
282         }
283       }
284 
285       // Delete the old switch.
286       Value *Cond = SI->getCondition();
287       SI->eraseFromParent();
288       if (DeleteDeadConditions)
289         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
290       if (DTU) {
291         std::vector<DominatorTree::UpdateType> Updates;
292         Updates.reserve(RemovedSuccessors.size());
293         for (auto *RemovedSuccessor : RemovedSuccessors)
294           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
295         DTU->applyUpdates(Updates);
296       }
297       return true;
298     }
299 
300     if (SI->getNumCases() == 1) {
301       // Otherwise, we can fold this switch into a conditional branch
302       // instruction if it has only one non-default destination.
303       auto FirstCase = *SI->case_begin();
304       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
305           FirstCase.getCaseValue(), "cond");
306 
307       // Insert the new branch.
308       BranchInst *NewBr = Builder.CreateCondBr(Cond,
309                                                FirstCase.getCaseSuccessor(),
310                                                SI->getDefaultDest());
311       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
312       if (MD && MD->getNumOperands() == 3) {
313         ConstantInt *SICase =
314             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
315         ConstantInt *SIDef =
316             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
317         assert(SICase && SIDef);
318         // The TrueWeight should be the weight for the single case of SI.
319         NewBr->setMetadata(LLVMContext::MD_prof,
320                         MDBuilder(BB->getContext()).
321                         createBranchWeights(SICase->getValue().getZExtValue(),
322                                             SIDef->getValue().getZExtValue()));
323       }
324 
325       // Update make.implicit metadata to the newly-created conditional branch.
326       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
327       if (MakeImplicitMD)
328         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
329 
330       // Delete the old switch.
331       SI->eraseFromParent();
332       return true;
333     }
334     return Changed;
335   }
336 
337   if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
338     // indirectbr blockaddress(@F, @BB) -> br label @BB
339     if (auto *BA =
340           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
341       BasicBlock *TheOnlyDest = BA->getBasicBlock();
342       SmallSet<BasicBlock *, 8> RemovedSuccessors;
343 
344       // Insert the new branch.
345       Builder.CreateBr(TheOnlyDest);
346 
347       BasicBlock *SuccToKeep = TheOnlyDest;
348       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
349         BasicBlock *DestBB = IBI->getDestination(i);
350         if (DTU && DestBB != TheOnlyDest)
351           RemovedSuccessors.insert(DestBB);
352         if (IBI->getDestination(i) == SuccToKeep) {
353           SuccToKeep = nullptr;
354         } else {
355           DestBB->removePredecessor(BB);
356         }
357       }
358       Value *Address = IBI->getAddress();
359       IBI->eraseFromParent();
360       if (DeleteDeadConditions)
361         // Delete pointer cast instructions.
362         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
363 
364       // Also zap the blockaddress constant if there are no users remaining,
365       // otherwise the destination is still marked as having its address taken.
366       if (BA->use_empty())
367         BA->destroyConstant();
368 
369       // If we didn't find our destination in the IBI successor list, then we
370       // have undefined behavior.  Replace the unconditional branch with an
371       // 'unreachable' instruction.
372       if (SuccToKeep) {
373         BB->getTerminator()->eraseFromParent();
374         new UnreachableInst(BB->getContext(), BB);
375       }
376 
377       if (DTU) {
378         std::vector<DominatorTree::UpdateType> Updates;
379         Updates.reserve(RemovedSuccessors.size());
380         for (auto *RemovedSuccessor : RemovedSuccessors)
381           Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
382         DTU->applyUpdates(Updates);
383       }
384       return true;
385     }
386   }
387 
388   return false;
389 }
390 
391 //===----------------------------------------------------------------------===//
392 //  Local dead code elimination.
393 //
394 
395 /// isInstructionTriviallyDead - Return true if the result produced by the
396 /// instruction is not used, and the instruction has no side effects.
397 ///
398 bool llvm::isInstructionTriviallyDead(Instruction *I,
399                                       const TargetLibraryInfo *TLI) {
400   if (!I->use_empty())
401     return false;
402   return wouldInstructionBeTriviallyDead(I, TLI);
403 }
404 
405 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
406                                            const TargetLibraryInfo *TLI) {
407   if (I->isTerminator())
408     return false;
409 
410   // We don't want the landingpad-like instructions removed by anything this
411   // general.
412   if (I->isEHPad())
413     return false;
414 
415   // We don't want debug info removed by anything this general, unless
416   // debug info is empty.
417   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
418     if (DDI->getAddress())
419       return false;
420     return true;
421   }
422   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
423     if (DVI->hasArgList() || DVI->getValue(0))
424       return false;
425     return true;
426   }
427   if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
428     if (DLI->getLabel())
429       return false;
430     return true;
431   }
432 
433   if (!I->willReturn())
434     return false;
435 
436   if (!I->mayHaveSideEffects())
437     return true;
438 
439   // Special case intrinsics that "may have side effects" but can be deleted
440   // when dead.
441   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
442     // Safe to delete llvm.stacksave and launder.invariant.group if dead.
443     if (II->getIntrinsicID() == Intrinsic::stacksave ||
444         II->getIntrinsicID() == Intrinsic::launder_invariant_group)
445       return true;
446 
447     if (II->isLifetimeStartOrEnd()) {
448       auto *Arg = II->getArgOperand(1);
449       // Lifetime intrinsics are dead when their right-hand is undef.
450       if (isa<UndefValue>(Arg))
451         return true;
452       // If the right-hand is an alloc, global, or argument and the only uses
453       // are lifetime intrinsics then the intrinsics are dead.
454       if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
455         return llvm::all_of(Arg->uses(), [](Use &Use) {
456           if (IntrinsicInst *IntrinsicUse =
457                   dyn_cast<IntrinsicInst>(Use.getUser()))
458             return IntrinsicUse->isLifetimeStartOrEnd();
459           return false;
460         });
461       return false;
462     }
463 
464     // Assumptions are dead if their condition is trivially true.  Guards on
465     // true are operationally no-ops.  In the future we can consider more
466     // sophisticated tradeoffs for guards considering potential for check
467     // widening, but for now we keep things simple.
468     if ((II->getIntrinsicID() == Intrinsic::assume &&
469          isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
470         II->getIntrinsicID() == Intrinsic::experimental_guard) {
471       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
472         return !Cond->isZero();
473 
474       return false;
475     }
476 
477     if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
478       Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior();
479       return ExBehavior.getValue() != fp::ebStrict;
480     }
481   }
482 
483   if (isAllocLikeFn(I, TLI))
484     return true;
485 
486   if (CallInst *CI = isFreeCall(I, TLI))
487     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
488       return C->isNullValue() || isa<UndefValue>(C);
489 
490   if (auto *Call = dyn_cast<CallBase>(I))
491     if (isMathLibCallNoop(Call, TLI))
492       return true;
493 
494   return false;
495 }
496 
497 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
498 /// trivially dead instruction, delete it.  If that makes any of its operands
499 /// trivially dead, delete them too, recursively.  Return true if any
500 /// instructions were deleted.
501 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
502     Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
503     std::function<void(Value *)> AboutToDeleteCallback) {
504   Instruction *I = dyn_cast<Instruction>(V);
505   if (!I || !isInstructionTriviallyDead(I, TLI))
506     return false;
507 
508   SmallVector<WeakTrackingVH, 16> DeadInsts;
509   DeadInsts.push_back(I);
510   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
511                                              AboutToDeleteCallback);
512 
513   return true;
514 }
515 
516 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
517     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
518     MemorySSAUpdater *MSSAU,
519     std::function<void(Value *)> AboutToDeleteCallback) {
520   unsigned S = 0, E = DeadInsts.size(), Alive = 0;
521   for (; S != E; ++S) {
522     auto *I = cast<Instruction>(DeadInsts[S]);
523     if (!isInstructionTriviallyDead(I)) {
524       DeadInsts[S] = nullptr;
525       ++Alive;
526     }
527   }
528   if (Alive == E)
529     return false;
530   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
531                                              AboutToDeleteCallback);
532   return true;
533 }
534 
535 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
536     SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
537     MemorySSAUpdater *MSSAU,
538     std::function<void(Value *)> AboutToDeleteCallback) {
539   // Process the dead instruction list until empty.
540   while (!DeadInsts.empty()) {
541     Value *V = DeadInsts.pop_back_val();
542     Instruction *I = cast_or_null<Instruction>(V);
543     if (!I)
544       continue;
545     assert(isInstructionTriviallyDead(I, TLI) &&
546            "Live instruction found in dead worklist!");
547     assert(I->use_empty() && "Instructions with uses are not dead.");
548 
549     // Don't lose the debug info while deleting the instructions.
550     salvageDebugInfo(*I);
551 
552     if (AboutToDeleteCallback)
553       AboutToDeleteCallback(I);
554 
555     // Null out all of the instruction's operands to see if any operand becomes
556     // dead as we go.
557     for (Use &OpU : I->operands()) {
558       Value *OpV = OpU.get();
559       OpU.set(nullptr);
560 
561       if (!OpV->use_empty())
562         continue;
563 
564       // If the operand is an instruction that became dead as we nulled out the
565       // operand, and if it is 'trivially' dead, delete it in a future loop
566       // iteration.
567       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
568         if (isInstructionTriviallyDead(OpI, TLI))
569           DeadInsts.push_back(OpI);
570     }
571     if (MSSAU)
572       MSSAU->removeMemoryAccess(I);
573 
574     I->eraseFromParent();
575   }
576 }
577 
578 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
579   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
580   findDbgUsers(DbgUsers, I);
581   for (auto *DII : DbgUsers) {
582     Value *Undef = UndefValue::get(I->getType());
583     DII->replaceVariableLocationOp(I, Undef);
584   }
585   return !DbgUsers.empty();
586 }
587 
588 /// areAllUsesEqual - Check whether the uses of a value are all the same.
589 /// This is similar to Instruction::hasOneUse() except this will also return
590 /// true when there are no uses or multiple uses that all refer to the same
591 /// value.
592 static bool areAllUsesEqual(Instruction *I) {
593   Value::user_iterator UI = I->user_begin();
594   Value::user_iterator UE = I->user_end();
595   if (UI == UE)
596     return true;
597 
598   User *TheUse = *UI;
599   for (++UI; UI != UE; ++UI) {
600     if (*UI != TheUse)
601       return false;
602   }
603   return true;
604 }
605 
606 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
607 /// dead PHI node, due to being a def-use chain of single-use nodes that
608 /// either forms a cycle or is terminated by a trivially dead instruction,
609 /// delete it.  If that makes any of its operands trivially dead, delete them
610 /// too, recursively.  Return true if a change was made.
611 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
612                                         const TargetLibraryInfo *TLI,
613                                         llvm::MemorySSAUpdater *MSSAU) {
614   SmallPtrSet<Instruction*, 4> Visited;
615   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
616        I = cast<Instruction>(*I->user_begin())) {
617     if (I->use_empty())
618       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
619 
620     // If we find an instruction more than once, we're on a cycle that
621     // won't prove fruitful.
622     if (!Visited.insert(I).second) {
623       // Break the cycle and delete the instruction and its operands.
624       I->replaceAllUsesWith(UndefValue::get(I->getType()));
625       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
626       return true;
627     }
628   }
629   return false;
630 }
631 
632 static bool
633 simplifyAndDCEInstruction(Instruction *I,
634                           SmallSetVector<Instruction *, 16> &WorkList,
635                           const DataLayout &DL,
636                           const TargetLibraryInfo *TLI) {
637   if (isInstructionTriviallyDead(I, TLI)) {
638     salvageDebugInfo(*I);
639 
640     // Null out all of the instruction's operands to see if any operand becomes
641     // dead as we go.
642     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
643       Value *OpV = I->getOperand(i);
644       I->setOperand(i, nullptr);
645 
646       if (!OpV->use_empty() || I == OpV)
647         continue;
648 
649       // If the operand is an instruction that became dead as we nulled out the
650       // operand, and if it is 'trivially' dead, delete it in a future loop
651       // iteration.
652       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
653         if (isInstructionTriviallyDead(OpI, TLI))
654           WorkList.insert(OpI);
655     }
656 
657     I->eraseFromParent();
658 
659     return true;
660   }
661 
662   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
663     // Add the users to the worklist. CAREFUL: an instruction can use itself,
664     // in the case of a phi node.
665     for (User *U : I->users()) {
666       if (U != I) {
667         WorkList.insert(cast<Instruction>(U));
668       }
669     }
670 
671     // Replace the instruction with its simplified value.
672     bool Changed = false;
673     if (!I->use_empty()) {
674       I->replaceAllUsesWith(SimpleV);
675       Changed = true;
676     }
677     if (isInstructionTriviallyDead(I, TLI)) {
678       I->eraseFromParent();
679       Changed = true;
680     }
681     return Changed;
682   }
683   return false;
684 }
685 
686 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
687 /// simplify any instructions in it and recursively delete dead instructions.
688 ///
689 /// This returns true if it changed the code, note that it can delete
690 /// instructions in other blocks as well in this block.
691 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
692                                        const TargetLibraryInfo *TLI) {
693   bool MadeChange = false;
694   const DataLayout &DL = BB->getModule()->getDataLayout();
695 
696 #ifndef NDEBUG
697   // In debug builds, ensure that the terminator of the block is never replaced
698   // or deleted by these simplifications. The idea of simplification is that it
699   // cannot introduce new instructions, and there is no way to replace the
700   // terminator of a block without introducing a new instruction.
701   AssertingVH<Instruction> TerminatorVH(&BB->back());
702 #endif
703 
704   SmallSetVector<Instruction *, 16> WorkList;
705   // Iterate over the original function, only adding insts to the worklist
706   // if they actually need to be revisited. This avoids having to pre-init
707   // the worklist with the entire function's worth of instructions.
708   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
709        BI != E;) {
710     assert(!BI->isTerminator());
711     Instruction *I = &*BI;
712     ++BI;
713 
714     // We're visiting this instruction now, so make sure it's not in the
715     // worklist from an earlier visit.
716     if (!WorkList.count(I))
717       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
718   }
719 
720   while (!WorkList.empty()) {
721     Instruction *I = WorkList.pop_back_val();
722     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
723   }
724   return MadeChange;
725 }
726 
727 //===----------------------------------------------------------------------===//
728 //  Control Flow Graph Restructuring.
729 //
730 
731 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
732                                        DomTreeUpdater *DTU) {
733 
734   // If BB has single-entry PHI nodes, fold them.
735   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
736     Value *NewVal = PN->getIncomingValue(0);
737     // Replace self referencing PHI with undef, it must be dead.
738     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
739     PN->replaceAllUsesWith(NewVal);
740     PN->eraseFromParent();
741   }
742 
743   BasicBlock *PredBB = DestBB->getSinglePredecessor();
744   assert(PredBB && "Block doesn't have a single predecessor!");
745 
746   bool ReplaceEntryBB = PredBB->isEntryBlock();
747 
748   // DTU updates: Collect all the edges that enter
749   // PredBB. These dominator edges will be redirected to DestBB.
750   SmallVector<DominatorTree::UpdateType, 32> Updates;
751 
752   if (DTU) {
753     SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB),
754                                                pred_end(PredBB));
755     Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1);
756     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
757       // This predecessor of PredBB may already have DestBB as a successor.
758       if (PredOfPredBB != PredBB)
759         Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
760     for (BasicBlock *PredOfPredBB : PredsOfPredBB)
761       Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
762     Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
763   }
764 
765   // Zap anything that took the address of DestBB.  Not doing this will give the
766   // address an invalid value.
767   if (DestBB->hasAddressTaken()) {
768     BlockAddress *BA = BlockAddress::get(DestBB);
769     Constant *Replacement =
770       ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
771     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
772                                                      BA->getType()));
773     BA->destroyConstant();
774   }
775 
776   // Anything that branched to PredBB now branches to DestBB.
777   PredBB->replaceAllUsesWith(DestBB);
778 
779   // Splice all the instructions from PredBB to DestBB.
780   PredBB->getTerminator()->eraseFromParent();
781   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
782   new UnreachableInst(PredBB->getContext(), PredBB);
783 
784   // If the PredBB is the entry block of the function, move DestBB up to
785   // become the entry block after we erase PredBB.
786   if (ReplaceEntryBB)
787     DestBB->moveAfter(PredBB);
788 
789   if (DTU) {
790     assert(PredBB->getInstList().size() == 1 &&
791            isa<UnreachableInst>(PredBB->getTerminator()) &&
792            "The successor list of PredBB isn't empty before "
793            "applying corresponding DTU updates.");
794     DTU->applyUpdatesPermissive(Updates);
795     DTU->deleteBB(PredBB);
796     // Recalculation of DomTree is needed when updating a forward DomTree and
797     // the Entry BB is replaced.
798     if (ReplaceEntryBB && DTU->hasDomTree()) {
799       // The entry block was removed and there is no external interface for
800       // the dominator tree to be notified of this change. In this corner-case
801       // we recalculate the entire tree.
802       DTU->recalculate(*(DestBB->getParent()));
803     }
804   }
805 
806   else {
807     PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
808   }
809 }
810 
811 /// Return true if we can choose one of these values to use in place of the
812 /// other. Note that we will always choose the non-undef value to keep.
813 static bool CanMergeValues(Value *First, Value *Second) {
814   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
815 }
816 
817 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
818 /// branch to Succ, into Succ.
819 ///
820 /// Assumption: Succ is the single successor for BB.
821 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
822   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
823 
824   LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
825                     << Succ->getName() << "\n");
826   // Shortcut, if there is only a single predecessor it must be BB and merging
827   // is always safe
828   if (Succ->getSinglePredecessor()) return true;
829 
830   // Make a list of the predecessors of BB
831   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
832 
833   // Look at all the phi nodes in Succ, to see if they present a conflict when
834   // merging these blocks
835   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
836     PHINode *PN = cast<PHINode>(I);
837 
838     // If the incoming value from BB is again a PHINode in
839     // BB which has the same incoming value for *PI as PN does, we can
840     // merge the phi nodes and then the blocks can still be merged
841     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
842     if (BBPN && BBPN->getParent() == BB) {
843       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
844         BasicBlock *IBB = PN->getIncomingBlock(PI);
845         if (BBPreds.count(IBB) &&
846             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
847                             PN->getIncomingValue(PI))) {
848           LLVM_DEBUG(dbgs()
849                      << "Can't fold, phi node " << PN->getName() << " in "
850                      << Succ->getName() << " is conflicting with "
851                      << BBPN->getName() << " with regard to common predecessor "
852                      << IBB->getName() << "\n");
853           return false;
854         }
855       }
856     } else {
857       Value* Val = PN->getIncomingValueForBlock(BB);
858       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
859         // See if the incoming value for the common predecessor is equal to the
860         // one for BB, in which case this phi node will not prevent the merging
861         // of the block.
862         BasicBlock *IBB = PN->getIncomingBlock(PI);
863         if (BBPreds.count(IBB) &&
864             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
865           LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
866                             << " in " << Succ->getName()
867                             << " is conflicting with regard to common "
868                             << "predecessor " << IBB->getName() << "\n");
869           return false;
870         }
871       }
872     }
873   }
874 
875   return true;
876 }
877 
878 using PredBlockVector = SmallVector<BasicBlock *, 16>;
879 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
880 
881 /// Determines the value to use as the phi node input for a block.
882 ///
883 /// Select between \p OldVal any value that we know flows from \p BB
884 /// to a particular phi on the basis of which one (if either) is not
885 /// undef. Update IncomingValues based on the selected value.
886 ///
887 /// \param OldVal The value we are considering selecting.
888 /// \param BB The block that the value flows in from.
889 /// \param IncomingValues A map from block-to-value for other phi inputs
890 /// that we have examined.
891 ///
892 /// \returns the selected value.
893 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
894                                           IncomingValueMap &IncomingValues) {
895   if (!isa<UndefValue>(OldVal)) {
896     assert((!IncomingValues.count(BB) ||
897             IncomingValues.find(BB)->second == OldVal) &&
898            "Expected OldVal to match incoming value from BB!");
899 
900     IncomingValues.insert(std::make_pair(BB, OldVal));
901     return OldVal;
902   }
903 
904   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
905   if (It != IncomingValues.end()) return It->second;
906 
907   return OldVal;
908 }
909 
910 /// Create a map from block to value for the operands of a
911 /// given phi.
912 ///
913 /// Create a map from block to value for each non-undef value flowing
914 /// into \p PN.
915 ///
916 /// \param PN The phi we are collecting the map for.
917 /// \param IncomingValues [out] The map from block to value for this phi.
918 static void gatherIncomingValuesToPhi(PHINode *PN,
919                                       IncomingValueMap &IncomingValues) {
920   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
921     BasicBlock *BB = PN->getIncomingBlock(i);
922     Value *V = PN->getIncomingValue(i);
923 
924     if (!isa<UndefValue>(V))
925       IncomingValues.insert(std::make_pair(BB, V));
926   }
927 }
928 
929 /// Replace the incoming undef values to a phi with the values
930 /// from a block-to-value map.
931 ///
932 /// \param PN The phi we are replacing the undefs in.
933 /// \param IncomingValues A map from block to value.
934 static void replaceUndefValuesInPhi(PHINode *PN,
935                                     const IncomingValueMap &IncomingValues) {
936   SmallVector<unsigned> TrueUndefOps;
937   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
938     Value *V = PN->getIncomingValue(i);
939 
940     if (!isa<UndefValue>(V)) continue;
941 
942     BasicBlock *BB = PN->getIncomingBlock(i);
943     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
944 
945     // Keep track of undef/poison incoming values. Those must match, so we fix
946     // them up below if needed.
947     // Note: this is conservatively correct, but we could try harder and group
948     // the undef values per incoming basic block.
949     if (It == IncomingValues.end()) {
950       TrueUndefOps.push_back(i);
951       continue;
952     }
953 
954     // There is a defined value for this incoming block, so map this undef
955     // incoming value to the defined value.
956     PN->setIncomingValue(i, It->second);
957   }
958 
959   // If there are both undef and poison values incoming, then convert those
960   // values to undef. It is invalid to have different values for the same
961   // incoming block.
962   unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
963     return isa<PoisonValue>(PN->getIncomingValue(i));
964   });
965   if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
966     for (unsigned i : TrueUndefOps)
967       PN->setIncomingValue(i, UndefValue::get(PN->getType()));
968   }
969 }
970 
971 /// Replace a value flowing from a block to a phi with
972 /// potentially multiple instances of that value flowing from the
973 /// block's predecessors to the phi.
974 ///
975 /// \param BB The block with the value flowing into the phi.
976 /// \param BBPreds The predecessors of BB.
977 /// \param PN The phi that we are updating.
978 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
979                                                 const PredBlockVector &BBPreds,
980                                                 PHINode *PN) {
981   Value *OldVal = PN->removeIncomingValue(BB, false);
982   assert(OldVal && "No entry in PHI for Pred BB!");
983 
984   IncomingValueMap IncomingValues;
985 
986   // We are merging two blocks - BB, and the block containing PN - and
987   // as a result we need to redirect edges from the predecessors of BB
988   // to go to the block containing PN, and update PN
989   // accordingly. Since we allow merging blocks in the case where the
990   // predecessor and successor blocks both share some predecessors,
991   // and where some of those common predecessors might have undef
992   // values flowing into PN, we want to rewrite those values to be
993   // consistent with the non-undef values.
994 
995   gatherIncomingValuesToPhi(PN, IncomingValues);
996 
997   // If this incoming value is one of the PHI nodes in BB, the new entries
998   // in the PHI node are the entries from the old PHI.
999   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1000     PHINode *OldValPN = cast<PHINode>(OldVal);
1001     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1002       // Note that, since we are merging phi nodes and BB and Succ might
1003       // have common predecessors, we could end up with a phi node with
1004       // identical incoming branches. This will be cleaned up later (and
1005       // will trigger asserts if we try to clean it up now, without also
1006       // simplifying the corresponding conditional branch).
1007       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1008       Value *PredVal = OldValPN->getIncomingValue(i);
1009       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1010                                                     IncomingValues);
1011 
1012       // And add a new incoming value for this predecessor for the
1013       // newly retargeted branch.
1014       PN->addIncoming(Selected, PredBB);
1015     }
1016   } else {
1017     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1018       // Update existing incoming values in PN for this
1019       // predecessor of BB.
1020       BasicBlock *PredBB = BBPreds[i];
1021       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1022                                                     IncomingValues);
1023 
1024       // And add a new incoming value for this predecessor for the
1025       // newly retargeted branch.
1026       PN->addIncoming(Selected, PredBB);
1027     }
1028   }
1029 
1030   replaceUndefValuesInPhi(PN, IncomingValues);
1031 }
1032 
1033 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1034                                                    DomTreeUpdater *DTU) {
1035   assert(BB != &BB->getParent()->getEntryBlock() &&
1036          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1037 
1038   // We can't eliminate infinite loops.
1039   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1040   if (BB == Succ) return false;
1041 
1042   // Check to see if merging these blocks would cause conflicts for any of the
1043   // phi nodes in BB or Succ. If not, we can safely merge.
1044   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1045 
1046   // Check for cases where Succ has multiple predecessors and a PHI node in BB
1047   // has uses which will not disappear when the PHI nodes are merged.  It is
1048   // possible to handle such cases, but difficult: it requires checking whether
1049   // BB dominates Succ, which is non-trivial to calculate in the case where
1050   // Succ has multiple predecessors.  Also, it requires checking whether
1051   // constructing the necessary self-referential PHI node doesn't introduce any
1052   // conflicts; this isn't too difficult, but the previous code for doing this
1053   // was incorrect.
1054   //
1055   // Note that if this check finds a live use, BB dominates Succ, so BB is
1056   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1057   // folding the branch isn't profitable in that case anyway.
1058   if (!Succ->getSinglePredecessor()) {
1059     BasicBlock::iterator BBI = BB->begin();
1060     while (isa<PHINode>(*BBI)) {
1061       for (Use &U : BBI->uses()) {
1062         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1063           if (PN->getIncomingBlock(U) != BB)
1064             return false;
1065         } else {
1066           return false;
1067         }
1068       }
1069       ++BBI;
1070     }
1071   }
1072 
1073   // We cannot fold the block if it's a branch to an already present callbr
1074   // successor because that creates duplicate successors.
1075   for (BasicBlock *PredBB : predecessors(BB)) {
1076     if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) {
1077       if (Succ == CBI->getDefaultDest())
1078         return false;
1079       for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
1080         if (Succ == CBI->getIndirectDest(i))
1081           return false;
1082     }
1083   }
1084 
1085   LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1086 
1087   SmallVector<DominatorTree::UpdateType, 32> Updates;
1088   if (DTU) {
1089     // All predecessors of BB will be moved to Succ.
1090     SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB));
1091     SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1092     Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1);
1093     for (auto *PredOfBB : PredsOfBB)
1094       // This predecessor of BB may already have Succ as a successor.
1095       if (!PredsOfSucc.contains(PredOfBB))
1096         Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1097     for (auto *PredOfBB : PredsOfBB)
1098       Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1099     Updates.push_back({DominatorTree::Delete, BB, Succ});
1100   }
1101 
1102   if (isa<PHINode>(Succ->begin())) {
1103     // If there is more than one pred of succ, and there are PHI nodes in
1104     // the successor, then we need to add incoming edges for the PHI nodes
1105     //
1106     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
1107 
1108     // Loop over all of the PHI nodes in the successor of BB.
1109     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1110       PHINode *PN = cast<PHINode>(I);
1111 
1112       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1113     }
1114   }
1115 
1116   if (Succ->getSinglePredecessor()) {
1117     // BB is the only predecessor of Succ, so Succ will end up with exactly
1118     // the same predecessors BB had.
1119 
1120     // Copy over any phi, debug or lifetime instruction.
1121     BB->getTerminator()->eraseFromParent();
1122     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
1123                                BB->getInstList());
1124   } else {
1125     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1126       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1127       assert(PN->use_empty() && "There shouldn't be any uses here!");
1128       PN->eraseFromParent();
1129     }
1130   }
1131 
1132   // If the unconditional branch we replaced contains llvm.loop metadata, we
1133   // add the metadata to the branch instructions in the predecessors.
1134   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1135   Instruction *TI = BB->getTerminator();
1136   if (TI)
1137     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1138       for (BasicBlock *Pred : predecessors(BB))
1139         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1140 
1141   // Everything that jumped to BB now goes to Succ.
1142   BB->replaceAllUsesWith(Succ);
1143   if (!Succ->hasName()) Succ->takeName(BB);
1144 
1145   // Clear the successor list of BB to match updates applying to DTU later.
1146   if (BB->getTerminator())
1147     BB->getInstList().pop_back();
1148   new UnreachableInst(BB->getContext(), BB);
1149   assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1150                            "applying corresponding DTU updates.");
1151 
1152   if (DTU)
1153     DTU->applyUpdates(Updates);
1154 
1155   DeleteDeadBlock(BB, DTU);
1156 
1157   return true;
1158 }
1159 
1160 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1161   // This implementation doesn't currently consider undef operands
1162   // specially. Theoretically, two phis which are identical except for
1163   // one having an undef where the other doesn't could be collapsed.
1164 
1165   bool Changed = false;
1166 
1167   // Examine each PHI.
1168   // Note that increment of I must *NOT* be in the iteration_expression, since
1169   // we don't want to immediately advance when we restart from the beginning.
1170   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1171     ++I;
1172     // Is there an identical PHI node in this basic block?
1173     // Note that we only look in the upper square's triangle,
1174     // we already checked that the lower triangle PHI's aren't identical.
1175     for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1176       if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1177         continue;
1178       // A duplicate. Replace this PHI with the base PHI.
1179       ++NumPHICSEs;
1180       DuplicatePN->replaceAllUsesWith(PN);
1181       DuplicatePN->eraseFromParent();
1182       Changed = true;
1183 
1184       // The RAUW can change PHIs that we already visited.
1185       I = BB->begin();
1186       break; // Start over from the beginning.
1187     }
1188   }
1189   return Changed;
1190 }
1191 
1192 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1193   // This implementation doesn't currently consider undef operands
1194   // specially. Theoretically, two phis which are identical except for
1195   // one having an undef where the other doesn't could be collapsed.
1196 
1197   struct PHIDenseMapInfo {
1198     static PHINode *getEmptyKey() {
1199       return DenseMapInfo<PHINode *>::getEmptyKey();
1200     }
1201 
1202     static PHINode *getTombstoneKey() {
1203       return DenseMapInfo<PHINode *>::getTombstoneKey();
1204     }
1205 
1206     static bool isSentinel(PHINode *PN) {
1207       return PN == getEmptyKey() || PN == getTombstoneKey();
1208     }
1209 
1210     // WARNING: this logic must be kept in sync with
1211     //          Instruction::isIdenticalToWhenDefined()!
1212     static unsigned getHashValueImpl(PHINode *PN) {
1213       // Compute a hash value on the operands. Instcombine will likely have
1214       // sorted them, which helps expose duplicates, but we have to check all
1215       // the operands to be safe in case instcombine hasn't run.
1216       return static_cast<unsigned>(hash_combine(
1217           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1218           hash_combine_range(PN->block_begin(), PN->block_end())));
1219     }
1220 
1221     static unsigned getHashValue(PHINode *PN) {
1222 #ifndef NDEBUG
1223       // If -phicse-debug-hash was specified, return a constant -- this
1224       // will force all hashing to collide, so we'll exhaustively search
1225       // the table for a match, and the assertion in isEqual will fire if
1226       // there's a bug causing equal keys to hash differently.
1227       if (PHICSEDebugHash)
1228         return 0;
1229 #endif
1230       return getHashValueImpl(PN);
1231     }
1232 
1233     static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1234       if (isSentinel(LHS) || isSentinel(RHS))
1235         return LHS == RHS;
1236       return LHS->isIdenticalTo(RHS);
1237     }
1238 
1239     static bool isEqual(PHINode *LHS, PHINode *RHS) {
1240       // These comparisons are nontrivial, so assert that equality implies
1241       // hash equality (DenseMap demands this as an invariant).
1242       bool Result = isEqualImpl(LHS, RHS);
1243       assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1244              getHashValueImpl(LHS) == getHashValueImpl(RHS));
1245       return Result;
1246     }
1247   };
1248 
1249   // Set of unique PHINodes.
1250   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1251   PHISet.reserve(4 * PHICSENumPHISmallSize);
1252 
1253   // Examine each PHI.
1254   bool Changed = false;
1255   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1256     auto Inserted = PHISet.insert(PN);
1257     if (!Inserted.second) {
1258       // A duplicate. Replace this PHI with its duplicate.
1259       ++NumPHICSEs;
1260       PN->replaceAllUsesWith(*Inserted.first);
1261       PN->eraseFromParent();
1262       Changed = true;
1263 
1264       // The RAUW can change PHIs that we already visited. Start over from the
1265       // beginning.
1266       PHISet.clear();
1267       I = BB->begin();
1268     }
1269   }
1270 
1271   return Changed;
1272 }
1273 
1274 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1275   if (
1276 #ifndef NDEBUG
1277       !PHICSEDebugHash &&
1278 #endif
1279       hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1280     return EliminateDuplicatePHINodesNaiveImpl(BB);
1281   return EliminateDuplicatePHINodesSetBasedImpl(BB);
1282 }
1283 
1284 /// If the specified pointer points to an object that we control, try to modify
1285 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1286 /// the value after the operation, which may be lower than PrefAlign.
1287 ///
1288 /// Increating value alignment isn't often possible though. If alignment is
1289 /// important, a more reliable approach is to simply align all global variables
1290 /// and allocation instructions to their preferred alignment from the beginning.
1291 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1292                                  const DataLayout &DL) {
1293   V = V->stripPointerCasts();
1294 
1295   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1296     // TODO: Ideally, this function would not be called if PrefAlign is smaller
1297     // than the current alignment, as the known bits calculation should have
1298     // already taken it into account. However, this is not always the case,
1299     // as computeKnownBits() has a depth limit, while stripPointerCasts()
1300     // doesn't.
1301     Align CurrentAlign = AI->getAlign();
1302     if (PrefAlign <= CurrentAlign)
1303       return CurrentAlign;
1304 
1305     // If the preferred alignment is greater than the natural stack alignment
1306     // then don't round up. This avoids dynamic stack realignment.
1307     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1308       return CurrentAlign;
1309     AI->setAlignment(PrefAlign);
1310     return PrefAlign;
1311   }
1312 
1313   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1314     // TODO: as above, this shouldn't be necessary.
1315     Align CurrentAlign = GO->getPointerAlignment(DL);
1316     if (PrefAlign <= CurrentAlign)
1317       return CurrentAlign;
1318 
1319     // If there is a large requested alignment and we can, bump up the alignment
1320     // of the global.  If the memory we set aside for the global may not be the
1321     // memory used by the final program then it is impossible for us to reliably
1322     // enforce the preferred alignment.
1323     if (!GO->canIncreaseAlignment())
1324       return CurrentAlign;
1325 
1326     GO->setAlignment(PrefAlign);
1327     return PrefAlign;
1328   }
1329 
1330   return Align(1);
1331 }
1332 
1333 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1334                                        const DataLayout &DL,
1335                                        const Instruction *CxtI,
1336                                        AssumptionCache *AC,
1337                                        const DominatorTree *DT) {
1338   assert(V->getType()->isPointerTy() &&
1339          "getOrEnforceKnownAlignment expects a pointer!");
1340 
1341   KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1342   unsigned TrailZ = Known.countMinTrailingZeros();
1343 
1344   // Avoid trouble with ridiculously large TrailZ values, such as
1345   // those computed from a null pointer.
1346   // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1347   TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1348 
1349   Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1350 
1351   if (PrefAlign && *PrefAlign > Alignment)
1352     Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1353 
1354   // We don't need to make any adjustment.
1355   return Alignment;
1356 }
1357 
1358 ///===---------------------------------------------------------------------===//
1359 ///  Dbg Intrinsic utilities
1360 ///
1361 
1362 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1363 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1364                              DIExpression *DIExpr,
1365                              PHINode *APN) {
1366   // Since we can't guarantee that the original dbg.declare instrinsic
1367   // is removed by LowerDbgDeclare(), we need to make sure that we are
1368   // not inserting the same dbg.value intrinsic over and over.
1369   SmallVector<DbgValueInst *, 1> DbgValues;
1370   findDbgValues(DbgValues, APN);
1371   for (auto *DVI : DbgValues) {
1372     assert(is_contained(DVI->getValues(), APN));
1373     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1374       return true;
1375   }
1376   return false;
1377 }
1378 
1379 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1380 /// (or fragment of the variable) described by \p DII.
1381 ///
1382 /// This is primarily intended as a helper for the different
1383 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1384 /// converted describes an alloca'd variable, so we need to use the
1385 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1386 /// identified as covering an n-bit fragment, if the store size of i1 is at
1387 /// least n bits.
1388 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1389   const DataLayout &DL = DII->getModule()->getDataLayout();
1390   TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1391   if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1392     assert(!ValueSize.isScalable() &&
1393            "Fragments don't work on scalable types.");
1394     return ValueSize.getFixedSize() >= *FragmentSize;
1395   }
1396   // We can't always calculate the size of the DI variable (e.g. if it is a
1397   // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1398   // intead.
1399   if (DII->isAddressOfVariable()) {
1400     // DII should have exactly 1 location when it is an address.
1401     assert(DII->getNumVariableLocationOps() == 1 &&
1402            "address of variable must have exactly 1 location operand.");
1403     if (auto *AI =
1404             dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1405       if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
1406         assert(ValueSize.isScalable() == FragmentSize->isScalable() &&
1407                "Both sizes should agree on the scalable flag.");
1408         return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1409       }
1410     }
1411   }
1412   // Could not determine size of variable. Conservatively return false.
1413   return false;
1414 }
1415 
1416 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1417 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1418 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1419 /// case this DebugLoc leaks into any adjacent instructions.
1420 static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) {
1421   // Original dbg.declare must have a location.
1422   const DebugLoc &DeclareLoc = DII->getDebugLoc();
1423   MDNode *Scope = DeclareLoc.getScope();
1424   DILocation *InlinedAt = DeclareLoc.getInlinedAt();
1425   // Produce an unknown location with the correct scope / inlinedAt fields.
1426   return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
1427 }
1428 
1429 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1430 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1431 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1432                                            StoreInst *SI, DIBuilder &Builder) {
1433   assert(DII->isAddressOfVariable());
1434   auto *DIVar = DII->getVariable();
1435   assert(DIVar && "Missing variable");
1436   auto *DIExpr = DII->getExpression();
1437   Value *DV = SI->getValueOperand();
1438 
1439   DebugLoc NewLoc = getDebugValueLoc(DII, SI);
1440 
1441   if (!valueCoversEntireFragment(DV->getType(), DII)) {
1442     // FIXME: If storing to a part of the variable described by the dbg.declare,
1443     // then we want to insert a dbg.value for the corresponding fragment.
1444     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1445                       << *DII << '\n');
1446     // For now, when there is a store to parts of the variable (but we do not
1447     // know which part) we insert an dbg.value instrinsic to indicate that we
1448     // know nothing about the variable's content.
1449     DV = UndefValue::get(DV->getType());
1450     Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1451     return;
1452   }
1453 
1454   Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1455 }
1456 
1457 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1458 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1459 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1460                                            LoadInst *LI, DIBuilder &Builder) {
1461   auto *DIVar = DII->getVariable();
1462   auto *DIExpr = DII->getExpression();
1463   assert(DIVar && "Missing variable");
1464 
1465   if (!valueCoversEntireFragment(LI->getType(), DII)) {
1466     // FIXME: If only referring to a part of the variable described by the
1467     // dbg.declare, then we want to insert a dbg.value for the corresponding
1468     // fragment.
1469     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1470                       << *DII << '\n');
1471     return;
1472   }
1473 
1474   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1475 
1476   // We are now tracking the loaded value instead of the address. In the
1477   // future if multi-location support is added to the IR, it might be
1478   // preferable to keep tracking both the loaded value and the original
1479   // address in case the alloca can not be elided.
1480   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1481       LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1482   DbgValue->insertAfter(LI);
1483 }
1484 
1485 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1486 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1487 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1488                                            PHINode *APN, DIBuilder &Builder) {
1489   auto *DIVar = DII->getVariable();
1490   auto *DIExpr = DII->getExpression();
1491   assert(DIVar && "Missing variable");
1492 
1493   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1494     return;
1495 
1496   if (!valueCoversEntireFragment(APN->getType(), DII)) {
1497     // FIXME: If only referring to a part of the variable described by the
1498     // dbg.declare, then we want to insert a dbg.value for the corresponding
1499     // fragment.
1500     LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1501                       << *DII << '\n');
1502     return;
1503   }
1504 
1505   BasicBlock *BB = APN->getParent();
1506   auto InsertionPt = BB->getFirstInsertionPt();
1507 
1508   DebugLoc NewLoc = getDebugValueLoc(DII, nullptr);
1509 
1510   // The block may be a catchswitch block, which does not have a valid
1511   // insertion point.
1512   // FIXME: Insert dbg.value markers in the successors when appropriate.
1513   if (InsertionPt != BB->end())
1514     Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1515 }
1516 
1517 /// Determine whether this alloca is either a VLA or an array.
1518 static bool isArray(AllocaInst *AI) {
1519   return AI->isArrayAllocation() ||
1520          (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1521 }
1522 
1523 /// Determine whether this alloca is a structure.
1524 static bool isStructure(AllocaInst *AI) {
1525   return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1526 }
1527 
1528 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1529 /// of llvm.dbg.value intrinsics.
1530 bool llvm::LowerDbgDeclare(Function &F) {
1531   bool Changed = false;
1532   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1533   SmallVector<DbgDeclareInst *, 4> Dbgs;
1534   for (auto &FI : F)
1535     for (Instruction &BI : FI)
1536       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1537         Dbgs.push_back(DDI);
1538 
1539   if (Dbgs.empty())
1540     return Changed;
1541 
1542   for (auto &I : Dbgs) {
1543     DbgDeclareInst *DDI = I;
1544     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1545     // If this is an alloca for a scalar variable, insert a dbg.value
1546     // at each load and store to the alloca and erase the dbg.declare.
1547     // The dbg.values allow tracking a variable even if it is not
1548     // stored on the stack, while the dbg.declare can only describe
1549     // the stack slot (and at a lexical-scope granularity). Later
1550     // passes will attempt to elide the stack slot.
1551     if (!AI || isArray(AI) || isStructure(AI))
1552       continue;
1553 
1554     // A volatile load/store means that the alloca can't be elided anyway.
1555     if (llvm::any_of(AI->users(), [](User *U) -> bool {
1556           if (LoadInst *LI = dyn_cast<LoadInst>(U))
1557             return LI->isVolatile();
1558           if (StoreInst *SI = dyn_cast<StoreInst>(U))
1559             return SI->isVolatile();
1560           return false;
1561         }))
1562       continue;
1563 
1564     SmallVector<const Value *, 8> WorkList;
1565     WorkList.push_back(AI);
1566     while (!WorkList.empty()) {
1567       const Value *V = WorkList.pop_back_val();
1568       for (auto &AIUse : V->uses()) {
1569         User *U = AIUse.getUser();
1570         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1571           if (AIUse.getOperandNo() == 1)
1572             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1573         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1574           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1575         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1576           // This is a call by-value or some other instruction that takes a
1577           // pointer to the variable. Insert a *value* intrinsic that describes
1578           // the variable by dereferencing the alloca.
1579           if (!CI->isLifetimeStartOrEnd()) {
1580             DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr);
1581             auto *DerefExpr =
1582                 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1583             DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1584                                         NewLoc, CI);
1585           }
1586         } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1587           if (BI->getType()->isPointerTy())
1588             WorkList.push_back(BI);
1589         }
1590       }
1591     }
1592     DDI->eraseFromParent();
1593     Changed = true;
1594   }
1595 
1596   if (Changed)
1597   for (BasicBlock &BB : F)
1598     RemoveRedundantDbgInstrs(&BB);
1599 
1600   return Changed;
1601 }
1602 
1603 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1604 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1605                                     SmallVectorImpl<PHINode *> &InsertedPHIs) {
1606   assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1607   if (InsertedPHIs.size() == 0)
1608     return;
1609 
1610   // Map existing PHI nodes to their dbg.values.
1611   ValueToValueMapTy DbgValueMap;
1612   for (auto &I : *BB) {
1613     if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1614       for (Value *V : DbgII->location_ops())
1615         if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1616           DbgValueMap.insert({Loc, DbgII});
1617     }
1618   }
1619   if (DbgValueMap.size() == 0)
1620     return;
1621 
1622   // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1623   // so that if a dbg.value is being rewritten to use more than one of the
1624   // inserted PHIs in the same destination BB, we can update the same dbg.value
1625   // with all the new PHIs instead of creating one copy for each.
1626   MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1627             DbgVariableIntrinsic *>
1628       NewDbgValueMap;
1629   // Then iterate through the new PHIs and look to see if they use one of the
1630   // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1631   // propagate the info through the new PHI. If we use more than one new PHI in
1632   // a single destination BB with the same old dbg.value, merge the updates so
1633   // that we get a single new dbg.value with all the new PHIs.
1634   for (auto PHI : InsertedPHIs) {
1635     BasicBlock *Parent = PHI->getParent();
1636     // Avoid inserting an intrinsic into an EH block.
1637     if (Parent->getFirstNonPHI()->isEHPad())
1638       continue;
1639     for (auto VI : PHI->operand_values()) {
1640       auto V = DbgValueMap.find(VI);
1641       if (V != DbgValueMap.end()) {
1642         auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1643         auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1644         if (NewDI == NewDbgValueMap.end()) {
1645           auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1646           NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1647         }
1648         DbgVariableIntrinsic *NewDbgII = NewDI->second;
1649         // If PHI contains VI as an operand more than once, we may
1650         // replaced it in NewDbgII; confirm that it is present.
1651         if (is_contained(NewDbgII->location_ops(), VI))
1652           NewDbgII->replaceVariableLocationOp(VI, PHI);
1653       }
1654     }
1655   }
1656   // Insert thew new dbg.values into their destination blocks.
1657   for (auto DI : NewDbgValueMap) {
1658     BasicBlock *Parent = DI.first.first;
1659     auto *NewDbgII = DI.second;
1660     auto InsertionPt = Parent->getFirstInsertionPt();
1661     assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1662     NewDbgII->insertBefore(&*InsertionPt);
1663   }
1664 }
1665 
1666 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1667                              DIBuilder &Builder, uint8_t DIExprFlags,
1668                              int Offset) {
1669   auto DbgAddrs = FindDbgAddrUses(Address);
1670   for (DbgVariableIntrinsic *DII : DbgAddrs) {
1671     const DebugLoc &Loc = DII->getDebugLoc();
1672     auto *DIVar = DII->getVariable();
1673     auto *DIExpr = DII->getExpression();
1674     assert(DIVar && "Missing variable");
1675     DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1676     // Insert llvm.dbg.declare immediately before DII, and remove old
1677     // llvm.dbg.declare.
1678     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1679     DII->eraseFromParent();
1680   }
1681   return !DbgAddrs.empty();
1682 }
1683 
1684 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1685                                         DIBuilder &Builder, int Offset) {
1686   const DebugLoc &Loc = DVI->getDebugLoc();
1687   auto *DIVar = DVI->getVariable();
1688   auto *DIExpr = DVI->getExpression();
1689   assert(DIVar && "Missing variable");
1690 
1691   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1692   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1693   // it and give up.
1694   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1695       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1696     return;
1697 
1698   // Insert the offset before the first deref.
1699   // We could just change the offset argument of dbg.value, but it's unsigned...
1700   if (Offset)
1701     DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1702 
1703   Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1704   DVI->eraseFromParent();
1705 }
1706 
1707 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1708                                     DIBuilder &Builder, int Offset) {
1709   if (auto *L = LocalAsMetadata::getIfExists(AI))
1710     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1711       for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1712         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1713           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1714 }
1715 
1716 /// Where possible to salvage debug information for \p I do so
1717 /// and return True. If not possible mark undef and return False.
1718 void llvm::salvageDebugInfo(Instruction &I) {
1719   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1720   findDbgUsers(DbgUsers, &I);
1721   salvageDebugInfoForDbgValues(I, DbgUsers);
1722 }
1723 
1724 void llvm::salvageDebugInfoForDbgValues(
1725     Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1726   // This is an arbitrary chosen limit on the maximum number of values we can
1727   // salvage up to in a DIArgList, used for performance reasons.
1728   const unsigned MaxDebugArgs = 16;
1729   bool Salvaged = false;
1730 
1731   for (auto *DII : DbgUsers) {
1732     // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1733     // are implicitly pointing out the value as a DWARF memory location
1734     // description.
1735     bool StackValue = isa<DbgValueInst>(DII);
1736     auto DIILocation = DII->location_ops();
1737     assert(
1738         is_contained(DIILocation, &I) &&
1739         "DbgVariableIntrinsic must use salvaged instruction as its location");
1740     SmallVector<Value *, 4> AdditionalValues;
1741     // `I` may appear more than once in DII's location ops, and each use of `I`
1742     // must be updated in the DIExpression and potentially have additional
1743     // values added; thus we call salvageDebugInfoImpl for each `I` instance in
1744     // DIILocation.
1745     DIExpression *SalvagedExpr = DII->getExpression();
1746     auto LocItr = find(DIILocation, &I);
1747     while (SalvagedExpr && LocItr != DIILocation.end()) {
1748       unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
1749       SalvagedExpr = salvageDebugInfoImpl(I, SalvagedExpr, StackValue, LocNo,
1750                                           AdditionalValues);
1751       LocItr = std::find(++LocItr, DIILocation.end(), &I);
1752     }
1753     // salvageDebugInfoImpl should fail on examining the first element of
1754     // DbgUsers, or none of them.
1755     if (!SalvagedExpr)
1756       break;
1757 
1758     DII->replaceVariableLocationOp(&I, I.getOperand(0));
1759     if (AdditionalValues.empty()) {
1760       DII->setExpression(SalvagedExpr);
1761     } else if (isa<DbgValueInst>(DII) &&
1762                DII->getNumVariableLocationOps() + AdditionalValues.size() <=
1763                    MaxDebugArgs) {
1764       DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1765     } else {
1766       // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1767       // currently only valid for stack value expressions.
1768       // Also do not salvage if the resulting DIArgList would contain an
1769       // unreasonably large number of values.
1770       Value *Undef = UndefValue::get(I.getOperand(0)->getType());
1771       DII->replaceVariableLocationOp(I.getOperand(0), Undef);
1772     }
1773     LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1774     Salvaged = true;
1775   }
1776 
1777   if (Salvaged)
1778     return;
1779 
1780   for (auto *DII : DbgUsers) {
1781     Value *Undef = UndefValue::get(I.getType());
1782     DII->replaceVariableLocationOp(&I, Undef);
1783   }
1784 }
1785 
1786 bool getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1787                          uint64_t CurrentLocOps,
1788                          SmallVectorImpl<uint64_t> &Opcodes,
1789                          SmallVectorImpl<Value *> &AdditionalValues) {
1790   unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1791   // Rewrite a GEP into a DIExpression.
1792   MapVector<Value *, APInt> VariableOffsets;
1793   APInt ConstantOffset(BitWidth, 0);
1794   if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1795     return false;
1796   if (!VariableOffsets.empty() && !CurrentLocOps) {
1797     Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1798     CurrentLocOps = 1;
1799   }
1800   for (auto Offset : VariableOffsets) {
1801     AdditionalValues.push_back(Offset.first);
1802     assert(Offset.second.isStrictlyPositive() &&
1803            "Expected strictly positive multiplier for offset.");
1804     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1805                     Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1806                     dwarf::DW_OP_plus});
1807   }
1808   DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1809   return true;
1810 }
1811 
1812 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1813   switch (Opcode) {
1814   case Instruction::Add:
1815     return dwarf::DW_OP_plus;
1816   case Instruction::Sub:
1817     return dwarf::DW_OP_minus;
1818   case Instruction::Mul:
1819     return dwarf::DW_OP_mul;
1820   case Instruction::SDiv:
1821     return dwarf::DW_OP_div;
1822   case Instruction::SRem:
1823     return dwarf::DW_OP_mod;
1824   case Instruction::Or:
1825     return dwarf::DW_OP_or;
1826   case Instruction::And:
1827     return dwarf::DW_OP_and;
1828   case Instruction::Xor:
1829     return dwarf::DW_OP_xor;
1830   case Instruction::Shl:
1831     return dwarf::DW_OP_shl;
1832   case Instruction::LShr:
1833     return dwarf::DW_OP_shr;
1834   case Instruction::AShr:
1835     return dwarf::DW_OP_shra;
1836   default:
1837     // TODO: Salvage from each kind of binop we know about.
1838     return 0;
1839   }
1840 }
1841 
1842 bool getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1843                            SmallVectorImpl<uint64_t> &Opcodes,
1844                            SmallVectorImpl<Value *> &AdditionalValues) {
1845   // Handle binary operations with constant integer operands as a special case.
1846   auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1847   // Values wider than 64 bits cannot be represented within a DIExpression.
1848   if (ConstInt && ConstInt->getBitWidth() > 64)
1849     return false;
1850 
1851   Instruction::BinaryOps BinOpcode = BI->getOpcode();
1852   // Push any Constant Int operand onto the expression stack.
1853   if (ConstInt) {
1854     uint64_t Val = ConstInt->getSExtValue();
1855     // Add or Sub Instructions with a constant operand can potentially be
1856     // simplified.
1857     if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1858       uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1859       DIExpression::appendOffset(Opcodes, Offset);
1860       return true;
1861     }
1862     Opcodes.append({dwarf::DW_OP_constu, Val});
1863   } else {
1864     if (!CurrentLocOps) {
1865       Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
1866       CurrentLocOps = 1;
1867     }
1868     Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
1869     AdditionalValues.push_back(BI->getOperand(1));
1870   }
1871 
1872   // Add salvaged binary operator to expression stack, if it has a valid
1873   // representation in a DIExpression.
1874   uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
1875   if (!DwarfBinOp)
1876     return false;
1877   Opcodes.push_back(DwarfBinOp);
1878 
1879   return true;
1880 }
1881 
1882 DIExpression *
1883 llvm::salvageDebugInfoImpl(Instruction &I, DIExpression *SrcDIExpr,
1884                            bool WithStackValue, unsigned LocNo,
1885                            SmallVectorImpl<Value *> &AdditionalValues) {
1886   uint64_t CurrentLocOps = SrcDIExpr->getNumLocationOperands();
1887   auto &M = *I.getModule();
1888   auto &DL = M.getDataLayout();
1889 
1890   // Apply a vector of opcodes to the source DIExpression.
1891   auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * {
1892     DIExpression *DIExpr = SrcDIExpr;
1893     if (!Ops.empty()) {
1894       DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, LocNo, WithStackValue);
1895     }
1896     return DIExpr;
1897   };
1898 
1899   // initializer-list helper for applying operators to the source DIExpression.
1900   auto applyOps = [&](ArrayRef<uint64_t> Opcodes) {
1901     SmallVector<uint64_t, 8> Ops(Opcodes.begin(), Opcodes.end());
1902     return doSalvage(Ops);
1903   };
1904 
1905   if (auto *CI = dyn_cast<CastInst>(&I)) {
1906     // No-op casts are irrelevant for debug info.
1907     if (CI->isNoopCast(DL))
1908       return SrcDIExpr;
1909 
1910     Type *Type = CI->getType();
1911     // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
1912     if (Type->isVectorTy() ||
1913         !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I)))
1914       return nullptr;
1915 
1916     Value *FromValue = CI->getOperand(0);
1917     unsigned FromTypeBitSize = FromValue->getType()->getScalarSizeInBits();
1918     unsigned ToTypeBitSize = Type->getScalarSizeInBits();
1919 
1920     return applyOps(DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
1921                                             isa<SExtInst>(&I)));
1922   }
1923 
1924   SmallVector<uint64_t, 8> Ops;
1925   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1926     if (getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues))
1927       return doSalvage(Ops);
1928   } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) {
1929     if (getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues))
1930       return doSalvage(Ops);
1931   }
1932   // *Not* to do: we should not attempt to salvage load instructions,
1933   // because the validity and lifetime of a dbg.value containing
1934   // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1935   return nullptr;
1936 }
1937 
1938 /// A replacement for a dbg.value expression.
1939 using DbgValReplacement = Optional<DIExpression *>;
1940 
1941 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1942 /// possibly moving/undefing users to prevent use-before-def. Returns true if
1943 /// changes are made.
1944 static bool rewriteDebugUsers(
1945     Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
1946     function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
1947   // Find debug users of From.
1948   SmallVector<DbgVariableIntrinsic *, 1> Users;
1949   findDbgUsers(Users, &From);
1950   if (Users.empty())
1951     return false;
1952 
1953   // Prevent use-before-def of To.
1954   bool Changed = false;
1955   SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
1956   if (isa<Instruction>(&To)) {
1957     bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
1958 
1959     for (auto *DII : Users) {
1960       // It's common to see a debug user between From and DomPoint. Move it
1961       // after DomPoint to preserve the variable update without any reordering.
1962       if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
1963         LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n');
1964         DII->moveAfter(&DomPoint);
1965         Changed = true;
1966 
1967       // Users which otherwise aren't dominated by the replacement value must
1968       // be salvaged or deleted.
1969       } else if (!DT.dominates(&DomPoint, DII)) {
1970         UndefOrSalvage.insert(DII);
1971       }
1972     }
1973   }
1974 
1975   // Update debug users without use-before-def risk.
1976   for (auto *DII : Users) {
1977     if (UndefOrSalvage.count(DII))
1978       continue;
1979 
1980     DbgValReplacement DVR = RewriteExpr(*DII);
1981     if (!DVR)
1982       continue;
1983 
1984     DII->replaceVariableLocationOp(&From, &To);
1985     DII->setExpression(*DVR);
1986     LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n');
1987     Changed = true;
1988   }
1989 
1990   if (!UndefOrSalvage.empty()) {
1991     // Try to salvage the remaining debug users.
1992     salvageDebugInfo(From);
1993     Changed = true;
1994   }
1995 
1996   return Changed;
1997 }
1998 
1999 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2000 /// losslessly preserve the bits and semantics of the value. This predicate is
2001 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2002 ///
2003 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2004 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2005 /// and also does not allow lossless pointer <-> integer conversions.
2006 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2007                                          Type *ToTy) {
2008   // Trivially compatible types.
2009   if (FromTy == ToTy)
2010     return true;
2011 
2012   // Handle compatible pointer <-> integer conversions.
2013   if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2014     bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2015     bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2016                               !DL.isNonIntegralPointerType(ToTy);
2017     return SameSize && LosslessConversion;
2018   }
2019 
2020   // TODO: This is not exhaustive.
2021   return false;
2022 }
2023 
2024 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2025                                  Instruction &DomPoint, DominatorTree &DT) {
2026   // Exit early if From has no debug users.
2027   if (!From.isUsedByMetadata())
2028     return false;
2029 
2030   assert(&From != &To && "Can't replace something with itself");
2031 
2032   Type *FromTy = From.getType();
2033   Type *ToTy = To.getType();
2034 
2035   auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2036     return DII.getExpression();
2037   };
2038 
2039   // Handle no-op conversions.
2040   Module &M = *From.getModule();
2041   const DataLayout &DL = M.getDataLayout();
2042   if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2043     return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2044 
2045   // Handle integer-to-integer widening and narrowing.
2046   // FIXME: Use DW_OP_convert when it's available everywhere.
2047   if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2048     uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2049     uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2050     assert(FromBits != ToBits && "Unexpected no-op conversion");
2051 
2052     // When the width of the result grows, assume that a debugger will only
2053     // access the low `FromBits` bits when inspecting the source variable.
2054     if (FromBits < ToBits)
2055       return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2056 
2057     // The width of the result has shrunk. Use sign/zero extension to describe
2058     // the source variable's high bits.
2059     auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2060       DILocalVariable *Var = DII.getVariable();
2061 
2062       // Without knowing signedness, sign/zero extension isn't possible.
2063       auto Signedness = Var->getSignedness();
2064       if (!Signedness)
2065         return None;
2066 
2067       bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2068       return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2069                                      Signed);
2070     };
2071     return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2072   }
2073 
2074   // TODO: Floating-point conversions, vectors.
2075   return false;
2076 }
2077 
2078 std::pair<unsigned, unsigned>
2079 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2080   unsigned NumDeadInst = 0;
2081   unsigned NumDeadDbgInst = 0;
2082   // Delete the instructions backwards, as it has a reduced likelihood of
2083   // having to update as many def-use and use-def chains.
2084   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2085   while (EndInst != &BB->front()) {
2086     // Delete the next to last instruction.
2087     Instruction *Inst = &*--EndInst->getIterator();
2088     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2089       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2090     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2091       EndInst = Inst;
2092       continue;
2093     }
2094     if (isa<DbgInfoIntrinsic>(Inst))
2095       ++NumDeadDbgInst;
2096     else
2097       ++NumDeadInst;
2098     Inst->eraseFromParent();
2099   }
2100   return {NumDeadInst, NumDeadDbgInst};
2101 }
2102 
2103 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
2104                                    bool PreserveLCSSA, DomTreeUpdater *DTU,
2105                                    MemorySSAUpdater *MSSAU) {
2106   BasicBlock *BB = I->getParent();
2107 
2108   if (MSSAU)
2109     MSSAU->changeToUnreachable(I);
2110 
2111   SmallSet<BasicBlock *, 8> UniqueSuccessors;
2112 
2113   // Loop over all of the successors, removing BB's entry from any PHI
2114   // nodes.
2115   for (BasicBlock *Successor : successors(BB)) {
2116     Successor->removePredecessor(BB, PreserveLCSSA);
2117     if (DTU)
2118       UniqueSuccessors.insert(Successor);
2119   }
2120   // Insert a call to llvm.trap right before this.  This turns the undefined
2121   // behavior into a hard fail instead of falling through into random code.
2122   if (UseLLVMTrap) {
2123     Function *TrapFn =
2124       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
2125     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
2126     CallTrap->setDebugLoc(I->getDebugLoc());
2127   }
2128   auto *UI = new UnreachableInst(I->getContext(), I);
2129   UI->setDebugLoc(I->getDebugLoc());
2130 
2131   // All instructions after this are dead.
2132   unsigned NumInstrsRemoved = 0;
2133   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2134   while (BBI != BBE) {
2135     if (!BBI->use_empty())
2136       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2137     BB->getInstList().erase(BBI++);
2138     ++NumInstrsRemoved;
2139   }
2140   if (DTU) {
2141     SmallVector<DominatorTree::UpdateType, 8> Updates;
2142     Updates.reserve(UniqueSuccessors.size());
2143     for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2144       Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2145     DTU->applyUpdates(Updates);
2146   }
2147   return NumInstrsRemoved;
2148 }
2149 
2150 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2151   SmallVector<Value *, 8> Args(II->args());
2152   SmallVector<OperandBundleDef, 1> OpBundles;
2153   II->getOperandBundlesAsDefs(OpBundles);
2154   CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2155                                        II->getCalledOperand(), Args, OpBundles);
2156   NewCall->setCallingConv(II->getCallingConv());
2157   NewCall->setAttributes(II->getAttributes());
2158   NewCall->setDebugLoc(II->getDebugLoc());
2159   NewCall->copyMetadata(*II);
2160 
2161   // If the invoke had profile metadata, try converting them for CallInst.
2162   uint64_t TotalWeight;
2163   if (NewCall->extractProfTotalWeight(TotalWeight)) {
2164     // Set the total weight if it fits into i32, otherwise reset.
2165     MDBuilder MDB(NewCall->getContext());
2166     auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2167                           ? nullptr
2168                           : MDB.createBranchWeights({uint32_t(TotalWeight)});
2169     NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2170   }
2171 
2172   return NewCall;
2173 }
2174 
2175 /// changeToCall - Convert the specified invoke into a normal call.
2176 void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2177   CallInst *NewCall = createCallMatchingInvoke(II);
2178   NewCall->takeName(II);
2179   NewCall->insertBefore(II);
2180   II->replaceAllUsesWith(NewCall);
2181 
2182   // Follow the call by a branch to the normal destination.
2183   BasicBlock *NormalDestBB = II->getNormalDest();
2184   BranchInst::Create(NormalDestBB, II);
2185 
2186   // Update PHI nodes in the unwind destination
2187   BasicBlock *BB = II->getParent();
2188   BasicBlock *UnwindDestBB = II->getUnwindDest();
2189   UnwindDestBB->removePredecessor(BB);
2190   II->eraseFromParent();
2191   if (DTU)
2192     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2193 }
2194 
2195 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2196                                                    BasicBlock *UnwindEdge,
2197                                                    DomTreeUpdater *DTU) {
2198   BasicBlock *BB = CI->getParent();
2199 
2200   // Convert this function call into an invoke instruction.  First, split the
2201   // basic block.
2202   BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2203                                  CI->getName() + ".noexc");
2204 
2205   // Delete the unconditional branch inserted by SplitBlock
2206   BB->getInstList().pop_back();
2207 
2208   // Create the new invoke instruction.
2209   SmallVector<Value *, 8> InvokeArgs(CI->args());
2210   SmallVector<OperandBundleDef, 1> OpBundles;
2211 
2212   CI->getOperandBundlesAsDefs(OpBundles);
2213 
2214   // Note: we're round tripping operand bundles through memory here, and that
2215   // can potentially be avoided with a cleverer API design that we do not have
2216   // as of this time.
2217 
2218   InvokeInst *II =
2219       InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2220                          UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2221   II->setDebugLoc(CI->getDebugLoc());
2222   II->setCallingConv(CI->getCallingConv());
2223   II->setAttributes(CI->getAttributes());
2224 
2225   if (DTU)
2226     DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2227 
2228   // Make sure that anything using the call now uses the invoke!  This also
2229   // updates the CallGraph if present, because it uses a WeakTrackingVH.
2230   CI->replaceAllUsesWith(II);
2231 
2232   // Delete the original call
2233   Split->getInstList().pop_front();
2234   return Split;
2235 }
2236 
2237 static bool markAliveBlocks(Function &F,
2238                             SmallPtrSetImpl<BasicBlock *> &Reachable,
2239                             DomTreeUpdater *DTU = nullptr) {
2240   SmallVector<BasicBlock*, 128> Worklist;
2241   BasicBlock *BB = &F.front();
2242   Worklist.push_back(BB);
2243   Reachable.insert(BB);
2244   bool Changed = false;
2245   do {
2246     BB = Worklist.pop_back_val();
2247 
2248     // Do a quick scan of the basic block, turning any obviously unreachable
2249     // instructions into LLVM unreachable insts.  The instruction combining pass
2250     // canonicalizes unreachable insts into stores to null or undef.
2251     for (Instruction &I : *BB) {
2252       if (auto *CI = dyn_cast<CallInst>(&I)) {
2253         Value *Callee = CI->getCalledOperand();
2254         // Handle intrinsic calls.
2255         if (Function *F = dyn_cast<Function>(Callee)) {
2256           auto IntrinsicID = F->getIntrinsicID();
2257           // Assumptions that are known to be false are equivalent to
2258           // unreachable. Also, if the condition is undefined, then we make the
2259           // choice most beneficial to the optimizer, and choose that to also be
2260           // unreachable.
2261           if (IntrinsicID == Intrinsic::assume) {
2262             if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2263               // Don't insert a call to llvm.trap right before the unreachable.
2264               changeToUnreachable(CI, false, false, DTU);
2265               Changed = true;
2266               break;
2267             }
2268           } else if (IntrinsicID == Intrinsic::experimental_guard) {
2269             // A call to the guard intrinsic bails out of the current
2270             // compilation unit if the predicate passed to it is false. If the
2271             // predicate is a constant false, then we know the guard will bail
2272             // out of the current compile unconditionally, so all code following
2273             // it is dead.
2274             //
2275             // Note: unlike in llvm.assume, it is not "obviously profitable" for
2276             // guards to treat `undef` as `false` since a guard on `undef` can
2277             // still be useful for widening.
2278             if (match(CI->getArgOperand(0), m_Zero()))
2279               if (!isa<UnreachableInst>(CI->getNextNode())) {
2280                 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false,
2281                                     false, DTU);
2282                 Changed = true;
2283                 break;
2284               }
2285           }
2286         } else if ((isa<ConstantPointerNull>(Callee) &&
2287                     !NullPointerIsDefined(CI->getFunction())) ||
2288                    isa<UndefValue>(Callee)) {
2289           changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU);
2290           Changed = true;
2291           break;
2292         }
2293         if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2294           // If we found a call to a no-return function, insert an unreachable
2295           // instruction after it.  Make sure there isn't *already* one there
2296           // though.
2297           if (!isa<UnreachableInst>(CI->getNextNode())) {
2298             // Don't insert a call to llvm.trap right before the unreachable.
2299             changeToUnreachable(CI->getNextNode(), false, false, DTU);
2300             Changed = true;
2301           }
2302           break;
2303         }
2304       } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2305         // Store to undef and store to null are undefined and used to signal
2306         // that they should be changed to unreachable by passes that can't
2307         // modify the CFG.
2308 
2309         // Don't touch volatile stores.
2310         if (SI->isVolatile()) continue;
2311 
2312         Value *Ptr = SI->getOperand(1);
2313 
2314         if (isa<UndefValue>(Ptr) ||
2315             (isa<ConstantPointerNull>(Ptr) &&
2316              !NullPointerIsDefined(SI->getFunction(),
2317                                    SI->getPointerAddressSpace()))) {
2318           changeToUnreachable(SI, true, false, DTU);
2319           Changed = true;
2320           break;
2321         }
2322       }
2323     }
2324 
2325     Instruction *Terminator = BB->getTerminator();
2326     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2327       // Turn invokes that call 'nounwind' functions into ordinary calls.
2328       Value *Callee = II->getCalledOperand();
2329       if ((isa<ConstantPointerNull>(Callee) &&
2330            !NullPointerIsDefined(BB->getParent())) ||
2331           isa<UndefValue>(Callee)) {
2332         changeToUnreachable(II, true, false, DTU);
2333         Changed = true;
2334       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2335         if (II->use_empty() && II->onlyReadsMemory()) {
2336           // jump to the normal destination branch.
2337           BasicBlock *NormalDestBB = II->getNormalDest();
2338           BasicBlock *UnwindDestBB = II->getUnwindDest();
2339           BranchInst::Create(NormalDestBB, II);
2340           UnwindDestBB->removePredecessor(II->getParent());
2341           II->eraseFromParent();
2342           if (DTU)
2343             DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2344         } else
2345           changeToCall(II, DTU);
2346         Changed = true;
2347       }
2348     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2349       // Remove catchpads which cannot be reached.
2350       struct CatchPadDenseMapInfo {
2351         static CatchPadInst *getEmptyKey() {
2352           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2353         }
2354 
2355         static CatchPadInst *getTombstoneKey() {
2356           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2357         }
2358 
2359         static unsigned getHashValue(CatchPadInst *CatchPad) {
2360           return static_cast<unsigned>(hash_combine_range(
2361               CatchPad->value_op_begin(), CatchPad->value_op_end()));
2362         }
2363 
2364         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2365           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2366               RHS == getEmptyKey() || RHS == getTombstoneKey())
2367             return LHS == RHS;
2368           return LHS->isIdenticalTo(RHS);
2369         }
2370       };
2371 
2372       SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2373       // Set of unique CatchPads.
2374       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2375                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2376           HandlerSet;
2377       detail::DenseSetEmpty Empty;
2378       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2379                                              E = CatchSwitch->handler_end();
2380            I != E; ++I) {
2381         BasicBlock *HandlerBB = *I;
2382         if (DTU)
2383           ++NumPerSuccessorCases[HandlerBB];
2384         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2385         if (!HandlerSet.insert({CatchPad, Empty}).second) {
2386           if (DTU)
2387             --NumPerSuccessorCases[HandlerBB];
2388           CatchSwitch->removeHandler(I);
2389           --I;
2390           --E;
2391           Changed = true;
2392         }
2393       }
2394       if (DTU) {
2395         std::vector<DominatorTree::UpdateType> Updates;
2396         for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2397           if (I.second == 0)
2398             Updates.push_back({DominatorTree::Delete, BB, I.first});
2399         DTU->applyUpdates(Updates);
2400       }
2401     }
2402 
2403     Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2404     for (BasicBlock *Successor : successors(BB))
2405       if (Reachable.insert(Successor).second)
2406         Worklist.push_back(Successor);
2407   } while (!Worklist.empty());
2408   return Changed;
2409 }
2410 
2411 void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2412   Instruction *TI = BB->getTerminator();
2413 
2414   if (auto *II = dyn_cast<InvokeInst>(TI)) {
2415     changeToCall(II, DTU);
2416     return;
2417   }
2418 
2419   Instruction *NewTI;
2420   BasicBlock *UnwindDest;
2421 
2422   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2423     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2424     UnwindDest = CRI->getUnwindDest();
2425   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2426     auto *NewCatchSwitch = CatchSwitchInst::Create(
2427         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2428         CatchSwitch->getName(), CatchSwitch);
2429     for (BasicBlock *PadBB : CatchSwitch->handlers())
2430       NewCatchSwitch->addHandler(PadBB);
2431 
2432     NewTI = NewCatchSwitch;
2433     UnwindDest = CatchSwitch->getUnwindDest();
2434   } else {
2435     llvm_unreachable("Could not find unwind successor");
2436   }
2437 
2438   NewTI->takeName(TI);
2439   NewTI->setDebugLoc(TI->getDebugLoc());
2440   UnwindDest->removePredecessor(BB);
2441   TI->replaceAllUsesWith(NewTI);
2442   TI->eraseFromParent();
2443   if (DTU)
2444     DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2445 }
2446 
2447 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2448 /// if they are in a dead cycle.  Return true if a change was made, false
2449 /// otherwise.
2450 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2451                                    MemorySSAUpdater *MSSAU) {
2452   SmallPtrSet<BasicBlock *, 16> Reachable;
2453   bool Changed = markAliveBlocks(F, Reachable, DTU);
2454 
2455   // If there are unreachable blocks in the CFG...
2456   if (Reachable.size() == F.size())
2457     return Changed;
2458 
2459   assert(Reachable.size() < F.size());
2460 
2461   // Are there any blocks left to actually delete?
2462   SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2463   for (BasicBlock &BB : F) {
2464     // Skip reachable basic blocks
2465     if (Reachable.count(&BB))
2466       continue;
2467     // Skip already-deleted blocks
2468     if (DTU && DTU->isBBPendingDeletion(&BB))
2469       continue;
2470     BlocksToRemove.insert(&BB);
2471   }
2472 
2473   if (BlocksToRemove.empty())
2474     return Changed;
2475 
2476   Changed = true;
2477   NumRemoved += BlocksToRemove.size();
2478 
2479   if (MSSAU)
2480     MSSAU->removeBlocks(BlocksToRemove);
2481 
2482   DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2483 
2484   return Changed;
2485 }
2486 
2487 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2488                            ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2489   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2490   K->dropUnknownNonDebugMetadata(KnownIDs);
2491   K->getAllMetadataOtherThanDebugLoc(Metadata);
2492   for (const auto &MD : Metadata) {
2493     unsigned Kind = MD.first;
2494     MDNode *JMD = J->getMetadata(Kind);
2495     MDNode *KMD = MD.second;
2496 
2497     switch (Kind) {
2498       default:
2499         K->setMetadata(Kind, nullptr); // Remove unknown metadata
2500         break;
2501       case LLVMContext::MD_dbg:
2502         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2503       case LLVMContext::MD_tbaa:
2504         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2505         break;
2506       case LLVMContext::MD_alias_scope:
2507         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2508         break;
2509       case LLVMContext::MD_noalias:
2510       case LLVMContext::MD_mem_parallel_loop_access:
2511         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2512         break;
2513       case LLVMContext::MD_access_group:
2514         K->setMetadata(LLVMContext::MD_access_group,
2515                        intersectAccessGroups(K, J));
2516         break;
2517       case LLVMContext::MD_range:
2518 
2519         // If K does move, use most generic range. Otherwise keep the range of
2520         // K.
2521         if (DoesKMove)
2522           // FIXME: If K does move, we should drop the range info and nonnull.
2523           //        Currently this function is used with DoesKMove in passes
2524           //        doing hoisting/sinking and the current behavior of using the
2525           //        most generic range is correct in those cases.
2526           K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2527         break;
2528       case LLVMContext::MD_fpmath:
2529         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2530         break;
2531       case LLVMContext::MD_invariant_load:
2532         // Only set the !invariant.load if it is present in both instructions.
2533         K->setMetadata(Kind, JMD);
2534         break;
2535       case LLVMContext::MD_nonnull:
2536         // If K does move, keep nonull if it is present in both instructions.
2537         if (DoesKMove)
2538           K->setMetadata(Kind, JMD);
2539         break;
2540       case LLVMContext::MD_invariant_group:
2541         // Preserve !invariant.group in K.
2542         break;
2543       case LLVMContext::MD_align:
2544         K->setMetadata(Kind,
2545           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2546         break;
2547       case LLVMContext::MD_dereferenceable:
2548       case LLVMContext::MD_dereferenceable_or_null:
2549         K->setMetadata(Kind,
2550           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2551         break;
2552       case LLVMContext::MD_preserve_access_index:
2553         // Preserve !preserve.access.index in K.
2554         break;
2555     }
2556   }
2557   // Set !invariant.group from J if J has it. If both instructions have it
2558   // then we will just pick it from J - even when they are different.
2559   // Also make sure that K is load or store - f.e. combining bitcast with load
2560   // could produce bitcast with invariant.group metadata, which is invalid.
2561   // FIXME: we should try to preserve both invariant.group md if they are
2562   // different, but right now instruction can only have one invariant.group.
2563   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2564     if (isa<LoadInst>(K) || isa<StoreInst>(K))
2565       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2566 }
2567 
2568 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2569                                  bool KDominatesJ) {
2570   unsigned KnownIDs[] = {
2571       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2572       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2573       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
2574       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2575       LLVMContext::MD_dereferenceable,
2576       LLVMContext::MD_dereferenceable_or_null,
2577       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2578   combineMetadata(K, J, KnownIDs, KDominatesJ);
2579 }
2580 
2581 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2582   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2583   Source.getAllMetadata(MD);
2584   MDBuilder MDB(Dest.getContext());
2585   Type *NewType = Dest.getType();
2586   const DataLayout &DL = Source.getModule()->getDataLayout();
2587   for (const auto &MDPair : MD) {
2588     unsigned ID = MDPair.first;
2589     MDNode *N = MDPair.second;
2590     // Note, essentially every kind of metadata should be preserved here! This
2591     // routine is supposed to clone a load instruction changing *only its type*.
2592     // The only metadata it makes sense to drop is metadata which is invalidated
2593     // when the pointer type changes. This should essentially never be the case
2594     // in LLVM, but we explicitly switch over only known metadata to be
2595     // conservatively correct. If you are adding metadata to LLVM which pertains
2596     // to loads, you almost certainly want to add it here.
2597     switch (ID) {
2598     case LLVMContext::MD_dbg:
2599     case LLVMContext::MD_tbaa:
2600     case LLVMContext::MD_prof:
2601     case LLVMContext::MD_fpmath:
2602     case LLVMContext::MD_tbaa_struct:
2603     case LLVMContext::MD_invariant_load:
2604     case LLVMContext::MD_alias_scope:
2605     case LLVMContext::MD_noalias:
2606     case LLVMContext::MD_nontemporal:
2607     case LLVMContext::MD_mem_parallel_loop_access:
2608     case LLVMContext::MD_access_group:
2609       // All of these directly apply.
2610       Dest.setMetadata(ID, N);
2611       break;
2612 
2613     case LLVMContext::MD_nonnull:
2614       copyNonnullMetadata(Source, N, Dest);
2615       break;
2616 
2617     case LLVMContext::MD_align:
2618     case LLVMContext::MD_dereferenceable:
2619     case LLVMContext::MD_dereferenceable_or_null:
2620       // These only directly apply if the new type is also a pointer.
2621       if (NewType->isPointerTy())
2622         Dest.setMetadata(ID, N);
2623       break;
2624 
2625     case LLVMContext::MD_range:
2626       copyRangeMetadata(DL, Source, N, Dest);
2627       break;
2628     }
2629   }
2630 }
2631 
2632 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2633   auto *ReplInst = dyn_cast<Instruction>(Repl);
2634   if (!ReplInst)
2635     return;
2636 
2637   // Patch the replacement so that it is not more restrictive than the value
2638   // being replaced.
2639   // Note that if 'I' is a load being replaced by some operation,
2640   // for example, by an arithmetic operation, then andIRFlags()
2641   // would just erase all math flags from the original arithmetic
2642   // operation, which is clearly not wanted and not needed.
2643   if (!isa<LoadInst>(I))
2644     ReplInst->andIRFlags(I);
2645 
2646   // FIXME: If both the original and replacement value are part of the
2647   // same control-flow region (meaning that the execution of one
2648   // guarantees the execution of the other), then we can combine the
2649   // noalias scopes here and do better than the general conservative
2650   // answer used in combineMetadata().
2651 
2652   // In general, GVN unifies expressions over different control-flow
2653   // regions, and so we need a conservative combination of the noalias
2654   // scopes.
2655   static const unsigned KnownIDs[] = {
2656       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
2657       LLVMContext::MD_noalias,         LLVMContext::MD_range,
2658       LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load,
2659       LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2660       LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index};
2661   combineMetadata(ReplInst, I, KnownIDs, false);
2662 }
2663 
2664 template <typename RootType, typename DominatesFn>
2665 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2666                                          const RootType &Root,
2667                                          const DominatesFn &Dominates) {
2668   assert(From->getType() == To->getType());
2669 
2670   unsigned Count = 0;
2671   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2672        UI != UE;) {
2673     Use &U = *UI++;
2674     if (!Dominates(Root, U))
2675       continue;
2676     U.set(To);
2677     LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2678                       << "' as " << *To << " in " << *U << "\n");
2679     ++Count;
2680   }
2681   return Count;
2682 }
2683 
2684 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2685    assert(From->getType() == To->getType());
2686    auto *BB = From->getParent();
2687    unsigned Count = 0;
2688 
2689   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2690        UI != UE;) {
2691     Use &U = *UI++;
2692     auto *I = cast<Instruction>(U.getUser());
2693     if (I->getParent() == BB)
2694       continue;
2695     U.set(To);
2696     ++Count;
2697   }
2698   return Count;
2699 }
2700 
2701 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2702                                         DominatorTree &DT,
2703                                         const BasicBlockEdge &Root) {
2704   auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2705     return DT.dominates(Root, U);
2706   };
2707   return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2708 }
2709 
2710 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2711                                         DominatorTree &DT,
2712                                         const BasicBlock *BB) {
2713   auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2714     return DT.dominates(BB, U);
2715   };
2716   return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2717 }
2718 
2719 bool llvm::callsGCLeafFunction(const CallBase *Call,
2720                                const TargetLibraryInfo &TLI) {
2721   // Check if the function is specifically marked as a gc leaf function.
2722   if (Call->hasFnAttr("gc-leaf-function"))
2723     return true;
2724   if (const Function *F = Call->getCalledFunction()) {
2725     if (F->hasFnAttribute("gc-leaf-function"))
2726       return true;
2727 
2728     if (auto IID = F->getIntrinsicID()) {
2729       // Most LLVM intrinsics do not take safepoints.
2730       return IID != Intrinsic::experimental_gc_statepoint &&
2731              IID != Intrinsic::experimental_deoptimize &&
2732              IID != Intrinsic::memcpy_element_unordered_atomic &&
2733              IID != Intrinsic::memmove_element_unordered_atomic;
2734     }
2735   }
2736 
2737   // Lib calls can be materialized by some passes, and won't be
2738   // marked as 'gc-leaf-function.' All available Libcalls are
2739   // GC-leaf.
2740   LibFunc LF;
2741   if (TLI.getLibFunc(*Call, LF)) {
2742     return TLI.has(LF);
2743   }
2744 
2745   return false;
2746 }
2747 
2748 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2749                                LoadInst &NewLI) {
2750   auto *NewTy = NewLI.getType();
2751 
2752   // This only directly applies if the new type is also a pointer.
2753   if (NewTy->isPointerTy()) {
2754     NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2755     return;
2756   }
2757 
2758   // The only other translation we can do is to integral loads with !range
2759   // metadata.
2760   if (!NewTy->isIntegerTy())
2761     return;
2762 
2763   MDBuilder MDB(NewLI.getContext());
2764   const Value *Ptr = OldLI.getPointerOperand();
2765   auto *ITy = cast<IntegerType>(NewTy);
2766   auto *NullInt = ConstantExpr::getPtrToInt(
2767       ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2768   auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2769   NewLI.setMetadata(LLVMContext::MD_range,
2770                     MDB.createRange(NonNullInt, NullInt));
2771 }
2772 
2773 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2774                              MDNode *N, LoadInst &NewLI) {
2775   auto *NewTy = NewLI.getType();
2776 
2777   // Give up unless it is converted to a pointer where there is a single very
2778   // valuable mapping we can do reliably.
2779   // FIXME: It would be nice to propagate this in more ways, but the type
2780   // conversions make it hard.
2781   if (!NewTy->isPointerTy())
2782     return;
2783 
2784   unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2785   if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2786     MDNode *NN = MDNode::get(OldLI.getContext(), None);
2787     NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2788   }
2789 }
2790 
2791 void llvm::dropDebugUsers(Instruction &I) {
2792   SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2793   findDbgUsers(DbgUsers, &I);
2794   for (auto *DII : DbgUsers)
2795     DII->eraseFromParent();
2796 }
2797 
2798 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2799                                     BasicBlock *BB) {
2800   // Since we are moving the instructions out of its basic block, we do not
2801   // retain their original debug locations (DILocations) and debug intrinsic
2802   // instructions.
2803   //
2804   // Doing so would degrade the debugging experience and adversely affect the
2805   // accuracy of profiling information.
2806   //
2807   // Currently, when hoisting the instructions, we take the following actions:
2808   // - Remove their debug intrinsic instructions.
2809   // - Set their debug locations to the values from the insertion point.
2810   //
2811   // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2812   // need to be deleted, is because there will not be any instructions with a
2813   // DILocation in either branch left after performing the transformation. We
2814   // can only insert a dbg.value after the two branches are joined again.
2815   //
2816   // See PR38762, PR39243 for more details.
2817   //
2818   // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2819   // encode predicated DIExpressions that yield different results on different
2820   // code paths.
2821 
2822   for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2823     Instruction *I = &*II;
2824     I->dropUnknownNonDebugMetadata();
2825     if (I->isUsedByMetadata())
2826       dropDebugUsers(*I);
2827     if (I->isDebugOrPseudoInst()) {
2828       // Remove DbgInfo and pseudo probe Intrinsics.
2829       II = I->eraseFromParent();
2830       continue;
2831     }
2832     I->setDebugLoc(InsertPt->getDebugLoc());
2833     ++II;
2834   }
2835   DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(),
2836                                  BB->begin(),
2837                                  BB->getTerminator()->getIterator());
2838 }
2839 
2840 namespace {
2841 
2842 /// A potential constituent of a bitreverse or bswap expression. See
2843 /// collectBitParts for a fuller explanation.
2844 struct BitPart {
2845   BitPart(Value *P, unsigned BW) : Provider(P) {
2846     Provenance.resize(BW);
2847   }
2848 
2849   /// The Value that this is a bitreverse/bswap of.
2850   Value *Provider;
2851 
2852   /// The "provenance" of each bit. Provenance[A] = B means that bit A
2853   /// in Provider becomes bit B in the result of this expression.
2854   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
2855 
2856   enum { Unset = -1 };
2857 };
2858 
2859 } // end anonymous namespace
2860 
2861 /// Analyze the specified subexpression and see if it is capable of providing
2862 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2863 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
2864 /// the output of the expression came from a corresponding bit in some other
2865 /// value. This function is recursive, and the end result is a mapping of
2866 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2867 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2868 ///
2869 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2870 /// that the expression deposits the low byte of %X into the high byte of the
2871 /// result and that all other bits are zero. This expression is accepted and a
2872 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2873 /// [0-7].
2874 ///
2875 /// For vector types, all analysis is performed at the per-element level. No
2876 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
2877 /// constant masks must be splatted across all elements.
2878 ///
2879 /// To avoid revisiting values, the BitPart results are memoized into the
2880 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2881 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2882 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2883 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2884 /// type instead to provide the same functionality.
2885 ///
2886 /// Because we pass around references into \c BPS, we must use a container that
2887 /// does not invalidate internal references (std::map instead of DenseMap).
2888 static const Optional<BitPart> &
2889 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
2890                 std::map<Value *, Optional<BitPart>> &BPS, int Depth,
2891                 bool &FoundRoot) {
2892   auto I = BPS.find(V);
2893   if (I != BPS.end())
2894     return I->second;
2895 
2896   auto &Result = BPS[V] = None;
2897   auto BitWidth = V->getType()->getScalarSizeInBits();
2898 
2899   // Can't do integer/elements > 128 bits.
2900   if (BitWidth > 128)
2901     return Result;
2902 
2903   // Prevent stack overflow by limiting the recursion depth
2904   if (Depth == BitPartRecursionMaxDepth) {
2905     LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2906     return Result;
2907   }
2908 
2909   if (auto *I = dyn_cast<Instruction>(V)) {
2910     Value *X, *Y;
2911     const APInt *C;
2912 
2913     // If this is an or instruction, it may be an inner node of the bswap.
2914     if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
2915       // Check we have both sources and they are from the same provider.
2916       const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2917                                       Depth + 1, FoundRoot);
2918       if (!A || !A->Provider)
2919         return Result;
2920 
2921       const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
2922                                       Depth + 1, FoundRoot);
2923       if (!B || A->Provider != B->Provider)
2924         return Result;
2925 
2926       // Try and merge the two together.
2927       Result = BitPart(A->Provider, BitWidth);
2928       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
2929         if (A->Provenance[BitIdx] != BitPart::Unset &&
2930             B->Provenance[BitIdx] != BitPart::Unset &&
2931             A->Provenance[BitIdx] != B->Provenance[BitIdx])
2932           return Result = None;
2933 
2934         if (A->Provenance[BitIdx] == BitPart::Unset)
2935           Result->Provenance[BitIdx] = B->Provenance[BitIdx];
2936         else
2937           Result->Provenance[BitIdx] = A->Provenance[BitIdx];
2938       }
2939 
2940       return Result;
2941     }
2942 
2943     // If this is a logical shift by a constant, recurse then shift the result.
2944     if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
2945       const APInt &BitShift = *C;
2946 
2947       // Ensure the shift amount is defined.
2948       if (BitShift.uge(BitWidth))
2949         return Result;
2950 
2951       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
2952       if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
2953         return Result;
2954 
2955       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2956                                         Depth + 1, FoundRoot);
2957       if (!Res)
2958         return Result;
2959       Result = Res;
2960 
2961       // Perform the "shift" on BitProvenance.
2962       auto &P = Result->Provenance;
2963       if (I->getOpcode() == Instruction::Shl) {
2964         P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
2965         P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
2966       } else {
2967         P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
2968         P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
2969       }
2970 
2971       return Result;
2972     }
2973 
2974     // If this is a logical 'and' with a mask that clears bits, recurse then
2975     // unset the appropriate bits.
2976     if (match(V, m_And(m_Value(X), m_APInt(C)))) {
2977       const APInt &AndMask = *C;
2978 
2979       // Check that the mask allows a multiple of 8 bits for a bswap, for an
2980       // early exit.
2981       unsigned NumMaskedBits = AndMask.countPopulation();
2982       if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
2983         return Result;
2984 
2985       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
2986                                         Depth + 1, FoundRoot);
2987       if (!Res)
2988         return Result;
2989       Result = Res;
2990 
2991       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
2992         // If the AndMask is zero for this bit, clear the bit.
2993         if (AndMask[BitIdx] == 0)
2994           Result->Provenance[BitIdx] = BitPart::Unset;
2995       return Result;
2996     }
2997 
2998     // If this is a zext instruction zero extend the result.
2999     if (match(V, m_ZExt(m_Value(X)))) {
3000       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3001                                         Depth + 1, FoundRoot);
3002       if (!Res)
3003         return Result;
3004 
3005       Result = BitPart(Res->Provider, BitWidth);
3006       auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3007       for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3008         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3009       for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3010         Result->Provenance[BitIdx] = BitPart::Unset;
3011       return Result;
3012     }
3013 
3014     // If this is a truncate instruction, extract the lower bits.
3015     if (match(V, m_Trunc(m_Value(X)))) {
3016       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3017                                         Depth + 1, FoundRoot);
3018       if (!Res)
3019         return Result;
3020 
3021       Result = BitPart(Res->Provider, BitWidth);
3022       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3023         Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3024       return Result;
3025     }
3026 
3027     // BITREVERSE - most likely due to us previous matching a partial
3028     // bitreverse.
3029     if (match(V, m_BitReverse(m_Value(X)))) {
3030       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3031                                         Depth + 1, FoundRoot);
3032       if (!Res)
3033         return Result;
3034 
3035       Result = BitPart(Res->Provider, BitWidth);
3036       for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3037         Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3038       return Result;
3039     }
3040 
3041     // BSWAP - most likely due to us previous matching a partial bswap.
3042     if (match(V, m_BSwap(m_Value(X)))) {
3043       const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3044                                         Depth + 1, FoundRoot);
3045       if (!Res)
3046         return Result;
3047 
3048       unsigned ByteWidth = BitWidth / 8;
3049       Result = BitPart(Res->Provider, BitWidth);
3050       for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3051         unsigned ByteBitOfs = ByteIdx * 8;
3052         for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3053           Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3054               Res->Provenance[ByteBitOfs + BitIdx];
3055       }
3056       return Result;
3057     }
3058 
3059     // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3060     // amount (modulo).
3061     // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3062     // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3063     if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3064         match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3065       // We can treat fshr as a fshl by flipping the modulo amount.
3066       unsigned ModAmt = C->urem(BitWidth);
3067       if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3068         ModAmt = BitWidth - ModAmt;
3069 
3070       // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3071       if (!MatchBitReversals && (ModAmt % 8) != 0)
3072         return Result;
3073 
3074       // Check we have both sources and they are from the same provider.
3075       const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3076                                         Depth + 1, FoundRoot);
3077       if (!LHS || !LHS->Provider)
3078         return Result;
3079 
3080       const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3081                                         Depth + 1, FoundRoot);
3082       if (!RHS || LHS->Provider != RHS->Provider)
3083         return Result;
3084 
3085       unsigned StartBitRHS = BitWidth - ModAmt;
3086       Result = BitPart(LHS->Provider, BitWidth);
3087       for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3088         Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3089       for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3090         Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3091       return Result;
3092     }
3093   }
3094 
3095   // If we've already found a root input value then we're never going to merge
3096   // these back together.
3097   if (FoundRoot)
3098     return Result;
3099 
3100   // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3101   // be the root input value to the bswap/bitreverse.
3102   FoundRoot = true;
3103   Result = BitPart(V, BitWidth);
3104   for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3105     Result->Provenance[BitIdx] = BitIdx;
3106   return Result;
3107 }
3108 
3109 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3110                                           unsigned BitWidth) {
3111   if (From % 8 != To % 8)
3112     return false;
3113   // Convert from bit indices to byte indices and check for a byte reversal.
3114   From >>= 3;
3115   To >>= 3;
3116   BitWidth >>= 3;
3117   return From == BitWidth - To - 1;
3118 }
3119 
3120 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3121                                                unsigned BitWidth) {
3122   return From == BitWidth - To - 1;
3123 }
3124 
3125 bool llvm::recognizeBSwapOrBitReverseIdiom(
3126     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3127     SmallVectorImpl<Instruction *> &InsertedInsts) {
3128   if (!match(I, m_Or(m_Value(), m_Value())) &&
3129       !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3130       !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3131     return false;
3132   if (!MatchBSwaps && !MatchBitReversals)
3133     return false;
3134   Type *ITy = I->getType();
3135   if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3136     return false;  // Can't do integer/elements > 128 bits.
3137 
3138   Type *DemandedTy = ITy;
3139   if (I->hasOneUse())
3140     if (auto *Trunc = dyn_cast<TruncInst>(I->user_back()))
3141       DemandedTy = Trunc->getType();
3142 
3143   // Try to find all the pieces corresponding to the bswap.
3144   bool FoundRoot = false;
3145   std::map<Value *, Optional<BitPart>> BPS;
3146   const auto &Res =
3147       collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3148   if (!Res)
3149     return false;
3150   ArrayRef<int8_t> BitProvenance = Res->Provenance;
3151   assert(all_of(BitProvenance,
3152                 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3153          "Illegal bit provenance index");
3154 
3155   // If the upper bits are zero, then attempt to perform as a truncated op.
3156   if (BitProvenance.back() == BitPart::Unset) {
3157     while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3158       BitProvenance = BitProvenance.drop_back();
3159     if (BitProvenance.empty())
3160       return false; // TODO - handle null value?
3161     DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3162     if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3163       DemandedTy = VectorType::get(DemandedTy, IVecTy);
3164   }
3165 
3166   // Check BitProvenance hasn't found a source larger than the result type.
3167   unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3168   if (DemandedBW > ITy->getScalarSizeInBits())
3169     return false;
3170 
3171   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3172   // only byteswap values with an even number of bytes.
3173   APInt DemandedMask = APInt::getAllOnesValue(DemandedBW);
3174   bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3175   bool OKForBitReverse = MatchBitReversals;
3176   for (unsigned BitIdx = 0;
3177        (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3178     if (BitProvenance[BitIdx] == BitPart::Unset) {
3179       DemandedMask.clearBit(BitIdx);
3180       continue;
3181     }
3182     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3183                                                 DemandedBW);
3184     OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3185                                                           BitIdx, DemandedBW);
3186   }
3187 
3188   Intrinsic::ID Intrin;
3189   if (OKForBSwap)
3190     Intrin = Intrinsic::bswap;
3191   else if (OKForBitReverse)
3192     Intrin = Intrinsic::bitreverse;
3193   else
3194     return false;
3195 
3196   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3197   Value *Provider = Res->Provider;
3198 
3199   // We may need to truncate the provider.
3200   if (DemandedTy != Provider->getType()) {
3201     auto *Trunc =
3202         CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3203     InsertedInsts.push_back(Trunc);
3204     Provider = Trunc;
3205   }
3206 
3207   Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3208   InsertedInsts.push_back(Result);
3209 
3210   if (!DemandedMask.isAllOnesValue()) {
3211     auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3212     Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3213     InsertedInsts.push_back(Result);
3214   }
3215 
3216   // We may need to zeroextend back to the result type.
3217   if (ITy != Result->getType()) {
3218     auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3219     InsertedInsts.push_back(ExtInst);
3220   }
3221 
3222   return true;
3223 }
3224 
3225 // CodeGen has special handling for some string functions that may replace
3226 // them with target-specific intrinsics.  Since that'd skip our interceptors
3227 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3228 // we mark affected calls as NoBuiltin, which will disable optimization
3229 // in CodeGen.
3230 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3231     CallInst *CI, const TargetLibraryInfo *TLI) {
3232   Function *F = CI->getCalledFunction();
3233   LibFunc Func;
3234   if (F && !F->hasLocalLinkage() && F->hasName() &&
3235       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3236       !F->doesNotAccessMemory())
3237     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
3238 }
3239 
3240 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3241   // We can't have a PHI with a metadata type.
3242   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3243     return false;
3244 
3245   // Early exit.
3246   if (!isa<Constant>(I->getOperand(OpIdx)))
3247     return true;
3248 
3249   switch (I->getOpcode()) {
3250   default:
3251     return true;
3252   case Instruction::Call:
3253   case Instruction::Invoke: {
3254     const auto &CB = cast<CallBase>(*I);
3255 
3256     // Can't handle inline asm. Skip it.
3257     if (CB.isInlineAsm())
3258       return false;
3259 
3260     // Constant bundle operands may need to retain their constant-ness for
3261     // correctness.
3262     if (CB.isBundleOperand(OpIdx))
3263       return false;
3264 
3265     if (OpIdx < CB.getNumArgOperands()) {
3266       // Some variadic intrinsics require constants in the variadic arguments,
3267       // which currently aren't markable as immarg.
3268       if (isa<IntrinsicInst>(CB) &&
3269           OpIdx >= CB.getFunctionType()->getNumParams()) {
3270         // This is known to be OK for stackmap.
3271         return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3272       }
3273 
3274       // gcroot is a special case, since it requires a constant argument which
3275       // isn't also required to be a simple ConstantInt.
3276       if (CB.getIntrinsicID() == Intrinsic::gcroot)
3277         return false;
3278 
3279       // Some intrinsic operands are required to be immediates.
3280       return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3281     }
3282 
3283     // It is never allowed to replace the call argument to an intrinsic, but it
3284     // may be possible for a call.
3285     return !isa<IntrinsicInst>(CB);
3286   }
3287   case Instruction::ShuffleVector:
3288     // Shufflevector masks are constant.
3289     return OpIdx != 2;
3290   case Instruction::Switch:
3291   case Instruction::ExtractValue:
3292     // All operands apart from the first are constant.
3293     return OpIdx == 0;
3294   case Instruction::InsertValue:
3295     // All operands apart from the first and the second are constant.
3296     return OpIdx < 2;
3297   case Instruction::Alloca:
3298     // Static allocas (constant size in the entry block) are handled by
3299     // prologue/epilogue insertion so they're free anyway. We definitely don't
3300     // want to make them non-constant.
3301     return !cast<AllocaInst>(I)->isStaticAlloca();
3302   case Instruction::GetElementPtr:
3303     if (OpIdx == 0)
3304       return true;
3305     gep_type_iterator It = gep_type_begin(I);
3306     for (auto E = std::next(It, OpIdx); It != E; ++It)
3307       if (It.isStruct())
3308         return false;
3309     return true;
3310   }
3311 }
3312 
3313 Value *llvm::invertCondition(Value *Condition) {
3314   // First: Check if it's a constant
3315   if (Constant *C = dyn_cast<Constant>(Condition))
3316     return ConstantExpr::getNot(C);
3317 
3318   // Second: If the condition is already inverted, return the original value
3319   Value *NotCondition;
3320   if (match(Condition, m_Not(m_Value(NotCondition))))
3321     return NotCondition;
3322 
3323   BasicBlock *Parent = nullptr;
3324   Instruction *Inst = dyn_cast<Instruction>(Condition);
3325   if (Inst)
3326     Parent = Inst->getParent();
3327   else if (Argument *Arg = dyn_cast<Argument>(Condition))
3328     Parent = &Arg->getParent()->getEntryBlock();
3329   assert(Parent && "Unsupported condition to invert");
3330 
3331   // Third: Check all the users for an invert
3332   for (User *U : Condition->users())
3333     if (Instruction *I = dyn_cast<Instruction>(U))
3334       if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3335         return I;
3336 
3337   // Last option: Create a new instruction
3338   auto *Inverted =
3339       BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3340   if (Inst && !isa<PHINode>(Inst))
3341     Inverted->insertAfter(Inst);
3342   else
3343     Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3344   return Inverted;
3345 }
3346 
3347 bool llvm::inferAttributesFromOthers(Function &F) {
3348   // Note: We explicitly check for attributes rather than using cover functions
3349   // because some of the cover functions include the logic being implemented.
3350 
3351   bool Changed = false;
3352   // readnone + not convergent implies nosync
3353   if (!F.hasFnAttribute(Attribute::NoSync) &&
3354       F.doesNotAccessMemory() && !F.isConvergent()) {
3355     F.setNoSync();
3356     Changed = true;
3357   }
3358 
3359   // readonly implies nofree
3360   if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3361     F.setDoesNotFreeMemory();
3362     Changed = true;
3363   }
3364 
3365   // willreturn implies mustprogress
3366   if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3367     F.setMustProgress();
3368     Changed = true;
3369   }
3370 
3371   // TODO: There are a bunch of cases of restrictive memory effects we
3372   // can infer by inspecting arguments of argmemonly-ish functions.
3373 
3374   return Changed;
3375 }
3376